WO2023207141A1 - 螺旋电极、等离子体发生装置及空气净化器 - Google Patents

螺旋电极、等离子体发生装置及空气净化器 Download PDF

Info

Publication number
WO2023207141A1
WO2023207141A1 PCT/CN2022/139626 CN2022139626W WO2023207141A1 WO 2023207141 A1 WO2023207141 A1 WO 2023207141A1 CN 2022139626 W CN2022139626 W CN 2022139626W WO 2023207141 A1 WO2023207141 A1 WO 2023207141A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulated wire
spiral
carbon fiber
insulated
Prior art date
Application number
PCT/CN2022/139626
Other languages
English (en)
French (fr)
Inventor
肖德玲
汪春节
封宗瑜
罗汉兵
Original Assignee
珠海格力电器股份有限公司
北京交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 北京交通大学 filed Critical 珠海格力电器股份有限公司
Publication of WO2023207141A1 publication Critical patent/WO2023207141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation

Definitions

  • This application relates to the field of plasma discharge technology, specifically to spiral electrodes, plasma generating devices and air purifiers.
  • indoor air pollution purification methods include ventilation method, plant purification method, microbial method, physical and chemical adsorption method, plasma method, etc.
  • Plasma discharge Due to the presence of high-energy electrons, excited particles and active groups in low-temperature plasma, plasma discharge can effectively catalyze the degradation of harmful gases. Therefore, it is increasingly used in fields such as air purification.
  • Plasma discharge includes corona discharge and glow discharge. Due to the large discharge area and high plasma density of glow discharge, it has good application prospects. Under normal circumstances, glow discharge plasma is mostly generated in a low pressure or rare gas environment.
  • the plasma generating device in the related art uses a contact spiral electrode structure to construct a non-uniformly distributed spatial electric field, and can achieve stable atmospheric pressure air glow discharge under lower discharge voltage conditions.
  • a first aspect of this application provides a spiral electrode, including:
  • the first electrode is suitable for grounding
  • the second electrode is suitable for connecting to the high-voltage output end of the power supply, the second electrode has an insulating layer, and there are multiple second electrodes;
  • first electrodes there are a plurality of first electrodes, and a plurality of the first electrodes and the second electrodes are braided and entangled with each other; or there are a plurality of second electrodes, and a plurality of the second electrodes and the second electrodes are braided and entangled with each other; An electrode is braided and wound around each other.
  • the first electrode is a carbon fiber electrode
  • the second electrode is an insulated wire
  • the two insulated wires and one carbon fiber electrode are braided and wound with each other.
  • the insulated conductor includes a first insulated conductor and a second insulated conductor
  • the first insulated wire and the second insulated wire are spirally wound from one end to the other end of the carbon fiber electrode, and the winding direction of the first insulated wire and the winding direction of the second insulated wire are opposite.
  • the insulated wire includes a first insulated wire and a second insulated wire, the first insulated wire is spirally wound with the carbon fiber electrode to form a first spiral electrode, and the first spiral electrode is spirally wound around the carbon fiber electrode.
  • a double spiral electrode is formed outside the second insulated wire.
  • the diameter of the second insulated wire is greater than the sum of the diameters of the first insulated wire and the carbon fiber electrode.
  • the outer diameter of the first insulated wire is 0.28 mm ⁇ 0.32 mm
  • the outer diameter of the second insulated wire is 0.30 mm ⁇ 1.6 mm.
  • the insulated wire includes an internal electrode core and an insulating layer wrapped around the electrode core;
  • the thickness of the insulation layer of the first insulated conductor is 0.14mm ⁇ 0.16mm, and the thickness of the insulation layer of the second insulated conductor is 0.15mm ⁇ 0.3mm.
  • the winding pitch of the carbon fiber electrode and the first insulated conductor and the second insulated conductor is between 1 mm and 20 mm.
  • the plurality of second electrodes are all connected to the high-voltage output end of the same AC power supply
  • the carbon fiber electrode is connected to the ground electrode of the AC power supply
  • the first electrode is connected to the ground electrode of the AC power supply
  • the third electrode is connected to the ground electrode of the AC power supply.
  • One electrode is a carbon fiber bundle with a diameter between 0.003 and 5mm.
  • a second aspect of the present application also provides a plasma generating device, including the above-mentioned spiral electrode.
  • a third aspect of the present application also provides an air purifier, including the above plasma generating device.
  • Figure 1 shows a schematic structural diagram of the first implementation of the spiral electrode in Embodiment 1.
  • Figure 2 shows a schematic structural diagram of the second implementation of the spiral electrode in Embodiment 1.
  • Figure 3 shows a schematic structural diagram of the third implementation of the spiral electrode in Embodiment 1.
  • Figure 4 shows a schematic structural diagram of the plasma generating device of Embodiment 2.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the density of plasma generated by single spiral electrode discharge is small, and there are problems such as the removal of gaseous pollutants such as formaldehyde and low sterilization and disinfection efficiency.
  • this embodiment provides a spiral electrode 1.
  • the spiral electrode 1 includes a first electrode 11 and a second electrode 12.
  • the first electrode 11 is suitable for grounding, and the third electrode 11 is suitable for grounding.
  • One electrode 11 has no insulating layer outside and is a bare electrode.
  • the second electrode 12 is suitable for connecting to the high-voltage output end of the power supply, and the second electrode 12 has an insulating layer.
  • There are a plurality of first electrodes 11 and a plurality of the first electrodes 11 and the second electrodes 12 are braided and wound with each other; or, there are a plurality of second electrodes 12 , and a plurality of the second electrodes 12 and the second electrodes 12 are intertwined.
  • the first electrodes 11 are braided and wound with each other.
  • the above-mentioned spiral electrode 1 provided in this embodiment forms a multi-spiral discharge structure by braiding and winding multiple electrodes, which at least doubles the plasma density, increases the plasma energy under the same conditions, and effectively solves the problem of single-spiral electrode discharge.
  • the plasma density is small, and the efficiency of pollutant removal and sterilization is low.
  • the spiral electrode 1 there are a plurality of second electrodes 12 , and the plurality of second electrodes 12 and the first electrode 11 are braided and wound with each other.
  • the second electrode 12 includes an internal electrode core and an insulating layer wrapped around the electrode core.
  • the second electrode 12 with an insulating layer is suitable for connecting to the positive electrode of the AC power supply
  • the first electrode 11 without an insulating layer is suitable for connecting to the ground electrode of the AC power supply.
  • the insulating layer may be made of polyimide, polytetrafluoroethylene or other materials.
  • the insulation layer is made of polytetrafluoroethylene, and the thickness of the insulation layer is between 0.15mm and 0.3mm.
  • the electrode core of the second electrode 12 may be made of conductive materials such as carbon mesh or metal mesh.
  • the electrode core may be solid or hollow conductive material; the shape of the electrode core is not limited. You can choose to set it to any shape as needed.
  • the electrode core is in the shape of a filament.
  • the electrode core is a single thin metal wire.
  • the electrode core is a thin silver wire or a silver-plated copper wire.
  • first electrode 11 and the second electrode 12 can both be electrodes with a certain degree of flexibility to facilitate winding.
  • the first electrode 11 in this embodiment is a bare conductive filament without an insulating layer.
  • a metal wire with a smaller diameter or a carbon fiber bundle can be used.
  • the metal wire is a silver wire.
  • the first electrode 11 can also be made of other materials with conductive properties.
  • the first electrode 11 is a carbon fiber electrode.
  • a single filament of carbon fiber has a very small radius of curvature.
  • the diameter of a single filament of carbon fiber produced under international standards is extremely small, for example, only 7 to 10 ⁇ m. Under this microstructure, the actual discharge space around it is limited to a relatively small size. Within a small size, micro-discharges can be formed.
  • the carbon fiber electrode is selected as the first electrode 11, which can achieve the effect of generating a large-area glow discharge under atmospheric pressure conditions, and can achieve continuous and stable atmospheric pressure air glow discharge with better discharge effect.
  • the two second electrodes 12 and one first electrode 11 are braided and wound with each other.
  • the second electrode 12 in this embodiment is a thin insulated wire, there are two insulated wires, there is one carbon fiber electrode, and the two insulated wires are A carbon fiber electrode is braided and wrapped around each other. Since the secondary spiral electrode is used as a module as a whole, there are only two contact terminals. Compared with the single spiral electrode, the number of discharge contact terminals is reduced, and the electrical safety and product reliability are higher.
  • the two insulated wires provided are equivalent to increasing the discharge diameter of the first electrode 11, thereby increasing the discharge area. If the diameter of the first electrode 11 is directly increased, the discharge voltage needs to be increased and the discharge power must also be increased. Therefore, in this embodiment, by using two thin insulated wires to be intertwined with the first electrode 11, the discharge area can be increased without increasing the discharge voltage.
  • the two insulated conductors and the first electrode 11 are intertwined with each other. Compared with the arrangement of the two insulated conductors and the first electrode 11 in parallel, the volume of the entire spiral electrode 1 can be greatly reduced. At the same time, it also avoids the problems of poor electrical contact and low reliability caused by multiple electrodes connected in parallel.
  • the burrs on the outer surface of the carbon fiber electrode can be effectively suppressed and the discharge breakdown phenomenon at the burr tip can be avoided, thereby making the discharge more uniform, extending the life of the spiral electrode 1, and also avoiding This eliminates the problem that glitch discharge produces too much useless work and affects discharge energy efficiency.
  • first insulated wire 121 and the second insulated wire 122 are braided and wound with the carbon fiber electrode in the following three ways:
  • the insulated wires include a first insulated wire 121 and a second insulated wire 122; the first insulated wire 121 and the second insulated wire 122 are respectively made of the carbon fiber electrode.
  • One end of the first insulated wire 121 is spirally wound to the other end, and the winding direction of the first insulated wire 121 and the winding direction of the second insulated wire 122 are opposite.
  • first insulated wire 121 and the second insulated wire 122 are spirally wound to the surface of the carbon fiber electrode at equal intervals.
  • the winding pitch of the first insulated wire 121 and the second insulated wire 122 is the same.
  • the two insulated wires have a large number of contact points with the carbon fiber electrode.
  • a uniform glow discharge will be generated on the surface of the insulating layer, which will make the insulating layer thinner.
  • the distance between the electrode core in the insulated wire and the external carbon fiber electrode becomes shorter, so the electric field intensity required for discharge can be achieved at a lower voltage and the discharge voltage can be reduced.
  • the thickness of the insulation layer of the insulated wire is between 0.15 mm and 0.3 mm, so as to minimize the discharge voltage without causing breakdown.
  • the specific winding method of the first insulated wire 121 and the second insulated wire 122 with the carbon fiber electrode is as follows: first, the first insulated wire 121 is tightly wound on the carbon fiber electrode to form a winding body. A double-stranded electrode is formed, and then the second insulated wire 122 is tightly wound around the double-stranded electrode in the reverse or forward direction to form a multi-polar electrode.
  • this winding method is used when the diameter of the second insulated wire 122 is thin.
  • this winding method is used when the diameter of the second insulated wire 122 is less than or equal to the diameter of the first insulated wire 121 .
  • the first insulated wire 121 and the second insulated wire 122 are wound on the carbon fiber electrode in a reverse winding manner, which can effectively increase the distance between the first insulated wire 121 and the second insulated wire 122 and the carbon fiber electrode.
  • the contact area enables uniform glow discharge to be generated on the surface of the insulation layer of the first insulated wire 121 and the second insulated wire 122, and can also effectively suppress burrs on the surface of the carbon fiber electrode to avoid excessive partial discharge and breakdown. Improve discharge uniformity.
  • the insulated wires include a first insulated wire 121 and a second insulated wire 122, and the first insulated wire 121 and the carbon fiber electrode (ie, the first electrode 11)
  • the first spiral electrode is formed by spiral winding.
  • the carbon fiber electrodes are wound on the surface of the first insulated wire 121 at equal intervals.
  • the first spiral electrode is spirally wound around the second insulated wire 122 to form a double spiral electrode.
  • the first spiral electrodes are wound around the second insulated wire 122 at equal intervals.
  • the diameter of the second insulated wire 122 is larger than that of the first insulated wire 121, and plasma is mainly generated on the surface of the insulating layer of the second insulated wire 122. Since the second insulated wire 122 has a large cross-section, plasma is generated The amount is larger, thereby reducing the halo voltage and power.
  • the second insulated wire 122 when a large number of seed electrons generated by the discharge of the first insulated wire 121 are provided to the second insulated wire 122, the second insulated wire 122 can generate a uniform discharge at a lower voltage. It is beneficial to reduce the discharge voltage of the second insulated wire 122.
  • the specific winding method of the first insulated wire 121 and the second insulated wire 122 with the carbon fiber electrode is as follows: first, the first insulated wire 121 is spirally wound around the carbon fiber electrode as the first spiral electrode, Alternatively, the carbon fiber electrode is spirally wound on the first insulated wire 121 to serve as the first spiral electrode, and then the first spiral electrode is spirally wound on the second insulated wire 122 to form a double spiral discharge structure.
  • the spiral electrode 1 adopts the above design, which is equivalent to the first insulated wire 121 having formed a surface plasma on the surface of the carbon fiber electrode, and then forming a secondary discharge with the second insulated wire 122 to form a volume plasma. , the plasma density is at least doubled and the volume of the plasma reactor is reduced.
  • the diameter of the second insulated wire 122 is greater than or equal to the outer diameter of the first spiral electrode.
  • the thickness of the insulation layer of the first insulated conductor 121 is smaller than the thickness of the insulation layer of the second insulated conductor 122 .
  • the second insulated wire 122 can use the electrons generated by the discharge of the first insulated wire 121 as seed electrons to generate a uniform discharge under a lower electric field intensity, thereby reducing its discharge voltage.
  • the spiral electrode 1 provided in this embodiment adopts a secondary spiral arrangement and is compact in size. It is not only convenient for processing, manufacturing and carrying, but also can achieve the effects of sterilization and removal of gaseous pollutants in a very small space. When achieving the same effect of removing organic pollutants, the volume of the plasma product can be reduced to 30% of its original size.
  • the first insulated wire 121, the second insulated wire 122 and the carbon fiber electrode are braided with each other and pressed against each other.
  • this method to spiral the two insulated wires 122 twice on the carbon fiber electrode, not only can they fully contact the carbon fiber electrode, but the overall structure is more compact and less likely to loosen.
  • the outer diameter of the first insulated wire 121 is 0.28 mm ⁇ 0.32 mm
  • the outer diameter of the second insulated wire 122 is 0.30 mm ⁇ 1.6 mm.
  • the thickness of the insulation layer of the first insulated conductor 121 is 0.14mm ⁇ 0.16mm, and the thickness of the insulation layer of the second insulated conductor 122 is 0.15mm ⁇ 0.3mm.
  • both insulated wires are braided and wound with the carbon fiber electrode, and the first insulated wire 121 and the second insulated wire are braided and wound with the carbon fiber electrode.
  • the outer diameter of 122 is the same, the diameter of the two insulated wires is 0.32mm, and the insulation thickness is 0.15mm.
  • the diameter of the first insulated wire 121 wound on the carbon fiber electrode is 0.32mm, and the insulation thickness is 0.15mm.
  • the diameter of the second insulated wire 122 is 1.6mm, and the insulation thickness is 0.2mm.
  • the winding pitch of the carbon fiber electrode and the first insulated wire 121 and the second insulated wire 122 is between 1 mm and 20 mm.
  • the winding pitch of the carbon fiber electrode and the first insulated wire 121 and the second insulated wire 122 is controlled to be between 2 and 3 mm.
  • the winding pitch of the first spiral electrode is also controlled between 2 and 3 mm.
  • the plurality of second electrodes 12 are all connected to the high-voltage output end of the same AC power supply, and the first electrode 11 is connected to the ground electrode of the AC power supply.
  • the carbon fiber electrodes are made of 1K specifications and a diameter of 0.003-5mm. between carbon fiber bundles.
  • the diameter of the carbon fiber electrode is 0.003 ⁇ 5mm.
  • the carbon fiber electrode includes n carbon fiber filaments, where: 20 ⁇ n ⁇ 1500.
  • the carbon fiber uses 50 carbon fiber filaments.
  • this embodiment provides a plasma generating device 100, including the spiral electrode 1 in the first embodiment.
  • the plasma generating device provided in this embodiment adopts a secondary spiral spiral electrode 1 for plasma discharge, thereby reducing the volume of the plasma product, and can achieve the effects of sterilization and removal of gaseous pollutants in any small space.
  • the discharge area can be increased without increasing the diameter of the first electrode 11, the discharge voltage can be reduced, and the ozone generated is low.
  • the plasma generating device provided in this embodiment further realizes coordinated discharge through the secondary spiral electrode.
  • the volume of the plasma product can be reduced to 30% of the original size, and the cost is reduced to 50% of the original.
  • the plasma generating device 100 of this embodiment mainly includes the spiral electrode 1 and the DC electrode 2 in the first embodiment.
  • the spiral electrode 1 includes a second electrode 12 and a first electrode 11 .
  • the second electrode 12 is adapted to be connected to an AC power source.
  • the first electrode 11 is a carbon fiber electrode, and the carbon fiber electrode is suitable for grounding.
  • the DC electrode 2 is provided on one side of the spiral electrode 1 .
  • the distance between the DC electrode 2 and the spiral electrode 1 is L, L ⁇ 5mm.
  • the DC electrode 2 is suitable for connection with a DC power source.
  • a through hole 21 is formed in the DC electrode 2 .
  • the DC electrode 2 may be in the shape of a sheet or may have a certain thickness.
  • the shape of the DC electrode 2 may be optional but not limited to square, circular or other irregular shapes.
  • the cross section of the DC electrode 2 may be linear or wavy.
  • the spiral electrode 1 can generate discharges in multiple directions with the DC electrode 2, which can increase the discharge area between the spiral electrode 1 and the DC electrode 2.
  • the DC power supply is suitable for providing a DC voltage of 0-8000v to the DC electrode 2 .
  • the AC power supply is suitable for providing an AC voltage of 500-4000v to the second electrode 12 .
  • the DC power supply is suitable for providing a DC voltage of 6000-7000v to the DC electrode 2
  • the AC power supply is suitable for providing an AC voltage of 1600-1800v to the second electrode 12.
  • the above voltage range is the best range obtained through a large number of experiments. , when the voltage is within the above range, the glow discharge effect will not be affected due to the voltage being too small, nor will the discharge develop into a violent filamentous discharge.
  • the plasma generating device 100 of this embodiment adds a DC electrode 2 on one side of the spiral electrode 1, and the distance between the DC electrode 2 and the spiral electrode 1 is set to less than 5 mm.
  • the surface of the spiral electrode 1 can produce a uniform glow discharge, and the DC electrode 2 is connected to a DC power supply, which can lead the plasma formed on the surface of the spiral electrode 1 to the DC electrode 2, so that the spiral electrode 1 and the DC current can be connected at a lower voltage.
  • a spatial glow discharge is formed between the electrodes 2, which increases the discharge area of the plasma generating device 100 and at the same time enhances the discharge degree on the surface of the spiral electrode 1 to a certain extent.
  • the through hole 21 can facilitate the formation of an electric field in the space, so that the spiral electrode 1 and the DC electrode 2 can generate uniform glow discharge.
  • the plasma generating device 100 of this embodiment can generate glow discharge between the spiral electrode 1 and the DC electrode 2, convert the glow discharge on the plane into the glow discharge on the space at a lower voltage, and can The purification range of the plasma generating device 100 is effectively increased without increasing the number of electrodes in the plasma generating device 100.
  • the plasma generating device 100 of this embodiment also has a dust collection effect and has a better ability to remove particulate matter. ability.
  • the plasma generating device 100 of this embodiment has a simple structure, is easy to manufacture, is safe and reliable to use, and is easy to implement, promote and apply.
  • Carbon fiber is a kind of semiconductor material. Compared with ordinary metals, the electron escape ability of carbon fiber per unit volume (or unit surface area) is relatively weak. Therefore, the number of electrons released during the discharge process can be effectively controlled, thereby preventing the discharge from being too violent. . And because the single filament of carbon fiber has a very small radius of curvature (its single filament diameter is only 7 to 10 ⁇ m). Under this condition, the actual discharge space around the carbon fiber electrode is limited to a smaller size, enabling the formation of microdischarges. In micro-discharges under higher electric field strengths, the field emission effect of carbon fiber electrodes becomes non-negligible. Under the action of strong field emission, the discharge space is filled with a large number of seed electrons.
  • the carbon fiber electrode can optionally include n carbon fiber filaments, 20 ⁇ n ⁇ 1500.
  • the DC electrode 2 may be, but is not limited to, made of a punched metal mesh, or a metal mesh formed of woven metal wires, or the like.
  • the dense through holes 21 are conducive to forming a more uniform electric field in the space, so that each spiral electrode 1 can produce better uniform radiance with the DC electrode 2 Light discharge.
  • the discharge in the space is generated from the metal parts of the spiral electrode 1 and the DC electrode 2 .
  • the aperture of the metal mesh can be selected to be less than 5mm, preferably less than 2mm.
  • the diameter of the metal wires in the metal mesh is D6, 0.15mm ⁇ D6 ⁇ 0.25mm.
  • the aperture of the DC electrode 2 is D7, 1mm ⁇ D7 ⁇ 2mm.
  • the diameter of the through hole 21 of the DC electrode 2 is D8, 1mm ⁇ D8 ⁇ 2mm.
  • the distance between the holes of DC electrode 2 is D9, 2mm ⁇ D9 ⁇ 4mm.
  • the negative pole of the DC power supply is connected to the DC electrode 2 and the positive pole is grounded.
  • the glow discharge generated by using the negative electrode of the DC power supply to be connected to the DC electrode 2 is more uniform, is less likely to produce filamentous discharge, and has lower requirements for electrode production. , which helps to improve the safety of the plasma generating device 100, reduce the rejection rate of the electrodes, and reduce the manufacturing cost of the plasma generating device 100.
  • the plasma generating device 100 further includes a first current limiting resistor 31 connected in series with the spiral electrode 1; and/or a second current limiting resistor 32 connected in series with the DC electrode 2.
  • the current-limiting resistor is helpful to prevent the occurrence of arc discharge, so that a good glow discharge can be generated between the spiral electrode 1 and the DC electrode 2.
  • the plasma generating device 100 may optionally include one or more generating units arranged at intervals in sequence. The number of generating units can be adjusted according to the scope of the environment that needs to be purified and the quality of the air.
  • Each generating unit includes a DC electrode 2 and a corresponding spiral electrode group.
  • Each spiral electrode group includes a plurality of spiral electrodes 1 arranged side by side and spaced apart. Multiple generating units can purify the air more thoroughly.
  • the spiral electrode groups of two adjacent generating units are arranged in a staggered manner. The staggered spiral electrode groups can increase the contact area between the airflow and the discharge space between the DC electrode 2 and the spiral electrode 1, thereby promoting the plasma generating device 100 to more thoroughly disinfect and sterilize the airflow.
  • staggering adjacent generating units can avoid the formation of blind areas in the plasma generating device 100 and prevent part of the airflow from passing between the spiral electrodes 1 without passing through the discharge area, which helps to improve the purification effect of the plasma generating device 100 .
  • An embodiment of the present application provides an air purifier, including the plasma generating device in the above-mentioned second embodiment.
  • the air purifier provided in this embodiment adopts the plasma discharge method of secondary spiral electrodes, which can achieve the effects of sterilization and removal of gaseous pollutants in a small space, and solve the problem of glow discharge removal efficiency of gaseous pollutants such as formaldehyde. Low, large product volume, high cost and other issues.
  • the plasma generating device 100 and air purifier in the embodiment of the present application can generate a spatial glow discharge between the spiral electrode 1 and the mesh DC electrode 2, greatly increasing the discharge area of the plasma generating device 100 without increasing the When the number of electrodes in the plasma generating device 100 is increased, the purification range of the plasma generating device 100 is effectively expanded, which helps to reduce the power consumption of the plasma generating device 100 .
  • the plasma generating device 100 and the air purifier in the embodiment of the present application also have dust collection effects and have better ability to remove particulate matter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Plasma Technology (AREA)

Abstract

一种螺旋电极(1)及等离子体发生装置(100)和空气净化器,螺旋电极(1)包括第一电极(11)和第二电极(12),第一电极(11)适于接地;第二电极(12)适于接电源的高压输出端,第二电极(12)外设置有绝缘层;其中:第一电极(11)为多个,多个第一电极(11)与第二电极(12)相互编织缠绕;或者,第二电极(12)为多个,多个第二电极(12)与第一电极(11)相互编织缠绕。

Description

螺旋电极、等离子体发生装置及空气净化器
相关申请
本申请要求2022年04月29日申请的,申请号为202210475872.8,名称为“一种螺旋电极及等离子体发生装置及空气净化器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及等离子体放电技术领域,具体涉及螺旋电极、等离子体发生装置及空气净化器。
背景技术
随着社会经济的发展,居民对住宅室内装修的要求也越来越高。大规模装修材料和建筑材料的使用,使得室内空气中甲醛、TVOC等污染物的浓度超标,对人们的身体健康产生了影响。目前,室内空气污染的净化方法有通风法、植物净化法、微生物法、物理化学吸附法和等离子体法等。
由于低温等离子体中存在高能电子、激发态粒子及活性基团等,利用等离子体放电可有效地催化降解有害气体,因此,其被越来越多地应用于空气净化等领域。等离子体放电包括电晕放电和辉光放电,由于辉光放电放电面积较大,等离子体密度较高,因此其具有很好的应用前景。在一般情况下,辉光放电等离子体多在低气压或稀有气体环境下生成。
相关技术中的等离子体发生装置通过采用接触式的螺旋电极结构构造了非均匀分布的空间电场,在较低放电电压条件下可实现稳定的大气压空气辉光放电。
发明内容
本申请的第一方面,提供了一种螺旋电极,包括:
第一电极,适于接地;
第二电极,适于接电源的高压输出端,所述第二电极具有绝缘层,所述第二电极为多个;
其中:所述第一电极为多个,多个所述第一电极与所述第二电极相互编织缠绕;或者,所述第二电极为多个,多个所述第二电极与所述第一电极相互编织缠绕。
可选地,所述第一电极为碳纤维电极,所述第二电极为绝缘导线;
所述绝缘导线为两根,所述碳纤维电极为一根,两根所述绝缘导线与一根碳纤维电极相互编织缠绕。
可选地,所述绝缘导线包括第一绝缘导线和第二绝缘导线;
所述第一绝缘导线和第二绝缘导线分别由所述碳纤维电极的一端螺旋缠绕至另一端,且所述第一绝缘导线的缠绕方向和第二绝缘导线的缠绕方向相反。
可选地,所述绝缘导线包括第一绝缘导线和第二绝缘导线,所述第一绝缘导线与所述碳纤维电极螺旋缠绕形成第一螺旋电极,所述第一螺旋电极再螺旋缠绕在所述第二绝缘导线外形成双螺旋电极。
其中,所述第二绝缘导线的直径大于所述第一绝缘导线和碳纤维电极的直径之和。
可选地,所述第一绝缘导线的外径为0.28mm~0.32mm,所述第二绝缘导线的外径为0.30mm~1.6mm。
可选地,所述绝缘导线包括内部的电极芯和包裹在电极芯外的绝缘层;
所述第一绝缘导线的绝缘层厚度为0.14mm~0.16mm,所述第二绝缘导线的绝缘层厚度为0.15mm~0.3mm。
可选地,所述碳纤维电极以及所述第一绝缘导线和第二绝缘导线的缠绕螺距均在1mm~20mm之间。
可选地,多个所述第二电极均接同一个交流电源的高压输出端,所述碳纤维电极接该交流电源的地极,所述第一电极接该交流电源的地极,所述第一电极为直径在0.003~5mm之间的碳纤维束。
本申请的第二方面,还提供了一种等离子体发生装置,包括上述螺旋电极。
本申请的第三方面,还提供了一种空气净化器,包括上述等离子体发生装置。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1示出了实施例一中螺旋电极的第一种实施方式的结构示意图。
图2示出了实施例一中螺旋电极的第二种实施方式的结构示意图。
图3示出了实施例一中螺旋电极的第三种实施方式的结构示意图。
图4示出了实施例二的等离子体发生装置的结构示意图。
附图标记说明:
100、等离子体发生装置;
1、螺旋电极;11、第一电极;12、第二电极;121、第一绝缘导线;122、第二绝缘导线;
2、直流电极;21、通孔;
31、第一限流电阻;32、第二限流电阻。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
发明人通过研究发现,等离子体发生装置大多采用的都是单螺旋电极结构,单螺旋电极放电产生的等离子体密度小,存在去除甲醛等气态污染物及杀菌消毒效率低等问题。
如图1至图3所示,本实施例提供了一种螺旋电极1,所述螺旋电极1包括第一电极11和第二电极12,所述第一电极11适于接地,且所述第一电极11外无绝缘层,为裸电极。所述第二电极12适于接电源的高压输出端,所述第二电极12具有绝缘层。所述第一电极11为多个,多个所述第一电极11与所述第二电极12相互编织缠绕;或者,所述第二电极12为多个,多个所述第二电极12与所述第一电极11相互编织缠绕。
本实施例提供的上述螺旋电极1,通过多个电极相互编织缠绕,形成多螺旋放电结构,使得等离子体密度至少增加一倍,在同等条件下提高等离子体能量,有效地解决单螺旋电极放电产生的等离子体密度小,去除污染物及杀菌消毒效率低的问题。
可选地,本实施例中提供的螺旋电极1中,所述第二电极12为多个,多个所述第二电极12与所述第一电极11相互编织缠绕。
本实施例中,所述第二电极12包括内部的电极芯和包裹在电极芯外的绝缘层。带绝缘层的第二电极12适于接交流电源正极,没有绝缘层的第一电极11适于接交流电源地极。
进一步地,所述绝缘层可以采用聚酰亚胺或者聚四氟乙烯等材料制成。可选地,所述绝缘层采用聚四氟乙烯,所述绝缘层厚度在0.15mm~0.3mm之间
本实施例中,所述第二电极12的电极芯可以是碳网、金属网等导电的材料,所述电极芯可以是实心或者是空心的导电材料;所述电极芯的形状也不作限定,可以根据需要选择设置为任意形状。
可选地,本实施例中,所述电极芯是细丝状。可选地,所述电极芯为单根的细金属丝。
更进一步可选地,所述电极芯为细银丝或者为镀银铜丝。
需要说明的是,本实施例中所述第一电极11和第二电极12可以均为具有一定柔韧性的电极,方便缠绕。
可选地,本实施例中所述第一电极11为不设绝缘层的裸露的导电细丝,例如可以采用直径较小的金属丝或者碳纤维束,可选的,所述金属丝为银丝,当然所述第一电极11也可以是具有导电性能的其它材料。
可选地,本实施例中,所述第一电极11为碳纤维电极。
由于碳纤维属于一种半导体材料,相比于一般金属而言,单位体积的电子逸出能力相对较弱,因此在放电过程中可以有效控制裸电极的电子释放数量,进而防止放电过于剧烈。且碳纤维的单根细丝具有极小的曲率半径,国际标准下生产的碳纤维,其单丝直径极小,例如只有7~10μm,在此微结构下,其周围的实际放电空间被限制在较小尺寸内,从而能够形成微放电。
并且,在较高电场强度下的微放电中,碳纤维电极的场致发射作用就变得不可忽略。在较强的场致发射作用下,放电空间填充了大量的种子电子,这些种子电子的出现,一方面作为其它电子崩的初始电子来源,有效降低了起始放电电压,使得放电在相对较低的平均场强下易于实现;另一方面,在较低的平均电场下产生电子,有利于获得慢增长的电子,为实现大气压下的稳定辉光放电提供了可能,并抑制其向丝状放电的转化。
因此,本实施例中选择碳纤维电极作为第一电极11,可以实现在大气压条件下产生大 面积的辉光放电的效果,并可实现连续稳定的大气压空气辉光放电,放电效果较好。
进一步地,本实施例中,所述第二电极12为两个,所述第一电极11为一个,两个所述第二电极12与一个所述第一电极11相互编织缠绕。
当然,本实施例中,所述第二电极12也可以为三个或者以上。
可选地,在一种方案中,本实施例中所述第二电极12为较细的绝缘导线,所述绝缘导线为两根,所述碳纤维电极为一根,两根所述绝缘导线与一根碳纤维电极相互编织缠绕。由于二次螺旋电极整体作为一个模块,接触端子就两个,相比于单螺旋电极减少了放电的接触端子,电器安全及产品的可靠性更高。
在上述方案中,通过设置的两个绝缘导线相当于增大了第一电极11的放电直径,从而增大了放电面积。若直接增大第一电极11的直径,需要增加放电电压,放电功率也要提高。因此,本实施例通过采用较细的两根绝缘导线与所述第一电极11相互缠绕,无需增大放电电压,即可实现增大放电面积。
并且,两个绝缘导线与所述第一电极11相互缠绕设置,相比于两个绝缘导线与所述第一电极11并行布置,可以很大程度地缩小整个螺旋电极1的体积。同时也避免了多根电极并联存在的电器接触不良,可靠性低等问题。
此外,通过绝缘导线与碳纤维电极相互缠绕的设置,可以有效地压制碳纤维电极外表面的毛刺,避免毛刺尖端放电击穿现象发生,从而使得放电更均匀,延长了螺旋电极1的寿命,同时也避免了毛刺放电产生过多的无用功,影响放电能效的问题。
本实施例中,所述第一绝缘导线121和第二绝缘导线122与碳纤维电极的编织缠绕方式有以下三种实施方式:
如图1所示,在第一种实施方式中,所述绝缘导线包括第一绝缘导线121和第二绝缘导线122;所述第一绝缘导线121和第二绝缘导线122分别由所述碳纤维电极的一端螺旋缠绕至另一端,且所述第一绝缘导线121的缠绕方向和第二绝缘导线122的缠绕方向相反。
可选地,所述第一绝缘导线121和第二绝缘导线122分别等间距地螺旋缠绕到碳纤维电极表面,可选地,第一绝缘导线121和第二绝缘导线122的缠绕螺距相同。
在上述实施方式中,两根绝缘导线都和碳纤维电极有大量接触点,当两根绝缘导线都接相同的交流高压后,在绝缘层表面产生均匀的辉光放电,并会使得绝缘层变薄,绝缘层变薄后,相当于绝缘导线中的电极芯和外部的碳纤维电极的间距变短,因此可以在更低的电压下达到放电所需的电场强度,降低放电电压。
需要说明的是,所述绝缘导线外的绝缘层越薄,需要的放电电压越低,但是并不是越薄越好,太薄容易在放电时容易发生击穿。因此,本实施例中,可选地,所述绝缘导线的 绝缘层厚度在0.15mm~0.3mm之间,在不会击穿的前提下,最大程度地降低放电电压。
参见附图1,上述实施方式中,所述第一绝缘导线121和第二绝缘导线122与碳纤维电极的具体缠绕方式如下:先用第一绝缘导线121紧密缠绕在碳纤维电极上,形成一缠绕一体的双股电极,再将第二绝缘导线122反向或正向地紧密缠绕在此双股电极上,形成多极式电极。可选地,在所述第二绝缘导线122的直径较细时使用该缠绕方式。可选地,当所述第二绝缘导线122的直径小于或等于所述第一绝缘导线121的直径时,采用该缠绕方式。
本实施方式中,所述第一绝缘导线121和第二绝缘导线122通过反向缠绕的方式缠绕在碳纤维电极上,可以有效地增大第一绝缘导线121和第二绝缘导线122与碳纤维电极的接触面积,使得第一绝缘导线121和第二绝缘导线122的绝缘层表面均能够产生均匀的辉光放电,并且也能够有效地抑制碳纤维电极表面的毛刺,避免局部放电过强,出现击穿,提高放电的均匀性。
如图2所示,在第二种实施方式中,所述绝缘导线包括第一绝缘导线121和第二绝缘导线122,所述第一绝缘导线121与所述碳纤维电极(即第一电极11)螺旋缠绕形成第一螺旋电极,可选地,所述碳纤维电极等间距缠绕在所述第一绝缘导线121表面。所述第一螺旋电极再螺旋缠绕在所述第二绝缘导线122外形成双螺旋电极。可选地,所述第一螺旋电极等间距缠绕在所述第二绝缘导线122外。本实施方式中,所述第二绝缘导线122的直径大于所述第一绝缘导线121,等离子体主要在第二绝缘导线122的绝缘层表面产生,由于第二绝缘导线122截面大,等离子体产生量更大,从而降低气晕电压和功率。
本实施方式提供的所述螺旋电极1,当第一绝缘导线121放电产生的大量种子电子,提供给第二绝缘导线122后,第二绝缘导线122即可在较低电压下产生均匀的放电,有利于降低第二绝缘导线122的放电电压。
参见附图2,上述实施方式中,所述第一绝缘导线121和第二绝缘导线122与碳纤维电极的具体缠绕方式如下:先将第一绝缘导线121螺旋缠绕在碳纤维电极作为第一螺旋电极,或者将所述碳纤维电极螺旋缠绕在第一绝缘导线121上作为第一螺旋电极,然后再将所述第一螺旋电极螺旋缠绕在第二绝缘导线122上,形成双螺旋放电结构。
本实施例中,所述螺旋电极1通过采用上述设计,相当于第一绝缘导线121已经在碳纤维电极表面形成面等离子体,再二次与第二绝缘导线122形成二次放电,形成体等离子体,等离子体密度至少增加一倍,缩小等离子体反应器的体积。
可选地,所述第二绝缘导线122的直径大于或等于所述第一螺旋电极的外径。可选地,所述第一绝缘导线121绝缘层的厚度小于第二绝缘导线122绝缘层的厚度。
本实施例中,由于所述第一绝缘导线121绝缘层厚度较小,且与碳纤维电极先进行缠绕的接触面积更大、接触距离更近,因此放电会首先在第一绝缘导线121表面产生,随后第二绝缘导线122可以利用第一绝缘导线121放电产生的电子作为种子电子,在较低的电场强度下产生均匀的放电,可以降低其放电电压。
本实施例提供的螺旋电极1通过采用二次螺旋的设置方式,体积小巧,不仅方便加工制造及携带等,而且也可以实现在极小的空间范围内满足杀菌消毒及去除气态污染物的效果,在达到同等去除有机污染物的效果时,等离子体产品的体积可缩小到原来的30%。
如图3所示,在第三种实施方式中,所述第一绝缘导线121和第二绝缘导线122与碳纤维电极三者相互编织,彼此之间互相压制,所述第一绝缘导线121和第二绝缘导线122通过采用该方式二次螺旋在碳纤维电极上,不仅能够均与碳纤维电极充分接触,而且整体结构的紧凑性更好,不易松散。
可选地,所述第一绝缘导线121的外径为0.28mm~0.32mm,所述第二绝缘导线122的外径为0.30mm~1.6mm。
可选地,所述第一绝缘导线121的绝缘层厚度为0.14mm~0.16mm,所述第二绝缘导线122的绝缘层厚度为0.15mm~0.3mm。
可选地,在所述第一绝缘导线121和第二绝缘导线122与碳纤维电极的第一种缠绕方式中,两根绝缘导线均与碳纤维电极编织缠绕,第一绝缘导线121和第二绝缘导线122的外径相同,其中两个绝缘导线的直径均为0.32mm,绝缘厚度均为0.15mm。
可选地,在所述第一绝缘导线121和第二绝缘导线122与碳纤维电极的第二种缠绕方式中,其中缠绕在碳纤维电极上的第一绝缘导线121直径为0.32mm,绝缘厚度0.15mm,所述第二绝缘导线122的直径1.6mm,绝缘厚度0.2mm。
可选地,所述碳纤维电极以及所述第一绝缘导线121和第二绝缘导线122的缠绕螺距均在1mm~20mm之间。
可选地,所述碳纤维电极以及所述第一绝缘导线121和第二绝缘导线122的缠绕螺距均控制在2~3mm之间。
可选地,所述第一螺旋电极的缠绕螺距也控制在2~3mm之间。
可选地,多个所述第二电极12均接同一个交流电源的高压输出端,述第一电极11接该交流电源的地极,所述碳纤维电极采用规格为1K、直径在0.003~5mm之间的碳纤维束。
本实施例中,所述第一电极11越细,放电电压越低,效果越好,但是太细的强度不好且不易加工制作,因此,本实施例中,所述碳纤维电极的直径在0.003~5mm之间。碳纤维电极包括n根碳纤维丝,其中:20≤n≤1500。可选地,所述碳纤维素采用50根的碳纤维 丝。
如图1至图4所示,本实施例提供了一种等离子体发生装置100,包括上述实施例一中的螺旋电极1。本实施例提供的等离子体发生装置,通过采用二次螺旋的螺旋电极1进行等离子体放电方式,缩小等离子体产品的体积,可以在任何小空间范围内满足杀菌消毒及去除气态污染物的效果。并且,无需增大第一电极11的直径即可实现增大了放电面积,降低了放电电压,产生的臭氧低。
此外,本实施例提供的等离子体发生装置,通过二次螺旋电极进一步实现协调放电,在达到同等去除气态污染物效果的条件下,等离子体产品的体积可缩小到原来的30%,成本降低到原来的50%。
如图4所示,本实施例的等离子体发生装置100主要包括实施例一中螺旋电极1和直流电极2。其中,螺旋电极1包括第二电极12、第一电极11。第二电极12适于与交流电源相连接。第一电极11为碳纤维电极,碳纤维电极适于接地。直流电极2设在螺旋电极1的一侧。直流电极2与螺旋电极1的间距为L,L≤5mm。直流电极2适于与直流电源相连接。直流电极2上形成有通孔21。直流电极2可选为薄片状的,也可选为具有一定的厚度,直流电极2的形状可选但不限于为方形、圆形或其他不规则图形。直流电极2的截面可选为直线形的,也可选为波浪形的。可选地,当直流电极2的截面为波浪形时螺旋电极1能够与直流电极2产生多个方向上的放电,能够增大螺旋电极1与直流电极2之间的放电面积。
直流电源适于提供0-8000v的直流电压给直流电极2。交流电源适于提供500-4000v的交流电压给第二电极12。可选地,直流电源适于提供6000-7000v的直流电压给直流电极2,交流电源适于提供1600-1800v的交流电压给第二电极12,上述电压范围为经过大量的试验获得的最佳范围,当电压处于上述范围时,既不会因电压过小而导致影响辉光放电效果,又不会使放电发展为剧烈的丝状放电。
由上述技术方案可知,本实施例的等离子体发生装置100在螺旋电极1的一侧增设了直流电极2,且直流电极2与螺旋电极1的距离被设置为小于5mm。其中,螺旋电极1的表面能够产生均匀的辉光放电,直流电极2接直流电源,能够将螺旋电极1表面形成的等离子体向直流电极2引出,从而在较低电压下在螺旋电极1与直流电极2之间形成空间上的辉光放电,增大了等离子体发生装置100的放电面积,同时在一定程度上增强了螺旋电极1表面的放电程度。由于直流电极2与螺旋电极1之间形成了电场,当气流进入到直流电极2与螺旋电极1之间时,气流中携带的杂质在通过放电区域时可以带电,之后在电场的作用下附着于直流电极表面,这进一步提升了本实施例的等离子体发生装置100的空气 净化效果。通孔21能够有利于在空间中形成电场,促使螺旋电极1能够与直流电极2产生均匀的辉光放电。
因此,本实施例的等离子体发生装置100能够在螺旋电极1和直流电极2之间产生辉光放电,在较低电压下将平面上的辉光放电转化为空间上的辉光放电,能够在不增加等离子体发生装置100内的电极数量的情况下有效增大等离子体发生装置100的净化范围,同时,本实施例的等离子体发生装置100还具有集尘效果,具有较好的去除颗粒物的能力。另外,本实施例的等离子体发生装置100的结构简单,制造容易,使用安全可靠,便于实施推广应用。
碳纤维属于一种半导体材料,相比于一般金属而言,单位体积(或单位表面积)的碳纤维的电子逸出能力相对较弱,因此在放电过程中可以有效控制电子释放数量,进而防止放电过于剧烈。又由于碳纤维的单根细丝具有极小的曲率半径(其单丝直径只有7~10μm)。在此条件下,碳纤维电极周围的实际放电空间被限制在较小尺寸内,从而能够形成微放电。在较高电场强度下的微放电中,碳纤维电极的场致发射作用就变得不可忽略。在较强的场致发射作用下,放电空间填充了大量的种子电子,这些种子电子的出现,一方面作为其它电子崩的初始电子来源,有效降低了起始放电电压,使得放电在相对较低的平均场强下易于实现;另一方面,在较低的平均电场下产生电子,有利于获得慢增长的电子,为实现大气压下的稳定辉光放电提供了可能,并抑制其向丝状放电的转化。由于碳纤维电极的放电主要产生在绝缘层13的表面,当碳纤维束中的碳纤维数量过多时会占用放电空间,减小放电面积,因此,碳纤维电极可选为包括n根碳纤维丝,20≤n≤1500。
可选地,在本实施例中,直流电极2可选但不限与为由冲孔金属网,或者是由金属丝编织形成的金属网等。当直流电极2选择为由金属丝编织形成的金属网时,密集的通孔21有利于在空间中形成较为均匀的电场,使每根螺旋电极1都能与直流电极2产生较好的均匀辉光放电。由于空间中的放电产生于螺旋电极1与直流电极2的金属部分。为了保证金属网具有较大的放电面积,金属网的孔径可选为小于5mm,最好是小于2mm。例如当直流电极2选择为由金属丝编织而成的金属网时,金属网中的金属丝的直径为D6,0.15mm≤D6≤0.25mm。直流电极2的孔径为D7,1mm≤D7≤2mm。当直流电极2选择为冲孔金属网时,直流电极2的通孔21的孔径为D8,1mm≤D8≤2mm。直流电极2的孔中间间距为D9,2mm≤D9≤4mm。可选地,直流电源的负极与直流电极2相连接正极接地。相较于正极与直流电极2相连接负极接地的方式,使用直流电源的负极与直流电极2相连接的方式产生的辉光放电更加均匀,不易于产生丝状放电,对电极的制作要求较低,有助于提升等离子体发生装置100的安全性,降低电极的废品率,降低等离子体发生装置100的制 造成本。
在本实施例中,可选地,所述等离子体发生装置100还包括与螺旋电极1相串联的第一限流电阻31;和/或与直流电极2相串联的第二限流电阻32。限流电阻有利于防止电弧放电的产生,使螺旋电极1与直流电极2之间产生良好的辉光放电。
在本实施例中,等离子体发生装置100可选为包括一个或多个依次间隔设置的发生单元。发生单元的数量可根据需要净化环境的范围和空气的质量来进行调整。每个发生单元包括一个直流电极2和对应设置的一个螺旋电极组。每个螺旋电极组包括多个并排且间隔设置的螺旋电极1。多个发生单元能够对空气进行较为彻底的净化。可选地,相邻的两个发生单元的螺旋电极组交错设置。交错设置的螺旋电极组能够增大气流与直流电极2与螺旋电极1之间的放电空间的接触面积,从而促进等离子体发生装置100对气流进行更加彻底的消毒和杀菌。另外,将相邻的发生单元交错设置能够避免等离子体发生装置100内形成盲区,避免部分气流从螺旋电极1之间通过而未经过放电区域,有助于提升等离子体发生装置100的净化效果。
本申请实施例提供了一种空气净化器,包括上述实施例二中的等离子体发生装置。本实施例提供的空气净化器,采用二次螺旋电极的等离子体放电方式,可以实现在较小空间范围内满足杀菌消毒及去除气态污染物的效果,解决辉光放电去除甲醛等气态污染物效率低,产品体积大,成本高等问题。
本申请实施例的等离子体发生装置100和空气净化器能够在螺旋电极1和网状直流电极2之间产生空间上的辉光放电,大大增大等离子体发生装置100的放电面积,在不增加等离子体发生装置100内的电极数量的情况下有效扩大等离子体发生装置100的净化范围,有助于降低等离子体发生装置100的功耗。同时本申请实施例的等离子体发生装置100和空气净化器还具有集尘效果,具有较好的去除颗粒物的能力。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种螺旋电极,其特征在于,包括:
    第一电极(11),适于接地;
    第二电极(12),适于接电源的高压输出端,所述第二电极(12)具有绝缘层;
    其中:所述第一电极(11)为多个,多个所述第一电极(11)与所述第二电极(12)相互编织缠绕;或者,所述第二电极(12)为多个,多个所述第二电极(12)与所述第一电极(11)相互编织缠绕。
  2. 根据权利要求1所述的螺旋电极,其特征在于,所述第一电极(11)为碳纤维电极,所述第二电极(12)为绝缘导线;
    所述绝缘导线为两根,所述碳纤维电极为一根,两根所述绝缘导线与一根碳纤维电极相互编织缠绕。
  3. 根据权利要求2所述的螺旋电极,其特征在于,所述绝缘导线包括第一绝缘导线(121)和第二绝缘导线(122);
    所述第一绝缘导线(121)和第二绝缘导线(122)分别由所述碳纤维电极的一端螺旋缠绕至另一端,且所述第一绝缘导线(121)的缠绕方向和第二绝缘导线(122)的缠绕方向相反。
  4. 根据权利要求3所述的螺旋电极,其特征在于,所述(121)和第二绝缘导线(122)分别等间距地螺旋缠绕到碳纤维电极表面。
  5. 根据权利要求3所述的螺旋电极,其特征在于,所述第一绝缘导线(121)和第二绝缘导线(122)的缠绕螺距相同。
  6. 根据权利要求2所述的螺旋电极,其特征在于,所述绝缘导线包括第一绝缘导线(121)和第二绝缘导线(122);
    所述第一绝缘导线(121)与所述碳纤维电极螺旋缠绕形成第一螺旋电极,所述第一螺旋电极再螺旋缠绕在所述第二绝缘导线(122)外形成双螺旋电极。
  7. 根据权利要求6所述的螺旋电极,其特征在于,所述碳纤维电极等间距缠绕在所述第一绝缘导线(121)表面。
  8. 根据权利要求6或7所述的螺旋电极,其特征在于,所述第一螺旋电极等间距缠绕在所述第二绝缘导线(122)外。
  9. 根据权利要求3至8任一项所述的螺旋电极,其特征在于,所述第二绝缘导线(122)的直径大于或等于所述第一螺旋电极的外径。
  10. 根据权利要求3至9任一项所述的螺旋电极,其特征在于,所述第一绝缘导线(121)绝缘层的厚度小于所述第二绝缘导线(122)绝缘层的厚度。
  11. 根据权利要求3至10任一项所述的螺旋电极,其特征在于,所述第一绝缘导线(121)的外径为0.28mm~0.32mm,所述第二绝缘导线(122)的外径为0.30mm~1.6mm。
  12. 根据权利要求3至11任一项所述的螺旋电极,其特征在于,所述第一绝缘导线(121)的绝缘层厚度为0.14mm~0.16mm,所述第二绝缘导线(122)的绝缘层厚度为0.15mm~0.3mm。
  13. 根据权利要求3至12任一项所述的螺旋电极,其特征在于,所述碳纤维电极以及所述第一绝缘导线(121)和第二绝缘导线(122)的缠绕螺距均在1mm~20mm之间。
  14. 根据权利要求1至13任一项所述的螺旋电极,其特征在于,多个所述第二电极(12)均接同一个交流电源的高压输出端,所述第一电极(11)接该交流电源的地极,所述第一电极(11)为直径在0.003~5mm之间的碳纤维束。
  15. 一种等离子体发生装置,其特征在于,包括上述权利要求1至14任一项所述的螺旋电极(1)。
  16. 根据权利要求15所述的等离子体发生装置,其特征在于,进一步包括直流电极(2),所述直流电极(2)设在所述螺旋电极(1)的一侧,所述直流电极(2)与所述螺旋电极(1)的间距为L,L≤5mm,所述直流电极(2)适于与直流电源相连接,所述直流电极(2)上形成有通孔21。
  17. 根据权利要求15或16所述的等离子体发生装置,其特征在于,还包括与所述螺旋电极(1)相串联的第一限流电阻(31)。
  18. 根据权利要求15至17任一项所述的等离子体发生装置,其特征在于,还包括与所述直流电极(2)相串联的第二限流电阻(32)。
  19. 一种空气净化器,其特征在于,包括上述权利要求15至18任一项所述的等离子体发生装置(100)。
PCT/CN2022/139626 2022-04-29 2022-12-16 螺旋电极、等离子体发生装置及空气净化器 WO2023207141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210475872.8A CN114698220A (zh) 2022-04-29 2022-04-29 一种螺旋电极及等离子体发生装置及空气净化器
CN202210475872.8 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207141A1 true WO2023207141A1 (zh) 2023-11-02

Family

ID=82144058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139626 WO2023207141A1 (zh) 2022-04-29 2022-12-16 螺旋电极、等离子体发生装置及空气净化器

Country Status (2)

Country Link
CN (1) CN114698220A (zh)
WO (1) WO2023207141A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698220A (zh) * 2022-04-29 2022-07-01 珠海格力电器股份有限公司 一种螺旋电极及等离子体发生装置及空气净化器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130343A (ja) * 2006-11-20 2008-06-05 Kyoto Univ プラズマ生成装置、表面処理装置、表示装置、および流体改質装置
JP2012104486A (ja) * 2011-11-24 2012-05-31 Kyoto Univ プラズマ生成装置、表面処理装置、表示装置、および流体改質装置
CN105848397A (zh) * 2016-05-27 2016-08-10 北京睿昱达科技有限公司 一种柔性放电电极结构的等离子体消毒灭菌装置
CN107426910A (zh) * 2017-07-28 2017-12-01 北京睿昱达科技有限公司 辉光放电等离子体发生装置及离子风空气净化器
CN113171673A (zh) * 2021-05-27 2021-07-27 长江师范学院 基于等离子体电离的船舶尾气处理装置
CN113438789A (zh) * 2021-06-08 2021-09-24 北京铁路电气化学校 柔性大面积辉光放电等离子体消毒灭菌装置
CN214914813U (zh) * 2021-05-27 2021-11-30 长江师范学院 一种基于等离子放电原理的尾气处理装置
CN114698220A (zh) * 2022-04-29 2022-07-01 珠海格力电器股份有限公司 一种螺旋电极及等离子体发生装置及空气净化器
CN217216980U (zh) * 2022-04-29 2022-08-16 珠海格力电器股份有限公司 一种螺旋电极及等离子体发生装置及空气净化器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113175729A (zh) * 2020-01-09 2021-07-27 河北清旭尔然环保工程有限公司 一种非对称式等离子消毒净化器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130343A (ja) * 2006-11-20 2008-06-05 Kyoto Univ プラズマ生成装置、表面処理装置、表示装置、および流体改質装置
JP2012104486A (ja) * 2011-11-24 2012-05-31 Kyoto Univ プラズマ生成装置、表面処理装置、表示装置、および流体改質装置
CN105848397A (zh) * 2016-05-27 2016-08-10 北京睿昱达科技有限公司 一种柔性放电电极结构的等离子体消毒灭菌装置
CN107426910A (zh) * 2017-07-28 2017-12-01 北京睿昱达科技有限公司 辉光放电等离子体发生装置及离子风空气净化器
CN113171673A (zh) * 2021-05-27 2021-07-27 长江师范学院 基于等离子体电离的船舶尾气处理装置
CN214914813U (zh) * 2021-05-27 2021-11-30 长江师范学院 一种基于等离子放电原理的尾气处理装置
CN113438789A (zh) * 2021-06-08 2021-09-24 北京铁路电气化学校 柔性大面积辉光放电等离子体消毒灭菌装置
CN114698220A (zh) * 2022-04-29 2022-07-01 珠海格力电器股份有限公司 一种螺旋电极及等离子体发生装置及空气净化器
CN217216980U (zh) * 2022-04-29 2022-08-16 珠海格力电器股份有限公司 一种螺旋电极及等离子体发生装置及空气净化器

Also Published As

Publication number Publication date
CN114698220A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US5409673A (en) Ozone generator having an electrode formed of a mass of helical windings and associated method
CN105848397B (zh) 一种柔性放电电极结构的等离子体消毒灭菌装置
WO2023207140A1 (zh) 碳纤维螺旋电极、等离子体发生装置及空气净化器
CN114760744A (zh) 等离子体发生装置及空气净化器
WO2023207155A1 (zh) 一种等离子体发生装置和空气净化器
CN110180012B (zh) 等离子体杀菌消毒装置及空气净化器
CN104127907A (zh) 非热等离子体空气净化消毒反应器
CN217216981U (zh) 等离子体发生装置及空气净化器
CN217216979U (zh) 一种碳纤维螺旋电极及等离子体发生装置及空气净化器
CN103007328B (zh) 一种等离子体空气消毒机
WO2023207141A1 (zh) 螺旋电极、等离子体发生装置及空气净化器
WO2011079510A1 (zh) 金属带——板结构反应器
CN114900944A (zh) 一种等离子体发生装置和空气净化器
CN113145307A (zh) 气态污染物的去除结构、放电结构以及气体净化装置
US20210308622A1 (en) Engine tail gas ozone purifying system and method
CN217216980U (zh) 一种螺旋电极及等离子体发生装置及空气净化器
CN217216983U (zh) 一种等离子体发生装置和空气净化器
CN215086058U (zh) 气态污染物的去除结构、放电结构及气体净化装置
CN215507292U (zh) 气态污染物的去除结构、放电结构以及气体净化装置
CN217216982U (zh) 一种等离子体发生装置和空气净化器
CN114900945A (zh) 一种等离子体发生装置和空气净化器
CN114364113A (zh) 一种放电电极结构和等离子体发生装置
CN116981148A (zh) 半导体螺旋电极、等离子体发生装置及空气净化器
CN210409085U (zh) 等离子体杀菌消毒装置及空气净化器
CN117015126A (zh) 碳纤维螺旋电极、等离子体发生装置及空气净化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939950

Country of ref document: EP

Kind code of ref document: A1