WO2022218044A1 - 一种固废协同烧结、球团的处置工艺 - Google Patents

一种固废协同烧结、球团的处置工艺 Download PDF

Info

Publication number
WO2022218044A1
WO2022218044A1 PCT/CN2022/078410 CN2022078410W WO2022218044A1 WO 2022218044 A1 WO2022218044 A1 WO 2022218044A1 CN 2022078410 W CN2022078410 W CN 2022078410W WO 2022218044 A1 WO2022218044 A1 WO 2022218044A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid waste
ore
water content
rotary kiln
sintering
Prior art date
Application number
PCT/CN2022/078410
Other languages
English (en)
French (fr)
Inventor
叶恒棣
李谦
魏进超
王兆才
周浩宇
沈维民
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Priority to BR112023019933A priority Critical patent/BR112023019933A2/pt
Publication of WO2022218044A1 publication Critical patent/WO2022218044A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/248Binding; Briquetting ; Granulating of metal scrap or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a solid waste treatment process, in particular to a solid waste synergistic sintering and pellet disposal process, and belongs to the technical field of multi-source solid waste synergistic sintering and pellet treatment.
  • Solid waste is the waste material produced by people in normal production and life, and has lost its original use value. Due to the difficult site selection, high operating cost, and serious NIMBY effect of centralized disposal facilities for solid waste, especially hazardous waste, there is a serious gap in solid waste disposal capacity. At present, the massive accumulation of solid waste in my country has made it difficult to support the fragile environmental carrying capacity, and has become the main incentive for "NIMBY" incidents. Realizing the reduction, resource utilization and harmless disposal of solid waste at the source has become an urgent and important civil demand. Therefore, exploring a new path for multi-source solid waste collaborative resource disposal technology is an important direction for the development of current solid waste disposal technology.
  • multi-source solid waste collaborative resource disposal is to classify multi-source solid waste, pre-process and mix it in a certain way, and then add it to the existing industrial production process.
  • the TFe content ranges from 60 to 67%, with a fluctuation range of ⁇ 0.5%; for hematite-based raw materials, TFe content ranges from 55 to 65%, with a fluctuation range of ⁇ 0.5%.
  • the fluctuation range of S is 0.10-0.40%, the fluctuation range of P is 0.05-0.20%, and the acceptance of the fluctuation range of other impurity elements is also high.
  • the sintering pelletizing process has the characteristics of large scale, strong adaptability of raw materials and high temperature.
  • the proportion of waste introduced is small, and the impact on the sintering and pelletizing process is controllable. Calculated with a solid waste ratio of 1%, the maximum solid waste consumption of a single 660m 2 sintering machine can reach 70,000 to 100,000 tons per year.
  • the solid waste disposal process is often imperfect and not closed-loop.
  • organic solid waste especially hazardous waste incineration residue and fly ash
  • the current incineration residue and fly ash are often simply stabilized and solidified with cement, lime and water, and then safely landfilled.
  • Such a disposal process is a waste of residue resources and does not completely eliminate its environmental impact. There are still two risk of secondary contamination.
  • the pretreated slag phase of the solid waste is directly mixed with the sintering raw material or the pelletizing raw material, and then transported to the sintering process or the pelletizing process. Due to the different requirements for raw materials in the sintering process and the pelletizing process, after solid waste is added to the raw materials for sintering and pelletizing, the granulation effect of the raw materials entering the sintering process or the pelletizing process is not good, and the particle size is uneven, which leads to sintering. The ore and pellets are of lower quality.
  • the solid waste incineration slag or pyrolysis slag is incinerated or pyrolyzed at high temperature, and the moisture is dried, and has a certain hydrophobicity, which is not easy to reabsorb moisture. Therefore, a part of the sintered slag and/or pyrolysis slag is mixed with high water content ore (including but not limited to laterite nickel ore, limonite, etc.) to dilute the moisture in the ore, and the sintered slag and/or pyrolysis
  • the slag is evenly mixed in the original sinter to resist the thermal shock entering the furnace, which can alleviate the wear caused by the bursting of the high-water sinter lump ore and prolong the service life of the ignition furnace.
  • the present invention provides a solid waste synergistic sintering and pellet disposal process.
  • Incineration and/or pyrolysis of organic solid waste will produce incineration residues or pyrolysis residues.
  • These solid waste pretreatment residues usually also have a certain calorific value, which is mixed with sintering raw materials and/or pellet raw materials; on the one hand, it can replace part of the fuel and reduce production costs.
  • the pyrolysis gas generated by the pyrolysis of solid waste can be used as fuel for the sintering process or pelletizing process, further reducing production costs. The waste gas generated by the process is treated together.
  • the process has wide adaptability to various types of solid waste, can realize the co-processing of various solid wastes, and finally realize the whole-process disposal of various solid wastes, completely eliminating the impact of solid waste on the environment and the risk of secondary pollution. Without affecting the quality of the sintering process and/or pelletizing process product.
  • a solid waste synergistic sintering and pellet disposal process comprises the following steps:
  • Solid waste pretreatment the solid waste is subjected to a pyrolysis process and/or an incineration process to obtain a solid waste residue.
  • step (2) Screening: the solid waste residue obtained in step (1) is screened to obtain a solid waste residue with a coarse particle size and a solid waste residue with a fine particle size.
  • the average particle size D of the solid waste residue with coarse particle size is greater than or equal to D 0
  • the average particle size D of the solid waste residue with fine particle size is smaller than D 0 .
  • D 0 is 160-240 mesh, preferably 180-220 mesh.
  • the solid waste is one or more of organic solid waste, iron-containing high-zinc solid waste, iron-containing low-salt and low-zinc solid waste, and iron-containing high-salt solid waste.
  • it is organic solid waste.
  • the volatile content in the solid waste residue obtained is lower than H 0 %, where H 0 is 4-12, preferably 5-10.
  • the solid waste is subjected to a pyrolysis process and/or an incineration process to obtain pyrolysis gas and/or high-temperature flue gas.
  • the pyrolysis gas is transported to the sintering machine, and sprayed on the surface of the sintering mixture in the sintering machine by means of spraying, and used as sintering fuel.
  • the pyrolysis gas is sent to the pelletizing process and used as a fuel for the oxidative roasting of the pellets.
  • the high temperature flue gas is treated together with the waste gas generated from the sintering process and/or the pelletizing process.
  • the incineration process and/or the pyrolysis process are all performed by a heat treatment rotary kiln.
  • the heat treatment rotary kiln includes a kiln head, a kiln body and a discharge port.
  • the kiln head is provided with a material inlet channel, a combustion-supporting air channel and an annular air intake channel.
  • the kiln body includes furnace lining and hearth, as well as buried kiln body air inlet pipes.
  • the material inlet channel and the combustion-supporting air channel both pass through the kiln head and communicate with the furnace.
  • the annular air inlet channel is arranged inside the kiln head.
  • the buried kiln body air inlet pipe is arranged inside the furnace lining.
  • One end of the buried kiln body air inlet duct is communicated with the annular air inlet passage.
  • the other end of the buried kiln body air inlet pipe is communicated with the furnace hearth.
  • the annular air intake channel is also connected with an air intake duct.
  • the heat treatment rotary kiln further includes a plurality of the buried kiln body air inlet pipes.
  • a plurality of the buried kiln body air inlet pipes are evenly distributed and arranged inside the furnace lining.
  • the lengths of the plurality of buried kiln body air inlet pipes in the direction extending from the kiln head to the kiln body are the same or different.
  • the heat treatment rotary kiln further includes an air intake nozzle, which is arranged in the furnace and connected with the air outlet of the air inlet duct of the buried kiln body.
  • the air inlet of the air inlet nozzle is provided with a partition screen.
  • the heat treatment rotary kiln also includes an inlet pipe valve.
  • the air inlet duct valve is arranged on the furnace lining corresponding to the air inlet duct of the buried kiln body.
  • the opening and closing degree of the air inlet duct of the buried kiln body is controlled by adjusting the valve of the air inlet duct.
  • the number of the inlet duct valves is consistent with the number of the buried kiln body inlet ducts.
  • the heat treatment rotary kiln also includes a temperature probe.
  • the temperature probe is arranged in the furnace at the outlet of the air inlet duct of the buried kiln body.
  • the volatile content in the solid waste residue is lower than H 0 %, specifically:
  • the solid waste is put into the furnace through the material inlet channel for pyrolysis or incineration.
  • the combustion-supporting air enters the furnace through the combustion-supporting air channel to provide oxygen for the pyrolysis or incineration of solid waste.
  • the solid waste residue and flue gas after pyrolysis or incineration are discharged through the discharge port.
  • the sintering raw material is high water content ore, and the coarse particle size solid waste obtained in step (2) and the high water content ore are mixed and transported to the sintering process.
  • the high water content ore is an ore with a water content mass fraction greater than W%.
  • W is 5-15.
  • W is 8-13. More preferably, W is 10-12.
  • the high water content ore is lump ore, preferably laterite nickel ore and/or limonite.
  • the mass fraction of moisture content in the coarse-grained solid waste residue is less than P%.
  • P is 0.5-5.
  • P is 0.5-3. More preferably P is 0.5-2.
  • the process further comprises: detecting the moisture content W 0 in the high-water ore:
  • the high-water-cut ore is pretreated so that the moisture content W 0 in the high-water-cut ore is less than W max .
  • W max is 10%-15%.
  • the pretreatment of the high water-cut ore is performed using a pretreatment system.
  • the pretreatment system includes a pretreatment rotary kiln, a sleeve-type drying and screening device and a heat medium conveying pipeline.
  • the pretreatment rotary kiln is provided with a high water content ore feed port, a high water content ore discharge port, a heat medium inlet and a heat medium outlet.
  • the sleeve type drying and screening device is arranged inside the pretreatment rotary kiln. One end of the sleeve-type drying and screening device is communicated with the feed port of the high-water ore, and the other end is communicated with the outlet of the high-water ore.
  • the heat medium delivery pipe is connected to the heat medium inlet.
  • the sleeve-type drying and screening device includes an inner tank and a sleeve.
  • the inner tank and the sleeve are concentric cylinders with each other.
  • the sleeve is arranged inside the side wall of the pretreatment rotary kiln.
  • the inner liner is fitted with the inner wall of the sleeve.
  • One end of the inner tank is provided with a feeding port, and the feeding port is communicated with the feeding port of the high water content ore of the pretreatment rotary kiln.
  • the other end of the inner pot extends into the inner cavity of the sleeve.
  • the sleeve is provided with a discharge port at one end away from the inner liner, and the discharge port is communicated with the discharge port of the high-water content ore of the pretreatment rotary kiln.
  • sieve holes are provided on the cylindrical wall of the sleeve.
  • the chamber that overlaps the sleeve and the liner is a pre-drying chamber, and the remaining part of the chamber in the sleeve that does not overlap with the liner constitutes a drying and screening chamber.
  • the drying and sieving chamber is communicated with the interlayer through the sieve holes.
  • the interlayer is also provided with a fine material discharge port.
  • the fine material discharge port is arranged on the side wall of the pretreatment rotary kiln, and is located near the discharge port of the high water content ore.
  • the inner liner is a telescopic structure.
  • the aperture of the sieve is 5-20 mm, preferably 6-15 mm, and more preferably 7-10 mm.
  • a first moisture detection device, a first material flow detection device, and a first material temperature detection device are provided at the feed inlet of the high water content ore on the pretreatment rotary kiln.
  • a first material flow rate detection device is provided on the sleeve type drying and screening device in the pretreatment rotary kiln.
  • a second moisture detection device is provided at the discharge port of the high-water content ore of the pretreatment rotary kiln.
  • the pretreatment of the high water-cut ore is specifically:
  • the high water content ore to be treated is simultaneously dried and screened in the pretreatment rotary kiln through the casing type drying and screening device to obtain dry large particle high water content ore.
  • a first moisture detection device, a first material flow detection device, and a first material temperature detection device are provided at the high-water content ore feed inlet of the pretreatment rotary kiln.
  • a first material flow rate detection device is provided on the sleeve type drying and screening device in the pretreatment rotary kiln.
  • the first moisture detection device detects the moisture content in the high-water content ore entering the pretreatment rotary kiln, which is recorded as W 0 , %.
  • the first material flow detection device detects the high water content ore put into the pretreatment rotary kiln at a single time, which is recorded as M 0 , m 3 .
  • the first material temperature detection device detects the temperature of the ore with high water content entering the pretreatment rotary kiln, which is recorded as T 0 , °C.
  • the first material flow rate detection device detects the moving speed of the high water content ore in the pretreatment rotary kiln, which is recorded as V 1 , m/s.
  • the upper limit of the moisture content of the high-water content ore before entering the sintering process is set as W max , %. Calculate the total displacement L, m that the high water content ore needs to flow through the drying and screening chamber in the pretreatment rotary kiln.
  • C is the specific heat capacity of the high water content ore
  • C is the specific heat capacity of the heat medium
  • is the bulk density of high-water ore
  • is the density of the heat medium.
  • T is the temperature when the heat medium is input to the pretreatment rotary kiln
  • V2 is the flow rate of the heat medium
  • S is the cross- sectional area of the heat medium inlet.
  • the heat medium dries the high water content ore in the pretreatment rotary kiln, and adjusts the total displacement of the high water content ore flowing through the drying and screening chamber in the pretreatment rotary kiln to be no less than L, so that the high water content ore is discharged from the discharge port.
  • the moisture content of the large-grain high-moisture ore is lower than Wmax .
  • the solid waste disposal process is often imperfect and not closed-loop; the incineration residues and fly ash of organic hazardous wastes are still hazardous wastes, which contain more heavy metal elements and still have leaching toxicity.
  • the current incineration residues and fly ash are often simply stabilized and solidified with cement, lime, and water, and then safely landfilled.
  • Such a disposal process is a waste of residue resources and does not completely eliminate its environmental impact. There are still two risk of secondary contamination.
  • co-processing solid waste by sintering it usually only involves co-processing of a single solid waste and sintering, and the types of solid waste to be disposed of are very limited, which cannot adapt to the complex solid waste output of iron and steel plants. The role and status of waste disposal have not been fully brought into play.
  • the solid waste in view of the characteristics of multi-source and complex composition of solid waste in iron and steel enterprises and/or municipal solid waste, combined with the characteristics of sintering and pelletizing processes, as well as the characteristics of accommodating and digesting solid waste, the solid waste is uniformly processed.
  • the pretreatment slag produced by the pretreatment enters the sintering and/or pelletizing process for final disposal (for example, mixing the obtained pretreatment slag with sintering raw materials and/or pelletizing raw materials) , and then the mixed material is transported to the sintering process and/or pelletizing process); further, the pyrolysis gas generated by the pretreatment is used as the fuel for the sintering process and/or the pelletizing process, and the The waste heat flue gas is merged into the sintering flue gas and/or pellet waste gas for synergistic purification, and the wastewater generated from the pretreatment and the wastewater generated by the sintering process and/or the pelletizing process are treated together with the wastewater. Finally, the whole process of disposal of various solid wastes is realized, and the impact of solid waste on the environment and the risk of secondary pollution are completely eliminated.
  • the solid waste residue after solid waste incineration and/or pyrolysis generally also has a certain calorific value. , it can be mixed with sintered raw material or pellet raw material, which can replace part of the fuel and reduce the production cost.
  • the solid waste slag usually has a certain brittleness. After the reaction in the incinerator or the pyrolysis furnace, as well as the wear and extrusion of the materials, the solid waste slag will have different particle sizes.
  • the powdery solid waste residue with too fine particle size (generally lower than 200 mesh) will contribute to the pelletizing process of the raw materials and is more conducive to pelletizing. Therefore, after the solid waste slag comes out of the incineration or pyrolysis furnace, through the screening process, the fine particle size solid waste slag is added to the pellet raw material, and then enters the subsequent pellet production process; the coarse particle size solid waste slag is added to the sintering raw material directly with the sintering raw material.
  • the sintered ore is mixed evenly and sent to the sintering disposal (the volatile content of the general solid waste slag after heat treatment is less than about 8%, which meets the requirements of the sintering machine feed).
  • the multi-source solid waste By subjecting the multi-source solid waste to centralized heat treatment (incineration and/or pyrolysis), and then sieving it, the solid waste slag with different particle sizes can match the requirements of the sintering process and the pelletizing process respectively;
  • Centralized treatment can also be based on the characteristics of solid waste digestion in the sintering process or pelletizing process, so as to realize the whole process of solid waste disposal, and at the same time, it can also promote the sintering process and pelletizing process and reduce production costs.
  • the method of directly mixing the pretreated slag phase of the solid waste into the sintered raw material or pellet raw material in the prior art is changed.
  • the coarse particle size solid waste residue and the sintering raw material are mixed and transported to the sintering process, and the fine particle size solid waste residue and the pelletizing raw material are mixed and transported to the pelletizing process.
  • Its functions are as follows: 1. Too much fine-grained material entering the sintering process will affect the granulation effect of the sintering mixture and increase the granulation cost.
  • the solid waste residue of coarse particles >1mm
  • the solid waste containing organic carbon (combustible carbon) in the solid waste is organic solid waste.
  • a certain degree of retention is convenient for utilization in the subsequent sintering or pelletizing process, thereby reducing the amount of fuel input in the sintering process or pelletizing process and reducing costs.
  • gaseous combustibles mainly pyrolysis gas
  • the combustion rate of solid is much lower than that of gas, it is possible to control a reasonable Combustion temperature, combustion time, oxygen supply, etc., so as to ensure that the gaseous combustibles are fully burned or transport the combustible gas to the sintering process and/or pelletizing process for use as fuel, while a part of organic combustibles remains in the solid residue, which is mixed with the sintering raw materials and pellets. / or pellet raw materials are mixed.
  • the oxygen supply, incineration time and incineration temperature of organic solid waste in the oxidation incineration process the incineration degree of the oxidation incineration process or the pyrolysis rate of the pyrolysis process is controlled.
  • the total heat in the organic solid waste is controllably distributed to the solid waste residue and pyrolysis gas. In turn, optimal carbon reduction in the sintering process or pelletizing process is achieved.
  • the incineration process and/or the pyrolysis process are all performed by a heat treatment rotary kiln, which is a rotary kiln with a furnace temperature detection mechanism and a buried kiln body air intake mechanism, which can detect the temperature of each area in the furnace.
  • the temperature distribution is realized, and the real-time control of the air intake through the kiln body is realized, and the air intake system of the kiln body is adjusted in real time according to the currently detected temperature distribution in the furnace, which effectively ensures the incineration or pyrolysis effect in the furnace chamber of the rotary kiln.
  • the kiln head of the heat treatment rotary kiln according to the present invention is respectively provided with a material inlet channel, a combustion-supporting air channel and a buried kiln body air inlet channel that do not communicate with each other.
  • a material inlet channel a combustion-supporting air channel
  • a buried kiln body air inlet channel that do not communicate with each other.
  • the gas outlet of the kiln is evenly distributed along the direction from the kiln head to the kiln tail, so that the combustion-supporting gas transported into the furnace is evenly distributed, thereby making the temperature regulation in the furnace flexible and accurate.
  • the air outlets of the plurality of buried kiln body air inlet pipes are all provided with air inlet nozzles with a certain height.
  • the direction of the nozzle, and the outlet plane of the spout is arranged with a mesh steel structure partition to prevent the material from falling into the trachea during the process of traveling, causing the trachea to be blocked.
  • the furnace lining of the heat treatment rotary kiln is made of a material with heat preservation effect, and the thickness of the furnace lining is 3-50cm (preferably 5-30cm, more preferably 8-15cm), and the furnace lining is completely
  • the furnace chamber is clad, reducing heat loss. Excessive heat radiation to the outside is also avoided.
  • a plurality of temperature probes are arranged in the furnace (the temperature probes are arranged at the intersection of the air jetting direction of the air inlet nozzle, and the accessories of each air inlet nozzle are provided with at least one temperature probe) in real time.
  • the temperature of the area changes, and the system is adjusted according to the change, so that the temperature of each area in the furnace is uniform and within the optimal ideal heat treatment temperature range.
  • the process of rotating solid waste in the heat treatment rotary kiln through real-time detection of temperature changes in different pyrolysis or incineration areas in the furnace, by adjusting the amount of solid waste or by adjusting the inlet pipe valve to control the different buried kiln bodies.
  • the input of the air duct to the air volume of the different pyrolysis or incineration areas in the furnace so as to ensure that the volatile content in the solid waste residue is lower than H 0 %.
  • Tp (T1+T2+T3+...+Tx)/x... Formula III.
  • ST is the variance of temperature.
  • Ty is the absolute value of the difference between the temperature of each temperature detection point and the average temperature, and the corresponding temperature value Ti when Ty is the largest is taken to determine:
  • step i) After completing the adjustment, go back to step i) and continue monitoring.
  • step ii) when Tp ⁇ (Ta-C), increase the amount of organic solid waste in the furnace through the material inlet channel or put in a larger calorific value under the premise that the amount of organic solid waste is constant.
  • Organic solid waste is carried out step by step.
  • Tp>(Ta+C) reducing the amount of organic solid waste in the furnace through the material inlet channel or adding organic solid waste with a smaller calorific value under the premise of keeping the amount of organic solid waste unchanged is a step-by-step process.
  • the adjustment amount of materials increased or decreased in each step is k%, based on the percentage of the total mass of single organic solid waste input.
  • the value of k is 1-15, preferably 2-12, more preferably 3-9.
  • the best adjustment suggestions are as follows: a negative value of the total organic solid waste adjustment percentage means reducing the amount of materials put in, and a positive value means increasing the amount of organic solid waste put in. (This cannot be used as a basis for limiting the solution of the present invention)
  • the organic solid waste adjustment amount with a larger or smaller input calorific value is g%, based on the percentage of the total calorific value of a single organic solid waste input.
  • the value of g is 1-15, preferably 2-12, more preferably 3-9.
  • the best adjustment suggestions are as follows: a negative value of the total material adjustment percentage means reducing the calorific value of organic solid waste, and a positive value means increasing the calorific value of organic solid waste. (This cannot be used as a basis for limiting the solution of the present invention)
  • the reduction or increase of the air intake through the buried kiln body air inlet duct is performed in steps, and the air intake adjustment amount reduced or increased in each step is f%, based on the total air intake volume. percentage.
  • the value of p is 1-10, preferably 2-8, more preferably 3-5.
  • the best adjustment suggestions are as follows: a negative value of the air intake volume adjustment percentage means reducing the air intake volume, and a positive value means increasing the air intake volume. (This cannot be used as a basis for limiting the solution of the present invention)
  • the raw material for sintering is high water content ore (high water content ore is the ore whose water content mass fraction is greater than W%.
  • W is 5-15.
  • W is 8-13. More preferably W is 10-12). Due to the high moisture content of these minerals (such as laterite nickel ore, limonite, etc.), sintering machine ignition furnaces using high moisture minerals as raw materials are often subject to wear and contamination caused by material surface collapse.
  • solid waste with low water content is obtained after the solid waste is treated in a pyrolysis process and/or an incineration process. After the solid waste is treated at high temperature, its moisture is dried and has a certain hydrophobicity, which is not easy to reabsorb moisture.
  • the solid waste residue and the high water content ore are directly in a certain ratio (for example, the mass ratio of the solid waste residue and the high water content ore in the mixture is 1:10-100, preferably 1:12-80, more preferably 1:15- 50)
  • the mixing ratio of the two should be determined according to their specific water content and quality, so that the water content of the mixed material meets the requirements of the sintering process.
  • the second is to mix the solid waste slag with part of the high water content ore, and then spread the mixture evenly on the surface of the remaining part of the high water content ore sintering raw material in the sintering trolley (for example, the laying thickness is 5-100mm, preferably 10-80mm, more It is preferably 20-50mm); then in the sintering trolley, directly spread the solid waste slag evenly on the surface of all high-water ore sintering raw materials (for example, the laying thickness is 1-80mm, preferably 3-60mm, more preferably 5- 40mm).
  • the above three co-processing methods of solid waste slag and high water content ore can well resist the thermal shock of entering the furnace, and avoid the instantaneous expansion of water in the high water content ore when the surface sintered ore is subjected to high temperature instantaneously, causing the lump ore to burst. . Effectively prolong the service life of the ignition furnace.
  • the maximum water content of the high-water content ore before the sintering process simultaneously with the solid waste residue should be limited to 10-15wt%. Since the amount of solid waste slag involved in the sintering process is limited, for high-water ore with high water content (more than 10-15wt%), the limited amount of mixed solid waste slag cannot very well relieve the mineral burst. The problem. As for this part of the high water content ores whose moisture content is greater than the above-mentioned limited range, this part of the high water-cut ores needs to be pretreated so that their water content falls within the above-mentioned limited water content range.
  • the research shows that it is feasible to use heat medium to dry and pre-treat high-water ore in the storage silo, which can not only effectively reduce the moisture of high-water ore, but also greatly reduce the energy consumption required for drying.
  • High water content ores can be more suitable for solid waste residues, thereby improving the safety of the ignition furnace.
  • the high water content minerals exist in the storage silo in a piled state, especially the existence of fine-grained materials, which leads to the deviation of the overall material permeability of the silo, and the hot air cannot penetrate the material smoothly, resulting in poor drying effect.
  • the temperature of the upper part of the silo is lower than the moisture dew point temperature, which is easy to cause condensation of water vapor, which will cause harm to the dust removal system.
  • a pretreatment method which directly adopts the pretreatment rotary kiln for drying and screening; the high water content ore is dried and screened in the pretreatment rotary kiln. It is divided into pretreatment to remove the moisture of high water content ores and screen out coarse materials and fine materials (after high water content ores are screened according to particle size or particle size, and then the high water content ores (sieve) after particle size screening and reduced water content are screened.
  • the upper coarse material is transported to the sintering trolley.
  • the fine material under the sieve can be transported to the sintering batching system).
  • the heat source required for drying is preferably derived from hot waste gas from a steel mill (eg, hot waste gas from blast furnaces or heat sources from solid waste incineration or pyrolysis).
  • the pretreatment method proposed by the invention is simple, practical and reliable, which is beneficial to the popularization and application of engineering.
  • Rotary kiln is a relatively closed environment.
  • the water removal efficiency of high water content ore is high, which solves the difficulty of direct sintering of lump ore with large water content, improves the moisture content and air permeability level of high water content ore, and effectively reduces the
  • the sintering production cost is reduced, and the antegrade level of the sintering machine is improved.
  • the promotion of the invention has good economic benefits, social benefits and environmental benefits.
  • the heat medium may be hot exhaust gas with relatively high temperature, or hot air after heating treatment.
  • the temperature of the heat medium may be higher than or equal to 100°C.
  • the pretreatment rotary kiln is used to dry and pretreat the high water content ore, and the heat medium is transported to the pretreatment rotary kiln; Evaporate, take away, and discharge the rotary kiln together with the heat medium after heat exchange, so as to achieve the purpose of reducing the water content of the high water content ore.
  • high water content minerals exist in an accumulation state in the pretreatment rotary kiln, especially the existence of fine-grained materials, which leads to the deviation of the overall material permeability of the rotary kiln and affects the drying effect.
  • Some fine-grained materials are easy to stick to the wall surface of the pretreatment rotary kiln under the action of local high temperature, which shortens the life of the pretreatment rotary kiln.
  • the ore with high water content to be treated is transported to the pretreatment rotary kiln for drying, and the ore with high water content to be treated is also screened. During the downward process of the ore with high water content in the rotary kiln, the fine materials continue to pass through the screen holes.
  • the hot gas generated by solid waste incineration and/or pyrolysis to dry and dispose of the high water content ore in the storage silo, which can not only effectively reduce the water content of the high water content ore entering the furnace, but also greatly reduce the The energy consumption required for drying is reduced, and the dried high-water ore can increase the proportion of the furnace to a certain extent, thereby reducing the burning cost.
  • the hot waste gas from solid waste incineration and/or pyrolysis can be further utilized, the effect of the whole process of solid waste treatment is improved, the secondary pollution of solid waste is reduced or even eliminated, and the pollutants of solid waste treatment are realized. zero emission.
  • the sleeve type drying screen in the pretreatment rotary kiln is installed.
  • the sub-device is provided with a first material flow rate detection device, the first moisture detection device detects the moisture content in the high water content ore entering the pretreatment rotary kiln, and the first material flow detection device detects the high water content ore put into the pretreatment rotary kiln at a single time.
  • the first material temperature detection device detects the temperature of the high water content ore entering the pretreatment rotary kiln
  • the first material flow rate detection device detects the moving speed of the high water content ore in the pretreatment rotary kiln.
  • the upper limit of the moisture content of the high-water ore before entering the sintering process is set as W max , %.
  • a first moisture detection device is provided at the feed inlet of the high-water content ore of the pretreatment rotary kiln, and the initial airflow velocity of the heat medium transported to the pretreatment rotary kiln is set.
  • the moisture content in the lump ore of the rotary kiln is treated, and the upper limit of the moisture content of the ore with high water content before entering the sintering process is set as W max , %.
  • a second moisture detection device is provided at the discharge port of the high water content ore of the pretreatment rotary kiln to set the initial airflow velocity of the heat medium transported to the pretreatment rotary kiln, and the second moisture detection device detects the pretreatment.
  • the rotary kiln discharges the moisture content in the high-water ore, and the upper limit of the water content of the high-water ore before entering the sintering process is set as W max .
  • the invention designs a sleeve-type drying and screening device with screen holes, and can realize the drying and screening of high-water ore ores through one process. There is no need to set up an additional screening device for high water content ores to screen high water content ores, which reduces production costs and greatly improves production efficiency. It should be noted that if an independent screening device is additionally installed, in the process of conveying the large particles of high water content ore obtained after screening to the drying device, new fine particles will inevitably be generated due to the wear between the high water content ores. material, which in turn affects the drying effect of high-water ore and the subsequent sintering and smelting effect.
  • the technical solution provided by the present invention can achieve the mixing properties of high water content ore and solid waste slag, so that after the high water content ore enters the sintering process, under the protection of solid waste slag, the bursting phenomenon caused by instantaneous high temperature can be avoided, and the point-to-point ratio is reduced.
  • the wear of the furnace not only ensures the stability of the sintering process, but also realizes the reprocessing of the solid waste residue, avoiding the secondary pollution of the solid waste.
  • the present invention distributes the fine-grained solid waste (generally less than 200 mesh) into the pelletizing process, and the coarse-grained solid waste into the sintering process. It avoids that the fine-grained solid waste slag is directly mixed into the sintering raw material, which will affect the air permeability of sintering and reduce the sintering quality. On the other hand, it also avoids the problem that the coarse particle size solid waste residue directly enters the pellet raw material and is not conducive to the formation of pellets.
  • the solid waste residue has a certain calorific value, it can be mixed with sintering raw materials or pellet raw materials to replace part of the fuel. It can be centrally treated with sintering or pelletizing flue gas, thereby realizing the whole process of solid waste disposal, and at the same time, it can also promote the sintering process and pelletizing process, and reduce production costs.
  • the heat treatment rotary kiln incineration system of the present invention adopts the mechanism of section air intake of the kiln body, and the air is supplied to the combustion of the material through the buried air intake pipe of the kiln body, so as to realize the secondary air intake of the kiln body and the primary air intake of the kiln head.
  • the organic combination of air according to the currently detected temperature distribution in the furnace, adjusts the air inlet system of the kiln body in real time, which effectively ensures the incineration or pyrolysis effect in the furnace, and avoids excessively high and low temperature in the rotary kiln furnace.
  • the precise control of the kiln temperature is realized, and the accuracy and flexibility of the control of the incineration degree of organic solid waste or the pyrolysis rate are improved.
  • the pretreatment rotary kiln is used to pretreat the high water content ore, and the heat medium is transported to the pretreatment rotary kiln to dry the high water content ore to reduce the moisture content in the high water content ore.
  • the disadvantage of drying in the pretreatment rotary kiln is to adopt the method of drying and screening with a telescopic sleeve type drying and screening device. Multiple sleeve type drying and screening devices are evenly arranged. The sleeve is discharged to the material collection chamber, while the small particles of high water content ores are directly discharged from the interlayer between the sleeve and the side wall of the rotary kiln.
  • the direct heat exchange between the heat medium and the high water content ore greatly improves the drying effect of the high water content ore in the rotary kiln.
  • the inner liner of the pretreatment rotary kiln of the present invention is an adjustable telescopic structure. By adjusting the length of the inner liner extending into the sleeve, the adjustment of the length of the pre-drying chamber and the drying and screening chamber for high-water minerals is realized. The purpose is to ensure the heat exchange effect of the high water content ore, so as to ensure that the water content of the high water content ore can meet the production requirements of the sintering process.
  • Fig. 1 is the process flow chart of the solid waste co-sintering and pellet disposal of the present invention.
  • FIG. 2 is a process diagram of the solid whole process disposal process of the present invention.
  • Figure 3 is a schematic structural diagram of the heat treatment rotary kiln of the present invention.
  • Figure 4 is an A-A sectional view of the heat treatment rotary kiln of the present invention.
  • Figure 5 is a B-B sectional view of the heat treatment rotary kiln of the present invention.
  • Fig. 6 is a C-direction view of the heat treatment rotary kiln of the present invention.
  • Fig. 7 is a flow chart of the co-processing of solid waste residues and high water content mines according to the present invention.
  • Fig. 8 is a structural diagram of a rotary kiln for pretreatment of high water-cut ore according to the present invention.
  • FIG. 9 is a structural diagram of a pretreatment rotary kiln with a detection mechanism according to the present invention.
  • Figure 10 is a flow chart of the present invention for pretreatment of high water-cut ore.
  • a solid waste co-sintering and pellet disposal process includes the following steps:
  • Solid waste pretreatment the solid waste is incinerated to obtain solid waste residue.
  • step (2) Screening: the solid waste residue obtained in step (1) is screened to obtain a solid waste residue with a coarse particle size and a solid waste residue with a fine particle size.
  • the average particle size D of the solid waste residue with coarse particle size is coarser than or equal to D 0
  • the average particle size D of the solid waste residue with fine particle size is smaller than D 0 .
  • D 0 is 160-240 mesh.
  • a solid waste co-sintering and pellet disposal process includes the following steps:
  • Solid waste pretreatment the solid waste is subjected to a pyrolysis process to obtain solid waste residue.
  • step (2) Screening: the solid waste residue obtained in step (1) is screened to obtain a solid waste residue with a coarse particle size and a solid waste residue with a fine particle size.
  • the average particle size D of the solid waste residue with coarse particle size is coarser than or equal to D 0
  • the average particle size D of the solid waste residue with fine particle size is smaller than D 0 .
  • D 0 is 180-220 mesh.
  • Example 1 was repeated, and the solid waste was organic solid waste. After the solid waste is subjected to the pyrolysis process, the volatile content in the obtained solid waste residue is lower than H 0 %, wherein: H 0 is 4-12.
  • Example 2 was repeated, and the solid waste was organic solid waste. After the solid waste is incinerated, the content of volatile matter in the obtained solid waste residue is lower than H 0 %, wherein: H 0 is 5-10.
  • Example 3 was repeated, as shown in Figure 2, only the solid waste was subjected to the pyrolysis process, and the pyrolysis gas was also obtained.
  • the pyrolysis gas is transported to the sintering machine, and sprayed on the surface of the sintering mixture in the sintering machine by means of spraying, and used as sintering fuel.
  • Example 5 was repeated except that the pyrolysis gas was sent to the pelletizing process and used as a fuel for the oxidative roasting of the pellets.
  • Example 4 was repeated, as shown in Figure 2, only the solid waste was incinerated, and high-temperature flue gas was also obtained.
  • the high-temperature flue gas is treated together with the exhaust gas generated from the sintering process and the pelletizing process.
  • the heat treatment rotary kiln includes a kiln head 1 , a kiln body 2 and a discharge port 3 .
  • the kiln head 1 is provided with a material inlet channel 101 , a combustion-supporting air channel 102 and an annular air intake channel 103 .
  • the kiln body 2 includes a furnace lining 201 , a furnace hearth 202 and a buried kiln body air inlet duct 203 .
  • the material inlet channel 101 and the combustion-supporting air channel 102 both pass through the kiln head 1 and then communicate with the furnace chamber 202 .
  • the annular air inlet channel 103 is arranged inside the kiln head 1 .
  • the buried kiln body air inlet duct 203 is arranged inside the furnace lining 201 .
  • One end of the buried kiln body air inlet duct 203 is communicated with the annular air inlet passage 103 .
  • the other end of the buried kiln body air inlet duct 203 communicates with the furnace chamber 202 .
  • the annular air intake channel 103 is also connected with an air intake duct 104 .
  • Example 8 is repeated, except that the heat treatment rotary kiln further includes a plurality of the buried kiln body air inlet ducts 203 .
  • a plurality of the buried kiln body air inlet pipes 203 are evenly distributed inside the furnace lining 201 .
  • the lengths of the plurality of buried kiln body air inlet pipes 203 in the direction extending from the kiln head 1 to the kiln body 2 are the same or different.
  • Example 9 is repeated, except that the heat treatment rotary kiln also includes an air inlet nozzle 204, which is arranged in the furnace chamber 202 and connected to the air outlet of the air inlet duct 203 of the buried kiln body.
  • a partition screen 205 is provided at the air inlet of the air inlet nozzle 204 .
  • Example 10 is repeated, except that the heat treatment rotary kiln also includes an inlet pipe valve 206 .
  • the air inlet duct valve 206 is arranged on the furnace lining 201 corresponding to the air inlet duct 203 of the buried kiln body.
  • the opening and closing degree of the air inlet duct 203 of the buried kiln body is controlled by adjusting the inlet duct valve 206 .
  • the quantity of the inlet duct valves 206 is consistent with the quantity of the buried kiln body inlet ducts 203 .
  • Example 11 was repeated, except that the heat treatment rotary kiln also included a temperature probe 207 .
  • the temperature probe 207 is arranged in the furnace chamber 202 at the outlet of the air inlet duct 203 of the buried kiln body.
  • Example 12 by controlling the process conditions of the pyrolysis process, so as to ensure that the volatile content in the solid waste residue is lower than H 0 %, specifically:
  • the solid waste is put into the furnace 202 through the material inlet channel 101 for pyrolysis treatment.
  • the combustion-supporting air enters the furnace 202 through the combustion-supporting air passage 102 to provide oxygen for the pyrolysis of solid waste.
  • the solid waste residue and flue gas after the pyrolysis is completed are discharged through the discharge port 3 .
  • the temperature changes in different pyrolysis areas in the furnace 202 are detected in real time, and different buried kilns are controlled by adjusting the amount of solid waste or by adjusting the inlet pipe valve 206.
  • the amount of supplemental air supplied by the air inlet duct 203 to the different pyrolysis areas in the furnace 202 is used to ensure that the volatile content in the solid waste residue is lower than H 0 %.
  • the raw material for sintering is high water content ore, and the coarse particle size solid waste obtained in step (2) and the high water content ore are mixed and transported to the sintering process.
  • the high water content ore is an ore with a water content mass fraction greater than W%. W is 5-15.
  • the high water content ore is laterite nickel ore.
  • Example 13 was repeated, except that W was 10-12, and the high water-cut ore was limonite.
  • Example 12 by controlling the process conditions of the incineration process, thereby ensuring that the volatile matter content in the solid waste residue is lower than H 0 %, specifically:
  • the solid waste is put into the furnace 202 through the material inlet channel 101 for incineration treatment.
  • the combustion-supporting air enters the furnace chamber 202 through the combustion-supporting air passage 102 to provide oxygen for the incineration of solid waste.
  • the solid waste residue and flue gas after incineration are discharged through the discharge port 3 .
  • the temperature changes of different incineration areas in the furnace 202 are detected in real time, and different buried kiln bodies are controlled by adjusting the amount of solid waste or by adjusting the inlet pipe valve 206.
  • the input amount of the air intake duct 203 to the different incineration areas in the furnace 202 ensures that the volatile matter content in the solid waste slag is lower than H 0 %.
  • the raw material for sintering is high water content ore, and the coarse particle size solid waste obtained in step (2) and the high water content ore are mixed and transported to the sintering process.
  • the high water content ore is an ore with a water content mass fraction greater than W%. W is 8-13.
  • the high water content ore is limonite.
  • Example 14 was repeated, except that W was 10-12, and the high water content ore was laterite nickel ore.
  • Example 15 was repeated, except that the mass fraction of moisture content in the coarse-grained solid waste residue was less than P%. P is 4.
  • Example 16 was repeated except that P was 2.
  • Example 17 was repeated except that P was 1.
  • Example 18 is repeated, as shown in Figure 7, except that the process further includes: detecting the moisture content W 0 in the high-water ore:
  • the high-water-cut ore is pretreated so that the moisture content W 0 in the high-water-cut ore is less than W max .
  • W max is 15%.
  • Example 19 was repeated, as shown in FIG. 8 , except that the pretreatment of the high water-cut ore was carried out with a pretreatment system.
  • the pretreatment system includes a pretreatment rotary kiln 4, a sleeve-type drying and screening device 5 and a heat medium conveying pipeline L1.
  • the pretreatment rotary kiln 4 is provided with a high water content ore feed port 401 , a high water content ore discharge port 402 , a heat medium inlet 403 and a heat medium outlet 404 .
  • the sleeve-type drying and screening device 5 is arranged inside the pretreatment rotary kiln 4 .
  • One end of the sleeve-type drying and screening device 5 is communicated with the feed port 401 of the high-water ore, and the other end is communicated with the outlet 402 of the high-water ore.
  • the heat medium delivery pipe L1 is connected to the heat medium inlet 403 .
  • Example 20 is repeated, as shown in FIG. 9 , except that the sleeve-type drying and screening device 5 includes an inner tank 501 and a sleeve 502 .
  • the inner tank 501 and the sleeve 502 are concentric cylinders with each other.
  • the sleeve 502 is arranged inside the side wall of the pretreatment rotary kiln 4 .
  • the inner container 501 is arranged in a fit with the inner wall of the sleeve 502 .
  • One end of the inner tank 501 is provided with a feeding port, and the feeding port is communicated with the feeding port 401 of the high water content ore of the pretreatment rotary kiln 4 .
  • the other end of the inner container 501 extends into the inner cavity of the sleeve 502 .
  • the sleeve 502 is provided with a discharge port at one end away from the inner tank 501 , and the discharge port is communicated with the high-water content mineral discharge port 402 of the pretreatment rotary kiln 4 .
  • Example 21 is repeated, except that the cylindrical wall of the sleeve 502 is provided with screen holes 503 .
  • the chamber where the sleeve 502 and the inner liner 501 overlap is the pre-drying chamber 504 , and the remaining part of the chamber in the sleeve 502 that does not overlap with the inner liner 501 constitutes the drying and screening chamber 505 .
  • the drying and sieving chamber 505 communicates with the interlayer 506 through the sieve holes 503.
  • the interlayer 506 is also provided with a fine material discharge port 405 .
  • the fine material discharge port 405 is arranged on the side wall of the pretreatment rotary kiln 4 and is located close to the high water content ore discharge port 402 .
  • Example 21 is repeated, except that the inner container 501 is a telescopic structure.
  • the aperture of the sieve hole 503 is 5-20 mm.
  • Example 22 was repeated, except that the sieve holes 503 had a diameter of 6-15 mm.
  • Example 23 was repeated, except that the sieve holes 503 had a diameter of 7-10 mm.
  • Example 24 is repeated, except that a first moisture detection device 406 , a first material flow detection device 407 , and a first material temperature detection device 408 are provided at the high water content ore feed port 401 on the pretreatment rotary kiln 4 .
  • a first material flow rate detection device 507 is provided on the sleeve type drying and screening device 5 in the pretreatment rotary kiln 4 .
  • Example 25 is repeated, except that a second moisture detection device 409 is provided at the discharge port 402 of the high-water content ore of the pretreatment rotary kiln 4 .
  • Example 25 was repeated, except that the pretreatment of the high water-cut ore was specifically:
  • the high water content ore to be treated is simultaneously dried and screened in the pretreatment rotary kiln 4 through the sleeve type drying and screening device 5 to obtain dry large particle high water content ore.
  • Example 27 is repeated, as shown in FIG. 10 , except that a first moisture detection device 406 , a first material flow detection device 407 , and a first material temperature detection device are provided at the high water content ore feed port 401 of the pretreatment rotary kiln 4 408.
  • a first material flow rate detection device 507 is provided on the sleeve type drying and screening device 5 in the pretreatment rotary kiln 4 .
  • the first moisture detection device 406 detects the moisture content in the high-water content ore entering the pretreatment rotary kiln 4, which is recorded as W 0 , %.
  • the first material flow detection device 407 detects the high water content ore that is put into the pretreatment rotary kiln 4 in a single feeding, which is recorded as M 0 , m 3 .
  • the first material temperature detection device 408 detects the temperature of the ore with high water content entering the pretreatment rotary kiln 4, which is recorded as T 0 , °C.
  • the first material flow rate detection device 507 detects the moving speed of the high water content ore in the pretreatment rotary kiln 4, which is recorded as V 1 , m/s.
  • the upper limit of the moisture content of the high-water content ore before entering the sintering process is set as W max , %. Calculate the total displacement L, m that the high water content ore needs to flow through the drying and screening chamber 505 in the pretreatment rotary kiln 4 .
  • C is the specific heat capacity of the high water content ore
  • C is the specific heat capacity of the heat medium
  • is the bulk density of high-water ore
  • is the density of the heat medium.
  • T is the temperature when the heat medium is input into the pretreatment rotary kiln 4
  • V 2 is the flow rate of the heat medium
  • S is the cross- sectional area of the heat medium inlet.
  • the heat medium dries the high water content ore in the pretreatment rotary kiln 4, and adjusts the total displacement of the high water content ore flowing through the drying and screening chamber 505 in the pretreatment rotary kiln 4 to be no less than L, so that the high water content ore is discharged from the high water content ore.
  • the moisture content of the large grain high water ore discharged from the feed port 402 is lower than W max .
  • the first moisture detection device 406 detects the moisture content in the high water content ore entering the pretreatment rotary kiln 4, which is 16%.
  • the first material flow detection device 407 detects the high water content of ore put into the pretreatment rotary kiln 4 at a single time, which is 120 m 3 .
  • the first material temperature detection device 408 detects the temperature of the block of high water content ore entering the pretreatment rotary kiln 4, which is 24°C.
  • the first material flow rate detection device 507 detects the moving speed of the high water content ore in the pretreatment rotary kiln 4, which is 0.001 m/s.
  • the upper limit of the moisture content of the high water content ore before entering the sintering process is set to 11%.
  • the specific heat capacity of the high water content ore is 440[kJ/(m 3 ⁇ °C)]; the bulk density of the high water content ore is 2800kg/m 3 ; the specific heat capacity of the heat medium is 1300[kJ/(m 3 ⁇ °C)]; The density is 1.36kg/m 3 ; the flow rate of the heat medium is 1.5m/s; the cross-sectional area of the heat medium outlet is 0.3m 2 ;
  • the heat medium dries the high water content ore in the pretreatment rotary kiln 4, and adjusts the total displacement of the high water content ore flowing through the drying and screening chamber 505 in the pretreatment rotary kiln 4 to be no less than 8.94m, so that the The moisture content of the large-grained high-water ore discharged from the discharge port 402 is less than 11%.
  • the first moisture detection device 406 detects the moisture content in the high water content ore entering the pretreatment rotary kiln 4, which is 17%.
  • the first material flow detection device 407 detects the high water content of ore put into the pretreatment rotary kiln 4 at a single time, which is 120 m 3 .
  • the first material temperature detection device 408 detects the temperature of the block of high water content ore entering the pretreatment rotary kiln 4, which is 22°C.
  • the first material flow rate detection device 507 detects the moving speed of the high water content ore in the pretreatment rotary kiln 4, which is 0.002 m/s.
  • the upper limit of the moisture content of the high water content ore before entering the sintering process is set to 13%.
  • the specific heat capacity of the high water content ore is 440[kJ/(m 3 ⁇ °C)]; the bulk density of the high water content ore is 2800kg/m 3 ; the specific heat capacity of the heat medium is 1300[kJ/(m 3 ⁇ °C)]; The density is 1.36kg/m 3 ; the flow rate of the heat medium is 2m/s; the cross-sectional area of the heat medium outlet is 0.4m 2 ;
  • the heat medium dries the high water content ore in the pretreatment rotary kiln 4, and adjusts the total displacement of the high water content ore flowing through the drying and screening chamber 505 in the pretreatment rotary kiln 4 to be no less than 8.15m, so that the The moisture content of the large-grained high-water ore discharged from the discharge port 402 is less than 13%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种固废协同烧结、球团的处置工艺,通过将多源固废经过焚烧和/或热解处理后的固废渣进行筛分处理后,将粗粒径固废渣与烧结原料混合输送至烧结工序,将细粒径固废渣与球团原料混合输送至球团工序,固废渣一方面可以替代一部分燃料,降低生产成本;另一方面有选择性的加入烧结工序或球团工序也可以避免细颗粒固废渣直接配入烧结原料中降低烧结质量粗颗粒固废渣进入球团原料不理利于成球。同时,固废在焚烧工序和/或热解工序中产生的热源还可以进入到高含水矿预处理系统作为热源。为实现多种固废的全流程处置提供新的途径,保证烧结矿和球团矿的品质的前提下,彻底消除固废对环境的影响和二次污染的风险。

Description

一种固废协同烧结、球团的处置工艺 技术领域
本发明涉及固废处理工艺,具体涉及一种固废协同烧结、球团的处置工艺;属于多源固废协同烧结、球团处理的技术领域。
背景技术
固体废物是人们在正常生产、生活中产生的、并失去了原有使用价值的废弃物质。固体废物特别是危险废物集中处置设施由于选址难、运行成本高,邻避效应严重等,导致固体废物处置能力缺口严重。当前,我国固体废物大量堆存已经使脆弱的环境承载力难以支撑,成为“邻避”事件的主要诱因。实现固废源头减量、资源化利用与无害化处置成为当前迫切和重大的民生需求。因此,探寻多源固废协同资源化处置技术新路径,是当前固废处置技术发展的重要方向。
所谓多源固废协同资源化处置,是将多源固废进行分类,并以一定的方式进行预处理和配伍后,加入到现有的工业生产流程中,通过对生产工艺的热工制度和污染排放进行适当调控,在不影响原生产工艺的产品产量、质量和污染物排放的前提下,对固废中的资源和能源进行合理化利用,并对固废中的有害物质进行无害化处置。
现阶段,在钢铁工艺流程中,烧结和球团工序在固废协同处置方面的优势主要体现在以下几个方面:①烟气治理容量大,烟气净化系统工艺成熟,可达到标准排放,甚至超低排放。烧结球团引入废弃物,若引起烟气污染物浓度波动,现有烧结净化系统有能力消化。②烧结工序对原料粒度适应性强。对于过细或过粗的粒级,现有工艺中有混匀制粒装置和破碎设备。若水分超过10%,需干燥处理。如超细颗粒比例过大,需增设专门的制粒工艺。③对原料化学成分波动接受度高。以磁铁矿为主的原料,TFe含量范围为60~67%,波动范围±0.5%;以赤铁矿为主的原料,TFe含量范围为55~65%,波动范围±0.5%。S的波动范围为0.10~0.40%,P的波动范围为0.05~0.20%,其它杂质元素的波动范围接受度亦较高。④烧结球团工序具有规模大、原料适应性强、温度高的特点。引入废弃物占比小,对烧结和球团工序影响可控。以固废配比1%计算,单台660m 2烧结机固废最大消纳量可达7~10万吨/年。
在现有的技术中,固废处置流程往往不完善、不闭环,如:有机固废特别是危废的焚烧残渣及飞灰还是危废,其中含有较多的重金属元素,仍然具有浸出毒性。目前的焚烧残渣和飞灰往往是用水泥、石灰、水进行简单的稳定固化,然后进行安全填埋,这样的处置工艺是 对残渣资源的浪费,也并没有完全消除其环境影响,仍然具有二次污染的风险。
在烧结协同处置固废方面,已有专利提到了部分工艺,如专利文献CN101476032中提到将城市生活垃圾焚烧飞灰以3~15%的重量比掺杂到烧结原料中,制成含铁料小球参与烧结。专利文献CN1052716248中提到将含水率为20~50%的重金属污泥与钙基固氟剂混匀、干燥、粉碎得到钙基污泥后掺杂到烧结原料中,经烧结过程与高炉冶炼的协同处置,使大部分金属元素得到有效回收。专利文献CN201210370837中提到了将含铁固废提前分类和预处理之后,参与烧结生产,对含铁固废中的铁元素进行了有效回收。上述的专利文献中仅仅涉及单一的固废处置,处置的固废类别十分有限,不能适应钢铁厂纷繁复杂的固废产量,烧结和球团工序在钢铁厂固废处置中的作用和地位没有得到充分的发挥。
现有技术中,将固废经过预处理的渣相直接与烧结原料或球团原料进行混合,然后输送至烧结工序或球团工序。由于烧结工序和球团工序对原料的要求不同,导致爱烧结原料和球团原料中加入固废后,进入烧结工序或球团工序的原料制粒效果不佳,粒径不均匀,进而导致烧结矿和球团矿的品质较低。
此外,在传统的烧结工序中,通常有一些含水量较高的矿种,如红土镍矿、褐铁矿等,其中会有较高的结晶水,以高含水矿种作为生产原料的烧结机点火炉经常要遭受料面崩溅产生的磨损、玷污。这是由于物料以冷态进入点火炉后,表层烧结矿瞬间受到点火烧嘴高达1100℃以上的直接加热,高含水矿种中的水分瞬间膨胀,使块矿爆裂,严重影响点火炉的使用寿命。而固废的焚烧渣或热解渣是在经过高温焚烧或热解后,水分被烘干,并且具有一定的疏水性,不易对水分复吸。因此,将一部分烧结渣和/或热解渣与高含水的矿料(包括但不限于红土镍矿、褐铁矿等)混合,以稀释矿料中的水分,将烧结渣和/或热解渣均匀混合在原有烧结矿中以抵挡入炉的热冲击,可以缓解高含水烧结料块矿爆裂带来的磨损,延长点火炉使用寿命。
发明内容
针对现有技术的不足,本发明提供了固废协同烧结、球团的处置工艺。有机固废进行焚烧和/或热解会产生焚烧渣或热解渣。这些固废预处理渣中通常还具有一定的热值,将其与烧结原料和/或球团原料混合;一方面可以替代一部分燃料,降低生产成本。另一方面,固废热解产生的热解气可以作为烧结工序或球团工序的燃料,进一步降低生产成本,同时,固废焚烧工序产生的高温烟气则可与烧结工序和/或球团工序产生的废气一并处理。该工艺对固废种类的适应性广,可实现多种固废的共同处理,最终实现多种固废的全流程处置,彻底消除固废对环境的影响和二次污染的风险。而又不会影响烧结工序和/或球团工序产品的质量。
为实现上述目的,本发明所采用的技术方案具体如下所述:
一种固废协同烧结、球团的处置工艺,该工艺包括以下步骤:
(1)固废预处理:将固废进行热解工序和/或焚烧工序,得到固废渣。
(2)筛分:将步骤(1)得到的固废渣进行筛分,得到粗粒径固废渣和细粒径固废渣。
(3)协同处置:将步骤(2)得到的粗粒径固废渣与烧结原料混合输送至烧结工序,将步骤(2)得到的细粒径固废渣与球团原料混合输送至球团工序。
作为优选,所述粗粒径固废渣的平均粒径D 大于等于D 0,细粒径固废渣的平均粒径D 小于D 0。其中:D 0为160-240目,优选为180-220目。
作为优选,所述固废为有机固废、含铁高锌固废、含铁低盐低锌固废、含铁高盐固废中的一种或多种。优选为有机固废。
作为优选,固废进行热解工序和/或焚烧工序后,得到的固废渣中的挥发分含量低于H 0%,其中:H 0为4-12,优选为5-10。
作为优选,固废进行热解工序和/或焚烧工序,还得到热解气和/或高温烟气。所述热解气输送至烧结机,通过喷吹的方式喷在烧结机内烧结混合料的料面,用作烧结燃料。或者,将热解气输送至球团工序中,用作球团氧化焙烧的燃料。所述高温烟气与烧结工序和/或球团工序产生的废气一并处理。
作为优选,所述焚烧工序和/或热解工序均通过热处理回转窑进行。该热处理回转窑包括窑头、窑身和排料口。所述窑头上设置有物料入口通道、助燃空气通道和环形进气通道。窑身包括炉衬和炉膛以及埋入式窑身进风管道。所述物料入口通道和助燃风道均贯穿窑头后连通至炉膛。所述环形进气通道设置在窑头的内部。所述埋入式窑身进风管道设置在炉衬的内部。所述埋入式窑身进风管道的一端与环形进气通道相连通。所述埋入式窑身进风管道的另一端与炉膛相连通。所述环形进气通道上还连接有进风管道。
作为优选,该热处理回转窑还包括有多个所述埋入式窑身进风管道。多个所述埋入式窑身进风管道均匀分布设置在炉衬的内部。多个所述埋入式窑身进风管道在窑头延伸至窑身方向上的长度相同或不相同。
作为优选,该热处理回转窑还包括有进气喷头,所述进气喷头设置在炉膛内并与埋入式窑身进风管道的出气口相连。优选,所述进气喷头的喷气口处设置有隔网。
作为优选,该热处理回转窑还包括有进气管道阀门。所述进气管道阀门设置在埋入式窑身进风管道对应的炉衬上。通过调节进气管道阀门控制埋入式窑身进风管道的开合度。所述 进气管道阀门的数量与埋入式窑身进风管道的数量一致。
作为优选,该热处理回转窑还包括有温度探头。所述温度探头设置在埋入式窑身进风管道出口处的炉膛内。
作为优选,通过控制热解工序和/或焚烧工序的工艺条件,从而保证固废渣中的挥发分含量低于H 0%,具体为:
201)根据物料的走向,固废经由物料入口通道投放至炉膛内进行热解或焚烧处理。同时助燃空气经由助燃空气通道进入炉膛内为固废的热解或焚烧提供氧气。完成热解或焚烧后的固废渣和烟气经由排料口排出。
202)固废在炉膛内热解或焚烧时,通过实时检测炉膛内热解或焚烧温度的变化情况,通过调节投放至炉膛内的固废的投放量或调节助燃气体输送量。
203)在热处理回转窑旋转固废的过程中,通过实时检测炉膛内不同热解或焚烧区域温度的变化情况,通过调节固废的投放量或者通过调节进气管道阀门控制不同的埋入式窑身进风管道对炉膛内的不同热解或焚烧区域的补风量的输入量,从而保证固废渣中的挥发分含量低于H 0%。
作为优选,所述烧结原料为高含水矿,将步骤(2)得到的粗粒径固废渣与高含水矿混合输送至烧结工序。
作为优选,所述高含水矿为含水率质量分数大于W%的矿石。W为5-15。优选W为8-13。更优选W为10-12。
作为优选,所述高含水矿为块矿,优选为红土镍矿和/或褐铁矿。
作为优选,所述粗粒径固废渣中的含水率质量分数小于P%。P为0.5-5。优选P为0.5-3。更优选P为0.5-2。
作为优选,该工艺还包括:检测高含水矿中的水分含量W 0
A)若高含水矿中的水分含量W 0小于W max,则按照上述方法将粗粒径固废渣与高含水矿输送至烧结工序处理。
B)若高含水矿中的水分含量W 0大于等于W max,则将高含水矿经过预处理,使得高含水矿中的水分含量W 0小于W max
其中:W max为10%-15%。
作为优选,所述高含水矿的预处理采用预处理系统进行。该预处理系统包括预处理回转窑、套接式干燥筛分装置和热介质输送管道。预处理回转窑上设有高含水矿进料口、高含水矿出料口、热介质入口和热介质出口。所述套接式干燥筛分装置设置在预处理回转窑的内部。 套接式干燥筛分装置的一端与高含水矿进料口相连通,其另一端与高含水矿出料口相连通。热介质输送管道连接至热介质入口。
作为优选,所述套接式干燥筛分装置包括内胆和套筒。其中,内胆和套筒互为同心圆筒。所述套筒设置在预处理回转窑侧壁的内部。所述内胆与套筒的内壁贴合设置。内胆的一端设有进料口,所述进料口与预处理回转窑的高含水矿进料口相连通。所述内胆的另一端伸入套筒的内腔内。套筒在背离内胆的一端设有排料口,所述排料口与预处理回转窑的高含水矿出料口相连通。
作为优选,所述套筒的筒壁上设有筛孔。在套筒内,套筒与内胆相重合的腔室为预干燥腔室,套筒内未与内胆重合的剩余部分腔室则构成干燥筛分腔室。所述套筒与预处理回转窑的侧壁之间具有夹层。干燥筛分腔室通过筛孔与夹层相连通。所述夹层上还设置有细料排料口。所述细料排料口设置在预处理回转窑的侧壁上,且位于靠近高含水矿出料口的位置。
优选的是,所述内胆为伸缩式结构。作为优选,所述筛孔的孔径为5~20mm,优选为6~15mm,更优选为7~10mm。
作为优选,在预处理回转窑上的高含水矿进料口处设有第一水分检测装置、第一物料流量检测装置、第一物料温度检测装置。预处理回转窑内的套接式干燥筛分装置上设有第一物料流速检测装置。
作为优选,在预处理回转窑的高含水矿出料口处设有第二水分检测装置。
作为优选,所述高含水矿的预处理具体为:
B1)将待处理的高含水矿输送至预处理回转窑,同时向预处理回转窑内通入热介质。
B2)待处理的高含水矿在预处理回转窑内经由套接式干燥筛分装置同时进行干燥和筛分处理,得到干燥的大颗粒高含水矿。
作为优选,在预处理回转窑的高含水矿进料口处设有第一水分检测装置、第一物料流量检测装置、第一物料温度检测装置。在预处理回转窑内的套接式干燥筛分装置上设有第一物料流速检测装置。第一水分检测装置检测进入预处理回转窑的高含水矿内的水分含量,记为W 0,%。第一物料流量检测装置检测单次投放进入预处理回转窑的高含水矿量,记为M 0,m 3。第一物料温度检测装置检测进入预处理回转窑的高含水矿温度,记为T 0,℃。第一物料流速检测装置检测高含水矿在预处理回转窑内的移动速度,记为V 1,m/s。根据烧结工序条件需要,设定进入烧结工序前的高含水矿的水分含量上限为W max,%。计算高含水矿在预处理回转窑内的干燥筛分腔室需要流经的总位移L,m。
Figure PCTCN2022078410-appb-000001
其中:C 为高含水矿的比热容,C 为热介质的比热容。ρ 为高含水矿的堆密度,ρ 为热介质的密度。T为热介质输入预处理回转窑时的温度,V 2为热介质的流速,S 为热介质入口的截面积。
热介质在预处理回转窑内对高含水矿进行干燥处理,调节高含水矿在预处理回转窑内的干燥筛分腔室流经的总位移不小于L,使得从高含水矿出料口排出的大颗粒高含水矿的水分含量低于W max
在现有技术中,固废处置流程往往不完善、不闭环;有机危废的焚烧残渣及飞灰还是危废,其中含有较多的重金属元素,仍然有浸出毒性。目前的焚烧残渣和飞灰往往是用水泥、石灰、水进行简单的稳定固化,然后进行安全填埋,这样的处置工艺是对残渣资源的浪费,也并没有完全消除其环境影响,仍然有二次污染的风险。而在烧结协同处置固废方面,往往仅仅涉及单一的固废与烧结进行协同处置,处置的固废类别十分有限,不能适应钢铁厂纷繁复杂的固废产量,烧结和球团工序在钢铁厂固废处置中的作用和地位没有得到充分的发挥。
在本发明中,针对钢铁企业固废和/或城市市政固废的多源化、复杂成分的特性,结合烧结和球团工序的处置及容纳并消化固废的特点,通过将固废统一进行预处理(焚烧或热解)后,并将预处理产生的预处理渣进入到烧结和/或球团工序进行终端的处置(例如将得到的预处理渣与烧结原料和/或球团原料混合,然后将混合后的混合料输送至烧结工序和/或球团工序);进一步地,预处理产生的热解气用作烧结工序和/或球团工序的燃料进行利用,同时预处理产生的废热烟气则汇入到烧结烟气和/或球团废气中进行协同净化,预处理产生的废水与烧结工序和/或球团工序产生的废水一并进行废水处理。最终实现多种固废的全流程处置,彻底消除固废对环境的影响和二次污染的风险。
在本发明中,不管是烧结原料还是球团原料,其中均配有一定的炭粉以提供反应所需要的热量,而固废焚烧和/或热解后的固废渣一般还具有一定的热值,将其与烧结原料或球团原料混合,可以替代一部分燃料,降低生产成本。固废经过焚烧或热解后,固废渣通常具有一定的脆性,在经焚烧炉或热解炉反应后以及物料相互之间的磨损、挤压会使得固废渣具有不同的粒度。如果将粒度过细(一般为低于200目)的固废渣直接配入烧结原料中,会影响烧结的透气性,降低烧结质量。而对球团造球工序而言,粒度过细(一般为低于200目)的粉状固废渣则又将有助于原料的造球过程,更有利于成球。因此,固废渣从焚烧或热解炉出来后,通过筛分工序,将其中细粒径固废渣加入球团原料,进入后续的球团生产工序;将其中粗粒径固废渣加入烧结原料直接与烧结矿混匀进入烧结处置(一般的固废渣经过热处理后挥发分低于8%左右,满足烧结机进料的要求)。通过将多源固废进行集中热处理(焚烧和/或热 解)后,再通过筛分处理,使得不同粒径的固废渣分别匹配烧结工序和球团工序要求;既可以实现多源固废的集中处理,又可以针对烧结工序或球团工序对固废消化置的特性,进而实现固废全流程处置的同时,也能够对烧结工序和球团工序起到促进作用,降低生产成本。
在本发明中,改变现有技术中将固废经过预处理后的渣相直接混入烧结原料或球团原料的这一手段,本发明将经过预处理后得到的固废渣经过筛分处理,将粗粒径固废渣与烧结原料混合输送至烧结工序,将细粒径固废渣与球团原料混合输送至球团工序。其作用有:一、进入烧结工序的细颗粒物料过多,会影响烧结混合料制粒效果,增加制粒成本。同时,粗颗粒(>1mm)的固废渣进入烧结可以增加核心粒子的数量,有利于烧结制粒;二、粗颗粒固废渣如果进入球团原料,会降低混合料比表面积,降低对球团生球质量的影响。
在本发明中,固废中含有有机碳(可燃烧的碳)的固废为有机固废,通过对有机固废(也可适用于其他固废)的焚烧渣或热解渣中的有机物进行一定程度的保留,以便于在后续烧结或球团工序中进行利用,进而降低烧结工序或球团工序的燃料配入量,降低成本。在有机固废的实际焚烧和/或热解过程中,气体可燃物(主要是热解气)从有机固废中析出,由于固体的燃烧速率大大低于气体的燃烧速度,因此可以控制合理的燃烧温度、燃烧时间、供氧量等,进而保证气体可燃物充分燃烧或者将可燃气体输送至烧结工序和/球团工序用作燃料,同时固体残渣仍然残留一部分有机可燃物,并与烧结原料和/或球团原料进行混合。一般通过控制有机固废在氧化焚烧工序中的输氧量、焚烧时间、焚烧温度,控制氧化焚烧工序的焚烧程度或者控制热解工序的热解率。使得有机固废中的总热量有可控的分配到固废渣和热解气中。进而实现烧结工序或球团工序中的最佳减碳目的。
在本发明中,焚烧工序和/或热解工序均通过热处理回转窑进行,该热处理回转窑为具有炉膛温度检测机制和埋入式窑身进风机制的回转窑,能够检测炉膛内各个区域的温度分布,并实现了通过窑身进风实时控制,同时根据当前检测到的炉膛内温度分布状况进而对窑身进风制度进行实时调节,有效的保证了回转窑炉膛内的焚烧或热解效果,避免回转窑炉膛内过高和过低温的出现,同时实现了窑温的精准控制,提高了有机固废焚烧程度或热解率调控的精准性和灵活性。
在本发明中,为了有效控制焚烧回转窑炉膛内的温度,本发明所述热处理回转窑的窑头上分别设置有互不相通的物料入口通道、助燃空气通道和埋入式窑身进风管道,在热处理回转窑的窑身的炉衬中设置有多条埋入式窑身进风管道,多条埋入式窑身进风管道的长度依次递增,即多条埋入式窑身进风管道的出气口沿着窑头至窑尾方向均匀分布,从而使得输送进入炉膛内的助燃气体分布均匀,进而使得炉膛内的温度调控灵活精准。其中,多条所述埋入 式窑身进风管道的出气口出均设置有具有一定高度的进气喷头,进气喷头从窑衬伸入炉膛,喷头的开口方向是背对着物料来料的方向,并且喷口的出口平面布置了网状钢结构的隔网,防止物料行进过程中落入气管,造成气管堵塞。同时,为进一步提高焚烧或热解效果,热处理回转窑的炉衬由具有保温效果材质构成,所述炉衬厚度为3-50cm(优选为5-30cm,更优选为8-15cm),所述炉衬完全包覆了所述炉膛,降低热损失。也避免了向外界排放过多的热辐射。
在本发明中,通过在炉膛内设置有多个温度探头(温度探头设置在进气喷头喷气方向上的交近处,每个进气喷头的附件至少设置有一个温度探头)实时监测炉膛内各个区域的温度变化,根据该该变化对系统做出调整,使得炉膛内各个区域的温度均匀且处于最佳理想热处理温度范围内。在热处理回转窑旋转固废的过程中,通过实时检测炉膛内不同热解或焚烧区域温度的变化情况,通过调节固废的投放量或者通过调节进气管道阀门控制不同的埋入式窑身进风管道对炉膛内的不同热解或焚烧区域的补风量的输入量,从而保证固废渣中的挥发分含量低于H 0%。过程具体如下:
i)通过多个所述温度检测探头实时监测炉膛内不同热处理区域的温度为Ti,℃;i为1、2、3、……、x中的任一整数。x为温度检测探头的总个数。炉膛内的平均温度记为Tp,℃。则:
Tp=(T1+T2+T3+...+Tx)/x...式III。
S T=[(T1-Tp) 2+(T2-Tp) 2+(T3-Tp) 2+...(Tx-Tp) 2]/x...式IV。
式IV中,S T为温度的方差。
ii)根据焚烧程度或热解率的需要,设定炉膛内热处理理想温度为Ta,℃,理想温度波动温值为C;判定:
当Tp<(Ta-C)时,通过物料入口通道增加炉膛内的有机固废投放量或在有机固废投放量不变的前提下投入热值更大的有机固废,使得Tp=(Ta±C)。
当Tp>(Ta+C)时,通过物料入口通道降低炉膛内的有机固废投放量或在有机固废投放量不变的前提下投入热值更小的有机固废,(调节入炉物料热值:回转窑入炉物料是通过配伍而成的混合物料,因此也可以通过调整配伍方案的方式,直接调节入炉物料的热值),使得Tp=(Ta±C)。
当Tp=(Ta±C)时,进行步骤iii):
iii)设定系统理想温度方差为S Ta,判定:
当S T≤S Ta时,系统维持当前状态继续运行,不做任何调节。
当S T>S Ta时,则依次进行如下计算:
T y=丨Ti-Tp丨...式V。
式V中,T y为各个温度检测点的温度与平均温度差的绝对值,取T y最大时所相对应的温度值Ti,进行判定:
当Ti>Tp时,降低该处对应的埋入式窑身进风管道的进风量直至该温度点的Ti=(Ta±C)。
当Ti<Tp时,增加该处对应的埋入式窑身进风管道的进风量直至该温度点的Ti=(Ta±C)。
完成调节后,返回步骤i),继续监测。
进一步地,在步骤ii)中,当Tp<(Ta-C)时,通过物料入口通道增加炉膛内的有机固废投放量或在有机固废投放量不变的前提下投入热值更大的有机固废为分步进行。当Tp>(Ta+C)时,通过物料入口通道降低炉膛内的有机固废投放量或在有机固废投放量不变的前提下投入热值更小的有机固废为分步进行。
进一步地,每步增加或降低的物料的调整量为k%,基于单次有机固废投放总质量的百分比。所述k的取值为1-15,优选为2-12,更优选为3-9。较佳的调节建议如下:总有机固废调节百分比为负值表示降低物料投放量,为正值表示增加有机固废投放量。(此处不能作为对本发明方案限制的依据)
Tp-Ta 物料调节百分比k%
>150℃ -15~-12%
100~150℃ -12~-9%
60~100℃ -9~-6%
20~60℃ -6~-3%
-60~-20℃ +3~+6%
-100~-60℃ +6~+9%
-150~-100℃ +9~+12%
<-150℃ +12~+15%
或,投入热值更大或更小的有机固废调整量为g%,基于单次有机固废投放总热值的百分比。所述g的取值为1-15,优选为2-12,更优选为3-9。较佳的调节建议如下:总物料调节百分比为负值表示降低有机固废的热值,为正值表示增加有机固废的热值。(此处不能作为对本发明方案限制的依据)
Figure PCTCN2022078410-appb-000002
Figure PCTCN2022078410-appb-000003
进一步地,当S T>S Ta时,通过埋入式窑身进风管道降低或增加的进风量为分步进行,每步降低或增加的进风调整量为f%,基于总进风量的百分比。所述p的取值为1-10,优选为2-8,更优选为3-5。较佳的调节建议如下:进风量调节百分比为负值表示降低进风量,为正值表示增加进风量。(此处不能作为对本发明方案限制的依据)
Ty-Ta 气量调节百分比f%
>100℃ -10%
80~100℃ -8%
50~80℃ -5%
20~50℃ -3%
-50~-20℃ +3%
-80~-50℃ +5%
-100~-80℃ +8%
<-100℃ +10%
在本发明中,当烧结原料为高含水矿时(高含水矿为含水率质量分数大于W%的矿石。W为5-15。优选W为8-13。更优选W为10-12)。由于这部分高含水矿(例如红土镍矿、褐铁矿等)含有较高的水分,以高含水矿种作为生产原料的烧结机点火炉经常要遭受料面崩溅产生的磨损、玷污。这是由于物料以冷态进入点火炉后,表层烧结矿瞬间受到点火烧嘴高达1100℃以上的直接加热,高含水矿种中的水分瞬间膨胀,使块矿爆裂,严重影响点火炉的使用寿命。在本发明中,固废进行热解工序和/或焚烧工序处理后得到低含水量的固废渣。固废渣经过高温处理后,其水分被烘干,并且具有一定的疏水性,不易对水分复吸。因此通过将一部分固废渣与高含水矿进行混料厚再进入到烧结工序中去,可以有效抵挡入炉的热冲击,缓解高含水矿烧结矿爆裂带来的磨损,延长点火炉使用寿命。同时也为固废的残渣处置提供新的途径,以彻底消除固废对环境的影响和二次污染的风险。
一般地,固废渣与高含水矿直接按照一定的比例(例如混合料中固废渣与高含水矿的质量比为1:10-100,优选为1:12-80,更优选为1:15-50)进行混合,二者的混合比例需根据各自具体含水量以及质量进行确定,使得混合后的混合料的含水量满足烧结工序的要求。其次是 将固废渣与部分高含水矿进行混合,然后再烧结台车内将混合料均匀铺在剩余部分高含水矿烧结原料的表面(例如铺设厚度为5-100mm,优选为10-80mm,更优选为20-50mm);再就是在烧结台车内,直接将固废渣均匀铺在所有高含水矿烧结原料的表面(例如铺设厚度为1-80mm,优选为3-60mm,更优选为5-40mm)。以上三种固废渣与高含水矿的协同处置方式均能够很好的抵挡入炉的热冲击,避免表层烧结矿瞬间受到高温时而导致高含水矿种中的水分瞬间膨胀,使块矿爆裂的问题。有效的延长了点火炉的使用寿命。
在本发明中,一般地,与固废渣同时进入烧结工序前的高含水矿的最高含水量应限制在10-15wt%。由于固废渣参与到烧结工序的用量有限制,因此,对于含水量较高(含水量大于10-15wt%)的高含水矿而言,有限量的混入固废渣并不能很好的缓解矿料爆裂的问题。而对于这部分水分含量大于上述限制范围的高含水矿,则需对这部分高含水矿进行预处理,使得它们的水分含量落入上述限制的水分含量范围内。通过研究表明,利用热介质在储料仓中对高含水矿进行干燥预处理是可行的,不仅可以有效地减少高含水矿的水分,而且还可以大幅度降低干燥所需能耗,干燥后的高含水矿可更加契合固废渣,由此提高点火炉的安全。此外,通过研究发现,高含水矿在储料仓中以堆积状态存在,尤其是细粒物料的存在,导致料仓整体物料透气性偏差,热气流无法顺利穿透料体,导致干燥效果欠佳,而且料仓上部温度低于水分露点温度易导致水汽冷凝,对除尘系统造成危害。
在本发明中,针对高含水矿料存在的水分含量过大的难题,提出了直接采用预处理回转窑进行干燥和筛分的预处理方法;高含水矿在预处理回转窑中进行干燥和筛分预处理,脱除高含水矿的水分的同时筛选出粗物料和细物料(高含水矿根据粒度或粒径进行筛分后,然后将经过粒径筛选、水分减低后的高含水矿(筛上粗物料)输送至烧结台车内。而筛下细物料可以输送至烧结配料系统)。干燥所需热源优选来自钢厂热废气(例如高炉产生的热废气或者固废焚烧或热解产生的热源)。本发明提出的预处理方法简易、实用、可靠,利于工程化推广应用,与传统的圆筒干燥流程工艺相比,本发明采用成熟的回转窑进行干燥和筛分的预处理技术,由于预处理回转窑相对来说是一个封闭的环境,高含水矿的水分脱除效率高,解决了块矿含水量大直接入烧结难的难题,提高了高含水矿的水分含量和透气性水平,有效降低了烧结生产成本,提高了烧结机的顺行水平。本发明的推广具有良好的经济效益、社会效益和环境效益。
在本发明中,所述热介质可以是温度较高的热废气,也可以是经过加热处理后的热风。一般地,热介质的温度高于或等于100℃即可。采用预处理回转窑对高含水矿进行干燥预处理,通过向预处理回转窑输送热介质;在预处理回转窑内,热介质对高含水矿进行干燥和筛 分,将高含水矿内的水分蒸发、带走,随着换热后的热介质一起排出回转窑,达到降低高含水矿含水量的目的,同时也在此过程中也实现了高含水矿粗、细物料的筛分分离步骤。一般地,高含水矿在预处理回转窑中以堆积状态存在,尤其是细粒物料的存在,导致回转窑整体物料透气性偏差,影响干燥效果。部分细粒物料在局部高温作用下易粘结于预处理回转窑壁面上,缩短预处理回转窑寿命。本发明将待处理的高含水矿输送至预处理回转窑进行干燥的同时,对待处理的高含水矿也进行筛分处理,高含水矿在回转窑内下行过程中,细小的物料持续从筛孔落入至夹层中,从而提高了粗料通道(套接式干燥筛分装置中)中高含水矿间的间隙,保证了粗料通道的透气性,提高了热介质对高含水矿的干燥效果。
在本发明中,利用固废焚烧和/或热解所产生的热气在储料仓中对高含水矿进行干燥处置是可行的,不仅可以有效地减少入炉高含水矿水分,而且可以大幅度降低干燥所需能耗,干燥后的高含水矿可一定程度上提高入炉比例,由此降低烧成本。同时也使得固废固废焚烧和/或热解的热废气得到进一步的利用,提高了固废全流程处理的效果,降低甚至杜绝了固废的二次污染,实现了固废处理的污染物零排放。
在本发明中,通过在预处理回转窑的物料进料口位置设置第一水分检测装置、第一物料流量检测装置、第一物料温度检测装置,在预处理回转窑内的套接式干燥筛分装置上设置第一物料流速检测装置,第一水分检测装置检测进入预处理回转窑的高含水矿内的水分含量,第一物料流量检测装置检测单次投放进入预处理回转窑的高含水矿量,第一物料温度检测装置检测进入预处理回转窑的高含水矿温度,第一物料流速检测装置高含水矿在预处理回转窑内的移动速度。设定进入烧结工序前高含水矿的含水率上限为W max,%。通过计算可以精准的得知单次投放的高含水矿在预处理回转窑内的干燥筛分腔室需要流经的总位移,从而保证进入烧结工序前高含水矿的含水率低于W max,%。
在本发明中,在预处理回转窑的高含水矿进料口处设有第一水分检测装置,设定输送至预处理回转窑的热介质的初始气流速度,第一水分检测装置检测进入预处理回转窑的块矿内的水分含量,设定进入烧结工序前高含水矿的含水率上限为W max,%。通过检测到的进料口处高含水矿中的水分含量与进入烧结工序前高含水矿的含水率上限进行比较,调整单次投放的高含水矿在预处理回转窑内的干燥筛分腔室需要流经的实时总位移,从而保证进入烧结工序前高含水矿的含水率低于W max,%。
在本发明中,在预处理回转窑的高含水矿出料口处设有第二水分检测装置,设定输送至预处理回转窑的热介质的初始气流速度,第二水分检测装置检测预处理回转窑排出高含水矿内的水分含量,设定进入烧结工序前高含水矿的含水率上限为W max,通过检测到的出料口处 高含水矿中的水分含量与进入烧结工序前高含水矿的含水率上限进行比较,调整单次投放的高含水矿在预处理回转窑内的干燥筛分腔室需要流经的实时总位移,从而保证进入烧结工序前高含水矿的含水率低于W max,%。
本发明设计带筛孔的套接式干燥筛分装置,通过一道工序即可实现高含水矿的干燥和筛分。无需额外设置高含水矿筛分装置对高含水矿进行筛分,降低了生产成本,同时也极大的提高了生产效率。需要说明的是,如果额外设置独立的筛分装置,在将筛分后获得的大颗粒高含水矿输送至干燥装置的过程中,由于高含水矿间的磨损而不可避免的会产生新的细物料,进而影响高含水矿干燥效果和后续烧结冶炼效果。
采用本发明提供的技术方案,可以高含水矿与固废渣的混料性能,使得高含水矿进入烧结工序后,可在固废渣的保护下,避免瞬间受到高温而发生爆裂现象,降低了对点火炉的磨损,既保证了烧结工序的稳定性,又实现了固废渣的再处理,避免了固废的二次污染。
与现有技术相比较,本发明的技术方案具有以下有益技术效果:
1、本发明根据烧结工序和球团工序的不同特性,将细粒径固废渣(一般为低于200目)配入到球团工序,将粗粒径固废渣配入到烧结工序,一方面避免了细粒径固废渣直接配入烧结原料中的话会影响烧结的透气性,降低烧结质量。另一方面也避免了粗粒径固废渣直接进入球团原料不利于成球的问题。
2、由于固废渣具有一定的热值,将其与烧结原料或球团原料混合,可以替代一部分燃料,同时,固废热处理产生的可燃气可作为烧结工序和球团工序的燃料,废烟气则可随烧结或球团烟气进行集中处理,进而实现固废全流程处置的同时,也能够对烧结工序和球团工序起到促进作用,降低生产成本。
3、本发明所述热处理回转窑焚烧系统采用了窑身分段进风的机制,通过埋入式窑身进风管道对物料的燃烧进行送风,实现了窑身二次进风和要窑头一次进风的有机结合,根据当前检测到的炉膛内温度分布状况进而对窑身进风制度进行实时调节,有效的保证了炉膛内的焚烧或热解效果,避免回转窑炉膛内过高和过低温的出现,同时实现了窑温的精准控制,提高了有机固废焚烧程度或热解率调控的精准性和灵活性。
4、本发明采用预处理回转窑对高含水矿进行预处理,通过向预处理回转窑输送热介质,热介质对高含水矿进行干燥以降低高含水矿内的水分含量,并针对高含水矿在预处理回转窑中烘干存在的缺点,采用具有伸缩式的套接式干燥筛分装置进行干燥及筛分的方法,多个套接式干燥筛分装置均匀布置,大颗粒高含水矿从套筒排至物料汇集室,而小颗粒高含水矿则直接从套筒和回转窑侧壁之间的夹层排出。热介质与高含水矿进行直接换热,大大提高了高 含水矿在回转窑内的干燥效果。
5、本发明预处理回转窑的内胆为可调节的伸缩式结构,通过调节内胆伸入至套筒内的长度,实现了调节高含水矿预干燥腔室与干燥筛分腔室长度的目的,进而保证了高含水矿的换热效果,从而保证高含水矿的含水率满足烧结工序生产需求。
附图说明
图1为本发明固废协同烧结、球团的处置工艺流程图。
图2为本发明的固全流程处置工艺图。
图3为本发明热处理回转窑的结构示意图。
图4为本发明热处理回转窑的A-A截面图。
图5为本发明热处理回转窑的B-B截面图。
图6为本发明热处理回转窑的C向视图。
图7为本发明固废渣和高含水矿协同处置流程图。
图8为本发明高含水矿预处理回转窑的结构图。
图9为本发明具有检测机制的预处理回转窑的结构图。
图10为本发明对高含水矿进行预处理的流程图。
附图标记:1:窑头;2、炉膛;3:排料口;101:物料入口通道;102:助燃空气通道;103:环形进气通道;104:进风管道;201:炉衬;202:炉膛;203:埋入式窑身进风管道;204:进气喷头;205:隔网;206:进气管道阀门;207:温度探头;4:预处理回转窑;401:高含水矿进料口;402:高含水矿出料口;403:热介质入口;404:热介质出口;405:细料排料口;406:第一水分检测装置;407:第一物料流量检测装置;408:第一物料温度检测装置;409:第二水分检测装置;5:套接式干燥筛分装置;501:内胆;502:套筒;503:筛孔;504:预干燥腔室;505:干燥筛分腔室;506:夹层;507:第一物料流速检测装置;L1:热介质输送管道。
具体实施方式
下面对本发明的技术方案进行举例说明,本发明请求保护的范围包括但不限于以下实施例。
实施例1
如图1所示,一种固废协同烧结、球团的处置工艺,该工艺包括以下步骤:
(1)固废预处理:将固废进行焚烧工序,得到固废渣。
(2)筛分:将步骤(1)得到的固废渣进行筛分,得到粗粒径固废渣和细粒径固废渣。
(3)协同处置:将步骤(2)得到的粗粒径固废渣与烧结原料混合输送至烧结工序,将步骤(2)得到的细粒径固废渣与球团原料混合输送至球团工序。
所述粗粒径固废渣的平均粒径D 大于等于D 0,细粒径固废渣的平均粒径D 小于D 0。其中:D 0为160-240目。
实施例2
如图1所示,一种固废协同烧结、球团的处置工艺,该工艺包括以下步骤:
(1)固废预处理:将固废进行热解工序,得到固废渣。
(2)筛分:将步骤(1)得到的固废渣进行筛分,得到粗粒径固废渣和细粒径固废渣。
(3)协同处置:将步骤(2)得到的粗粒径固废渣与烧结原料混合输送至烧结工序,将步骤(2)得到的细粒径固废渣与球团原料混合输送至球团工序。
所述粗粒径固废渣的平均粒径D 大于等于D 0,细粒径固废渣的平均粒径D 小于D 0。其中:D 0为180-220目。
实施例3
重复实施例1,所述固废为有机固废。固废进行热解工序后,得到的固废渣中的挥发分含量低于H 0%,其中:H 0为4-12。
实施例4
重复实施例2,所述固废为有机固废。固废进行焚烧工序后,得到的固废渣中的挥发分含量低于H 0%,其中:H 0为5-10。
实施例5
重复实施例3,如图2所示,只是固废进行热解工序,还得到热解气。所述热解气输送至烧结机,通过喷吹的方式喷在烧结机内烧结混合料的料面,用作烧结燃料。
实施例6
重复实施例5,只是将热解气输送至球团工序中,用作球团氧化焙烧的燃料。
实施例7
重复实施例4,如图2所示,只是固废进行焚烧工序,还得到高温烟气。所述高温烟气与烧结工序和球团工序产生的废气一并处理。
实施例8
如图3-6所示,只是所述焚烧工序和热解工序均通过热处理回转窑进行。该热处理回转窑包括窑头1、窑身2和排料口3。所述窑头1上设置有物料入口通道101、助燃空气通道102和环形进气通道103。窑身2包括炉衬201和炉膛202以及埋入式窑身进风管道203。所述物料入口通道101和助燃风道102均贯穿窑头1后连通至炉膛202。所述环形进气通道103设置在窑头1的内部。所述埋入式窑身进风管道203设置在炉衬201的内部。所述埋入式窑身进风管道203的一端与环形进气通道103相连通。所述埋入式窑身进风管道203的另一端与炉膛202相连通。所述环形进气通道103上还连接有进风管道104。
实施例9
重复实施例8,只是该热处理回转窑还包括有多个所述埋入式窑身进风管道203。多个所述埋入式窑身进风管道203均匀分布设置在炉衬201的内部。多个所述埋入式窑身进风管道203在窑头1延伸至窑身2方向上的长度相同或不相同。
实施例10
重复实施例9,只是该热处理回转窑还包括有进气喷头204,所述进气喷头204设置在炉膛202内并与埋入式窑身进风管道203的出气口相连。所述进气喷头204的喷气口处设置有隔网205。
实施例11
重复实施例10,只是该热处理回转窑还包括有进气管道阀门206。所述进气管道阀门206设置在埋入式窑身进风管道203对应的炉衬201上。通过调节进气管道阀门206控制埋入式窑身进风管道203的开合度。所述进气管道阀门206的数量与埋入式窑身进风管道203的数量一致。
实施例12
重复实施例11,只是该热处理回转窑还包括有温度探头207。所述温度探头207设置在埋入式窑身进风管道203出口处的炉膛202内。
实施例13
重复实施例12,通过控制热解工序的工艺条件,从而保证固废渣中的挥发分含量低于H 0%,具体为:
201)根据物料的走向,固废经由物料入口通道101投放至炉膛202内进行热解处理。同时助燃空气经由助燃空气通道102进入炉膛202内为固废的热解提供氧气。完成热解后的固废渣和烟气经由排料口3排出。
202)固废在炉膛202内热解时,通过实时检测炉膛202内热解温度的变化情况,通过调节投放至炉膛202内的固废的投放量或调节助燃气体输送量。
203)在热处理回转窑旋转固废的过程中,通过实时检测炉膛202内不同热解区域温度的变化情况,通过调节固废的投放量或者通过调节进气管道阀门206控制不同的埋入式窑身进风管道203对炉膛202内的不同热解区域的补风量的输入量,从而保证固废渣中的挥发分含量低于H 0%。
所述烧结原料为高含水矿,将步骤(2)得到的粗粒径固废渣与高含水矿混合输送至烧结工序。所述高含水矿为含水率质量分数大于W%的矿石。W为5-15。所述高含水矿为红土镍矿。
实施例14
重复实施例13,只是W为10-12,所述高含水矿为褐铁矿。
实施例15
重复实施例12,通过控制焚烧工序的工艺条件,从而保证固废渣中的挥发分含量低于H 0%,具体为:
201)根据物料的走向,固废经由物料入口通道101投放至炉膛202内进行焚烧处理。同时助燃空气经由助燃空气通道102进入炉膛202内为固废的焚烧提供氧气。完成焚烧后的固废渣和烟气经由排料口3排出。
202)固废在炉膛202内焚烧时,通过实时检测炉膛202内焚烧温度的变化情况,通过调节投放至炉膛202内的固废的投放量或调节助燃气体输送量。
203)在热处理回转窑旋转固废的过程中,通过实时检测炉膛202内不同焚烧区域温度的变化情况,通过调节固废的投放量或者通过调节进气管道阀门206控制不同的埋入式窑身进风管道203对炉膛202内的不同焚烧区域的补风量的输入量,从而保证固废渣中的挥发分含量低于H 0%。
所述烧结原料为高含水矿,将步骤(2)得到的粗粒径固废渣与高含水矿混合输送至烧结工序。所述高含水矿为含水率质量分数大于W%的矿石。W为8-13。所述高含水矿为褐铁矿。
实施例15
重复实施例14,只是W为10-12,所述高含水矿为红土镍矿。
实施例16
重复实施例15,只是所述粗粒径固废渣中的含水率质量分数小于P%。P为4。
实施例17
重复实施例16,只是P为2。
实施例18
重复实施例17,只是P为1。
实施例19
重复实施例18,如图7所示,只是该工艺还包括:检测高含水矿中的水分含量W 0
A)若高含水矿中的水分含量W 0小于W max,则按照上述方法将粗粒径固废渣与高含水矿输送至烧结工序处理。
B)若高含水矿中的水分含量W 0大于等于W max,则将高含水矿经过预处理,使得高含水矿中的水分含量W 0小于W max
其中:W max为15%。
实施例20
重复实施例19,如图8所示,只是所述高含水矿的预处理采用预处理系统进行。该预处理系统包括预处理回转窑4、套接式干燥筛分装置5和热介质输送管道L1。预处理回转窑4上设有高含水矿进料口401、高含水矿出料口402、热介质入口403和热介质出口404。所述套接式干燥筛分装置5设置在预处理回转窑4的内部。套接式干燥筛分装置5的一端与高含水矿进料口401相连通,其另一端与高含水矿出料口402相连通。热介质输送管道L1连接至热介质入口403。
实施例21
重复实施例20,如图9所示,只是所述套接式干燥筛分装置5包括内胆501和套筒502。其中,内胆501和套筒502互为同心圆筒。所述套筒502设置在预处理回转窑4侧壁的内部。所述内胆501与套筒502的内壁贴合设置。内胆501的一端设有进料口,所述进料口与预处理回转窑4的高含水矿进料口401相连通。所述内胆501的另一端伸入套筒502的内腔内。套筒502在背离内胆501的一端设有排料口,所述排料口与预处理回转窑4的高含水矿出料口402相连通。
实施例22
重复实施例21,只是所述套筒502的筒壁上设有筛孔503。在套筒502内,套筒502与内胆501相重合的腔室为预干燥腔室504,套筒502内未与内胆501重合的剩余部分腔室则构成干燥筛分腔室505。所述套筒502与预处理回转窑4的侧壁之间具有夹层506。干燥筛分 腔室505通过筛孔503与夹层506相连通。所述夹层506上还设置有细料排料口405。所述细料排料口405设置在预处理回转窑4的侧壁上,且位于靠近高含水矿出料口402的位置。
实施例22
重复实施例21,只是所述内胆501为伸缩式结构。所述筛孔503的孔径为5~20mm。
实施例23
重复实施例22,只是所述筛孔503的孔径为6~15mm。
实施例24
重复实施例23,只是所述筛孔503的孔径为7~10mm。
实施例25
重复实施例24,只是在预处理回转窑4上的高含水矿进料口401处设有第一水分检测装置406、第一物料流量检测装置407、第一物料温度检测装置408。预处理回转窑4内的套接式干燥筛分装置5上设有第一物料流速检测装置507。
实施例26
重复实施例25,只是在预处理回转窑4的高含水矿出料口402处设有第二水分检测装置409。
实施例27
重复实施例25,只是所述高含水矿的预处理具体为:
B1)将待处理的高含水矿输送至预处理回转窑4,同时向预处理回转窑4内通入热介质。
B2)待处理的高含水矿在预处理回转窑4内经由套接式干燥筛分装置5同时进行干燥和筛分处理,得到干燥的大颗粒高含水矿。
实施例28
重复实施例27,如图10所示,只是在预处理回转窑4的高含水矿进料口401处设有第一水分检测装置406、第一物料流量检测装置407、第一物料温度检测装置408。在预处理回转窑4内的套接式干燥筛分装置5上设有第一物料流速检测装置507。第一水分检测装置406检测进入预处理回转窑4的高含水矿内的水分含量,记为W 0,%。第一物料流量检测装置407检测单次投放进入预处理回转窑4的高含水矿量,记为M 0,m 3。第一物料温度检测装置408检测进入预处理回转窑4的高含水矿温度,记为T 0,℃。第一物料流速检测装置507检测高含水矿在预处理回转窑4内的移动速度,记为V 1,m/s。根据烧结工序条件需要,设定进入烧结工序前的高含水矿的水分含量上限为W max,%。计算高含水矿在预处理回转窑4内的干燥筛分腔室505需要流经的总位移L,m。
Figure PCTCN2022078410-appb-000004
其中:C 为高含水矿的比热容,C 为热介质的比热容。ρ 为高含水矿的堆密度,ρ 为热介质的密度。T为热介质输入预处理回转窑4时的温度,V 2为热介质的流速,S 为热介质入口的截面积。
热介质在预处理回转窑4内对高含水矿进行干燥处理,调节高含水矿在预处理回转窑4内的干燥筛分腔室505流经的总位移不小于L,使得从高含水矿出料口402排出的大颗粒高含水矿的水分含量低于W max
应用实施例1
采用实施例28对高含水矿进行预处理:第一水分检测装置406检测进入预处理回转窑4的高含水矿内的水分含量,为16%。第一物料流量检测装置407检测单次投放进入预处理回转窑4的高含水矿量,为120m 3。第一物料温度检测装置408检测进入预处理回转窑4的块高含水矿温度,为24℃。第一物料流速检测装置507检测高含水矿在预处理回转窑4内的移动速度,为0.001m/s。根据烧结工序条件需要,设定进入烧结工序前高含水矿的含水率上限为11%。高含水矿的比热容为440[kJ/(m 3·℃)];高含水矿的堆密度为2800kg/m 3;热介质的比热容为1300[kJ/(m 3·℃)];热介质的密度为1.36kg/m 3;热介质的流速为1.5m/s;热介质输出口的截面积为0.3m 2;热介质输入预处理回转窑4时的温度为179℃,计算高含水矿在预处理回转窑4的干燥筛分腔室505内需要流经的总位移L,m:
Figure PCTCN2022078410-appb-000005
热介质在预处理回转窑4内对高含水矿进行干燥处理,调节高含水矿在预处理回转窑4内的干燥筛分腔室505流经的总位移不小于8.94m,使得从高含水矿出料口402排出的大颗粒高含水矿的水分含量低于11%。
应用实施例2
采用实施例28对高含水矿进行预处理:第一水分检测装置406检测进入预处理回转窑4的高含水矿内的水分含量,为17%。第一物料流量检测装置407检测单次投放进入预处理回转窑4的高含水矿量,为120m 3。第一物料温度检测装置408检测进入预处理回转窑4的块高含水矿温度,为22℃。第一物料流速检测装置507检测高含水矿在预处理回转窑4内的移动速度,为0.002m/s。根据烧结工序条件需要,设定进入烧结工序前高含水矿的含水率上限为13%。高含水矿的比热容为440[kJ/(m 3·℃)];高含水矿的堆密度为2800kg/m 3;热介质的比 热容为1300[kJ/(m 3·℃)];热介质的密度为1.36kg/m 3;热介质的流速为2m/s;热介质输出口的截面积为0.4m 2;热介质输入预处理回转窑4时的温度为180℃,计算高含水矿在预处理回转窑4的干燥筛分腔室505内需要流经的总位移L,m:
Figure PCTCN2022078410-appb-000006
热介质在预处理回转窑4内对高含水矿进行干燥处理,调节高含水矿在预处理回转窑4内的干燥筛分腔室505流经的总位移不小于8.15m,使得从高含水矿出料口402排出的大颗粒高含水矿的水分含量低于13%。

Claims (14)

  1. 一种固废协同烧结、球团的处置工艺,该工艺包括以下步骤:
    (1)固废预处理:将固废进行热解工序和/或焚烧工序,得到固废渣;
    (2)筛分:将步骤(1)得到的固废渣进行筛分,得到粗粒径固废渣和细粒径固废渣;
    (3)协同处置:将步骤(2)得到的粗粒径固废渣与烧结原料混合输送至烧结工序,将步骤(2)得到的细粒径固废渣与球团原料混合输送至球团工序。
  2. 根据权利要求1所述的固废协同烧结、球团的处置工艺,其特征在于:所述粗粒径固废渣的平均粒径D 大于等于D 0,细粒径固废渣的平均粒径D 小于D 0;其中:D 0为160-240目,优选为180-220目;和/或
    所述固废为有机固废、含铁高锌固废、含铁低盐低锌固废、含铁高盐固废中的一种或多种;优选为有机固废。
  3. 根据权利要求1或2所述的固废协同烧结、球团的处置工艺,其特征在于:固废进行热解工序和/或焚烧工序后,得到的固废渣中的挥发分含量低于H 0%,其中:H 0为4-12,优选为5-10;和/或
    固废进行热解工序和/或焚烧工序,还得到热解气和/或高温烟气;所述热解气输送至烧结机,通过喷吹的方式喷在烧结机内烧结混合料的料面,用作烧结燃料;或者,将热解气输送至球团工序中,用作球团氧化焙烧的燃料;所述高温烟气与烧结工序和/或球团工序产生的废气一并处理。
  4. 根据权利要求3所述的固废协同烧结、球团的处置工艺,其特征在于:所述焚烧工序和/或热解工序均通过热处理回转窑进行;该热处理回转窑包括窑头(1)、窑身(2)和排料口(3);所述窑头(1)上设置有物料入口通道(101)、助燃空气通道(102)和环形进气通道(103);窑身(2)包括炉衬(201)和炉膛(202)以及埋入式窑身进风管道(203);所述物料入口通道(101)和助燃风道(102)均贯穿窑头(1)后连通至炉膛(202);所述环形进气通道(103)设置在窑头(1)的内部;所述埋入式窑身进风管道(203)设置在炉衬(201)的内部;所述埋入式窑身进风管道(203)的一端与环形进气通道(103)相连通;所述埋入式窑身进风管道(203)的另一端与炉膛(202)相连通;所述环形进气通道(103)上还连接有进风管道(104)。
  5. 根据权利要求4所述的固废协同烧结、球团的处置工艺,其特征在于:该热处理回转窑还包括有多个所述埋入式窑身进风管道(203);多个所述埋入式窑身进风管道(203)均匀分布设置在炉衬(201)的内部;多个所述埋入式窑身进风管道(203)在窑头(1)延伸至窑身(2)方向上的长度相同或不相同;和/或
    该热处理回转窑还包括有进气喷头(204),所述进气喷头(204)设置在炉膛(202)内并与埋入式窑身进风管道(203)的出气口相连;优选,所述进气喷头(204)的喷气口处设置有隔网(205);和/或
    该热处理回转窑还包括有进气管道阀门(206);所述进气管道阀门(206)设置在埋入式窑身进风管道(203)对应的炉衬(201)上;通过调节进气管道阀门(206)控制埋入式窑身进风管道(203)的开合度;所述进气管道阀门(206)的数量与埋入式窑身进风管道(203)的数量一致;和/或
    该热处理回转窑还包括有温度探头(207);所述温度探头(207)设置在埋入式窑身进风管道(203)出口处的炉膛(202)内。
  6. 根据权利要求5所述的固废协同烧结、球团的处置工艺,其特征在于:通过控制热解工序和/或焚烧工序的工艺条件,从而保证固废渣中的挥发分含量低于H 0%,具体为:
    201)根据物料的走向,固废经由物料入口通道(101)投放至炉膛(202)内进行热解或焚烧处理;同时助燃空气经由助燃空气通道(102)进入炉膛(202)内为固废的热解或焚烧提供氧气;完成热解或焚烧后的固废渣和烟气经由排料口(3)排出;
    202)固废在炉膛(202)内热解或焚烧时,通过实时检测炉膛(202)内热解或焚烧温度的变化情况,通过调节投放至炉膛(202)内的固废的投放量或调节助燃气体输送量;
    203)在热处理回转窑旋转固废的过程中,通过实时检测炉膛(202)内不同热解或焚烧区域温度的变化情况,通过调节固废的投放量或者通过调节进气管道阀门(206)控制不同的埋入式窑身进风管道(203)对炉膛(202)内的不同热解或焚烧区域的补风量的输入量,从而保证固废渣中的挥发分含量低于H 0%。
  7. 根据权利要求1-6中任一项所述的固废协同烧结、球团的处置工艺,其特征在于:所述烧结原料为高含水矿,将步骤(2)得到的粗粒径固废渣与高含水矿混合输送至烧结工序;
    作为优选,所述高含水矿为含水率质量分数大于W%的矿石;W为5-15;优选W为8-13;更优选W为10-12。
  8. 根据权利要求7所述的固废、高含水矿的协同处置工艺,其特征在于:所述高含水矿为块矿,优选为红土镍矿和/或褐铁矿;和/或
    所述粗粒径固废渣中的含水率质量分数小于P%;P为0.5-5;优选P为0.5-3;更优选P为0.5-2。
  9. 根据权利要求8所述的固废、高含水矿的协同处置工艺,其特征在于:该工艺还包括:检测高含水矿中的水分含量W 0
    A)若高含水矿中的水分含量W 0小于W max,则按照上述方法将粗粒径固废渣与高含水矿输送至烧结工序处理;
    B)若高含水矿中的水分含量W 0大于等于W max,则将高含水矿经过预处理,使得高含水矿中的水分含量W 0小于W max
    其中:W max为10%-15%。
  10. 根据权利要求9所述的固废、高含水矿的协同处置工艺,其特征在于:所述高含水矿的预处理采用预处理系统进行;该预处理系统包括预处理回转窑(4)、套接式干燥筛分装置(5)和热介质输送管道(L1);预处理回转窑(4)上设有高含水矿进料口(401)、高含水矿出料口(402)、热介质入口(403)和热介质出口(404);所述套接式干燥筛分装置(5)设置在预处理回转窑(4)的内部;套接式干燥筛分装置(5)的一端与高含水矿进料口(401)相连通,其另一端与高含水矿出料口(402)相连通;热介质输送管道(L1)连接至热介质入口(403);
    所述套接式干燥筛分装置(5)包括内胆(501)和套筒(502);其中,内胆(501)和套筒(502)互为同心圆筒;所述套筒(502)设置在预处理回转窑(4)侧壁的内部;所述内胆(501)与套筒(502)的内壁贴合设置;内胆(501)的一端设有进料口,所述进料口与预处理回转窑(4)的高含水矿进料口(401)相连通;所述内胆(501)的另一端伸入套筒(502)的内腔内;套筒(502)在背离内胆(501)的一端设有排料口,所述排料口与预处理回转窑(4)的高含水矿出料口(402)相连通。
  11. 根据权利要求10所述的固废、高含水矿的协同处置工艺,其特征在于:所述套筒(502)的筒壁上设有筛孔(503);在套筒(502)内,套筒(502)与内胆(501)相重合的腔室为预干燥腔室(504),套筒(502)内未与内胆(501)重合的剩余部分腔室则构成干燥筛分腔室(505);所述套筒(502)与预处理回转窑(4)的侧壁之间具有夹层(506);干燥筛分腔室(505)通过筛孔(503)与夹层(506)相连通;所述夹层(506)上还设置有细料排料口(405);所述细料排料口(405)设置在预处理回转窑(4)的侧壁上,且位于靠近高含水矿出料口(402)的位置;
    优选的是,所述内胆(501)为伸缩式结构;作为优选,所述筛孔(503)的孔径为5~20mm,优选为6~15mm,更优选为7~10mm。
  12. 根据权利要求10或11所述的固废、高含水矿的协同处置工艺,其特征在于:在预处理回转窑(4)上的高含水矿进料口(401)处设有第一水分检测装置(406)、第一物料流量检测装置(407)、第一物料温度检测装置(408);预处理回转窑(4)内的套接式干燥筛分装置(5)上设有第一物料流速检测装置(507);和/或
    在预处理回转窑(4)的高含水矿出料口(402)处设有第二水分检测装置(409)。
  13. 根据权利要求9-12中任一项所述的固废、高含水矿的协同处置工艺,其特征在于:所述高含水矿的预处理具体为:
    B1)将待处理的高含水矿输送至预处理回转窑(4),同时向预处理回转窑(4)内通入热介质;
    B2)待处理的高含水矿在预处理回转窑(4)内经由套接式干燥筛分装置(5)同时进行干燥和筛分处理,得到干燥的大颗粒高含水矿。
  14. 根据权利要求13所述的固废、高含水矿的协同处置工艺,其特征在于:在预处理回转窑(4)的高含水矿进料口(401)处设有第一水分检测装置(406)、第一物料流量检测装置(407)、第一物料温度检测装置(408);在预处理回转窑(4)内的套接式干燥筛分装置(5)上设有第一物料流速检测装置(507);第一水分检测装置(406)检测进入预处理回转窑(4)的高含水矿内的水分含量,记为W 0,%;第一物料流量检测装置(407)检测单次投放进入预处理回转窑(4)的高含水矿量,记为M 0,m 3;第一物料温度检测装置(408)检测进入预处理回转窑(4)的高含水矿温度,记为T 0,℃;第一物料流速检测装置(507)检测高含水矿在预处理回转窑(4)内的移动速度,记为V 1,m/s;根据烧结工序条件需要,设定进入烧结工序前的高含水矿的水分含量上限为W max,%;计算高含水矿在预处理回转窑(4)内的干燥筛分腔室(505)需要流经的总位移L,m;
    Figure PCTCN2022078410-appb-100001
    其中:C 为高含水矿的比热容,C 为热介质的比热容;ρ 为高含水矿的堆密度,ρ 为热介质的密度;T为热介质输入预处理回转窑(4)时的温度,V 2为热介质的流速,S 为热介质入口的截面积;
    热介质在预处理回转窑(4)内对高含水矿进行干燥处理,调节高含水矿在预处理回转窑(4)内的干燥筛分腔室(505)流经的总位移不小于L,使得从高含水矿出料口(402)排出的大颗粒高含水矿的水分含量低于W max
PCT/CN2022/078410 2021-04-16 2022-02-28 一种固废协同烧结、球团的处置工艺 WO2022218044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112023019933A BR112023019933A2 (pt) 2021-04-16 2022-02-28 Processo de sinterização sinérgica de resíduos sólidos e disposição de pelotizantes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414505.2 2021-04-16
CN202110414505.2A CN113151675B (zh) 2021-04-16 2021-04-16 一种固废协同烧结、球团的处置工艺

Publications (1)

Publication Number Publication Date
WO2022218044A1 true WO2022218044A1 (zh) 2022-10-20

Family

ID=76868629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078410 WO2022218044A1 (zh) 2021-04-16 2022-02-28 一种固废协同烧结、球团的处置工艺

Country Status (3)

Country Link
CN (1) CN113151675B (zh)
BR (1) BR112023019933A2 (zh)
WO (1) WO2022218044A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151675B (zh) * 2021-04-16 2022-12-06 中冶长天国际工程有限责任公司 一种固废协同烧结、球团的处置工艺
CN113846210A (zh) * 2021-08-23 2021-12-28 浙江省工业设计研究院有限公司 一种烧结机协同处置危废hw18的新工艺方法
CN113862465A (zh) * 2021-08-23 2021-12-31 浙江省工业设计研究院有限公司 一种烧结机协同处置危废hw11的新工艺方法
CN113862466A (zh) * 2021-08-23 2021-12-31 浙江省工业设计研究院有限公司 一种烧结机协同处置危废hw17的新工艺方法
CN114704833B (zh) * 2022-05-20 2023-03-10 中冶长天国际工程有限责任公司 一种回转窑-烧结机协同处置危险废物的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312036A (ja) * 1988-06-13 1989-12-15 Kawasaki Steel Corp 製鉄ダストと微粉鉄鉱石から焼結原料を製造する方法
CN101037720A (zh) * 2007-04-28 2007-09-19 中南大学 超高料层烧结铁矿粉方法
JP2007254863A (ja) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd 有機性廃棄物を利用した焼結物、および、その焼結物の製造方法、ならびに、精錬処理方法
CN107639100A (zh) * 2017-10-20 2018-01-30 神雾科技集团股份有限公司 一种垃圾与赤泥协同处理系统及方法
CN108165734A (zh) * 2018-02-11 2018-06-15 四川东林矿山运输机械有限公司 一种返矿烧结工艺及系统
CN110157897A (zh) * 2019-05-24 2019-08-23 重庆赛迪热工环保工程技术有限公司 一种城市固体废弃物和冶金固体废弃物联合处置工艺
CN113151675A (zh) * 2021-04-16 2021-07-23 中冶长天国际工程有限责任公司 一种固废协同烧结、球团的处置工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850295B2 (ja) * 2002-01-11 2006-11-29 株式会社Nippoコーポレーション 汚染土壌の処理装置
CN2663820Y (zh) * 2003-12-12 2004-12-15 上海金州环境工程技术有限公司 回转窑式医疗、工业垃圾焚烧炉
CN105296746B (zh) * 2014-07-30 2017-09-22 宝山钢铁股份有限公司 一种降低烧结固体燃耗的方法
CN105087907B (zh) * 2015-09-25 2018-02-13 中冶东方工程技术有限公司 一种铬铁粉矿烧结工艺
CN107202325B (zh) * 2016-03-16 2020-10-27 浙江金锅环保科技有限公司 回转式可控热解炭化窑
CN107062252B (zh) * 2017-06-01 2023-07-25 山东巨亚环保科技股份有限公司 一种底部进风的环保回转窑式焚烧炉
CN110106347B (zh) * 2019-05-15 2020-04-21 中南大学 一种铜冶炼废渣应用于烧结的处理方法
CN112113223B (zh) * 2020-08-24 2023-04-21 浙江天象环境服务有限公司 一种利用钢厂炉窑协同处置工业危险废弃物的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312036A (ja) * 1988-06-13 1989-12-15 Kawasaki Steel Corp 製鉄ダストと微粉鉄鉱石から焼結原料を製造する方法
JP2007254863A (ja) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd 有機性廃棄物を利用した焼結物、および、その焼結物の製造方法、ならびに、精錬処理方法
CN101037720A (zh) * 2007-04-28 2007-09-19 中南大学 超高料层烧结铁矿粉方法
CN107639100A (zh) * 2017-10-20 2018-01-30 神雾科技集团股份有限公司 一种垃圾与赤泥协同处理系统及方法
CN108165734A (zh) * 2018-02-11 2018-06-15 四川东林矿山运输机械有限公司 一种返矿烧结工艺及系统
CN110157897A (zh) * 2019-05-24 2019-08-23 重庆赛迪热工环保工程技术有限公司 一种城市固体废弃物和冶金固体废弃物联合处置工艺
CN113151675A (zh) * 2021-04-16 2021-07-23 中冶长天国际工程有限责任公司 一种固废协同烧结、球团的处置工艺

Also Published As

Publication number Publication date
BR112023019933A2 (pt) 2023-11-21
CN113151675B (zh) 2022-12-06
CN113151675A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022218044A1 (zh) 一种固废协同烧结、球团的处置工艺
CN102951640B (zh) 一种电石生产装置
CN101776269B (zh) 生活垃圾的n级焚烧处理方法
CN109776002B (zh) 一种适宜粘土矿尾矿的悬浮煅烧活化系统及方法
CN205014851U (zh) 烧结矿显热回收装置
CN106556258A (zh) 烧结矿显热回收装置及其使用方法
CN113122709A (zh) 一种保障铁品位的固废、烧结、球团协同处置工艺
CN109797006A (zh) 一种烟气干燥送粉的超细生物质与燃煤耦合发电系统及方法
WO2022218043A1 (zh) 一种以烧结和球团工序为中心的固废处置工艺
CN206112977U (zh) 一种煤和污泥耦合燃烧发电的混合制粉系统
WO2023221337A1 (zh) 一种回转窑-烧结机协同处置危险废物的方法及系统
CN105176588A (zh) 一种城市垃圾或工业污泥热解气化机械化生产煤气高炉
CN107143864A (zh) 一种全燃煤泥循环流化床锅炉焚烧污泥的工艺
CN115178467B (zh) 一种基于轴管式回转窑的块矿预处理系统及预处理方法
CN113172071B (zh) 一种基于固废、高含水矿的协同处置工艺
CN209652250U (zh) 一种烟气干燥送粉的超细生物质与燃煤耦合发电系统
CN116083673B (zh) 一种高炉热风炉烟气串级利用同步脱硫脱硝系统
CN116123558A (zh) 一种提质气化细渣煤粉炉直燃利用系统及其操作方法
CN101307372A (zh) 一种甲壳球团的制造与还原装置及生产工艺
CN102853680B (zh) 链篦机回转窑直接还原用二次燃烧设备
CN213334398U (zh) 一种危险废物热解焚烧系统
CN113970101B (zh) 一种危险废物热解焚烧系统及其温度控制方法
CN111559877B (zh) 一种超高温竖窑
CN207231245U (zh) 沸腾炉冷却集渣系统
CN103939891B (zh) 一种水煤浆湍流强化燃烧方法与燃烧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023/011169

Country of ref document: TR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019933

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023126462

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023019933

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230927

122 Ep: pct application non-entry in european phase

Ref document number: 22787274

Country of ref document: EP

Kind code of ref document: A1