WO2022218048A1 - 无源光网络传输方法、装置和系统 - Google Patents

无源光网络传输方法、装置和系统 Download PDF

Info

Publication number
WO2022218048A1
WO2022218048A1 PCT/CN2022/078581 CN2022078581W WO2022218048A1 WO 2022218048 A1 WO2022218048 A1 WO 2022218048A1 CN 2022078581 W CN2022078581 W CN 2022078581W WO 2022218048 A1 WO2022218048 A1 WO 2022218048A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
fec
length information
burst
signal
Prior art date
Application number
PCT/CN2022/078581
Other languages
English (en)
French (fr)
Inventor
杨波
黄新刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022218048A1 publication Critical patent/WO2022218048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a passive optical network transmission method, device, and system.
  • 10G PON (10 Gigabit Passive Optical Network) has begun to be deployed on a large scale, gradually replacing GPON (Gigabit Bit passive optical network) network.
  • GPON Gigabit Bit passive optical network
  • 50Gbit/s passive optical network (based on time division multiplexing, 50G TDM PON) has become the evolution direction of 10G PON.
  • the uplink framing sublayer (Framing Sublayer, FS) burst payload size depends on the optical line.
  • Bandwidth mapping (BandWidthmapping, BWmap) of bandwidth management information authorized by a terminal (Optical Line Termination, OLT).
  • the last codeword of the sent frame is transmitted, and the remaining fragments will be transmitted in the FS burst frame of the subsequent authorized bandwidth allocation of the ONU. Therefore, the length of the tail code word transmitted in the current FS burst payload is related to the currently authorized bandwidth, and the length of the tail code word varies with the authorized bandwidth.
  • FEC Forward Error Correction
  • the FEC module and the burst clock data recovery (Burst Clock and Data Recovery, BCDR) module are integrated with the media access control (Media Access Control, MAC) chip, and the upstream FEC module reads the BWmap information through the MAC to obtain the upstream link.
  • the burst signal grants the bandwidth to obtain the decoding length information of the FEC module.
  • This solution requires the integration of the FEC module and the MAC.
  • problems such as limited bandwidth of optoelectronic devices and serious inter-symbol crosstalk. Long-distance transmission between the MAC chip and the optical module will further degrade the signal quality. , resulting in the inability to correctly restore the distorted signal.
  • an embodiment of the present application provides a passive optical network transmission method, which is applied to an optical network unit ONU.
  • the method includes: generating an uplink burst FEC encoded signal according to an uplink burst signal, and the uplink burst FEC
  • the encoded signal carries uplink length information, wherein the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal; sending the uplink burst FEC code that carries the uplink length information
  • the signal is sent to the optical line terminal OLT, so that the OLT performs forward error correction FEC decoding on the upstream burst FEC coded signal according to the upstream length information.
  • an embodiment of the present application provides a passive optical network transmission method, which is applied to an optical line terminal OLT.
  • the method includes: receiving an uplink burst FEC coded signal carrying uplink length information, wherein the uplink The length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal; the uplink length information is extracted from the uplink burst FEC coded signal; Send FEC coded signal for forward error correction FEC decoding.
  • an embodiment of the present application provides a passive optical network transmission device, including: an encoding module configured to generate an uplink burst FEC encoded signal according to an uplink burst signal, the uplink burst FEC encoded signal carrying the uplink length information, wherein the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal; the sending module is configured to send the uplink burst carrying the uplink length information
  • the FEC coded signal is sent to the optical line terminal OLT, so that the OLT performs FEC decoding on the upstream burst FEC coded signal according to the upstream length information.
  • an embodiment of the present application provides a passive optical network transmission device, including: a receiving module configured to receive an uplink burst FEC coded signal carrying uplink length information, wherein the uplink length information is used for Indicate the length information of the upstream burst frame end codeword in the upstream burst signal; the extraction module is set to extract the upstream length information from the upstream burst FEC encoded signal; the decoding module is set to according to the The uplink length information performs forward error correction FEC decoding on the uplink burst FEC encoded signal.
  • an embodiment of the present application provides a passive optical network transmission system, including a sending end and a receiving end, and the sending end includes: an encoding module configured to generate an uplink burst FEC encoded signal according to the uplink burst signal , the uplink burst FEC encoded signal carries uplink length information, wherein the uplink length information is used to indicate the uplink burst frame end codeword length information in the uplink burst signal; the sending module is configured to send the The uplink burst FEC encoded signal of the uplink length information is sent to the optical line terminal OLT, so that the OLT performs FEC decoding on the uplink burst FEC encoded signal according to the uplink length information; the receiving end includes: a receiving module , is set to receive the uplink burst FEC coded signal that carries the uplink length information, wherein the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst
  • an embodiment of the present application provides a passive optical network transmission device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, the processor executing the computer program When implementing the passive optical network transmission method described in the first aspect above, or the passive optical network transmission method described in the second aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer-executable program, and the computer-executable program is used to cause a computer to execute the above-described first aspect A passive optical network transmission method, or the passive optical network transmission method as described in the second aspect above.
  • FIG. 1 is a flowchart (sending side) of a passive optical network transmission method provided by an embodiment of the present application
  • FIG. 2 is a flowchart (receiving side) of a passive optical network transmission method provided by an embodiment of the present application
  • 3A is a schematic structural diagram of an uplink burst FS frame provided by an embodiment of the present application.
  • 3B is a schematic diagram of FEC encoding of an uplink burst FS frame provided by an embodiment of the present application
  • 3C is a schematic diagram of FEC decoding and reconstruction of an uplink burst FS frame provided by an embodiment of the present application
  • 4A is a schematic structural diagram of an uplink burst FS frame provided by an embodiment of the present application.
  • 4B is a schematic diagram of FEC encoding of an uplink burst FS frame provided by an embodiment of the present application
  • 4C is a schematic diagram of FEC decoding and reconstruction of an uplink burst FS frame provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an uplink burst FS frame provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of FEC encoding of an uplink burst FS frame provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a passive optical network transmission device (transmitting end) provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a passive optical network transmission device (receiving end) provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a passive optical network transmission system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a passive optical network transmission device provided by an embodiment of the present application.
  • multiple means more than two, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If there is a description of "first”, “second”, etc., it is only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance, or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The sequence of technical characteristics.
  • the FEC payload is truncated and the length of the uplink burst signal is not fixed due to the bandwidth allocation.
  • the uplink receiving side may not be able to correctly descramble and correct errors.
  • the prior art limits the integrated architecture of the FEC module and the MAC chip. For a high-speed PON system, a method with wider applicability and more flexible architecture is required to solve the problem that the uplink receiving side cannot correctly descramble and correct errors.
  • embodiments of the present application provide a passive optical network transmission method, a passive optical network transmission device, and a computer-readable storage medium, wherein the optical network unit ONU generates an uplink burst FEC encoded signal according to the uplink burst signal,
  • the upstream burst FEC coded signal carries upstream length information, and sends the upstream burst FEC coded signal carrying the upstream length information to the optical line terminal OLT, so that the OLT performs FEC decoding on the upstream burst FEC coded signal according to the upstream length information;
  • OLT Receive the uplink burst FEC coded signal carrying the uplink length information, extract the uplink length information from the uplink burst FEC coded signal, and perform FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information, so as to avoid that the receiving side OLT cannot correctly recover the distorted signal due to the variable length of the FEC payload truncated in the uplink burst signal, so that the receiving side OLT can Correct decoding, and use FEC technology for the uplink burst signal to correct the error redundancy information in the optical signal transmission process, to improve the optical transmission performance and stability of the system, and improve the optical power budget of the
  • the FEC module on the receiving side of the upstream OLT can be integrated with the PON MAC, or can be built into the PON optical module, and the architecture is more flexible.
  • FIG. 1 is a flowchart of a passive optical network transmission method provided by an embodiment of the present application.
  • the passive optical network transmission method can be applied to the optical network unit ONU, and the method includes but is not limited to the following steps:
  • Step 101 generate an uplink burst FEC encoded signal according to the uplink burst signal, and the uplink burst FEC encoded signal carries uplink length information, wherein the uplink length information is used to indicate the uplink burst frame end codeword length information in the uplink burst signal;
  • Step 102 Send the uplink burst FEC coded signal carrying the uplink length information to the OLT, so that the OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the optical network unit ONU On the sending side, the optical network unit ONU generates an uplink burst FEC coded signal according to the uplink burst signal, the uplink burst FEC coded signal carries the uplink length information, and sends the uplink burst FEC coded signal carrying the uplink length information to the optical line terminal OLT, so that the OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the uplink length information is used to indicate the length of the uplink burst frame tail code word in the uplink burst signal, including but not limited to the length of the FEC tail code word, the bandwidth size information allocated to the current ONU burst time slot, and the current FS frame payload. length etc.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information, so as to avoid that the receiving side OLT cannot correctly recover the distorted signal due to the variable length of the FEC payload truncated in the uplink burst signal, so that the receiving side OLT can Correct decoding, and use FEC technology for the uplink burst signal to correct the erroneous redundant information in the process of optical signal transmission, so as to improve the optical transmission performance and stability of the system.
  • the ONU of the optical network unit may first insert the uplink length information into the uplink burst signal, and then perform FEC encoding on the uplink burst signal carrying the uplink length information, thereby generating the uplink burst FEC encoded signal; or First, perform FEC coding on the uplink burst signal to generate the uplink burst FEC coded signal, and then insert the uplink length information into the uplink burst FEC coded signal.
  • the uplink length information can be inserted into a specific field in the burst header of the uplink FS (Framing Sublayer, framing sublayer), or it can be The uplink length information is inserted between the uplink physical synchronization block (Physical Synchronization Blockupstream, PSBu) and the uplink burst FS frame header, or the uplink length information can be inserted after the uplink burst FS frame header, and the uplink FS payload is reduced and the uplink length information
  • the uplink length information can also be carried in the uplink out-of-band management channel through the uplink out-of-band management signal, and the uplink length information can be carried in the uplink burst signal.
  • the ONU side When the upstream length information is inserted into the FS (Framing Sublayer, framing sublayer) burst header or after the upstream burst FS header, the ONU side, after inserting the upstream length information, The signal undergoes FEC framing encoding.
  • the upstream length information When the upstream length information is inserted between the PSBu and the upstream burst FS frame header or in the upstream out-of-band management channel, it does not change the FEC encoding process of the upstream burst FS frame payload. Then insert into the uplink information, and the inserted uplink length information at this time can be used for error correction through another agreed FEC encoding and decoding method or HEC.
  • FIG. 2 is a flowchart of a passive optical network transmission method provided by an embodiment of the present application.
  • the passive optical network transmission method can be applied to the optical line terminal OLT, and the method includes but is not limited to the following steps:
  • Step 201 receiving an uplink burst FEC coded signal carrying uplink length information, wherein the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal;
  • Step 202 extracting uplink length information from the uplink burst FEC encoded signal
  • Step 203 Perform FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the OLT receives the uplink burst FEC coded signal carrying the uplink length information, extracts the uplink length information from the uplink burst FEC coded signal, and performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the uplink length information is used to indicate the length information of the end codeword of the uplink burst frame in the uplink burst signal, including but not limited to the length of the end codeword of the FEC, the bandwidth size information allocated to the current ONU burst time slot, and the current FS frame payload. length etc.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information, so as to avoid that the receiving side OLT cannot correctly recover the distorted signal due to the truncation of the FEC payload in the uplink burst signal, so that the receiving side OLT can correctly decode the signal.
  • the decoding of the uplink burst signal adopts the FEC technology to correct the erroneous redundant information in the optical signal transmission process, so as to improve the optical transmission performance and stability of the system.
  • Embodiment 1 with a high-speed PON system (line rate > 25Gbit/s), the uplink adopts the low density parity check (Low Density Parity Check, LDPC) code FEC encoding and decoding algorithm, with the FEC payload codeword length 16K bits ( That is, 2K bytes), and the parity length is 2K bits as an example.
  • the low density parity check Low Density Parity Check, LDPC
  • the upstream burst FS frame header carries upstream length information.
  • an upstream length information field (Physic Layer Lengthupstream, PLLu) is added to the upstream burst FS frame header.
  • the newly defined FS frame header consists of ONU-ID, identification (Ind), PLLu, and header error control (Header Error Control, HEC) fields.
  • the ONU-ID field contains a unique ONU-ID identifier of the ONU in the upstream burst transmission, and the identifier is allocated to the ONU during the OLT ranging process.
  • the Ind field has 9 bits and can provide fast unsolicited signaling information of the ONU status.
  • the PLLu field contains the uplink length information of 2 bytes (not limited to 2 bytes, the byte length that can accurately express the uplink length information) is used to indicate the uplink burst FS payload transmitted in the current uplink burst information.
  • the HEC field is the error detection and correction field of the upstream FS header.
  • the uplink rate of 25G 40 bytes are used as the minimum code block particle of the last codeword length, and the uplink length is an integer multiple of the minimum code block.
  • the upstream length FS payload data length is 7,640 bytes.
  • 80 bytes are used as the minimum code block size of the tail block length.
  • the upstream length FS payload data length (L FS ) is 163,600 bytes.
  • the LDPC FEC encoding process of a high-speed PON upstream FS frame is as follows:
  • Step1 The upstream burst FS frame header carries the upstream length information, specifically the codeword length information L FS at the end of the upstream burst frame
  • Step2 Divide the upstream FS burst frame payload into blocks according to the length of the FEC code block, wherein code block 1 contains the FS frame header carrying the upstream length information;
  • Step 3 Insert parity bits between FEC code blocks to complete the FEC encoding of the uplink burst FS frame.
  • the parity bit of FEC code block 1 is calculated according to the FEC data code block carrying uplink length information.
  • the parity bit of the truncated FEC tail code word is calculated by adding 0 to 2K bytes to the tail code block according to the prior art, and the 0 data supplemented by the tail code block is deleted and sent when sending.
  • the uplink burst FS frame after FEC encoding before sending the uplink burst FS frame after FEC encoding, it also includes adding PSBu synchronization and delimitation information.
  • the LDPC FEC decoding process of a high-speed PON upstream FS frame is as follows:
  • Step1 Perform error correction decoding on the first byte of the FEC byte of the received uplink signal
  • Step2 Extract the upstream length information L FS from the FS frame header in the first byte of the corrected FEC code block to obtain the length L of the FEC tail code block, and n
  • Step3 Perform error correction decoding on the 2nd to n-1th FEC code blocks according to a fixed length, and decode the nth FEC code block according to the length L;
  • Step4 Recombine the corrected code blocks into frames.
  • the clock data recovery, synchronization and delimitation of the uplink signal are further included.
  • the FEC algorithm is not limited to LDPC, but can also be an RS algorithm, such as RS (248, 232), RS (528, 514), etc.
  • RS 248, 232
  • RS 528, 514
  • the length of the FEC code block and parity bits is determined according to the specific algorithm.
  • the uplink burst FS frame carrying the uplink length information can also be scrambled before being sent after FEC encoding.
  • the received signal needs to be descrambled before decoding the remaining FEC code blocks of the uplink burst frame information according to the extracted uplink burst frame end codeword length information.
  • the uplink frame length information required for descrambling at the OLT side can be obtained through the superframe counter.
  • the method after performing FEC decoding on the received uplink burst information, the method further includes identifying the length of the next burst FS signal, and filling IDEL information between the two burst FS signals, The signal is converted into a continuous signal and sent to the next functional unit for processing.
  • Embodiment 2 In a high-speed PON system (line rate > 25Gbit/s), the uplink adopts the low-density parity check (LDPC) code FEC encoding and decoding algorithm, and the FEC payload codeword length is 16K bits, and the parity bit length is 16K bits. Take 2K bits as an example.
  • LDPC low-density parity check
  • the upstream burst FS frame header carries the upstream length information, as shown in FIG. 4A , specifically, the Ind field of the upstream FS frame header carries the upstream length information.
  • the FS frame header consists of ONU-ID, Ind, HEC, and upstream physical layer operation management and maintenance (Physical Layer OAM (Operations, Administration and Maintenance) upstream, PLOAMu) and other fields.
  • the ONU-ID field contains a unique ONU-ID identifier of the ONU in the upstream burst transmission, and the identifier is allocated to the ONU during the OLT ranging process.
  • the Ind field has 9 bits and can provide fast unsolicited signaling information of the ONU status.
  • the HEC field is the error detection and correction field of the upstream FS header.
  • the PLOAMu field contains the upstream PLOAM message with a length of 0 or 48 bytes.
  • the Ind field carries the uplink length information. The specific implementation method is as follows:
  • 2Bit7-1 Uplink length information indication bit.
  • the FEC tail codeword length is less than or equal to 16K bits, that is, 2K bytes.
  • an indication method of Bit7-1 upstream length information indication bit is that, for the upstream 25G rate, 40 bytes are used as the minimum code block particle of the tail code word length, and the FEC tail code word length is the minimum code block. Integer multiples of , the length of the FEC payload codeword is 16K bits and contains at most 50 minimum code block particles.
  • the LDPC FEC encoding process of a high-speed PON upstream FS frame is as follows:
  • Step1 Calculate the length L of the FEC tail code block (code block n as shown in the figure) according to the length of the uplink FS burst frame payload and the length of the FEC code block, which satisfies the following relationship:
  • L FEC +L L FS , where n-1 is the largest positive integer smaller than L FS /L FEC , and L FEC is the length of the FEC data block, that is, 2K bytes in FIG. 4B .
  • Step2 Insert the FEC tail block length L information into the Ind field of the upstream burst FS frame header, and calculate the HEC field information of the FS frame header;
  • Step3 Divide the upstream FS burst frame payload into blocks according to the length of the FEC code block, wherein code block 1 contains the FS frame header carrying the upstream length information;
  • Step 4 Insert parity bits between FEC code blocks to complete the FEC encoding of the uplink burst FS frame.
  • the parity bit of FEC code block 1 is calculated according to the FEC data code block carrying uplink length information.
  • the parity bit of the truncated FEC tail code word is calculated by adding 0 to 2K bytes to the tail code block according to the prior art, and the 0 data supplemented by the tail code block is deleted and sent when sending.
  • the uplink burst FS frame after FEC encoding before sending the uplink burst FS frame after FEC encoding, it also includes adding PSBu synchronization and delimitation information.
  • the LDPC FEC decoding process of a high-speed PON upstream FS frame is as follows:
  • Step1 Perform error correction decoding on the first byte of the FEC byte of the received uplink signal
  • Step2 Extract the uplink length information from the FS frame header in the first byte of the corrected FEC code block to obtain the length L of the FEC tail code block;
  • Step3 Perform error correction decoding on the remaining FEC code blocks according to a fixed length.
  • the code block is decoded according to the length L of the FEC tail code block;
  • Step4 Recombine the corrected code blocks into frames.
  • the clock data recovery, synchronization and delimitation of the uplink signal are further included.
  • the upstream burst FS frame header carries the upstream length information, which is indicated by the empty field of the upstream burst FS frame header, and does not occupy the FS payload space.
  • the FEC algorithm is not limited to LDPC, but can also be an RS algorithm, such as RS (248, 232), RS (528, 514), etc.
  • RS 248, 232
  • RS 528, 514
  • the length of the FEC code block and parity bits is determined according to the specific algorithm.
  • the uplink burst FS frame carrying the uplink length information can also be scrambled before being sent after FEC encoding.
  • the received signal needs to be descrambled before decoding the remaining FEC code blocks of the uplink burst frame information according to the extracted uplink burst frame end codeword length information.
  • the uplink frame length information required for descrambling at the OLT side can be obtained through the superframe counter.
  • the method after performing FEC decoding on the received uplink burst information, the method further includes identifying the length of the next burst FS signal, and filling IDEL information between the two burst FS signals, The signal is converted into a continuous signal and sent to the next functional unit for processing.
  • the method adopted in the first embodiment needs to occupy the uplink bandwidth space for the uplink length information, and the second embodiment does not increase the uplink bandwidth overhead.
  • the uplink length information is carried by the redundant bytes of the FS frame header, which does not require additional bandwidth overhead, and can be implemented inside the optical module without modifying the existing MAC protocol and bandwidth authorization method.
  • Embodiment 3 takes a high-speed PON system (line rate>25Gbit/s) as an example.
  • the message byte after the upstream burst PSBu and before the FS frame header carries the upstream length information.
  • the upstream length information is defined after the PSBu and before the FS frame header, such as the length of the FEC tail code word, the current ONU
  • the bandwidth size information allocated to the burst time slot, the current FS frame length, etc., and the FS frame payload length is the original length minus the length of the tail code word length information.
  • the bandwidth size information allocated to the current ONU burst time slot (the BWmap allocation structure corresponding to the current ONU) as an example
  • the data structure of the uplink burst frame using this method is shown in FIG. 5 .
  • the BWmap allocation structure of the current burst time slot allocated by the OLT is inserted between the PSBu and the FS frame header in the uplink burst signal, and the allocation structure includes the allocation identifier (Allocation Identifier, Alloc-ID), flag bit, start time, Information such as the authorization size, the length is 8 bytes, and a burst signal can carry multiple allocation structures.
  • the BWmap allocation structure occupies the upstream burst start time.
  • one method is to use a high-performance burst clock synchronization and frame delimiter module to reduce the PSBu synchronization and delimiter frame lengths for BWmap allocation structure insertion overhead, and the FS payload length remains unchanged at this time.
  • the BWmap allocation structure information is protected by a fixed-length FEC algorithm. If the number of bits in the BWmap allocation structure is less than the length of the FEC data code block, 0 is added after the allocation structure.
  • the FEC algorithm of the BWmap allocation structure and the FEC algorithm of the uplink FS frame may be the same or different.
  • the decoding process of the FEC code block of the uplink burst frame according to the extracted codeword length information at the end of the uplink burst frame is as follows:
  • Step1 After synchronously delimiting the received uplink burst information, perform FEC decoding on the BWmap allocation structure after PSBu to obtain the current burst frame FS frame length information L FS (including FS frame header, payload and frame end) .
  • Step 2 Obtain the length L of the FEC tail code word according to the FEC algorithm type of the L FS and the upstream FS frame.
  • Step 3 Perform FEC decoding on the FEC protection data of the uplink FS frame, and perform FEC decoding after the tail code word is filled with 0 according to the length L to the length of the FEC code block.
  • the FEC protection of the BWmap allocation structure is optional, and the HEC field in the BWmap allocation can be used for error correction decoding.
  • the allocation structure information can be recovered and extracted normally in the case of poor signal quality.
  • the method after performing FEC decoding on the received uplink burst information, the method further includes deleting the BWmap allocation structure, re-forming PSBu+FS frame header+FS payload+FS frame trailer, and sending it to the next function unit processing.
  • Embodiment 4 in Embodiment 1, when the length of the idle field of the Ind field is not enough to indicate the length information of the codeword at the end of the uplink burst frame, the length information of the codeword at the end of the uplink burst frame can be added after the FS frame header, and the FS payload The size is reduced accordingly.
  • the LDPC FEC encoding process of the upstream FS frame is shown in Figure 6. Carrying the uplink length information can implement the method of the first embodiment, the second embodiment or the third embodiment to indicate the length information of the FEC tail codeword.
  • the decoding process of the FEC code block of the uplink burst frame according to the extracted codeword length information at the end of the uplink burst frame is as follows:
  • Step1 After synchronizing and delimiting the received uplink burst information, perform error correction decoding on the first byte of the FEC byte of the received uplink signal;
  • Step2 Extract the upstream length information from the length information of the tail code word after the FS frame header in the first byte of the corrected FEC code block, and obtain the length L of the FEC tail code block
  • Step 3 Perform FEC decoding on the FEC protection data of the remaining uplink FS frames, and perform FEC decoding after the tail code word is filled with 0 according to the length L to the length of the FEC code block.
  • the method further includes deleting the length information of the tail code word to recompose PSBu+FS frame header+FS payload+FS frame trailer, and sending it to the next A functional unit handles.
  • the method after performing FEC decoding on the received uplink burst information, the method further includes identifying the length of the next burst FS signal, and filling IDEL information between the two burst FS signals, The signal is converted into a continuous signal and sent to the next functional unit for processing.
  • the upstream length information occupies the upstream allocation bandwidth.
  • the space occupied by the upstream length information needs to be considered to ensure that each ONU has sufficient bandwidth.
  • the uplink length information can be transmitted through the out-of-band management channel, and the specific process is as follows:
  • Step1 The upstream out-of-band management channel carries the upstream length information
  • Step2 Obtain uplink length information from the received uplink out-of-band management signal
  • Step 3 Decode the FEC code block of the uplink burst frame according to the extracted codeword length information at the end of the uplink burst frame.
  • the out-of-band management channel includes an AM modulated signal (AMCC), a third wavelength signal, and the like.
  • AMCC AM modulated signal
  • the time interval between the time when the out-of-band management channel sends the uplink length information and the time interval when the uplink burst frame carrying the uplink length information is sent is the time difference after the two are received, extracted and analyzed.
  • the method after performing FEC decoding on the received uplink burst information, the method further includes identifying the length of the next burst FS signal, and filling IDEL information between the two burst FS signals, The signal is converted into a continuous signal and sent to the next functional unit for processing.
  • the TDM-PON framing sublayer protocol needs to be changed to some extent, and the TDM-PON framing sublayer protocol does not need to be changed in the fifth embodiment.
  • an embodiment of the present application further provides a passive optical network transmission device.
  • the passive optical network transmission device includes an encoding module and a sending module.
  • the encoding module is configured so that the encoding module generates an uplink burst FEC encoded signal according to the uplink burst signal, and the uplink burst FEC encoded signal carries uplink length information, wherein the uplink length information is used to indicate the uplink burst frame in the uplink burst signal Tail code word length information;
  • the sending module is configured to send an uplink burst FEC coded signal carrying the uplink length information to the optical line terminal OLT, so that the OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the passive optical network transmission device is a passive optical network ONU.
  • the encoding module generates an uplink burst FEC encoded signal according to the uplink burst signal, the uplink burst FEC encoded signal carries the uplink length information, and the sending module sends the uplink burst FEC encoded signal carrying the uplink length information to the optical line terminal OLT, so that the OLT FEC decoding is performed on the uplink burst FEC coded signal according to the uplink length information.
  • the uplink length information is used to indicate the length information of the end codeword of the uplink burst frame in the uplink burst signal, including but not limited to the length of the end codeword of the FEC, the bandwidth size information allocated to the current ONU burst time slot, and the current FS frame payload. length etc.
  • the passive optical network ONU device Based on this, in the high-speed PON system, the passive optical network ONU device generates the uplink burst FEC encoded signal according to the uplink burst signal, and then sends the uplink burst FEC encoded signal carrying the length information of the FEC tail code word of the uplink burst frame.
  • the OLT can perform FEC decoding on the upstream burst FEC coded signal according to the upstream length information, so as to avoid that the receiving side OLT cannot correctly restore the distorted signal due to the variable length of the FEC payload truncated in the upstream burst signal due to the bandwidth allocation. It is realized that the receiving side OLT can decode correctly, and the FEC technology is used for the encoding of the uplink burst signal to correct the erroneous redundant information in the optical signal transmission process, so as to improve the optical transmission performance and stability of the system.
  • the sending module may be an electrical-optical conversion module, and is configured to convert the uplink burst FEC encoded signal into which the uplink length information is inserted from an electrical signal to an optical signal and send it to the OLT.
  • the encoding module and the encoding module can be built into the ONU, or can be integrated with the MAC chip independently of the ONU, and the architecture is more flexible.
  • the length of the original MAC FS information is not changed.
  • the original FS information length sent by the MAC needs to be truncated.
  • the encoding module when the encoding module has a built-in ONU, the encoding module further includes a buffer sub-module for storing the truncated residual of the current burst time slot. The FS payload information of the module ensures that the data flow rate of the module is consistent.
  • the electro-optical conversion module further includes an out-of-band management signal sending module, such as an independent out-of-band signal third wavelength electro-optical conversion module, or an IM signal loading module.
  • the out-of-band management signal sending module may be an independent third-wavelength electro-optical conversion module for out-of-band signals, or may be an IM signal loading module.
  • an embodiment of the present application further provides a passive optical network transmission device.
  • the passive optical network transmission device includes a receiving module, an extraction module and a decoding module.
  • the receiving module is set to receive the uplink burst FEC coded signal carrying the uplink length information, wherein the uplink length information is used to indicate the length information of the last codeword of the uplink burst frame in the uplink burst signal;
  • the extracting module is set to be from The uplink length information is extracted from the uplink burst FEC coded signal;
  • the decoding module is configured to perform FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the passive optical network transmission device is a passive optical network OLT.
  • the receiving module receives the uplink burst FEC encoded signal carrying the uplink length information
  • the extraction module extracts the uplink length information from the uplink burst FEC encoded signal
  • the decoding module performs FEC decoding on the uplink burst FEC encoded signal according to the uplink length information.
  • the uplink length information is used to indicate the length information of the uplink burst frame tail code word in the uplink burst signal, including but not limited to the FEC tail code word length, the bandwidth size information allocated to the current ONU burst time slot, the current FS frame payload length etc.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information, so as to avoid that the receiving side OLT cannot correctly recover the distorted signal due to the truncation of the FEC payload in the uplink burst signal, so that the receiving side OLT can correctly decode the signal.
  • the decoding of the uplink burst signal adopts the FEC technology to correct the erroneous redundant information in the optical signal transmission process, so as to improve the optical transmission performance and stability of the system.
  • the receiving module is a photoelectric conversion module, and the photoelectric conversion module is configured to convert the uplink burst FEC encoded signal received from the receiving module from an optical signal to an electrical signal, and then transmit the electrical signal containing the uplink length information. to the extraction module.
  • the receiving module, the extracting module and the decoding module may form an OLT, and the uplink burst information recovered by FEC decoding is sent to the OLT MAC module through a general serdes interface. It should be noted that the extraction module and the decoding module can also be integrated with the OLT PON MAC chip independently of the OLT optical module.
  • the photoelectric conversion module further includes an out-of-band management signal receiving module, and the out-band management signal receiving module may be an independent third-wavelength photoelectric conversion module for out-of-band signals, or an IR signal extraction module.
  • the decoding module is further configured to delete the codeword length information of the uplink burst frame in the uplink signal after performing FEC decoding on the uplink burst frame information from the extracted uplink burst frame tail codeword length information.
  • the uplink burst signal after reframing includes PSBu, FS frame header, FS payload and FS frame tail, so that the length of the uplink burst signal before inserting the uplink length information remains unchanged.
  • the OLT may further include an IDEL filling module, identify two burst FS signals through the decoding module, and fill IDEL information between the two burst FS signals through the IDEL filling module to convert the burst signals into continuous signal, sent to the PON MAC unit.
  • the MAC unit receives the converted uplink continuous signal, can quickly synchronize, saves the overhead of synchronization bytes, and quickly completes the uplink MAC function.
  • the OLT optical module further includes a CDR module, which is configured to perform clock data recovery on the uplink burst signal.
  • the embodiments of the present application also provide a passive optical network transmission system.
  • the passive optical network transmission system includes a sending end and a receiving end.
  • the sending end includes an encoding module and a sending module, wherein the encoding module is configured to generate an uplink burst FEC encoded signal according to the uplink burst signal, and the uplink burst FEC encoded signal carries uplink length information, wherein the uplink length information is used to indicate the uplink burst.
  • the length information of the end codeword of the uplink burst frame in the signaling including but not limited to the length of the end codeword of the FEC, the bandwidth size information allocated to the current ONU burst time slot, the current FS frame payload length, etc.;
  • the sending module is set to send the carrying The upstream burst FEC coded signal with upstream length information is sent to the OLT, so that the OLT performs FEC decoding on the upstream burst FEC coded signal according to the upstream length information;
  • the receiving end includes a receiving module, an extraction module and a decoding module, wherein the receiving module is Set to receive the uplink burst FEC coded signal that carries the uplink length information; the extraction module is set to extract the uplink length information from the uplink burst FEC coded signal; the decoding module is set to the uplink burst FEC according to the uplink length information.
  • the encoded signal is FEC decoded.
  • the transmitting end is an ONU and the receiving end is an OLT as an example.
  • the encoding module generates an uplink burst FEC encoded signal according to the uplink burst signal, the uplink burst FEC encoded signal carries the uplink length information, and the sending module sends the uplink burst FEC encoded signal carrying the uplink length information to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information.
  • the uplink length information is used to indicate the length information of the end codeword of the uplink burst frame in the uplink burst signal, including but not limited to the length of the end codeword of the FEC, the bandwidth size information allocated to the current ONU burst time slot, and the current FS frame payload. length etc.
  • the receiving module receives the uplink burst FEC encoded signal carrying the uplink length information
  • the extraction module extracts the uplink length information from the uplink burst FEC encoded signal
  • the decoding module performs the uplink burst FEC encoded signal according to the uplink length information. FEC decoding.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst signal according to the uplink length information, so as to prevent the receiving side OLT from being unable to correctly restore the distorted signal due to the truncation of the FEC payload in the uplink burst signal, so that the receiving side OLT can correctly decode the signal, and Both the encoding and decoding of the uplink burst signal use FEC technology to correct the erroneous redundant information in the optical signal transmission process, so as to improve the optical transmission performance and stability of the system, and improve the optical power budget of the system.
  • the passive optical network transmission system includes a sending end and a receiving end, and the sending end includes an ONU MAC and an ONU optical module.
  • the ONU optical module includes an FEC encoding module and an electro-optical conversion module, wherein the FEC encoding module is configured to generate an uplink burst FEC encoded signal according to the uplink burst signal, and the uplink burst FEC encoded signal carries uplink length information, wherein the uplink length information is used Indicates the length information of the upstream burst frame end code word in the upstream burst signal, including but not limited to the length of the FEC end code word, the bandwidth size information allocated to the current ONU burst time slot, the current FS frame payload length, etc.; electro-optical conversion module , which is configured to convert the uplink burst FEC encoded signal carrying the uplink length information sent by the FEC encoding module from an electrical signal to an optical signal, and then send the optical signal to the
  • the receiving end includes an OLT optical module and an OLT MAC.
  • the OLT optical module includes a photoelectric conversion module, an extraction and FEC decoding module, and a framing and IDEL filling module, wherein the photoelectric conversion module is set to receive the uplink burst FEC from the receiving module.
  • the encoded signal is converted from an optical signal to an electrical signal, and then the electrical signal is sent to the extraction and FEC decoding module; the extraction and FEC decoding module is set to extract the uplink length information from the received uplink burst FEC encoded signal, according to the extracted uplink
  • the burst frame end codeword length information performs FEC decoding on the upstream burst frame information; the framing and IDEL padding module is set to delete the upstream burst frame end codeword length information in the upstream burst signal, and then re-framing , and by identifying two burst FS signals and filling IDEL information between the two burst FS signals, the burst FS signal is converted into a continuous signal and sent to the OLT MAC.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst signal according to the uplink length information, so as to prevent the receiving side OLT from being unable to correctly restore the distorted signal due to the truncation of the FEC payload in the uplink burst signal, so that the receiving side OLT can correctly decode the signal, and Both the encoding and decoding of the uplink burst signal use FEC technology to correct the erroneous redundant information in the optical signal transmission process, so as to improve the optical transmission performance and stability of the system, and improve the optical power budget of the system.
  • the FEC encoding module may have a built-in ONU optical module, or may be integrated with the ONU MAC.
  • the extraction and FEC decoding module and framing and IDEL filling module in OLT can also be built-in OLT optical module or OLTMAC.
  • an embodiment of the present application further provides a passive optical network transmission device.
  • the passive optical network transmission device includes: one or more processors and memories, and one processor and memory is taken as an example in FIG. 10 .
  • the processor and the memory may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 10 .
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the passive optical network transmission method in the above embodiments of the present application.
  • the processor implements the passive optical network transmission method in the above embodiments of the present application by running the non-transitory software program and the program stored in the memory.
  • the memory may include a stored program area and a stored data area, wherein the stored program area may store an operating system and an application program required by at least one function; required data, etc. Additionally, the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. In some embodiments, the memory may include memory located remotely from the processor, and these remote memories may be connected to the terminal through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the non-transitory software programs and programs required to implement the passive optical network transmission method in the above-mentioned embodiments of the present application are stored in the memory, and when executed by one or more processors, execute the passive optical network transmission methods in the above-mentioned embodiments of the present application.
  • the optical network transmission method for example, executes steps 101 to 102 of the method in FIG. 1 described above, the ONU generates an uplink burst FEC coded signal according to the uplink burst signal, and the uplink burst FEC coded signal carries the uplink length information, and sends the signal carrying the uplink length information.
  • the upstream burst FEC coded signal with upstream length information is sent to the OLT, so that the OLT performs FEC decoding on the upstream burst FEC coded signal according to the upstream length information. Or, perform the above-described method steps 201 to 203 in FIG. 2 , the OLT receives the uplink burst FEC encoded signal carrying the uplink length information, and then extracts the uplink length information from the uplink burst FEC encoded signal, and according to the uplink length The information performs FEC decoding on the upstream burst FEC coded signal.
  • the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information, so as to avoid that the receiving side OLT cannot correctly recover the distorted signal due to the truncation of the FEC payload in the uplink burst signal, so that the receiving side OLT can correctly decode the signal.
  • the encoding and decoding of the uplink burst signal adopts FEC technology to correct the error redundancy information in the optical signal transmission process, so as to improve the optical transmission performance and stability of the system, and improve the optical power budget of the system.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer-executable program, and the computer-executable program is executed by one or more control processors, for example, by FIG. 10
  • Executed by one of the processors in the above-mentioned one or more processors the above-mentioned one or more processors can perform the above-mentioned time delay calibration method in the embodiment of the present application. For example, the above-described method steps 101 to 102 in FIG.
  • the uplink burst FEC coded signal carries the uplink length information, and sends the uplink burst FEC coded signal carrying the uplink length information to the OLT, so that the OLT can perform the uplink burst FEC according to the uplink length information.
  • the encoded signal is FEC decoded. Or, perform the above-described method steps 201 to 203 in FIG. 2 , the OLT receives the uplink burst FEC encoded signal carrying the uplink length information, and then extracts the uplink length information from the uplink burst FEC encoded signal, and according to the uplink length The information performs FEC decoding on the upstream burst FEC coded signal.
  • the uplink length information is used to indicate the length information of the codeword at the end of the uplink burst frame in the uplink burst signal.
  • the ONU Based on this, in a high-speed PON system, the ONU generates an upstream burst FEC coded signal according to the upstream burst signal, and then sends the upstream burst FEC coded signal carrying the length information of the FEC tail code word of the upstream burst frame to the OLT, so that the The OLT performs FEC decoding on the uplink burst FEC coded signal according to the uplink length information, so as to avoid that the receiving side OLT cannot correctly recover the distorted signal due to the truncation of the FEC payload in the uplink burst signal, so that the receiving side OLT can correctly decode the signal.
  • the encoding and decoding of the uplink burst signal adopts FEC technology to correct the error redundancy information in the optical signal transmission process, so as to improve the optical transmission performance and stability of
  • Embodiments of the present application provide a passive optical network transmission method, a passive optical network transmission device, a passive optical network transmission system, and a computer-readable storage medium. Send frame FEC end codeword length information to achieve correct FEC decoding at the receiving side.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable programs, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)

Abstract

无源光网络传输方法、装置和系统,光网络单元ONU根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息(102),并发送携带有上行长度信息的上行突发FEC编码信号给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码(102);OLT接收携带有上行长度信息的上行突发FEC编码信号(201),再从上行突发FEC编码信号中提取上行长度信息(202),并根据上行长度信息对上行突发FEC编码信号进行FEC解码(203)。

Description

无源光网络传输方法、装置和系统
相关申请的交叉引用
本申请基于申请号为202110391239.6、申请日为2021年04月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及通信技术领域,特别是涉及一种无源光网络传输方法、装置和系统。
背景技术
近年来,基于时分复用无源光网络(TimeDivisionPassive Optical Network,TDM-PON)技术的光接入网络迅速发展,10G PON(10吉比特无源光网络)已开始规模部署,逐步替代GPON(吉比特无源光网络)网络。未来,在接入网层面实现未来大带宽的家庭宽带接入、更高带宽政企接入,以及5G小基站回传等固移融合和全业务接入,对无源光网络带宽提出了更高的要求。50Gbit/s无源光网络(基于时分复用,50G TDM PON)成为10G PON的演进方向。
在无源光网络系统中,TDM-PON系统中,由于上行时分复用以及动态带宽分配(Dynamic BandwidthAssignment,DBA),上行成帧子层(Framing Sublayer,FS)突发净荷大小取决于光线路终端(Optical Line Termination,OLT)授权的带宽管理信息带宽映射(BandWidthmapping,BWmap)。当某突发时隙带宽分配不能携带对应光网络单元(Optical Network Unit,ONU)所需传输的所有信息时,ONU发送的上行信息尾部将被分片,第一个分片将通过当前FS突发帧的尾码字传输,剩余分片将在该ONU后续授权带宽分配的FS突发帧中传输。因此,当前FS突发净荷中传递的尾码字长度与当前授权的带宽相关,随授权带宽不同尾码字长度不同。由于前向纠错码(Forward Error Correction,FEC)通常按固定码块长度进行奇偶校验编解码,当上行突发信号由于带宽分配导致的尾码字长度不定时,上行接收侧OLT会存在无法正确纠错解码的问题。已有技术中,FEC模块与突发时钟数据恢复(Burst Clock and Data Recovery,BCDR)模块一起与媒体访问控制(Media Access Control,MAC)芯片集成,上行FEC模块通过MAC读取BWmap信息来获取上行突发信号授权带宽来获得FEC模块解码长度信息。该方案需要FEC模块与MAC集成,对于高速PON系统,由于线路速率大幅提升,会存在光电器件带宽受限,码间串扰严重等问题,MAC芯片与光模块之间长距离传输会进一步劣化信号质量,导致无法正确恢复失真信号,传统PON系统BCDR以及FEC模块外置光模块,与MAC集成的架构难以继续沿用,需要新的方法解决上行尾码字长度不定,OLT侧上行突发FS净荷无法正确FEC解码的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本申请实施例提供了一种无源光网络传输方法,应用于光网络单元ONU,所述方法包括:根据上行突发信号生成上行突发FEC编码信号,所述上行突发FEC编码信号携带上行长度信息,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;发送携带有所述上行长度信息的所述上行突发FEC编码信号给光线路终端OLT,以使所述OLT根据所述上行长度信息对所述上行突发FEC编码信号进行前向纠错FEC解码。
第二方面,本申请实施例提供了一种无源光网络传输方法,应用于光线路终端OLT,所述方法包括:接收携带有上行长度信息的上行突发FEC编码信号,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;从所述上行突发FEC编码信号中提取所述上行长度信息;根据所述上行长度信息对所述上行突发FEC编码信号进行前向纠错 FEC解码。
第三方面,本申请实施例提供了一种无源光网络传输装置,包括:编码模块,被设置为根据上行突发信号生成上行突发FEC编码信号,所述上行突发FEC编码信号携带上行长度信息,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;发送模块,被设置为发送携带有所述上行长度信息的所述上行突发FEC编码信号给光线路终端OLT,以使OLT根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码。
第四方面,本申请实施例提供了一种无源光网络传输装置,包括:接收模块,被设置为接收携带有上行长度信息的上行突发FEC编码信号,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;提取模块,被设置为从所述上行突发FEC编码信号中提取所述上行长度信息;解码模块,被设置为根据所述上行长度信息对所述上行突发FEC编码信号进行前向纠错FEC解码。
第五方面,本申请实施例提供了一种无源光网络传输系统,包括发送端和接收端,所述发送端包括:编码模块,被设置为根据上行突发信号生成上行突发FEC编码信号,所述上行突发FEC编码信号携带上行长度信息,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;发送模块,被设置为发送携带有所述上行长度信息的所述上行突发FEC编码信号给光线路终端OLT,以使OLT根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码;所述接收端包括:接收模块,被设置为接收携带有上行长度信息的上行突发FEC编码信号,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;提取模块,被设置为从所述上行突发FEC编码信号中提取所述上行长度信息;解码模块,被设置为根据所述上行长度信息对所述上行突发FEC编码信号进行前向纠错FEC解码。
第六方面,本申请实施例提供了一种无源光网络传输装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面所述的无源光网络传输方法,或者如上第二方面所述的无源光网络传输方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行程序,所述计算机可执行程序用于使计算机执行如上第一方面所述的无源光网络传输方法,或者如上第二方面所述的无源光网络传输方法。
本发明本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的一种无源光网络传输方法的流程图(发送侧);
图2是本申请一个实施例提供的一种无源光网络传输方法的流程图(接收侧);
图3A是本申请一个实施例提供的上行突发FS帧结构示意图;
图3B是本申请一个实施例提供的上行突发FS帧FEC编码示意图;
图3C是本申请一个实施例提供的上行突发FS帧FEC解码重构示意图;
图4A是本申请一个实施例提供的上行突发FS帧结构示意图;
图4B是本申请一个实施例提供的上行突发FS帧FEC编码示意图;
图4C是本申请一个实施例提供的上行突发FS帧FEC解码重构示意图;
图5是本申请一个实施例提供的上行突发FS帧结构示意图;
图6是本申请一个实施例提供的上行突发FS帧FEC编码示意图;
图7是本申请一个实施例提供的无源光网络传输装置示意图(发送端);
图8是本申请一个实施例提供的无源光网络传输装置示意图(接收端);
图9是本申请一个实施例提供的无源光网络传输系统结构示意图;
图10是本申请一个实施例提供的无源光网络传输装置结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
近年来,基于TDM-PON技术的光接入网络迅速发展,10G PON已开始规模部署,逐步替代GPON(吉比特无源光网络)网络。未来,在接入网层面实现未来大带宽的家庭宽带接入、更高带宽政企接入,以及5G小基站回传等固移融合和全业务接入,对无源光网络带宽提出了更高的要求。50Gbit/s无源光网络(基于时分复用,50G TDM PON)成为10G PON的演进方向。
在无源光网络系统中,上行突发信号由于带宽分配存在FEC净荷截短和长度不定的现象,导致上行接收侧会存在无法正确解扰和纠错的问题。已有技术限定了FEC模块与MAC芯片集成的架构,对于高速PON系统,需要更适用性更广、架构更灵活的方法来解决上行接收侧无法正确解扰和纠错的问题。
为解决上述问题,本申请实施例提供了一种无源光网络传输方法、无源光网络传输装置和计算机可读存储介质,光网络单元ONU根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,并发送携带有上行长度信息的上行突发FEC编码信号给光线路终端OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码;OLT接收携带有上行长度信息的上行突发FEC编码信号,再从上行突发FEC编码信号中提取上行长度信息,并根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短长度不定而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性,提升系统光功率预算。采用本申请所述方法,高速PON系统中,上行OLT接收侧FEC模块可以与PON MAC集成,也可以内置于PON光模块,架构更为灵活。并且,PON MAC芯片与PON光模块之间不需要新增上行突发帧长度信息指示接口,可采取通用光模块接口形式,设备接口更为简洁。
如图1所示,图1是本申请一个实施例提供的一种无源光网络传输方法的流程图。无源光网络传输方法可以应用于光网络单元ONU,该方法包括但不限于如下步骤:
步骤101,根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息;
步骤102,发送携带有上行长度信息的上行突发FEC编码信号给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。
在发送侧,光网络单元ONU根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,并发送携带有上行长度信息的上行突发FEC编码信号给光线路终端OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度, 当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短长度不定而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性。
需要说明的是,光网络单元ONU可以是先在上行突发信号插入上行长度信息,再对携带有上行长度信息的上行突发信号进行FEC编码,从而生成上行突发FEC编码信号;也可以是先对上行突发信号进行FEC编码,生成上行突发FEC编码信号,再在上行突发FEC编码信号插入上行长度信息。
需要指出的是,对于在上行突发信号中插入上行长度信息的方式,具体可以将上行长度信息插入到上行FS(Framing Sublayer,成帧子层)突发帧头中特定的域,也可以在上行物理同步块(Physical Synchronization Blockupstream,PSBu)和上行突发FS帧头之间插入上行长度信息,也可以在上行突发FS帧头之后插入上行长度信息,且上行FS净荷减少与上行长度信息长度相等的空间,还可以在上行带外管理通道中通过上行带外管理信号携带上行长度信息,均可以实现在上行突发信号中携带上行长度信息。当上行长度信息插入到FS(Framing Sublayer,成帧子层)突发帧头中或上行突发FS帧头之后时,ONU侧在插入上行长度信息后,对携带有上行长度信息的上行突发信号进行FEC成帧编码。当上行长度信息插入到PSBu和上行突发FS帧头之间或上行带外管理通道中时,其不改变上行突发FS帧净荷FEC编码过程,可在上行突发FS帧净荷FEC编码之后再插入上行信息中,此时插入的上行长度信息可通过另外约定的FEC编解码方法或HEC来进行误码纠错。
如图2所示,图2是本申请一个实施例提供的一种无源光网络传输方法的流程图。无源光网络传输方法可以应用于光线路终端OLT,该方法包括但不限于如下步骤:
步骤201,接收携带有上行长度信息的上行突发FEC编码信号,其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息;
步骤202,从上行突发FEC编码信号中提取上行长度信息;
步骤203,根据上行长度信息对上行突发FEC编码信号进行FEC解码。
在接收侧,OLT接收携带有上行长度信息的上行突发FEC编码信号,再从上行突发FEC编码信号中提取上行长度信息,并根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的解码采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性。
以下通过附图结合实施例进一步介绍本申请提供的无源光网络传输方法。
实施例一,以一种高速PON系统(线路速率>25Gbit/s),上行采用低密度奇偶校验(Low Density Parity Check,LDPC)码FEC编解码算法,以FEC净荷码字长度16K比特(即2K字节),奇偶校验位长度2K比特为例。
上行突发FS帧头携带上行长度信息,如图3A所示,上行突发FS帧头增加上行长度信息域(Physic Layer Lengthupstream,PLLu)。新定义的FS帧头由ONU-ID、鉴定(identification,Ind)、PLLu和帧头差错控制(Header Error Control,HEC)等域组成。ONU-ID域包含了上行突发传送中的ONU的一个唯一ONU-ID标识,该标识是在OLT测距过程中分配给ONU的。Ind 域有9个比特,它能提供ONU状态的快速非请求信令信息。PLLu域包含2个字节(不限于2字节,能够准确表述上行长度信息的字节长度即可)的上行长度信息,用来指示当前上行突发信息中所传送的上行突发FS净荷数据总体长度。HEC域为上行FS头的错误检测和纠错域。
PLLu域包含2个字节,其表示上行突发FS净荷数据总体长度,具体为上行突发FS净荷数据总体长度=PLLu域数值×当前速率最小码块颗粒字节长度。对于上行25G速率,以40个字节为尾码字长度的最小码块颗粒,上行长度为最小码块的整数倍。当PLLu域为“0000000010111111”时,上行长度FS净荷数据长度为7,640字节。对于上行50G速率,则以80个字节为尾码块长度的最小码块颗粒,当PLLu域为“0000011111111101”时,上行长度FS净荷数据长度(L FS)为163,600字节。
在发送侧,如图3B所示,一种高速PON上行FS帧的LDPC FEC编码过程如下:
Step1:上行突发FS帧头携带上行长度信息,具体为上行突发帧尾码字长度信息L FS
Step2:按FEC码块长度对上行FS突发帧净荷进行分块,其中码块1包含了携带上行长度信息的FS帧头;
Step3:在FEC码块之间插入奇偶校验位,完成上行突发FS帧FEC编码。
其中,FEC码块1的奇偶校验位根据携带上行长度信息的FEC数据码块计算得到。
上述方法中,截短后的FEC尾码字奇偶校验位按已有技术将尾码块补0至2K字节后计算得到,发送时尾码块补充的0数据删除后发送。
上述方法中,完成上行突发FS帧FEC编码后发送前,还包括添加PSBu同步和定界信息。
接收侧,如图3C所示,一种高速PON上行FS帧的LDPC FEC解码过程如下:
Step1:对接收到的上行信号FEC字节首字节进行纠错解码;
Step2:从纠正后的FEC码块首字节中FS帧头中提取上行长度信息L FS,得到FEC尾码块长度L,以及n
其满足如下关系:
(n-1)L FEC+L=L FS,式中n-1为小于L FS/L FEC的最大正整数,L FEC为FEC数据块长度,即图中的2K字节;
Step3:对第2至n-1个FEC码块按固定长度进行纠错解码,对第n个FEC码块按长度L进行解码;
Step4:将纠正后的码块进行重组成帧。
上述方法中,接收上行信号FEC字节之前还包括对上行信号的时钟数据恢复、同步和定界。
本方法中,FEC算法不局限为LDPC,也可以为RS算法,如RS(248,232)、RS(528,514)等,其FEC码块和奇偶校验位长度根据具体算法而定。
本方法中,携带上行长度信息的上行突发FS帧FEC编码后发送前还可进行扰码操作。类似的,根据提取的上行突发帧尾码字长度信息对上行突发帧信息剩余FEC码块进行解码之前还需对所述接收信号进行解扰。OLT侧解扰所需上行帧长度信息可通过超帧计数器获得。
在一些实施例中,上述方法中,对接收到的上行突发信息进行FEC解码之后,还包括识别下一个突发FS信号长度,并在两个突发FS信号之间填充IDEL信息,将突发信号转换为连续信号,发送至下一功能单元处理。
实施例二,以一种高速PON系统(线路速率>25Gbit/s),上行采用低密度奇偶校验(LDPC)码FEC编解码算法,以FEC净荷码字长度16K比特,奇偶校验位长度2K比特为例。
上行突发FS帧头携带上行长度信息,如图4A所示,具体为上行FS帧头Ind域携带上行长度信息。FS帧头由ONU-ID、Ind、HEC和上行物理层操作管理维护(Physical Layer OAM(Operations,Administration and Maintenance)upstream,PLOAMu)等域组成。ONU-ID域包含了上行突发传送中的ONU的一个唯一ONU-ID标识,该标识是在OLT测距过程中分配给ONU的。Ind域有9个比特,它能提供ONU状态的快速非请求信令信息。HEC域为上行FS头的错误检测和纠错域。PLOAMu域包含上行PLOAM消息,长度为0或者48字节。Ind域携带上 行长度信息,具体实现方法为:
①Bit 8:PLOAM队列状态上行PLOAM消息等待队列状态指示位。
②Bit7-1:上行长度信息指示位。
③Bite 0:Dying Gasp位。
对于FEC净荷码字长度为16K比特,奇偶校验位长度为2K比特的LDPC FEC算法,其FEC尾码字长度小于或等于16K比特,即2K字节。在一些实施例中,Bit7-1上行长度信息指示位一种指示方法为,对于上行25G速率,以40个字节为尾码字长度的最小码块颗粒,FEC尾码字长度为最小码块的整数倍,对于FEC净荷码字长度为16K比特,最多包含50个最小码块颗粒。以Ind域Bit7-1二进制转换为十进制数值后表示最小码块颗粒具体数量,获得FEC尾码字长度具体信息。例如,当Ind域Bit7-1为“0001101”时,FEC尾码字长度为15×40=600字节长。对于上行50G速率,则以80个字节为尾码块长度的最小码块颗粒,FEC尾码字长度最多包含25个最小码块颗粒。以Ind域Bit7-1二进制转换为十进制数值后表示最小码块颗粒具体数量,获得FEC尾码字长度具体信息。例如,当Ind域Bit7-1为“0000101”时,FEC尾码字长度为5×80=400字节长。
在发送侧,如图4B所示,一种高速PON上行FS帧的LDPC FEC编码过程如下:
Step1:根据上行FS突发帧净荷长度和FEC码块长度计算得到FEC尾码块(如图所示码块n)长度L,其满足如下关系:
(n-1)L FEC+L=L FS,式中n-1为小于L FS/L FEC的最大正整数,L FEC为FEC数据块长度,即图4B中的2K字节。
Step2:将FEC尾码块长度L信息插入上行突发FS帧头Ind域,并计算获得FS帧头HEC域信息;
Step3:按FEC码块长度对上行FS突发帧净荷进行分块,其中码块1包含了携带上行长度信息的FS帧头;
Step4:在FEC码块之间插入奇偶校验位,完成上行突发FS帧FEC编码。其中,FEC码块1的奇偶校验位根据携带上行长度信息的FEC数据码块计算得到。
上述方法中,截短后的FEC尾码字奇偶校验位按已有技术将尾码块补0至2K字节后计算得到,发送时尾码块补充的0数据删除后发送。
上述方法中,完成上行突发FS帧FEC编码后发送前,还包括添加PSBu同步和定界信息。
接收侧,如图4C所示,一种高速PON上行FS帧的LDPC FEC解码过程如下:
Step1:对接收到的上行信号FEC字节首字节进行纠错解码;
Step2:从纠正后的FEC码块首字节中FS帧头中提取上行长度信息,得到FEC尾码块长度L;
Step3:对剩余FEC码块按固定长度进行纠错解码,当出现无法正确解码的码块时(误码率超过设定的阈值),该码块按FEC尾码块长度L进行解码;
Step4:将纠正后的码块进行重组成帧。
上述方法中,接收上行信号FEC字节之前还包括对上行信号的时钟数据恢复、同步和定界。
本方法中,上行突发FS帧头携带上行长度信息,由上行突发FS帧头空余字段指示,不占用FS净荷空间。
本方法中,FEC算法不局限为LDPC,也可以为RS算法,如RS(248,232)、RS(528,514)等,其FEC码块和奇偶校验位长度根据具体算法而定。
本方法中,携带上行长度信息的上行突发FS帧FEC编码后发送前还可进行扰码操作。类似的,根据提取的上行突发帧尾码字长度信息对上行突发帧信息剩余FEC码块进行解码之前还需对所述接收信号进行解扰。OLT侧解扰所需上行帧长度信息可通过超帧计数器获得。
在一些实施例中,上述方法中,对接收到的上行突发信息进行FEC解码之后,还包括识别下一个突发FS信号长度,并在两个突发FS信号之间填充IDEL信息,将突发信号转换为连 续信号,发送至下一功能单元处理。
相对于实施例一,实施例一所采用的方法上行长度信息需要占用上行带宽空间,而本实施例二不增加上行带宽开销。在实施例二中,上行长度信息由FS帧头冗余字节携带,不需要增加额外带宽开销,可于光模块内部实现,不修改现有MAC协议及带宽授权方法。
实施例三,以一种高速PON系统(线路速率>25Gbit/s)为例。
在上行突发PSBu之后和FS帧头之前消息字节携带上行长度信息,具体为上行突发信号成帧时在PSBu之后以及FS帧头之前定义上行长度信息,如FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧长度等,同时FS帧净荷长度为原长度减去尾码字长度信息长度。以携带当前ONU突发时隙分配到的带宽大小信息(当前ONU对应的BWmap分配结构)为例,采用该方法的上行突发帧数据结构如图5所示。
其中,上行突发信号中PSBu和FS帧头之间插入OLT分配的当前突发时隙BWmap分配结构,分配结构中包含分配标识符(Allocation Identifier,Alloc-ID),标志位,起始时间,授权大小等信息,长度为8字节,一个突发信号中可携带多个该分配结构。BWmap分配结构占用上行突发开始时间,当不改变PSBu同步和定界帧长度信息时,由于BWmap分配结构的插入,FS净荷需要做相应缩减。例如,一种方法为,采用高性能的突发时钟同步和帧定界模块,减小PSBu同步和定界帧长度用于BWmap分配结构插入开销,此时FS净荷长度不变。
上述方法中,BWmap分配结构信息采用固定长度FEC算法保护,若BWmap分配结构比特数小于该FEC数据码块长度,则在分配结构后补0。上述方法中,BWmap分配结构的FEC算法与上行FS帧的FEC算法可以相同或不同。
接收侧,根据提取的上行突发帧尾码字长度信息对上行突发帧FEC码块进行解码过程如下:
Step1:对接收到的上行突发信息进行同步定界后,对PSBu后的BWmap分配结构进行FEC解码,获得当前突发帧FS帧长度信息L FS(包含FS帧头、净荷和帧尾)。
Step2:根据L FS和上行FS帧的FEC算法类型获得FEC尾码字长度L。
Step3:对上行FS帧FEC保护数据进行FEC解码,其中尾码字按长度L补0至FEC码块长度后进行FEC解码。
上述方法中,BWmap分配结构FEC保护为可选项,可使用BWmap分配中HEC字段进行纠错解码,当采用FEC保护时,分配结构信息在信号质量较差的情况下能够被正常恢复提取。
在一些实施例中,上述方法中,对接收到的上行突发信息进行FEC解码之后,还包括删除BWmap分配结构重新组成PSBu+FS帧头+FS净荷+FS帧尾,发送至下一功能单元处理。
实施例四,在实施例一中,Ind域字段空闲字段长度不足以指示上行突发帧尾码字长度信息时,上行突发帧尾码字长度信息可增加至FS帧头之后,FS净荷大小做相应减少。其上行FS帧的LDPC FEC编码过程如图6所示。携带上行长度信息可以实现实施例一、实施例二或实施例三方法指示FEC尾码字长度信息。
接收侧,根据提取的上行突发帧尾码字长度信息对上行突发帧FEC码块进行解码过程如下:
Step1:对接收到的上行突发信息进行同步定界后,对接收到的上行信号FEC字节首字节进行纠错解码;
Step2:从纠正后的FEC码块首字节中FS帧头之后的尾码字长度信息中提取上行长度信息,得到FEC尾码块长度L
Step3:对剩余上行FS帧FEC保护数据进行FEC解码,其中尾码字按长度L补0至FEC码块长度后进行FEC解码。
在一些实施例中,上述方法中,对接收到的上行突发信息进行FEC解码之后,还包括删除尾码字长度信息重新组成PSBu+FS帧头+FS净荷+FS帧尾,发送至下一功能单元处理。
在一些实施例中,上述方法中,对接收到的上行突发信息进行FEC解码之后,还包括识别下一个突发FS信号长度,并在两个突发FS信号之间填充IDEL信息,将突发信号转换为连 续信号,发送至下一功能单元处理。
在本实施例中,上行长度信息占用上行分配带宽,要求OLT进行BWmap分配时,需要考虑上行长度信息所占空间,以保证每个ONU有足够的带宽。
实施例五,可以通过带外管理通道传递上行长度信息,具体过程如下:
Step1:上行带外管理通道中携带上行长度信息;
Step2:从接收到的上行带外管理信号中获取上行长度信息;
Step3:根据提取的上行突发帧尾码字长度信息对上行突发帧FEC码块进行解码。
本实施例中,带外管理通道包括顶调制信号(AMCC),第三波长信号等。
本实施例中,带外管理通道发送上行长度信息的时间与所述携带上行长度信息的上行突发帧发送时间间隔为两者接收提取解析后的时间差。
在一些实施例中,上述方法中,对接收到的上行突发信息进行FEC解码之后,还包括识别下一个突发FS信号长度,并在两个突发FS信号之间填充IDEL信息,将突发信号转换为连续信号,发送至下一功能单元处理。
相对于实施例一、实施例二、实施例三以及实施例四需要对TDM-PON成帧子层协议会有一定的改动,本实施例五不需要改变TDM-PON成帧子层协议。
如图7所示,本申请实施例还提供了一种无源光网络传输装置。
具体地,该无源光网络传输装置包括编码模块和发送模块。其中,编码模块被设置为编码模块根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息;发送模块被设置为发送携带有上行长度信息的上行突发FEC编码信号给光线路终端OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。
在一实施例中,无源光网络传输装置为无源光网络ONU。编码模块根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,发送模块发送携带有上行长度信息的上行突发FEC编码信号给光线路终端OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等。基于此,在高速PON系统中,无源光网络ONU装置根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短长度不定而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的编码采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性。本实施例中,发送模块可以为电光转换模块,被设置为将插入上行长度信息后的上行突发FEC编码信号从电信号转换为光信号发送至OLT。需要说明的是,编码模块和编码模块可以内置于ONU,也可以独立于ONU之外与MAC芯片集成,架构更为灵活。
上述装置用于方法实施例二、三和五时,不对MAC原始FS信息长度发生改变。用于方法实施例一和四时,需要截短MAC发送的原始FS信息长度,此时,当编码模块内置ONU时,编码模块还包括缓存子模块,用来存储当前突发时隙截短剩余的FS净荷信息,保证该模块数据流速率一致。当用于方法实施例五时,电光转换模块还包括带外管理信号发送模块,如独立的带外信号第三波长电光转换模块,或者顶信号加载模块。带外管理信号发送模块可以是独立的带外信号第三波长电光转换模块,也可以是顶信号加载模块。
如图8所示,本申请实施例还提供了一种无源光网络传输装置。
具体地,该无源光网络传输装置包括接收模块、提取模块和解码模块。其中,接收模块被设置为接收携带有上行长度信息的上行突发FEC编码信号,其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息;提取模块被设置为从上行突发FEC编码信号中提取上行长度信息;解码模块被设置为根据上行长度信息对上行突发FEC编码信号进行FEC 解码。
在一实施例中,无源光网络传输装置为无源光网络OLT。接收模块接收携带有上行长度信息的上行突发FEC编码信号,提取模块再从上行突发FEC编码信号中提取上行长度信息,解码模块根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的解码采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性。
在一实施例中,接收模块为光电转换模块,光电转换模块被设置为将从接收模块接收到的上行突发FEC编码信号从光信号转换为电信号,再将包含上行长度信息的电信号发送给提取模块。本实施例中,接收模块、提取模块和解码模块可以组成OLT,将FEC解码恢复后的上行突发信息通过通用serdes接口发送至OLT MAC模块。需要说明的是,提取模块和解码模块也可以独立于OLT光模块之外,与OLT PON MAC芯片集成。
当用于方法实施例五时,光电转换模块还包括带外管理信号接收模块,带外管理信号接收模块可以是独立的带外信号第三波长光电转换模块,也可以是顶信号提取模块。
在一实施例中,解码模块还被设置为在提取的上行突发帧尾码字长度信息对上行突发帧信息进行FEC解码之后,将上行信号中的上行突发帧尾码字长度信息删除并重新组帧,重新组帧后的上行突发信号包括PSBu、FS帧头、FS净荷和FS帧尾,使得与插入上行长度信息前的上行突发信号长度保持不变。
在上述实施例中,OLT还可以包括IDEL填充模块,通过解码模块识别两个突发FS信号,并通过IDEL填充模块在两个突发FS信号之间填充IDEL信息,将突发信号转换为连续信号,发送至PON MAC单元。MAC单元接收转换后的上行连续信号,可以快速同步,节约同步字节开销,快速完成上行MAC功能。
在上述实施例中,OLT光模块还包括CDR模块,被设置为对上行突发信号进行时钟数据回复。
本申请实施例还提供了一种无源光网络传输系统。
具体地,该无源光网络传输系统包括发送端和接收端。发送端包括编码模块和发送模块,其中,编码模块被设置为根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等;发送模块被设置为发送携带有上行长度信息的上行突发FEC编码信号给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码;接收端包括接收模块、提取模块和解码模块,其中,接收模块,被设置为接收携带有上行长度信息的上行突发FEC编码信号;提取模块,被设置为从上行突发FEC编码信号中提取上行长度信息;解码模块,被设置为根据上行长度信息对上行突发FEC编码信号进行FEC解码。
在一实施例中,以发送端为ONU,接收端为OLT为例。在发送端,编码模块根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,发送模块发送携带有上行长度信息的上行突发FEC编码信号给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等。在接收端,接收模块接收携带有上行长度信息的上行突发FEC编码信号,提取模块再从上行突发FEC编码信号中提取上行长度信息,解码模块根据上行长度信息对上行突发FEC编码信号进行FEC解码。基于此,在高速PON系统中,ONU根据上行突发信 号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的编码和解码都采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性,提升系统光功率预算。
在一实施例中,如图9所示,无源光网络传输系统包括发送端和接收端,发送端包括ONU MAC和ONU光模块。ONU光模块包括FEC编码模块和电光转换模块,其中,FEC编码模块被设置为根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息,包括不限于FEC尾码字长度,当前ONU突发时隙分配到的带宽大小信息,当前FS帧净荷长度等;电光转换模块,被设置为将FEC编码模块发送的携带有上行长度信息的上行突发FEC编码信号从电信号转换为光信号,再将光信号发送给OLT。接收端包括OLT光模块和OLT MAC,OLT光模块包括光电转换模块、提取和FEC解码模块以及组帧和IDEL填充模块,其中,光电转换模块被设置为将从接收模块接收到的上行突发FEC编码信号从光信号转换为电信号,再将电信号发送给提取和FEC解码模块;提取和FEC解码模块被设置为从接收到的上行突发FEC编码信号中提取上行长度信息,根据提取的上行突发帧尾码字长度信息对上行突发帧信息进行FEC解码;组帧和IDEL填充模块,被设置为将上行突发信号中的上行突发帧尾码字长度信息删除后,重新组帧,并通过识别两个突发FS信号且在两个突发FS信号之间填充IDEL信息,将突发FS信号转换为连续信号,发送至OLT MAC。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的编码和解码都采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性,提升系统光功率预算。
上述实施例中,FEC编码模块可以内置ONU光模块,也可以与ONU MAC集成在一起。OLT中提取和FEC解码模块与组帧和IDEL填充模块也可内置OLT光模块或OLTMAC。与已有技术相比,本申请实施例所述方法和装置架构更为灵活,更具普适性。
如图10所示,本申请实施例还提供了一种无源光网络传输装置。
具体地,该无源光网络传输装置包括:一个或多个处理器和存储器,图10中以一个处理器及存储器为例。处理器和存储器可以通过总线或者其他方式连接,图10中以通过总线连接为例。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如上述本申请实施例中的无源光网络传输方法。处理器通过运行存储在存储器中的非暂态软件程序以及程序,从而实现上述本申请实施例中的无源光网络传输方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述本申请实施例中的无源光网络传输方法所需的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可以包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述本申请实施例中的无源光网络传输方法所需的非暂态软件程序以及程序存储在存储器中,当被一个或者多个处理器执行时,执行上述本申请实施例中的无源光网络传输方法,例如,执行以上描述的图1中的方法步骤101至步骤102,ONU根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,并发送携带有上行长度信 息的上行突发FEC编码信号给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。或者,执行以上描述的图2中的方法步骤201至步骤203,OLT接收携带有上行长度信息的上行突发FEC编码信号,再从上行突发FEC编码信号中提取上行长度信息,并根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的编码和解码都采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性,提升系统光功率预算。
此外,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行程序,该计算机可执行程序被一个或多个控制处理器执行,例如,被图10中的一个处理器执行,可使得上述一个或多个处理器执行上述本申请实施例中的时延校准方法,例如,执行以上描述的图1中的方法步骤101至步骤102,ONU根据上行突发信号生成上行突发FEC编码信号,上行突发FEC编码信号携带上行长度信息,并发送携带有上行长度信息的上行突发FEC编码信号给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码。或者,执行以上描述的图2中的方法步骤201至步骤203,OLT接收携带有上行长度信息的上行突发FEC编码信号,再从上行突发FEC编码信号中提取上行长度信息,并根据上行长度信息对上行突发FEC编码信号进行FEC解码。其中,上行长度信息用于指示上行突发信号中上行突发帧尾码字长度信息。基于此,在高速PON系统中,ONU根据上行突发信号生成上行突发FEC编码信号,再将携带有上行突发帧FEC尾码字长度信息的上行突发FEC编码信号发送给OLT,以使OLT根据上行长度信息对上行突发FEC编码信号进行FEC解码,以避免上行突发信号由于带宽分配存在FEC净荷截短而导致接收侧OLT无法正确恢复失真信号,从而实现接收侧OLT能够正确解码,且对上行突发信号的编码和解码都采用FEC技术来纠正光信号传输过程中出现的错误冗余信息,来提升系统光传输性能以及稳定性,提升系统光功率预算。
本申请实施例提供了一种无源光网络传输方法、无源光网络传输装置、无源光网络传输系统和计算机可读存储介质,在高速PON系统中,通过在上行突发信号携带上行突发帧FEC尾码字长度信息以实现接收侧FEC正确解码。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读程序、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读程序、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (23)

  1. 一种无源光网络传输方法,应用于光网络单元ONU,所述方法包括:
    根据上行突发信号生成上行突发前向纠错FEC编码信号,所述上行突发FEC编码信号携带上行长度信息,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;
    发送携带有所述上行长度信息的所述上行突发FEC编码信号给光线路终端OLT,以使所述OLT根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码。
  2. 根据权利要求1所述的方法,其中,所述根据上行突发信号生成上行突发前向纠错FEC编码信号,所述上行突发FEC编码信号携带上行长度信息包括:
    在所述上行突发信号中插入所述上行长度信息,对携带有所述上行长度信息的所述上行突发信号进行FEC成帧编码,生成所述上行突发FEC编码信号。
  3. 根据权利要求2所述的方法,其中,所述上行突发信号包括上行突发成帧子层FS帧头,所述在上行突发信号中插入上行长度信息,包括:
    将所述上行长度信息插入到所述上行突发FS帧头。
  4. 根据权利要求3所述的方法,其中,所述上行突发FS帧头包括上行长度信息域PLLu,所述上行长度信息位于所述PLLu中,所述上行长度信息指示所述上行FS突发帧净荷长度。
  5. 根据权利要求3所述的方法,其中,所述上行突发FS帧头包括鉴定Ind域,所述上行长度信息位于所述Ind域。
  6. 根据权利要求2所述的方法,其中,所述上行突发信号包括上行物理同步块PSBu和上行突发FS帧头,所述在上行突发信号中插入上行长度信息,包括:
    在所述PSBu和所述上行突发FS帧头之间插入所述上行长度信息。
  7. 根据权利要求2所述的方法,其中,所述上行突发信号包括上行突发FS帧头,所述在上行突发信号中插入上行长度信息,包括:
    在所述上行突发FS帧头之后插入所述上行长度信息,且上行FS净荷减少与所述上行长度信息长度相等的空间。
  8. 根据权利要求2所述的方法,其中,所述对携带有所述上行长度信息的所述上行突发信号进行FEC成帧编码,包括:
    按照FEC码块长度对上行突发FS帧净荷进行分块,得到多个FEC码块,且多个所述FEC码块中的第一个FEC码块包含携带有所述上行长度信息的上行突发FS帧头;
    在所述FEC码块之间插入奇偶校验位,以完成上行FS突发帧FEC编码。
  9. 根据权利要求8所述的方法,其中,在所述对携带有所述上行长度信息的所述上行突发信号进行FEC成帧编码之后,还包括:
    添加同步和定界信息。
  10. 一种无源光网络传输方法,应用于光线路终端OLT,所述方法包括:
    接收携带有上行长度信息的上行突发FEC编码信号,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;
    从所述上行突发FEC编码信号中提取所述上行长度信息;
    根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码。
  11. 根据权利要求10所述的方法,其中,在所述接收携带有上行长度信息的上行突发FEC编码信号之前,还包括:
    对所述上行突发信号进行时钟数据恢复、同步和定界。
  12. 根据权利要求10所述的方法,其中,所述根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码,包括:
    从所述上行长度信息获取FEC尾码字长度;
    根据所述FEC尾码字长度对所述上行突发FEC编码信号中的FEC字节进行FEC解码。
  13. 根据权利要求10所述的方法,其中,在根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码之后,还包括:
    从所述上行突发FEC编码信号进行FEC解码之后得到的上行突发信号中删除所述上行长度信息,并重新对所述上行突发信号进行组帧,重新组帧后的所述上行突发信号包括PSBu、FS帧头、FS净荷和FS帧尾。
  14. 一种无源光网络传输装置,其中,包括:
    编码模块,被设置为在根据上行突发信号生成上行突发前向纠错FEC编码信号,所述上行突发FEC编码信号携带上行长度信息,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;
    发送模块,被设置为发送携带有所述上行长度信息的所述上行突发FEC编码信号给光线路终端OLT,以使OLT根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码。
  15. 根据权利要求14所述的装置,其中,所述发送模块包括:
    电光转换模块,被设置为将所述编码模块发送的携带有所述上行长度信息的上行突发FEC编码信号从电信号转换为光信号,再将所述光信号发送给所述OLT。
  16. 根据权利要求15所述的装置,其中,所述发送模块还包括:
    带外管理信号发送模块,被设置为发送携带所述上行长度信息的带外管理信号。
  17. 一种无源光网络传输装置,其中,包括:
    接收模块,被设置为接收携带有上行长度信息的上行突发FEC编码信号,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;
    提取模块,被设置为从所述上行突发FEC编码信号中提取所述上行长度信息;
    解码模块,被设置为根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码。
  18. 根据权利要求17所述的装置,其中,所述接收模块包括:光电转换模块,被设置为将从所述接收模块接收到的上行突发FEC编码信号从光信号转换为电信号,再将所述电信号发送给所述提取模块。
  19. 根据权利要求18所述的装置,其中,所述接收模块还包括:
    带外管理信号接收模块,被设置为接收携带所述上行长度信息的带外管理信号。
  20. 根据权利要求17所述的装置,其中,所述解码模块,还被设置为在根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码之后得到上行突发信号,将所述上行突发信号中的上行长度信息删除并重新组帧。
  21. 一种无源光网络传输系统,包括发送端和接收端,其中,
    所述发送端包括:
    编码模块,被设置为根据上行突发信号生成上行突发FEC编码信号,所述上行突发FEC编码信号携带上行长度信息,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;
    发送模块,被设置为发送携带有所述上行长度信息的所述上行突发FEC编码信号给光线路终端OLT,以使OLT根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码;
    所述接收端包括:
    接收模块,被设置为接收携带有上行长度信息的上行突发FEC编码信号,其中,所述上行长度信息用于指示所述上行突发信号中上行突发帧尾码字长度信息;
    提取模块,被设置为从所述上行突发FEC编码信号中提取所述上行长度信息;
    解码模块,被设置为根据所述上行长度信息对所述上行突发FEC编码信号进行FEC解码。
  22. 一种无源光网络传输装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至9中任意一项所述的无源光网络传输方法,或者如权利要求10至13所述的无源光网络传输方法。
  23. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机可执行程序,所述计算机可执行程序用于使计算机执行如权利要求1至9任意一项所述的无源光网络传输 方法,或者如权利要求10至13所述的无源光网络传输方法。
PCT/CN2022/078581 2021-04-12 2022-03-01 无源光网络传输方法、装置和系统 WO2022218048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110391239.6A CN115209243A (zh) 2021-04-12 2021-04-12 无源光网络传输方法、装置和系统
CN202110391239.6 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022218048A1 true WO2022218048A1 (zh) 2022-10-20

Family

ID=83570297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078581 WO2022218048A1 (zh) 2021-04-12 2022-03-01 无源光网络传输方法、装置和系统

Country Status (2)

Country Link
CN (1) CN115209243A (zh)
WO (1) WO2022218048A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867442A (zh) * 2009-04-15 2010-10-20 中兴通讯股份有限公司 上行前向纠错处理方法、光纤网络单元及光纤线路终端
CN103430471A (zh) * 2011-03-30 2013-12-04 瑞典爱立信有限公司 无源光网络中的错误处理
WO2017184860A1 (en) * 2016-04-20 2017-10-26 Adtran, Inc. Pon wavelength bonding for providing higher-rate data services
CN109327224A (zh) * 2013-05-07 2019-02-12 华为技术有限公司 一种编码及解码的方法、设备和系统
US20190387293A1 (en) * 2018-06-15 2019-12-19 Charter Communications Operating, Llc Apparatus and methods for synchronization pattern configuration in an optical network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867442A (zh) * 2009-04-15 2010-10-20 中兴通讯股份有限公司 上行前向纠错处理方法、光纤网络单元及光纤线路终端
CN103430471A (zh) * 2011-03-30 2013-12-04 瑞典爱立信有限公司 无源光网络中的错误处理
CN109327224A (zh) * 2013-05-07 2019-02-12 华为技术有限公司 一种编码及解码的方法、设备和系统
WO2017184860A1 (en) * 2016-04-20 2017-10-26 Adtran, Inc. Pon wavelength bonding for providing higher-rate data services
US20190387293A1 (en) * 2018-06-15 2019-12-19 Charter Communications Operating, Llc Apparatus and methods for synchronization pattern configuration in an optical network

Also Published As

Publication number Publication date
CN115209243A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
KR101341933B1 (ko) 데이터를 부호화 및 복호화하기 위한 방법 및 장치
CN106301678B (zh) 一种数据处理的方法、通信设备及通信系统
US10667025B2 (en) Framing method and apparatus in passive optical network and system
US9178713B1 (en) Optical line termination in a passive optical network
US8934772B2 (en) Method and system for upstream bandwidth allocation in a passive optical network
RU2531874C2 (ru) Структура синхронизации фрейма нисходящего канала передачи данных десятигигабитной пассивной оптической сети защищенной контролем ошибок в заголовке
CN110768742B (zh) Oam消息的传输方法、发送设备、接收设备及可读存储介质
EP2209216A1 (en) A method and device for encoding data and decoding data
US10855397B2 (en) Downstream data frame transmission method and device
US10320678B2 (en) Mapping control protocol time onto a physical layer
EP2487822B1 (en) Method and device for downlink frame synchronization used in gigabit-capable passive optical network system
CN109873683B (zh) 数据编译码方法和装置、olt、onu和pon系统
WO2010048854A1 (zh) 数据编码、数据解码的方法、装置和系统
WO2011050529A1 (zh) 在光网络中发送下行帧的方法及相关装置
WO2023246416A1 (zh) 一种数据传输方法及装置
WO2022218048A1 (zh) 无源光网络传输方法、装置和系统
WO2022078333A1 (zh) 编码块处理方法及相关设备
US11792123B2 (en) Concept for a source device and a destination device of a point-to- multipoint communication network
JP2008294510A (ja) 光信号受信機及び受信方法
CN115604605A (zh) 用于onu分组的方法和装置
JP2008294511A (ja) 光信号受信機及び受信方法
EP3902214A1 (en) A concept for a source device and a destination device of a point-to-multipoint communication network
EP4258681A1 (en) Uplink fec encoding method and apparatus, uplink fec decoding method and apparatus, and optical network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22-02-2024)