WO2020248566A1 - 等离子体杀菌消毒装置及空气净化器 - Google Patents

等离子体杀菌消毒装置及空气净化器 Download PDF

Info

Publication number
WO2020248566A1
WO2020248566A1 PCT/CN2019/126804 CN2019126804W WO2020248566A1 WO 2020248566 A1 WO2020248566 A1 WO 2020248566A1 CN 2019126804 W CN2019126804 W CN 2019126804W WO 2020248566 A1 WO2020248566 A1 WO 2020248566A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
plasma sterilization
conductive grid
plasma
conductive
Prior art date
Application number
PCT/CN2019/126804
Other languages
English (en)
French (fr)
Inventor
肖德玲
封宗瑜
程晨
曾焕雄
肖利容
王堃
王贤波
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020248566A1 publication Critical patent/WO2020248566A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation

Definitions

  • the present disclosure relates to a sterilization and disinfection device, in particular to a plasma sterilization and disinfection device and an air purifier.
  • Existing air purifiers mainly use high-efficiency filters to filter harmful substances such as dust and particles in the air, and the harmful substances are adsorbed on the filter to achieve the effect of air purification.
  • This kind of air purifier has a good air purification effect in a short time, but as the use time increases, the dust, particles and bacteria and viruses adsorbed on the filter gradually accumulate. Under the appropriate conditions of the external environment, bacteria and viruses It may reproduce in large numbers and be blown back into the air again during the working process of the air purifier, causing secondary pollution to the air and endangering human health.
  • Plasma is the fourth state of matter. It has many high-energy ions, which can sterilize and disinfect.
  • the use of plasma purification technology can effectively kill bacteria and viruses in the air.
  • the plasma sterilization equipment in the related technology mainly adopts the conventional wire plate discharge method.
  • the corona wire is easy to break, and the equipment is usually large in size and requires a higher excitation voltage, which can only be applied to factories with relatively open spaces.
  • the industrial production environment cannot meet the demand for efficient sterilization and disinfection in small spaces such as home environments.
  • the present disclosure provides a plasma sterilization and disinfection device and an air purifier.
  • a flexible plasma generating device with a small volume and low discharge power is formed by weaving or etching nanomaterials, which is convenient to be installed in a small-volume air purifier. Disinfection.
  • the specific technical solutions are as follows:
  • a plasma sterilization and disinfection device includes an ionization component, the ionization component is connected with a power supply, the ionization component includes nano conductive wires, the nano conductive wires are arranged crosswise, a nano conductive grid is formed on the ionization component, and the current generated by the power flows through the nano The conductive grid ionizes the ionization components to generate plasma.
  • the conductive nanowires include nanowires, and the nanowires are woven into a porous network structure to form a nano conductive grid.
  • the nano-conductive wire includes at least two kinds of nano-wires, at least two kinds of nano-wires are mixed and wound to form a nano-fiber bundle, and the nano-fiber bundle is woven to form a nano-conductive grid.
  • the nanowires are nanoscale carbon fibers or nanoscale metal wires.
  • the nano conductive grid is a mesh structure of hexagonal holes, triangular holes or rectangular holes.
  • the ionization component includes a substrate, and a nano-conductive grid formed of nano-scale conductive materials is disposed on the substrate.
  • the nano-conductive grid is formed by etching nano-scale conductive materials.
  • the substrate is a flexible circuit board or a porous material board.
  • the nano conductive grid is a dendritic bifurcated structure or a hexagonal hole mesh structure or a triangular hole mesh structure or a rectangular hole mesh structure.
  • the ionization component is bent or bent to form a concave-convex structure on the surface to increase the discharge area of the nano conductive grid.
  • the ionization component is folded to form a double-layer or multilayer overlapping structure to increase the discharge area of the nano-conductive grid.
  • the ionization component is bent or bent to form a concave-convex structure on the surface to increase the discharge area of the nano conductive grid.
  • An air purifier includes the plasma sterilization device described above.
  • the plasma sterilization and disinfection device and the air purifier of the present disclosure can use high-concentration plasma to sterilize and sterilize the air, which not only solves the problems of bacteria breeding and secondary pollution of the existing filter air purifier, but also has a small size and convenient equipment Use in a small space.
  • the plasma discharge voltage and discharge power are low, the application range is wider, and it is convenient to carry. It can generate high-concentration plasma in an ultra-thin space, and the efficiency of sterilization is high.
  • the ionization component has high strength, is not easy to break, and has a long service life.
  • FIG. 1 is a schematic diagram of the mesh structure of the flexible fiber web in the first embodiment of the disclosure.
  • FIG. 2 is a schematic diagram of the mesh structure of the flexible fiber web in the first embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of the mesh structure of the flexible fiber web in the first embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the grid shape of the nano conductive grid in the second embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of a cross-section of an ionization component in this disclosure.
  • FIG. 6 is a schematic diagram of a cross-section of an ionization component in this disclosure.
  • FIG. 7 is a schematic diagram of a cross-section of an ionization component in this disclosure.
  • Fig. 8 is a side view of the ionization component of the present disclosure.
  • the plasma sterilization and disinfection device in the present disclosure includes an ionization component 1.
  • the ionization component 1 is connected to a power source.
  • the ionization component 1 includes nano conductive wires, which are arranged crosswise.
  • a nano conductive grid is formed on the ionization component 1, and the power source is generated.
  • the current flows through the nano conductive grid to ionize the ionization component 1 and generate a high-concentration plasma, which can sterilize and disinfect the air.
  • the nano conductive yarn is composed of a nano fiber bundle 2, which is formed by a mixture of two or more soft nanowires, and has good conductivity.
  • the nanofiber bundle 2 is woven to form a porous, mesh-like flexible fiber mesh. Please refer to Figure 1, Figure 2 and Figure 3.
  • the flexible fiber mesh can be woven into a mesh structure with hexagonal holes or triangular holes. Or the mesh structure of rectangular holes, the hole shape of the mesh structure is not particularly limited in this embodiment.
  • the nano conductive wire can also be composed of only one kind of conductive nano wire.
  • the nanowires may be nanoscale carbon fibers, nanoscale metal wires or other nanoscale materials.
  • the flexible fiber web can meet the electrical performance requirements of plasma discharge.
  • the flexible fiber network structure is light and thin, and it is a flexible structure that can be bent and deformed, so it can be installed in a narrow space and a space with a special shape to realize the discharge of the nano fiber network and generate plasma.
  • the ionization component 1 uses a flexible circuit board as a substrate, and etches nano-scale conductive materials (such as nano-scale metal materials) on the surface of the flexible circuit board through an etching process to form a nano-scale network or other shapes Structure, namely nano conductive grid.
  • nano-scale conductive materials such as nano-scale metal materials
  • the nano conductive grid formed by etching can be a dendritic bifurcated structure 3, of course, it can also be the triangular, rectangular and hexagonal grids shown in Figure 1, Figure 2 and Figure 3
  • the shape of the nano conductive grid formed by etching is not particularly limited in this embodiment.
  • the substrate of the ionization component 1 may also adopt a plate structure made of porous materials.
  • the processing technology for forming a nano-conductive grid on the surface of the substrate is not limited to etching, and other methods that can be processed by using nano-conductive materials on the surface of the substrate to form a network structure can be used.
  • the ionization component 1 is of flexible texture as a whole, compared with the conventional plasma generator, the ionization component 1 is less prone to breakage and has a long service life. Because the grid structure made of nano materials is used as the discharge body, the overall volume of the device is small, which is convenient for use in a small space; the voltage and discharge power required for the discharge of the ionization component 1 to generate plasma are also greatly reduced, so that the device The scope of application is wider and it is convenient to carry.
  • the ionization assembly 1 in the above-mentioned embodiment is repeatedly bent or bent so that the cross-section of the ionization assembly 1 is in the shape of a continuous broken line.
  • the semicircular or arc-shaped surface has a concave and convex structure to increase the discharge area of the nano-conductive grid in a limited space, thereby increasing the plasma concentration generated by the ionization component 1 and improving the sterilization effect.
  • the above-mentioned ionization component 1 can also be repeatedly folded, so that the ionization component 1 forms a double-layer or multi-layer overlapping structure to increase the nano-conductive grid in a limited space.
  • the discharge area is increased, thereby increasing the concentration of plasma generated by the ionization component 1, and improving the sterilization effect.
  • a plurality of rollers 4 are arranged at intervals, and a flexible nano conductive grid is sequentially wound on the plurality of rollers 4 to form an overlapping structure.
  • the air purifier in the present disclosure includes the above-mentioned plasma sterilization and disinfection device, which can effectively sterilize and sterilize on the basis of adsorbing impurities such as dust and particles in the air.
  • the plasma sterilization and disinfection device and the air purifier of the present disclosure can use high-concentration plasma to sterilize and sterilize the air, which not only solves the problems of bacteria breeding and secondary pollution of the existing filter air purifier, but also has a small size and convenient equipment Use in a small space.
  • the plasma discharge voltage and discharge power are low, the application range is wider, and it is convenient to carry.
  • High-efficiency discharge can generate high-concentration plasma in an ultra-thin space with high sterilization efficiency.
  • the ionization component has high strength, is not easy to break, and has a long service life.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Plasma Technology (AREA)

Abstract

一种等离子体杀菌消毒装置,包括电离组件(1),电离组件(1)与电源相连接,电离组件(1)包括纳米导电丝,纳米导电丝交叉排布,在电离组件(1)上形成纳米导电网格,电源产生的电流流经纳米导电网格,使电离组件(1)发生电离,产生高浓度的等离子体;所述的等离子体能够对空气进行杀菌消毒。

Description

等离子体杀菌消毒装置及空气净化器
相关申请
本公开要求2019年06月11日申请的,申请号为201910499662.0,名称为“等离子体杀菌消毒装置及空气净化器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本公开涉及一种杀菌消毒装置,尤其涉及一种等离子体杀菌消毒装置及空气净化器。
背景技术
现有的空气净化器主要采用高效过滤网过滤空气中的粉尘及颗粒物等有害物质,有害物质被吸附在过滤网上,以达到对空气净化的效果。这种空气净化器,短时间内具有较好的空气净化效果,但随着使用时间的增长,吸附在过滤网上的粉尘、颗粒物及细菌病毒逐渐累积,在外界环境适宜的条件下,细菌和病毒可能会大量繁殖,并在空气净化器工作的过程中被再次吹回到空气中,对空气造成二次污染,危害人体健康。
等离子体是物质的第四态,具有很多的高能离子,能够杀菌消毒,运用等离子体净化技术能够有效杀灭空气中的细菌和病毒。但是,相关技术中等离子体杀菌消毒设备主要采用常规丝板放电的方式,电晕丝容易断裂,且通常设备的体积较大,需要较高的激发电压,仅能适用于空间较为开阔的工厂等工业生产环境,无法实现在居家环境等小空间内高效杀菌消毒的需求。
发明内容
本公开提供了一种等离子体杀菌消毒装置及空气净化器,通过纳米材料编织或刻蚀形成体积小、放电功率低的柔性等离子体发生装置,方便设置在小体积的空气净化器中,以进行杀菌消毒。具体技术方案如下:
一种等离子体杀菌消毒装置,包括电离组件,电离组件与电源相连接,电离组件包括纳米导电丝,纳米导电丝交叉排布,在电离组件上形成纳米导电网格,电源产生的电流流经纳米导电网格,使电离组件发生电离,产生等离子体。
在一实施例中,纳米导电丝包括纳米线,纳米线编织成多孔的网状结构,形成纳米导电网格。
在一实施例中,纳米导电丝包括至少两种纳米线,至少两种纳米线混合缠绕形成纳米 纤维束,纳米纤维束编织形成纳米导电网格。
在一实施例中,纳米线为纳米级碳纤维或纳米级金属丝。
在一实施例中,纳米导电网格为六边形孔或三角形孔或矩形孔的网状结构。
在一实施例中,电离组件包括基材,基材上设置有纳米级导电材料形成的纳米导电网格。
在一实施例中,纳米导电网格为纳米级导电材料刻蚀形成。
在一实施例中,基材为柔性线路板或多孔材料板。
在一实施例中,纳米导电网格为树枝状的分叉形结构或六边形孔的网状结构或三角形孔的网状结构或矩形孔的网状结构。
在一实施例中,电离组件弯曲或弯折形成表面凹凸起伏的结构,以增大纳米导电网格的放电面积。
在一实施例中,电离组件折叠设置,形成双层或多层的重叠结构,以增大纳米导电网格的放电面积。
在一实施例中,电离组件弯曲或弯折形成表面凹凸起伏的结构,以增大纳米导电网格的放电面积。
一种空气净化器,包括上述所述的等离子体杀菌消毒装置。
本公开的等离子体杀菌消毒装置及空气净化器可利用高浓度的等离子体对空气进行杀菌消毒,不仅解决了现有过滤式空气净化器细菌滋生、二次污染的问题,且设备体积小,方便在小空间内使用。等离子体放电电压及放电功率低,适用范围更广,方便携带。能够在超薄空间内产生高浓度的等离子体,杀菌消毒的效率高。电离组件强度高,不易发生断裂,使用寿命长。
附图说明
图1为本公开中实施例一的柔性纤维网的网格结构的示意图。
图2为本公开中实施例一的柔性纤维网的网格结构的示意图。
图3为本公开中实施例一的柔性纤维网的网格结构的示意图。
图4为本公开中实施例二的纳米导电网格的网格形状示意图。
图5为本公开中电离组件的截面的示意图。
图6为本公开中电离组件的截面的示意图。
图7为本公开中电离组件的截面的示意图。
图8为本公开中电离组件的侧视图。
具体实施方式
为了更好地了解本公开的目的、功能以及具体设计方案,下面结合附图,对本公开的等离子体杀菌消毒装置及空气净化器作进一步详细的描述。
本公开中的等离子体杀菌消毒装置包括电离组件1,电离组件1与电源相连接,电离组件1包括纳米导电丝,纳米导电丝交叉排布,在电离组件1上形成纳米导电网格,电源产生的电流流经纳米导电网格,使电离组件1发生电离,产生高浓度的等离子体,等离子体可对空气进行杀菌消毒。
纳米导电丝由纳米纤维束2构成,纳米纤维束2是由两种或多种软质的纳米线混合缠绕而成,具有良好的导电性。纳米纤维束2通过编织的方法形成多孔、网状的柔性纤维网,请参阅图1、图2和图3,柔性纤维网可编织成六边形孔的网状结构,也可编织成三角形孔或矩形孔的网状结构,本实施例中对网状结构的孔形状不做特殊限定。当然,纳米导电丝也可仅由一种可导电的纳米线构成。
在一个可选的实施例中,纳米线可为纳米级碳纤维、纳米级金属丝或其他纳米级材料。
由于纳米纤维束2具有良好的导电性,且柔性纤维网是由数千束纳米纤维束2编织而成,因此柔性纤维网能够满足等离子体放电的电性能需求。此外,柔性纤维网结构轻薄,又为可弯曲变形的柔性结构,因此能够安装在狭小空间及形状特殊的空间内,以实现纳米纤维网放电,产生等离子体。
电离组件1以柔性线路板作为基材,通过刻蚀的加工工艺,将纳米级的导电材料(例如纳米级金属材料)刻蚀到柔性线路板的表面,形成纳米级的网状或者其它形状的结构,即纳米导电网格。请参阅图4,刻蚀形成的纳米导电网格具体可为树枝状的分叉形结构3,当然,也可以为图1、图2和图3中所示的三角形、矩形和六边形网格结构,本实施例中对刻蚀形成的纳米导电网格的形状不做特殊限定。
此外,电离组件1的基材也可采用多孔材料制成的板件结构。
此外,在基材表面形成纳米导电网格的加工工艺不仅限于刻蚀,其他可在基材表面采用纳米导电材料加工形成网状结构的方法均可采用。
上述实施例中的等离子体杀菌消毒装置,由于电离组件1整体为柔性质地,因此与传统的等离子体发生装置相比,电离组件1不易发生断裂,使用寿命长。由于采用纳米材料制成的网格结构作为放电体,因此设备整体的体积较小,方便在狭小空间内使用;电离组件1放电产生等离子体所需的电压及放电功率也大幅度降低,使装置的适用范围更广,方便携带。
在一个可选的实施例中,为了在狭小空间内增加电离组件1产生的等离子体的浓度,提高杀菌消毒的效果,还可以在上述实施例的基础上进行如下设置。
具体的,请参阅图5、图6和图7所示的电离组件1的截面图,将上述实施例中的电离组件1反复弯曲或弯折,使电离组件1的截面呈连续的折线形、半圆形或弧线形等表面凹凸起伏的结构,以增大有限空间内纳米导电网格的放电面积,进而增加电离组件1产生的等离子体的浓度,提高杀菌消毒的效果。
在一个可选的实施例中,请参阅图8,还可以将上述的电离组件1反复折叠设置,使电离组件1形成双层或多层的重叠结构,以增大有限空间内纳米导电网格的放电面积,进而增加电离组件1产生的等离子体的浓度,提高杀菌消毒的效果。例如,间隔设置多个滚轴4,将柔性的纳米导电网格顺次缠绕在多个滚轴4上,以形成重叠结构。
本公开中的空气净化器包括上述所述的等离子体杀菌消毒装置,在吸附空气中的粉尘及颗粒物等杂质的基础上,还能够有效杀菌消毒。
本公开的等离子体杀菌消毒装置及空气净化器可利用高浓度的等离子体对空气进行杀菌消毒,不仅解决了现有过滤式空气净化器细菌滋生、二次污染的问题,且设备体积小,方便在小空间内使用。等离子体放电电压及放电功率低,适用范围更广,方便携带。高效放电,能够在超薄空间内产生高浓度的等离子体,杀菌消毒效率高。电离组件强度高,不易发生断裂,使用寿命长。
以上借助具体实施例对本公开做了在一个可选的实施例中描述,但是应该理解的是,这里具体的描述,不应理解为对本公开的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本公开所保护的范围。

Claims (13)

  1. 一种等离子体杀菌消毒装置,包括电离组件,电离组件与电源相连接,其特征在于,电离组件包括纳米导电丝,纳米导电丝交叉排布,在电离组件上形成纳米导电网格,电源产生的电流流经纳米导电网格,使电离组件发生电离,产生等离子体。
  2. 如权利要求1所述的等离子体杀菌消毒装置,其特征在于,纳米导电丝包括纳米线,纳米线编织成多孔的网状结构,形成纳米导电网格。
  3. 如权利要求2所述的等离子体杀菌消毒装置,其特征在于,纳米导电丝包括至少两种纳米线,至少两种纳米线混合缠绕形成纳米纤维束,纳米纤维束编织形成纳米导电网格。
  4. 如权利要求2或3所述的等离子体杀菌消毒装置,其特征在于,纳米线为纳米级碳纤维或纳米级金属丝。
  5. 如权利要求2或3所述的等离子体杀菌消毒装置,其特征在于,纳米导电网格为六边形孔或三角形孔或矩形孔的网状结构。
  6. 如权利要求1所述的等离子体杀菌消毒装置,其特征在于,电离组件包括基材,基材上设置有纳米级导电材料形成的纳米导电网格。
  7. 如权利要求6所述的等离子体杀菌消毒装置,其特征在于,纳米导电网格为纳米级导电材料刻蚀形成。
  8. 如权利要求6或7所述的等离子体杀菌消毒装置,其特征在于,基材为柔性线路板或多孔材料板。
  9. 如权利要求6或7所述的等离子体杀菌消毒装置,其特征在于,纳米导电网格为树枝状的分叉形结构或六边形孔的网状结构或三角形孔的网状结构或矩形孔的网状结构。
  10. 如权利要求1所述的等离子体杀菌消毒装置,其特征在于,电离组件弯曲或弯折形成表面凹凸起伏的结构,以增大纳米导电网格的放电面积。
  11. 如权利要求1所述的等离子体杀菌消毒装置,其特征在于,电离组件折叠设置,形成双层或多层的重叠结构,以增大纳米导电网格的放电面积。
  12. 如权利要求11所述的等离子体杀菌消毒装置,其特征在于,电离组件弯曲或弯折形成表面凹凸起伏的结构,以增大纳米导电网格的放电面积。
  13. 一种空气净化器,其特征在于,包括上述权利要求1至12中任一所述的等离子体杀菌消毒装置。
PCT/CN2019/126804 2019-06-11 2019-12-20 等离子体杀菌消毒装置及空气净化器 WO2020248566A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910499662.0A CN110180012B (zh) 2019-06-11 2019-06-11 等离子体杀菌消毒装置及空气净化器
CN201910499662.0 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020248566A1 true WO2020248566A1 (zh) 2020-12-17

Family

ID=67721158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126804 WO2020248566A1 (zh) 2019-06-11 2019-12-20 等离子体杀菌消毒装置及空气净化器

Country Status (2)

Country Link
CN (1) CN110180012B (zh)
WO (1) WO2020248566A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039283A1 (en) * 2021-02-07 2022-08-10 Carrier Corporation Air purification device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180012B (zh) * 2019-06-11 2024-03-05 珠海格力电器股份有限公司 等离子体杀菌消毒装置及空气净化器
CN111629506A (zh) * 2020-05-20 2020-09-04 中国人民解放军空军工程大学 一种大面积空间均匀等离子体发生器及发生方法
CN113015309A (zh) * 2021-04-14 2021-06-22 殷振华 一种诱导等离子发生装置及其制作方法
CN113925992B (zh) * 2021-11-04 2023-05-09 强固生物技术(上海)有限公司 一种等离子发生装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791037B1 (en) * 2006-03-16 2010-09-07 Imaging Systems Technology Plasma-tube radiation detector
CN204910211U (zh) * 2015-08-17 2015-12-30 老肯医疗科技股份有限公司 一种等离子体空气净化消毒机的电极发生器
CN105478238A (zh) * 2014-09-16 2016-04-13 孙红梅 丝网电极放电装置
CN106731366A (zh) * 2017-01-22 2017-05-31 浙江大学 用于室内空气净化的等离子体织网装置
CN108322990A (zh) * 2018-02-24 2018-07-24 北京睿昱达科技有限公司 一种等离子体发生组件及空气净化装置
CN208771018U (zh) * 2018-07-17 2019-04-23 爱美克空气过滤器(苏州)有限公司 一种杀菌驻极过滤器
CN110180012A (zh) * 2019-06-11 2019-08-30 珠海格力电器股份有限公司 等离子体杀菌消毒装置及空气净化器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050019692A (ko) * 2003-08-21 2005-03-03 주식회사제4기한국 공조라인에 설치가능한 공기살균 청정유닛
CN105848397B (zh) * 2016-05-27 2017-11-14 北京睿昱达科技有限公司 一种柔性放电电极结构的等离子体消毒灭菌装置
KR101941860B1 (ko) * 2017-06-09 2019-01-25 한국과학기술연구원 기체 방전 살균 및 제독 기능을 가진 차량용 외장재, 이를 포함하는 차량 및 차량의 살균 및 제독을 위한 소독 시스템
CN210409085U (zh) * 2019-06-11 2020-04-28 珠海格力电器股份有限公司 等离子体杀菌消毒装置及空气净化器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791037B1 (en) * 2006-03-16 2010-09-07 Imaging Systems Technology Plasma-tube radiation detector
CN105478238A (zh) * 2014-09-16 2016-04-13 孙红梅 丝网电极放电装置
CN204910211U (zh) * 2015-08-17 2015-12-30 老肯医疗科技股份有限公司 一种等离子体空气净化消毒机的电极发生器
CN106731366A (zh) * 2017-01-22 2017-05-31 浙江大学 用于室内空气净化的等离子体织网装置
CN108322990A (zh) * 2018-02-24 2018-07-24 北京睿昱达科技有限公司 一种等离子体发生组件及空气净化装置
CN208771018U (zh) * 2018-07-17 2019-04-23 爱美克空气过滤器(苏州)有限公司 一种杀菌驻极过滤器
CN110180012A (zh) * 2019-06-11 2019-08-30 珠海格力电器股份有限公司 等离子体杀菌消毒装置及空气净化器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039283A1 (en) * 2021-02-07 2022-08-10 Carrier Corporation Air purification device

Also Published As

Publication number Publication date
CN110180012B (zh) 2024-03-05
CN110180012A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020248566A1 (zh) 等离子体杀菌消毒装置及空气净化器
US9117616B2 (en) Dielectric barrier discharge-type electrode structure for generating plasma having conductive body protrusion on electrodes
CN101920031B (zh) 等离子体空气消毒净化器及其空气消毒净化方法
CN204816887U (zh) 一种空气净化高压离子驻极体净化装置及空气净化装置
CN105983486A (zh) 一种空气净化高压离子驻极体净化装置及空气净化装置
CN104127907A (zh) 非热等离子体空气净化消毒反应器
WO2023207140A1 (zh) 碳纤维螺旋电极、等离子体发生装置及空气净化器
WO2023207155A1 (zh) 一种等离子体发生装置和空气净化器
WO2011079510A1 (zh) 金属带——板结构反应器
KR100575654B1 (ko) 나노 기술이 적용된 탄소 섬유 음이온 발생장치
JP2010260786A (ja) オゾン発生装置
CN210296870U (zh) 一种动态纳米离子发生装置
US9744492B2 (en) Air purifier
CN210409085U (zh) 等离子体杀菌消毒装置及空气净化器
CN210545701U (zh) 一种高效离子风空气净化器
CN201586249U (zh) 一种等离子体空气消毒净化器
TW201408966A (zh) 空氣過濾裝置
CN210089019U (zh) 一种带有滤网的纳米离子发生装置
WO2023207141A1 (zh) 螺旋电极、等离子体发生装置及空气净化器
CN217216981U (zh) 等离子体发生装置及空气净化器
CN208771018U (zh) 一种杀菌驻极过滤器
CN217216980U (zh) 一种螺旋电极及等离子体发生装置及空气净化器
KR20190076432A (ko) 탄소계 코팅층을 갖는 플라즈마 와이어 및 이를 이용한 집진기
JP2004006152A (ja) イオン発生素子、イオン発生装置、イオン発生素子製造用基板、イオン発生装置製造用基板及びイオン発生装置内蔵電気機器
WO2021012064A1 (zh) 一种空气净化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932930

Country of ref document: EP

Kind code of ref document: A1