WO2023246416A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2023246416A1
WO2023246416A1 PCT/CN2023/096141 CN2023096141W WO2023246416A1 WO 2023246416 A1 WO2023246416 A1 WO 2023246416A1 CN 2023096141 W CN2023096141 W CN 2023096141W WO 2023246416 A1 WO2023246416 A1 WO 2023246416A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
subframe
indication information
frame
slices
Prior art date
Application number
PCT/CN2023/096141
Other languages
English (en)
French (fr)
Inventor
张伦
颜林志
聂世玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246416A1 publication Critical patent/WO2023246416A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technology, and in particular, to a data transmission method and device.
  • PON passive optical network
  • 5G 5th generation
  • dedicated lines such as bank dedicated lines, military dedicated lines, etc.
  • the frame structure includes a frame header and a payload.
  • the payload is used to carry service data.
  • service data can usually be sent only after the frame header is sent.
  • the length of the frame header is not fixed, large delay jitter will be introduced to high-priority service data.
  • the delay jitter of subsequent frames will be further increased.
  • This application provides a data transmission method and device for reducing or eliminating the delay jitter of transmitted data.
  • this application provides a data transmission method, which method includes the optical head end generating a data frame according to the frame structure and sending the data frame to the optical terminal.
  • one frame in the frame structure includes m subframes
  • one subframe includes n slices
  • the first slice among the n slices is the first slice
  • the slices other than the first slice among the n slices are the Two slices
  • the first slice includes a first time slot
  • the second slice includes at least one second time slot.
  • the second slice includes one second time slot or multiple second time slots
  • the position and size of the second time slot in the frame structure are fixed
  • m is a positive integer
  • n is an integer greater than 1.
  • one frame is divided into m subframes.
  • subframes of appropriate size can be set more flexibly.
  • the cache requirements of the slice queue can be reduced. It should be understood that setting m too small will cause the depth of the queue to be too large, requiring a larger cache. If m is set too small, since each subframe needs to be further divided into n slices, the slices will be too small. Furthermore, bandwidth isolation and exclusive use of bandwidth resources can be achieved through n slices in the subframe, thereby forming a secure and dedicated subnet.
  • the second slice includes a second time slot with a fixed position and size, so that the second time slot can be reserved for data of high-priority services such as dedicated lines, thereby providing deterministic delay for data of high-priority services such as dedicated lines. , that is, it can reduce the delay jitter during data transmission of high-priority services such as dedicated lines.
  • the second slice includes h second time slots, h is an integer greater than 1, and the h second time slots included in the second slice are continuous time slots or non-consecutive time slots.
  • the first slice is used to carry first indication information
  • the first indication information is used to separate the first Cut into slices and slice a second time.
  • the first indication information can facilitate the optical terminal to quickly locate the second slice to which it belongs.
  • the first indication information is carried at the end of the first slice.
  • the first indication information By carrying the first indication information at the end of the first slice, it can be compatible with optical terminals of the International Telecommunications Union Telecommunications Standardization Sector (ITU-T) 984 and ITU-T987 standards, ITU-T984 and ITU -T987 standard optical terminal can directly skip the second slice without parsing the second slice.
  • ITU-T International Telecommunications Union Telecommunications Standardization Sector
  • the first indication information includes a gigabit-capable passive optical network encapsulation mode (GEM) frame header with a first preset value for the port identifier, or the first indication information includes the port identifier.
  • GEM gigabit-capable passive optical network encapsulation mode
  • XGEM 10 gigabit-capable passive optical network encapsulation mode
  • optical terminals of ITU-T984 and ITU-T987 standards can also recognize the first indication information.
  • the first preset value and the second preset value may be agreed in advance between the optical head end and the optical terminal, or specified in an agreement.
  • the first slice is also used to carry second indication information
  • the second indication information is used to indicate the location information of the second slice.
  • h is an integer greater than 1; if the second slice includes h non-consecutive second time slots, the second indication information includes the identifier of the second slice, each of the h second time slots The start time and end time of the second time slot; alternatively, the second indication information includes the identifier of the second slice, the start time and size information of each of the h second time slots; if the second slice includes h consecutive second time slots, the second indication information includes the identifier of the second slice, the starting time of the first second time slot among the h second time slots, and the h-th second time slot among the h second time slots. The end time of the second time slot; alternatively, the second indication information includes the identifier of the second slice, the start time of the first second time slot among the h second time slots, and the size information of the second slice.
  • the location information of the second slice may be indicated by the start time and end time of the second time slot included in the second slice or the start time and size information of the second time slot included in the second slice.
  • Method 1 the second indication information is carried in a bandwidth map (bandwidth map, BWMAP).
  • BWMAP bandwidth map
  • the first slice is also used to carry a first subframe header
  • the first subframe header includes a BWMAP
  • the BWMAP carries the second indication information
  • Method 2 the second instruction information is carried in the downlink physical layer operations administration and maintenance (physical layer operations administration and maintenance downstream, PLOAMd) message.
  • PLOAMd physical layer operations administration and maintenance downstream
  • the first slice is also used to carry a first subframe header
  • the first subframe header includes a PLOAMd message
  • the PLOAMd message carries second indication information.
  • the first slice is also used to carry the first payload.
  • the first payload includes an optical network unit management control interface (ONU Management and Control Interface, OMCI) message, and the OMCI message carries the second indication information.
  • ONU Management and Control Interface OMCI
  • the PLOAMd message and/or BWMAP fragments are carried in the first slice included in the first subframe and in the second subframe included in the In the first slice, the first subframe is one of m subframes, and the second subframe is adjacent to the first subframe.
  • the delay jitter caused by the first subframe header also helps to reduce the transmission delay of data from the first subframe header to real-time services such as dedicated lines.
  • the first subframe is the first subframe among m subframes
  • the second subframe is the second subframe among m second subframes.
  • the sum of the lengths of the PLOAMd message and BWMAP carried in the first slice included in the first subframe is equal to the preset length
  • the length of the PLOAMd message and BWMAP carried in the first slice included in the second subframe The sum is less than or equal to the preset length.
  • the transmission of the first subframe header can be completed quickly.
  • the first second slice in the first subframe among the m subframes is also used to carry the second subframe header.
  • the second message is separated when crossing frames, in order to prevent the data recovery and reorganization of the second slice of the subsequent subframe from being unrecoverable due to errors in the previous subframe.
  • this application provides a data transmission method, which includes an optical terminal receiving a data frame from an optical head end and parsing the data frame.
  • one frame in the frame structure includes m subframes, one subframe includes n slices, the first slice among the n slices is the first slice, and the slices other than the first slice among the n slices are the Two slices, the first slice includes a first time slot, the second slice includes at least one second time slot, the position and size of the second time slot in the frame structure are fixed, m is a positive integer, and n is an integer greater than 1.
  • the second slice includes h second time slots, the h second time slots are continuous time slots or non-continuous time slots, and h is an integer greater than 1.
  • the first slice is used to carry first indication information
  • the first indication information is used to separate the first slice and the second slice.
  • the first indication information is carried at the end of the first slice.
  • the first indication information includes a Gigabit Passive Optical Network Encapsulation GEM frame header with a port identifier that takes a first preset value, or a 10 Gigabit GEM frame header that includes a port identifier that takes a second preset value.
  • Bit passive optical network encapsulation method XGEM frame header Bit passive optical network encapsulation method XGEM frame header.
  • the first slice is also used to carry second indication information
  • the second indication information is used to indicate the location information of the second slice.
  • h is an integer greater than 1; if the second slice includes h non-consecutive second time slots, the second indication information includes the identifier of the second slice, each of the h second time slots The start time and end time of the second time slot; alternatively, the second indication information includes the identifier of the second slice, the start time and size information of each of the h second time slots; if the second slice includes h consecutive second time slots, the second indication information includes the identifier of the second slice, the starting time of the first second time slot among the h second time slots, and the hth second time slot among the h second time slots. The end time of the second time slot; alternatively, the second indication information includes the identifier of the second slice, the start time of the first second time slot among the h second time slots included in the second slice, and the second time slot of the second slice. size information.
  • the first slice is also used to carry the first subframe header, and the first subframe header includes the downlink physical layer operation management and maintenance PLOAMd message or bandwidth mapping table BWMAP; the PLOAMd message or BWMAP carries the 2. Instruction information.
  • the PLOAMd message and/or BWMAP fragments are carried in the first slice included in the first subframe and in the second subframe included in the In the first slice, the first subframe is one of m subframes, and the second subframe is adjacent to the first subframe.
  • the first subframe is the first subframe among m subframes
  • the second subframe is the second subframe among m second subframes.
  • the first slice is also used to carry a first payload, and the first payload includes an optical network unit management control interface OMCI message; the OMCI message carries second indication information.
  • the first second slice in the first subframe among the m subframes is also used to carry the second subframe header.
  • the present application provides a communication device, which is used to implement the method in the above-mentioned first aspect or any possible implementation of the first aspect, or is used to implement the above-mentioned second aspect or any method of the second aspect.
  • the methods in the possible implementations include corresponding functional modules, which are respectively used to implement the steps in the above methods.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may be an optical head end, or a module that can be used in the optical head end, such as a chip or a chip system or a circuit.
  • the beneficial effects can be found in the description of the first aspect above and will not be described again here.
  • the communication device may include an interface circuit and a processor.
  • the processor is used to implement the corresponding functions of the first aspect through logic circuits or execution code instructions.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to transfer signals from the processor. Sent to other communication devices other than the communication device.
  • the interface circuit can be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • the communication device may further include a memory, which may be coupled to the processor and which stores necessary program instructions and data for the communication device.
  • the processor is used to generate a data frame according to the frame structure.
  • One frame in the frame structure includes m subframes, one subframe includes n slices, the first slice among the n slices is the first slice, and among the n slices Slices other than the first slice are second slices.
  • the first slice includes a first time slot, and the second slice includes at least one second time slot.
  • the position and size of the second time slot in the frame structure are fixed, and m is A positive integer, n is an integer greater than 1; the interface circuit is used to send data frames to the optical terminal.
  • the communication device may be an optical terminal, or a component that can be used in an optical terminal, such as a chip or a chip system or a circuit.
  • the beneficial effects can be found in the description of the second aspect above and will not be described again here.
  • the communication device may include an interface circuit and a processor.
  • the processor is used to implement the corresponding functions of the first aspect through logic circuits or execution code instructions.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to transfer signals from the processor. Sent to other communication devices other than the communication device.
  • the interface circuit can be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • the communication device may further include a memory, which may be coupled to the processor and which stores necessary program instructions and data for the communication device.
  • the interface circuit is used to receive data frames from the optical head end; the processor is used to parse the data frames.
  • the present application provides a communication device, which is used to implement the method in the above-mentioned first aspect or any possible implementation of the first aspect, or is used to implement the above-mentioned second aspect or any method of the second aspect.
  • the methods in the possible implementations include corresponding functional modules, which are respectively used to implement the steps in the above methods.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may be an optical head.
  • the communication device may include a processing module and a transceiver module. These modules may perform the corresponding functions of the optical head in the above method examples. For details, please refer to the detailed description in the method examples. No further details will be given here.
  • the communication device may also be an optical terminal.
  • the communication device may include a transceiver module and a processing module. These modules may perform the corresponding functions of the optical terminal in the above method examples. For details, see " Detailed description will not be repeated here.
  • the present application provides a communication system, which includes an optical head end and an optical terminal.
  • the optical head end may be used to perform the method in the above first aspect or any possible implementation of the first aspect
  • the optical terminal may be used to perform Perform the method in the above second aspect or any possible implementation of the second aspect.
  • the present application provides a chip including at least one processor and an interface circuit. Further, optionally, the chip may also include a memory, and the processor is configured to execute the computer program or instructions stored in the memory, so that the chip executes the method in the above-mentioned first aspect or any possible implementation of the first aspect; or, so that The chip executes the method in the above second aspect or any possible implementation of the second aspect.
  • the present application provides a computer-readable storage medium.
  • Computer programs or instructions are stored in the computer-readable storage medium.
  • the communication device causes the communication device to execute the first aspect or the third aspect.
  • the method in any possible implementation of one aspect, or causing the communication device to perform the above-mentioned second aspect or the method in any possible implementation of the second aspect.
  • the present application provides a computer program product.
  • the computer program product includes a computer program or instructions.
  • the communication device causes the communication device to execute the above-mentioned first aspect or any of the first aspects.
  • the method in the possible implementation manner, or the communication device is caused to perform the above-mentioned second aspect or the method in any possible implementation manner of the second aspect.
  • Figure 1 is a schematic system architecture diagram of an optical communication system provided by this application.
  • Figure 2 is a schematic structural diagram of an FS frame structure provided by this application.
  • Figure 3 is a schematic flow chart of a data transmission method provided by this application.
  • Figure 4 is a schematic structural diagram of a frame structure provided by this application.
  • Figure 5a is a schematic structural diagram of an XGEM frame provided by this application.
  • Figure 5b is a schematic structural diagram of a GEM frame provided by this application.
  • Figure 6 is a schematic structural diagram of a first slice provided by this application.
  • Figure 7a is a schematic structural diagram of a second slice provided by this application.
  • Figure 7b is a schematic structural diagram of another second slice provided by this application.
  • FIG. 8 is a schematic structural diagram of a GTC frame provided by this application.
  • FIG. 9 is a schematic structural diagram of a BWMAP provided by this application.
  • FIG. 10 is a schematic structural diagram of a PLOAM message provided by this application.
  • FIG 11 is a schematic structural diagram of another frame structure provided by this application.
  • Figure 12 is a schematic flow chart of a method provided by this application for negotiating the location information of the second slice and the frame number enabled by the second slice;
  • Figure 13 is a schematic structural diagram of a communication device provided by the present application.
  • Figure 14 is a schematic structural diagram of a communication device provided by this application.
  • Byte is a unit of measurement used by computer information technology to measure storage capacity. Usually data storage is in “word “Byte” is the unit. Data transmission is mostly in “bit” (also known as “bit”). One bit represents a 0 or 1 (i.e. binary), and every 8 bits (bit, b) are composed of A byte (byte, B).
  • Hard time slots refer to time slots with fixed positions and sizes in the frame structure.
  • T-CONT is the most basic control unit for uplink bandwidth in gigabit-capable PON (GPON) system.
  • Each T-CONT is uniquely identified by an allocation identifier (Alloc-ID).
  • the Alloc-ID is assigned by the OLT to each GPON port. That is, the ONU under the same GPON port of the OLT does not have a T-CONT with the same Alloc-ID.
  • GEM is a way of encapsulating data on GPON.
  • the XGEM frame is the smallest service bearing unit in the 10 gigabit-capable passive optical network (XGPON) system and the most basic encapsulation structure. Business data needs to be encapsulated in XGEM frames for transmission.
  • XGPON gigabit-capable passive optical network
  • Figure 1 is a schematic system architecture diagram of an optical communication system applicable to this application.
  • the optical communication system includes an optical head end, an optical distribution network (optical distribution network, ODN) and an optical terminal as an example.
  • the optical head end is connected to the optical terminal through ODN.
  • Figure 1 takes an optical communication system including n optical terminals as an example.
  • the n optical terminals are optical terminal 1, optical terminal 2, ..., and optical terminal n.
  • the optical head end can be, for example, an optical line terminal (optical line terminal, OLT), and the OLT is a central office equipment.
  • the optical terminal can be, for example, an optical network terminal (ONT) or an optical network unit (ONU).
  • the ONT or ONU is the end unit of the PON system, also known as "optical cat".
  • ODN includes trunk optical fibers, splitters (or optical splitters) and branch optical fibers.
  • An optical splitter is an optical fiber junction device with multiple input ends and multiple output ends, used for coupling and distribution of optical signals. The optical head end and the optical splitter are connected through the trunk optical fiber, and the optical splitter and the optical terminal are connected through the branch optical fiber.
  • the transmission direction of data (or signal) from the optical head end to the optical terminal is called the downstream direction.
  • the direction in which data (or signals) are transmitted from the optical terminal to the optical head is called the upstream direction.
  • the PON system is a multi-point to point (MP2P) system; for the downlink direction, the PON system is a point 2 multiple point (P2MP) system.
  • optical heads, optical terminals, optical splitters, and ports included in the optical splitter included in the optical communication system illustrated in FIG. 1 are only examples, and are not limited in this application.
  • names of each structure in the optical communication system shown in Figure 1 are only an example. In specific implementation, the names of each structure may also be other names, and this application does not specifically limit this.
  • the above-mentioned optical communication system may be, for example, a passive optical network (PON) system.
  • PON passive optical network
  • the PON system can be, for example, a gigabit-capable PON (GPON) system, an Ethernet passive optical network (ethernet PON, EPON) system, or a 10 Gigabit Ethernet passive optical network (10Gb/s).
  • ethernet passive optical network (10G-EPON) system, time and wavelength division multiplexing passive optical network (time and wavelength division multiplexing passive optical network (TWDM-PON)), 10 gigabit-capable passive optical network, XGPON) system or 10-gigabit symmetric passive optical network (10-gigabit-capable symmetric passive optical network (XGS-PON) system, 25 gigabit-capable passive optical network (25-PON) system, 50 gigabit-capable passive optical network (50 gigabit-capable passive optical network , 50-PON) system, etc.
  • the rate of the PON system may be increased to 100Gbps or even higher. Therefore, the optical communication system can also be a PON system with a higher transmission rate, which is not limited in this application.
  • the above-mentioned PON system can be used in industrial scenarios. For example, it can be used as network carrying infrastructure to achieve comprehensive access to business applications such as industrial production line services, office networks, video surveillance, access control systems, production management, external networks or intranets.
  • optical heads need to have network slicing capabilities.
  • one physical optical head can virtualize multiple logical optical heads (which are equivalent to multiple independent physical devices in the user's view) to carry various services respectively.
  • Network resources, operation and maintenance management permissions, and services between slices do not interfere with each other, thus effectively achieving a balance between reliability, security, and network resources.
  • the optical head end is an OLT and the optical terminal is an ONT. That is to say, the OLT described later in this application can be replaced by an optical head end, and the ONT can be replaced by an optical terminal.
  • the business data When transmitting business data, the business data needs to be encapsulated in frame format.
  • the XGS-PON system in the downstream direction, when the XGS-PON system sends service data, it needs to encapsulate the service data in XGEM frames for transmission.
  • Multiple XGEM frames constitute the frame sublayer (framing sublayer, FS) payload.
  • the FS payload, FS header and FS trailer form the FS frame, see Figure 2.
  • the FS payload is used to carry business data.
  • FS header includes downstream frame header length (header length downstream, Hlend), BWMAP and PLOAMd messages.
  • the length of the Hlend message is 4bytes (i.e.
  • the length of the BWMAP is N ⁇ 8bytes (i.e. N ⁇ 8B), N is the number of T-CONT (i.e. the number of BWMAPs), which will change;
  • the length of the PLOAMd message is P ⁇ 48bytes ( That is, P ⁇ 48B), P is the number of PLOAMd messages, and the actual number of PLOAMd messages sent in each FS frame will also change.
  • Each FS frame must wait for the FS header to be sent before it can start sending business data.
  • FS header length 4+8 ⁇ N+48 ⁇ P.
  • the length of the FS header is not fixed, which will introduce delay jitter to the sent business data.
  • business data is encapsulated into XGEM frames. Only after one XGEM frame is sent can the next XGEM frame be sent. If the previous XGEM frame (such as jumbo frame) has not been sent, the next XGEM frame will have to wait, which will introduce a larger Delay.
  • preemption can only be performed at XGEM frame boundaries, and the maximum waiting delay is "message length ⁇ line bandwidth".
  • the downlink bandwidth of XGS-PON is 9.95 gigabits per second (Gbps).
  • the effective bandwidth is 8.67Gbps.
  • FEC forward error control
  • Gbps 8.5 microseconds (us) of delay jitter. If a large number of BWMAP and PLOAM messages are sent, greater delay jitter will be introduced.
  • this application provides a data transmission method.
  • This data transmission method can reserve a second time slot with a fixed location and size for data of high-priority services such as dedicated lines, and thereby provide deterministic delay for data of high-priority services such as dedicated lines, that is, it can reduce high-priority services such as dedicated lines. Delay jitter during data transmission of priority services.
  • FIG 3 it is a schematic flow chart of a data transmission method provided by this application.
  • This data transmission method can be applied to the communication system shown in Figure 1 above.
  • the optical head end can be the optical head end in the above-mentioned Figure 1
  • the optical terminal can be any one of the optical terminal 1, the optical terminal 2, and the optical terminal n in the above-mentioned Figure 1.
  • the data transfer method may include the following steps:
  • Step 301 The optical head end generates a data frame according to the frame structure.
  • One frame in the frame structure includes m subframes (subframes may also be called multiframes), and m is an integer greater than or equal to 1.
  • one frame may include one subframe, or may include multiple subframes.
  • a subframe includes n slices, the first slice among the n slices is the first slice (or called the default slice), and the slices other than the first slice among the n slices are the second slices.
  • Slice, n is an integer greater than 1. For example, if n is equal to 2, a subframe includes a first slice and a second slice; for another example, if n is equal to 3, a subframe includes a first slice and two second slices; for another example, n is equal to 4.
  • a subframe includes one first slice and three second slices; they will not be listed this time.
  • the first slice includes a first time slot, and the first time slot may also be called a common time slot.
  • a second slice includes at least one second time slot. The position and size of each second time slot are fixed.
  • the second time slot may also be called a hard time slot, and the corresponding second slice may also be called a hard slice.
  • One frame includes m subframes, taking m as an integer greater than 1 as an example.
  • One subframe includes n slices, taking n as an integer greater than 2 as an example.
  • one subframe includes subframe 0, subframe 1, ... subframe m, and one subframe includes the first slice (slice0), the second slice 1 (slice1), ... the second slice n-1 (slice(n -1)).
  • n-1 second slices corresponding to k second time slots are taken as an example.
  • For more detailed structures of the first slice and the second slice please refer to the introduction below and will not be repeated here.
  • the PON system can perform multiple services at the same time, and different services can have different quality of service (QoS) requirements.
  • Different slices can carry business data with different QoS requirements.
  • the first time slot is used to carry the first message
  • the second time slot is used to carry the second message.
  • the second message has higher requirements for delay jitter than the first message. requirements.
  • the first slice or the second slice may carry service data of different users.
  • a subframe is divided into ordinary time slots and time division multiplexing (time-division multiplexing, TDM) time slots.
  • Ordinary time slots can be compatible with existing PON standard ONUs or ONTs, and the first message can be transmitted as it arrives.
  • TDM time slots support business data that requires fixed time slot transmission, such as low-latency jitter business data.
  • one frame may be 125 microseconds (us), which may also be called a superframe, and one subframe may be 125 us/m.
  • Step 302 The optical head end sends the data frame to the optical terminal.
  • the optical terminal receives the data frame from the optical head end.
  • the optical head end can send data frames to the optical terminal through ODN.
  • one frame is divided into m subframes.
  • subframes of appropriate size can be set more flexibly.
  • the cache requirements of the slice queue can be reduced. It should be understood that setting m too small will cause the depth of the queue to be too large, requiring a larger cache. If m is set too small, since each subframe needs to be further divided into n slices, the slices will be too small. Furthermore, bandwidth isolation and exclusive use of bandwidth resources can be achieved through n slices in the subframe, thereby forming a secure and dedicated subnet.
  • the second slice includes a second time slot with a fixed position and size, so that the second time slot can be reserved for data of high-priority services such as dedicated lines, thereby providing deterministic delay for data of high-priority services such as dedicated lines. , that is, it can reduce the delay jitter during data transmission of high-priority services such as dedicated lines.
  • the first slice is used to carry first indication information
  • the first indication information is used to separate the first slice and the second slice.
  • the first indication information is a separator between the first slice and the second slice. piece.
  • the first indication information may include, for example, a GEM frame header (GH) in which the port identifier (port ID) takes a first preset value, and the GH may be called a special GH; or includes a GEM frame header (GH) in which the port identifier (port ID) takes a first preset value.
  • Two preset XGEM frame headers (XGH) which can be called special XGH.
  • XGEM frames include XGEM payload and XGEM frame header.
  • the XGEM frame header includes payload length indicator (PLI), key index (key index), port ID (Port ID), reservation (options), and last fragment (last fragment, LF) and header error check (HEC).
  • PLI represents the length of the XGEM payload.
  • PLI can be regarded as a pointer to indicate and find the next XGEM frame header.
  • Port-ID indicates the port where the XGEM frame is located.
  • the OLT configures a business package for each user, which generates a business flow and configures a Port-ID for each business flow to identify it.
  • the business flow will not occupy all 65536 Port-IDs, and one or more can be reserved.
  • the Port-ID takes a second default value so that the XGEM frame header serves as the first indication information.
  • Port-ID 65534 can be reserved so that the XGEM frame header can be used as the first indication information.
  • Port-ID value or values used to identify the XGEM frame header as the first indication information may be pre-agreed between the ONT and the OLT or specified by the agreement, and this application does not limit this.
  • the key index has 2 digits and represents the key index used to encrypt the XGEM payload.
  • LF has 4 bytes, indicating whether it is the last fragment of an XGEM frame. If it is the last fragment, the LF field is 1; if it is not the last fragment, the LF field is 0. There are 18 bits reserved (options). HEC is used for error detection and correction of XGEM frame headers.
  • a GEM frame includes a GEM payload and a GEM frame header.
  • the GEM frame header includes PLI, Port ID, payload type indicator (payload type indicator, PTI) and HEC.
  • PLI has 12 bits; the highest bit of PTI indicates whether the GEM frame is operations, administration and maintenance (OAM) information, the second highest bit indicates whether user data is congested, and the lowest bit indicates whether it is a frame in the fragmentation mechanism. At the end, when it is 1, it indicates the end of the frame; HEC has 13 bits; Port ID has 12 bits, which can provide 4096 different ports.
  • One or more port-IDs can be reserved to take the first default value to make the GEM
  • the frame header serves as the first indication information.
  • the functions of PLI, Port-ID and HEC can be found in the aforementioned introduction in Figure 5a and will not be described again here.
  • the first indication information may be set at the end of the first slice, see FIG. 6 . It can also be understood that the first indication information is set in the position information of the first slice that is close to the second slice. It can be understood that since the length of one frame is fixed, the position information of the first indication information can be moved due to the influence of the bandwidth size of the n-1 second slices. For example, if the bandwidth of n-1 second slices is larger, the first indication information can be moved toward the frame header; for another example, if the bandwidth of n-1 second slices is smaller, the first indication information can be moved toward the second slice. move in the direction.
  • the first slice is also used to carry second indication information
  • the second indication information is used to indicate the location information of the second slice.
  • the second indication information includes the identifier of the second slice, the start time and the end time of each second time slot in the h second time slots; or , the second indication information includes the identifier of the second slice, the starting time and size information of each of the h second time slots.
  • the second slice 1 includes three non-consecutive second time slots, which are the second time slot 1, the second time slot 3 and the second time slot 5 respectively.
  • the second indication information includes The identifier 1 of the second slice, the start time and end time of the second time slot 1, the start time and end time of the second time slot 3, and the start time and end time of the second time slot 5; or, the second The indication information includes the identifier 1 of the second slice, the starting time and size of the second time slot 1, the starting time and size of the second time slot 3, and the starting time and size of the second time slot 5.
  • the second indication information includes the identifier of the second slice, the start time of the first second time slot among the h second time slots, and the h-th second time slot.
  • the end time of the second time slot that is, the last second time slot
  • the second indication information includes the identifier of the second slice, the start time of the first second time slot among the h second time slots, and the second time slot of the second slice. size information.
  • the second slice A includes three consecutive second time slots, which are second time slot 1, second time slot 2 and second time slot 3 respectively.
  • the second indication information includes the second time slot.
  • the second indication information may be carried in the first subframe header of the first slice or the first payload of the first slice, which is described below on a case-by-case basis.
  • the second indication information is carried in the first subframe header.
  • the first slice is also used to carry the first subframe header.
  • the frame header format (or frame header structure) used will have some differences.
  • the first subframe header can be a framing sublayer header.
  • the GTC frame is the physical control block downstream (PCBd), and the first subframe header can be PCBd.
  • PCBd includes physical synchronization sequence (Psync), identification (ident), PLOAMd message, bit interleaved parity (BIP), downlink payload length (payload length downstream, Plend) and BWMAP.
  • Method 1 the second indication information is carried in BWMAP.
  • the first subframe header includes BWMAP
  • the second indication information can be carried in BWMAP.
  • BWMAP includes N 8-byte allocation structures (allocation structures). Each allocation structure Including configuration identification (Alloc ID), identification (flags), start time (starttime), size (grantsize) or end time (endtime), forced wake-up indication (FWI), burst configuration file (burst profile) and HEC.
  • Alloc ID can uniquely identify the recipient of bandwidth allocation.
  • One Alloc ID corresponds to one slice.
  • One or more Alloc IDs with a third default value can be reserved. Indicates second slice.
  • Flags include indicators related to upstream transmission functions, such as dynamic bandwidth report upstream (DBRu) and physical layer OAM (PLOAMu). Flags are used to indicate part of the functional structure of the upstream burst.
  • DBRu dynamic bandwidth report upstream
  • PLOAMu physical layer OAM
  • starttime indicates the start time of the second time slot included in the second slice
  • grantsize indicates the size of the second time slot included in the second slice
  • endtime indicates the end time of the second time slot included in the second slice
  • FWI wake-up has saved power
  • the burst profile contains the index of the burst profile that will be used by the ONT adaptation layer to form a physical interface (PHY) burst.
  • PLOAMu is used to carry upstream PLOAM information
  • DBRu is used to report related information payload fields.
  • the identity of the second slice included in the second indication information may be sent to the ONT through the PLOAMd message or the OMCI message.
  • the second indication information may be carried in one or more of the N allocation structures. If the second slice includes h consecutive second time slots, the second indication information may be carried in any one of the N allocation structures. If the second slice includes h all non-consecutive second time slots, the second indication information is carried in h of the N allocation structures; if the second slice includes some consecutive parts of the h non-consecutive second time slots Non-continuous, the number of allocation structures carried by the second indication information is greater than 1 and less than or equal to h. For the continuous part of the second time slot, it can be carried in the same allocation structure, or it can also be carried in different allocation structures.
  • Method 2 The second instruction information is carried in the PLOAMd message (massage).
  • the first subframe header also includes the PLOAMd message, and the second indication information can also be carried in the PLOAMd message.
  • the first subframe header includes P PLOAMd messages, and one PLOAMd message includes 48 bytes. P is an integer greater than 1. As shown in Table 1, a PLOAMd message carrying second indication information is provided for this application.
  • the second indication information may be carried in one or more of the P PLOAMd messages. If the second slice includes h consecutive second time slots, the second indication information may be carried in any one of the P PLOAMd messages. If second The slice includes h all non-consecutive second time slots, and the second indication information is carried in h of the P PLOAMd messages; if some of the h non-consecutive second time slots included in the second slice are continuous and some are non-continuous, The number of PLOAMd messages carried by the second indication information is greater than 1 and less than or equal to h. The consecutive second time slots may be carried in the same PLOAMd message, or may be carried in different PLOAMd messages.
  • the identifier of the second slice included in the second indication information can be represented by the 3rd to 4th bytes in the PLOAMd message, and the starting time of the second time slot can be represented by the 5th to 6th bytes in the PLOAMd message.
  • the size of the second time slot or the end time of the second time slot is represented by bytes 7 to 8 in the PLOAMd message.
  • the second indication information given in Table 1 includes the identifier of the second slice, the start time of the second time slot included in the second slice, and the size/end time of the second time slot.
  • the bits and the number of bits in the PLOAM message are only examples, and this application does not limit them.
  • the second indication information is carried in the first payload.
  • the first payload includes an OMCI message
  • the second indication information is carried in the OMCI message.
  • Table 2 it is an OMCI message carrying second indication information provided by this application.
  • the identifier of the second slice included in the second indication information can be represented by 16 bits
  • the starting time of the second time slot can be represented by 16 bits
  • the size of the second time slot or the end time of the second time slot can be represented by 16 bits.
  • the second indication information given in Table 2 includes the identifier of the second slice, the start time of the second time slot included in the second slice, and the size/end time of the second time slot.
  • the number of bits in the OMCI message is only an example, and this application does not limit it. It should be noted that for different OMCI messages, the definitions of rows 5 to 7 in Table 2 may also be different.
  • method 1 or method 2 in the above scenario 1 may be pre-agreed between the OLT and the ONU, or may be negotiated between the OLT and the ONU, or may be There are other possible ways, which are not limited by this application.
  • the sum of the lengths of the BWMAP and the PLOAMd message may exceed the preset length. If the sum of the lengths of the PLOAMd message and BWMAP is greater than the preset length, the PLOAMd message and/or BWMAP fragments are carried in the first slice included in the first subframe and the first slice included in the second subframe, the first subframe is one of m subframes, and the second subframe is adjacent to the first subframe.
  • the preset length may be specified by the agreement. It can be understood that the number m of subframes included in one frame is determined, and the length of one frame is fixed. Therefore, the length of one subframe is also fixed. Furthermore, the bandwidth of the second slice included in one frame can be dynamically changed, so the preset length can also be dynamically changed.
  • the first subframe is the first subframe among m subframes
  • the second subframe is the second subframe among m subframes.
  • the PLOAMd message and/or BWMAP fragments are carried in the first slice and the second subframe included in the first subframe. Include the first slice.
  • the sum of the lengths of the PLOAMd message carried in the first slice included in the first subframe and the BWMAP is equal to the preset length
  • the sum of the lengths of the PLOAMd message carried in the first slice included in the second subframe and the BWMAP is less than or equal to the preset length. It can also be understood that when the BWMAP and PLOAMd messages are divided, the subframe header in the previous subframe is carried first.
  • a frame includes two subframes, namely subframe 0 and subframe 1.
  • the BWMAP and PLOAMd messages are divided into fragment 1 and fragment 2.
  • fragment 1 is carried in the first subframe included in the first subframe.
  • slices, slice 2 is carried in the first slice included in the second subframe, the length of slice 1 is equal to the preset length, and the length of slice 2 is less than or equal to the preset length.
  • each subframe The frame size (or bandwidth) is 8KB.
  • the total bandwidth of the n-1 second slices included in subframe 0 is 6KB bytes.
  • Hlend 4B.
  • the BWMAP and PLOAMd messages are divided into 2 fragments, namely fragment 1 and fragment 2, fragment 1 is carried in subframe 0
  • fragment 1 is carried in subframe 0
  • the first subframe header, fragment 2 is carried in the first subframe header of subframe 1.
  • the length of fragment 1 is 2044B
  • the length of fragment 2 is 1028B.
  • the first subframe header By carrying the first subframe header in fragments, it is possible to avoid that a certain subframe header cannot accommodate the BWMAP and PLOAM messages, and there is no need to wait for the first subframe header to be sent completely before sending the first message and/or the second message. text, thereby reducing the delay jitter caused by the first subframe header, and helping to reduce the transmission delay of the first subframe header for data of real-time services such as dedicated lines.
  • the first slice also includes a frame header, and the frame header is a downstream physical synchronization block (PSBd).
  • PSBd downstream physical synchronization block
  • the number of second time slots included in different second slices in a subframe may be the same or different.
  • the number of second time slots included in the second slice may be determined by the bandwidth size of the second slice configured by the ONT.
  • the bandwidth of the second slice configured by the OLT for the bank is 500 megabits per second (Mbps)
  • the bandwidth of the second slice configured for the transportation bureau is 100Mbps
  • the bandwidth corresponding to a second time slot is 10Mbps
  • h is an integer greater than 1
  • the h second time slots included in the second slice may be continuous time slots, see Figure 7a above, or they may be non-consecutive time slots, please see Figure 7b.
  • the second message may be separated to prevent errors in the previous subframe from being unrecoverable and affecting subsequent subframes.
  • Data recovery and reorganization of the second slice in the frame the first second slice in the first subframe in the m subframes is also used to carry the second subframe header.
  • a second subframe header can be added to the starting slot of the first second slice of the first subframe in the m subframes (which can be called subframe 0) for encapsulation, see Figure 11 .
  • the second message carried in a second slice only requires a second subframe header.
  • the second slice a consists of second time slots 1 distributed in each subframe in m subframes, and the second message carried by the m second time slots 1 included in the second slice a only needs to be in m
  • a second subframe header is added to the first second slice in the first subframe in the subframe.
  • the OLT generates a data frame with the frame structure shown in Figure 11 and sends the data frame to the ONT. Accordingly, the ONT parses the received data frame.
  • the starting position of each frame can be determined through PSBs, and a frame including m subframes can be obtained in advance. Further, it is determined that the first slice in the first subframe does not include the first indication information, and it is only necessary to receive the first message transmitted in the first time slot and process the first message. This can be compatible with existing ONTs.
  • the starting position of each frame can be determined through PSBs, and a frame including m subframes can be obtained in advance.
  • n-1 second slices and the second time slot included in each second slice can be determined, and the ONT can Based on the second slice to which it belongs, determine the second time slot included in the second slice to which it belongs, obtain the second message on the second time slot included in the second slice to which it belongs, and recover the received second message and processing etc.
  • the OLT and the ONT need to negotiate the location information of the second slice to which the ONT belongs, the frame number enabled for the second slice, etc.
  • Figure 12 is a schematic flowchart of a method provided by this application for OLT and ONT to negotiate the location information of the second slice and the frame number enabled by the second slice.
  • the OLT can be the optical head end in the above-mentioned Figure 1, and the ONT can be any one of the optical terminal 1, the optical terminal 2, ... the optical terminal n in the above-mentioned Figure 1.
  • the method includes the following steps:
  • Step 1201 The OLT sends the location information of the second slice to the ONT.
  • the ONT receives the location information of the second slice from the OLT.
  • the OLT may send the location information of the second slice belonging to the ONT to the ONT through a PLOAM message or an OMCI message.
  • the location information of the second slice includes but is not limited to the start time and end time of each of the h non-consecutive second time slots included in the second slice, or the h non-consecutive second time slots.
  • Step 1202 The ONT sends a response message to the OLT.
  • the OLT receives the response message from the ONT.
  • the response message may be, but is not limited to, an acknowledgment (ACK) response to confirm receipt of the location information of the second slice.
  • ACK acknowledgment
  • step 1201 and step 1202 can also be understood as the process of the OLT configuring the second slice for the ONT.
  • Step 1203 The OLT sends a data frame including the second message to the ONT on the second time slot included in the second slice.
  • the ONT receives the data frame including the second message in the second time slot included in the corresponding second slice.
  • the OLT can reconfigure the second slice of the ONT. Specifically, the following steps 1204 and 1205 can be performed.
  • Step 1204 The OLT sends the updated location information of the second slice to the ONT.
  • the ONT receives the updated location information of the second slice from the OLT.
  • the OLT may send the updated location information of the second slice to the ONT through a PLOAM message or an OMCI message.
  • the second slice in step 1201 is the second slice i
  • the updated second slice may be, for example, the second slice i+j, where i and j are both positive integers.
  • Step 1205 The ONT sends a response message to the OLT.
  • the OLT receives the response message from the ONT.
  • step 1205 please refer to the introduction of the aforementioned step 1202, and will not be described again this time.
  • Step 1206 The OLT sends a data frame including the second message to the ONT on the second time slot included in the updated second slice.
  • the ONT receives the data frame including the second message in the second time slot included in the corresponding updated second slice.
  • the OLT may send the data frame including the second message on the second time slot included in the second slice i+j.
  • the ONT can obtain the second message sent by the OLT.
  • the optical head end and the optical terminal include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 13 and 14 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the optical terminal or optical head in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be an optical terminal as shown in Figure 1, or an optical head end as shown in Figure 1, or a module (such as a chip) applied to the optical terminal or optical head end.
  • the communication device 1300 includes a processing module 1301 and a transceiver module 1302.
  • the communication device 1300 is used to implement the functions of the optical terminal or optical head in the method embodiment shown in FIG. 3 or FIG. 12 .
  • the processing module 1301 is used to generate a data frame according to the frame structure.
  • One frame in the frame structure includes m subframes, and one subframe includes n Slices, the first slice among the n slices is the first slice, the slices among the n slices except the first slice are the second slices, the first slice includes the first time slot, and the second slice includes at least one The second time slot, the position and size of the second time slot in the frame structure are fixed, m is a positive integer, n is an integer greater than 1; the transceiver module 1302 is used to send data frames to the optical terminal.
  • the communication device 1400 includes a processor 1401 and an interface circuit 1402 .
  • the processor 1401 and the interface circuit 1402 are coupled to each other.
  • the interface circuit 1402 may be a transceiver or an input-output interface.
  • the communication device 1400 may also include a memory 1403 for storing instructions executed by the processor 1401 or input data required for the processor 1401 to run the instructions or data generated after the processor 1401 executes the instructions.
  • the processor 1401 is used to implement the functions of the above-mentioned processing module 1301, and the interface circuit 1402 is used to implement the functions of the above-mentioned transceiver module 1302.
  • the optical terminal chip When the above communication device is a chip applied to an optical terminal, the optical terminal chip implements the functions of the optical terminal in the above method embodiment.
  • the optical terminal chip receives information from other modules in the optical terminal, and the information is sent by the optical head end to the optical terminal; or, the optical terminal chip sends information to other modules in the optical terminal, and the information is sent by the optical terminal to the optical head end. .
  • the optical head end module implements the functions of the optical head end in the above method embodiment.
  • the optical head end module receives information from other modules in the optical head end, and the information is sent by the optical terminal to the optical head end; or, the optical head end module sends information to other modules in the optical head end, and the information is sent by the optical head end to the optical terminal. .
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the ASIC can be located in the optical head end or optical terminal.
  • the processor and the storage medium can also exist as discrete components in the optical head end or optical terminal.
  • a computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, an optical terminal, a user equipment, or other programmable device.
  • a computer program or instructions may be stored in or transferred from one computer-readable storage medium to another, e.g., a computer program or instructions may be transferred from a website, computer, server, or data center Transmission by wired or wireless means to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer, or data storage devices such as servers and data centers that integrate one or more available media. Available media can be magnetic media, such as floppy disks, hard disks, and magnetic tapes; they can also be optical media, such as digital video optical disks; or they can be semiconductor media, such as solid-state drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种数据传输方法及装置,用于解决现有技术中数据传输时延抖动较大的问题。可应用于光通信系统,例如无源光网络PON系统。方法包括光线路终端OLT根据帧结构生成数据帧,向光网络终端ONT发送数据帧。帧结构中的一帧包括m个子帧,一个子帧包括n个切片,n个切片中的第一个切片为第一切片,n个切片中除第一切片外的切片为第二切片,第一切片包括第一时隙,第二切片包括至少一个第二时隙,第二时隙在帧结构中的位置和大小固定,m为正整数,n为大于1的整数。通过子帧包括的切片可以实现带宽隔离,且可以为高优先级业务的业务数据预留位置和大小固定的第二时隙,通过位置和大小固定的第二时隙可以减小高优先级业务的数据传输的时延抖动。

Description

一种数据传输方法及装置
本申请要求于2022年6月22日提交中国国家知识产权局、申请号为202210710894.8、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
随着光通信技术的发展,无源光网络(passive optical network,PON)系统的应用越来越广泛。例如,PON系统可应用于第5代(the 5th generation,5G)承载或专线(如银行专线、军事专线等)等,这些场景均有时延低抖动的要求,而且这些场景对安全隔离也有较高的要求。
现有标准中,PON系统传输业务数据时,需要先将业务数据根据帧结构封装成数据帧后再传输。帧结构包括帧头和净荷,净荷用于携带业务数据,在具体传输中,通常是帧头发送完之后才能发送业务数据。然而,由于帧头的长度不固定,从而会给高优先级的业务数据引入较大的时延抖动。而且,若某一帧的帧头的长度较长时,会进一步增大后续帧的时延抖动性。
综上所述,如何减小或消除传输数据的时延抖动性,是当前亟需解决的技术问题。
发明内容
本申请提供一种数据传输方法及装置,用于减小或消除传输数据的时延抖动性。
第一方面,本申请提供一种数据传输方法,该方法包括光头端根据帧结构生成数据帧,并向光终端发送数据帧。其中,帧结构中的一帧包括m个子帧,一个子帧包括n个切片,n个切片中的第一个切片为第一切片,n个切片中除第一切片外的切片为第二切片,第一切片包括第一时隙,第二切片包括至少一个第二时隙。换言之,第二切片包括一个第二时隙或包括多个第二时隙,第二时隙在帧结构中的位置和大小固定,m为正整数,n为大于1的整数。
基于上述方案,将一帧划分为m个子帧,根据m的取值变化,可以更加灵活的设置合适大小的子帧。通过设置合适大小的子帧,可以减少切片队列对缓存的要求。应理解,m设置的太小会导致队列的深度太大,需要较大的缓存。m若设置的太小,由于每个子帧还需要进一步划分出n个切片,从而会导致切片太小。进一步,通过子帧中的n个切片可以实现带宽隔离、带宽资源独享,从而可以形成安全专用的子网。进一步,第二切片包括位置和大小固定的第二时隙,从而可以为专线等高优先级业务的数据预留第二时隙,进而可为专线等高优先级业务的数据提供确定性时延,即可以减小专线等高优先级业务的数据传输时的时延抖动。
在一种可能的实现方式中,第二切片包括h个第二时隙,h为大于1的整数,第二切片包括的h个第二时隙是连续时隙或非连续时隙。
在一种可能的实现方式中,第一切片用于承载第一指示信息,第一指示信息用于分隔第 一切片和第二切片。
通过第一指示信息可以便于光终端快速的定位到所属的第二切片。
进一步,可选的,第一指示信息承载于第一切片的末尾。
通过将第一指示信息承载于第一切片的末尾,可以兼容国际电信联盟电信标准化部门(internatial telecommunication union telecommunication standardization sector,ITU-T)984和ITU-T987标准的光终端、ITU-T984和ITU-T987标准的光终端可以直接跳过第二切片,不需要解析第二切片。
示例性的,第一指示信息包括端口标识取第一预设值的千兆比特无源光网络封装方式(gigabit-capable passive optical network encapsulation mode,GEM)帧头,或者第一指示信息包括端口标识取第二预设值的10千兆比特无源光网络封装方式(10gigabit-capable passive optical network encapsulation mode,XGEM)帧头。
通过第一指示信息包括GEM帧头或XGEM帧头,可以使得ITU-T984和ITU-T987标准的光终端也可以识别出第一指示信息。
进一步,可选的,第一预设值和第二预设值可以是光头端和光终端预先约定的,或者协议规定的。
在一种可能的实现方式中,第一切片还用于承载第二指示信息,第二指示信息用于指示第二切片的位置信息。
在一种可能的实现方式中,h为大于1的整数;若第二切片包括h个非连续的第二时隙,第二指示信息包括第二切片的标识、h个第二时隙中各个第二时隙的起始时间及终止时间;或者,第二指示信息包括第二切片的标识、h个第二时隙中各个第二时隙的起始时间和大小信息;若第二切片包括h个连续的第二时隙,第二指示信息包括第二切片的标识、h个第二时隙中第一个第二时隙的起始时间、及h个第二时隙中第h个第二时隙的终止时间;或者,第二指示信息包括第二切片的标识、h个第二时隙中第一个第二时隙的起始时间和第二切片的大小信息。
通过第二切片包括的第二时隙的起始时间及终止时间或者第二切片包括的第二时隙的起始时间和大小信息,可以指示出第二切片的位置信息。
如下示例性的示出了三种承载第二指示信息的可能的实现方式。
方式1,第二指示信息承载于带宽映射表(bandwidth map,BWMAP)。
在一种可能的实现方式中,第一切片还用于承载第一子帧头,第一子帧头包括BWMAP,BWMAP携带第二指示信息。
方式2,第二指示信息承载于下行物理层操作管理和维护(physical layer operations administration and maintenance downstream,PLOAMd)消息。
在一种可能的实现方式中,第一切片还用于承载第一子帧头,第一子帧头包括PLOAMd消息,PLOAMd消息携带第二指示信息。
方式3,第一切片还用于承载第一净荷,第一净荷包括光网络单元管理控制接口(ONU Management and Control Interface,OMCI)消息,OMCI消息携带第二指示信息。
在一种可能的实现方式中,若PLOAMd消息和BWMAP的长度之和大于预设长度,PLOAMd消息和/或BWMAP分片承载于第一子帧包括的第一切片和第二子帧包括的第一切片,第一子帧为m个子帧的一个,第二子帧与第一子帧相邻。
通过对第一子帧头分片承载,既可以避免某一子帧头承载不完BWMAP和PLOAMd消息,又无需等待第一子帧头全部发送完成后才能发送第一报文和/或第二报文,从而可以减小 因第一子帧头引起的时延抖动,而且有助于降低第一子帧头对专线等实时业务的数据的传输时延。
示例性的,第一子帧为m个子帧中的第一个子帧,第二子帧为m个第二子帧中的第二个子帧。进一步,承载于第一个子帧包括的第一切片中的PLOAMd消息和BWMAP的长度之和等于预设长度,承载于第二个子帧包括的第一切片中的PLOAMd消息和BWMAP的长度之和小于或等于预设长度。
基于此,可以实现较快完成第一子帧头的传输。
在一种可能的实现方式中,m个子帧中的第一个子帧中的第一个第二切片还用于承载第二子帧头。
通过第二子帧头,当跨帧时第二报文被分开,为防止前一子帧出现误码无法恢复而影响后续子帧的第二切片的数据恢复及重组。
第二方面,本申请提供一种数据传输方法,包括光终端接收来自光头端的数据帧,并对数据帧进行解析。其中,帧结构中的一帧包括m个子帧,一个子帧包括n个切片,n个切片中的第一个切片为第一切片,n个切片中除第一切片外的切片为第二切片,第一切片包括第一时隙,第二切片包括至少一个第二时隙,第二时隙在帧结构中的位置和大小固定,m为正整数,n为大于1的整数。
在一种可能的实现方式中,第二切片包括h个第二时隙,h个第二时隙是连续时隙或非连续时隙,h为大于1的整数。
在一种可能的实现方式中,第一切片用于承载第一指示信息,第一指示信息用于分隔第一切片和第二切片。
在一种可能的实现方式中,第一指示信息承载于第一切片的末尾。
在一种可能的实现方式中,第一指示信息包括端口标识取第一预设值的千兆比特无源光网络封装方式GEM帧头、或者包括端口标识取第二预设值的10千兆比特无源光网络封装方式XGEM帧头。
在一种可能的实现方式中,第一切片还用于承载第二指示信息,第二指示信息用于指示第二切片的位置信息。
在一种可能的实现方式中,h为大于1的整数;若第二切片包括h个非连续的第二时隙,第二指示信息包括第二切片的标识、h个第二时隙中各个第二时隙的起始时间及终止时间;或者,第二指示信息包括第二切片的标识、h个第二时隙中各个第二时隙的起始时间和大小信息;若第二切片包括h个连续的第二时隙,第二指示信息包括第二切片的标识、h个第二时隙中的第一个第二时隙的起始时间、h个第二时隙中的第h个第二时隙的终止时间;或者,第二指示信息包括第二切片的标识、第二切片包括的h个第二时隙中第一个第二时隙的起始时间和第二切片的大小信息。
在一种可能的实现方式中,第一切片还用于承载第一子帧头,第一子帧头包括下行物理层操作管理和维护PLOAMd消息或者带宽映射表BWMAP;PLOAMd消息或者BWMAP携带第二指示信息。
在一种可能的实现方式中,若PLOAMd消息和BWMAP的长度之和大于预设长度,PLOAMd消息和/或BWMAP分片承载于第一子帧包括的第一切片和第二子帧包括的第一切片,第一子帧为m个子帧的一个,第二子帧与第一子帧相邻。
在一种可能的实现方式中,第一子帧为m个子帧中的第一个子帧,第二子帧为m个第二子帧中的第二个子帧。
在一种可能的实现方式中,第一切片还用于承载第一净荷,第一净荷包括光网络单元管理控制接口OMCI消息;OMCI消息携带第二指示信息。
在一种可能的实现方式中,m个子帧中的第一个子帧中的第一个第二切片还用于承载第二子帧头。
第三方面,本申请提供一种通信装置,该通信装置用于实现上述第一方面或第一方面的任意可能的实现方式中的方法,或者用于实现上述第二方面或第二方面的任意可能的实现方式中的方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该通信装置可以是光头端,或者是可用于光头端中的模块,例如芯片或芯片系统或者电路。有益效果可参见上述第一方面的描述,此处不再赘述。该通信装置可以包括:接口电路和处理器。该处理器通过逻辑电路或执行代码指令用于实现上述第一方面的相应功能,该接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置。其中,接口电路可以为独立的接收器、独立的发射器、集成收发功能的收发器。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
其中,处理器用于根据帧结构生成数据帧,帧结构中的一帧包括m个子帧,一个子帧包括n个切片,n个切片中的第一个切片为第一切片,n个切片中除第一切片外的切片为第二切片,第一切片包括第一时隙,第二切片包括至少一个第二时隙,第二时隙在帧结构中的位置和大小固定,m为正整数,n为大于1的整数;接口电路用于向光终端发送数据帧。
在另一种可能的实现方式中,该通信装置可以是光终端,或者是可用于光终端的部件,例如芯片或芯片系统或者电路。有益效果可参见上述第二方面的描述,此处不再赘述。该通信装置可以包括:接口电路和处理器。该处理器通过逻辑电路或执行代码指令用于实现上述第一方面的相应功能,该接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置。其中,接口电路可以为独立的接收器、独立的发射器、集成收发功能的收发器。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
其中,接口电路用于接收来自光头端的数据帧;处理器用于对数据帧进行解析。
第四方面,本申请提供一种通信装置,该通信装置用于实现上述第一方面或第一方面的任意可能的实现方式中的方法,或者用于实现上述第二方面或第二方面的任意可能的实现方式中的方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,该通信装置可为光头端,该通信装置可以括处理模块和收发模块,这些模块可以执行上述方法示例中光头端的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的实施方式中,该通信装置还可以是光终端,该通信装置可以包括收发模块和处理模块,这些模块可以执行上述方法示例中光终端的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请提供一种通信系统,该通信系统包括光头端和光终端。其中,光头端可以用于执行上述第一方面或第一方面的任意可能的实现方式中的方法,光终端可以用于执 行上述第二方面或第二方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种芯片,包括至少一个处理器和接口电路。进一步,可选的,该芯片还可包括存储器,处理器用于执行存储器中存储的计算机程序或指令,使得芯片执行上述第一方面或第一方面的任意可能的实现方式中的方法;或者,使得芯片执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第八方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第二方面或第二方面的任意可能的实现方式中的方法。
上述第二方面至第八方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
附图说明
图1为本申请提供的一种光通信系统的系统架构示意图;
图2为本申请提供的一种FS帧结构的结构示意图;
图3为本申请提供的一种数据传输方法的流程示意图;
图4为本申请提供的一种帧结构的结构示意图;
图5a为本申请提供的一种XGEM帧的结构示意图;
图5b为本申请提供的一种GEM帧的结构示意图;
图6为本申请提供的一种第一切片的结构示意图;
图7a为本申请提供的一种第二切片的结构示意图;
图7b为本申请提供的另一种第二切片的结构示意图;
图8为本申请提供的一种GTC帧的结构示意图;
图9为本申请提供的一种BWMAP的结构示意图;
图10为本申请提供的一种PLOAM消息的结构示意图;
图11为本申请提供的另一种帧结构的结构示意图;
图12为本申请提供的一种协商第二切片的位置信息及第二切片启用的帧号的方法流程示意图;
图13为本申请的提供的一种通信装置的结构示意图;
图14为本申请的提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、字节和比特
字节(byte)是计算机信息技术用于计量存储容量的一种计量单位。通常数据存储是以“字 节”(byte)为单位,数据传输大多是以“位”(bit,又名“比特”)为单位,一个位代表一个0或1(即二进制),每8个位(bit,b)组成一个字节(byte,B)。
二、硬时隙
硬时隙是指在帧结构中位置和大小固定的时隙。
三、线传输容器(transmission container,T-CONT)
T-CONT是千兆比特无源光网络(gigabit-capable PON,GPON)系统中上行带宽最基本的控制单元。每个T-CONT由分配标识(Alloc-ID)来唯一标识。Alloc-ID由OLT为每个GPON端口分配,即OLT同一GPON端口下的ONU不存在Alloc-ID相同的T-CONT。
三、GPON封装方式(GPON encapsulation mode,GEM)
GEM是一种在GPON上封装数据的方式。
四、XGEM帧(frame)
XGEM帧是10千兆比特无源光网络(10gigabit-capable passive optical network,XGPON)系统中最小的业务承载单元,是最基本的封装结构。业务数据需要封装在XGEM帧中进行传输。
前文介绍了本申请所涉及到的一些用语,下面介绍本申请可能应用的系统架构。
图1是本申请适用的一种光通信系统的系统架构示意图。该光通信系统以包括光头端、光分配网络(optical distribution network,ODN)和光终端为例。光头端通过ODN与光终端连接。图1是以光通信系统包括n个光终端为例,n个光终端分别为光终端1、光终端2、……、光终端n。其中,光头端例如可以是光线路终端(optical line terminal,OLT),OLT是局端设备。光终端例如可以是光网络终端(optical network terminal,ONT)或光网络单元(optical network unit,ONU),ONT或ONU是PON系统的末尾单元,也称为“光猫”。换言之,OLT可以实现本申请中光头端的功能,ONT或ONU可以实现本申请中光终端的功能。ODN包括主干光纤、分光器(splitter)(或称为光分路器)和分支光纤,分光器是具有多个输入端和多个输出端的光纤汇接器件,用于光信号的耦合和分配。光头端与分光器之间通过主干光纤连接,分光器与光终端之间通过分支光纤连接。
基于上述图1,数据(或信号)从光头端传输至光终端的传输方向称为下行方向。数据(或信号)从光终端传输至光头端的方向称为上行方向。光头端向光终端传输数据(或信号)的方式可以是广播,光终端向光头端传输数据(或信号)的方式可以单播。应理解,对于上行方向,该PON系统是多点对点(multi-point to point,MP2P)系统;对于下行方向,该PON系统是点到多点(point 2 multiple point,P2MP)系统。
需要说明的是,上述图1所示例出光通信系统中包括的光头端、光终端、分光器、以及分光器包括的端口的数量也仅是示例,本申请对此不作限定。此外,图1所示的光通信系统中的各个结构的名称仅是一个示例,具体实现中各个结构的名称也可能为其他名称,本申请对此不作具体限定。
上述光通信系统例如可以是无源光网络(passive optical network,PON)系统。其中,PON系统例如可以是千兆比特无源光网络(gigabit-capable PON,GPON)系统、以太网无源光网络(ethernet PON,EPON)系统、10千兆以太无源光网络(10Gb/s ethernet passive optical network,10G-EPON)系统、时分和波分复用无源光网络(time and wavelength division multiplexing passive optical network,TWDM-PON)、10千兆比特无源光网络(10 gigabit-capable passive optical network,XGPON)系统或者10千兆比特对称无源光网络(10-gigabit-capable  symmetric passive optical network,XGS-PON)系统、25千兆比特无源光网络(25 gigabit-capable passive optical network,25-PON)系统、50千兆比特无源光网络(50 gigabit-capable passive optical network,50-PON)系统等。随着未来演进的新技术的出现,PON系统的速率可能会提升到100Gbps甚至更高,因此光通信系统还可以是更高传输速率的PON系统,本申请对此不作限定。
上述PON系统可应用于工业场景,例如可作为网络承载基础设施,实现对工业产线业务、办公网络、视频监控、门禁系统、生产管理、外网或内网等业务应用的综合接入。面对各类业务对于网络资源的需求、分权分区域管理和安全隔离等必要的需求,光头端需要具备网络切片能力。也可以理解为,一个物理光头端可以虚拟出多个逻辑光头端(在用户看来等同于多个独立的物理设备),分别承载各类业务。切片之间的网络资源、运维管理权限和业务等互不干扰,从而可以有效实现可靠性、安全性和网络资源三者之间的平衡。
为方便说明,本申请后续,以光头端为OLT,光终端为ONT为例进行说明。即本申请后续所描述的OLT均可替换为光头端,ONT均可替换为光终端。
在传输业务数据时,需要将业务数据按帧格式进行封装。以XGS-PON系统为例,下行方向,XGS-PON系统发送业务数据时需要将业务数据封装在XGEM帧中进行传输。多个XGEM帧组成帧子层(framing sublayer,FS)净荷(payload)。FS净荷、FS头(header)和FS尾(trailer)形成FS帧,请参阅图2。其中,FS净荷用于承载业务数据。FS header包括下行帧头长度(header length downstream,Hlend)、BWMAP和PLOAMd消息。Hlend消息的长度为4bytes(即4B),BWMAP的长度为N×8bytes(即N×8B),N为T-CONT数目(即BWMAP个数),会变化;PLOAMd消息的长度为P×48bytes(即P×48B),P为PLOAMd消息个数,每个FS帧实际下发的PLOAMd消息数也会变化。每个FS帧必须等FS header发送完后,才能开始发送业务数据。对于XGS-PON,FS header长度=4+8×N+48×P。通常BWMAP与PLOAMd消息的总长度有几十字节~几千字节。因此,FS header的长度不固定,从而会对发送的业务数据引入时延抖动。而且,业务数据是封装到XGEM帧,一个XGEM帧发送完后才能发送下一个XGEM帧,如果前一个XGEM帧(例如jumbo帧)未发送完成,下一个XGEM帧就要等待,从而会引入较大延时。特别是对于专线等高优先级业务,只能在XGEM帧边界进行抢占,最大等待时延为“报文长度÷线路带宽”。比如XGS-PON下行带宽为9.95吉比特每秒(Gbps),开启前向差错控制(forward error conrol,FEC)后有效带宽为8.67Gbps,对于9216B长度的业务数据,最大会引入9216B×8÷8.67Gbps=8.5微妙(us)的时延抖动。若发送的BWMAP和PLOAM消息比较多时,还会引入更大的时延抖动。
鉴于上述问题,本申请提供一种数据传输方法。该数据传输方法可以为专线等高优先级业务的数据预留位置和大小固定的第二时隙,进而可为专线等高优先级业务的数据提供确定性时延,即可以减小专线等高优先级业务的数据传输时的时延抖动。
基于上述内容,下面结合附图3至附图12,对本申请提出的数据传输方法进行具体阐述。
如图3所示,为本申请提供的一种数据传输方法的流程示意图。该数据传输方法可应用于上述图1所示的通信系统。光头端可以是上述图1中的光头端,光终端可以是上述图1中的光终端1、光终端2、…光终端n中的任一个。该数据传输方法可包括以下步骤:
步骤301,光头端根据帧结构生成数据帧。
其中,帧结构中的一帧包括m个子帧(子帧也可称为复帧),m为大于或等于1的整数。 换言之,一帧可以包括一个子帧,或者也可以包括多个子帧。进一步,一个子帧包括n个切片(slice),n个切片中的第一个切片为第一切片(或称为默认切片),n个切片中除第一切片外的切片为第二切片,n为大于1的整数。例如,n等于2,一个子帧包括一个第一切片和一个第二切片;再比如,n等于3,一个子帧包括一个第一切片和两个第二切片;再比如,n等于4,一个子帧包括一个第一切片和三个第二切片;此次不再列举。其中,第一切片包括第一时隙,第一时隙也可称为普通时隙。一个第二切片包括至少一个第二时隙,各个第二时隙的位置和大小固定,第二时隙也可称为硬时隙,对应的第二切片也可称为硬切片。
请参阅图4,一帧包括m个子帧,以m为大于1的整数为例,一个子帧包括n个切片,以n为大于2的整数为例。换言之,一个子帧包括子帧0、子帧1、…子帧m,一个子帧包括第一切片(slice0)、第二切片1(slice1)、…第二切片n-1(slice(n-1))。图4中以n-1个第二切片对应k个第二时隙为例。关于第一切片和第二切片更详细的结构可参见下文中的介绍,此处不再赘述。
在一种可能的实现方式中,PON系统可以同时进行多个业务,不同的业务可以具有不同的业务质量(quality of service,QoS)要求。不同的切片可以承载不同QoS要求的业务数据。示例性地,第一时隙用于承载第一报文,第二时隙用于承载第二报文,第二报文对时延抖动性的要求高于第一报文对时延抖动性的要求。第一切片内或第二切片内可以承载不同用户的业务数据。也可以理解为,在一个子帧内分为普通时隙和时分复用技术(time-division multiplexing,TDM)时隙。普通时隙可以兼容现有PON标准的ONU或ONT,第一报文随到随传输。TDM时隙支持需要固定时隙传输的业务数据,例如低时延抖动业务的业务数据。
示例性地,一帧可以为125微妙(us),该帧也可以称为超帧,一个子帧为125us/m。
步骤302,光头端向光终端发送数据帧。相应的,光终端接收来自光头端的数据帧。
在一种可能的实现方式中,光头端可以通过ODN向光终端发送数据帧。
通过上述步骤301至步骤302可以看出,将一帧划分为m个子帧,根据m的取值变化,可以更加灵活的设置合适大小的子帧。通过设置合适大小的子帧,可以减少切片队列对缓存的要求。应理解,m设置的太小会导致队列的深度太大,需要较大的缓存。m若设置的太小,由于每个子帧还需要进一步划分出n个切片,从而会导致切片太小。进一步,通过子帧中的n个切片可以实现带宽隔离、带宽资源独享,从而可以形成安全专用的子网。进一步,第二切片包括位置和大小固定的第二时隙,从而可以为专线等高优先级业务的数据预留第二时隙,进而可为专线等高优先级业务的数据提供确定性时延,即可以减小专线等高优先级业务的数据传输时的时延抖动。
下面对第一切片和第二切片的结构进行详细介绍。
一、第一切片
在一种可能的实现方式中,第一切片用于承载第一指示信息,第一指示信息用于分隔第一切片和第二切片。也可以理解为,第一指示信息为第一切片和第二切片之间的分隔符。片。示例性的,第一指示信息例如可以包括端口标识(port ID)取第一预设值的GEM帧头(GH),该GH可以称为特殊的GH;或者包括端口标识(port ID)取第二预设值的XGEM帧头(XGH),该XGH可以称为特殊的XGH。
请参阅图5a,为本申请提供的一种XGEM帧的结构示意图。XGEM帧包括XGEM净荷(payload)和XGEM帧头(header)。XGEM帧头包括净荷长度指示(payload length indicator,PLI)、密钥索引(key index)、端口标识(Port ID)、预留(options)、最后分片(last fragment, LF)和帧头错误检验(head error check,HEC)。其中,PLI表示XGEM净荷的长度。PLI有14bits(14位),14bits可以指示XGEM净荷最大长度是2^14=16384个字节。PLI可以视作一个指针,用来指示并找到下一个XGEM帧头。Port-ID表示XGEM帧所在的端口。16bits(16位)的Port-ID可以提供2^16=65536个不同的端口标识。通常OLT为每个用户配置一个业务套餐,会产生一条业务流,并为每条业务流配置一个Port-ID来标识,业务流不会占满65536个Port-ID,可以预留一个或多个Port-ID取第二预设值以使得该XGEM帧头作为第一指示信息。例如,可以预留Port-ID取65534以使得该XGEM帧头可以作为第一指示信息。需要说明的是,具体Port-ID取哪个或哪几个值来标识该XGEM帧头为第一指示信息可以是ONT与OLT预先约定的、或者协议规定的,本申请对此不作限定。key index有2位,表示XGEM净荷用来加密的密钥索引。LF有4bytes(4字节),表示是否为一个XGEM帧的最后一个分片,如果是最后一个分片,LF字段为1;如果不是最后一个分片,LF字段为0。预留(options)有18位。HEC用于XGEM帧头的检错和纠错。
请参阅图5b,为本申请提供的一种GEM帧的结构示意图。GEM帧包括GEM净荷(payload)和GEM帧头(header)。GEM帧头包括PLI,Port ID,净荷类型指示(payload type indicator,PTI)和HEC。其中,PLI有12bits;PTI最高位指示GEM帧是否为运营、管理和维护(operations,administrations and maintenance,OAM)信息,次高位指示用户数据是否发生拥塞,最低位指示在分片机制中是否为帧的末尾,当为1的时候表示帧的末尾;HEC有13bits;Port ID有12bits,可以提供4096个不同的端口,可以预留一个或多个port-ID取第一预设值以使得该GEM帧头作为第一指示信息。PLI、Port-ID和HEC的作用可参见前述图5a的介绍,此处不再赘述。
在一种可能的实现方式中,第一指示信息可以设置于第一切片的末尾,请参阅图6。也可以理解为,第一指示信息设置于第一切片中靠近第二切片的位置信息。可以理解的是,由于一帧的长度是固定的,受n-1个第二切片的带宽大小的影响,第一指示信息的位置信息是可以挪动的。例如,n-1个第二切片的带宽较大,第一指示信息可以向帧头的方向挪动;再比如,n-1个第二切片的带宽较小,第一指示信息可以向第二切片的方向挪动。
进一步,可选的,第一切片还用于承载第二指示信息,第二指示信息用于指示第二切片的位置信息。具体的,若第二切片包括h个非连续的第二时隙,第二指示信息包括第二切片的标识、h个第二时隙中各个第二时隙的起始时间及终止时间;或者,第二指示信息包括第二切片的标识、h个第二时隙中各个第二时隙的起始时间和大小信息。示例性的,请参阅图7a,第二切片1包括的3个非连续的第二时隙,分别为第二时隙1、第二时隙3和第二时隙5,第二指示信息包括第二切片的标识1、第二时隙1的起始时间和终止时间,第二时隙3的起始时间和终止时间及第二时隙5的起始时间和终止时间;或者,第二指示信息包括第二切片的标识1、第二时隙1的起始时间和大小,第二时隙3的起始时间和大小及第二时隙5的起始时间和大小。
若第二切片包括h个连续的第二时隙,第二指示信息包括第二切片的标识、h个第二时隙中第一个第二时隙的起始时间及第h个第二时隙(即最后一个第二时隙)的终止时间;或者,第二指示信息包括第二切片的标识、h个第二时隙中第一个第二时隙的起始时间和第二切片的大小信息。示例性的,请参阅图7b,第二切片A包括的3个连续的第二时隙,分别为第二时隙1、第二时隙2和第二时隙3,第二指示信息包括第二切片的标识A、第二时隙1的起始时间和第二时隙3的终止时间;或者,第二指示信息包括第二切片的标识1、第二时隙1的起始时间和第二切片的大小信息。
在一种可能的实现方式中,第二指示信息可以承载于第一切片的第一子帧头或第一切片的第一净荷,下面分情形介绍。
情形1,第二指示信息承载于第一子帧头。
在一种可能的实现方式中,第一切片还用于承载第一子帧头。在不同的PON标准中,采用的帧头格式(或称为帧头结构)会有一些差异。例如,在XGPON、XGS-PON、25GPON或50GPON等标准中,第一子帧头可以为成帧子层头,请参阅上述图2,此处不再赘述。再比如,在GPON标准中为GTC帧,请参阅图8,GTC帧的帧头为下行物理控制块(physical control block downstream,PCBd),第一子帧头可以为PCBd。其中,PCBd包括物理同步序列(physical synchronization sequence,Psync)、标识(ident)、PLOAMd消息、比特交叉奇偶校验(bit interleaved parity,BIP)、下行净荷长度(payload length downstream,Plend)和BWMAP。
如下示例性的示出了两种可能的承载第二指示信息的可能方式。
方式1,第二指示信息承载于BWMAP。
在一种可能的实现方式中,第一子帧头包括BWMAP,第二指示信息可以承载于BWMAP,请参见图9,BWMAP包括N个8字节的配置结构(allocation structure),每个allocation structure包括配置标识(Alloc ID)、标识(flags)、起始时间(starttime)、大小(grantsize)或终止时间(endtime)、强制唤醒指示(forced wake-up indication,FWI)、突发配置文件(burst profile)和HEC。其中,Alloc ID可以唯一标识带宽分配的接收者,一个Alloc ID对应一个切片,16bits的Alloc ID可以表示2^16=65536个切片,可以预留一个或多个取第三预设值的Alloc ID指示第二切片。示例性地,若一个子帧中包括8个第二切片,可以预留取8个不同的第三预设值的8个Alloc ID分别表示该子帧中包括的8个第二切片,具体预留哪个8个可以是ONT和OLT预先约定的或者是协议规定的,本申请对此不作限定。Flags包括与上行传输功能相关的指示符,如上行动态带宽报告(dynamic bandwidth report upstream,DBRu)和物理层OAM(PLOAMu),Flags用于指示上行突发的部分功能结构。starttime指示第二切片包括的第二时隙的起始时间,grantsize指示第二切片包括的第二时隙的大小,endtime指示第二切片包括的第二时隙的终止时间,FWI唤醒已经节省功率的ONT,burst profile包含将由ONT适配层用于形成物理接口(physical interface,PHY)突发的突发配置文件的索引,PLOAMu用于承载上行PLOAM信息,DBRu用于上报相关信息净荷域。
基于上述方式1,第二指示信息包括的第二切片的标识可以通过PLOAMd消息或OMCI消息向ONT发送。
需要说明的,第二指示信息可以携带于N个allocation structure中的一个或多个。若第二切片包括h个连续的第二时隙,第二指示信息可以承载于N个allocation structure中的任一个。若第二切片包括h个全部非连续的第二时隙,第二指示信息承载于N个allocation structure中的h个;若第二切片包括的h个非连续的第二时隙中部分连续部分非连续,第二指示信息承载于的allocation structure的数量大于1个且小于等于h个,对于连续部分的第二时隙可以承载于同一个allocation structure,或者也可以承载于不同的allocation structure。
方式2,第二指示信息承载于PLOAMd消息(massage)。
结合上述图2,第一子帧头还包括PLOAMd消息,第二指示信息也可以承载于PLOAMd消息,请参见图10,第一子帧头包括P个PLOAMd消息,一个PLOAMd消息包括48字节,P为大于1的整数。如表1所示,为本申请提供了一种携带第二指示信息的PLOAMd消息。
需要说明的,第二指示信息可以携带于P个PLOAMd消息中的一个或多个。若第二切片包括h个连续的第二时隙,第二指示信息可以承载于P个PLOAMd消息中的任一个。若第二 切片包括h个全部非连续的第二时隙,第二指示信息承载于P个PLOAMd消息中的h个;若第二切片包括的h个非连续的第二时隙中部分连续部分非连续,第二指示信息承载于的PLOAMd消息的数量大于1个且小于等于h个,对于连续部分的第二时隙可以承载于同一个PLOAMd消息,或者也可以承载于不同的PLOAMd消息。
表1携带第二指示信息的PLOAMd消息
基于上述表1,第二指示信息包括的第二切片的标识可以由PLOAMd消息中第3~4字节表示、第二时隙的起始时间由PLOAMd消息中第5~6字节表示,第二时隙大小或第二时隙的终止时间由PLOAMd消息中第7~8字节表示。可以理解的是,上述表1给出的第二指示信息包括的第二切片的标识、第二切片包括的第二时隙的起始时间、及第二时隙的大小/终止时间所占用的PLOAM消息中的位及比特数仅是示例,本申请对此不作限定。
需要说明的是,不同的PLOAMd消息,第3~8字节的定义可能不同。
情形2,第二指示信息承载于第一净荷。
在一种可能的实现方式中,第一净荷包括OMCI消息,第二指示信息承载于OMCI消息。如表2所示,为本申请提供的一种携带第二指示信息的OMCI消息。
表2携带第二指示信息的OMCI消息
基于上述表2,第二指示信息包括的第二切片的标识可以用16比特表示、第二时隙的起始时间可以用16比特表示,第二时隙的大小或第二时隙的终止时间可以用16别特表示。可以理解的是,上述表2给出的第二指示信息包括的第二切片的标识、第二切片包括的第二时隙的起始时间、及第二时隙的大小/终止时间所占用的OMCI消息中的比特数仅是示例,本申请对此不作限定。需要说明的是,不同的OMCI消息,表2中的第5行~第7行的定义也可能 不同。
在一种可能的实现方式中,具体采用上述情形1中的方式1还是方式2、或者采用上述情形3,可以是OLT与ONU预先约定的、或者也可以是OLT与ONU协商的,或者也可以是其它可能的方式,本申请对此不作限定。
由于第一子帧头中承载的BWMAP的长度与PLOAMd消息的长度是变化的,因此,BWMAP与PLOAMd消息的长度之和可能会超过预设长度。若PLOAMd消息和BWMAP的长度之和大于预设长度,PLOAMd消息和/或BWMAP分片承载于第一子帧包括的第一切片和第二子帧包括的第一切片,第一子帧为m个子帧的一个,第二子帧与第一子帧相邻。其中,预设长度可以是协议规定的。可以理解的是,一帧包括的子帧的数量m是确定的,一帧的长度是固定的,因此,一个子帧的长度也是固定的。进一步,一帧包括的第二切片的带宽是可以动态变化的,故预设长度也可以是动态变化的。
进一步,可选的,第一子帧为m个子帧中的第一个子帧,第二子帧为m个子帧中的第二个子帧。具体的,若PLOAMd消息和BWMAP的长度之和大于预设长度,PLOAMd消息和/或BWMAP分片(或称为分块)承载于第一个子帧包括的第一切片和第二个子帧包括的第一切片。其中,承载于第一子帧包括的第一切片中的PLOAMd消息和BWMAP的长度之和等于预设长度,承载于第二子帧包括的第一切片中的PLOAMd消息和BWMAP的长度之和小于或等于预设长度。也可以理解为,BWMAP和PLOAMd消息的分割时,优先承载于在前的子帧中的子帧头。
请参阅图11,以一帧包括2个子帧,分别为子帧0和子帧1,BWMAP和PLOAMd消息的分割为分片1和分片2,分片1承载于第一个子帧包括的第一切片,分片2承载于第二个子帧包括的第一切片,分片1的长度等于预设长度,分片2的长度小于或等于预设长度结合上述图2,例如,每个子帧的大小(或称为带宽)8KB,子帧0包括的n-1个第二切片的总带宽为6KB字节,Hlend=4B,预设长度为8kB-6KB-4B=2K×1024-4B=2044B,若BWMAP和PLOAMd消息的长度之和有3KB,3KB大于预设长度2044B,BWMAP和PLOAMd消息分成2个分片,即分片1和分片2,分片1承载于子帧0的第一子帧头,分片2承载于子帧1的第一子帧头,分片1的长度为2044B,分片2的长度为1028B。
通过对第一子帧头分片承载,既可以避免某一子帧头放不下BWMAP和PLOAM消息,又无需等待第一子帧头全部发送完成后才能发送第一报文和/或第二报文,从而可以减小因第一子帧头引起的时延抖动,而且有助于降低第一子帧头对专线等实时业务的数据的传输时延。
在一种可能的实现方式中,第一切片还包括帧头,帧头为下行物理同步块(downstream physical synchronization block,PSBd),请参阅上述图11。
二、第二切片
在一种可能的实现方式中,一个子帧中不同的第二切片包括的第二时隙的数量可以相同也可以不同。具体的,第二切片包括的第二时隙的数量可由ONT配置的该第二切片的带宽大小决定。例如,OLT为银行配置的第二切片的带宽为500兆比特每秒(Mbps),为交通局配置的第二切片的带宽为100Mbps,一个第二时隙对应的带宽为10Mbps,则为银行配置的第二切片包括500Mbps/10Mbps=50个第二时隙,为交通局配置的第二切片包括100MMbps/10MMbps=10个第二时隙。进一步,可选的,h为大于1的整数,第二切片包括的h个第二时隙可以是连续时隙,请参阅上述图7a,或者也可以是非连续时隙,请参阅图7b。
在跨帧时,第二报文可能会被分开,为了防止前一子帧出现误码无法恢复而影响后续子 帧中的第二切片的数据恢复及重组,m个子帧中的第一个子帧中的第一个第二切片还用于承载第二子帧头。换言之,可在m个子帧中的第一个子帧(可称为子帧0)的第一个第二切片的起始时隙添加第二子帧头进行封装,请参阅图11。
需要说明的是,一个第二切片内承载的第二报文只需要一个第二子帧头。例如,第二切片a由分布在m个子帧内中的每个子帧中的第二时隙1组成,第二切片a包括的m个第二时隙1承载的第二报文只需要在m个子帧中的第一个子帧中的第一个第二切片添加一个第二子帧头。
在一种可能的实现方式中,OLT生成如图11所示帧结构的数据帧,并向ONT发送该数据帧。相应的,ONT解析接收到的数据帧。对于不支持第二切片的ONT,通过PSBs可以确定每一帧的起始位置,并可以预先获取到一帧包括m个子帧。进一步,确定第一子帧中的第一切片未包括第一指示信息,只需要接收第一时隙传输的第一报文,并对第一报文进行处理。如此可以兼容现有ONT。对于支持第二切片处理的ONT,通过PSBs可以确定每一帧的起始位置,并可以预先获取到一帧包括m个子帧。进一步,解析第一子帧中的第一切片包括的第一指示信息和第二指示信息,可以确定出n-1个第二切片以及每个第二切片包括的第二时隙,ONT可以基于所属的第二切片,确定所属的第二切片包括的第二时隙,并在所属的第二切片包括的第二时隙上获取第二报文,并对接收到第二报文进行恢复和处理等。
在一种可能的实现方式中,OLT和ONT在上线后,OLT与ONT需要协商ONT所属的第二切片的位置信息、以及第二切片启用的帧号等。请参阅图12,为本申请提供的一种OLT与ONT协商第二切片的位置信息及第二切片启用的帧号的方法流程示意图。OLT可以是上述图1中的光头端,ONT可以是上述图1中的光终端1、光终端2、…光终端n中的任一个。该方法包括以下步骤:
步骤1201,OLT向ONT发送第二切片的位置信息。相应的,ONT接收来自OLT的第二切片的位置信息。
具体的,OLT可以通过PLOAM消息或OMCI消息向ONT发送属于该ONT的第二切片的位置信息。其中,第二切片的位置信息包括但不限于第二切片包括的h个非连续的第二时隙中各个第二时隙的起始时间及终止时间、或h个非连续的第二时隙中各个第二时隙的起始时间和大小信息、或h个连续第二时隙中第一个第二时隙的起始时间及第h个第二时隙(即最后一个第二时隙)的终止时间、或h个连续第二时隙中第一个第二时隙的起始时间和第二切片的大小信息。由于不同的第二切片可以承载不同ONT的业务数据,通过OLT向各ONT通知对应的第二切片的位置信息,以便于各ONT从自身对应的第二切片中提取业务数据。
步骤1202,ONT向OLT发送响应消息。相应的,OLT接收来自ONT的响应消息。
该响应消息可以但不限于确认(ACK)应答,以确认收到第二切片的位置信息。
上述步骤1201和步骤1202的过程也可以理解为是OLT为ONT配置第二切片的过程。
步骤1203,OLT在第二切片包括的第二时隙上向ONT发送包括第二报文的数据帧。相应的,ONT在对应的第二切片包括的第二时隙上接收到包括第二报文的数据帧。
当需要调整(比如增加或减少)某业务的带宽时,OLT可重新配置该ONT的第二切片,具体可执行下述步骤1204和步骤1205。
步骤1204,OLT向ONT发送更新后的第二切片的位置信息。相应的,ONT接收来自OLT的更新后的第二切片的位置信息。
具体的,OLT可以通过PLOAM消息或OMCI消息向ONT发送更新后的第二切片的位置信息。示例性地,上述步骤1201中的第二切片为第二切片i,更新后的第二切片例如可为第二切片i+j,i和j均为正整数。
步骤1205,ONT向OLT发送响应消息。相应的,OLT接收来自ONT的响应消息。
该步骤1205可参见前述步骤1202的介绍,此次不再赘述。
步骤1206,OLT在更新后的第二切片包括的第二时隙上向ONT发送包括第二报文的数据帧。相应的,ONT在对应的更新后的第二切片包括的第二时隙上接收到包括第二报文的数据帧。
具体的,OLT可在第二切片i+j包括的第二时隙上发送包括第二报文的数据帧。
通过上述步骤1201至步骤1206,ONT可以获取到OLT发送的第二报文。
可以理解的是,为了实现上述实施例中功能,光头端和光终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图13和图14为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中光终端或光头端的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的光终端,也可以是如图1所示的光头端,还可以是应用于光终端或光头端的模块(如芯片)。
如图13所示,通信装置1300包括处理模块1301和收发模块1302。通信装置1300用于实现上述图3或图12中所示的方法实施例中光终端或光头端的功能。
当通信装置1300用于实现图3所示的方法实施例中光头端的功能时:处理模块1301用于根据帧结构生成数据帧,帧结构中的一帧包括m个子帧,一个子帧包括n个切片,n个切片中的第一个切片为第一切片,n个切片中除第一切片外的切片为第二切片,第一切片包括第一时隙,第二切片包括至少一个第二时隙,第二时隙在帧结构中的位置和大小固定,m为正整数,n为大于1的整数;收发模块1302用于向光终端发送数据帧。
有关上述处理模块1301和收发模块1302更详细的描述可以直接参考图3所示的方法实施例中相关描述直接得到,这里不加赘述。
如图14所示,通信装置1400包括处理器1401和接口电路1402。处理器1401和接口电路1402之间相互耦合。可以理解的是,接口电路1402可以为收发器或输入输出接口。可选的,通信装置1400还可以包括存储器1403,用于存储处理器1401执行的指令或存储处理器1401运行指令所需要的输入数据或存储处理器1401运行指令后产生的数据。
当通信装置1400用于实现图12所示的方法时,处理器1401用于实现上述处理模块1301的功能,接口电路1402用于实现上述收发模块1302的功能。
当上述通信装置为应用于光终端的芯片时,该光终端芯片实现上述方法实施例中光终端的功能。该光终端芯片从光终端中的其它模块接收信息,该信息是光头端发送给光终端的;或者,该光终端芯片向光终端中的其它模块发送信息,该信息是光终端发送给光头端的。
当上述通信装置为应用于光头端的模块时,该光头端模块实现上述方法实施例中光头端的功能。该光头端模块从光头端中的其它模块接收信息,该信息是光终端发送给光头端的;或者,该光头端模块向光头端中的其它模块发送信息,该信息是光头端发送给光终端的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于光头端或光终端中。当然,处理器和存储介质也可以作为分立组件存在于光头端或光终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行计算机程序或指令时,全部或部分地执行本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、光终端、用户设备或者其它可编程装置。计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (15)

  1. 一种数据传输方法,其特征在于,包括:
    光头端根据帧结构生成数据帧,所述帧结构中的一帧包括m个子帧,一个子帧包括n个切片,所述n个切片中的第一个切片为第一切片,所述n个切片中除所述第一切片外的切片为第二切片,所述第一切片包括第一时隙,所述第二切片包括至少一个第二时隙,所述第二时隙在所述帧结构中的位置和大小固定,所述m为正整数,所述n为大于1的整数;
    所述光头端向光终端发送所述数据帧。
  2. 如权利要求1所述的方法,其特征在于,第二切片包括h个第二时隙,所述h个第二时隙是连续时隙或非连续时隙,所述h为大于1的整数。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一切片用于承载第一指示信息,所述第一指示信息用于分隔所述第一切片和所述第二切片。
  4. 如权利要求3所述的方法,其特征在于,所述第一指示信息承载于所述第一切片的末尾。
  5. 如权利要求3或4所述的方法,其特征在于,所述第一指示信息包括端口标识取第一预设值的千兆比特无源光网络封装方式GEM帧头、或者包括端口标识取第二预设值的10千兆比特无源光网络封装方式XGEM帧头。
  6. 如权利要求2-5任一项所述的方法,其特征在于,所述第一切片还用于承载第二指示信息,所述第二指示信息用于指示所述第二切片的位置信息。
  7. 如权利要求6所述的方法,其特征在于,所述h为大于1的整数;
    若第二切片包括h个非连续的第二时隙,所述第二指示信息包括所述第二切片的标识、所述h个第二时隙中各个第二时隙的起始时间及终止时间;或者,所述第二指示信息包括第二切片的标识、所述h个第二时隙中各个第二时隙的起始时间和大小信息;
    若第二切片包括h个连续的第二时隙,所述第二指示信息包括所述第二切片的标识、所述h个第二时隙中的第一个第二时隙的起始时间、所述h个第二时隙中的第h个第二时隙的终止时间;或者,所述第二指示信息包括第二切片的标识、所述第二切片包括的h个第二时隙中第一个第二时隙的起始时间和所述第二切片的大小信息。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一切片还用于承载第一子帧头,所述第一子帧头包括下行物理层操作管理和维护PLOAMd消息或者带宽映射表BWMAP;
    所述PLOAMd消息或者所述BWMAP携带所述第二指示信息。
  9. 如权利要求8所述的方法,其特征在于,若所述PLOAMd消息和所述BWMAP的长度之和大于预设长度,所述PLOAMd消息和/或所述BWMAP分片承载于第一子帧包括的第一切片和第二子帧包括的第一切片,所述第一子帧为所述m个子帧的一个,所述第二子帧与所述第一子帧相邻。
  10. 如权利要求9所述的方法,其特征在于,所述第一子帧为所述m个子帧中的第一个子帧,所述第二子帧为所述m个第二子帧中的第二个子帧。
  11. 如权利要求6或7所述的方法,其特征在于,所述第一切片还用于承载第一净荷,所述第一净荷包括光网络单元管理控制接口OMCI消息;
    所述OMCI消息携带所述第二指示信息。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述m个子帧中的第一个子帧中的第一个第二切片还用于承载第二子帧头。
  13. 一种通信装置,其特征在于,包括用于执行如权利要求1-12中的任一项所述方法的模块。
  14. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-12中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-12中任一项所述的方法。
PCT/CN2023/096141 2022-06-22 2023-05-24 一种数据传输方法及装置 WO2023246416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210710894.8A CN117318812A (zh) 2022-06-22 2022-06-22 一种数据传输方法及装置
CN202210710894.8 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246416A1 true WO2023246416A1 (zh) 2023-12-28

Family

ID=89241238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096141 WO2023246416A1 (zh) 2022-06-22 2023-05-24 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN117318812A (zh)
WO (1) WO2023246416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117579182B (zh) * 2024-01-17 2024-05-03 中兴通讯股份有限公司 无源光网络系统的业务加密方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137975A1 (en) * 2001-07-10 2003-07-24 Jian Song Ethernet passive optical network with framing structure for native Ethernet traffic and time division multiplexed traffic having original timing
US20100278080A1 (en) * 2007-10-16 2010-11-04 Datang Mobile Communications Equipment Co., Ltd. Transmission method and device in long term evolution time division duplex system
WO2022105648A1 (zh) * 2020-11-20 2022-05-27 华为技术有限公司 Pon中的数据传输方法、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137975A1 (en) * 2001-07-10 2003-07-24 Jian Song Ethernet passive optical network with framing structure for native Ethernet traffic and time division multiplexed traffic having original timing
US20100278080A1 (en) * 2007-10-16 2010-11-04 Datang Mobile Communications Equipment Co., Ltd. Transmission method and device in long term evolution time division duplex system
WO2022105648A1 (zh) * 2020-11-20 2022-05-27 华为技术有限公司 Pon中的数据传输方法、装置和系统

Also Published As

Publication number Publication date
CN117318812A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US10200129B2 (en) Channel bonding in passive optical networks
EP2784963B1 (en) Method for Framing Data and Apparatus Thereof
EP2536039B1 (en) Method and system for uplink bandwidth allocation in a passive optical network
US8126335B2 (en) Methods and apparatus for next generation access passive optical networks
KR102171132B1 (ko) 수동형 광네트워크에서의 프레이밍 방법 및 장치, 그리고 시스템
EP3832914A1 (en) Oam message transmission method, sending device, receiving device, and readable storage device
WO2020057187A1 (en) Passive optical network (pon) channel bonding protocol
EP2501058A1 (en) Device for optical network unit integration
WO2023246416A1 (zh) 一种数据传输方法及装置
CN112640482B (zh) 无源光网络(pon)中的多速率交织下行帧
WO2017113349A1 (zh) 数据解析和数据传输方法、装置
WO2021196932A1 (zh) 基于多路复用的通道识别方法及其装置
EP4322546A1 (en) Data frame fragmentation method, data frame parsing method and related device
WO2011095022A1 (zh) 一种对发光异常光网络单元正确定位的方法及系统
WO2023123654A1 (zh) 数据传输方法、装置、存储介质及电子装置
US11902718B2 (en) Service data transmission method, related device, and digital processing chip
WO2018165893A1 (zh) 一种光网络单元发送光信号的方法及光网络单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826065

Country of ref document: EP

Kind code of ref document: A1