WO2022218045A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2022218045A1
WO2022218045A1 PCT/CN2022/078438 CN2022078438W WO2022218045A1 WO 2022218045 A1 WO2022218045 A1 WO 2022218045A1 CN 2022078438 W CN2022078438 W CN 2022078438W WO 2022218045 A1 WO2022218045 A1 WO 2022218045A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
rigid circuit
optical module
rigid
optical
Prior art date
Application number
PCT/CN2022/078438
Other languages
English (en)
French (fr)
Inventor
郭蓉
熊轶
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120777111.9U external-priority patent/CN214375429U/zh
Priority claimed from CN202110720057.9A external-priority patent/CN113467012A/zh
Priority claimed from CN202121444186.1U external-priority patent/CN214954239U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022218045A1 publication Critical patent/WO2022218045A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • some embodiments of the present disclosure provide an optical module.
  • the optical module includes an upper casing, a lower casing, an optical transceiver assembly, a first rigid circuit board, a second rigid circuit board and a fourth flexible circuit board.
  • the lower casing is combined with the upper casing to form a wrapping cavity with an opening;
  • the optical transceiver assembly is located in the wrapping cavity to realize the transmission or reception of optical signals;
  • the first rigid The circuit board is located between the upper casing and the lower casing, one end of which protrudes from the opening to realize external electrical connection, and the other end is electrically connected to the optical transceiver assembly, and its edge is provided with a first an escape opening;
  • the second rigid circuit board is located between the first rigid circuit board and the upper casing;
  • the fourth flexible circuit board is arranged in a curved shape on the first rigid circuit Between the upper surface of the board and the lower surface of the second rigid circuit board, the electrical connection between the first rigid circuit board and the second rigid circuit board is realized; wherein,
  • the optical module includes a housing, a first rigid circuit board, a second rigid circuit board, a fifth flexible circuit board, a light emitting subassembly and a light receiving assembly.
  • One end of the casing is provided with an electrical port; one end of the first hard circuit board protrudes from the electrical port, and a first groove is arranged on the side; the second hard circuit board is arranged on the first A rigid circuit board is above and located in the casing, and a second groove is set on the side; the fifth flexible circuit board is set in the first groove and the second groove, and one end is electrically the first rigid circuit board is connected, and the other end is connected to the second rigid circuit board; the light emitting component is arranged in the casing, and is electrically connected to the first rigid circuit board and the second rigid circuit board A hard circuit board; the light receiving component is arranged in the casing and is electrically connected to the first hard circuit board.
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a perspective view of a connection between an optical transceiver assembly and a rigid circuit board according to some embodiments
  • FIG. 6 is a front view of a connection between an optical transceiver assembly and a rigid circuit board according to some embodiments
  • FIG. 7 is an exploded view of a connection between an optical transceiver assembly and a rigid circuit board according to some embodiments
  • FIG. 8 is an exploded view of another connection between an optical transceiver assembly and a rigid circuit board according to some embodiments
  • FIG. 9 is a schematic cross-sectional structure diagram of an optical module according to some embodiments.
  • FIG. 10 is an exploded schematic diagram of a cross-sectional structure of an optical module according to some embodiments.
  • FIG. 11 is a schematic structural diagram of an upper casing of an optical module according to some embodiments.
  • FIG. 12 is a schematic cross-sectional structural diagram of a lower casing of an optical module according to some embodiments.
  • FIG. 13 is a schematic diagram of an exploded structure of a rigid circuit board and a flexible circuit board according to some embodiments
  • FIG. 14 is a schematic diagram 1 of the assembly of a light emitting component, a light receiving component and a circuit board in an optical module according to some embodiments;
  • FIG. 15 is a second assembly schematic diagram of a light emitting component, a light receiving component and a circuit board in an optical module according to some embodiments;
  • 16 is a schematic structural diagram of a lower casing according to some embodiments.
  • FIG. 17 is a schematic structural diagram of a second rigid circuit board assembled to a lower case according to some embodiments.
  • 18 is a cross-sectional view one of an optical module according to some embodiments.
  • 19 is a second cross-sectional view of an optical module according to some embodiments.
  • 20 is a cross-sectional view three of an optical module according to some embodiments.
  • 21 is a schematic structural diagram of an upper casing according to some embodiments.
  • FIG. 22 is a first structural schematic diagram of a second rigid circuit board assembled to an upper casing according to some embodiments.
  • FIG. 23 is a second structural schematic diagram of assembling a second rigid circuit board to an upper casing according to some embodiments.
  • 24 is a cross-sectional view four of an optical module according to some embodiments.
  • 25 is a cross-sectional view five of an optical module according to some embodiments.
  • 26 is a cross-sectional view six of an optical module according to some embodiments.
  • 27 is a cross-sectional view seven of an optical module according to some embodiments.
  • 28 is a cross-sectional view eight of an optical module according to some embodiments.
  • 29 is a cross-sectional view nine of an optical module according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly configured to realize power supply, I2C signal transmission, data signal transmission and grounding, etc.
  • the optical network terminal transmits electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a first rigid circuit board 300A, a second rigid circuit board 300B, a light
  • the transceiver assembly 400 the first flexible circuit board 301 , the second flexible circuit board 302 , the third flexible circuit board 303 and the fourth flexible circuit board 500 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the inside of the optical module 200 .
  • the combination of the upper casing 201 and the lower casing 202 is adopted to facilitate the installation of components such as the circuit board 300 into the casing, and the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the first rigid circuit board 300A includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the first rigid circuit board 300A is provided with an electrical connector electrically connected to the host computer.
  • a strip-shaped golden finger-type electrical connector is provided at the end of the first rigid circuit board, and the golden finger 300C is inserted into the host computer to realize the electrical connection.
  • connection, the gold finger consists of multiple pins that are independent of each other.
  • the circuit board 300 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on one side surface of the circuit board 300 (eg, the upper surface shown in FIG. 4 ), or can be arranged on the upper and lower surfaces of the circuit board 300 , so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules.
  • the inner layer of the first rigid circuit board 300A is provided with various circuit structures such as circuit traces, vias, and metal layers, to achieve circuit communication or circuit functions with circuit traces or electronic components on the surface.
  • the surface of the second rigid circuit board 300B is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips, etc.; the inner layer of the first rigid circuit board 300A is provided with circuit traces and vias And a variety of circuit structures such as metal layers, to achieve circuit communication or circuit functions with circuit traces or electronic components on the surface.
  • the chip on the hard circuit board (300A, 300B) can be a multi-functional integrated chip, for example, the laser driver chip and the MCU chip can be integrated into one chip, or the laser driver chip, the limiting amplifier chip and the MCU can be integrated into one chip.
  • the chip is the integration of the circuit, but the function of each circuit does not disappear because of the integration, but the appearance of the circuit changes, and the chip still has the circuit shape. Therefore, when the hard circuit board (300A, 300B) is provided with three independent chips of MCU, laser driver chip and limiting amplifier chip, this is similar to setting a three-in-one single chip on the hard circuit board (300A, 300B).
  • the chip scheme is equivalent.
  • the upper surface of the first rigid circuit board is provided with a first pad
  • the lower surface of the second rigid circuit board is provided with a second pad
  • the first pad is connected to one end of the fourth flexible circuit board 500
  • the second pad is connected to one end of the fourth flexible circuit board 500.
  • the disk is connected to the other end of the fourth flexible circuit board 500; the electrical connection between the first pad and the second pad is realized through the fourth flexible circuit board, that is, the first rigid circuit board and the second rigid circuit board are realized electrical connection between.
  • the rigid circuit board is opposite to the flexible circuit board.
  • the rigid circuit board is generally a printed circuit board PCB, which is in the form of a rigid plate; the flexible circuit board is also called a flexible circuit board FPC, which is soft and bendable. Between the first rigid circuit board and the second rigid circuit board, the first rigid circuit board and the second rigid circuit board are electrically connected in a small space by utilizing the soft bending characteristics of the fourth flexible circuit board.
  • the optical transceiver assembly 400 realizes the functions of sending and receiving optical signals.
  • the optical transceiver component includes a first light emitting component, a second light emitting component, a first light receiving component, and a second light receiving component.
  • the first light emitting component, the second light emitting component, the first light receiving component and the second light receiving component are respectively electrically connected to the first rigid circuit board or the second rigid circuit board through the flexible circuit board.
  • FIG. 5 is a perspective view of a connection between an optical transceiver assembly and a rigid circuit board according to some embodiments.
  • the optical transceiver assembly 400 is connected to the optical fiber adapter 405, and optical signals enter and exit the optical transceiver assembly 400 through the optical fiber adapter 405; connection; the second light emitting component 402 is electrically connected to the first rigid circuit board 300A through the second flexible circuit board 302; the first light receiving component 403 and the second light receiving component 404 are connected to the first The rigid circuit board 300A is electrically connected.
  • FIG. 6 is a front view of a connection between an optical transceiver assembly and a rigid circuit board according to some embodiments.
  • the first flexible circuit board 301 is electrically connected to the upper surface of the first rigid circuit board 300A
  • the second flexible circuit board 302 is electrically connected to the lower surface of the first rigid circuit board 300A
  • the fourth flexible circuit The board 500 is located between the first rigid circuit board 300A and the second rigid circuit board 300B.
  • the first rigid circuit board 300A protrudes to the right relative to the second rigid circuit board 300B, and the second rigid circuit board 300B is narrower than the first rigid circuit board 300A.
  • the number of light-emitting components or light-receiving components is increased compared with the existing optical modules, so that the overall volume of the optical transceiver components increases, but the overall volume of the optical module does not increase accordingly, resulting in optical
  • the transceiver components relatively occupy the space of the circuit board; the number of light emitting components or light receiving components also requires more circuits to match, so that the circuit board needs to occupy more space.
  • the optical module provided by the embodiment of the present disclosure uses a double-layered rigid circuit board solution, which adds a second rigid circuit board 300B based on the first rigid circuit board 300A in the existing optical module.
  • FIG. 7 is an exploded view of a connection between an optical transceiver assembly and a rigid circuit board according to some embodiments
  • FIG. 8 is an exploded view of another connection between an optical transceiver assembly and a rigid circuit board according to some embodiments picture. As shown in FIGS.
  • first pads 310 are provided on the upper surface of the first rigid circuit board 300A
  • second pads 320 are provided on the lower surface of the second rigid circuit board 300B
  • the fourth flexible circuit board is One end is provided with a third pad 510, and the other end of the fourth flexible circuit board is provided with a fourth pad 520; the first pad 310 is welded with the third pad 510, and the second pad 320 is welded with the fourth pad 520
  • the fourth flexible circuit board 500 is bent between the first rigid circuit board 300A and the second rigid circuit board 300B; the third flexible circuit board 303 is electrically connected to the lower surface of the first rigid circuit board 300A.
  • the first rigid circuit board and the second rigid circuit board are located between the upper casing and the lower casing, respectively, as shown in FIG. 4 and FIG. 6 , the upper casing 201 and the second rigid circuit are sequentially from top to bottom.
  • the position of the first rigid circuit board 300A in the optical module needs to be relatively fixed and stable.
  • the optical module has a pressing plate requirement for the first rigid circuit board, so as to stabilize the relative position of the first rigid circuit board 300A.
  • the structure on the lower casing carries the first rigid circuit board, and the structure on the upper casing presses the first rigid circuit board downward to press the first rigid circuit board against the lower casing
  • the height distance between the first rigid circuit board and the lower casing can meet the requirements of the industry.
  • the second rigid circuit board is added to increase the circuit layout area, it is arranged between the first rigid circuit board and the upper casing, and is electrically connected to the first rigid circuit board through the fourth flexible circuit board.
  • An avoidance structure is arranged on the side of the second rigid circuit board, so that the structure of the upper casing pressing the first rigid circuit board contacts the first rigid circuit board through the avoidance structure.
  • the area of the second rigid circuit board is generally smaller than that of the first rigid circuit board.
  • the second rigid circuit board is provided with an avoidance structure, and on the other hand, the second rigid circuit board does not need to protrude from the electrical port. , the opening formed by the upper casing and the lower casing at the electrical port does not have enough space for the second hard circuit board to protrude.
  • the first pad is located on the non-edge area on the upper surface of the first rigid circuit board
  • the second pad is located on the non-edge area on the lower surface of the second rigid circuit board, which enables the fourth flexible circuit board to connect to the first pad.
  • the fourth flexible circuit board is arranged in a curved shape between the first rigid circuit board and the second rigid circuit board .
  • the fourth flexible circuit board does not have enough supporting force to support the second rigid circuit board relative to the first rigid circuit board, and the gravitational pressure of the second rigid circuit board on the fourth flexible circuit board also easily causes the fourth flexible circuit
  • the board is damaged, so in the embodiment of the present disclosure, a support structure for carrying the second hard circuit board is provided on the upper casing or the lower casing.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of an optical module according to some embodiments
  • FIG. 10 is an exploded schematic diagram of a cross-sectional structure of an optical module according to some embodiments.
  • the first rigid circuit board 300A and the second rigid circuit board 300B are respectively located between the upper casing 201 and the lower casing 202
  • the lower casing 202 is provided with a multiplexing support column 601
  • the upper casing 201 is provided with a pressure plate column 602 .
  • the multiplexing support column 601 on the lower casing 202 not only supports the first rigid circuit board 300A, but also supports the second rigid circuit board 300B, and plays the role of multiplexing support.
  • the multiplexing support column 601 plays a supporting role from the lower surface of the first rigid circuit board 300A.
  • the multiplexing support column 601 passes through the escape opening of the first rigid circuit board 300A, and passes from the lower surface of the second rigid circuit board 300B. The surface acts as a support.
  • the pressure plate post on the upper casing 201 passes through the escape opening of the second rigid circuit board 300B, and acts as a pressure plate from the upper surface of the first rigid circuit board 300A.
  • At least two multiplexing support columns are arranged on the lower casing 202 , and at least two pressing plate columns are arranged on the upper casing 201 .
  • a first escape opening 701A and a second escape opening 701B are provided on the side of the second rigid circuit board 300B for the press plate column to pass through.
  • a flexible pad 300E is arranged between the lower surface of the upper casing and the upper surface of the second rigid circuit board; or a chip 300D is arranged on the upper surface of the second rigid circuit board, and the chip 300D and the lower surface of the upper casing A flexible pad 300E is provided between the surfaces.
  • FIG. 11 is a schematic structural diagram of an upper casing of an optical module according to some embodiments.
  • the upper case 201 is provided with four pressing plate columns, and a pressing plate surface 602A is provided at the bottom of the pressing plate column, and the pressing plate surface abuts on the upper surface of the first rigid circuit board.
  • the pressing plate posts are distributed on the edge of the bottom surface of the upper casing and are arranged around the edge of the circuit board, so as to pass through the edge of the second rigid circuit board and retain the complete continuity of the middle area of the second rigid circuit board, which is convenient for the second rigid circuit board. Board trace layout.
  • a pressure plate 602B is arranged at the waist of the pressure plate column, the protrusion height of the pressure plate 602B is smaller than that of the pressure plate column 602, and the pressure plate abuts on the upper surface of the second rigid circuit board.
  • the pressure plate can also be separated from the pressure plate column and directly arranged on the upper casing.
  • FIG. 12 is a schematic cross-sectional structural diagram of a lower casing of an optical module according to some embodiments.
  • the lower casing 202 is provided with 4 multiplexing support columns, which are distributed at the corners of the lower casing and distributed around the edge of the circuit board, so as to achieve contact with the edge of the first rigid circuit board and retain the first rigid circuit board.
  • a first support surface 601A and a second support surface 601B are arranged on the multiplexed support column, the first support surface 601A is located at the waist of the multiplexed support column, and the second support surface 601B is located at the top of the multiplexed support column.
  • the first support surface 601A is in contact with the lower surface of the first rigid circuit board 300A, and does not pass through the escape opening of the first rigid circuit board 300A.
  • the second support surface 601B is in contact with the lower surface of the second rigid circuit board 300B, and passes through the escape opening of the first rigid circuit board 300A.
  • the second rigid circuit board 300B is provided with a first escape port 701A and a second escape port 701B, and the first rigid circuit board 300A is provided with a third escape port 701C and a fourth escape port 701D.
  • the avoidance port is preferably set at the edge of the circuit board to reduce the impact on the wiring on the circuit board and facilitate the realization of the circuit board wiring design; the specific shape of the avoidance port can be various, in some embodiments of the present disclosure, the first The escape opening 701A is a gap on the edge of the circuit board, which is a depression from the edge of the circuit board to the center of the circuit board.
  • the second escape opening 701B shows that the edge of the circuit board faces the circuit.
  • a depression in the direction of the center of the board is formed, and there are two protrusions on the circuit board on both sides of the escape opening;
  • the third escape opening 701C is a semicircular through hole on the edge of the circuit board, which matches the shape of the corresponding part of the multiplexing support column;
  • the fourth escape opening Port 701D is a notch on the edge of the circuit board.
  • the first avoidance port and the second avoidance port realize the avoidance of the pressure plate column, and the downwardly extending pressure plate column of the upper casing passes through the first avoidance port or the second avoidance port to achieve abutment with the upper surface of the first rigid circuit board, In order to realize the pressing and positioning of the first rigid circuit board.
  • the third escape opening and the fourth escape opening realize the avoidance of the multiplexing support column, and the multiplexing support column extending upward from the lower shell passes through the third escape opening or the fourth escape opening to achieve contact with the lower surface of the second rigid circuit board. connected to realize the support for the second rigid circuit board.
  • the multiplexing support columns support the first rigid circuit board and the second rigid circuit board respectively, so that the fourth flexible circuit board between the first rigid circuit board and the second rigid circuit board does not need to provide a large external The supporting force protects the fourth flexible circuit board from being crushed and damaged.
  • FIG. 14 is a schematic diagram 1 of the assembly of a light emitting component, a light receiving component and a circuit board in an optical module according to some embodiments
  • FIG. 15 is a light emitting component, a light receiving component and a circuit in an optical module according to some embodiments.
  • the first rigid circuit board 300A and the second rigid circuit board 300B are electrically connected through a fifth flexible circuit board 500A, and the fifth flexible circuit board 500A is electrically connected.
  • the second rigid circuit board 300B is disposed above the first rigid circuit board 300A, and the length of the second rigid circuit board 300B is smaller than that of the first rigid circuit board 300A, so that the A rigid circuit board 300A can extend out of the electrical port 205, and the second rigid circuit board 300B is located in the inner cavity formed by the casing.
  • the effective length of the circuit board 300 can be increased within the range of the length of the first rigid circuit board 300A, thereby ensuring the electrical components in the optical module. Set the desired board area.
  • the side of the first rigid circuit board 300A is provided with a first groove 3011
  • the side of the second rigid circuit board 300B is provided with a second groove 3021 .
  • the side wall of the module housing forms a relatively wide gap; the first groove 3011 is configured to electrically connect one end of the fifth flexible circuit board 500A, and the second groove 3021 is configured to electrically connect to the other end of the fifth flexible circuit board 500A One end, through the first groove 3011 and the second groove 3021 in this way, facilitates the installation and installation of the fifth flexible circuit board 500A.
  • the first grooves 3011 and the second grooves 3021 are arranged correspondingly, that is, when the positions of the first rigid circuit board 300A and the second rigid circuit board 300B are relatively fixed, the first grooves 3011 and the second The grooves 3021 overlap to facilitate the installation and installation of the fifth flexible circuit board 500A.
  • the third light-emitting assembly 400A and the third light-receiving assembly 400B are stacked and disposed on one end of the first rigid circuit board 300A and the second rigid circuit board 300B, and the first rigid circuit board 300A and the second hard circuit board 300B are physically separated; of course, in the embodiment of the present disclosure, the third light emitting component 400A or the third light receiving component 400B may be disposed on the surface of the first hard circuit board 300A.
  • the third light emitting assembly 400A includes a light emitting cavity 403A that is configured as a package arrangement configured to generate An electrical device and an optical device for emitting signal light; in some embodiments of the present disclosure, the third light emitting component 400A realizes a multi-wavelength signal light to synthesize one signal light through the electrical device and the optical device arranged in the light emitting cavity 403A emission. As shown in FIG.
  • one end of the light emitting cavity 403A is provided with an electrical connector, such as a ceramic connector; one end of the electrical connector extends into the light emitting cavity 403A and is electrically connected to the electrical device in the light emitting cavity 403A, The other end of the electrical connector is located outside the light emitting cavity 403A, and is connected to the first rigid circuit board 300A and the second rigid circuit board 300B through the first flexible circuit board 401A and the second flexible circuit board 402A.
  • an electrical connector such as a ceramic connector
  • the third light-receiving assembly 400B includes a light-receiving cavity 502A, and the light-receiving cavity 502A is configured to encapsulate an electrical device and an optical device configured to receive signal light;
  • the third light receiving component 400B realizes the beam splitting reception of the multi-wavelength signal light through the electrical device and the optical device disposed in the light receiving cavity 502A.
  • the second rigid circuit board 300B in order to fully utilize the space in the cavity of the optical module, the second rigid circuit board 300B is located above the first rigid circuit board 300A, and because the fifth flexible circuit board 500A is used to connect the first rigid circuit board 300A and the second rigid circuit board 300B, when the first rigid circuit board 300A is set and assembled into the cavity of the optical module, the fifth flexible circuit board 500A cannot support the second rigid circuit board 300B, so it needs to be installed in the optical module A support structure is provided on the casing to fix the first rigid circuit board 300A and the second rigid circuit board 300B, so that there is sufficient space between the first rigid circuit board 300A and the second rigid circuit board 300B.
  • the first rigid circuit board 300A and the second rigid circuit board 300B are respectively fixed in the optical module through the pressing action of the upper casing 201 and the lower casing 202 , such as the upper casing.
  • the sides of the body 201 and the lower casing 202 are respectively provided with fixing tables, and then the first rigid circuit board 300A and the second rigid circuit board 300B are pressed and fixed by the corresponding fixing platforms.
  • FIG. 16 is a schematic structural diagram of a lower casing according to some embodiments. As shown in FIG. 16 , a first fixing table 2021 and a second fixing table 2022 are arranged on the inner side wall of the lower casing 202, and the top surface of the first fixing table 2021 and the supporting top surface of the second fixing table 2022 are located at different heights.
  • first rigid circuit board 300A and the second rigid circuit board 300B are located at different heights in the lower casing 202; the supporting top surface of the first fixing table 2021 is configured to contact a surface of the first rigid circuit board 300A , the supporting top surface of the second fixing table 2022 is configured to contact a surface of the second rigid circuit board 300B; correspondingly, several fixing tables are arranged on the side of the upper casing 201 , and the first fixing table 2021 is in the direction of the upper casing 201
  • the first rigid circuit board 300A is supported, the second fixing table 2022 supports the second rigid circuit board 300B in the direction of the upper casing 201 , and the fixing table on the upper casing 201 supports the first rigid circuit board 300A and The second rigid circuit board 300B, and then the fixing table on the side of the upper casing 201 cooperates with the first fixing table 2021 and the second fixing table 2022 to realize the first rigid circuit board 300A and the second rigid circuit board 300B Fixed in the module.
  • the first fixing table 2021 is configured to contact
  • the number of the first fixing table 2021 and the second fixing table 2022 is usually multiple, which are respectively distributed in different positions of the side wall of the lower casing 202, and the first fixing table 2021 and the second fixing table 2021
  • the shape of each 2022 may be different.
  • the assembled first rigid circuit board 300A and the second rigid circuit board 300B can be assembled into the lower casing 202 first, and the first fixing table 2021 and the second fixing table 2022 are respectively supported The first rigid circuit board 300A and the second rigid circuit board 300B.
  • a first limiter is also set on the side wall of the lower case 202 .
  • Position post 2023 and second limit post 2024; the first limit post 2023 is configured to limit the first rigid circuit board 300A, and the first limit post 2023 can not only realize the installation and positioning of the first rigid circuit board 300A , can also realize the fixation of the first rigid circuit board 300A in the length direction of the optical module; the second limit post 2024 is configured as the limit of the second rigid circuit board 300B, and the second limit post 2024 can not only realize the second
  • the installation and positioning of the rigid circuit board 300B can also realize the fixing of the second rigid circuit board 300B in the length direction of the optical module.
  • FIG. 17 is a schematic structural diagram of a second rigid circuit board assembled to the lower case according to some embodiments.
  • the side of the first rigid circuit board 300A is provided with a first limiting opening 3012 , the first limiting opening 3012 is clamped and connected to the first limiting post 2023 , and the side of the second rigid circuit board 300B
  • a second limit port 3022 is provided, and the second limit port 3022 is clamped and connected to the second limit post 2024 .
  • the number of the first limiting column 2023 and the second limiting column 2024 may be multiple, and the corresponding side edges of the first rigid circuit board 300A and the second rigid circuit board 300B are correspondingly arranged A plurality of first limiting ports 3012 and second limiting ports 3022 are provided.
  • FIG. 18 is a cross-sectional view of an optical module according to some embodiments
  • FIG. 19 is a cross-sectional view of an optical module according to some embodiments
  • FIG. 20 is a cross-sectional view of an optical module according to some embodiments
  • FIG. 18 - FIG. 20 shows the assembly structure of the lower case 202 and the first rigid circuit board 300A and the second rigid circuit board 300B in the embodiment of the present disclosure.
  • the top surface of the first fixing table 2021 supports the lower surface of the first rigid circuit board 300A
  • the top surface of the second fixing table 2022 supports the lower surface of the second rigid circuit board 300B.
  • the first limiting opening 3012 is clamped and connected to the first limiting post 2023
  • the second limiting opening 3022 is clamped and connected to the second limiting post 2024 .
  • FIG. 21 is a schematic structural diagram of an upper casing according to some embodiments.
  • a third fixing platform 2011 and a fourth fixing platform 2012 are arranged on the side of the upper casing 201 , and the top surface of the third fixing platform 2011 and the top surface of the fourth fixing platform 2012 are located at different heights.
  • a plurality of third fixing platforms 2011 and fourth fixing platforms 2012 are respectively provided on both sides of the upper casing 201 , and the third fixing platforms 2011 and the fourth fixing platforms 2012 are respectively arranged on Both sides of the upper casing 201 .
  • the third fixing table 2011 and the fourth fixing table 2012 can be a structure in which the side of the upper casing 201 protrudes and has a supporting top surface.
  • FIG. 22 is a schematic diagram 1 of the structure of a second rigid circuit board assembled on the upper casing according to some embodiments.
  • the top surface of the third fixing table 2011 is configured to contact the other surface (upper surface in the direction of FIG. 21 ) of the first rigid wiring board 300A
  • the top surface of the fourth fixing table 2012 is configured to The other surface of the second rigid wiring board 300B is contacted.
  • the first fixing table 2021 and the third fixing table 2011 press the first rigid circuit board 300A respectively, so as to realize the first rigid circuit board 300A and the optical module casing.
  • the second fixing table 2022 and the fourth fixing table 2012 press the second rigid circuit board 300B respectively, so as to realize the fixing of the second rigid circuit board 300B and the optical module housing.
  • FIG. 23 is a second structural diagram of a second rigid circuit board assembled to the upper casing according to some embodiments. As shown in FIGS. 21-23 , both sides of the upper casing 201 are provided with a third fixing table 2011 and a fourth fixing table 2012 , so that the first rigid circuit board 300A and the second rigid circuit can be uniformly squeezed and fixed Board 300B.
  • the shapes of the third fixing table 2011 and the fourth fixing table 2012 may be different from each other.
  • FIG. 24 is a sectional view 4 of an optical module according to some embodiments
  • FIG. 25 is a sectional view 5 of an optical module according to some embodiments
  • FIGS. Assembly structure of the housing 202 As shown in FIGS. 24 and 25 , both sides of the upper casing 201 are provided with a third fixing table 2011 and a fourth fixing table 2012 , and the side walls of the lower casing 202 are provided with a first fixing table 2021 and a second fixing table 2022.
  • the plane where the supporting top surface is located has a height difference, and the height difference is configured to install the first rigid circuit board 300A; the plane where the supporting top surface of the second fixing table 2022 is located and the plane where the supporting top surface of the fourth fixing table 2012 is located have a height difference , the height difference is configured to mount the second rigid circuit board 300B.
  • FIG. 26 is a sectional view 6 of an optical module according to some embodiments
  • FIG. 27 is a sectional view 7 of an optical module according to some embodiments
  • FIG. 28 is a sectional view 8 of an optical module according to some embodiments
  • FIG. 29 26-29 are cross-sectional views of an optical module according to some embodiments
  • FIGS. 26-29 show the upper case 201 , the lower case 202 , the first rigid circuit board 300A and the second rigid circuit board in an embodiment of the present disclosure. 300B assembly structure. As shown in FIGS.
  • the top surface of the third fixing table 2011 presses the first rigid circuit board 300A in the direction of the lower casing 202
  • the top surface of the fourth fixing table 2012 presses the second hard circuit board 300A in the direction of the lower casing 202
  • the quality circuit board 300B cooperates with the first fixing table 2021 and the second fixing table 2022 on the lower casing 202 to fix the first rigid circuit board 300A and the second rigid circuit board 300B.
  • the second rigid circuit board 300B is closer to the top surface of the upper casing 201 than the first rigid circuit board 300A. Therefore, in order to facilitate the third fixing table 2011 to press the first rigid circuit board 300A, A notch 3024 is provided on the second rigid circuit board 300B, and the third fixing table 2011 passes through the notch 3024 to contact the first rigid circuit board 300A.
  • a DSP chip 304 is disposed on the first rigid circuit board 300A, and the DSP chip 304 is electrically connected to the first rigid circuit board 300A.
  • the DSP chip 304 is the main signal processing chip in the optical module, and a large amount of heat will be generated during the operation of the optical module.
  • a through hole 3023 is provided on the quality circuit board 300B, and the thermally conductive stage 2013 is thermally connected to the DSP chip 304 through the through hole 3023, for example, the DSP chip 304 is connected to the DSP chip 304 through a thermally conductive adhesive and a thermally conductive pad.
  • the heat generated by the DSP chip 304 is directly transmitted to the upper casing 201 through the heat conduction stage 2013, which speeds up the heat dissipation of the DSP chip 304 and reduces the heat generated by the DSP chip 304 to the optical module. effects of other devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括上壳体(201)、下壳体(202)、第一硬质电路板(300A)、第二硬质电路板(300B)和第四柔性电路板(500)。第一硬质电路板(300A),位于上壳体(201)与下壳体(202)之间,其一端实现对外电连接,其另一端与光收发组件(400)电连接,其边缘设置第一避让口(701A);第二硬质电路板(300B),位于第一硬质电路板(300A)与上壳体(201)之间;第四柔性电路板(500),弯曲状设置在第一硬质电路板(300A)的上表面与第二硬质电路板(300B)的下表面之间,实现第一硬质电路板(300A)与第二硬质电路板(300B)的电连接;下壳体(202)设置向上凸起穿过第一避让口(701A)的复用支撑柱(601);复用支撑柱(601)的腰部设置第一支撑面(601A),复用支撑柱(601)的顶部设置第二支撑面(601B),第一支撑面(601A)与第一硬质电路板(300A)的下表面抵接,第二支撑面(601B)与第二硬质电路板(300B)的下表面抵接。

Description

光模块
本公开要求在2021年04月16日提交中国专利局、申请号为202120777111.9,在2021年06月28日提交中国专利局、申请号为202110720057.9,在2021年06月28日提交中国专利局、申请号为202121444186.1的专利优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
一方面,本公开一些实施例提供一种光模块。所述光模块包括上壳体、下壳体、光收发组件、第一硬质电路板、第二硬质电路板和第四柔性电路板。所述下壳体,与所述上壳体结合,形成具有开口的包裹腔体;所述光收发组件,位于所述包裹腔体中,实现光信号的发射或接收;所述第一硬质电路板,位于所述上壳体与所述下壳体之间,其一端从所述开口伸出以实现对外电连接,其另一端与所述光收发组件电连接,其边缘设置有第一避让口;所述第二硬质电路板,位于所述第一硬质电路板与所述上壳体之间;所述第四柔性电路板,呈弯曲状设置在所述第一硬质电路板的上表面与所述第二硬质电路板的下表面之间,实现所述第一硬质电路板与所述第二硬质电路板的电连接;其中,所述下壳体设置向上凸起穿过所述第一避让口的复用支撑柱;所述复用支撑柱的腰部设置有第一支撑面,所述复用支撑柱的顶部设置有第二支撑面,所述第一支撑面与所述第一硬质电路板的下表面抵接,所述第二支撑面与所述第二硬质电路板的下表面抵接。
另一方面,本公开一些实施例提供一种光模块。所述光模块包括壳体、第一硬质电路板、第二硬质电路板、第五柔性电路板、光发射次组件和光接收组件。所述壳体的一端设置电口;所述第一硬质电路板,一端从所述电口伸出,侧边设置第一凹槽;所述第二硬质电路板,设置在所述第一硬质电路板的上方且位于所述壳体内,侧边设置第二凹槽;所述第五柔性电路板,设置在所述第一凹槽和所述第二凹槽内,且一端电连接所述第一硬质电路板、另一端连接所述第二硬质电路板;所述光发射组件,设置在所述壳体内,电连接所述第一硬质电路板和所述第二硬质电路板;所述光接收组件,设置在所述壳体内,电连接所述第一硬质电路板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附 图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光收发组件与硬质电路板之间的连接立体图;
图6为根据一些实施例的一种光收发组件与硬质电路板之间的连接正视图;
图7为根据一些实施例的一种光收发组件与硬质电路板之间的连接分解图;
图8为根据一些实施例的一种光收发组件与硬质电路板之间的另一连接分解图;
图9为根据一些实施例的一种光模块剖面结构示意图;
图10为根据一些实施例的一种光模块剖面结构分解示意图;
图11为根据一些实施例的光模块上壳体结构示意图;
图12为根据一些实施例的光模块下壳体剖面结构示意图;
图13为根据一些实施例的硬质电路板与柔性电路板的分解结构示意图;
图14为根据一些实施例的一种光模块中光发射组件、光接收组件与电路板的装配示意图一;
图15为根据一些实施例的一种光模块中光发射组件、光接收组件与电路板的装配示意图二;
图16为根据一些实施例的一种下壳体的结构示意图;
图17为根据一些实施例的一种第二硬质电路板装配至下壳体上的结构示意图;
图18为根据一些实施例的一种光模块的剖视图一;
图19为根据一些实施例的一种光模块的剖视图二;
图20为根据一些实施例的一种光模块的剖视图三;
图21为根据一些实施例的一种上壳体的结构示意图;
图22为根据一些实施例的一种第二硬质电路板装配至上壳体上的结构示意图一;
图23为根据一些实施例的一种第二硬质电路板装配至上壳体上的结构示意图二;
图24为根据一些实施例的一种光模块的剖视图四;
图25为根据一些实施例的一种光模块的剖视图五;
图26为根据一些实施例的一种光模块的剖视图六;
图27为根据一些实施例的一种光模块的剖视图七;
图28为根据一些实施例的一种光模块的剖视图八;
图29为根据一些实施例的一种光模块的剖视图九。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立 信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要被配置为实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网 络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、第一硬质电路板300A、第二硬质电路板300B、光收发组件400、第一柔性电路板301、第二柔性电路板302、第三柔性电路板303及第四柔性电路板500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200的内部。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部 件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
第一硬质电路板300A包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
第一硬质电路板300A上设置有与上位机电连接的电连接器,一般在第一硬质电路板的末端设置条形的金手指型电连接器,将金手指300C插入上位机中实现电连接,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。
第一硬质电路板300A的内层中设置有电路走线、过孔及金属层等多种电路结构,与表面上的电路走线或电子元件实现电路联通或电路功能。
第二硬质电路板300B表面设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片等;第一硬质电路板300A的内层中设置有电路走线、过孔及金属层等多种电路结构,与表面上的电路走线或电子元件实现电路联通或电路功能。
硬质电路板(300A、300B)上的芯片可以是多功能合一芯片,比如将激光驱动芯片与MCU芯片融合为一个芯片,也可以将激光驱动芯片、限幅放大器芯片及MCU融合为一个芯片,芯片是电路的集成,但各个电路的功能并没有因为集合而消失,只是电路呈现形态发生改变,芯片中仍然具有该电路形态。所以,当硬质电路板(300A、300B)上设置有MCU、激光驱动芯片及限幅放大器芯片三个独立芯片,这与硬质电路板(300A、300B)上设置一个三功能合一的单个芯片的方案是等同的。
第一硬质电路板的上表面设置有第一焊盘,第二硬质电路板的下表面设置有第二焊盘,第一焊盘与第四柔性电路板500的一端连接,第二焊盘与第四柔性电路板500的另一端连接;通过第四柔性电路板实现了第一焊盘与第二焊盘的电连接,即实现了第一硬质电路板与第二硬质电路板之间的电连接。
硬质电路板与柔性电路板相对,硬质电路板一般为印制电路板PCB,表现为硬质的板状;柔性电路板也叫挠性电路板FPC,柔软可弯折。在第一硬质电路板与第二硬质电路板之间,利用第四柔性电路板的柔软弯折特性,实现第一硬质电路板与第二硬质电路板在小空间内电连接。
光收发组件400实现光信号的发出及接收功能。在本公开实施例提供的一种光模块中,光收发组件包括第一光发射组件、第二光发射组件、第一光接收组件及第二光接收组件。第 一光发射组件、第二光发射组件、第一光接收组件及第二光接收组件通过柔性电路板分别与第一硬质电路板或第二硬质电路板实现电连接。
图5为根据一些实施例的一种光收发组件与硬质电路板之间的连接立体图。如图5所示,光收发组件400与光纤适配器405连接,光信号通过光纤适配器405进出光收发组件400;第一光发射组件401通过第一柔性电路板301与第一硬质电路板300A电连接;第二光发射组件402通过第二柔性电路板302与第一硬质电路板300A电连接;第一光接收组件403及第二光接收组件404均通过第三柔性电路板303与第一硬质电路板300A电连接。
图6为根据一些实施例的一种光收发组件与硬质电路板之间的连接正视图。如图6所示,第一柔性电路板301与第一硬质电路板300A的上表面电连接,第二柔性电路板302与第一硬质电路板300A的下表面电连接;第四柔性电路板500位于第一硬质电路板300A与第二硬质电路板300B之间。根据图6中的竖直虚线所示,第一硬质电路板300A相对于第二硬质电路板300B向右侧突出,第二硬质电路板300B较第一硬质电路板300A窄。
本公开实施例提供的光模块中,较已有光模块增加了光发射组件或光接收组件的数量,使得光收发组件整体的体积增大,而光模块整体的体积没有相应增大,导致光收发组件相对侵占电路板的空间;光发射组件或光接收组件的数量也需要更多的电路与之匹配,使得电路板需要占用更多的空间。对此,本公开实施例提供的光模块中使用双层硬质电路板方案,较已有光模块在具有第一硬质电路板300A的基础上,增加第二硬质电路板300B。
图7为根据一些实施例的一种光收发组件与硬质电路板之间的连接分解图,图8为根据一些实施例的一种光收发组件与硬质电路板之间的另一连接分解图。如图7、图8所示,第一硬质电路板300A上表面设置有第一焊盘310,第二硬质电路板300B的下表面设置有第二焊盘320,第四柔性电路板的一端设置有第三焊盘510,第四柔性电路板的另一端设置有第四焊盘520;第一焊盘310与第三焊盘510焊接,第二焊盘320与第四焊盘520焊接;第四柔性电路板500弯曲设置在第一硬质电路板300A与第二硬质电路板300B之间;第三柔性电路板303与第一硬质电路板300A的下表面电连接。
第一硬质电路板与第二硬质电路板分别位于上壳体与下壳体之间,如图4、图6所示,自上而下依次为上壳体201、第二硬质电路板300B、第一硬质电路板300A及下壳体202。
由于第一硬质电路板300A设置有金手指300C,通过金手指300C插入上位机,所以第一硬质电路板300A在光模块中的位置需要相对固定且稳定。对此,光模块中对第一硬质电路板有压板的要求,以稳固第一硬质电路板300A的相对位置。在本公开实施例中,下壳体上的结构承载第一硬质电路板,上壳体上的结构向下挤压第一硬质电路板,以将第一硬质电路板压紧在下壳体上,使得第一硬质电路板与下壳体之间的高度距离满足行业要求。
第二硬质电路板是为增加电路布局面积而增设的,其设置在第一硬质电路板与上壳体之间,通过第四柔性电路板与第一硬质电路板电连接。
在第二硬质电路板的侧边设置有避让结构,使得上壳体挤压第一硬质电路板的结构通过该避让结构接触第一硬质电路板。
第二硬质电路板的面积一般小于第一硬质电路板,一方面源于第二硬质电路板设有避让 结构,另一方面由于第二硬质电路板不需要从电口处伸出,上壳体与下壳体在电口处形成的开口,也没有足够的空间让第二硬质电路板伸出。
第一焊盘位于第一硬质电路板上面表非边缘的区域,第二焊盘位于第二硬质电路板下表面非边缘的区域,这使得第四柔性电路板在实现连接第一焊盘和第二焊盘时,位于第一硬质电路板与第二硬质电路板之间,第四柔性电路板呈弯曲状的设置在第一硬质电路板与第二硬质电路板之间。
第四柔性电路板没有足够的支撑力将第二硬质电路板相对第一硬质电路板支撑起来,而且第二硬质电路板对第四柔性电路板的重力压力也易导致第四柔性电路板损坏,所以本公开实施例在上壳体或下壳体上设置了承载第二硬质电路板的支撑结构。
图9为根据一些实施例的一种光模块剖面结构示意图,图10为根据一些实施例的一种光模块剖面结构分解示意图。如图9、图10所示,第一硬质电路板300A与第二硬质电路板300B分别位于上壳体201及下壳体202之间,下壳体202上设置有复用支撑柱601,上壳体201上设置有压板柱602。
下壳体202上的复用支撑柱601不仅支撑第一硬质电路板300A,同时也支撑第二硬质电路板300B,起到复用支撑的作用。复用支撑柱601从第一硬质电路板300A的下表面起到支撑作用,复用支撑柱601通过第一硬质电路板300A的避让口穿过,从第二硬质电路板300B的下表面起到支撑作用。
上壳体201上的压板柱通过第二硬质电路板300B的避让口穿过,从第一硬质电路板300A的上表面起到压板作用。
如图10所示,下壳体202上设置至少两个复用支撑柱,上壳体201上设置至少两个压板柱。在第二硬质电路板300B的侧边设置第一避让口701A及第二避让口701B,以供压板柱穿过。
如图10所示,上壳体下表面与第二硬质电路板上表面之间设置柔性垫块300E;或第二硬质电路板的上表面设置有芯片300D,芯片300D与上壳体下表面之间设置有柔性垫块300E。
图11为根据一些实施例的光模块上壳体结构示意图。如图11所示,上壳体201设置有4个压板柱,在压板柱的底部设置有压板面602A,压板面抵接在第一硬质电路板的上表面上。压板柱分布在上壳体的底面边缘,围绕电路板的边缘设置,以实现穿过第二硬质电路板的边缘,保留第二硬质电路板中间区域的完整连贯性,便于第二硬质电路板走线布局。
在压板柱的腰部设置有压板块602B,压板块602B的凸起高度小于压板柱602的凸起高度,压板块抵接在第二硬质电路板的上表面。此外,压板块也可以与压板柱分体,直接设置在上壳体上。
图12为根据一些实施例的光模块下壳体剖面结构示意图。如图12所示,下壳体202设置有4个复用支撑柱,分布在下壳体的边角位置,围绕电路板的边缘分布,以实现与第一硬质电路板的边缘接触,保留第一硬质电路板中间区域的完整连贯性。在复用支撑柱上设置第一支撑面601A及第二支撑面601B,第一支撑面601A位于复用支撑柱的腰部,第二支撑面601B位于复用支撑柱的顶部。第一支撑面601A抵接在第一硬质电路板300A的下表面,未 穿过第一硬质电路板300A的避让口。第二支撑面601B抵接在第二硬质电路板300B的下表面,穿过第一硬质电路板300A的避让口。
图13为根据一些实施例的硬质电路板与柔性电路板的分解结构示意图。如13所示,第二硬质电路板300B设置有第一避让口701A及第二避让口701B,第一硬质电路板300A设置有第三避让口701C及第四避让口701D。避让口优选设置在电路板的边缘,以减小对电路板上布线的影响,易于实现电路板布线设计;避让口的具体形态可以为多种,在本公开的某一些实施例中,第一避让口701A为电路板边缘的缺口,呈现为电路板边缘向电路板中心方向的凹陷,该避让口的两侧中仅有一侧具有相对凸起;第二避让口701B呈现为电路板边缘向电路板中心方向的凹陷形成,在避让口两侧的电路板上具有两个凸起;第三避让口701C为电路板边缘的半圆通孔,与复用支撑柱的对应部位形状匹配;第四避让口701D为电路板边缘的缺口。
第一避让口及第二避让口实现对压板柱的避让,上壳体向下延伸的压板柱穿过第一避让口或第二避让口实现与第一硬质电路板的上表面抵接,以实现对第一硬质电路板的挤压定位。
第三避让口及第四避让口实现对复用支撑柱的避让,下壳体向上延伸的复用支撑柱穿过第三避让口或第四避让口实现与第二硬质电路板下表面抵接,以实现对第二硬质电路板的支撑。复用支撑柱分别支撑了第一硬质电路板及第二硬质电路板,使得第一硬质电路板与第二硬质电路板之间的第四柔性电路板不需要对外提供较大的支撑力,保护了第四柔性电路板免受挤压损坏。
图14为根据一些实施例的一种光模块中光发射组件、光接收组件与电路板的装配示意图一,图15为根据一些实施例的一种光模块中光发射组件、光接收组件与电路板的装配示意图二。如图14和图15所示,本公开实施例提供的光模块中,第一硬质电路板300A和第二硬质电路板300B通过第五柔性电路板500A电连接,第五柔性电路板500A方便实现第一硬质电路板300A和第二硬质电路板300B的电连接以及方便第一硬质电路板300A和第二硬质电路板300B的装配。如图15中所示方向,第二硬质电路板300B设置在第一硬质电路板300A的上方,第二硬质电路板300B的长度小于第一硬质电路板300A的长度,进而使第一硬质电路板300A可伸出电口205、第二硬质电路板300B位于壳体形成的内腔内。如此通过在第一硬质电路板300A的上方设置第二硬质电路板300B,能够在设置第一硬质电路板300A的长度范围内增加电路板300的有效长度,进而保证光模块中电学器件设置需要的电路板面积。
在本公开的某一些实施例中,第一硬质电路板300A的侧边设置第一凹槽3011,第二硬质电路板300B的侧边设置第二凹槽3021,进而当第一硬质电路板300A和第二硬质电路板300B装配至光模块壳体中时,通过第一凹槽3011和第二凹槽3021使第一硬质电路板300A和第二硬质电路板300B与光模块壳体的侧壁形成相对较宽的间隙;第一凹槽3011被配置为电连接第五柔性电路板500A的一端,第二凹槽3021被配置为电连接第五柔性电路板500A的另一端,如此通过第一凹槽3011和第二凹槽3021便于第五柔性电路板500A的设置安装。如图14所示,第一凹槽3011和第二凹槽3021对应设置,即当第一硬质电路板300A和第二硬质电路板300B位置相对固定时,第一凹槽3011和第二凹槽3021重叠,便于第五柔性电 路板500A的设置安装。
如图14和15所示,第三光发射组件400A和第三光接收组件400B叠放设置在第一硬质电路板300A和第二硬质电路板300B的一端、与第一硬质电路板300A和第二硬质电路板300B物理分离;当然本公开实施例中,第三光发射组件400A或第三光接收组件400B可设置在第一硬质电路板300A的表面。
在本公开的某一些实施例中,如图15所示,在本公开实施例中,第三光发射组件400A包括光发射腔体403A,光发射腔体403A被配置为封装设置被配置为产生发射信号光的电学器件和光学器件;在本公开的某一些实施例中,第三光发射组件400A通过设置在光发射腔体403A内的电学器件和光学器件实现多波长信号光合成一路信号光的发射。如图15所示,光发射腔体403A的一端设置电连接器,如陶瓷连接器;电连接器的一端伸入光发射腔体403A内、与光发射腔体403A内的电学器件电连接,电连接器的另一端位于光发射腔体403A的外部、通过第一柔性电路板401A和第二柔性电路板402A连接第一硬质电路板300A和第二硬质电路板300B。
如图15所示,在本公开实施例中,第三光接收组件400B包括光接收腔体502A,光接收腔体502A被配置为封装设置被配置为接收信号光的电学器件和光学器件;在本公开的某一些实施例中,第三光接收组件400B通过设置在光接收腔体502A内的电学器件和光学器件实现多波长信号光的分束接收。
在本公开实施例中,为了充分利用光模块腔内空间,第二硬质电路板300B位于第一硬质电路板300A上方,而因为使用第五柔性电路板500A连接第一硬质电路板300A和第二硬质电路板300B,在将第一硬质电路板300A设置装配至光模块腔体内时,第五柔性电路板500A并不能支撑第二硬质电路板300B,因此需在光模块的壳体上设置支撑结构以固定第一硬质电路板300A和第二硬质电路板300B,使第一硬质电路板300A和第二硬质电路板300B之间具有足够的空间。在本公开的某一些实施例中,第一硬质电路板300A和第二硬质电路板300B分别通过上壳体201和下壳体202的挤压作用实现在光模块内的固定,如上壳体201和下壳体202的侧边分别设置固定台,然后通过相应的固定台挤压固定第一硬质电路板300A和第二硬质电路板300B。
图16为根据一些实施例的一种下壳体的结构示意图。如图16所示,下壳体202的内侧壁上设置第一固定台2021和第二固定台2022,第一固定台2021的顶面和第二固定台2022的支撑顶面位于不同的高度,进而使第一硬质电路板300A和第二硬质电路板300B位于下壳体202内不同的高度;第一固定台2021的支撑顶面被配置为接触第一硬质电路板300A的一表面,第二固定台2022的支撑顶面被配置为接触第二硬质电路板300B的一表面;相应的,上壳体201的侧边设置若干固定台,第一固定台2021向上壳体201方向支撑第一硬质电路板300A、第二固定台2022向上壳体201方向支撑第二硬质电路板300B,上壳体201上的固定台向下体体202方向支撑第一硬质电路板300A和第二硬质电路板300B,进而上壳体201侧边的固定台与第一固定台2021和第二固定台2022相配合实现第一硬质电路板300A和第二硬质电路板300B在光模块中的固定。在本公开实施例中,第一固定台2021和第二固定台 2022可为下壳体202的内侧壁上突出且具有支撑顶面的结构。
在本公开实施例中,第一固定台2021和第二固定台2022的数量通常均为多个,分别分布于下壳体202侧壁的不同位置,且第一固定台2021和第二固定台2022各个的形状可不相同。在装配光模块的过程中,可先将组装好的第一硬质电路板300A和第二硬质电路板300B装配至下壳体202中,第一固定台2021和第二固定台2022分别支撑第一硬质电路板300A和第二硬质电路板300B。
在本公开的某一些实施例中,如图16所示,为保证第一硬质电路板300A和第二硬质电路板300B安装的精度,下壳体202的侧壁上还设置第一限位柱2023和第二限位柱2024;第一限位柱2023被配置为第一硬质电路板300A的限位,第一限位柱2023不仅可以实现第一硬质电路板300A的安装定位,还可以实现第一硬质电路板300A在光模块长度方向的固定;第二限位柱2024被配置为第二硬质电路板300B的限位,第二限位柱2024不仅可以实现第二硬质电路板300B的安装定位,还可以实现第二硬质电路板300B在光模块长度方向的固定。
图17为根据一些实施例的一种第二硬质电路板装配至下壳体上的结构示意图。如图17所示,第一硬质电路板300A的侧边设置第一限位口3012,第一限位口3012卡设连接第一限位柱2023,第二硬质电路板300B的侧边设置第二限位口3022,第二限位口3022卡设连接第二限位柱2024。在本公开实施例中,第一限位柱2023和第二限位柱2024的数量可为多个,对应的第一硬质电路板300A和第二硬质电路板300B的侧边相应的设置多个第一限位口3012和第二限位口3022。
图18为根据一些实施例的一种光模块的剖视图一,图19为根据一些实施例的一种光模块的剖视图二,图20为根据一些实施例的一种光模块的剖视图三,图18-图20示出了,本公开实施例中下壳体202与第一硬质电路板300A和第二硬质电路板300B的装配结构。如图18-图20所示方向,第一固定台2021的顶面支撑第一硬质电路板300A的下表面,第二固定台2022的顶面支撑第二硬质电路板300B的下表面,第一限位口3012卡设连接第一限位柱2023,第二限位口3022卡设连接第二限位柱2024。
图21为根据一些实施例的一种上壳体的结构示意图。如图21所示,上壳体201的侧边设置第三固定台2011和第四固定台2012,第三固定台2011的顶面和第四固定台2012的顶面位于不同的高度。在本公开的某一些实施例中,第三固定台2011和第四固定台2012分别在上壳体201的两侧边分别设置多个,第三固定台2011和第四固定台2012分别设置于上壳体201的两侧。第三固定台2011和第四固定台2012可为上壳体201侧边突出且具有支撑顶面的结构。
图22为根据一些实施例的一种第二硬质电路板装配至上壳体上的结构示意图一。如图22所示,第三固定台2011的顶面被配置为接触第一硬质电路板300A的另一表面(图21中方向的上表面),第四固定台2012的顶面被配置为接触第二硬质电路板300B的另一表面。如此当上壳体201与下壳体202装配固定时,第一固定台2021和第三固定台2011分别挤压第一硬质电路板300A,实现第一硬质电路板300A与光模块壳体的固定;第二固定台2022和 第四固定台2012分别挤压第二硬质电路板300B,实现第二硬质电路板300B与光模块壳体的固定。
图23为根据一些实施例的一种第二硬质电路板装配至上壳体上的结构示意图二。如图21-23所示,上壳体201的两侧均设置有第三固定台2011和第四固定台2012,进而可均匀的挤压固定第一硬质电路板300A和第二硬质电路板300B。第三固定台2011和第四固定台2012各个的形状可不相同。
图24为根据一些实施例的一种光模块的剖视图四,图25为根据一些实施例的一种光模块的剖视图五,图24和25示出了本公开实施例中上壳体201和下壳体202的装配结构。如图24和25所示,上壳体201的两侧边均设置第三固定台2011和第四固定台2012,下壳体202的侧壁内存均设置第一固定台2021和第二固定台2022。当将上壳体201和下壳体202装配且不装配第一硬质电路板300A和第二硬质电路板300B时;第一固定台2021的支撑顶面所在平面与第三固定台2011的支撑顶面所在平面具有高度差,该高度差被配置为安装第一硬质电路板300A;第二固定台2022的支撑顶面所在平面与第四固定台2012的支撑顶面所在平面具有高度差,该高度差被配置为安装第二硬质电路板300B。
图26为根据一些实施例的一种光模块的剖视图六,图27为根据一些实施例的一种光模块的剖视图七,图28为根据一些实施例的一种光模块的剖视图八,图29为根据一些实施例的一种光模块的剖视图九,图26-29示出了本公开实施例中上壳体201、下壳体202与第一硬质电路板300A、第二硬质电路板300B的装配结构。如图26-29所示方向,第三固定台2011的顶面向下壳体202方向挤压第一硬质电路板300A,第四固定台2012的顶面向下壳体202方向挤压第二硬质电路板300B,配合下壳体202上的第一固定台2021和第二固定台2022,将第一硬质电路板300A和第二硬质电路板300B固定。在本公开实施例中,第二硬质电路板300B较第一硬质电路板300A更靠近上壳体201的顶面,因此为方便第三固定台2011挤压第一硬质电路板300A,第二硬质电路板300B上设置缺口3024,第三固定台2011穿过缺口3024与第一硬质电路板300A接触。
如图29所示,第一硬质电路板300A上设置DSP芯片304,DSP芯片304电连接第一硬质电路板300A。DSP芯片304为光模块中主要的信号处理芯片,在光模块工作过程中将产生大量的热,为便于进行DSP芯片304的散热,上壳体201的顶部内壁上设置导热台2013,第二硬质电路板300B上设置通孔3023,导热台2013穿过通孔3023导热连接DSP芯片304,如通过导热胶、导热垫连接DSP芯片304。由于上壳体201为光模块的主要散热壳体,通过导热台2013直接将DSP芯片304产生的热量传输至上壳体201,加快DSP芯片304的散热,减少DSP芯片304产生的热量对光模块中其他器件的影响。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光模块,包括
    上壳体;
    下壳体,与所述上壳体结合,形成具有开口的包裹腔体;
    光收发组件,位于所述包裹腔体中,实现光信号的发射或接收;
    第一硬质电路板,位于所述上壳体与所述下壳体之间,其一端从所述开口伸出以实现对外电连接,其另一端与所述光收发组件电连接,其边缘设置有第一避让口;
    第二硬质电路板,位于所述第一硬质电路板与所述上壳体之间;
    第四柔性电路板,呈弯曲状设置在所述第一硬质电路板的上表面与所述第二硬质电路板的下表面之间,实现所述第一硬质电路板与所述第二硬质电路板的电连接;
    其中,所述下壳体设置向上凸起穿过所述第一避让口的复用支撑柱;
    所述复用支撑柱的腰部设置有第一支撑面,所述复用支撑柱的顶部设置有第二支撑面,所述第一支撑面与所述第一硬质电路板的下表面抵接,所述第二支撑面与所述第二硬质电路板的下表面抵接。
  2. 如权利要求1所述的光模块,其中,所述上壳体设置向下凸起的压板柱;所述第二硬质电路板的边缘设置有第三避让口;所述压板柱穿过所述第三避让口抵接在所述第一硬质电路板的上表面。
  3. 如权利要求2所述的光模块,其中,所述上壳体设置有向下凸起的压板块,所述压板块的凸起高度小于所述压板柱的凸起高度,所述压板块抵接在所述第二硬质电路板的上表面。
  4. 如权利要求2所述的光模块,其中,所述压板柱的腰部设置有压板块,所述压板块的凸起高度小于所述压板柱的凸起高度,所述压板块抵接在所述第二硬质电路板的上表面。
  5. 如权利要求1所述的光模块,其中,所述第一硬质电路板的上表面非边缘区域设置有第一焊盘,所述第二硬质电路板的下表面非边缘区域设置有第二焊盘;所述第四柔性电路板的一端连接所述第一焊盘,另一端连接所述第二焊盘。
  6. 如权利要求2所述的光模块,其中,所述上壳体下表面与所述第二硬质电路板上表面之间设置柔性垫块。
  7. 如权利要求2所述的光模块,其中,所述第二硬质电路板的上表面设置有芯片,所述芯片与所述上壳体下表面之间设置有柔性垫块。
  8. 如权利要求2所述的光模块,其中,所述光模块包括第一柔性电路板、第二柔性电路板及第三柔性电路板;所述光收发组件包括第一光发射组件、第二光发射组件、第一光接收组件及第二光接收组件;所述第一光发射组件通过所述第一柔性电路板与所述第一硬质电路板电连接;所述第二光发射组件通过所述第二柔性电路板与所述第一硬质电路板电连接;所述第一光接收组件及所述第二光接收组件均通过所述第三柔性电路板与所述第一硬质电路板电连接;所述第一柔性电路板与所述第一硬质电路板的上表面电连接,所述第二柔性电路板与所述第一硬质电路板的下表面电连接,所述第三柔性电路板与所述第一硬质电路板的下表 面电连接。
  9. 一种光模块,包括:
    壳体,一端设置电口;
    第一硬质电路板,一端从所述电口伸出,侧边设置第一凹槽;
    第二硬质电路板,设置在所述第一硬质电路板的上方且位于所述壳体内,侧边设置第二凹槽;
    第五柔性电路板,设置在所述第一凹槽和所述第二凹槽内,且一端电连接所述第一硬质电路板、另一端连接所述第二硬质电路板;
    光发射组件,设置在所述壳体内,电连接所述第一硬质电路板和所述第二硬质电路板;
    光接收组件,设置在所述壳体内,电连接所述第一硬质电路板。
  10. 根据权利要求9所述的光模块,其中,所述壳体包括下壳体和上壳体,所述下壳体的内侧设置有第一固定台和第二固定台,所述上壳体的侧边设置有第三固定台和第四固定台;
    所述第一固定台接触连接所述第一硬质电路板的一面,所述第三固定台接触连接所述第一硬质电路板的另一面,所述第一固定台和所述第三固定台配合固定所述第一硬质电路板;所述二固定台连接所述第二硬质电路板的一面,所述第四固定台接触连接所述第二硬质电路板的另一面,所述二固定台和第四固定台配合固定所述第二硬质电路板。
  11. 根据权利要求9所述的光模块,其中,所述壳体的侧壁上设置有第一限位柱和第二限位柱;所述第一硬质电路板上设置第一限位口,所述第一限位口卡设连接所述第一限位柱;所述第二硬质电路板上设置第二限位口,所述第二限位口卡设连接所述第二限位柱。
  12. 根据权利要求10所述的光模块,其中,所述第二硬质电路板上设置缺口,所述第三固定台穿过所述缺口与所述第一硬质电路板接触连接。
  13. 根据权利要求10所述的光模块,其中,所述光模块还包括DSP芯片,所述DSP芯片设置在所述第一硬质电路板上,所述第二硬质电路板上设置通孔,所述上壳体的顶部内壁上设置导热台,所述导热台穿过所述通孔导热连接所述DSP芯片。
  14. 根据权利要求9所述的光模块,其中,所述光发射组件和所述光接收组件叠放设置在所述壳体的光口端。
  15. 根据权利要求14所述的光模块,其中,所述光发射组件包括光发射腔体,电连接器嵌设在所述光发射腔体上。
PCT/CN2022/078438 2021-04-16 2022-02-28 光模块 WO2022218045A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202120777111.9 2021-04-16
CN202120777111.9U CN214375429U (zh) 2021-04-16 2021-04-16 一种光模块
CN202110720057.9A CN113467012A (zh) 2021-06-28 2021-06-28 一种光模块
CN202121444186.1 2021-06-28
CN202121444186.1U CN214954239U (zh) 2021-06-28 2021-06-28 一种光模块
CN202110720057.9 2021-06-28

Publications (1)

Publication Number Publication Date
WO2022218045A1 true WO2022218045A1 (zh) 2022-10-20

Family

ID=83640167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078438 WO2022218045A1 (zh) 2021-04-16 2022-02-28 光模块

Country Status (1)

Country Link
WO (1) WO2022218045A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093287A1 (en) * 2004-10-05 2006-05-04 Satoshi Yoshikawa Heat dissipating mechanism of a pluggable optical transceiver
CN1972157A (zh) * 2005-06-27 2007-05-30 英特尔公司 具有双板柔性电路的光发射应答器模块
US20070232091A1 (en) * 2006-04-04 2007-10-04 Finisar Corporation Communications module edge connector having multiple communication interface pads
JP2010146121A (ja) * 2008-12-16 2010-07-01 T4U Kk シンクライアント端末
CN102100010A (zh) * 2008-05-20 2011-06-15 菲尼萨公司 具有双印刷电路板的收发器模块
CN103858040A (zh) * 2011-09-23 2014-06-11 泰科电子连接荷兰公司 用于双向通信的光学接口
CN110488431A (zh) * 2019-08-06 2019-11-22 武汉光迅科技股份有限公司 一种光模块
CN212486512U (zh) * 2020-06-12 2021-02-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN113467012A (zh) * 2021-06-28 2021-10-01 青岛海信宽带多媒体技术有限公司 一种光模块
CN214375429U (zh) * 2021-04-16 2021-10-08 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093287A1 (en) * 2004-10-05 2006-05-04 Satoshi Yoshikawa Heat dissipating mechanism of a pluggable optical transceiver
CN1972157A (zh) * 2005-06-27 2007-05-30 英特尔公司 具有双板柔性电路的光发射应答器模块
US20070232091A1 (en) * 2006-04-04 2007-10-04 Finisar Corporation Communications module edge connector having multiple communication interface pads
CN102100010A (zh) * 2008-05-20 2011-06-15 菲尼萨公司 具有双印刷电路板的收发器模块
JP2010146121A (ja) * 2008-12-16 2010-07-01 T4U Kk シンクライアント端末
CN103858040A (zh) * 2011-09-23 2014-06-11 泰科电子连接荷兰公司 用于双向通信的光学接口
CN110488431A (zh) * 2019-08-06 2019-11-22 武汉光迅科技股份有限公司 一种光模块
CN212486512U (zh) * 2020-06-12 2021-02-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN214375429U (zh) * 2021-04-16 2021-10-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN113467012A (zh) * 2021-06-28 2021-10-01 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN214375429U (zh) 一种光模块
WO2022083366A1 (zh) 一种光模块
CN114035287B (zh) 一种光模块
CN113467012A (zh) 一种光模块
CN114035286B (zh) 一种光模块
WO2022041801A1 (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114035288A (zh) 一种光模块
CN214278492U (zh) 一种光模块
WO2021114714A1 (zh) 一种光模块
WO2023030457A1 (zh) 光模块
CN214954239U (zh) 一种光模块
WO2022218045A1 (zh) 光模块
CN217693343U (zh) 一种光模块
CN218125028U (zh) 一种电路板与光模块
CN218125029U (zh) 一种电路板与光模块
US20220221667A1 (en) Optical Module
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN115220160B (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
CN216248442U (zh) 一种光模块
WO2023035711A1 (zh) 光模块
CN216310330U (zh) 一种光模块
WO2022193734A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787275

Country of ref document: EP

Kind code of ref document: A1