WO2022217976A1 - 一种光学元件及光学模组 - Google Patents

一种光学元件及光学模组 Download PDF

Info

Publication number
WO2022217976A1
WO2022217976A1 PCT/CN2021/142525 CN2021142525W WO2022217976A1 WO 2022217976 A1 WO2022217976 A1 WO 2022217976A1 CN 2021142525 W CN2021142525 W CN 2021142525W WO 2022217976 A1 WO2022217976 A1 WO 2022217976A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fresnel lens
optical element
lens layer
array
Prior art date
Application number
PCT/CN2021/142525
Other languages
English (en)
French (fr)
Inventor
陶欢
伍未名
刘风雷
Original Assignee
浙江水晶光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水晶光电科技股份有限公司 filed Critical 浙江水晶光电科技股份有限公司
Publication of WO2022217976A1 publication Critical patent/WO2022217976A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • the present application relates to the field of optical technology, in particular, to optical elements and optical modules.
  • the light emitted from the light source often needs to adjust the divergence angle of the beam and the intensity distribution of the beam.
  • the collimating lens is often used to collimate the light beam with a larger divergence angle to the light with a smaller divergence angle
  • the microlens array is often used to shape the light beam into a specific intensity distribution.
  • the microlens array in the application of beam adjustment and shaping, often causes diffraction fringes to appear in the shaping light spot due to the interference and diffraction of small lens units.
  • the shaping effect of the microlens on the light beam is often affected by the divergence angle of the incident light and the light intensity distribution of the incident light, and the effect is poor at a larger incident divergence angle.
  • multiple sets of optical elements are required to cooperate, which increases the occupation space and is not conducive to the miniaturization of the product.
  • the present application provides an optical element and an optical module, which can adjust the beam direction and light intensity distribution and reduce the occupied space.
  • the optical element may include a transparent substrate, an arrayed microlens layer and a Fresnel lens layer, the arrayed microlens layer and the Fresnel lens layer may be in the
  • the transparent substrate is laminated on the transparent substrate, or the array microlens layer and the Fresnel lens layer can be respectively located on opposite sides of the transparent substrate, wherein the Fresnel lens layer can be used to adjust the incident light beam
  • the outgoing angle of the array microlens layer can be used to homogenize the light beams outgoing from the Fresnel lens layer.
  • the array microlens layer may be realized by a combination of laser direct writing and imprinting, or the array microlens layer may be realized by a combination of mask lithography and melting.
  • the Fresnel lens layer can be prepared by a combination of mask lithography and etching, or the Fresnel lens layer can be prepared by a combination of grinding lithography and imprinting Alternatively, the Fresnel lens layer can be prepared by a combination of laser direct writing and imprinting.
  • the array microlens layer may include microlenses distributed along the same plane, and the shapes and sizes of the microlenses at different positions may be different.
  • the light-transmitting surface of the microlens may include any one of a concave surface, a convex surface or a wavy curved surface.
  • adjacent microlenses may be closely attached, and the distance between the geometric centers of adjacent microlenses may be 1um-200um.
  • the height of the microlenses may be 1 um to 100 um.
  • the refractive index n1 of the array microlens layer is the same as that of the Fresnel lens layer.
  • the difference between the refractive indices n 2 may be:
  • a spacer layer may also be provided between the array microlens layer and the Fresnel lens layer, and the refractive index n1 of the array microlens layer is between the refractive index n3 of the spacer layer can be:
  • the Fresnel lens layer may include a stepped Fresnel structure, and the height h 1 of the stepped Fresnel structure may be 0.1 um to 10 um, or the Fresnel lens layer may include Continuous Fresnel structure, the height h 2 of the continuous Fresnel structure may be 1 um to 100 um.
  • the materials of the transparent substrate, the array microlens layer and the Fresnel lens layer may include any one of glass, resin or plastic.
  • the thickness of the transparent substrate may be 0.1 mm to 5 mm.
  • optical module may include the optical element according to any one of the some embodiments of the present application, and a light emitting module, the optical element is located in The light-emitting module exits the light path.
  • the light-emitting module may be a single light source, or the light-emitting module may be a module composed of a light source and a lens, a mirror or a diaphragm.
  • the optical elements and optical modules provided by the embodiments of the present application can collimate the light beam through the Fresnel lens layer, or make the light beam exit at a specific angle, so that the direction of the light beam can be flexibly adjusted as required.
  • the light beam After the light beam emerges from the Fresnel lens layer, it is shaped and homogenized by the array microlens layer, and is less affected by the coherence of the beam, which is beneficial to improve the quality of the light beam after exiting the optical element.
  • the combination of the Fresnel lens layer and the array micro-lens layer can realize the functions of adjusting the beam direction and light intensity distribution at the same time, thereby improving the beam adjustment ability, and occupying a smaller space, which is beneficial to the small size of the optical module. change.
  • FIG. 1 is one of the schematic structural diagrams of the optical element provided by the embodiment of the present application.
  • FIG. 2 is the second schematic structural diagram of the optical element provided by the embodiment of the present application.
  • FIG. 3 is a third schematic structural diagram of an optical element provided by an embodiment of the present application.
  • FIG. 4 is a fourth schematic structural diagram of an optical element provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an array microlens layer provided by an embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of the transmission of light beams through optical elements according to an embodiment of the present application.
  • FIG. 7 is the second schematic diagram of the transmission of the light beam through the optical element provided by the embodiment of the present application.
  • FIG. 8 is a cross-sectional distribution diagram of a light spot passing through a conventional mirror group provided by an embodiment of the present application.
  • FIG. 9 is a cross-sectional distribution diagram of a light spot passing through an optical element provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • Icon 100-optical element; 105-light source; 110-transparent substrate; 120-array microlens layer; 122-microlens; 130-Fresnel lens layer; 140-spacer layer; 200-optical module; 210-luminescence module.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Connected integrally; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two elements.
  • an embodiment of the present application provides an optical element 100 including a transparent substrate 110 , an array microlens layer 120 and a Fresnel lens layer 130 , an array microlens layer 120 and a Fresnel lens
  • the layer 130 is stacked on the transparent substrate 110, or the array microlens layer 120 and the Fresnel lens layer 130 are respectively located on opposite sides of the transparent substrate 110, wherein the Fresnel lens layer 130 is used to adjust the exit of the incident light beam Angle, the array microlens layer 120 is used to homogenize the light beams emitted by the Fresnel lens layer 130 .
  • the use of the Fresnel lens layer 130 to adjust the exit angle of the incident light beam includes not only collimating the light beam to make the light beam exit in parallel, but also flexibly adjusting the exit direction of the light beam so that the light beam exits at a specific angle.
  • the light source 105 incident on the Fresnel lens layer 130 is not a simple point light source 105 or a surface light source 105 .
  • the light source 105 passes through the lens imaging system and then illuminates the Fresnel lens layer 130 .
  • the above manner may lead to irregular distribution of the relationship between the incident angle and the position of the chief ray at different positions of the Fresnel lens layer 130 .
  • the structural form of the Fresnel lens layer 130 can still be set according to the incident angle of the chief ray, so that the light beam can be emitted in parallel, or the light beam can be emitted at a specific angle as required, so as to achieve the desired shaping effect.
  • the array microlens layer 120 is an array of random microlenses 122, which can avoid the problem that diffraction cannot be well eliminated due to the use of a periodic structure.
  • the array microlens layer 120 can be realized by a combination of laser direct writing and imprinting, or a combination of mask lithography and melting. It can be understood that the Fresnel lens layer 130 can be obtained by a combination of mask lithography and etching, a combination of abrasive lithography and imprinting, or a combination of laser direct writing and imprinting. .
  • the optical element 100 has an integrated structure, which is beneficial to improve the stability of the structure, and can reduce the occupied space compared with the discrete optical module.
  • the alignment accuracy of the Fresnel lens layer 130 and the array microlens layer 120 can be increased by adding alignment marks.
  • the array microlens layer 120 and the Fresnel lens layer 130 are stacked on the transparent substrate 110 , the array microlens layer 120 can be in contact with the transparent substrate 110 , or the Fresnel lens can be placed in contact with the transparent substrate 110 .
  • the layer 130 is in contact with the transparent substrate 110, which is not specifically limited in this embodiment of the present application. In practical applications, the light beam only needs to pass through the Fresnel lens layer 130 first.
  • the optical element 100 uses the Fresnel lens layer 130 to achieve collimation of the light beam, or to make the light beam exit at a specific angle, so that the direction of the light beam can be flexibly adjusted as required.
  • the Fresnel lens layer 130 After the light beam emerges from the Fresnel lens layer 130 , it is shaped and homogenized by the array microlens layer 120 , and is less affected by the coherence of the light beam, which is beneficial to improve the quality of the light beam after exiting through the optical element 100 .
  • the functions of adjusting the beam direction and light intensity distribution can be realized at the same time, thereby improving the beam adjustment ability, and occupying a smaller space, which is conducive to forming an optical module 200 (such as TOF transmitter, laser projection module, etc.) miniaturization.
  • an optical module 200 such as TOF transmitter, laser projection module, etc.
  • the array microlens layer 120 includes microlenses 122 distributed along the same plane, and the shapes and sizes of the microlenses 122 at different positions are different.
  • the microlens 122 in the embodiment of the present application is a random microlens 122, that is, the parameters of the microlens 122 at different positions are different.
  • the lens height, lens diameter, lens curvature, and lens pitch of the microlens 122 are all uniform. It can be flexibly set as needed. That is, the shape and size of the microlenses 122 at different positions are different. In order to reduce the coherence of the beam to a certain extent, thereby reducing the speckle effect, so as to maintain the desired shape and uniformity at a specific distance, and further improve the quality of the beam after shaping.
  • the array form and specific parameters of the microlens 122 can be flexibly set according to actual needs. In practical applications, the size of the selected optical element 100 and the divergence angle of the outgoing beam and the final required divergence angle of the outgoing beam can be determined. different design parameters.
  • the light-transmitting surface of the microlens 122 includes any one of a concave surface, a convex surface, or a wavy curved surface.
  • the light-transmitting surfaces of the microlenses 122 may all adopt concave structures, ie, concave lenses; may also adopt all convex structures, ie, convex lenses; and may also adopt wavy curved surfaces to achieve different optical performances. It can be understood that the light-transmitting surface of the microlens 122 may also be a combination of concave, convex, or wavy curved surfaces, as long as the required uniform light effect can be ensured, which is not specifically limited in this embodiment of the present application.
  • adjacent microlenses 122 are closely attached, and the distance between the geometric centers of adjacent microlenses 122 is 1 um to 200 um.
  • the microlenses 122 have an irregular boundary shape.
  • the purpose of uniform light is achieved by the difference of parameters between different microlenses 122 .
  • the above placement makes the array microlens layer 120 a seamless structure, which is beneficial to avoid the problem of light leakage caused by the spacing between the microlenses 122, and is beneficial to improve the uniform light performance of the optical element 100 in use.
  • the distance between the geometric centers of adjacent microlenses 122 is also different.
  • the distance between the geometric centers of adjacent microlenses 122 is 1um-200um.
  • the distance between the geometric centers of adjacent microlenses 122 can be set to 1um, 50um, 100um or 200um, etc.
  • the height of the microlenses 122 is 1 um to 100 um.
  • the height of the microlenses 122 is 1 um-200 um.
  • the height of the microlens 122 may be set to 1 um, 50 um, 100 um, or 200 um.
  • the refractive index of the array microlens layer 120 is:
  • the material forming the array microlens layer 120 may have a relatively high refractive index, and the material forming the Fresnel lens layer 130 may have a relatively low refractive index.
  • the material forming the array microlens layer 120 may have a relatively low refractive index, and the material forming the Fresnel lens layer 130 may have a relatively high refractive index, which is not specifically limited in this embodiment of the present application.
  • ⁇ 0.2 it is beneficial to ensure better optical performance. It should be noted that different refractive indices are used to ensure the stability of the optical properties of the array microlens layer 120 and the Fresnel lens layer 130.
  • the same refractive index material is used, it can be considered that the array microlens layer 120 and the The Neel lens layer 130 forms the same structure and no longer has respective optical properties. Therefore, the refractive index between the array microlens layer 120 and the Fresnel lens layer 130 needs to be different.
  • a spacer layer 140 is further provided between the array microlens layer 120 and the Fresnel lens layer 130 .
  • the refractive index of the array microlens layer 120 is n 1
  • the difference between the refractive index n 3 of the spacer layer 140 and the spacer layer 140 is:
  • the refractive index n 2 of the Fresnel lens layer 130 and the refractive index n 3 of the spacer layer 140 are The difference is:
  • the use of different refractive indices is to ensure the stability of the optical properties of the array microlens layer 120 and the Fresnel lens layer 130, and a space is also provided between the array microlens layer 120 and the Fresnel lens layer 130.
  • the refractive index between the array microlens layer 120 and the Fresnel lens layer 130 may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the Fresnel lens layer 130 includes a stepped Fresnel structure, and the height h 1 of the stepped Fresnel structure is 0.1 um to 10 um.
  • a stepped Fresnel structure when used, a multi-order structure such as 2-order, 4-order or 8-order can be used. Generally, the heights of each order are equal, and a non-equal-height structure can also be set as required. In specific applications, it can be flexibly set as required, wherein the height h 1 of the stepped Fresnel structure can be set to 0.1um, 0.5um, 4um or 10um according to actual needs.
  • the Fresnel lens layer 130 includes a continuous Fresnel structure, and the height h 2 of the continuous Fresnel structure is 1 um to 100 um.
  • the continuous Fresnel structure may be composed of a spherical surface, an aspherical surface, etc., which are divided into multi-segment surfaces, or a free-form surface is divided into multi-segment surfaces.
  • the height of the sawtooth of the continuous Fresnel structure can be of equal height or of non-equal height, and can be set flexibly as required.
  • the height h 2 of the continuous Fresnel structure may be set to 1 um, 10 um, 20 um, 50 um, or 100 um.
  • FIG. 6 it is a schematic diagram of the parallel output of the light beam after passing through the Fresnel lens layer 130 in the embodiment of the present application, that is, the light beam is collimated.
  • the optical element 100 of the present application makes the light source 105 face the Fresnel lens layer 130 in practical applications, wherein the light source 105 can be a light emitting diode (LED), a semiconductor laser (Laser diode, LD), a vertical cavity surface emission Any of the Lasers (Vertical Cavity Surface Emitting Laser, VCSEL).
  • LED light emitting diode
  • LD semiconductor laser
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the above-mentioned form is adopted to realize that the light beam is collimated by the Fresnel lens layer 130 and then exits after being shaped and homogenized by the array microlens layer 120 .
  • the Fresnel lens layer 130 may adopt a stepped Fresnel structure or a continuous Fresnel structure.
  • FIG. 7 it is a schematic diagram of the light beam passing through the Fresnel lens layer 130 and adjusting the angle of exit according to needs in the embodiment of the present application.
  • the lens layer 130 adjusts the beam direction, it is shaped and uniformized by the array microlens layer 120 and then emitted, so as to realize various beam adjustment forms.
  • the Fresnel lens layer 130 of the present application can not only play a collimating role, but also flexibly adjust the direction of the beam.
  • the direction of the light beam needs to be adjusted, after being refracted by the Fresnel lens layer 130, the refracted light is no longer emitted in parallel, but refracted at different angles at different positions, and then diffused by the array microlens layer 120, so that the emitted light is Different fields of view have different chief ray angles.
  • the direction of the outgoing light can be flexibly modulated according to the requirements of the subsequent optical system.
  • the angle of incident light at different positions of the optical element 100 and the angle of outgoing light at different positions can be determined first, and the free-form surface solution method is used to first solve a whole free-form surface, and then the curved surface is
  • the Fresnel lens layer 130 is divided into multi-segment surfaces. It is also possible to first determine the incident angle and outgoing angle of different positions, and then directly adjust the structural form of the Fresnel structure at each position to achieve flexible control of the incident beam.
  • the optical element 100 of the present application when using a conventional mirror group (the form in which the light source 105 is matched with the microlens array) for testing, it is assumed that the divergence angle of the light source 105 is ⁇ 13°, the light emitting area of the light source 105 is 100um ⁇ 100um, and the distance between the light source 105 and the microlens array is is 0.9mm, and the cross-sectional distribution of the measured light spot is shown in Figure 8.
  • the optical element 100 of the present application when the optical element 100 of the present application is used for testing, the above-mentioned light source 105 is also used for testing, and the focal length of the Fresnel lens is set to 0.9 mm.
  • the cross-sectional distribution of the measured light spot is shown in FIG. 9 .
  • the optical element 100 of the present application can make the edge of the outgoing light spot sharper, the window efficiency is higher, and the uniform light effect is better without adding additional elements.
  • the materials of the transparent substrate 110 , the array microlens layer 120 and the Fresnel lens layer 130 include any one of glass, resin or plastic.
  • the transparent substrate 110 , the array microlens layer 120 and the Fresnel lens layer 130 are transparent materials of application wavelength bands. In this way, when the light source 105 emits light of different wavelength bands, the transmittances of the transparent substrate 110 , the array microlens layer 120 and the Fresnel lens layer 130 are matched with the wavelength band, which is beneficial to improve the utilization rate of light.
  • the transparent substrate 110 in the embodiment of the present application mainly plays the role of bearing and supporting, and the thickness of the transparent substrate 110 is 0.1 mm to 5 mm.
  • an embodiment of the present application further discloses an optical module 200 , which includes the optical element 100 in the foregoing embodiments, and a light-emitting module 210 , and the optical element 100 is located on the outgoing light path of the light-emitting module 210 .
  • the optical module 200 includes the same structure and beneficial effects as the optical element 100 in the foregoing embodiment. The structure and beneficial effects of the optical element 100 have been described in detail in the foregoing embodiments, and will not be repeated here.
  • the light-emitting module 210 in the embodiment of the present application may be a single light source, or may be a module composed of a light source and a lens, a reflector or a diaphragm, etc., to meet the application requirements of different scenarios.
  • the present application discloses an optical element and an optical module.
  • the optical element includes a transparent substrate, an array microlens layer and a Fresnel lens layer, the array microlens layer and the Fresnel lens layer are stacked on the transparent substrate, or the array microlens layer and The Fresnel lens layers are respectively located on opposite sides of the transparent substrate, wherein the Fresnel lens layers are used to adjust the exit angle of the incident light beams, and the random array microlens layer is used to adjust the light beams emitted by the transparent substrate.
  • the light beam emitted from the Fresnel lens layer is homogenized. Be able to adjust the beam direction and intensity distribution, and reduce the footprint.
  • optical elements and optical modules of the present application are reproducible and can be used in a variety of industrial applications.
  • optical element and optical module of the present application can be used in the field of optical technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种光学元件(100)及光学模组(200),涉及光学技术领域。该光学元件(100)包括透明基底(110)、阵列微透镜层(120)和菲涅尔透镜层(130),阵列微透镜层(120)和菲涅尔透镜层(130)在透明基底(110)上层叠设置,或,阵列微透镜层(120)和菲涅尔透镜层(130)分别位于透明基底(110)的相对两侧,其中,菲涅尔透镜层(130)用于调节入射的光束的出射角度,阵列微透镜层(120)用于对由菲涅尔透镜层(130)出射的光束进行匀化处理。能够调整光束方向和光强分布,并减小占用空间。

Description

一种光学元件及光学模组
相关申请的交叉引用
本申请要求于2021年04月12日提交中国国家知识产权局的申请号为202110391636.3、名称为“一种光学元件及光学模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,具体而言,涉及光学元件及光学模组。
背景技术
在大多数光学系统中,光源出射的光往往需要先调整光束的发散角和光束的强度分布。在对光源出射的光束进行调节时,准直透镜常常用于将较大发散角的光束准直为较小发散角的光,微透镜阵列则常用于将光束整形成特定强度分布。
相关技术中,在对光束调节整形的应用中,微透镜阵列常常因为透镜小单元的干涉和衍射,使整形光斑出现衍射条纹。另一方面,微透镜对光束的整形效果往往受到入射光的发散角、入射光的光强分布的影响,在较大入射发散角下效果较差。而且在对光束调节整形时,需要多组光学元件相配合,占用空间加大,不利于产品的小型化。
发明内容
本申请提供了一种光学元件及光学模组,能够调整光束方向和光强分布,并减小占用空间。
本申请的一些实施例提供了一种光学元件,该光学元件可以包括透明基底、阵列微透镜层和菲涅尔透镜层,所述阵列微透镜层和所述菲涅尔透镜层可以在所述透明基底上层叠设置,或,所述阵列微透镜层和所述菲涅尔透镜层可以分别位于所述透明基底的相对两侧,其中,所述菲涅尔透镜层可以用于调节入射的光束的出射角度,所述阵列微透镜层可以用于对由所述菲涅尔透镜层出射的光束进行匀化处理。
可选地,所述阵列微透镜层可以采用激光直写和压印相结合的方式实现,或者,所述阵列微透镜层可以采用掩膜光刻和熔融相结合的方式实现。
可选地,所述菲涅尔透镜层可以采用掩膜光刻和刻蚀相结合的方式制得,或者,所述菲涅尔透镜层可以采用研磨光刻和压印相结合的方式制得,或者,所述菲涅尔透镜层可以采用激光直写与压印相结合的方式制得。
可选地,所述阵列微透镜层可以包括沿同一平面分布的微透镜,且不同位置处的所述微透镜的形状和大小可以不同。
可选地,所述微透镜的透光面可以包括凹面、凸面或波浪形曲面中的任意一种。
可选地,相邻所述微透镜之间可以紧密贴合,且相邻所述微透镜的几何中心间的间距 可以为1um-200um。
可选地,所述微透镜的高度可以为1um至100um。
可选地,所述阵列微透镜层和所述菲涅尔透镜层在所述透明基底上层叠设置的情况下,所述阵列微透镜层的折射率n 1与所述菲涅尔透镜层的折射率n 2之间的差值可以为:|n 1-n 2|≥0.2。
可选地,所述阵列微透镜层和所述菲涅尔透镜层之间还可以设置有间隔层,所述阵列微透镜层的折射率n 1与所述间隔层的折射率n 3之间的差值可以为:|n 1-n 3|≥0.2,且所述菲涅尔透镜层的折射率n 2与所述间隔层之间的折射率n 3的差值可以为:|n 2-n 3|≥0.2。
可选地,所述菲涅尔透镜层可以包括阶梯型菲涅尔结构,所述阶梯型菲涅尔结构的高度h 1可以为0.1um至10um,或,所述菲涅尔透镜层可以包括连续型菲涅尔结构,所述连续型菲涅尔结构的高度h 2可以为1um至100um。
可选地,所述透明基底、所述阵列微透镜层和所述菲涅尔透镜层的材料可以包括玻璃、树脂或塑料的任意一种。
可选地,所述透明基底的厚度可以为0.1mm至5mm。
本申请的另一些实施例提供了一种光学模组,该光学模组可以包括根据本申请的一些实施例中的任一实施例所述的光学元件,以及发光模组,所述光学元件位于所述发光模组出射光路上。
可选地,所述发光模组可以是单个光源,或者,所述发光模组可以是光源和透镜、反射镜或光阑组成的模组。
本申请实施例的有益效果至少包括:
本申请实施例提供的光学元件及光学模组,通过菲涅尔透镜层以实现对光束的准直,或者使光束以特定的角度出射,从而可以根据需要灵活调整光束的方向。光束由菲涅尔透镜层出射之后,经过阵列微透镜层的整形和匀光,且受光束相干性影响较小,有利于提升经光学元件出射后光束的质量。采用菲涅尔透镜层和阵列微透镜层相结合的形式,可以同时实现调整光束方向和光强分布的功能,从而提升光束调节能力,且占用更小的空间,有利于组成光学模组的小型化。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的光学元件的结构示意图之一;
图2为本申请实施例提供的光学元件的结构示意图之二;
图3为本申请实施例提供的光学元件的结构示意图之三;
图4为本申请实施例提供的光学元件的结构示意图之四;
图5为本申请实施例提供的阵列微透镜层的结构示意图;
图6为本申请实施例提供的光束经光学元件传输的示意图之一;
图7为本申请实施例提供的光束经光学元件传输的示意图之二;
图8为本申请实施例提供的透过常规镜组的光斑截面分布图;
图9为本申请实施例提供的透过光学元件的光斑截面分布图;
图10为本申请实施例提供的光学模组的结构示意图。
图标:100-光学元件;105-光源;110-透明基底;120-阵列微透镜层;122-微透镜;130-菲涅尔透镜层;140-间隔层;200-光学模组;210-发光模组。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
请参照图1、图2和图3,本申请实施例提供一种光学元件100,包括透明基底110、阵列微透镜层120和菲涅尔透镜层130,阵列微透镜层120和菲涅尔透镜层130在透明基底110上层叠设置,或,阵列微透镜层120和菲涅尔透镜层130分别位于透明基底110的相对两侧,其中,菲涅尔透镜层130用于调节入射的光束的出射角度,阵列微透镜层120用于对由菲涅尔透镜层130出射的光束进行匀化处理。
具体地,菲涅尔透镜层130用于调节入射的光束的出射角度不仅包括对光束的准直, 使光束平行出射,也包括灵活调整光束的出射方向,使光束以特定的角度出射。在实际的应用中,入射至菲涅尔透镜层130的光源105并不是简单的点光源105或者面光源105,例如,光源105经透镜成像系统后再照射至菲涅尔透镜层130处。上述方式可能导致在菲涅尔透镜层130的不同位置,主光线的入射角与位置关系呈不规律的分布。此时,依然可以根据主光线入射角设置菲涅尔透镜层130的结构形式,以使光束平行出射,也可以根据需要使光束以特定角度出射,从而达到所需的整形效果。
光束经过菲涅尔透镜层130的作用之后,入射至阵列微透镜层120,以对由所述菲涅尔透镜层130出射的光束进行匀化处理。其中,阵列微透镜层120为随机微透镜122阵列,能够避免因采用周期结构而不能很好的消除衍射的问题。
另外,阵列微透镜层120可采用激光直写和压印相结合的方式实现,也可以采用掩膜光刻和熔融相结合的方式实现。可以理解的,菲涅尔透镜层130可采用掩膜光刻和刻蚀相结合的方式,或采用研磨光刻和压印相结合的方式,或激光直写与压印相结合的形式制得。采用上述方式,使得光学元件100为一体的结构,有利于提升结构的稳定性,与分立的光学模组相比,能够减小占用的空间。通过添加对位标记的方法可以增加菲涅尔透镜层130和阵列微透镜层120的对位精度。
如图2和图3所示,当阵列微透镜层120和菲涅尔透镜层130在透明基底110上层叠设置,可以将阵列微透镜层120与透明基底110接触,也可以将菲涅尔透镜层130与透明基底110接触,本申请实施例对此不做具体限制。在实际应用中,只需要使光束先从菲涅尔透镜层130透过即可。
本申请实施例提供的光学元件100,通过菲涅尔透镜层130以实现对光束的准直,或者使光束以特定的角度出射,从而可以根据需要灵活调整光束的方向。光束由菲涅尔透镜层130出射之后,经过阵列微透镜层120的整形和匀光,且受光束相干性影响较小,有利于提升经光学元件100出射后光束的质量。采用菲涅尔透镜层130和阵列微透镜层120相结合的形式,可以同时实现调整光束方向和光强分布的功能,从而提升光束调节能力,且占用更小的空间,有利于组成光学模组200(如TOF发射端、激光投影模组等)的小型化。
如图5所示,阵列微透镜层120包括沿同一平面分布的微透镜122,且不同位置处的微透镜122的形状和大小不同。
具体地,本申请实施例中的微透镜122为随机微透镜122,即不同位置处的微透镜122参数不同,示例的,微透镜122的透镜高度、透镜直径、透镜曲率、透镜节距等均可根据需要灵活设置。也就是说,不同位置处的微透镜122形状和大小不同。以在一定程度上降低光束的相干性,从而降低散斑效应,从而在特定距离维持所需形状和均匀性,进一步提 高整形后的光斑质量。需要说明的是,微透镜122的阵列形式和具体参数可根据实际需要灵活设置,在实际应用中,可根据选择光学元件100的尺寸和出射光束发散角以及最终所需的出射光束发散角不同确定不同的设计参数。
在本申请的可选实施例中,微透镜122的透光面包括凹面、凸面或波浪形曲面中的任意一种。
具体地,微透镜122的透光面可以全部采用凹面结构,即凹透镜;也可以全部采用凸面机构,即凸透镜;还可以采用波浪型曲面,以实现不同的光学性能。可以理解的,微透镜122的透光面也可以采用凹面、凸面或波浪形曲面相结合的形式,只要能够保证所需的匀光效果即可,本申请实施例对此不做具体限制。
如图5所示,在本申请的可选实施例中,相邻微透镜122之间紧密贴合,且相邻微透镜122的几何中心间的间距为1um至200um。
具体地,由于相邻微透镜122之间紧密贴合,且没有缝隙,为使得相邻微透镜122之间没有重叠部分,微透镜122呈不规则的边界形状,在光束通过微透镜122时,通过不同微透镜122之间参数的不同,以达到匀光的目的。另外,采用上述放置,使得阵列微透镜层120为无缝隙的结构,有利于避免因微透镜122之间具有间距而产生的漏光问题,有利于提升光学元件100使用时的匀光性能。根据不同微透镜122参数的不同,相邻微透镜122的几何中心间的间距也不同。为了保证光束的匀光质量,在本申请的优选实施例中,相邻微透镜122的几何中心间的间距为1um-200um,示例的,相邻微透镜122的几何中心间的间距可设置为1um、50um、100um或200um等。
在本申请的可选实施例中,微透镜122的高度为1um至100um。
具体地,通过将微透镜122的高度设置为不同的高度,有利于在微透镜122的高度在一定的范围内分布时产生相位差。以便于利用该相位差改善因衍射而产生的亮度不均、颜色不均等问题,从而提升对光束匀光的质量。在本申请的优选实施例中,微透镜122的高度为1um-200um,示例的,微透镜122的高度可设置为1um、50um、100um或200um等。
如图2和图3所示,在本申请的可选实施例中,阵列微透镜层120和菲涅尔透镜层130在透明基底110上层叠设置的情况下,阵列微透镜层120的折射率n 1与菲涅尔透镜层130的折射率n 2之间的差值为:|n 1-n 2|≥0.2。
具体地,可以是形成阵列微透镜层120的材料具有相对较高折射率,形成菲涅尔透镜层130的材料具有相对较低折射率。也可以是形成阵列微透镜层120的材料具有相对较低折射率,形成菲涅尔透镜层130的材料具有相对较高折射率,本申请实施例对此不做具体限制。当|n 1-n 2|≥0.2时,有利于保证更优的光学性能。需要说明的是,采用不同的折射率, 是为了保证阵列微透镜层120和菲涅尔透镜层130光学特性的稳定性,如果采用同一折射率的材料,则可以认为阵列微透镜层120和菲涅尔透镜层130形成了同一结构,也就不再具有各自的光学属性了,因此需要阵列微透镜层120和菲涅尔透镜层130之间的折射率不同。
如图4所示,在本申请的可选实施例中,阵列微透镜层120和菲涅尔透镜层130之间还设置有间隔层140,此时,阵列微透镜层120的折射率n 1与间隔层140的折射率n 3之间的差值为:|n 1-n 3|≥0.2,且菲涅尔透镜层130的折射率n 2与间隔层140之间的折射率n 3的差值为:|n 2-n 3|≥0.2。
可以理解的,采用不同的折射率,是为了保证阵列微透镜层120和菲涅尔透镜层130光学特性的稳定性,在阵列微透镜层120和菲涅尔透镜层130之间还设置有间隔层140时,阵列微透镜层120和菲涅尔透镜层130之间的折射率可以相同,也可以不同,本申请实施例对此不做具体限制。
如图2所示,菲涅尔透镜层130包括阶梯型菲涅尔结构,阶梯型菲涅尔结构的高度h 1为0.1um至10um。
具体地,当采用阶梯型菲涅尔结构时,可以采用2阶、4阶或8阶等多阶结构,一般每阶的高度相等,也可以根据需要设置为非等高的结构。在具体应用中,可根据需要灵活设置,其中,阶梯型菲涅尔结构的高度h 1可根据实际需要设置为0.1um、0.5um、4um或10um等。
如图1所示,菲涅尔透镜层130包括连续型菲涅尔结构,连续型菲涅尔结构的高度h 2为1um至100um。
具体地,连续型菲涅尔结构可以是由球面、非球面等面型分割出多段面型构成,也可以是自由曲面分割出多段面型构成。连续型菲涅结构的锯齿高度可以是等高的,也可以是非等高的,可以根据需要灵活设置。示例的,连续型菲涅尔结构的高度h 2可设置为1um、10um、20um、50um或100um等。
如图6所示,为本申请实施例中光束通过菲涅尔透镜层130后平行出射的示意图,即对光束起到准直的作用。本申请的光学元件100在实际应用中使光源105朝向菲涅尔透镜层130,其中,光源105可采用发光二极管(light emitting diode,LED)、半导体激光器(Laser diode,LD)、垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)中的任意一种。采用上述形式,以实现通过菲涅尔透镜层130对光束准直后经阵列微透镜层120的整形匀光后出射。其中,菲涅尔透镜层130可采用阶梯型菲涅尔结构或连续型菲涅尔结构。
如图7所示,为本申请实施例中光束通过菲涅尔透镜层130后根据需要调整角度出射的示意图,在该形式下,光源105朝向菲涅尔透镜层130发光后,经过菲涅尔透镜层130调整光束方向后,再经阵列微透镜层120的整形匀光后出射,以实现多样化的光束调节形式。
由图6和图7中的光学元件100结构形式及光束传播形式可知,本申请的菲涅尔透镜层130不只是可以起准直的作用,也可以灵活地调整光束的方向。当需要调整光束的方向时,经过菲涅尔透镜层130的折射,折射光不再平行出射,而是在不同位置折射光的角度不同,再经过阵列微透镜层120的扩散,使出射光在不同视场的主光线角度不同。在实际的应用中,可以根据后续光学系统的要求,灵活调制出射光的方向。在调整光束的方向时,可以先确定光学元件100不同位置的入射光角度,以及所需的不同位置的出射光角度,采用自由曲面的求解方法,先求解出一整块自由曲面,再将曲面分割成多段面型的菲涅尔透镜层130。也可以先确定不同位置的入射角度以及出射角度,再直接调整每个位置处菲涅尔结构的结构形式,实现对入射光束的灵活调控。
示例的,采用常规镜组(光源105与微透镜阵列相配合的形式)进行测试时,假设光源105发散角为±13°,光源105发光面积为100um×100um,光源105与微透镜阵列的距离为0.9mm,测得光斑的截面分布如图8所示。当采用本申请的光学元件100测试时,同样采用上述光源105进行测试,且菲涅尔透镜焦距设为0.9mm,此时,测得光斑的截面分布如图9所示。根据图8和图9对比可知,本申请的光学元件100在不额外增加元件的情况下,可以使出射光斑的边缘更锐利,窗口效率更高,匀光效果更好。
在本申请的可选实施例中,透明基底110、阵列微透镜层120和菲涅尔透镜层130的材料包括玻璃、树脂或塑料的任意一种。
具体地,透明基底110、阵列微透镜层120和菲涅尔透镜层130为应用波段的透明材料。这样一来,在光源105出射不同波段的光时,使得透明基底110、阵列微透镜层120和菲涅尔透镜层130的透过性与该波段相匹配,有利于提升光的利用率。
另外,本申请实施例中的透明基底110主要起承载支撑的作用,透明基底110的厚度为0.1mm至5mm,示例的,透明基底110的厚度可设置为0.1mm、1mm、3mm或5mm等。
如图10所示,本申请实施例还公开了一种光学模组200,包括前述实施例中的光学元件100,以及发光模组210,光学元件100位于发光模组210出射光路上。该光学模组200包含与前述实施例中的光学元件100相同的结构和有益效果。光学元件100的结构和有益效果已经在前述实施例中进行了详细描述,在此不再赘述。
需要说明的是,本申请实施例中的发光模组210可以是单个光源,也可以是光源和透 镜、反射镜或光阑等组成的模组,以满足不同场景的应用需求。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请公开了一种光学元件及光学模组。该光学元件包括透明基底、阵列微透镜层和菲涅尔透镜层,所述阵列微透镜层和所述菲涅尔透镜层在所述透明基底上层叠设置,或,所述阵列微透镜层和所述菲涅尔透镜层分别位于所述透明基底的相对两侧,其中,所述菲涅尔透镜层用于调节入射的光束的出射角度,所述随机阵列微透镜层用于对由所述菲涅尔透镜层出射的光束进行匀化处理。能够调整光束方向和光强分布,并减小占用空间。
此外,可以理解的是,本申请的光学元件及光学模组是可以重现的,并且可以用在多种工业应用中。例如,本申请的光学元件及光学模组可以用于光学技术领域。

Claims (14)

  1. 一种光学元件,其特征在于,所述光学元件包括透明基底、阵列微透镜层和菲涅尔透镜层,所述阵列微透镜层和所述菲涅尔透镜层在所述透明基底上层叠设置,或,所述阵列微透镜层和所述菲涅尔透镜层分别位于所述透明基底的相对两侧,其中,所述菲涅尔透镜层用于调节入射的光束的出射角度,所述阵列微透镜层用于对由所述菲涅尔透镜层出射的光束进行匀化处理。
  2. 根据权利要求1所述的光学元件,其特征在于,所述阵列微透镜层采用激光直写和压印相结合的方式实现,或者,所述阵列微透镜层采用掩膜光刻和熔融相结合的方式实现。
  3. 根据权利要求1或2所述的光学元件,其特征在于,所述菲涅尔透镜层采用掩膜光刻和刻蚀相结合的方式制得,或者,所述菲涅尔透镜层采用研磨光刻和压印相结合的方式制得,或者,所述菲涅尔透镜层采用激光直写与压印相结合的方式制得。
  4. 根据权利要求1至3中的任一项所述的光学元件,其特征在于,所述阵列微透镜层包括沿同一平面分布的微透镜,且不同位置处的所述微透镜的形状和大小不同。
  5. 根据权利要求4所述的光学元件,其特征在于,所述微透镜的透光面包括凹面、凸面或波浪形曲面中的任意一种。
  6. 根据权利要求4或5所述的光学元件,其特征在于,相邻所述微透镜之间紧密贴合,且相邻所述微透镜的几何中心间的间距为1um至200um。
  7. 根据权利要求4至6中的任一项所述的光学元件,其特征在于,所述微透镜的高度为1um至100um。
  8. 根据权利要求1至7中的任一项所述的光学元件,其特征在于,所述阵列微透镜层和所述菲涅尔透镜层在所述透明基底上层叠设置的情况下,所述阵列微透镜层的折射率n 1与所述菲涅尔透镜层的折射率n 2之间的差值为:|n 1-n 2|≥0.2。
  9. 根据权利要求8所述的光学元件,其特征在于,所述阵列微透镜层和所述菲涅尔透镜层之间还设置有间隔层,所述阵列微透镜层的折射率n 1与所述间隔层的折射率n 3之间的差值为:|n 1-n 3|≥0.2,且所述菲涅尔透镜层的折射率n 2与所述间隔层之间的折射率n 3的差值为:|n 2-n 3|≥0.2。
  10. 根据权利要求1至9中的任一项所述的光学元件,其特征在于,所述菲涅尔透镜层包括阶梯型菲涅尔结构,所述阶梯型菲涅尔结构的高度h 1为0.1um至10um,或,所述菲涅尔透镜层包括连续型菲涅尔结构,所述连续型菲涅尔结构的高度h 2为1um至100um。
  11. 根据权利要求1至10中的任一项所述的光学元件,其特征在于,所述透明基底、所述阵列微透镜层和所述菲涅尔透镜层的材料包括玻璃、树脂或塑料的任意一种。
  12. 根据权利要求1至11中的任一项所述的光学元件,其特征在于,所述透明基底的 厚度为0.1mm至5mm。
  13. 一种光学模组,其特征在于,所述光学模组包括权利要求1至12中的任一项所述的光学元件,以及发光模组,所述光学元件位于所述发光模组出射光路上。
  14. 根据权利要求13所述的光学元件,其特征在于,所述发光模组是单个光源,或者,所述发光模组是光源和透镜、反射镜或光阑组成的模组。
PCT/CN2021/142525 2021-04-12 2021-12-29 一种光学元件及光学模组 WO2022217976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110391636.3A CN112946790A (zh) 2021-04-12 2021-04-12 一种光学元件及光学模组
CN202110391636.3 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022217976A1 true WO2022217976A1 (zh) 2022-10-20

Family

ID=76231848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142525 WO2022217976A1 (zh) 2021-04-12 2021-12-29 一种光学元件及光学模组

Country Status (2)

Country Link
CN (1) CN112946790A (zh)
WO (1) WO2022217976A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946790A (zh) * 2021-04-12 2021-06-11 浙江水晶光电科技股份有限公司 一种光学元件及光学模组
CN113406735B (zh) * 2021-06-15 2022-08-16 苏州燃腾光电科技有限公司 随机微透镜阵列结构、其设计方法及应用
CN113391498A (zh) * 2021-07-09 2021-09-14 嘉兴驭光光电科技有限公司 激光投射光学器件及激光投射模组
CN113703175B (zh) * 2021-09-10 2023-01-13 江西欧迈斯微电子有限公司 衍射光学元件、投射模组及电子设备
CN113641076A (zh) * 2021-10-18 2021-11-12 成都菲斯特科技有限公司 一种投影屏幕及投影系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591169A (zh) * 2003-08-27 2005-03-09 精工爱普生株式会社 屏幕及投影机
JP2007171561A (ja) * 2005-12-22 2007-07-05 Seiko Epson Corp スクリーンおよび背面投写型表示装置
JP2008033097A (ja) * 2006-07-31 2008-02-14 Toppan Printing Co Ltd フレネルレンズシートおよび透過型スクリーン
CN203836849U (zh) * 2014-04-30 2014-09-17 张家港康得新光电材料有限公司 复合菲涅尔镜片及使用其的灯具
CN107861253A (zh) * 2017-12-08 2018-03-30 青岛海信激光显示股份有限公司 激光投影装置
CN210771965U (zh) * 2019-10-31 2020-06-16 广东烨嘉光电科技股份有限公司 一种偏移配光的闪光灯透镜系统
CN112946790A (zh) * 2021-04-12 2021-06-11 浙江水晶光电科技股份有限公司 一种光学元件及光学模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591169A (zh) * 2003-08-27 2005-03-09 精工爱普生株式会社 屏幕及投影机
JP2007171561A (ja) * 2005-12-22 2007-07-05 Seiko Epson Corp スクリーンおよび背面投写型表示装置
JP2008033097A (ja) * 2006-07-31 2008-02-14 Toppan Printing Co Ltd フレネルレンズシートおよび透過型スクリーン
CN203836849U (zh) * 2014-04-30 2014-09-17 张家港康得新光电材料有限公司 复合菲涅尔镜片及使用其的灯具
CN107861253A (zh) * 2017-12-08 2018-03-30 青岛海信激光显示股份有限公司 激光投影装置
CN210771965U (zh) * 2019-10-31 2020-06-16 广东烨嘉光电科技股份有限公司 一种偏移配光的闪光灯透镜系统
CN112946790A (zh) * 2021-04-12 2021-06-11 浙江水晶光电科技股份有限公司 一种光学元件及光学模组

Also Published As

Publication number Publication date
CN112946790A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022217976A1 (zh) 一种光学元件及光学模组
US10838217B2 (en) Laser diode collimator and a pattern projecting device using same
CN107861253B (zh) 激光投影装置
WO2023093551A1 (zh) 点云投影系统
WO2019071951A1 (zh) 复眼透镜组及投影装置
CN110161602B (zh) 漫射板、漫射板的设计方法、显示装置、投影装置和照明装置
KR102439748B1 (ko) 광학 소자 및 광학 시스템
US11289882B2 (en) Light source module
CN111542769B (zh) 扩散板和光学设备
US11960103B2 (en) Micro-lens array, projection type image display device, method for designing micro-lens array, and method for manufacturing micro-lens array
WO2023125103A1 (zh) 微光学透镜、制备方法及显示系统
US20230213814A1 (en) Back light unit for backlit displays
JP7487809B2 (ja) ホモジェナイザ、照明光学系および照明装置
JP7301513B2 (ja) スペックル低減モジュール
CN217543434U (zh) 扩散片和抬头显示设备
CN214409365U (zh) 一种光学元件及光学模组
CN216792482U (zh) 匀光元件
CN113640903B (zh) 复眼透镜、背光照明系统及其制造方法
TWI547667B (zh) 發光模組及發光裝置
KR20220012159A (ko) 빔 확장기 및 그 동작 방법
CN114879433A (zh) 一种投影系统及其制备方法
JP2016186601A (ja) 反射型拡散板およびこれを用いた光学機器
US20220107077A1 (en) Diffusor lens, light source, method of fabricating a light source and method of illuminating a scene
US11662511B2 (en) Beam expander and method of operating the same
JPH10333147A (ja) バックライト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936842

Country of ref document: EP

Kind code of ref document: A1