WO2022217724A1 - 一种精准分离鉴定煎炸油中氧化甘油三酯的方法 - Google Patents

一种精准分离鉴定煎炸油中氧化甘油三酯的方法 Download PDF

Info

Publication number
WO2022217724A1
WO2022217724A1 PCT/CN2021/098379 CN2021098379W WO2022217724A1 WO 2022217724 A1 WO2022217724 A1 WO 2022217724A1 CN 2021098379 W CN2021098379 W CN 2021098379W WO 2022217724 A1 WO2022217724 A1 WO 2022217724A1
Authority
WO
WIPO (PCT)
Prior art keywords
frying oil
smips
base material
epoxy
aldehyde
Prior art date
Application number
PCT/CN2021/098379
Other languages
English (en)
French (fr)
Inventor
刘元法
曹鑫宇
徐勇将
袁立阳
杜彦鹏
郑召君
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022217724A1 publication Critical patent/WO2022217724A1/zh
Priority to US18/301,388 priority Critical patent/US20230271109A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3852Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using imprinted phases or molecular recognition; using imprinted phases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/30Partition chromatography
    • B01D15/305Hydrophilic interaction chromatography [HILIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/42Acyclic compounds having a chain of seven or more carbon atoms, e.g. epoxidised fats
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Definitions

  • the invention relates to a method for accurately separating and identifying oxidized triglycerides in frying oil, and belongs to the technical field of detection.
  • Polar substances refer to the fact that frying oil undergoes a series of chemical reactions such as oxidation, hydrolysis and polymerization under heating or frying conditions, and the resulting ox-TG, free fatty acids, triglyceride polymers are more polar than normal glycerol.
  • Triesters are a class of highly polar substances that cause changes in the function, sensory evaluation, nutritional value and flavor of oils and fats. Studies have shown that the most toxic component of polar substances is ox-TG.
  • Ox-TG refers to a type of triglyceride whose fatty acid chain is oxidized, and its structure is complex and difficult to analyze and identify.
  • the separation of polar substances in frying oil mainly adopts silica gel column chromatography, which uses the difference in polarity between polar components and non-polar components to achieve the purpose of separation.
  • this method can only obtain mixed polar components, and cannot separate the most toxic ox-TG compounds alone.
  • the invention firstly uses mass spectrometry to identify the structure of ox-TG in frying oil, and finds that after frying for 24 hours, the main ox-TGs are epoxy ox-TG, hydroxyl ox-TG and aldehyde group ox -TG, so these three types of ox-TG were selected as template molecules to synthesize surface molecularly imprinted polymers (SMIPs), and then to synthesize polymers that completely matched the ox-TG template molecules in the action site and spatial configuration. Specific ox-TGs were isolated.
  • the OXTG-SMIPs prepared by the molecular imprinting technology in the present invention have good specificity, stability and affinity, and can realize the precise separation of ox-TG in frying oil.
  • the technical scheme of the present invention is: a method for accurately separating and identifying oxidized triglycerides in frying oil, the method comprising the following steps:
  • (a) Preparation of surface molecularly imprinted polymer First, graft functional monomers to the outer layer of the base material, add template molecules, namely epoxy ox-TG, hydroxyl ox-TG and/or aldehyde ox-TG, and the functional monomers are mixed with After the template molecule is pre-polymerized for 1-2.5h, the initiator azobisisobutyronitrile and the cross-linking agent ethylene glycol dimethacrylate are added to fix the complex in the polymer network to obtain the cross-linked polymer.
  • template molecules namely epoxy ox-TG, hydroxyl ox-TG and/or aldehyde ox-TG
  • the functional monomers are mixed with After the template molecule is pre-polymerized for 1-2.5h, the initiator azobisisobutyronitrile and the cross-linking agent ethylene glycol dimethacrylate are added to fix the complex in the polymer network to obtain the cross-linked polymer.
  • the template molecule in the cross-linked polymer is eluted to obtain the oxidized triglyceride molecularly imprinted polymer OXTG-SMIPs; wherein, the functional monomer includes any one of methacrylic acid, acrylamide, and 4-vinylpyridine;
  • eluent elution add eluent to the chromatography column to elute the oxidized triglyceride in sequence, namely, to obtain epoxy ox-TG, hydroxyl ox-TG and/or aldehyde ox-TG by sequential separation.
  • the base material in step (a) includes any one or more of silica gel, dextran, and titanium dioxide, preferably silica gel.
  • the functional monomer in step (a) is preferably methacrylic acid and acrylamide.
  • step (a) when the functional monomer is acrylamide or 4-vinylpyridine, the specific operation of grafting the functional monomer to the outer layer of the base material described in step (a) is as follows:
  • step (2) adding anhydrous toluene to the product amination base material prepared in step (1), and adding triethylamine and functional monomer precursor dropwise after stirring (when the functional monomer is acrylamide, the functional monomer The precursor is acryloyl chloride, and when the functional monomer is 4-vinylpyridine, the functional monomer precursor is dihydroxy-vinylpyridine, and triethylamine is the catalyst), wherein the product prepared in step (1) and The mass ratio of functional monomer precursor is 1:1.5-1:1.8, the mass of anhydrous toluene is 20-30 times that of the base material, and the mass of triethylamine is 0.5-2 times that of the base material.
  • the reaction is continued for 20-24 hours, and the base material of the grafted functional monomer is obtained after drying.
  • the specific operation of grafting the functional monomer to the outer layer of the base material described in step (a) is: adding anhydrous toluene to the base material, After stirring, add triethylamine and 3-(triethoxysilyl)propyl methacrylate dropwise, wherein the mass ratio of the base material and 3-(triethoxysilyl) methacrylate is 1:1.5 -1:1.8, the mass of anhydrous toluene is 20-30 times that of the base material, and the mass of triethylamine is 0.5-2 times that of the base material. After the dropwise addition, the reaction is carried out under nitrogen protection for 20-24 hours, and the graft is obtained after drying. Base material for functional monomers.
  • the mass ratio of the base material of the grafted functional monomer to the template molecule is 5:1-10:1, and the amount of the initiator is 2%- 4% (m/m), the amount of cross-linking agent is 1.5-2 times (m/m) of the base material.
  • step (a) different template molecules can be added to the SMIPs as required to prepare different molecularly imprinted polymers.
  • a single-template molecularly imprinted polymer is prepared: single-template SMIPs—hydroxyl OX- TGMIPs (SMIPs1), aldehyde-based OX-TGMIPs (SMIPs2), epoxy-based OX-TGMIPs (SMIPs3).
  • SMIPs1 hydroxyl OX- TGMIPs
  • SMIPs2 aldehyde-based OX-TGMIPs
  • SMIPs3 epoxy-based OX-TGMIPs
  • double-template molecularly imprinted polymer double-template SMIPs hydroxy- Aldehyde OX-TGMIPs (SMIPs4), hydroxyl-epoxy OX-TGMIPs (SMIPs5), aldehyde-epoxy OX-TGMIPs (SMIPs6).
  • three-template molecularly imprinted polymers are prepared, namely three-template SMIPs—hydroxyl-aldehyde group - Epoxy OX-TGMIPs (SMIPs7).
  • the chromatography column is preferably a glass sand core chromatography column with a size of ⁇ 45mm*40cm.
  • step (b) when the single-template molecularly imprinted polymer is prepared, in step (b), three types of OXTG-SMIPs (SMIPs1: SMIPs2: SMIPs3) are loaded into a chromatography column, and the three types of OXTG-SMIPs (SMIPs1: SMIPs2: SMIPs3) are of the same mass.
  • the ratio is 1:1:1-1:1:2.
  • the eluent described in step (c) is any one of dimethyl sulfoxide and tetrahydrofuran.
  • the ratio of the quality of the frying oil described in step (c) to OXTG-SMIPs is in the range of 1:20-1:25, and the separation effect is good.
  • the frying oil described in step (c) is edible oil used for frying and cooking food in households, restaurants, industries and other places.
  • the edible oil refers to animal or vegetable oil used in the process of making food.
  • the edible oil includes rapeseed oil, peanut oil, hemp oil, corn oil, olive oil, camellia oil, palm oil, sunflower oil, soybean oil, sesame oil, linseed oil (flax oil) , flower seed oil, fish oil, algal oil, cottonseed oil, rice oil, grapeseed oil, walnut oil, peony seed oil, lard, tallow, suet and combinations thereof.
  • the present invention also provides the application of the above method in the field of food.
  • the invention utilizes molecular imprinting technology and Raman spectroscopy technology to prepare specific OXTG-SMIPs, can accurately separate and identify ox-TG in frying oil, and has the advantages of high affinity, low detection limit and simple operation.
  • FIG. 1 Schematic diagram of the synthesis of OXTG-SMIPs.
  • Figure 5 Schematic diagram of the operation of separating ox-TG from frying oil using SMIPs.
  • FIG. 6 compares the TLC image (a) and the H NMR spectrum (b) of the separation effect of ox-TG by traditional silica gel column chromatography and molecular imprinting.
  • the base materials silica gel, dextran, titanium dioxide, methacrylic acid, acrylamide, and 4-vinylpyridine mentioned in the following examples and comparative examples were purchased from Bailingwei Chemical Reagent Co., Ltd.
  • Embodiment 1 a kind of method for accurate separation and identification of ox-TG in frying oil
  • FIG. 1 is a schematic diagram of the synthesis of SMIPs. No template molecule was added to non-imprinted polymers (SNIPs), and other preparation steps were the same as above.
  • 1090cm -1 in curve A in Figure 4 is the characteristic absorption peak of Si-O-Si, and hydroxyl groups on the surface of the activated silica particles can be observed at 3500cm -1 , which is conducive to the grafting of functional monomers on the surface of silica gel particles;
  • 1460cm -1 is the -CH2 -vibrational stretching peak
  • -CH- characteristic absorption peaks appear at 2930cm -1 and 2874cm -1
  • 3400cm -1 is the characteristic absorption of -NH2 group peak, indicating that the surface shell of SiO 2 is modified by APTS;
  • curve c disappears at 3400 cm -1 is the characteristic absorption peak of -NH 2 group, and the characteristic peak of amide appears at 1645 cm -1 , that is, the amino group is successfully acylated.
  • Steps (c-d) were repeated at the same time for five consecutive days, the content of ox-TG obtained by elution was measured by Raman spectroscopy, and the daytime RSD of this method was calculated (Table 1).
  • the intraday maximum value of RSD of the present invention is 0.6673%
  • the intraday maximum value of RSD is 1.0270 %
  • the minimum detection limit is 2.0 ⁇ 10 -6 g/mL, which has the advantages of high accuracy and low detection limit.
  • step (b) of Example 1 The base material silica gel in step (b) of Example 1 was replaced with chitosan or titanium dioxide; other conditions and parameters were consistent with those in Example 1, and the results were shown in Table 2. It can be seen that when the base material is silica gel, the frying oil can be effectively separated ox-TG in other conditions was slightly less effective.
  • the functional monomer acrylamide described in the step (a) of Example 1 is replaced with 4-vinylpyridine (the functional monomer precursor is dihydroxy-vinylpyridine) or methacrylic acid (when the functional monomer is methacrylic acid,
  • the grafting functional monomer only needs to be completed in one step, and the raw material is 3-(triethoxysilyl)propyl methacrylate); other conditions and parameters are consistent with those in Example 1, and the results are shown in Table 3.
  • the monomers are methacrylic acid and acrylamide, the effect of the present invention is better.
  • Example 5 Selection of the amount of frying oil
  • step (c) of Example 1 the loading amount (frying oil sample) and the mass ratio of SMIPs were replaced from 1:20 to 1:15, 1:25, and 1:30, respectively. Other conditions and parameters were the same as the implementation. Example 2 is the same. The results are shown in Table 5. The frying oil loading amount and the mass ratio of SMIPs are in the range of 1:20-1:25, and the separation effect is better.
  • Figure 6(a) shows the TLC of polar substances (1), ox-TG obtained by separation of frying oil by column chromatography (2) and SMIPs1 (3)
  • Figure 6(b) shows the use of SMIPs1 Separation of frying oil to obtain the ox-TG H NMR spectrum
  • the results show that traditional chromatography columns cannot accurately separate three types of ox-TG, while SMIPs1 can effectively separate epoxy ox-TG in frying oil.
  • the recovery rate of the present invention is 80.3-101.0%, indicating that this method can accurately separate several types of ox-TG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种精准分离鉴定煎炸油中氧化甘油三酯ox-TG的方法,属于检测技术领域。首先利用质谱对煎炸油中ox-TG的结构进行鉴定,发现在煎炸24h之后,主要的ox-TG有环氧ox-TG、羟基ox-TG和醛基ox-TG,选择这三类ox-TG作为模板分子合成表面分子印迹聚合物SMIPs。然后合成在作用位点和空间构型上与ox-TG模板分子完全匹配的聚合物,使用SMIPs可将特定ox-TG分离。利用分子印迹技术制备出的氧化甘油三酯分子印迹聚合物OXTG-SMIPs具有良好的特异性,稳定性和亲和性,可以实现对煎炸油中ox-TG的精准分离。

Description

一种精准分离鉴定煎炸油中氧化甘油三酯的方法 技术领域
本发明涉及一种精准分离鉴定煎炸油中氧化甘油三酯的方法,属于检测技术领域。
背景技术
煎炸食品因其特殊的风味和口感深受人们喜爱,但在煎炸过程中油脂会不断反应并产生大量对人体有害的极性物质。极性物质指的是煎炸油在加热或煎炸条件下,经氧化、水解、聚合等一系列的化学反应,生成的ox-TG、游离脂肪酸、甘油三酯聚合物等极性比正常甘油三酯的极性大的一类物质,它们会导致油脂的功能、感官评价、营养价值和风味发生变化。有研究表明,极性物质中毒性最大的组分是ox-TG。Ox-TG指的是一类脂肪酸链被氧化的甘油三酯,其结构复杂难以分析、鉴定。
目前对于煎炸油中极性物质的分离主要采用硅胶柱层析法,该方法是利用极性组分与非极性组分的极性差异达到分离的目的。但这种方法只能得到混合的极性组分,不能单独分离毒性最大的ox-TG化合物。
发明内容
本发明基于分子印迹技术,首先利用质谱对煎炸油中ox-TG的结构进行鉴定,发现在煎炸24h之后,主要的ox-TG有环氧ox-TG、羟基ox-TG和醛基ox-TG,所以选择这三类ox-TG作为模板分子合成表面分子印迹聚合物(SMIPs),然后合成在作用位点和空间构型上与ox-TG模板分子完全匹配的聚合物,使用SMIPs可将特定ox-TG分离。本发明利用分子印迹技术制备出的OXTG-SMIPs具有良好的特异性、稳定性和亲和性,可以实现对煎炸油中ox-TG的精准分离。
具体的,本发明的技术方案为:一种精准分离鉴定煎炸油中氧化甘油三酯的方法,所述方法包括以下步骤:
(a)制备表面分子印迹聚合物:首先将基底材料外层接枝功能单体,加入模板分子即环氧ox-TG、羟基ox-TG和/或醛基ox-TG,待功能单体与模板分子预聚合1-2.5h后,加入引发剂偶氮二异丁腈和交联剂二甲基丙烯酸乙二醇酯使复合物固定在聚合物的网络中,制得交联聚合物,最后将交联聚合物中的模板分子洗脱即得到氧化甘油三酯分子印迹聚合物OXTG-SMIPs;其中,所述功能单体包括甲基丙烯酸、丙烯酰胺、4-乙烯基吡啶的任一种;
(b)制备层析柱:将步骤(1)得到的OXTG-SMIPs装于层析柱中;
(c)层析柱分离:层析柱中加入煎炸油,加入洗脱剂洗脱,即可将氧化甘油三酯从煎炸 油中进行分离;
(d)洗脱液洗脱:再依次在层析柱中加入洗脱剂洗脱氧化甘油三酯,即依次分离得到环氧ox-TG、羟基ox-TG和/或醛基ox-TG。
在本发明的一种实施方式中,步骤(a)中所述基底材料包括硅胶、葡聚糖、二氧化钛的任一种或几种,优选为硅胶。
在本发明的一种实施方式中,步骤(a)中所述功能单体优选为甲基丙烯酸、丙烯酰胺。
在本发明的一种实施方式中,当功能单体为丙烯酰胺或4-乙烯基吡啶时,步骤(a)中所述将基底材料外层接枝功能单体的具体操作为:
(1)在基底材料中加入无水甲苯,搅拌下滴加氨丙基三乙氧基硅烷和吡啶,其中,基底材料:氨丙基三乙氧基硅烷=1:8-1:5(摩尔比),无水甲苯质量为基底材料的20-30倍,吡啶质量为基底材料的2-3倍,在氮气保护下于85-95℃搅拌20-24h,干燥后得到氨基化基底材料;
(2)在步骤(1)制备得到的产物氨基化基底材料中加入无水甲苯,搅拌后滴加三乙胺和功能单体前驱体(当功能单体为丙烯酰胺时,所述功能单体前驱体为丙烯酰氯,当功能单体为4-乙烯基吡啶时,所述功能单体前驱体为二羟-乙烯基吡啶,三乙胺为催化剂),其中步骤(1)制备得到的产物和功能单体前驱体的质量比为1:1.5-1:1.8,无水甲苯质量为基底材料的20-30倍,三乙胺质量为基底材料的0.5-2倍,滴加完毕后于氮气保护下反应20-24h,干燥后即得到接枝功能单体的基底材料。
在本发明的一种实施方式中,当功能单体为甲基丙烯酸时,步骤(a)中所述将基底材料外层接枝功能单体的具体操作为:基底材料中加入无水甲苯,搅拌后滴加三乙胺和甲基丙烯酸3-(三乙氧基硅基)丙酯,其中基底材料和甲基丙烯酸3-(三乙氧基硅基)丙酯的质量比为1:1.5-1:1.8,无水甲苯质量为基底材料的20-30倍,三乙胺质量为基底材料的0.5-2倍,滴加完毕后于氮气保护下反应20-24h,干燥后即得到接枝功能单体的基底材料。
在本发明的一种实施方式中,步骤(a)中所述羟基ox-TG、醛基ox-TG、环氧ox-TG的结构式分别如式I~式III所示:
Figure PCTCN2021098379-appb-000001
Figure PCTCN2021098379-appb-000002
在本发明的一种实施方式中,步骤(a)中,接枝功能单体的基底材料与模板分子的质量比为5:1-10:1,引发剂的用量为基底材料的2%-4%(m/m),交联剂的用量为基底材料的1.5-2倍(m/m)。
在本发明的一种实施方式中,步骤(a)中SMIPs可根据需要添加不同的模板分子来制备得到不同的分子印迹聚合物。
在本发明的一种实施方式中,当添加环氧ox-TG、羟基ox-TG、醛基ox-TG的任意一种时制备得到单模板分子印迹聚合物:单模板SMIPs——羟基OX-TGMIPs(SMIPs1)、醛基OX-TGMIPs(SMIPs2)、环氧基OX-TGMIPs(SMIPs3)。
在本发明的一种实施方式中,当添加环氧ox-TG、羟基ox-TG、醛基ox-TG中的任意两种时,制备得到双模板分子印迹聚合物双模板SMIPs——羟基-醛基OX-TGMIPs(SMIPs4)、羟基-环氧基OX-TGMIPs(SMIPs5)、醛基-环氧基OX-TGMIPs(SMIPs6)。
在本发明的一种实施方式中,当同时添加环氧ox-TG、羟基ox-TG和醛基ox-TG时,制备得到三模板分子印迹聚合物,即三模板SMIPs——羟基-醛基-环氧基OX-TGMIPs(SMIPs7)。
在本发明的一种实施方式中,所述层析柱优选为玻璃砂芯层析柱,尺寸为φ45mm*40cm。
在本发明的一种实施方式中,当制备得到的是单模板分子印迹聚合物时,步骤(b)将三类OXTG-SMIPs(SMIPs1:SMIPs2:SMIPs3)装于层析柱中,三者质量比为1:1:1-1:1:2。
在本发明的一种实施方式中,步骤(c)所述的洗脱剂为二甲基亚砜、四氢呋喃的任一种。
在本发明的一种实施方式中,步骤(c)所述的煎炸油的质量与OXTG-SMIPs比例为1:20-1:25范围内,分离效果较好。
在本发明的一种实施方式中,步骤(c)所述的煎炸油为家庭、饭店、工业等场所油炸、烹饪食品所使用的食用油。
在本发明的一种实施方式中,所述食用油是指在制作食品过程中使用的,动物或者植物油脂。
在本发明的一种实施方式中,所述食用油包括菜籽油、花生油、火麻油、玉米油、橄榄油、山茶油、棕榈油、葵花子油、大豆油、芝麻油、亚麻籽油(胡麻油)、花籽油、鱼油、藻油、棉籽油、米油、葡萄籽油、核桃油、牡丹籽油、猪脂、牛脂、羊脂及其组合。在本发明的一种实施方式中,步骤(d)中所述洗脱剂依次为乙酸:甲醇=1:8、乙酸:甲醇=1:6、乙酸:甲醇=1:4。
本发明还提供了上述方法在食品领域中的应用。
本发明的有益效果:
本发明利用分子印迹法技术和拉曼光谱技术,制备得到特定的OXTG-SMIPs,能精准分离鉴定煎炸油中的ox-TG,具有亲和性高、检测限低、操作简单的优点。
附图说明
图1煎炸油分别煎炸0h(a)、12h(b)、24h(c)时主要ox-TG的质谱EIC图。
图2羟基ox-TG(a),醛基ox-TG(b)和环氧基ox-TG(c)的结构式。
图3OXTG-SMIPs的合成示意图。
图4SiO 2(a),氨基改性SiO 2(b),SiO 2@丙烯酰胺(c),SMIPs2(d)和SNIPs(e)的傅里叶红外光谱表征图。
图5利用SMIPs分离煎炸油中ox-TG的操作示意图。
图6对比传统硅胶柱层析法与分子印迹法分离ox-TG效果的TLC图(a)和核磁共振氢谱图(b)。
具体实施方式
下面结合实施例对本发明作进一步的描述,但本发明的实施方式不限于此。
RSD、检测限与回收率的测定方法以及计算公式:用拉曼光谱测定洗脱得到的ox-TG的含量,计算该方法的RSD(RSD=标准偏差SD/算术平均值X),检测限(S/N=3),回收率(Recovery=m 加入/m 回收)。
下述实施例及对比例中提到的基底材料硅胶、葡聚糖、二氧化钛,甲基丙烯酸、丙烯酰胺、4-乙烯基吡啶均购于百灵威化学试剂有限公司。
实施例1:一种精准分离鉴定煎炸油中ox-TG的方法
(a)首先称取5g基底材料硅胶置于500mL的圆底三口烧瓶中,加入无水甲苯150mL,常温磁力搅拌下缓慢逐滴加入30mL氨丙基三乙氧基硅烷和10mL吡啶,在氮气保护下于 95℃下水浴磁力搅拌24h,制得氨基改性SiO 2。干燥后,称取5g于250mL圆底三口烧瓶中,加入无水甲苯100mL,磁力搅拌15min,缓慢逐滴滴加8mL丙烯酰氯和5mL三乙胺,滴加完毕后于氮气保护下磁力搅拌24h,制得SiO 2@丙烯酰胺。
干燥后称取5g SiO 2@丙烯酰胺,加入50mL DMSO作为溶剂,0.10g偶氮二异丁腈作为引发剂,8.0g二甲基丙烯酸乙二醇酯作为交联剂,然后加入模板分子羟基ox-TG 0.80g,反应24h后加入洗脱剂乙酸:甲醇=1:4洗脱模板分子,制得SMIPs1。另取SiO 2@丙烯酰胺5g,将模板分子替换成分别替换成醛基ox-TG 0.80g、环氧基ox-TG 0.80g,其他操作与上述一致,制得SMIPs2、SMIPs3。图3为SMIPs合成示意图。非印迹聚合物(SNIPs)不加入模板分子,其他制备步骤与上述一致。
(b)利用傅里叶红外光谱表征SMIPs。图4显示的是SiO 2(a),氨基改性SiO 2(b),SiO 2@丙烯酰胺(c),SMIPs2(d)和SNIPs(e)的红外光谱。图4中曲线A中1090cm -1是Si-O-Si的特征吸收峰,在3500cm -1处均可以观察到活化的硅胶颗粒表面的羟基,这有利于功能单体在硅胶颗粒表面接枝;与曲线a相比,曲线b中1460cm -1是-CH 2-振动伸缩峰,2930cm -1和2874cm -1处出现的-C-H-特征吸收峰,3400cm -1是-NH 2基团的特征吸收峰,表明SiO 2表面壳层被APTS修饰;曲线c在3400cm -1是-NH 2基团的特征吸收峰消失,1645cm -1处出现酰胺特征峰,即氨基成功被酰化。可以清楚地从曲线e和f看到,SMIPs和SNIPs的光谱图上的吸收峰的位置、形态和特征峰的强度没有明显差异,这证实了MIPs上模板分子已经洗脱干净。
(c)将上述SMIPs1:SMIPs2:SMIPs3=1:1:2的质量比(10g:10g:20g)依次填装于层析柱中(如图5所示),上煎炸油样品2.00g,然后加入洗脱剂DMSO将除ox-TG之外的组分全部洗脱,而ox-TG则吸附于SMIPs上。
(d)依次洗脱:依次加入洗脱剂乙酸:甲醇=1:8、乙酸:甲醇=1:6、乙酸:甲醇=1:4,洗脱得到羟基甘油三酯、醛基甘油三酯、环氧甘油三酯。
(e)利用便携式拉曼光谱仪测定洗脱得到的ox-TG的含量,以硫氰化钾(特征峰2120cm -1)作为内标物质,激发光波长785nm,扫描范围200-400cm -1,测试温度为室温。环氧ox-TG在810-750、950-840、1280-1240cm -1处特征峰值显著;羟基ox-TG在3700-3200cm -1处有宽而强的特征峰;醛基ox-TG在1680cm -1处特征峰值显著。将步骤(c-d)在一天重复操作五次,通过计算各特征峰的峰面积与内标峰面积之比对三类ox-TG进行定量处理,并得出本发明的日内RSD(表1)。
(f)将步骤(c-d)连续五天在同一时间重复检测,利用拉曼光谱测定洗脱得到的ox-TG的含量,计算该方法的日间RSD(表1)。
(g)将煎炸油样品浓度逐级稀释后上样,重复操作步骤(c-d),并采用拉曼光谱测定洗脱液中ox-TG的浓度,记录所能检测到ox-TG的最低浓度,得到各类ox-TG的检测限(参见表1)。
由表1可知,本发明的RSD 日内最大值为0.6673%,RSD 日间最大值为1.0270%,最低检测限为2.0×10 -6g/mL,具有准确度高、检测限低的优点。
表1 本发明的RSD、检测限与回收率
Figure PCTCN2021098379-appb-000003
实施例2:基底材料的选择
实施例1步骤(b)所述基底材料硅胶替换成壳聚糖或二氧化钛;其他条件和参数与实施例1一致,结果如表2所示,可见,基底材料为硅胶时能有效分离煎炸油中的ox-TG,其他条件则效果略差。
表2 使用不同基底材料时本方法的回收率
Figure PCTCN2021098379-appb-000004
实施例3:功能单体的选择
实施例1步骤(a)所述功能单体丙烯酰胺替换成4-乙烯基吡啶(功能单体前驱体为二羟-乙烯基吡啶)或甲基丙烯酸(当功能单体为甲基丙烯酸时,接枝功能单体只需一步完成,原料为甲基丙烯酸3-(三乙氧基硅基)丙酯);其他条件和参数与实施例1一致,结果如表3所示,可见,当功能单体为甲基丙烯酸和丙烯酰胺时,本发明效果较好。
表3 使用不同功能单体时本方法的回收率
Figure PCTCN2021098379-appb-000005
实施例4:洗脱剂的选择
将实施例1步骤(c)所述洗脱剂二甲基亚砜分别替换成四氢呋喃或氯仿,其他条件和参数与实施例2一致。结果如表4所示,二甲基亚砜和四氢呋喃作为洗脱剂均能有效分离煎炸 油中的极性组分。
表4 使用不同洗脱剂时本发明的回收率
Figure PCTCN2021098379-appb-000006
实施例5:煎炸油用量的选择
将实施例1步骤(c)所述,将上样量(煎炸油样品)与SMIPs质量比由1:20分别替换成1:15,1:25,1:30,其他条件和参数与实施例2一致。结果如表5所示,煎炸油上样量与SMIPs质量比为1:20-1:25范围内,分离效果较好。
表5 上样量与SMIPs用量比例不同时本发明的回收率
Figure PCTCN2021098379-appb-000007
对比例1:与传统方法的对比
图6(a)表示的是极性物质(1)、利用柱层析(2)和SMIPs1(3)分离煎炸油得到的ox-TG的TLC图,图6(b)表示的是利用SMIPs1分离煎炸油得到ox-TG的核磁共振氢谱图,结果表明传统层析柱不能精准分离三类ox-TG,而SMIPs1可以有效分离煎炸油中的环氧ox-TG。如实施例1所述,本发明的回收率在80.3-101.0%,表明本方法可精准分离几类ox-TG。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (12)

  1. 一种精准分离鉴定煎炸油中氧化甘油三酯的方法,其特征在于,所述方法包括以下步骤:
    (a)制备表面分子印迹聚合物:首先将基底材料外层接枝功能单体,加入模板分子即环氧ox-TG、羟基ox-TG和/或醛基ox-TG,待功能单体与模板分子预聚合1-2.5h后,加入引发剂偶氮二异丁腈和交联剂二甲基丙烯酸乙二醇酯使复合物固定在聚合物的网络中,制得交联聚合物,最后将交联聚合物中的模板分子洗脱即得到氧化甘油三酯分子印迹聚合物OXTG-SMIPs;其中,所述功能单体包括甲基丙烯酸、丙烯酰胺、4-乙烯基吡啶的任一种;
    (b)制备层析柱:将步骤(1)得到的OXTG-SMIPs装于层析柱中;
    (c)层析柱分离:层析柱中加入煎炸油,加入洗脱剂洗脱,即可将氧化甘油三酯从煎炸油中进行分离;
    (d)洗脱液洗脱:再依次加入在层析柱中洗脱剂洗脱氧化甘油三酯,即分离得到环氧ox-TG、羟基ox-TG和醛基ox-TG。
  2. 根据权利要求1所述的方法,其特征在于,步骤(a)中所述基底材料包括硅胶、葡聚糖、二氧化钛的任一种或几种。
  3. 根据权利要求1所述的方法,其特征在于,步骤(a)所述功能单体为甲基丙烯酸或丙烯酰胺。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述接枝功能单体的基底材料与模板分子的质量比为5:1-10:1,引发剂的用量为基底材料的2%-4%(m/m),交联剂的用量为基底材料的1.5-2倍(m/m)。
  5. 根据权利要求1~3任一项所述的方法,其特征在于,步骤(a)中所述羟基ox-TG、醛基ox-TG、环氧ox-TG的结构式分别如式I~式III所示:
    Figure PCTCN2021098379-appb-100001
    Figure PCTCN2021098379-appb-100002
  6. 根据权利要求1~3任一项所述的方法,其特征在于,当添加环氧ox-TG、羟基ox-TG、醛基ox-TG的任意一种时制备得到单模板分子印迹聚合物:羟基OX-TGMIPs(SMIPs1)、醛基OX-TGMIPs(SMIPs2)、环氧基OX-TGMIPs(SMIPs3)。
  7. 根据权利要求6所述的方法,其特征在于,当制备得到的是单模板分子印迹聚合物时,步骤(b)将三类OXTG-SMIPs,即SMIPs1:SMIPs2:SMIPs3装于层析柱中,三者质量比为1:1:1-1:1:2。
  8. 根据权利要求1~3任一项所述的方法,其特征在于,步骤(c)所述的洗脱剂为二甲基亚砜、四氢呋喃的任一种。
  9. 根据权利要求1~3任一项所述的方法,其特征在于,步骤(c)所述的煎炸油的质量与OXTG-SMIPs比例为1:20-1:25。
  10. 根据权利要求1~3任一项所述的方法,其特征在于,步骤(d)中所述洗脱剂依次为乙酸:甲醇=1:8、乙酸:甲醇=1:6、乙酸:甲醇=1:4。
  11. 根据权利要求1~3任一项所述的方法,其特征在于,所述的煎炸油为家庭、饭店、工业油炸、烹饪食品所使用的食用油。
  12. 权利要求1~11任一项所述的方法在食品领域中的应用。
PCT/CN2021/098379 2021-04-13 2021-06-04 一种精准分离鉴定煎炸油中氧化甘油三酯的方法 WO2022217724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/301,388 US20230271109A1 (en) 2021-04-13 2023-04-17 Method for Accurately Separating and Identifying Oxidized Triglyceride in Frying Oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110395197.3 2021-04-13
CN202110395197.3A CN113173855B (zh) 2021-04-13 2021-04-13 一种精准分离鉴定煎炸油中氧化甘油三酯的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/301,388 Continuation US20230271109A1 (en) 2021-04-13 2023-04-17 Method for Accurately Separating and Identifying Oxidized Triglyceride in Frying Oil

Publications (1)

Publication Number Publication Date
WO2022217724A1 true WO2022217724A1 (zh) 2022-10-20

Family

ID=76923327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098379 WO2022217724A1 (zh) 2021-04-13 2021-06-04 一种精准分离鉴定煎炸油中氧化甘油三酯的方法

Country Status (3)

Country Link
US (1) US20230271109A1 (zh)
CN (1) CN113173855B (zh)
WO (1) WO2022217724A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381438A (zh) * 2007-09-05 2009-03-11 中国科学院上海微系统与信息技术研究所 分子印迹和荧光共轭聚合物构建的复合材料、制备及应用
CN102167777A (zh) * 2010-12-22 2011-08-31 浙江大学 一种分子印迹聚合物的制备方法及应用
CN102565213A (zh) * 2010-12-14 2012-07-11 上海良友(集团)有限公司 掺入食用植物油中餐厨废油脂的检测新方法
CN102998403A (zh) * 2012-12-25 2013-03-27 江南大学 一种分离煎炸油中极性物质的方法
WO2016137953A1 (en) * 2015-02-27 2016-09-01 Portland State University Enrichment of lysophosphatidic acids with templated polymeric materials
JP2018131585A (ja) * 2017-02-17 2018-08-23 株式会社ダイセル 分子インプリントポリマー、その製造方法、及びその分子インプリントポリマーを用いた目的物質の分離方法
CN112098571A (zh) * 2020-09-10 2020-12-18 江南大学 一种在线快速分离煎炸油中极性组分的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845126B (zh) * 2010-04-23 2012-03-28 华东理工大学 多孔微球硅胶表面青蒿素分子印迹聚合物及其制备和应用方法
CN103480350B (zh) * 2013-09-23 2015-05-20 哈尔滨工程大学 一种硅胶表面涂覆制备分子印迹聚合物的方法
CN104262451B (zh) * 2014-10-24 2016-04-13 威海芝恩药业股份有限公司 一种从海参加工废液中提取海参皂苷的方法
CN106964326B (zh) * 2017-05-25 2019-02-19 济南大学 一种棉秆皮表面山奈素分子印迹吸附材料的制备方法
CN108176079B (zh) * 2017-12-29 2021-04-27 无限极(中国)有限公司 一种甘草提取物的脱色方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381438A (zh) * 2007-09-05 2009-03-11 中国科学院上海微系统与信息技术研究所 分子印迹和荧光共轭聚合物构建的复合材料、制备及应用
CN102565213A (zh) * 2010-12-14 2012-07-11 上海良友(集团)有限公司 掺入食用植物油中餐厨废油脂的检测新方法
CN102167777A (zh) * 2010-12-22 2011-08-31 浙江大学 一种分子印迹聚合物的制备方法及应用
CN102998403A (zh) * 2012-12-25 2013-03-27 江南大学 一种分离煎炸油中极性物质的方法
WO2016137953A1 (en) * 2015-02-27 2016-09-01 Portland State University Enrichment of lysophosphatidic acids with templated polymeric materials
JP2018131585A (ja) * 2017-02-17 2018-08-23 株式会社ダイセル 分子インプリントポリマー、その製造方法、及びその分子インプリントポリマーを用いた目的物質の分離方法
CN112098571A (zh) * 2020-09-10 2020-12-18 江南大学 一种在线快速分离煎炸油中极性组分的方法

Also Published As

Publication number Publication date
CN113173855B (zh) 2023-01-31
CN113173855A (zh) 2021-07-27
US20230271109A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US10472484B2 (en) Aflatoxin templates, molecularly imprinted polymers, and methods of making and using the same
Jiang et al. Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography
Muhammad et al. Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone
Tong et al. Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)–protoporphyrin as a functional monomer
Roushani et al. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions
Yavuz et al. Synthesis of cholesterol imprinted polymeric particles
CN101768238B (zh) 一种桔青毒素分子印迹材料及其制备方法与应用
CN109293938A (zh) 制备金属骨架化合物结合分子印迹聚合物的复合材料
Piao et al. Separation of Sudan dyes from chilli powder by magnetic molecularly imprinted polymer
CN111450803A (zh) 一种吸附三苯甲烷类染料的磁性共价有机骨架化合物的制备方法及应用
Cai et al. Preparation of monodisperse, restricted-access, media-molecularly imprinted polymers using bi-functional monomers for solid-phase extraction of sarafloxacin from complex samples
Kardani et al. A novel immunoaffinity column based metal–organic framework deep eutectic solvents@ molecularly imprinted polymers as a sorbent for the solid phase extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from cereals samples
Wang et al. Selective separation and enrichment of glibenclamide in health foods using surface molecularly imprinted polymers prepared via dendritic grafting of magnetic nanoparticles
Wang et al. Molecularly imprinted poly (methacrylamide-co-methacrylic acid) composite membranes for recognition of curcumin
Li et al. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers
CN111151227A (zh) 半分子印迹材料及其制备方法和应用
Zhao et al. Novel metal-organic framework combining with restricted access molecularly imprinted nanomaterials for solid-phase extraction of gatifloxacin from bovine serum
Niu et al. Preparation of tetracycline surface molecularly imprinted material for the selective recognition of tetracycline in milk
Arabkhani et al. Rapid determination of metanil yellow in turmeric using a molecularly imprinted polymer dispersive solid-phase extraction and visible light spectrophotometry
Cao et al. Synthesis and application of magnetic surface molecularly imprinted polymers in selective solid-phase extraction of epoxy triglyceride from deep frying oil
Chen et al. Preparation and characterization of molecularly‐imprinted polymers for extraction of sanshool acid amide compounds followed by their separation from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum)
CN113893833B (zh) 一种分子印迹复合二维材料高通量识别黄曲霉毒素的制备方法及其应用
WO2022217724A1 (zh) 一种精准分离鉴定煎炸油中氧化甘油三酯的方法
CN110229291A (zh) 基于fdu-12的黄曲霉毒素表面印迹聚合物及其应用
Canpolat Molecularly imprinted polymer-based microspheres for selective extraction of hemoglobin from blood serum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936596

Country of ref document: EP

Kind code of ref document: A1