WO2022217874A1 - 一种车载atc网络系统及轨道交通系统 - Google Patents

一种车载atc网络系统及轨道交通系统 Download PDF

Info

Publication number
WO2022217874A1
WO2022217874A1 PCT/CN2021/124588 CN2021124588W WO2022217874A1 WO 2022217874 A1 WO2022217874 A1 WO 2022217874A1 CN 2021124588 W CN2021124588 W CN 2021124588W WO 2022217874 A1 WO2022217874 A1 WO 2022217874A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
vehicle
atc
network
network segment
Prior art date
Application number
PCT/CN2021/124588
Other languages
English (en)
French (fr)
Inventor
罗永升
刘翔
王海明
王景康
李亚军
李兆丰
Original Assignee
湖南中车时代通信信号有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南中车时代通信信号有限公司 filed Critical 湖南中车时代通信信号有限公司
Publication of WO2022217874A1 publication Critical patent/WO2022217874A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R

Definitions

  • the invention relates to the field of rail traffic signal systems, and more particularly, to a vehicle-mounted ATC network system and a rail traffic system.
  • network-based communication is the basic way to exchange information outside and inside the rail transit signal system. Whether it is an ETCS-3 (European Train Control System)-level train control system or an urban rail transit signal system, a dedicated Digital Communication System (DCS) will be constructed for the urban rail transit signal system and the urban rail transit signal system. Communication of external systems, as well as communication between subsystems at the next level of the urban rail transit signal system.
  • the urban rail transit signal system is composed of the vehicle part and the ground part, and the information is transmitted wirelessly between the vehicle and the ground, such as GSM-R (Global System for Mobile communication-Railway, railway integrated digital mobile communication system), LTE-M (Long Term Evolution-Metro, Metro Long Term Evolution System) and so on.
  • GSM-R Global System for Mobile communication-Railway, railway integrated digital mobile communication system
  • LTE-M Long Term Evolution-Metro, Metro Long Term Evolution System
  • On-board ATC (Automatic Train Control, automatic train control) is a key subsystem of the signal system. It sends and receives wireless signals and exchanges data with ground equipment through the train access unit (Train Access Unit, TAU) corresponding to the on-board wireless part.
  • the core functional units inside the on-board ATC mainly include: Automatic Train Protection (ATP), Automatic Train Operation (ATO), Assistant Operation Module (AOM), Human-Machine Interface ( Device Machine Interface, DMI), record unit (record, REC).
  • the current common vehicle ATC network architecture and technical methods are as follows:
  • the vehicle wireless TAU is independent of the vehicle ATC system, receives ground signals and converts them into data, and at the same time, according to the IP (Internet Protocol Address, Internet Protocol Address) of each unit in the ATC configured inside the TAU
  • IP Internet Protocol Address, Internet Protocol Address
  • the data is forwarded by the address, and the communication between ATP, ATO, AOM and ground equipment is realized through Ethernet (ethernet, ETH); at the same time, the communication between ATP, ATO, AOM and the DMI or REC unit inside ATC is also based on the same network as the TAU output.
  • the segment performs data interaction, and the network architecture is shown in Figure 1. It can be seen that the on-board TAU needs to be configured according to the network segment and IP allocated by the entire DCS.
  • This part of the work is the responsibility of the communication system integrator.
  • This configuration method also requires the on-board TAU to obtain the IP information of the internal unit of the on-board ATC for configuration, which leads to Communication system integrators must intervene and be familiar with the information of the signal system, which makes the independence of the two systems significantly weakened, and reduces the overall work efficiency; and, at present, the data exchange of the core units of the in-vehicle ATC is realized through the Ethernet.
  • the exchanged data includes not only application layer data for controlling train operation, but also synchronization data for basic data management, security protocol data, etc. This method makes the application layer and platform layer do not reflect independence, so the real-time, traffic Management and other performance have a significant impact.
  • the purpose of the present invention is to provide a vehicle-mounted ATC network system and a rail transit system, so as to improve the independence of the communication system and the signal system, as well as the independence between the application layer data and the platform layer data, and improve the overall work efficiency.
  • the present invention provides a vehicle-mounted ATC network system
  • the vehicle-mounted ATC network system includes:
  • a train access unit an on-board ATC and a gateway unit;
  • the on-board ATC includes: an application layer unit, a platform layer unit and a communication unit;
  • the train access unit is arranged on the first network segment, the application layer unit and the communication unit are arranged on the second network segment, the platform layer unit is arranged on the third network segment, and the first network segment , the second network segment and the third network segment are independent of each other; the train access unit communicates with the vehicle-mounted ATC through the gateway unit, and the application layer unit and the platform layer unit communicate through the unit to communicate.
  • the first network segment corresponding to the train access unit is configured through the DCS system.
  • the train access unit is integrated in the vehicle-mounted ATC cabinet.
  • the application layer unit includes: a train automatic protection unit, a train automatic driving unit, an auxiliary driving unit, a man-machine interface unit and a recording unit.
  • the platform layer unit includes: a data synchronization unit and a security protocol processing unit.
  • the gateway unit is further configured to: set the IP address of the train access unit according to the first network segment, and set the IP addresses of the application layer unit and the communication unit according to the second network segment.
  • the gateway unit is further used for: setting data flow threshold parameters, input and output delay parameters, and transmission priority parameters.
  • the second network segment and the third network segment are divided by a layer 2 switch.
  • the present invention further provides a rail transit system, including the vehicle-mounted ATC network system described in any of the above embodiments.
  • an on-board ATC network system includes: a train access unit, a on-board ATC and a gateway unit; the on-board ATC includes: an application layer unit, a platform layer unit and a communication unit ; Wherein, the train access unit is arranged in the first network segment, the application layer unit and the communication unit are arranged in the second network segment, the platform layer unit is arranged in the third network segment, the first network segment, the second network segment and the third network segment The sections are independent of each other; the train access unit communicates with the on-board ATC through the gateway unit, and the application layer unit and the platform layer unit communicate through the communication unit.
  • train access unit and the on-board ATC in this solution belong to the on-board ATC network system, and the network segments of the train access unit and the on-board ATC are independent of each other. It is only necessary to allocate network segments to the train access unit of the on-board ATC network system.
  • this solution sets the application layer unit and platform layer unit on independent network segments, and can also realize the segmentation of application layer data and platform layer data, only through special communication
  • the unit is connected, which ensures the real-time performance of the platform layer data and the stability of the time sequence, and improves the specificity of the application software and application data.
  • the invention also discloses a rail transit system, which can also achieve the above technical effects.
  • FIG. 1 is a schematic diagram of a network architecture in the prior art
  • FIG. 2 is a schematic structural diagram of a vehicle-mounted ATC network system disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a specific vehicle-mounted ATC network system disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a network division and configuration relationship disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a vehicle-mounted ATC network system and a rail transit system, so as to improve the independence of the communication system and the signal system and improve the overall work efficiency.
  • FIG. 2 it is a structural intention of a vehicle-mounted ATC network system provided by an embodiment of the present invention, and the system specifically includes:
  • the train access unit 11 is arranged in the first network segment, the application layer unit 122 and the communication unit 123 are arranged in the second network segment, the platform layer unit 122 is arranged in the third network segment, and the The first network segment, the second network segment, and the third network segment are independent of each other; the train access unit 11 communicates with the vehicle-mounted ATC 12 through the gateway unit 13, and the application layer unit 121 communicates with the on-board ATC 12.
  • the platform layer unit 122 communicates through the communication unit 123 .
  • the train access unit and the on-board ATC in the existing solution are two independent devices. Since the train access unit and the on-board ATC are designed separately, there is no unified consideration in the design, which will result in a waste of equipment resources or The resources are repeated, so in this scheme, the train access unit TAU can be integrated into the on-board ATC cabinet to form a whole, then in the production and design process, the efficiency, space, input and output control and other conditions of the two can be unified. Considering it together, for example, the unused interfaces can be omitted; and, in this integration method, the train access unit and the on-board ATC can be set in a unified manner in advance, and can be used directly after arriving at the scene, improving the user experience.
  • Each unit in the vehicle-mounted ATC in this solution is specifically the core unit inside the vehicle-mounted ATC, such as: ATP, ATO, AOM, DMI, REC and so on. Moreover, in this solution, only the first network segment corresponding to the train access unit is configured through the DCS system.
  • the in-vehicle ATC network system is installed on the train, and the DCS system supplier will use the train as a unit to assign corresponding IP addresses to different trains, that is, to assign an IP address to the in-vehicle TAU, the corresponding network segment Defined as the first network segment VLAN1, since the network segment where the on-board TAU is located is different from the network segment of the internal unit of the on-board ATC, in this solution, the data of the on-board TAU passes through the dedicated gateway unit, and then communicates with the core unit inside the ATC. interact.
  • this solution divides the functional units in the vehicle ATC into two categories.
  • the first category is the application layer unit. Including the train automatic protection unit ATP, the train automatic driving unit ATO, the auxiliary driving unit AOM, the man-machine interface unit DMI, the recording unit REC, the second type is the platform layer unit, including the data synchronization unit and the safety protocol processing unit, and the application layer unit. It belongs to a different network segment from the platform layer unit. In order to allow the two to communicate, a communication unit is also set. Referring to FIG.
  • FIG. 3 it is a schematic structural diagram of a specific vehicle-mounted ATC network system provided by an embodiment of the present invention. It can be seen from FIG. 3 that the system includes: a train access unit 11, a gateway unit 13, a train automatic protection unit ATP1211, a train Automatic driving unit ATO1212, assisted driving unit AOM1213, man-machine interface unit DMI 1214 and recording unit REC 1215, communication unit 123, data synchronization unit 1221 and safety protocol processing unit 1222.
  • the train access unit is set in a separate network segment, which is defined as the first network segment VLAN1, and the application layer unit and the communication unit are set in the same network segment, which is defined as the second network segment VLAN2, and the platform layer
  • the unit is set in a separate network segment, which is defined as the third network segment VLAN3.
  • the communication unit is used to connect VLAN2 and VLAN3. After the communication unit converts the application layer information into protocol data, it communicates with the platform layer through another Ethernet port.
  • the data of the application layer and the data of the platform layer can also be divided, and the connection is only realized through a special communication unit, which ensures the real-time performance of the data of the platform layer and the stability of the time sequence, and improves the specificity of the application software and application data. .
  • VLAN3 is implemented by a layer 2 switch with the function of network segment division. Two independent network segments are divided into one switch module, and specific configuration of the switch is required when the vehicle ATC system is integrated. It can be seen that this solution uses a Layer 2 switch to realize VLAN division, which is easy to operate, low in cost and high in system integration. Of course, this solution can also use a higher cost Layer 3 switch to realize VLAN division, which is not specifically limited here. Moreover, in this solution, the communication unit, the data synchronization unit, and the security protocol processing unit belong to the same security computer platform, and the setting of each device IP in the corresponding VLAN3 is implemented in the platform configuration software. Referring to Fig. 4, it is a schematic diagram of network division and configuration relationship provided by the embodiment of the present invention.
  • the DCS system configures the VLAN1 network segment IP
  • the ATC application system configures the VLAN2 network segment IP
  • the security computer platform configures the VLAN3 network segment IP.
  • the vehicle-mounted TAU that realizes VLAN1 communicates with the unit in VLAN2, and the communication unit can realize the communication between the unit in VLAN3 and the unit in VLAN2 in the secure computer platform.
  • the communication unit connecting VLAN2 and VLAN3 has a safety integrity level of SIL0.
  • the unit responsible for data synchronization and safety protocol processing has a safety integrity level of SIL4.
  • SIL0 and SIL4 modules can be designed as independent modules, and SIL0-related functions will not affect SIL4-related functions, then only SIL4 modules can be used to integrate the functions of the communication module, data synchronization and safety protocol processing module. It is not specifically limited here.
  • the gateway unit in this scheme is configurable, such as: setting the IP address of the train access unit according to the first network segment, setting the IP address of the application layer unit and the communication unit according to the second network segment; , input and output delay parameters, transmission priority parameters to set.
  • the IP address configured by the gateway unit includes: the original device ID and the destination device ID, where the original device ID is the IP address of the vehicle-mounted TAU, and the destination device ID is the IP address of the vehicle-mounted ATC core unit, such as ATP, ATO, AOM , DMI, REC, the IP address of the communication unit; the gateway unit can also set data flow threshold parameters, input and output delay parameters, transmission priority parameters, among which, the data flow threshold parameter can set the maximum flow rate, input and output delay parameters The rhythm of input and output can be kept consistent, and the transmission priority is used to set the priority of each unit to transmit data.
  • the embodiment of the present invention also discloses a rail transit system, which includes the vehicle-mounted ATC network system described in any of the above-mentioned embodiments.
  • the DCS supplier only needs to allocate the IP address for the TAU unit based on the network segment of the communication system, and does not need to care about the internal design of the vehicle ATC and the knowledge related to the signal system, which realizes the integration between the communication system and the signal system.
  • the design independence and operation independence between the two parts reduce the coordination link and improve the efficiency of engineering application.
  • the configuration of the gateway unit in this solution is very flexible. It can not only configure the corresponding IP for the external input terminal and internal connection terminal, but also adjust the data flow, control the communication delay, and send and receive data according to the priority. The role of effective management. Further, this scheme also divides application layer and platform layer data.
  • VLAN2 and VLAN3 in this scheme are independent, so that VLAN2 for transmitting application layer data and VLAN3 for transmitting platform layer data are completely independent.
  • Application layer designers only need to care about the data sending and receiving interfaces provided by the platform layer, and do not need to consider the coordinated control of data timing with the platform layer, the data processing mechanism inside the platform, and the need for additional data security management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车载ATC网络系统,列车接入单元(11)及车载ATC(12)均属于车载ATC网络系统,且列车接入单元(11)及车载ATC(12)内各单元的网段相互独立,因此通信系统的供应商在分配网段时,只需要向车载ATC网络系统的列车接入单元(11)分配网段即可,不需要关心车载ATC(12)内部设计及信号系统的相关知识,实现了通信系统和信号系统之间的设计独立性和操作独立性,减少了协调环节,提高工程应用的效率;并且,将应用层单元(121)及平台层单元(122)设置在相互独立的网段上,还可实现对应用层数据及平台层数据的分割,只通过专门的通信单元(123)实现连接,保证了平台层数据的实时性和时序的稳定性,提高应用软件和应用数据的专用性。还公开了一种轨道交通系统。

Description

一种车载ATC网络系统及轨道交通系统
本申请要求于2021年04月16日提交中国专利局、申请号为202110412152.2、发明名称为“一种车载ATC网络系统及轨道交通系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道交通信号系统领域,更具体地说,涉及一种车载ATC网络系统及轨道交通系统。
背景技术
目前,基于网络的通信是轨道交通信号系统外部和内部交互信息的基本方式。无论是ETCS-3(European Train Control System,欧洲列车控制系统)级列控系统,还是城市轨道交通信号系统,都会构建专用的数字通信系统(Digital Communication System,DCS)用于城市轨道交通信号系统与外部系统的通信,以及城市轨道交通信号系统下一级各子系统之间的通信。城市轨道交通信号系统由车载部分和地面部分组成,车地之间通过无线方式传输信息,比如GSM-R(Global System for Mobile communication-Railway,铁路综合数字移动通信系统),LTE-M(Long Term Evolution-Metro,地铁长期演进系统)等。车载ATC(Automatic Train Control,列车自动控制)是信号系统的关键子系统,通过车载无线部分对应的列车接入单元(Train Access Unit,TAU)收发无线信号并与地面设备交换数据。车载ATC内部的核心功能单元主要包括:列车自动防护单元(Automatic Train Protection,ATP)、列车自动驾驶单元(Automatic Train Operation,ATO)、辅助驾驶单元(Assistant Operation Module,AOM)、人机接口单元(Device Machine Interface,DMI)、记录单元(record,REC)。
目前通常的车载ATC网络架构和技术方法如下:车载无线TAU独立于车载ATC系统,接收地面信号并转化成数据,同时根据TAU内部配置的ATC内各单元的IP(Internet Protocol Address,互联网协议地址)地址进行数据 转发,通过以太网(ethernet,ETH)实现ATP、ATO、AOM与地面设备的通信;同时,ATP、ATO、AOM与ATC内部的DMI或者REC单元的通信也基于与TAU输出相同的网段进行数据交互,网络架构示意如图1所示。可见,车载TAU需要根据整个DCS分配的网段和IP进行配置,这部分工作由通信系统集成商负责,这种配置方式,还需要车载TAU获取车载ATC内部单元的IP信息进行配置,这就导致通信系统集成商必须介入和熟悉信号系统的信息,使得两大系统的独立性明显减弱,而且降低了整体的工作效率;并且,目前车载ATC内部通过以太网实现车载ATC各核心单元的数据交换,但是交换的数据不仅包括控制列车运行的应用层数据,还包括用于基础数据管理的同步数据、安全协议数据等等,该方式使得应用层和平台层没有体现独立性,从而对实时性、流量管理等性能造成显著的影响。
发明内容
本发明的目的在于提供一种车载ATC网络系统及轨道交通系统,以提高通信系统与信号系统的独立性,以及应用层数据与平台层数据间的独立性,提高整体工作效率。
为实现上述目的,本发明提供一种车载ATC网络系统,所述车载ATC网络系统包括:
列车接入单元、车载ATC及网关单元;所述车载ATC包括:应用层单元、平台层单元及通信单元;
其中,所述列车接入单元设置在第一网段,所述应用层单元及所述通信单元设置在第二网段,所述平台层单元设置在第三网段,所述第一网段、第二网段及所述第三网段间相互独立;所述列车接入单元通过所述网关单元与所述车载ATC进行通信,所述应用层单元与所述平台层单元通过所述通信单元进行通信。
其中,与所述列车接入单元对应的第一网段为通过DCS系统配置的。
其中,所述列车接入单元集成在车载ATC机柜中。
其中,所述应用层单元包括:列车自动防护单元、列车自动驾驶单元、辅助驾驶单元、人机接口单元及记录单元。
其中,所述平台层单元包括:数据同步单元及安全协议处理单元。
其中,所述网关单元还用于:根据所述第一网段设置所述列车接入单元的IP地址,根据所述第二网段设置所述应用层单元及所述通信单元的IP地址。
其中,所述网关单元还用于:对数据流量门限参数、输入输出延时参数、传输优先级参数进行设置。
其中,所述第二网段与所述第三网段通过二层交换机进行划分。
为实现上述目的,本发明进一步提供一种轨道交通系统,包括上述任意实施例所述的车载ATC网络系统。
通过以上方案可知,本发明实施例提供的一种车载ATC网络系统,该车载ATC网络系统包括:列车接入单元、车载ATC及网关单元;车载ATC包括:应用层单元、平台层单元及通信单元;其中,列车接入单元设置在第一网段,应用层单元及通信单元设置在第二网段,平台层单元设置在第三网段,第一网段、第二网段及第三网段间相互独立;列车接入单元通过网关单元与车载ATC进行通信,应用层单元与平台层单元通过通信单元进行通信。
可见,本方案中的列车接入单元及车载ATC均属于车载ATC网络系统,且列车接入单元及车载ATC内各单元的网段相互独立,因此通信系统的供应商在分配网段时,只需要向车载ATC网络系统的列车接入单元分配网段即可,不需要关心车载ATC内部设计及信号系统的相关知识,实现了通信系统和信号系统之间的设计独立性和操作独立性,减少了协调环节,提高工程应用的效率;并且,本方案将应用层单元及平台层单元设置在相互独立的网段上,还可实现对应用层数据及平台层数据的分割,只通过专门的通信单元实现连接,保证了平台层数据的实时性和时序的稳定性,提高应用软件和应用数据的专用性。本发明还公开了一种轨道交通系统,同样能实现上述技术效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的网络架构示意图;
图2为本发明实施例公开的一种车载ATC网络系统结构意图;
图3为本发明实施例公开的一种具体的车载ATC网络系统结构示意图;
图4为本发明实施例公开的网络划分及配置关系示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种车载ATC网络系统及轨道交通系统,以提高通信系统及信号系统的独立性,提高整体工作效率。
参见图2,为本发明实施例提供的一种车载ATC网络系统结构意图,该系统具体包括:
列车接入单元11、车载ATC12及网关单元13;所述车载ATC12包括:应用层单元121、平台层单元122及通信单元123;
其中,所述列车接入单元11设置在第一网段,所述应用层单元122及所述通信单元123设置在第二网段,所述平台层单元122设置在第三网段,所述第一网段、所述第二网段及所述第三网段间相互独立;所述列车接入单元11通过所述网关单元13与所述车载ATC12进行通信,所述应用层单元121与所述平台层单元122通过所述通信单元123进行通信。
具体来说,现有方案中的列车接入单元和车载ATC是两个独立设备,由于列车接入单元与车载ATC是分开设计的,设计时没有统一的考虑,因此会造成设备的资源浪费或者资源重复,因此在本方案中,可将列车接入单元TAU集成在车载ATC机柜中,形成一个整体,那么在生产及设计过程中,可以统一将两者的效率、空间、输入输出控制等条件一起考虑,如:对于不使用的接口则可省略;并且,这种集成方式,可以预先统一对列车接入单元及车载ATC进行设置,到现场后可直接使用,提高用户体验。
本方案中的车载ATC内各单元具体为车载ATC内部的核心单元,如:ATP、ATO、AOM、DMI、REC等等。并且,本方案中只有与列车接入单元对应的第一网段为通过DCS系统配置的。具体来说,车载ATC网络系统安装在列车上,DCS系统供应商在应用时,会以列车为单位,给不同的列车分配对应的IP地址,也就是给车载TAU分配IP地址,对应的网段定义为第一网段VLAN1,由于车载TAU所在的网段与车载ATC内部单元的网段不同,因此在本方案中,车载TAU的数据经过专用的网关单元之后,再和ATC内部的核心单元进行交互。
并且,本方案为了避免因应用层和平台层没有体现独立性,从而对实时性、流量管理等性能造成显著的影响,将车载ATC内功能单元分为两类,第一类为应用层单元,包括列车自动防护单元ATP、列车自动驾驶单元ATO、辅助驾驶单元AOM、人机接口单元DMI、记录单元REC,第二类为平台层单元,包括数据同步单元及安全协议处理单元,且应用层单元和平台层单元属于不同的网段,为了让两者进行通信,还设置的通信单元。参见图3,为本发明实施例提供的一种具体的车载ATC网络系统结构示意图,通过图3可以看出,该系统包括:列车接入单元11,网关单元13,列车自动防护单元ATP1211、列车自动驾驶单元ATO1212、辅助驾驶单元AOM1213、人机接口单元DMI 1214及记录单元REC 1215,通信单元123,数据同步单元1221及安全协议处理单元1222。并且,本方案将列车接入单元设置在单独网段内,定义为第一网段VLAN1,将应用层单元及通信单元设置在同一个网段内,定义为第二网段VLAN2,将平台层单元设置在单独网段内,定义为第三网段VLAN3。通信单元用于连接VLAN2和VLAN3, 通信单元将应用层信息转换成协议数据后,通过其另一路以太网口实现与平台层的通信。
可以看出,在DCS系统中,整个车载ATC只是一个设备,需要根据整个通信系统对其分配IP,并且,在本方案中,DCS供应商只需要基于通信系统的网段分配针对TAU单元的IP地址,而不需要关心车载ATC内部设计以及信号系统相关的知识。这样就实现了通信系统和信号系统之间的设计独立性和操作独立性,减少了协调环节,且能提高工程应用的效率;并且,本方案将应用层单元及平台层单元设置在相互独立的网段上,还可实现对应用层数据及平台层数据的分割,只通过专门的通信单元实现连接,保证了平台层数据的实时性和时序的稳定性,提高应用软件和应用数据的专用性。
基于上述实施例,在本实施例中,该第二网段VLAN2和第三网段
VLAN3通过具有网段划分功能的二层交换机实现,在一个交换机模块中划分两个独立的网段,需要在车载ATC系统集成时对交换机进行特定的配置。可见,本方案采用一个二层交换机实现VLAN划分,操作简易,成本低,系统集成度高,当然,本方案还可以采用成本更高的三层交换机实现VLAN划分,在此并不具体限定。并且,在本方案中,通信单元、数据同步单元、安全协议处理单元属于同一个安全计算机平台,对应的VLAN3中各个设备IP的设置在平台配置软件中实现。参见图4,为本发明实施例提供的网络划分及配置关系示意图,可见,DCS系统配置VLAN1网段IP,ATC应用系统配置VLAN2网段IP,安全计算机平台配置VLAN3网段IP,通过网关单元可实现VLAN1的车载TAU与处于VLAN2的单元通信,该通信单元可实现安全计算机平台中处于VLAN3的单元与处于VLAN2的单元通信。
需要说明的是,本方案中连接VLAN2和VLAN3的通信单元,其安全完整性等级为SIL0。而负责数据同步和安全协议处理的单元,其安全完整性等级为SIL4。在本方案中,SIL0和SIL4的模块可以设计成独立的模块, SIL0相关的功能不会影响SIL4相关的功能,则还可以仅使用SIL4模块集成通信模块和数据同步及安全协议处理模块的功能,在此并不具体限定。
进一步,本方案中的网关单元是可配置的,如:根据第一网段设置列车接入单元的IP地址,根据第二网段设置应用层单元及通信单元的IP地址;对数据流量门限参数、输入输出延时参数、传输优先级参数进行设置。
具体来说,网关单元配置的IP地址包括:原设备ID及目的设备ID,其中,原设备ID为车载TAU的IP地址,目的设备ID为车载ATC核心单元的IP地址,如ATP、ATO、AOM、DMI、REC、通信单元的IP地址;网关单元还可以设置数据流量门限参数、输入输出延时参数、传输优先级参数,其中,数据流量门限参数可设置流量的最大值,输入输出延时参数可用保持输入输出的节奏一致,传输优先级用来设置各个单元传输数据的优先级。
本发明实施例还公开了一种轨道交通系统,该系统包括上述任意实施例所述的车载ATC网络系统。
综上可见,本方案中,DCS供应商只需要基于通信系统的网段分配针对TAU单元的IP地址,而不需要关心车载ATC内部设计以及信号系统相关的知识,实现了通信系统和信号系统之间的设计独立性和操作独立性,减少了协调环节,且能提高工程应用的效率。并且,本方案中的网关单元配置非常灵活,不仅能对外部输入端、内部连接端的设备配置相应的IP,同时还能调节数据流量,控制通信时延,根据优先级收发数据,起到对通信进行有效管理的作用。进一步,本方案还对应用层和平台层数据进行分割,具体来说,本方案中的VLAN2和VLAN3这两个网段是独立的,使得传输应用层数据的VLAN2和传输平台层数据的VLAN3完全分割,只通过专门的通信单元实现连接。不仅保证了平台层数据的实时性和时序的稳定性,而且提高应用软件和应用数据的专用性。应用层设计人员只需要关心平台层提供的数据收发接口,不需要考虑和平台层的数据时序协同控制,不需要关心平台内部的数据处理机制,更不需要进行另外的数据安全管理。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种车载ATC网络系统,其特征在于,所述车载ATC网络系统包括:
    列车接入单元、车载ATC及网关单元;所述车载ATC包括:应用层单元、平台层单元及通信单元;
    其中,所述列车接入单元设置在第一网段,所述应用层单元及所述通信单元设置在第二网段,所述平台层单元设置在第三网段,所述第一网段、所述第二网段及所述第三网段间相互独立;所述列车接入单元通过所述网关单元与所述车载ATC进行通信,所述应用层单元与所述平台层单元通过所述通信单元进行通信。
  2. 根据权利要求1所述的车载ATC网络系统,其特征在于,与所述列车接入单元对应的第一网段为通过DCS系统配置的。
  3. 根据权利要求1所述的车载ATC网络系统,其特征在于,所述列车接入单元集成在车载ATC机柜中。
  4. 根据权利要求1所述的车载ATC网络系统,其特征在于,所述应用层单元包括:列车自动防护单元、列车自动驾驶单元、辅助驾驶单元、人机接口单元及记录单元。
  5. 根据权利要求1所述的车载ATC网络系统,其特征在于,所述平台层单元包括:数据同步单元及安全协议处理单元。
  6. 根据权利要求1所述的车载ATC网络系统,其特征在于,所述网关单元还用于:根据所述第一网段设置所述列车接入单元的IP地址,根据所述第二网段设置所述应用层单元及所述通信单元的IP地址。
  7. 根据权利要求6所述的车载ATC网络系统,其特征在于,所述网关单元还用于:对数据流量门限参数、输入输出延时参数、传输优先级参数进行设置。
  8. 根据权利要求1所述的车载ATC网络系统,其特征在于,所述第二网段与所述第三网段通过二层交换机进行划分。
  9. 一种轨道交通系统,其特征在于,包括如权利要求1至8中任意一项所述的车载ATC网络系统。
PCT/CN2021/124588 2021-04-16 2021-10-19 一种车载atc网络系统及轨道交通系统 WO2022217874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110412152.2 2021-04-16
CN202110412152.2A CN113022662B (zh) 2021-04-16 2021-04-16 一种车载atc网络系统及轨道交通系统

Publications (1)

Publication Number Publication Date
WO2022217874A1 true WO2022217874A1 (zh) 2022-10-20

Family

ID=76457570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124588 WO2022217874A1 (zh) 2021-04-16 2021-10-19 一种车载atc网络系统及轨道交通系统

Country Status (2)

Country Link
CN (1) CN113022662B (zh)
WO (1) WO2022217874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116170778A (zh) * 2023-04-21 2023-05-26 湖南中车时代通信信号有限公司 一种用于ps模式的车地通信装置、系统及通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022662B (zh) * 2021-04-16 2022-10-18 湖南中车时代通信信号有限公司 一种车载atc网络系统及轨道交通系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643074A (zh) * 2009-06-30 2010-02-10 卡斯柯信号有限公司 主备控制中心的热备系统
US20130233978A1 (en) * 2012-03-08 2013-09-12 Electronics And Telecommunications Research Institute Method and system for updating train control data using broadband wireless access system
CN104702717A (zh) * 2015-04-03 2015-06-10 上海自仪泰雷兹交通自动化系统有限公司 Cbtc中数据通信系统用ip地址的规划方法
CN107197028A (zh) * 2017-06-19 2017-09-22 南京熊猫电子股份有限公司 一种基于td‑lte的轨道交通无线通信系统
CN107911847A (zh) * 2017-11-01 2018-04-13 北京市轨道交通建设管理有限公司 车地通信中wlan和lte并行的系统及使用方法
CN109286914A (zh) * 2018-10-25 2019-01-29 中国铁道科学研究院集团有限公司通信信号研究所 多模车地综合移动数据传输系统
CN109862054A (zh) * 2017-11-30 2019-06-07 北京通号国铁城市轨道技术有限公司 一种车载信号控制系统
CN110022543A (zh) * 2018-01-09 2019-07-16 比亚迪股份有限公司 轨道交通综合承载系统
CN209535113U (zh) * 2018-12-27 2019-10-25 中国铁道科学研究院集团有限公司通信信号研究所 城轨列车车载信号系统实时监测平台
CN110557733A (zh) * 2018-05-30 2019-12-10 湖南中车时代通信信号有限公司 一种城市轨道交通lte-m网络系统及故障监测方法
CN111565218A (zh) * 2020-04-08 2020-08-21 深圳数联天下智能科技有限公司 一种数据处理方法、电子设备
CN111791918A (zh) * 2020-06-30 2020-10-20 通号城市轨道交通技术有限公司 一种连挂列车的车地通信方法及系统
CN113022662A (zh) * 2021-04-16 2021-06-25 湖南中车时代通信信号有限公司 一种车载atc网络系统及轨道交通系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103386994A (zh) * 2012-05-08 2013-11-13 上海富欣智能交通控制有限公司 基于安全通信的城市轨道交通智能控制系统
CN105407027B (zh) * 2014-05-28 2018-07-06 中车大连电力牵引研发中心有限公司 列车网络控制系统
US9469317B2 (en) * 2014-06-03 2016-10-18 Westinghouse Air Brake Technologies Corporation Locomotive-to-wayside device communication system and method and wayside device therefor
KR101630729B1 (ko) * 2015-04-16 2016-06-24 현대자동차주식회사 차량에 최적화된 이더넷 통신 제공 방법 및 시스템
DE102016215315A1 (de) * 2016-08-17 2018-02-22 Siemens Aktiengesellschaft Verfahren zum Betreiben eines ETCS (European Train Control System)-Bahnfahrzeugs mit einer GSM-R-Kommunikationsanordnung und ETCS (European Train Control System)-Bahnfahrzeug mit einer GSM-R-Kommunikationsanordnung
GB2556893A (en) * 2016-11-23 2018-06-13 Siemens Rail Automation Holdings Ltd Input of data into an on-board computer of a train
CN108156244A (zh) * 2017-12-26 2018-06-12 中车大连机车车辆有限公司 中低速磁浮列车多总线混合网络列车控制和管理系统
CN110022544B (zh) * 2018-01-09 2020-11-06 比亚迪股份有限公司 基于lte-u的车地无线综合承载系统和方法
CN108259052B (zh) * 2018-01-31 2020-10-30 湖南中车时代通信信号有限公司 一种用于轨道交通的车载安全无线接入装置
CN109413614B (zh) * 2018-09-27 2020-11-06 北京全路通信信号研究设计院集团有限公司 一种车地一体综合分析平台
CN110392361B (zh) * 2019-08-30 2022-06-07 湖南中车时代通信信号有限公司 一种以太网替代gsm-r网的车地通信仿真装置
CN111600685A (zh) * 2020-05-18 2020-08-28 湖南中车时代通信信号有限公司 一种基于以太网实现can总线冗余的装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643074A (zh) * 2009-06-30 2010-02-10 卡斯柯信号有限公司 主备控制中心的热备系统
US20130233978A1 (en) * 2012-03-08 2013-09-12 Electronics And Telecommunications Research Institute Method and system for updating train control data using broadband wireless access system
CN104702717A (zh) * 2015-04-03 2015-06-10 上海自仪泰雷兹交通自动化系统有限公司 Cbtc中数据通信系统用ip地址的规划方法
CN107197028A (zh) * 2017-06-19 2017-09-22 南京熊猫电子股份有限公司 一种基于td‑lte的轨道交通无线通信系统
CN107911847A (zh) * 2017-11-01 2018-04-13 北京市轨道交通建设管理有限公司 车地通信中wlan和lte并行的系统及使用方法
CN109862054A (zh) * 2017-11-30 2019-06-07 北京通号国铁城市轨道技术有限公司 一种车载信号控制系统
CN110022543A (zh) * 2018-01-09 2019-07-16 比亚迪股份有限公司 轨道交通综合承载系统
CN110557733A (zh) * 2018-05-30 2019-12-10 湖南中车时代通信信号有限公司 一种城市轨道交通lte-m网络系统及故障监测方法
CN109286914A (zh) * 2018-10-25 2019-01-29 中国铁道科学研究院集团有限公司通信信号研究所 多模车地综合移动数据传输系统
CN209535113U (zh) * 2018-12-27 2019-10-25 中国铁道科学研究院集团有限公司通信信号研究所 城轨列车车载信号系统实时监测平台
CN111565218A (zh) * 2020-04-08 2020-08-21 深圳数联天下智能科技有限公司 一种数据处理方法、电子设备
CN111791918A (zh) * 2020-06-30 2020-10-20 通号城市轨道交通技术有限公司 一种连挂列车的车地通信方法及系统
CN113022662A (zh) * 2021-04-16 2021-06-25 湖南中车时代通信信号有限公司 一种车载atc网络系统及轨道交通系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116170778A (zh) * 2023-04-21 2023-05-26 湖南中车时代通信信号有限公司 一种用于ps模式的车地通信装置、系统及通信方法
CN116170778B (zh) * 2023-04-21 2023-06-27 湖南中车时代通信信号有限公司 一种用于ps模式的车地通信装置、系统及通信方法

Also Published As

Publication number Publication date
CN113022662A (zh) 2021-06-25
CN113022662B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
EP3244577B1 (en) Broadband communication network architecture for train control and service common network, and communication method
WO2022217874A1 (zh) 一种车载atc网络系统及轨道交通系统
CN109286914B (zh) 多模车地综合移动数据传输系统
CN104168164B (zh) Afdx网络中的数据获取的分布方法
WO2015180445A1 (zh) 列车网络控制系统
CN103997545B (zh) 适用于轨道车辆的列车宽带通信网络架构
CN104270309B (zh) 一种ip ran设备下实现多跳bfd的方法
WO2017061262A1 (ja) 車載用ゲートウェイ装置
CN105206026A (zh) 动车组车地传输平台
CN104796356B (zh) 轨道车辆用车载以太网交换机和信号收发及列车重联方法
CN111556110B (zh) 一种用于私有云系统的不同物理业务网络自动化适配方法
CN104038445A (zh) 一种基于以太网的列车通信网络交换装置及系统
CN110808875A (zh) 一种运输管理系统接口仿真系统及方法
CN108737912A (zh) 报文互通方法、potn互通模块及potn系统
CN111703475A (zh) Lte-r专网公网融合的行车调度网协设备及方法
CN105691416B (zh) 一种基于无线Mesh网络的轨道交通列车信息系统
WO2021184482A1 (zh) 一种用于轨道列车的网络系统及轨道列车
CN112087351B (zh) 一种远程列车网络通信接口测试方法
US20060193328A1 (en) Network address filter including random access memory
WO2024041008A1 (zh) 一种车地通信的车载通信系统及方法
Schifers et al. IEC 61375-1 and UIC 556-international standards for train communication
JP4964354B1 (ja) ネットワークシステム
CN106331091A (zh) 一种直流站间通信切换方法
CN205080734U (zh) 动车组车地传输平台
CN108791372A (zh) 基于自动驾驶的单一接口输入的分布式系统及其升级方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936741

Country of ref document: EP

Kind code of ref document: A1