WO2022217399A1 - 荷电状态截至的方法、装置、控制系统和存储介质 - Google Patents

荷电状态截至的方法、装置、控制系统和存储介质 Download PDF

Info

Publication number
WO2022217399A1
WO2022217399A1 PCT/CN2021/086405 CN2021086405W WO2022217399A1 WO 2022217399 A1 WO2022217399 A1 WO 2022217399A1 CN 2021086405 W CN2021086405 W CN 2021086405W WO 2022217399 A1 WO2022217399 A1 WO 2022217399A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
capacity
soc
state
Prior art date
Application number
PCT/CN2021/086405
Other languages
English (en)
French (fr)
Inventor
陈晨
徐广玉
赵微
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180066640.0A priority Critical patent/CN116235333A/zh
Priority to EP21908068.6A priority patent/EP4109626B1/en
Priority to PCT/CN2021/086405 priority patent/WO2022217399A1/zh
Priority to US17/845,362 priority patent/US20220326308A1/en
Publication of WO2022217399A1 publication Critical patent/WO2022217399A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and in particular, to a method, device, control system, and storage medium for cutting off the state of charge.
  • the open circuit voltage (Open Circuit Voltage, OCV) method and the ampere-hour integration method are commonly used in the existing technical solutions for estimating the SOC.
  • OCV Open Circuit Voltage
  • the open circuit voltage method is based on the OCV-SOC curve of the battery, and the SOC of the battery is obtained according to the current OCV of the battery, so that the remaining capacity of the battery can be accurately obtained;
  • the ampere-hour integration method is based on the integration of current and time to calculate SOC , which can accurately calculate the remaining capacity of the battery.
  • the above methods can only be used for the case where the cells contained in the battery are of the same type, because in this case, the differences in the capacity, charging and discharging rules and aging rules of each cell are small, so that the capacity of the battery is reduced.
  • the charge-discharge law and the aging law are basically consistent with the parameter change law of a single battery cell. Therefore, the SOC error of the battery estimated by BMS according to the capacity change law of a single battery cell is small.
  • the battery contains at least two different types of cells, and the parameters such as the capacity, charge-discharge law, and aging law of different types of cells are quite different. Therefore, the traditional battery SOC is used.
  • the estimation method for estimating the SOC of such a battery will obviously have a large error, especially in the position where the SOC is close to 0. If the SOC estimation is inaccurate, it may cause the electric device to stop halfway, and it is impossible to complete the budget task according to the user's expectations. happening.
  • embodiments of the present application provide a method, device, control system, and storage medium for cutting off the state of charge, which can more accurately estimate the state of charge SOC of a battery including at least two different types of cells , to reduce the probability that the electric device will stop midway because the remaining dischargeable capacity is 0 before the SOC reaches 0.
  • a method for cutting off the state of charge comprising: in the process of battery discharging, acquiring the net discharge capacity from full charge to current of the first battery cell; the battery at least It includes a first type of battery cell and a second type of battery cell, the first type of battery cell and the second type of battery cell are batteries of different positive electrode materials, and the first type of battery cell is either the first type of battery cell or the second type of battery cell. any cell;
  • the nominal capacity of the battery is set when the battery leaves the factory and is a certain value; the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is a variable, which is determined by the The positive electrode material of the first cell is determined, and it is also affected by factors such as temperature and the health status of the first cell.
  • the open-circuit voltage of the first cell is high. If the open-circuit voltage method is used, the SOC of the first cell obtained by looking up the table is high, but not all types of cells in the actual battery.
  • the cut-off time of the SOC of the first battery cell is set according to the net discharge capacity, so that when the first battery cell discharges the nominal capacity, the SOC of the first battery cell is displayed as 0, and at this time the first battery cell is displayed as 0.
  • the remaining dischargeable capacity of a cell is greater than or equal to 0. Therefore, the SOC of the battery is obtained according to the SOC of the first battery cell.
  • the remaining dischargeable capacity of the battery is greater than or equal to 0, thereby reducing the possibility of the electric device shutting down in the middle before the SOC of the battery is 0. probability.
  • the method for cutting off the state of charge further includes: when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is less than the nominal capacity, and the SOC of the first cell is less than When the capacity S 1 is reached, the SOC of the first battery cell is set to be S 1 ; S 1 is greater than 0.
  • the SOC of the first cell calculated by using the ampere-hour integration method is lower, while The sum of the current remaining dischargeable capacity and the net discharge capacity of not all types of cells in the actual battery is less than the nominal capacity. Therefore, if the SOC of the battery is obtained according to the SOC of the first cell, the value of the SOC of the battery is smaller than the actual value of the battery.
  • the SOC of the first battery cell is set to a constant value for a period of time before it drops to 0, and at this time, the remaining dischargeable capacity of the first battery cell decreases with the discharge process.
  • the difference between the remaining dischargeable capacity of the first battery cell and the SOC gradually decreases, so that the error of the estimated SOC of the first battery cell is reduced, and the SOC of the battery estimated according to the SOC of the first battery cell is The error will also be reduced.
  • the SOC of the battery is 0, the available capacity of the battery can be released as much as possible, improving user satisfaction.
  • the method for cutting off the state of charge further includes: when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is less than the nominal capacity, and the voltage of the first cell is low When the cut-off voltage V 1 and the current of the first cell is less than the cut-off current A 1 , the SOC of the first cell is set to 0.
  • the values of V 1 and A 1 can be preset on the BMS.
  • the first cell When the voltage of the first cell is lower than the cut-off voltage V 1 and the current of the first cell is less than the cut-off current A 1 , the first cell The SOC of the battery cell is set to 0 by S1 to reduce the SOC estimation error of the first battery cell, so that the error of the battery SOC estimated according to the SOC of the first battery cell is reduced, ensuring that when the SOC of the battery is 0 , the battery is able to discharge its usable capacity as completely as possible.
  • the current remaining dischargeable capacity of the first cell is obtained according to the following formula:
  • C 1 is the current remaining dischargeable capacity of the first battery cell
  • C 0 is the nominal capacity of the battery
  • C T is the available capacity of the first cell based on the current temperature
  • C 2 is the net discharge capacity of the first cell
  • SOH is the current state of health SOH of the first battery cell, and the range is 0% to 100%.
  • the current remaining dischargeable capacity of the first battery cell is related to the current temperature and the current state of health of the first battery cell, the error of the current remaining dischargeable capacity of the first battery cell calculated by the calculation is small, and the data accuracy is relatively high. high.
  • the nominal capacity of the battery is less than or equal to the initial available capacity of the second cell; the second cell is the cell with the smallest initial available capacity in the battery.
  • the nominal capacity set in this way can ensure that the battery can reach the nominal capacity value at least in the initial stage of use.
  • obtaining the net discharge capacity from full charge to current of the first battery cell further includes:
  • the third battery cell is any one of the first type battery cell or the second type battery cell.
  • the terminal voltage V 2 , the terminal current A 2 and the terminal capacity S 2 are used for judgment to ensure that the judgment of whether to set the SOC of the first cell to 0 is made when the SOC of the battery is really close to 0, reducing the The number of system judgments.
  • the state of charge SOC total of the battery is determined according to the following formula:
  • SOC total SOC min /(1-SOC max +SOC min )*100%
  • SOC is always the state of charge of the battery
  • SOC min is the state of charge of the lowest battery cell in the battery
  • SOC max is the state of charge of the highest battery cell in the battery.
  • the state of charge of each cell in the battery is relatively accurate, so that the state of charge SOC of the battery calculated according to the state of charge of the battery cell is always relatively accurate.
  • a device for controlling the cut-off of the state of charge including:
  • Processing unit used to obtain the net discharge capacity from full charge to current of the first battery cell;
  • the battery includes at least a first type battery cell and a second type battery cell, and the first type battery cell and the second type battery cell have different capacities , the first cell is any one of the first type of cell or the second type of cell;
  • Setting unit used when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is greater than or equal to the nominal capacity of the battery, and the net discharge capacity of the first cell is equal to the nominal capacity of the battery When the capacity is set, the state of charge SOC of the first battery cell is set to 0.
  • the setting unit is further configured to: when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is less than the nominal capacity, and the state of charge SOC of the first cell is less than When the capacity S 1 is reached, the SOC of the first battery cell is set to be S 1 ; S 1 is greater than 0.
  • the processing unit is further configured to obtain the current remaining dischargeable capacity of the first battery cell according to the following formula:
  • C 1 is the current remaining dischargeable capacity of the first battery cell
  • C 0 is the nominal capacity of the battery
  • C T is the available capacity of the first cell based on the current temperature
  • C 2 is the net discharge capacity of the first cell
  • SOH is the current health state of the first cell, and the range is 0% to 100%.
  • the nominal capacity of the battery is less than or equal to the initial available capacity of the second cell; the second cell is the cell with the smallest initial available capacity in the battery.
  • the processing unit acquiring the net discharge capacity from full charge to current of the first battery cell includes:
  • the processing unit determines whether the voltage of the third cell is lower than the terminal voltage V 2 , and the current of the third cell is lower than the terminal current A 2 , and the SOC of the third cell is less than the terminal capacity S 2 , and if so, obtain the first The full charge to the current net discharge capacity of the battery cell; the third battery cell is any one of the first type battery cell or the second type battery cell.
  • the processing unit determines the state of charge SOC total of the battery according to the following formula:
  • SOC total SOC min /(1-SOC max +SOC min )*100%
  • SOC is always the state of charge of the battery
  • SOC min is the state of charge of the lowest battery cell in the battery
  • SOC max is the state of charge of the highest battery cell in the battery.
  • a system for controlling the cut-off of the state of charge including a memory, a processor, and a bus, and the memory and the processor communicate with each other through the bus;
  • the processor is configured to read the executable program code stored in the memory to execute the method for cutting off the state of charge of the above embodiment.
  • a computer-readable storage medium wherein a computer program is stored on the computer-readable storage medium, and when the computer program runs on the computer, the computer executes the above implementation Example of a state-of-charge cut-off method.
  • any first cell in a battery with two types of cells when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is greater than or equal to
  • the nominal capacity of the battery and the net discharge capacity of the first cell is equal to the nominal capacity of the battery
  • set the state of charge SOC of the first cell to 0, so that when the first cell discharges its nominal capacity, the The SOC of one cell is shown as 0, and at this time, the remaining dischargeable capacity of the first cell is greater than or equal to 0. Therefore, the SOC of the battery is obtained according to the SOC of the first battery cell.
  • the remaining dischargeable capacity of the battery is greater than or equal to 0, thereby reducing the possibility of the electric device shutting down in the middle before the SOC of the battery is 0. probability.
  • FIG. 1 is a schematic structural diagram of an electrical device according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for cutting off the state of charge in an embodiment of the present application.
  • FIG. 3 is a flowchart of another method for cutting off the state of charge in an embodiment of the present application.
  • FIG. 4 is a flowchart of step 101 in this embodiment of the present application.
  • FIG. 5 is a flowchart of a method for setting the net discharge capacity of a first battery cell in an embodiment of the present application.
  • FIG. 6 is a structural diagram of an apparatus for controlling the cut-off of the state of charge in an embodiment of the present application.
  • FIG. 7 is a structural diagram of a system for controlling the cut-off of the state of charge in an embodiment of the present application.
  • a physical connection can be a fixed connection, such as a fixed connection through a fastener, such as a fixed connection through screws, bolts or other fasteners; a physical connection can also be a detachable connection, such as Mutual snap connection or snap connection; the physical connection can also be an integral connection, for example, welding, bonding or integrally forming a connection for connection.
  • it may be directly connected, that is, physically connected, or indirectly connected through at least one intermediate element.
  • the signal connection can also refer to the signal connection through a media medium, such as radio waves, in addition to the signal connection through the circuit.
  • the embodiment of the present application provides a method for cutting off the state of charge, and the method is applicable to a battery including at least two types of cells, wherein the battery can be a battery pack, a battery module, a battery pack, etc.
  • the battery in the embodiment of the present application includes a battery management system (Battery Management System, BMS).
  • BMS Battery Management System
  • the method in the embodiment of the present application may be specifically applied to the BMS.
  • the BMS in the embodiment of the present application may also be an independent device or device, and the BMS can also control the battery or cell to set the state of charge of the battery or cell according to the method for cutting off the state of charge provided in the embodiment of the present application.
  • the two types of cells can be named as the first type of cells and the second type of cells, wherein the first type of cells and the second type of cells are batteries with different positive electrode materials. core.
  • the first type of battery cell and the second type of battery cell may be respectively two different types among lithium-ion batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries; or, when the first type of batteries When the battery cell and the second type battery cell are the same type of battery cell in lithium ion battery, lithium sulfur battery, sodium lithium ion battery, sodium ion battery or magnesium ion battery, etc.
  • the specific positive electrode material of the battery cell can be different, for example, when When the first type of battery cell and the second type of battery cell are both lithium-ion batteries, the specific positive electrode materials may be two different ones of lithium iron phosphate, lithium manganate, lithium cobaltate, and ternary materials, respectively.
  • the positive electrode materials of the first type of batteries and the second type of batteries are different, their capacity decay laws, aging laws and charge and discharge performance are different. Therefore, even if the initial available capacities of the two types of batteries are the same, in During use, the available capacities of the two types of batteries will gradually differ, and the initial available capacities of the first type of batteries and the second type of batteries are also set to be different due to the performance requirements of the batteries. For example, in order to prevent certain types of fast-aging cells from affecting the overall battery capacity, the initial capacity of such cells will be greater than the nominal capacity of the battery, and BMS will limit the capacity usage range of such cells before the cells age, and With the aging of the battery cells, the use range is gradually opened.
  • the electric device is taken as an example of the automobile 2 .
  • the car 2 includes a battery 200 , a controller 210 and a motor 220 .
  • the battery 200 is used to supply power to the controller 210 and the motor 220 as the operating power and driving power of the car 2 .
  • the battery 200 is used for the starting, navigation and operating power requirements of the car 2 , and the battery 200 supplies the controller 210 with electricity.
  • the controller 210 controls the battery 200 to supply power to the motor 220, and the motor 220 receives and uses the power of the battery 200 as the driving power source of the vehicle 2 to provide driving power for the vehicle 2 in place of or partially instead of fuel or natural gas.
  • the actual available capacity of any one of the plurality of cells in the battery 200 may be greater than the nominal capacity of the battery 200 , equal to the nominal capacity of the battery 200 , or smaller than the battery 200 . 200 nominal capacity.
  • the actual available capacity refers to the available capacity of the cell based on its own material, current temperature, health status and other factors.
  • the SOC of the battery is higher than the remaining dischargeable capacity of the battery, so that the SOC of the battery 200 has not yet reached 0, but the actual remaining dischargeable capacity of the battery is already 0, for example: if the battery The nominal capacity of the 200 when it leaves the factory is 100Ah. During use, one of the cells has a capacity of 110Ah. After full charge (the battery 200 power reaches 100%), it starts to discharge 100Ah.
  • OCV open circuit voltage
  • the SOC of the cell is calculated using the ampere-hour integration method, and the SOC of the battery 200 is obtained according to the SOC of the cell, Then the obtained SOC of the battery 200 is smaller than the actual remaining dischargeable capacity of the battery 200, and with the accumulation of time, the error between the SOC of the battery 200 and the remaining dischargeable capacity of the battery 200 becomes larger and larger, so that the The SOC has reached 0, but the remaining dischargeable capacity of the battery 200 is far greater than 0, so that the available capacity of the battery 200 cannot be fully released, resulting in a waste of capacity, and the user cannot accurately estimate the mileage that the car 2 can travel based on the nominal capacity. , so as to doubt the capacity of the battery 200 .
  • a method for ending the state of charge includes:
  • Step 101 During the battery discharge process, obtain the net discharge capacity of the first battery cell from full charge to current.
  • the first battery cell refers to any one of the first type battery cell or the second type battery cell; fully charged refers to a state where the state of charge of the first battery cell is 100%, of course, fully charged can also be It refers to the case where the state of charge of the first battery cell is another value, which is not limited in this application. Current refers to the moment when the net discharge capacity is obtained.
  • Step 102 Obtain the available capacity of the first battery cell and the state of health SOH of the first battery cell.
  • the available capacity refers to the available capacity of the first cell based on the current temperature; the state of health (SOH) is also called the degree of aging, which ranges from 0% to 100%. SOH also decreased.
  • SOH state of health
  • Step 103 Obtain the current remaining dischargeable capacity of the first cell based on the nominal capacity of the battery, the net discharge capacity of the first cell, the available capacity of the first cell, and the SOH of the first cell.
  • the nominal capacity of the battery is set at the factory and is a certain value.
  • the nominal capacity of the battery is less than or equal to the initial available capacity of the second cell.
  • the second cell is defined as the cell with the smallest initial available capacity in the battery, and the second cell and the first cell may be the same or different.
  • the nominal capacity value can be directly stored in the BMS for recall.
  • Step 104 When the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is greater than or equal to the nominal capacity of the battery, and the net discharge capacity of the first cell is equal to the nominal capacity of the battery , and set the state of charge SOC of the first cell to 0.
  • the cut-off time of the SOC of the first cell is set according to the net discharge capacity.
  • the SOC of the first cell is displayed as 0, while the At this time, the remaining dischargeable capacity of the first battery cell is greater than or equal to 0. Therefore, the SOC of the battery is obtained according to the SOC of the first battery cell.
  • the remaining dischargeable capacity of the battery is greater than or equal to 0, thereby reducing the possibility that the electric device will stop in the middle before the SOC of the battery is 0. probability.
  • the technical solutions of the embodiments of the present application better overcome the use of the open-circuit voltage method to estimate the SOC of the first battery cell in the related art, and when the SOC of the battery is obtained according to the SOC of the first battery cell, the SOC of the battery is higher than the actual remaining battery The dischargeable capacity is high, and the displayed SOC of the battery has not yet reached 0, while the remaining dischargeable capacity of the battery has already reached 0, which leads to a situation in which the electric device stops midway.
  • the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is greater than or equal to the nominal capacity of the battery
  • the capacity of the first cell decreases as the number of charging and discharging times increases. In this case, if the BMS calculates the SOC of the first cell according to the ampere-hour integration method, the obtained SOC of the first cell is lower.
  • the BMS continues to obtain the SOC of the battery according to the SOC of the first cell, then the value of the SOC of the battery is less than the actual remaining dischargeable capacity of the battery, and as the discharge time accumulates, the error of the SOC becomes larger and larger, which will cause the displayed
  • the SOC of the battery has reached 0, and the remaining dischargeable capacity of the battery is much greater than 0, which leads to the inability to fully release the available capacity of the battery, resulting in a waste of capacity, and users will also have doubts about the capacity of the battery.
  • the method for cutting off the state of charge further includes:
  • Step 105 When the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is less than the nominal capacity, and the SOC of the first cell is less than the cut - off capacity S1, set the SOC is S 1 .
  • S 1 is a preset value greater than 0, for example, set S 1 to 2%, and store it in the BMS for direct recall.
  • SOC of the first cell is less than 2%, the SOC of the first cell is set to 2%.
  • the method for ending the state of charge further includes: Step 106 : when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is less than the nominal capacity, and When the voltage of the first cell is lower than the cut-off voltage V 1 and the current of the first cell is smaller than the cut-off current A 1 , the SOC of the first cell is set to 0.
  • V 1 and A 1 can be preset on the BMS.
  • the value of V 1 is the voltage value of the cell whose actual usable capacity is equal to the nominal capacity when its remaining dischargeable capacity is equal to 0
  • a 1 The value of is the current value of the cell whose actual available capacity is equal to the nominal capacity in the battery when its remaining dischargeable capacity is equal to 0.
  • the SOC calculated by the first battery cell is set to a fixed value S 1 for a period of time before it becomes 0, and at this time, the remaining dischargeable capacity of the first battery cell decreases with the discharge process. Therefore, the difference between the remaining dischargeable capacity of the first cell and the SOC gradually decreases.
  • the SOC of the first cell is set from S 1 to 0, which improves the SOC of the first cell.
  • the accuracy at the deadline reduces the SOC estimation error of the first battery cell, thereby reducing the error of the battery SOC estimated according to the SOC of the first battery cell, ensuring that when the battery SOC is 0, the battery can Fully unleash its available capacity, increasing user satisfaction.
  • step 101 may include:
  • Step 1011 Determine whether the voltage of the third cell is smaller than the terminal voltage V 2 , the current of the third cell is smaller than the terminal current A 2 , and the SOC of the third cell is smaller than the terminal capacity S 2 , if so, go to step 1011 1012.
  • the third cell is any one of the first type of cell or the second type of cell, and it can be understood that the third cell, the first cell and the second cell may be the same cell or different Batteries.
  • Step 1012 Obtain the net discharge capacity from full charge to current of the first battery cell.
  • V 2 , A 2 , and S 2 are the voltage value, current value and capacity value close to the discharge end of the third cell in sequence, wherein the discharge end refers to the discharge end of the third cell.
  • the discharge process after the capacity of the third cell is less than 10% can be defined as the discharge end.
  • V 2 is the voltage when the capacity of the third cell is 10%
  • a 2 is the current when the capacity of the third cell is 10%
  • S 2 is 10%
  • the specific values of V 2 , A 2 , and S 2 are determined according to the nominal capacity of the battery and the usage scenario.
  • V 2 , A 2 , and S 2 can all be stored in the BMS system.
  • the BMS obtains the current remaining dischargeable capacity of the first battery cell according to the following formula:
  • C 1 is the current remaining dischargeable capacity of the first cell
  • C 0 is the nominal capacity of the battery
  • C T is the available capacity of the first cell based on the current temperature
  • C 2 is the net discharge of the first cell Capacity
  • SOH is the current health state SOH of the first battery cell, and the range is 0% to 100%.
  • the current remaining dischargeable capacity of the first battery cell is closely related to the current temperature and current state of health of the first battery cell, so that the current remaining dischargeable capacity of the first battery cell can be calculated more accurately, and the calculation error is relatively small. Small, the data accuracy is high.
  • the calculation of the net discharge capacity of the first battery cell takes one discharge process as an accumulation period, where one discharge process refers to a process between two adjacent full charges of the battery. During a discharge process, the battery may only be discharged, or may be discharged and charged alternately. Therefore, in the embodiments of the present application:
  • the net discharge capacity of the first cell at the current moment cumulative discharge capacity - cumulative charge capacity
  • the cumulative discharge capacity is the total discharge capacity of the first battery cell from the last full charge to the current, and the cumulative charge capacity is the total charge capacity of the first battery cell from the last full charge to the current.
  • the net discharge capacity of the first cell is set by the following method:
  • Step 201 Determine whether the first battery cell is fully charged, and if so, go to Step 202.
  • Step 202 Set the net discharge capacity of the first battery cell to 0.
  • the net discharge capacity of the first battery cell is reset to zero each time the first battery cell is fully charged. Subsequently, when the BMS calculates the net discharge capacity, it is more convenient to retrieve data.
  • the method for cutting off the state of charge further includes: setting the total SOC of the battery based on the SOC of each cell in the battery.
  • the BMS determines the total state of charge SOC of the battery according to the following formula:
  • SOC total SOC min /(1-SOC max +SOC min )*100%
  • SOC is always the state of charge of the battery
  • SOC min is the state of charge of the lowest battery cell in the battery
  • SOC max is the state of charge of the highest battery cell in the battery.
  • the state of charge of each cell in the battery estimated by the method of cutting off the state of charge in the above-mentioned embodiments of the present application is relatively accurate, the state of charge of the battery estimated according to the state of charge of the battery cell is also relatively accurate. accurate.
  • the total SOC of the battery when the SOC of any cell in the battery is 0, the total SOC can be set to 0.
  • an embodiment of the present application further provides an apparatus for controlling the cut-off of the state of charge
  • the apparatus includes a unit for implementing the method and steps of controlling the cut-off of the state of charge of any of the above embodiments.
  • the apparatus includes: a processing unit 301 and a setting unit 302, and the processing unit 301 and the setting unit 302 may be directly or indirectly connected by electrical signals.
  • the processing unit 301 is used to obtain the net discharge capacity from full charge to current of the first battery cell;
  • the battery includes at least a first type battery cell and a second type battery cell, the first type battery cell and the second type battery cell
  • the first cell is any one of the first type of cell or the second type of cell.
  • the processing unit 301 is further configured to acquire the available capacity of the first battery cell and the state of health SOH of the first battery cell.
  • the processing unit 301 is further configured to obtain the current remaining dischargeable capacity of the first cell based on the nominal capacity of the battery, the net discharge capacity of the first cell, the available capacity of the first cell and the SOH of the first cell.
  • the setting unit 302 is used for when the sum of the current remaining dischargeable capacity of the first battery cell and the net discharge capacity of the first battery cell is greater than or equal to the nominal capacity of the battery, and the net discharge capacity of the first battery cell is equal to the nominal capacity of the battery.
  • the state of charge SOC of the first battery cell is set to 0.
  • the setting unit 302 is further configured to: when the sum of the current remaining dischargeable capacity of the first cell and the net discharge capacity of the first cell is less than the nominal capacity, and the state of charge SOC of the first cell is When it is smaller than the cut-off capacity S 1 , the SOC of the first battery cell is set to be S 1 ; S 1 is greater than 0.
  • the processing unit 301 obtains the current remaining dischargeable capacity of the first battery cell according to the following formula:
  • C 1 is the current remaining dischargeable capacity of the first cell
  • C 0 is the nominal capacity of the battery
  • C T is the available capacity of the first cell based on the current temperature
  • C 2 is the net discharge of the first cell Capacity
  • SOH is the current health state of the first cell, and the range is 0% to 100%.
  • the nominal capacity of the battery is less than or equal to the initial capacity of the second cell; the second cell is the cell with the smallest initial capacity in the battery.
  • the processing unit 301 acquiring the net discharge capacity from full charge to current of the first battery cell includes:
  • the processing unit 301 determines whether the voltage of the third cell is smaller than the terminal voltage V 2 , and the current of the third cell is smaller than the terminal current A 2 , and the SOC of the third cell is smaller than the terminal capacity S 2 , and if so, obtains the first cell.
  • the net discharge capacity of one battery cell from full charge to current; the third battery cell is any one of the first type battery cell or the second type battery cell.
  • the processing unit 301 determines the state of charge SOC total of the battery according to the following formula:
  • SOC total SOC min /(1-SOC max +SOC min )*100%
  • SOC is always the state of charge of the battery
  • SOC min is the state of charge of the lowest battery cell in the battery
  • SOC max is the state of charge of the highest battery cell in the battery.
  • the device for controlling the cut-off state of charge judges any first cell in a battery with two types of cells through the processing unit and the setting unit.
  • the state of charge SOC of the first cell is set to 0, so that When the first cell discharges its nominal capacity, the SOC of the first cell shows 0, and at this time, the remaining dischargeable capacity of the first cell is greater than or equal to 0. Therefore, the SOC of the battery is obtained according to the SOC of the first battery cell.
  • the remaining dischargeable capacity of the battery is greater than or equal to 0, thereby reducing the possibility of the electric device shutting down in the middle before the SOC of the battery is 0. probability.
  • each unit in the above apparatus can be realized in the form of software calling through the processing element; also can all be realized in the form of hardware; some units can also be realized in the form of software calling through the processing element, and some units can be realized in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the device to be implemented, and can also be stored in the memory in the form of a program, which can be called by a certain processing element of the device and execute the unit's processing. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processing element or implemented in the form of software being invoked by the processing element.
  • an embodiment of the present application further provides a system for controlling the cut-off of the state of charge.
  • the system includes: a memory 401 , a processor 402 and an interface 403 , and the memory 401 , the processor 402 and the interface 403 are connected through a bus 404 , the bus 404 can be implemented by connecting circuits.
  • the memory 401 is used for storing a program, and when the program is called by the processor 402, the method executed by the apparatus for controlling the cut-off of the state of charge in the above embodiment can be implemented.
  • the interface 403 is used to implement communication with the charging device or other external systems, and the interface 403 can communicate with the charging device or other external systems through wired connection or wireless connection.
  • the functions of the various units in the above apparatus for controlling the cut-off of the state of charge may be implemented by the processor 402 calling the program stored in the memory 401 . That is, the above apparatus for controlling the cut-off of the state of charge includes a processor 402 and a memory 401, and the memory 401 is used for storing a program, and the program is called by the processor 402 to execute the methods in the above method embodiments.
  • the processor 402 here may be a general-purpose processor, or other processors that can invoke programs; or the processor 402 may be configured to implement one or more of the methods for executing the apparatus for controlling the state of charge cut-off in the above embodiments
  • An integrated circuit for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or more microprocessors (Digital Singnal Processor, DSP), or, or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the processor 402 can be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU), a controller , microcontroller, microcontroller, or other processor that can call programs.
  • CPU central processing unit
  • controller microcontroller
  • microcontroller microcontroller
  • SOC system-on-a-chip
  • the number of the memory 401 is not limited, and may be one or more.
  • the memory 401 includes at least one type of readable storage medium, and the readable storage medium includes a non-volatile memory (Non-volatile Memory) or a volatile memory, for example, a flash memory (Flash Memory), a hard disk, a multimedia card, a card type Memory (for example, SD or DX memory, etc.), random access memory (RandomAccess Memory, RAM), read-only memory (Read-only Memory, ROM), Erasable Programmable Read-only Memory (EPROM) ), Electrically Erasable Programmable Read-only Memory (EEPROM), Programmable Read-only Memory (PROM), magnetic memory, magnetic disk or optical disk, etc.
  • RAM can include static RAM or dynamic RAM.
  • the memory 401 may be the device's internal memory, eg, the device's hard disk or memory. In other embodiments, the memory 401 may also be an external storage device of the device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card equipped on the device Or flash card (Flash Card, FC) and so on. Of course, the memory 401 may also include both the internal memory of the apparatus and its external storage device. In this embodiment, the memory 401 is generally used to store the operating system and various application software installed in the device, such as program codes of a method for controlling the cut-off of the state of charge, and the like. In addition, the memory 401 can also be used to temporarily store various types of data that have been output or will be output.
  • the memory 401 can also be used to temporarily store various types of data that have been output or will be output.
  • the bus 404 may be an industry standard architecture (Industry Standard Architecture, ISA) bus, a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus, or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus or the like.
  • the bus 404 may include an address bus, a data bus, a control bus, or the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the processor 402 is generally used to control the overall operation of the system.
  • the memory 401 is used to store program codes or instructions
  • the program codes include computer operation instructions
  • the processor 402 is used to execute the program codes or instructions stored in the memory 401 or process data, such as running the method for controlling the cut-off state of charge. code.
  • an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program runs on the computer, the computer executes the method for cutting off the state of charge of the above-mentioned embodiment.
  • a computer program is stored on the computer-readable storage medium, and when the computer program runs on the computer, the computer executes the method for cutting off the state of charge of the above-mentioned embodiment.
  • the SOC of the battery is obtained according to the SOC of the first battery cell.
  • the remaining dischargeable capacity of the battery is greater than or equal to 0, thereby reducing the possibility of the electric device shutting down in the middle before the SOC of the battery is 0. probability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例涉及电池的技术领域,尤其涉及一种荷电状态截至的方法、装置、控制系统和存储介质。其中,方法包括:在电池放电过程中,获取第一电芯的从满充到当前的净放电容量;获取第一电芯的可用容量和第一电芯的健康状态SOH;基于电池的标称容量、第一电芯的净放电容量、第一电芯的可用容量和第一电芯的SOH获取第一电芯的当前剩余可放电容量;在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态SOC为0。本申请实施例的方法能够较为准确地估算出包含至少两种不同类型电芯的电池的荷电状态SOC,降低用电装置在SOC为0之前停机的概率。

Description

荷电状态截至的方法、装置、控制系统和存储介质 技术领域
本申请实施例涉及电池的技术领域,尤其涉及一种荷电状态截至的方法、装置、控制系统和存储介质。
背景技术
在电池的研究中,对电池管理系统(Battery Management System,BMS)的研究逐步成为新热点,其中的电池荷电状态(State of Charge,SOC)精确估计十分困难。现有的技术方案中使用较多的SOC估算方法有开路电压(Open Circuit Voltage,OCV)法和安时积分法。其中,开路电压法是基于电池的OCV-SOC曲线,根据当前电池的OCV查表得到电池的SOC,从而可以准确得到该电池的剩余容量;安时积分法是基于电流对时间的积分来计算SOC,其可以准确的计算出电池的剩余容量。
但是,以上方法都只能针对电池内部包含的电芯为同一类型电芯的情况,因为在此种情况下,各个电芯的容量、充放电规律和老化规律差异较小,从而使得电池的容量、充放电规律和老化规律与单个电芯的参数变化规律基本一致,因此,BMS根据单个电芯的容量变化规律估算出的电池的SOC误差较小。
然而在实际制造过程中,会存在电池内包含至少两种不同类型电芯的情况,而不同类型电芯的容量、充放电规律和老化规律等参数的差异较大,因此,采用传统的电池SOC估算方法估算此种电池的SOC,显然会出现较大的误差,尤其在SOC接近于0的位置,如果SOC估算不准确,则可能导致用电装置中途停机,无法按照用户预期完成预算任务量的情况。
发明内容
鉴于上述问题,本申请实施例提供了一种荷电状态截至的方法、装置、控制系统和存储介质,其能够在较为准确地估算出包含至少两种不同类型电芯的电池的荷电状态SOC,降低用电装置在SOC为0之前由于剩余可放电容量为0而发生中途停机的概率。
根据本申请实施例的第一个方面,提供了一种荷电状态截至的方法,该方法包括:在电池放电过程中,获取第一电芯的从满充到当前的净放电容量;电池至少包括第一类型电芯和第二类型电芯,第一类型电芯和第二类型电芯为不同正极材料的电芯,第一电芯为第一类型电芯或第二类型电芯中的任意一个电芯;
获取第一电芯的可用容量和第一电芯的健康状态SOH;
基于电池的标称容量、第一电芯的净放电容量、第一电芯的可用容量和第一电芯的SOH获取第一电芯的当前剩余可放电容量;
在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态SOC为0。
通过采用上述方案,电池的标称容量在电池出厂时即设定好,为一定值;第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和为一变量,由该第一电芯的正极材料决定,同时还会受到温度和第一电芯的健康状态等因素的影响,当第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量时,该第一电芯的开路电压较高,如果使用开路电压法,则查表得到的第一电芯的SOC较高,而实际的电池内并非所有类型电芯的当前剩余可放电容量与净放电容量之和均大于或等于电池的标称容量,所以,如果根据第一电芯的SOC得到电池的SOC,则电池的SOC比电池实际的剩余可放电容量高,这会导致显示的电池的SOC还未到达0,而电池的剩余可放电容量已经为0的情况,从而导致用电装置中途停机。而本申请此实施例对这种第一电芯根据净放电容量设置其SOC的截至时刻,使得第一电芯在放出标称容量时,第一电芯的SOC显示为0,而此时第一电芯的剩余可放电容量大于或等于0。因此,根据第一电芯的SOC得到电池的SOC,在电池的S0C为0时,电池的剩余可放电容量大于或等于0,从而降低了用电装置在电池显示SOC为0之前发生中途停机的概率。
在一些实施例中,荷电状态截至的方法还包括:在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量,且第一电芯的SOC小于截至容量S 1时,设置第一电芯的SOC为S 1;S 1大于0。
通过采用上述方案,第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量时,使用安时积分法计算得到的第一电芯的SOC 较低,而实际电池内并非所有类型电芯的当前剩余可放电容量与净放电容量之和小于标称容量,因此,如果根据第一电芯的SOC得到电池的SOC,则电池的SOC的数值小于电池实际的剩余可放电容量,并且随着放电时间的累积,SOC的误差越来越大,这样会导致显示的电池的SOC已经到达0,而电池剩余可放电容量远大于0的情况,从而导致电池的可用容量无法完全释放,造成容量的浪费,并且用户也会对电池的容量产生疑惑。而本申请此实例中对这种第一电芯的SOC在降为0之前一段时间内设为定值,而此时,第一电芯剩余可放电容量随着放电进程在减小,因此,第一电芯的剩余可放电容量与SOC之间的差值逐渐减小,从而使得估算出的第一电芯的SOC的误差减小,根据第一电芯的SOC估算出的电池的SOC的误差也会减小,在电池的SOC为0时,电池的可用容量能够尽可能的得到释放,提高用户满意度。
在一些实施例中,荷电状态截至的方法还包括:在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量,且第一电芯的电压低于截至电压V 1,以及第一电芯的电流小于截至电流A 1时,设置第一电芯的SOC为0。
通过采用上述方案,V 1和A 1的值可以在BMS上预设,在第一电芯的电压低于截至电压V 1,以及第一电芯的电流小于截至电流A 1时,将第一电芯的SOC由S 1设置为0,减小第一电芯的SOC估算误差,从而使得根据第一电芯的SOC估算出的电池的SOC的误差减小,确保在电池的SOC为0时,电池能够尽可能完全地放出其可用容量。
在一些实施例中,根据如下公式获取第一电芯的当前剩余可放电容量:
C 1=C 0*SOH-(C 0-C T)-C 2
其中,C 1为第一电芯的当前剩余可放电容量;
C 0为电池的标称容量;
C T为第一电芯基于当前温度下的可用容量;
C 2为第一电芯的净放电容量;
SOH为第一电芯当前的健康状态SOH,范围是0%~100%。
通过采用上述方案,第一电芯的当前剩余可放电容量与第一电芯当前温度和当前健康状态相关,计算得出的第一电芯的当前剩余可放电容量误差较小,数据准确性较高。
在一些实施例中,电池的标称容量小于或等于第二电芯的初始的可用 容量;第二电芯为电池中初始的可用容量最小的电芯。
通过采用上述方案,由于用户通过电池的标称容量了解到电池的容量,因此,这样设置的标称容量能够确保电池至少能够在使用初期达到标称容量值。
在一些实施例中,获取第一电芯的从满充到当前的净放电容量进一步包括:
判断是否存在第三电芯的电压小于末端电压V 2,且第三电芯的电流小于末端电流A 2,以及第三电芯的SOC小于末端容量S 2,若存在,则获取第一电芯的从满充到当前的净放电容量;第三电芯为第一类型电芯或第二类型电芯中的任意一个电芯。
通过采用上述方案,通过末端电压V 2、末端电流A 2和末端容量S 2进行判断,确保在电池的SOC真正接近0的时候再进行是否将第一电芯的SOC设置为0的判断,减少系统判断次数。
在一些实施例中,根据如下公式确定电池的荷电状态SOC
SOC =SOC min/(1-SOC max+SOC min)*100%,
其中,SOC 为电池的荷电状态;
SOC min为电池中最低电量电芯的荷电状态;
SOC max为电池中最高电量电芯的荷电状态。
通过采用上述方案,电池内的每个电芯的荷电状态较为精确,从而根据电芯的荷电状态计算出的电池的荷电状态SOC 也较为精确。
根据本申请实施例的第二个方面,提供了一种控制荷电状态截至的装置,包括:
处理单元:用于获取第一电芯的从满充到当前的净放电容量;电池至少包括第一类型电芯和第二类型电芯,第一类型电芯和第二类型电芯为容量不同的电芯,第一电芯为第一类型电芯或第二类型电芯中的任意一个电芯;和
用于获取第一电芯的可用容量和第一电芯的健康状态SOH;和
用于基于电池的标称容量、第一电芯的净放电容量、第一电芯的可用容量和第一电芯的SOH获取第一电芯的当前剩余可放电容量;
设置单元:用于在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池 的标称容量时,设置第一电芯的荷电状态SOC为0。
在一些实施例中,设置单元还用于:在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量,且第一电芯的荷电状态SOC小于截至容量S 1时,设置第一电芯的SOC为S 1;S 1大于0。
在一些实施例中,处理单元还用于根据如下公式获取第一电芯的当前剩余可放电容量:
C 1=C 0*SOH-(C 0-C T)-C 2
其中,C 1为第一电芯的当前剩余可放电容量;
C 0为电池的标称容量;
C T为第一电芯基于当前温度下的可用容量;
C 2为第一电芯的净放电容量;
SOH为第一电芯当前的健康状态,范围是0%~100%。
在一些实施例中,电池的标称容量小于或等于第二电芯的初始的可用容量;第二电芯为电池中初始的可用容量最小的电芯。
在一些实施例中,处理单元获取第一电芯的从满充到当前的净放电容量包括:
处理单元判断是否存在第三电芯的电压小于末端电压V 2,且第三电芯的电流小于末端电流A 2,以及第三电芯的SOC小于末端容量S 2,若存在,则获取第一电芯的从满充到当前的净放电容量;第三电芯为第一类型电芯或第二类型电芯中的任意一个电芯。
在一些实施例中,处理单元根据如下公式确定电池的荷电状态SOC
SOC =SOC min/(1-SOC max+SOC min)*100%,
其中,SOC 为电池的荷电状态;
SOC min为电池中最低电量电芯的荷电状态;
SOC max为电池中最高电量电芯的荷电状态。
根据本申请实施例的第三个方面,提供了一种控制荷电状态截至的系统,包括存储器、处理器和总线,存储器和处理器通过总线完成相互间的通信;
存储器用于储存可执行程序代码;
处理器用于读取存储器中存储的可执行程序代码以执行上述实施例的荷电状态截至的方法。
根据本申请实施例的第四个方面,提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质上存储有计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述实施例的荷电状态截至的方法。
本申请实施例通过对具有两种类型电芯的电池内的任一第一电芯进行判断,当第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态SOC为0,使得第一电芯在放出其标称容量时,第一电芯的SOC显示为0,而此时第一电芯的剩余可放电容量大于或等于0。因此,根据第一电芯的SOC得到电池的SOC,在电池的S0C为0时,电池的剩余可放电容量大于或等于0,从而降低了用电装置在电池显示SOC为0之前发生中途停机的概率。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例一种用电装置的结构示意图。
图2为本申请实施例中一种荷电状态截至的方法的流程图。
图3为本申请实施例中另一种荷电状态截至的方法的流程图。
图4为本申请实施例中步骤101的流程图。
图5为本申请实施例中设置第一电芯的净放电容量的方法的流程图。
图6为本申请本申请实施例中一种控制荷电状态截至的装置的结构图。
图7为本申请本申请实施例中一种控制荷电状态截至的系统的结构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本 申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖而不排除其它的内容。单词“一”或“一个”并不排除存在多个。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如, 可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供了一种荷电状态截至的方法,该方法适用于至少包括两类电芯的电池,其中,电池可以为电池包、电池模块、电池组等,为了表述方便,本申请将其统称为电池。另外,本申请实施例中的电池包括电池管理系统(Battery Management System,BMS),本申请实施例中的方法具体可以应用于BMS中,当然,本申请实施例中BMS也可以是独立的装置或设备,通过该BMS也可以控制电池或电芯按照本申请实施例提供的荷电状态截至的方法设置电池或电芯的荷电状态。
以电池内包括两类电芯为例,两类电芯可以分别命名为第一类型电芯和第二类型电芯,其中,第一类型电芯和第二类型电芯为不同正极材料的电芯。例如,第一类型电芯和第二类型电芯可以分别为锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等当中不同的两类;或者,当第一类型电芯与第二类型电芯为锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等当中的同一种类电芯时,电芯的具体的正极材料可以不同,例如,当第一类型电芯与第二类型电芯均为锂离子电池时,其具体的正极材料可以分别是磷酸铁锂、锰酸锂、钴酸锂、三元材料等当中的不同的两种。
由于第一类型电芯与第二类型电芯的正极材料不同,所以其容量衰减规律、老化规律和充放电性能等均有不同,因此,即使两类电芯的初始时的可用容量相同,在使用过程中,两类电芯的可用容量也会逐渐出现差异,而且出于对电池的使用性能要求,第一类型电芯和第二类型电芯的初始可用容量也会设置成不同。例如,为了避免某类老化快的电芯影响整体电池的容量,这类电芯的初始容量会大于电池的标称容量,BMS在电芯老化前会限制此类电芯的容量使用区间,并随着电芯老化逐步开放使用区间。
因此,对于此类型的电池的荷电状态,如果利用现有的技术方案中的SOC估算方法进行估算,显然会出现较大的误差,尤其在SOC接近于0的位置,如果SOC估算不准确,则可能导致用电装置无法按照用户预期完成预算 任务量的情况。
例如,如图1所示,以用电装置为汽车2举例。汽车2包括电池200、控制器210和马达220。电池200用于向控制器210和马达220供电,作为汽车2的操作电源和驱动电源,例如,电池200用于汽车2的启动、导航和运行时的工作用电需求,电池200向控制器210供电,控制器210控制电池200向马达220供电,马达220接收并使用电池200的电力作为汽车2的驱动电源,替代或部分地替代燃油或天然气为汽车2提供驱动动力。
在汽车2的使用过程中的任一时刻,电池200中的多个电芯中任意一个电芯的实际可用容量可能会大于电池200的标称容量、等于电池200的标称容量或小于于电池200的标称容量。其中,实际可用容量是指电芯基于自身材料、当前温度、健康状态等因素下的可用容量。
当电池200中某个电芯的实际可用容量相比电池200的标称容量偏大时,若使用此电芯的开路电压(Open Circuit Voltage,OCV)修正此电芯的SOC,并根据此电芯的SOC得到电池的SOC,则电池的SOC比电池的剩余可放电容量高,从而导致电池200的SOC还未到达0,而电池实际的剩余可放电容量已经为0的情况,例如:若电池200出厂时承诺的标称容量为100Ah,在使用过程中,其中一个电芯的容量为110Ah,在满充(电池200电量达到100%)后开始放电100Ah,电池200实际的剩余可放电容量应该为0,但若根据容量为110Ah的电芯查OCV-SOC曲线,则该电芯的SOC为(110Ah-100Ah)/110Ah*100%=9%,显然,根据此电芯的SOC得到的电池200的SOC不为0,这与电池200实际的剩余可放电容量不符,从而导致用电装置中途停机,例如导致汽车2中途抛锚。
反之,当电池200中某个电芯的实际可用容量比电池200的标称容量偏小时,如果使用安时积分法计算该电芯的SOC,并根据该电芯的SOC得到电池200的SOC,则得出的电池200的SOC小于电池200实际的剩余可放电容量,并且随着时间的累积,电池200的SOC与电池200剩余可放电容量之间的误差越来越大,以至于电池200的SOC已经到0,而电池200的剩余可放电容量远大于0的情况,从而导致电池200的可用容量无法完全释放,造成容量的浪费,用户无法准确地根据标称容量估算汽车2可行驶的里程,从而对电池200的容量产生疑惑。
有鉴于此,如图2所示,本申请实施例提供的一种荷电状态截至的方 法包括:
步骤101:在电池放电过程中,获取第一电芯的从满充到当前的净放电容量。
其中,第一电芯是指第一类型电芯或第二类型电芯中的任意一个电芯;满充是指第一电芯的荷电状态为100%的状态,当然,满充也可以指第一电芯的荷电状态为其他数值的情况,本申请在此不做限制。当前是指获取净放电容量的时刻。
步骤102:获取第一电芯的可用容量和第一电芯的健康状态SOH。
可用容量是指第一电芯基于当前温度下的可用容量;健康状态SOH也称老化程度,其范围为0%~100%,随着第一电芯充放电次数的增加,第一电芯的SOH也随之减小。
步骤103:基于电池的标称容量、第一电芯的净放电容量、第一电芯的可用容量和第一电芯的SOH获取第一电芯的当前剩余可放电容量。
其中,电池的标称容量在电池出厂时即设定好,为一定值。例如,在一些实施例中,电池的标称容量小于或等于第二电芯的初始的可用容量。其中,第二电芯定义为电池中初始的可用容量最小的电芯,第二电芯与第一电芯可以相同或不同。可直接将该标称容量值储存在BMS中进行调用。
步骤104:在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态SOC为0。
通过采用本申请上述实施例的方案,对第一电芯根据净放电容量设置其SOC的截至时刻,在第一电芯在放出其标称容量时,第一电芯的SOC显示为0,而此时第一电芯的剩余可放电容量大于或等于0。因此,根据第一电芯的SOC得到电池的SOC,在电池的S0C为0时,电池的剩余可放电容量大于或等于0,从而降低了用电装置在电池的SOC为0之前发生中途停机的概率。
本申请实施例的技术方案较好的克服了相关技术中采用开路电压法估算第一电芯的SOC,并根据第一电芯的SOC而得到电池的SOC时,电池的SOC比电池实际的剩余可放电容量高,并导致显示的电池的SOC还未到达0,而电池的剩余可放电容量已经为0,从而导致用电装置中途停机的情况。
此外,除过第一电芯的当前剩余可放电容量与第一电芯的净放电容量 之和大于或等于电池的标称容量的情况,电池中还会存在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量的情况。例如,第一电芯随着充放电次数的增加,容量发生衰减,此情况下,如果BMS根据安时积分法计算第一电芯的SOC,则得到的第一电芯的SOC较低,如果BMS继续根据第一电芯的SOC得到电池的SOC,则电池的SOC的数值小于电池实际的剩余可放电容量,并且随着放电时间的累积,SOC的误差越来越大,这样会导致显示的电池的SOC已经到达0,而电池剩余可放电容量远大于0的情况,从而导致电池的可用容量无法完全释放,造成容量的浪费,并且用户也会对电池的容量产生疑惑。
可选的,如图3所示,在一些实施例中,荷电状态截至的方法还包括:
步骤105:在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量,且第一电芯的SOC小于截至容量S 1时,设置第一电芯的SOC为S 1
其中S 1为大于0的预设值,例如,设置S 1为2%,并将其储存在BMS中直接调用。在第一电芯的SOC小于2%时,将第一电芯的SOC设置为2%。
可选的,在一些实施例中,荷电状态截至的方法还包括:步骤106:在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量,且第一电芯的电压低于截至电压V 1,以及第一电芯的电流小于截至电流A 1时,设置第一电芯的SOC为0。
其中,V 1和A 1的值可以在BMS上预设,例如,V 1的值为电池中实际可用容量等于标称容量的电芯在其剩余可放电容量等于0时的电压值,A 1的值为电池中实际可用容量等于标称容量的电芯在其剩余可放电容量等于0时的电流值。
通过采用上述实施例的方案,将第一电芯计算的SOC在变为0之前一段时间内设为定值S 1,而此时,第一电芯的剩余可放电容量随着放电进程在减小,因此,第一电芯的剩余可放电容量与SOC之间的差值逐渐减小。
在第一电芯的电压低于截至电压V 1,以及第一电芯的电流小于截至电流A 1时,将第一电芯的SOC由S 1设置为0,提高了第一电芯在SOC截至时的准确性,减小第一电芯的SOC估算误差,从而使得根据第一电芯的SOC估算出的电池的SOC的误差减小,确保在电池的SOC为0时,电池能够尽可能完全地放出其可用容量,提高用户满意度。
可选的,如图4所示,在一些实施例中,步骤101可以包括:
步骤1011:判断是否存在第三电芯的电压小于末端电压V 2,且第三电芯的电流小于末端电流A 2,以及第三电芯的SOC小于末端容量S 2,若存在,则执行步骤1012。
其中,第三电芯为第一类型电芯或第二类型电芯中的任意一个电芯,可以理解的,第三电芯与第一电芯和第二电芯可以为同一电芯或者不同电芯。
步骤1012:获取第一电芯的从满充到当前的净放电容量。
在本实施例的上述方案中,V 2、A 2、和S 2依次为接近第三电芯的放电末端的电压值、电流值和容量值,其中,放电末端是指,第三电芯的SOC接近于0的放电过程,例如,可以定义第三电芯的容量小于10%以后的放电过程为放电末端,此时,V 2为第三电芯的容量为10%时的电压,A 2为第三电芯的容量为10%时的电流,S 2为10%,V 2、A 2、和S 2的具体数值根据电池的标称容量和使用场景而定。其中,V 2、A 2、和S 2均可以存储于BMS系统中。
通过末端电压V 2、末端电流A 2和末端容量S 2判断是否需要获取第一电芯的从满充到当前的净放电容量,确保在第三电芯的SOC真正接近0的时候再执行步骤1012及步骤102至步骤106的指令,减少BMS系统的操作次数。
可选的,在一些实施例中,步骤103中,BMS根据如下公式获取第一电芯的当前剩余可放电容量:
C 1=C 0*SOH-(C 0-C T)-C 2,
其中,C 1为第一电芯的当前剩余可放电容量;C 0为电池的标称容量;C T为第一电芯基于当前温度下的可用容量;C 2为第一电芯的净放电容量;SOH为第一电芯当前的健康状态SOH,范围是0%~100%。
在上述公式中,第一电芯的当前剩余可放电容量与第一电芯当前温度和当前健康状态均息息相关,从而能够较为准确地计算出第一电芯的当前剩余可放电容量,计算误差较小,数据准确性较高。
需要注意的是,在一些实施例中,第一电芯的净放电容量的计算以一次放电过程为一个累计周期,其中,一次放电过程是指电池相邻两次满充之间的过程。在一次放电过程中,电池可能仅仅是放电,也可能是放电和充电交替进行,所以,在本申请实施例中:
第一电芯当前时刻的净放电容量=累计放电容量-累计充电容量,
其中累计放电容量为第一电芯从上一次满充到当前的总放电容量,累计充电容量为第一电芯从上一次满充到当前的总充电容量。
以上运算均可以由BMS进行。
可选的,如图5所示,通过如下方法设置第一电芯的净放电容量:
步骤201:判断第一电芯是否到达满充,如果是,则执行步骤202。
步骤202:将第一电芯的净放电容量设置为0。
通过本申请上述实施例的方案,第一电芯每到达一次满充,将第一电芯的净放电容量清零,随后,BMS在计算净放电容量时,调取数据更加方便。
可选的,在一些实施例中,荷电状态截至的方法还包括:基于电池中各个电芯的SOC设置电池的SOC
其中,BMS根据如下公式确定电池的荷电状态SOC
SOC =SOC min/(1-SOC max+SOC min)*100%,
其中,SOC 为电池的荷电状态;
SOC min为电池中最低电量电芯的荷电状态;
SOC max为电池中最高电量电芯的荷电状态。
由于采用本申请上述实施例中的荷电状态截至的方法估算出的电池内的每个电芯的荷电状态较为精确,从而根据电芯的荷电状态估算出的电池的荷电状态也较为精确。
需要注意的是,在设置电池的SOC 时,当电池中任意一个电芯的SOC为0,即可将SOC 设置为0。
如图6所示,本申请实施例还提供了一种控制荷电状态截至的装置,该装置包括用以实现以上任一实施例的控制荷电状态截至的方法和步骤的单元。例如包括:处理单元301和设置单元302,处理单元301和设置单元302可以直接或间接地通过电信号连接。
其中,处理单元301,用于获取第一电芯的从满充到当前的净放电容量;电池至少包括第一类型电芯和第二类型电芯,第一类型电芯和第二类型电芯为容量不同的电芯,第一电芯为第一类型电芯或第二类型电芯中的任意一个电芯。
处理单元301,还用于获取第一电芯的可用容量和第一电芯的健康状态SOH。
处理单元301,还用于基于电池的标称容量、第一电芯的净放电容量、 第一电芯的可用容量和第一电芯的SOH获取第一电芯的当前剩余可放电容量。
设置单元302,用于在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态SOC为0。
在一些实施例中,设置单元302,还用于在第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和小于标称容量,且第一电芯的荷电状态SOC小于截至容量S 1时,设置第一电芯的SOC为S 1;S 1大于0。
在一些实施例中,处理单元301根据如下公式获取第一电芯的当前剩余可放电容量:
C 1=C 0*SOH-(C 0-C T)-C 2
其中,C 1为第一电芯的当前剩余可放电容量;C 0为电池的标称容量;C T为第一电芯基于当前温度下的可用容量;C 2为第一电芯的净放电容量;SOH为第一电芯当前的健康状态,范围是0%~100%。
在一些实施例中,电池的标称容量小于或等于第二电芯的初始容量;第二电芯为电池中初始容量最小的电芯。
在一些实施例中,处理单元301获取第一电芯的从满充到当前的净放电容量包括:
处理单元301判断是否存在第三电芯的电压小于末端电压V 2,且第三电芯的电流小于末端电流A 2,以及第三电芯的SOC小于末端容量S 2,若存在,则获取第一电芯的从满充到当前的净放电容量;第三电芯为第一类型电芯或第二类型电芯中的任意一个电芯。
在一些实施例中,处理单元301根据如下公式确定电池的荷电状态SOC
SOC =SOC min/(1-SOC max+SOC min)*100%,
其中,SOC 为电池的荷电状态;SOC min为电池中最低电量电芯的荷电状态;SOC max为电池中最高电量电芯的荷电状态。
本申请实施例的控制荷电状态截至的装置通过处理单元和设置单元对具有两种类型电芯的电池内的任一第一电芯进行判断,当第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态 SOC为0,使得第一电芯在放出其标称容量时,第一电芯的SOC显示为0,而此时第一电芯的剩余可放电容量大于或等于0。因此,根据第一电芯的SOC得到电池的SOC,在电池的S0C为0时,电池的剩余可放电容量大于或等于0,从而降低了用电装置在电池显示SOC为0之前发生中途停机的概率。
关于上述实施例中的装置,其中各个单元执行操作的具体方式已经在有关荷电状态截至的方法的实施例中进行了详细描述,此处将不做详细阐述说明。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
如图7所示,本申请实施例还提供了一种控制荷电状态截至的系统,该系统包括:存储器401、处理器402和接口403,存储器401、处理器402和接口403通过总线404连接,该总线404可以通过连接电路来实现。其中,存储器401用于存储程序,该程序被处理器402调用时,可以实现以上实施例中控制荷电状态截至的装置所执行的方法。接口403用于实现与充电装置或其它外部系统的通信,且接口403可以通过有线连接的方式或者无线连接的方式与充电装置或其它外部系统进行通信。
以上控制荷电状态截至的装置中各个单元的功能可以通过处理器402调用存储器401中存储的程序来实现。即以上控制荷电状态截至的装置包括处理器402和存储器401,存储器401用于存储程序,该程序被处理器402调用,以执行以上方法实施例中的方法。这里的处理器402,可以是通用处理器,还可以是其它可以调用程序的处理器;或者该处理器402可以被配置成实施以上实施例中控制荷电状态截至的装置执行方法的一个或多个集成电路,例 如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(Digital Singnal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。再如,当控制荷电状态截至的装置中的单元可以通过处理器402调度程序的形式实现时,该处理器402可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)、控制器、微控制器、单片机或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(System-on-a-chip,SOC)的形式实现。
存储器401的数量不做限制,可以是一个也可以是多个。
存储器401至少包括一种类型的可读存储介质,可读存储介质包括非易失性存储器(Non-volatile Memory)或易失性存储器,例如,闪存(Flash Memory)、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RandomAccess Memory,RAM)、只读存储器(Read-only Memory,ROM)、可擦写可编程只读存储器(Erasable Programmable Read-only Memory,EPROM)、电可擦写可编程只读存储器(Electrically Erasable Programmable Read-only Memory,EEPROM)、可编程只读存储器(Programmable Read-only Memory,PROM)、磁性存储器、磁盘或光盘等,RAM可以包括静态RAM或动态RAM。在一些实施例中,存储器401可以是该装置的内部存储器,例如,该装置的硬盘或内存。在另一些实施例中,存储器401也可以是该装置的外部存储设备,例如该装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡或闪存卡(Flash Card,FC)等。当然,存储器401还可以既包括该装置的内部存储器也包括其外部存储设备。本实施例中,存储器401通常用于存储安装于该装置的操作系统和各类应用软件,例如控制荷电状态截至的方法的程序代码等。此外,存储器401还可以用于暂时地存储已经输出或者将要输出的各类数据。
总线404可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该总线404可以包括地址总线、数据总线或控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器402通常用于控制该系统的总体操作。本实施例中,存储器401 用于存储程序代码或指令,程序代码包括计算机操作指令,处理器402用于执行存储器401存储的程序代码或指令或者处理数据,例如运行控制荷电状态截至的方法的程序代码。
最后,本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述实施例的荷电状态截至的方法。关于该计算机可读存储介质的说明已在上述控制荷电状态截至的系统的实施例中进行了详细描述,此处不再赘述。
综上所述,本申请是实施例通过对具有两种类型电芯的电池内的任一第一电芯进行判断,当第一电芯的当前剩余可放电容量与第一电芯的净放电容量之和大于或等于电池的标称容量,且第一电芯的净放电容量等于电池的标称容量时,设置第一电芯的荷电状态SOC为0,使得第一电芯在放出其标称容量时,第一电芯的SOC显示为0,而此时第一电芯的剩余可放电容量大于或等于0。因此,根据第一电芯的SOC得到电池的SOC,在电池的S0C为0时,电池的剩余可放电容量大于或等于0,从而降低了用电装置在电池显示SOC为0之前发生中途停机的概率。
本领域的技术人员能够理解,不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种荷电状态截至的方法,其特征在于,所述方法包括:
    在电池放电过程中,获取第一电芯的从满充到当前的净放电容量;所述电池至少包括第一类型电芯和第二类型电芯,所述第一类型电芯和所述第二类型电芯为不同正极材料的电芯,所述第一电芯为所述第一类型电芯或所述第二类型电芯中的任意一个电芯;
    获取所述第一电芯的可用容量和所述第一电芯的健康状态SOH;
    基于所述电池的标称容量、所述第一电芯的净放电容量、所述第一电芯的可用容量和所述第一电芯的SOH获取所述第一电芯的当前剩余可放电容量;
    在所述第一电芯的当前剩余可放电容量与所述第一电芯的净放电容量之和大于或等于所述电池的标称容量,且所述第一电芯的净放电容量等于所述电池的标称容量时,设置所述第一电芯的荷电状态SOC为0。
  2. 根据权利要求1所述的荷电状态截至的方法,其特征在于,所述方法还包括:在所述第一电芯的当前剩余可放电容量与所述第一电芯的净放电容量之和小于所述标称容量,且所述第一电芯的SOC小于截至容量S 1时,设置所述第一电芯的SOC为S 1;所述S 1大于0。
  3. 根据权利要求2所述的荷电状态截至的方法,其特征在于,所述方法还包括:在所述第一电芯的当前剩余可放电容量与所述第一电芯的净放电容量之和小于所述标称容量,且所述第一电芯的电压低于截至电压V 1,以及所述第一电芯的电流小于截至电流A 1时,设置所述第一电芯的SOC为0。
  4. 根据权利要求1-3任一项所述的荷电状态截至的方法,其特征在于,根据如下公式获取所述第一电芯的当前剩余可放电容量:
    C 1=C 0*SOH-(C 0-C T)-C 2
    其中,C 1为所述第一电芯的当前剩余可放电容量;
    C 0为所述电池的标称容量;
    C T为所述第一电芯基于当前温度下的可用容量;
    C 2为所述第一电芯的净放电容量;
    SOH为所述第一电芯当前的健康状态SOH,范围是0%~100%。
  5. 根据权利要求1-3任一项所述的荷电状态截至的方法,其特征在 于,所述电池的标称容量小于或等于所述第二电芯初始状态的可用容量;所述第二电芯为所述电池中初始状态的可用容量最小的电芯。
  6. 根据权利要求1所述的荷电状态截至的方法,其特征在于,获取所述第一电芯的从满充到当前的净放电容量进一步包括:
    判断是否存在第三电芯的电压小于末端电压V 2,且所述第三电芯的电流小于末端电流A 2,以及所述第三电芯的SOC小于末端容量S 2,若存在,则获取所述第一电芯的从满充到当前的净放电容量;所述第三电芯为第一类型电芯或第二类型电芯中的任意一个电芯。
  7. 根据权利要求1所述的荷电状态截至的方法,其特征在于,所述方法还包括:根据如下公式确定电池的荷电状态SOC
    SOC =SOC min/(1-SOC max+SOC min)*100%,
    其中,SOC 为所述电池的荷电状态;
    SOC min为所述电池中最低电量电芯的荷电状态;
    SOC max为所述电池中最高电量电芯的荷电状态。
  8. 一种控制荷电状态截至的装置,其特征在于,包括:
    处理单元:用于获取第一电芯的从满充到当前的净放电容量;所述电池至少包括第一类型电芯和第二类型电芯,所述第一类型电芯和所述第二类型电芯为容量不同的电芯,所述第一电芯为所述第一类型电芯或所述第二类型电芯中的任意一个电芯;和
    用于获取所述第一电芯的可用容量和所述第一电芯的健康状态SOH;和
    用于基于所述电池的标称容量、所述第一电芯的净放电容量、所述第一电芯的可用容量和所述第一电芯的SOH获取所述第一电芯的当前剩余可放电容量;
    设置单元:用于在所述第一电芯的当前剩余可放电容量与所述第一电芯的净放电容量之和大于或等于所述电池的标称容量,且所述第一电芯的净放电容量等于所述电池的标称容量时,设置所述第一电芯的荷电状态SOC为0。
  9. 根据权利要求8所述的控制荷电状态截至的装置,其特征在于,所述设置单元还用于:在所述第一电芯的当前剩余可放电容量与所述第一电芯的净放电容量之和小于所述标称容量,且所述第一电芯的荷电状 态SOC小于截至容量S 1时,设置所述第一电芯的SOC为S 1;所述S 1大于0。
  10. 根据权利要求9所述的控制荷电状态截至的装置,其特征在于,所述设置单元还用于:在所述第一电芯的当前剩余可放电容量与所述第一电芯的净放电容量之和小于所述标称容量,且所述第一电芯的电压低于截至电压V 1,以及所述第一电芯的电流小于截至电流A 1时,设置所述第一电芯的荷电状态SOC为0。
  11. 根据权利要求8-10任一项所述的控制荷电状态截至的装置,其特征在于,所述处理单元根据如下公式获取所述第一电芯的当前剩余可放电容量:
    C 1=C 0*SOH-(C 0-C T)-C 2
    其中,C 1为所述第一电芯的当前剩余可放电容量;
    C 0为所述电池的标称容量;
    C T为所述第一电芯基于当前温度下的可用容量;
    C 2为所述第一电芯的净放电容量;
    SOH为所述第一电芯当前的健康状态,范围是0%~100%。
  12. 根据权利要求8-10任一项所述的控制荷电状态截至的装置,其特征在于,所述电池的标称容量小于或等于第二电芯的初始状态的可用容量;所述第二电芯为所述电池中初始状态的可用容量最小的电芯。
  13. 根据权利要求8所述的控制荷电状态截至的装置,其特征在于,所述处理单元获取所述第一电芯的从满充到当前的净放电容量包括:
    所述处理单元判断是否存在第三电芯的电压小于末端电压V 2,且所述第三电芯的电流小于末端电流A 2,以及所述第三电芯的SOC小于末端容量S 2,若存在,则获取所述第一电芯的从满充到当前的净放电容量;所述第三电芯为所述第一类型电芯或所述第二类型电芯中的任意一个电芯。
  14. 根据权利要求8所述的控制荷电状态截至的装置,其特征在于,所述处理单元还用于:根据如下公式确定所述电池的荷电状态SOC
    SOC =SOC min/(1-SOC max+SOC min)*100%,
    其中,SOC 为所述电池的荷电状态;
    SOC min为所述电池中最低电量电芯的荷电状态;
    SOC max为所述电池中最高电量电芯的荷电状态。
  15. 一种控制荷电状态截至的系统,其特征在于,包括存储器、处理器和总线,所述存储器和所述处理器通过所述总线完成相互间的通信;
    所述存储器用于储存可执行程序代码;
    所述处理器用于读取所述存储器中存储的可执行程序代码以执行权利要求1至7中任一项所述的荷电状态截至的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的荷电状态截至的方法。
PCT/CN2021/086405 2021-04-12 2021-04-12 荷电状态截至的方法、装置、控制系统和存储介质 WO2022217399A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180066640.0A CN116235333A (zh) 2021-04-12 2021-04-12 荷电状态截至的方法、装置、控制系统和存储介质
EP21908068.6A EP4109626B1 (en) 2021-04-12 2021-04-12 State-of-charge cutoff method and apparatus, and control system and storage medium
PCT/CN2021/086405 WO2022217399A1 (zh) 2021-04-12 2021-04-12 荷电状态截至的方法、装置、控制系统和存储介质
US17/845,362 US20220326308A1 (en) 2021-04-12 2022-06-21 State-of-charge cut-off control method, apparatus and system, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086405 WO2022217399A1 (zh) 2021-04-12 2021-04-12 荷电状态截至的方法、装置、控制系统和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/845,362 Continuation US20220326308A1 (en) 2021-04-12 2022-06-21 State-of-charge cut-off control method, apparatus and system, and storage medium

Publications (1)

Publication Number Publication Date
WO2022217399A1 true WO2022217399A1 (zh) 2022-10-20

Family

ID=83510623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086405 WO2022217399A1 (zh) 2021-04-12 2021-04-12 荷电状态截至的方法、装置、控制系统和存储介质

Country Status (4)

Country Link
US (1) US20220326308A1 (zh)
EP (1) EP4109626B1 (zh)
CN (1) CN116235333A (zh)
WO (1) WO2022217399A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117810460A (zh) * 2024-03-01 2024-04-02 宁德时代新能源科技股份有限公司 电池包以及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161715A1 (en) * 2010-12-22 2012-06-28 Jong-Doo Park Cell balancing circuit, method of driving the same, and battery management system that includes the cell balancing circuit
CN103267953A (zh) * 2013-06-05 2013-08-28 安徽安凯汽车股份有限公司 一种磷酸铁锂动力电池soc的估算方法
CN106329021A (zh) * 2016-10-13 2017-01-11 宁德时代新能源科技股份有限公司 估算动力电池的剩余可用能量的方法和装置
CN107356874A (zh) * 2017-06-15 2017-11-17 宁德时代新能源科技股份有限公司 电池包荷电状态的估算方法、装置和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268985A (ja) * 1997-03-27 1998-10-09 Toshiba Corp 電源制御装置および電源制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161715A1 (en) * 2010-12-22 2012-06-28 Jong-Doo Park Cell balancing circuit, method of driving the same, and battery management system that includes the cell balancing circuit
CN103267953A (zh) * 2013-06-05 2013-08-28 安徽安凯汽车股份有限公司 一种磷酸铁锂动力电池soc的估算方法
CN106329021A (zh) * 2016-10-13 2017-01-11 宁德时代新能源科技股份有限公司 估算动力电池的剩余可用能量的方法和装置
CN107356874A (zh) * 2017-06-15 2017-11-17 宁德时代新能源科技股份有限公司 电池包荷电状态的估算方法、装置和系统

Also Published As

Publication number Publication date
EP4109626A1 (en) 2022-12-28
US20220326308A1 (en) 2022-10-13
CN116235333A8 (zh) 2024-05-31
EP4109626B1 (en) 2023-12-27
EP4109626A4 (en) 2023-04-19
CN116235333A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
EP3733436B1 (en) Battery management apparatus and method
WO2020259355A1 (zh) 电池荷电状态确定方法、装置、管理系统以及存储介质
WO2015106691A1 (zh) 一种混合动力车用动力电池soc估算方法
US9983270B2 (en) State of charge estimation device and method of estimating state of charge
JP2016186487A (ja) 二次電池の充電状態測定装置及び二次電池の充電状態測定方法
WO2021258657A1 (zh) 一种电池健康状态获取方法及装置、存储介质
JP2020514757A (ja) バッテリー抵抗推定装置及び方法
JP6958965B2 (ja) バッテリーsoc推定装置及び方法
CN112455286B (zh) 一种充电控制方法及装置、电池管理系统
WO2019230131A1 (ja) 充電制御装置、輸送機器、及びプログラム
US20210190879A1 (en) Soh estimation method of battery pack
US20210119461A1 (en) Electronic device and method for charging battery
US20240159836A1 (en) Method and device for calibrating soc at tail end of charging or discharging of energy storage system
CN112259813B (zh) 电池充放电功率确定方法、系统及设备
JP7038530B2 (ja) デバイス状態検知装置、電源システムおよび自動車
WO2022217399A1 (zh) 荷电状态截至的方法、装置、控制系统和存储介质
WO2023116531A1 (zh) 确定电池soc初始值的方法及相关装置
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
CN117250514A (zh) 一种动力电池系统全生命周期soc的修正方法
CN111562504A (zh) 一种电池老化测试方法以及电池
CN116001642A (zh) 动力电池的充电方法、装置、车辆及存储介质
WO2022183459A1 (zh) 一种估算电池包soc的方法、装置及电池管理系统
CN112731187A (zh) 电池容量修正方法和电池管理系统
KR101467363B1 (ko) 배터리의 soc 추정 방법 및 장치
KR101491460B1 (ko) 배터리의 액티브 셀 밸런싱 방법 및 이를 이용한 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021908068

Country of ref document: EP

Effective date: 20220627

NENP Non-entry into the national phase

Ref country code: DE