WO2022215722A1 - シャワープレート - Google Patents

シャワープレート Download PDF

Info

Publication number
WO2022215722A1
WO2022215722A1 PCT/JP2022/017238 JP2022017238W WO2022215722A1 WO 2022215722 A1 WO2022215722 A1 WO 2022215722A1 JP 2022017238 W JP2022017238 W JP 2022017238W WO 2022215722 A1 WO2022215722 A1 WO 2022215722A1
Authority
WO
WIPO (PCT)
Prior art keywords
slits
shower plate
electrode
substrate
holes
Prior art date
Application number
PCT/JP2022/017238
Other languages
English (en)
French (fr)
Inventor
美紀 ▲濱▼田
裕作 石峯
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023513042A priority Critical patent/JPWO2022215722A1/ja
Publication of WO2022215722A1 publication Critical patent/WO2022215722A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the disclosed embodiments relate to shower plates.
  • a shower plate that ejects heated gas onto a substrate such as a semiconductor wafer in, for example, a semiconductor manufacturing process.
  • the shower plate also functions as an RF electrode capable of applying RF (radio frequency) power for generating gas plasma.
  • RF radio frequency
  • a shower plate for example, there is known a shower plate having a substrate made of ceramics and having a plurality of gas holes for ejecting heated gas, and an electrode embedded in the substrate (see Patent Document 1). ).
  • a shower plate includes a base and an electrode.
  • the substrate is made of ceramics and has a plurality of gas holes for ejecting heated gas.
  • the electrode is positioned inside the substrate and has a plurality of through holes corresponding to the positions of the plurality of gas holes.
  • the electrode has one or more slits in which a portion of the substrate is located.
  • FIG. 1 is a plan view showing an outline of a shower plate according to the first embodiment.
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II shown in FIG.
  • FIG. 3 is a cross-sectional plan view of the vicinity of electrodes in the shower plate according to the first embodiment.
  • 4 is a schematic enlarged view of the E section shown in FIG. 3.
  • FIG. 5 is a cross-sectional plan view of the periphery of the electrode in the shower plate according to Modification 1 of the first embodiment.
  • FIG. 6 is a cross-sectional plan view of the periphery of the electrode in the shower plate according to Modification 2 of the first embodiment.
  • FIG. 1 is a plan view showing an outline of a shower plate according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II shown in FIG.
  • FIG. 3 is a cross-sectional plan view of the vicinity of electrodes in the shower plate according to the first embodiment.
  • 4 is
  • FIG. 7 is a cross-sectional plan view of the vicinity of electrodes in a shower plate according to Modification 3 of the first embodiment.
  • FIG. 8 is a cross-sectional plan view of the periphery of an electrode in a shower plate according to Modification 4 of the first embodiment.
  • FIG. 9 is a cross-sectional plan view of the periphery of an electrode in a shower plate according to Modification 5 of the first embodiment.
  • FIG. 10 is an enlarged cross-sectional plan view of the periphery of the slit in the shower plate according to Modification 6 of the first embodiment.
  • FIG. 11 is an enlarged cross-sectional plan view of the periphery of the slit in the shower plate according to Modification 7 of the first embodiment.
  • FIG. 12 is a side sectional view schematically showing a shower plate according to the second embodiment.
  • FIG. 13 is a plan cross-sectional view of the periphery of the electrodes in the shower plate according to the second embodiment.
  • each embodiment can be appropriately combined within a range that does not contradict the processing content.
  • the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • FIG. 1 is a plan view schematically showing a shower plate 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II shown in FIG.
  • the shower plate 1 shown in FIG. 1 ejects heated gas onto a substrate such as a semiconductor wafer in, for example, a semiconductor manufacturing process.
  • the shower plate 1 is mounted, for example, in a substrate processing apparatus that performs plasma processing or the like on substrates.
  • the shower plate 1 has a substrate 10 and an electrode 20.
  • the base 10 has a disk shape including circular upper and lower surfaces in plan view.
  • the substrate 10 is made of ceramics, for example, and has insulating properties.
  • the ceramics constituting the substrate 10 is, for example, a sintered body mainly composed of aluminum nitride (AlN), aluminum oxide (Al 2 O 3 , alumina), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or the like.
  • the main component is, for example, a material that accounts for 50% by mass or more or 80% by mass or more of the material.
  • the substrate 10 may contain a compound of yttrium (Y). Examples of Y compounds include YAG (Y 3 Al 5 O 12 ) and Y 2 O 3 .
  • the base 10 has a plurality of gas holes 11 that pass through the base 10 in the thickness direction and eject heated gas. Gas ejected from the plurality of gas holes 11 is heated by, for example, a resistance heating element (not shown) located inside the base 10 .
  • the shape of the substrate 10 is arbitrary.
  • the shape of the base 10 is circular in plan view, but it is not limited to this, and may be elliptical, rectangular, trapezoidal, or the like in plan view.
  • Electrode 20 is positioned inside the base 10 as shown in FIG. Electrode 20 may be a solid structure.
  • the electrode 20 has a disc shape with a diameter smaller than that of the substrate 10 in plan view, for example.
  • the electrode 20 is made of, for example, metals such as Ni, W, Mo and Pt, or alloys containing at least one of the above metals.
  • the electrode 20 has a plurality of through holes 21 corresponding to the positions of the plurality of gas holes 11 of the substrate 10 respectively.
  • Each of the plurality of through holes 21 has a larger diameter than each of the plurality of gas holes 11 .
  • the electrode 20 has one or more slits 22 in which a portion of the substrate 10 is located, as shown in FIG.
  • FIG. 1 shows an example in which the electrode 20 has four slits 22, the number of slits 22 is not limited to four. The number of slits 22 may be one, or may be five or more.
  • the electrode 20 may be, for example, an RF electrode capable of applying RF (radio frequency) power for generating gas plasma.
  • the substrate processing apparatus equipped with the shower plate 1 applies RF power to the electrode 20 in a state in which heated gas is jetted into the chamber from the plurality of gas holes 11 of the substrate 10, thereby releasing the gas in the chamber. Plasma can be generated.
  • the shower plate 1 according to the first embodiment has one or more slits 22 in the electrode 20 .
  • a portion of the substrate 10 is positioned in the slit 22 .
  • a portion of the substrate 10 positioned within the slit 22 comes into contact with the inner wall surface of the slit 22 when expansion and contraction due to thermal cycles are repeated. Therefore, when the expansion and contraction due to thermal cycles are repeated, the stress from the electrode 20 is dispersed in a part of the substrate 10 inside the slit 22, and the stress concentrates on the portion of the substrate 10 in contact with the outer periphery of the electrode 20. is reduced.
  • the shower plate 1 according to the first embodiment it is possible to suppress the occurrence of cracks in the base 10, and as a result, it is possible to improve the reliability with respect to thermal cycles.
  • FIG. 3 is a plan cross-sectional view around the electrode 20 in the shower plate 1 according to the first embodiment. 3 shows a cross-sectional view taken along line III-III shown in FIG. As mentioned above, electrode 20 has one or more slits 22 in which a portion of substrate 10 is located.
  • the electrode 20 may have a central portion 20a that does not have a plurality of through holes 21 and an annular peripheral portion 20b that surrounds the central portion 20a and has a plurality of through holes 21.
  • One or more slits 22 may be located in the peripheral portion 20b of the electrode 20 .
  • the central portion 20 a of the electrode 20 does not have to have the plurality of through holes 21 and the one or more slits 22 .
  • the slit 22 in the peripheral portion 20b of the electrode 20 instead of the central portion 20a, the strength of the central portion 20a can be maintained. Breakage of the electrode 20 can be suppressed.
  • the slits 22 in the peripheral portion 20b for example, when RF power is applied to the electrode 20, the flow of current between the central portion 20a and the peripheral portion 20b is prevented by the slits 22. can do.
  • the one or more slits 22 may extend in the radial direction of the peripheral portion 20b of the electrode 20. Specifically, one or more slits 22 may extend from the outer edge of the electrode 20 along the radial direction of the peripheral portion 20b to a position close to the central portion 20a. Since the one or more slits 22 extend in the radial direction of the peripheral portion 20b, the thermal expansion of the electrode 20 along the circumferential direction of the peripheral portion 20b is alleviated. Stress concentration can be further reduced.
  • each of the one or more slits 22 may be greater than the diameter of each of the plurality of through holes 21. As a result, the area of contact between the inner wall surface of the slit 22 and the portion of the substrate 10 located within the slit 22 can be increased when expansion and contraction due to thermal cycles are repeated. Stress can be efficiently distributed over a portion of the substrate 10 .
  • FIG. 4 is a schematic enlarged view of the E section shown in FIG.
  • the ends 22a of the one or more slits 22 may be rounded.
  • the rounded ends 22a of the one or more slits 22 allow the electrode 20 to be positioned within the slits 22 from the expanded electrode 20 even when the vicinity of the slits 22 of the electrode 20 thermally expands due to thermal cycling.
  • the stress applied to a portion of the substrate 10 can be dispersed.
  • FIG. 5 is a cross-sectional plan view of the vicinity of the electrode 20 in the shower plate 1 according to Modification 1 of the first embodiment. 5 shows a cross-sectional plan view corresponding to the cross-sectional view taken along the line III-III shown in FIG.
  • one or more slits 22A according to Modification 1 may extend in the circumferential direction of the peripheral portion 20b of the electrode 20.
  • one or more slits 22A may extend in an arc shape of a predetermined length along the circumferential direction of the peripheral portion 20b. Since the one or more slits 22A extend in the circumferential direction of the peripheral portion 20b, the thermal expansion of the electrode 20 along the radial direction of the peripheral portion 20b is alleviated. Stress concentration can be further reduced.
  • the "circumferential direction of the peripheral portion 20b" refers to a direction perpendicular to the radial direction of the peripheral portion 20b. Therefore, the one or more slits 22A do not necessarily need to extend in an arc shape along the circumferential direction of the peripheral portion 20b. For example, one or more slits 22A may extend linearly along the circumferential direction of the peripheral portion 20b (that is, the direction orthogonal to the radial direction of the peripheral portion 20b).
  • FIG. 6 is a plan cross-sectional view around the electrode 20 in the shower plate 1 according to Modification 2 of the first embodiment. 6 shows a cross-sectional plan view corresponding to the cross-sectional view taken along the line III--III shown in FIG.
  • one or more slits 22B according to Modification 2 extend in the circumferential direction of the peripheral portion 20b of the electrode 20, like the slits 22A according to Modification 1.
  • One or more slits 22B are arranged along the radial direction of the peripheral portion 20b of the electrode 20 .
  • the radially outermost slit 22B of the peripheral portion 20b is positioned radially outside of the plurality of through holes 21 of the peripheral portion 20b.
  • a portion of the substrate 10 positioned within the slits 22B can be brought closer to the outer peripheral edge of the electrode 20. .
  • heat transfer from the outer peripheral edge of the electrode 20 is blocked by the part of the substrate 10 located within the slit 22B, so that the uniformity of the temperature of the shower plate 1 can be improved.
  • FIG. 7 is a plan cross-sectional view around the electrode 20 in the shower plate 1 according to Modification 3 of the first embodiment. 7 shows a cross-sectional plan view corresponding to the cross-sectional view taken along the line III-III shown in FIG.
  • one or more slits 22C according to Modification 3 may extend in the circumferential direction of the peripheral portion 20b of the electrode 20, like the slits 22A according to Modification 1.
  • One or more slits 22 ⁇ /b>C may be arranged along the radial direction of the peripheral portion 20 b of the electrode 20 .
  • the width of the slit 22C that is relatively close to the central portion 20a of the electrode 20 may be greater than the width of the slit 22C that is relatively distant from the central portion 20a.
  • the central portion 20a of the electrode 20 is a portion that is more likely to generate thermal stress than other portions when expansion and contraction due to thermal cycles are repeated.
  • FIG. 8 is a cross-sectional plan view of the periphery of the electrode 20 in the shower plate 1 according to Modification 4 of the first embodiment. 8 shows a cross-sectional plan view corresponding to the cross-sectional view taken along the line III--III shown in FIG.
  • one or more slits 22D according to Modification 4 may have a first slit 22-1 and a second slit 22-2.
  • the first slit 22-1 extends in the radial direction of the peripheral portion 20b of the electrode 20.
  • the second slit 22-2 extends in the circumferential direction of the peripheral portion 20b of the electrode 20 and may intersect the first slit 22-1.
  • the one or more slits 22D extend in the radial direction and the circumferential direction of the peripheral portion 20b, respectively, and have the first slits 22-1 and the second slits 22-2 that intersect with each other.
  • the thermal expansion of the electrode 20 along the circumferential direction is relaxed.
  • concentration of stress on the portion of the substrate 10 in contact with the outer periphery of the electrode 20 can be further reduced.
  • FIG. 9 is a cross-sectional plan view of the vicinity of the electrode 20 in the shower plate 1 according to Modification 5 of the first embodiment. 9 shows a cross-sectional plan view corresponding to the cross-sectional view taken along line III--III shown in FIG.
  • one or more slits 22E according to modification 5 may be divided into a plurality of individual slits aligned in the longitudinal direction. As a result, when expansion and contraction due to thermal cycles are repeated, the contact area between the inner wall surface of each individual slit and a portion of the substrate 10 located in each individual slit can be increased. stress can be efficiently distributed to a portion of the substrate 10 .
  • FIG. 10 is a plan cross-sectional view enlarging the periphery of the slit 22F in the shower plate 1 according to Modification 6 of the first embodiment.
  • the one or more slits 22F according to Modification 6 have recesses 22b recessed in the width direction of the one or more slits 22F on the inner wall surface.
  • one or more slits 22 ⁇ /b>F are positioned so as to partially overlap at least one (three in the example of FIG. 10 ) through-holes 21 in plan view.
  • the inner wall surface of the recess 22b is formed by the inner wall surface of at least one through-hole 21 partially overlapping with one or more slits 22F.
  • the inner wall surfaces of the slits 22F and the part of the substrate 10 located within the slits 22F are prevented from being repeatedly expanded and contracted due to thermal cycles. contact area can be increased. As a result, the stress from the electrode 20 can be efficiently distributed to a part of the substrate 10 when expansion and contraction due to thermal cycles are repeated.
  • FIG. 11 is a plan cross-sectional view enlarging the periphery of the slit 22G in the shower plate 1 according to Modification 7 of the first embodiment.
  • one or more slits 22G according to Modification 7 have recesses 22b on the inner wall surface, like one or more slits 22F according to Modification 6.
  • a boundary portion 22ba that intersects with the inner wall surface of one or more slits 22G of the recess 22b is rounded.
  • a boundary portion 22ba of the concave portion 22b is a portion that is more likely to generate thermal stress than other portions when expansion and contraction due to thermal cycles are repeated. Since the boundary portion 22ba of the concave portion 22b is rounded, even if the vicinity of the slit 22G of the electrode 20 thermally expands due to the thermal cycle, the substrate 10 positioned within the slit 22G from the expanded electrode 20 can be removed. can disperse the stress applied to a part of
  • a gap may be formed between the boundary portion 22ba of the concave portion 22b and a portion of the base 10 positioned within the one or more slits 22G. Since the boundary portion 22ba of the concave portion 22b is positioned with a gap between it and a part of the base 10, even if the vicinity of the slit 22G of the electrode 20 thermally expands due to, for example, a thermal cycle, the portion of the base 10 does not. portion is less susceptible to stress from the boundary portion 22ba. As a result, damage to the part of the substrate 10 located within the slit 22G can be suppressed.
  • a gap is formed between the boundary portion 22ba of the recess 22b and a part of the base 10 is shown as an example, but the recess 22b among the inner wall surfaces of the one or more slits 22G is A gap may be formed between the different parts and a part of the substrate 10 .
  • a gap should be formed between at least a portion of the inner wall surface of the one or more slits 22G and a portion of the substrate 10 positioned within the one or more slits 22G.
  • the vicinity of the slits 22G of the electrode 20 thermally expands due to thermal cycles, for example. Also, part of the base 10 is less susceptible to stress from the inner wall surface of the slit 22G. As a result, damage to the part of the substrate 10 located within the slit 22G can be suppressed.
  • FIG. 12 is a side sectional view schematically showing a shower plate 1A according to the second embodiment.
  • FIG. 13 is a cross-sectional plan view of the vicinity of the electrode 20 in the shower plate 1A according to the second embodiment. 13 shows a cross-sectional view taken along line XIII--XIII shown in FIG.
  • the shower plate 1A As shown in FIG. 12, the shower plate 1A according to the second embodiment has a base 10A, an electrode 20, a resistance heating element 30, and a shaft 40.
  • the substrate 10A has a plurality of gas holes 11A, flow paths 12, and inlets 13.
  • a plurality of gas holes 11A eject gas heated by a resistance heating element 30, which will be described later.
  • the flow path 12 supplies heated gas to the plurality of gas holes 11A.
  • the channel 12 may be provided with a plurality of struts 12a extending in the thickness direction of the base 10A so as to support the channel 12 .
  • the inlet 13 introduces heated gas into the flow path 12 .
  • the gas introduced into the flow path 12 from the inlet 13 is diffused in the flow path 12 while being heated by the resistance heating element 30, and then ejected to the outside from the plurality of gas holes 11A.
  • the introduction port 13 may be positioned so as to overlap the central portion 20a of the electrode 20 in plan view, as shown in FIG. In FIG. 13, the position of the introduction port 13 is indicated by a chain double-dashed line.
  • the gas introduced from the inlet 13 into the channel 12 can collide with the central portion 20 a of the electrode 20 .
  • the heat of the gas colliding with the central portion 20a is easily transferred to the peripheral portion 20b surrounding the central portion 20a. Thereby, the temperature uniformity of the electrode 20 is maintained. Therefore, according to the shower plate 1A according to the second embodiment, the heated gas can be ejected while the temperature uniformity of the electrode 20 is maintained.
  • the electrode 20 may be formed as one body without being divided in regions other than the through holes 21 and the slits 22 . Such a form may be described as solid.
  • Electrode 20 and resistance heating element 30 are located inside substrate 10A. Specifically, the electrode 20 is located downstream of the flow path 12 of the substrate 10A in the gas flow direction, and the resistance heating element 30 is located upstream of the flow path 12 of the substrate 10A in the gas flow direction. To position.
  • the resistance heating element 30 is not limited to the position shown in FIG. 12, and may be positioned downstream of the flow path 12 of the substrate 10A in the gas flow direction.
  • the configuration of the electrode 20 is the same as the electrode 20 in the first embodiment.
  • the resistance heating element 30 is stretched around in a predetermined pattern such as a spiral shape or a meandering shape so that the outer shape in plan view is circular.
  • the resistance heating element 30 generates heat by Joule heat generated by power supplied from a power supply unit (not shown). Thereby, the resistance heating element 30 can heat the gas ejected from the plurality of gas holes 11A.
  • the shaft 40 may have a cylindrical shape with both ends open.
  • the shaft 40 may be connected to the inlet 13 of the base 10A.
  • the shaft 40 is connected to the inlet 13 by being joined (adhered) to the surface of the base 10A with an adhesive.
  • the shaft 40 may be bonded to the surface of the base 10A by solid phase bonding.
  • the shaft 40 supplies gas supplied from a gas supply source (not shown) to the inlet 13 .
  • the shape of the shaft 40 is arbitrary. As one aspect, the shape of the shaft 40 is cylindrical. As another aspect, the shape of the shaft 40 may be, for example, a square tube shape.
  • the material of shaft 40 is arbitrary.
  • the material of the shaft 40 is insulating ceramics.
  • the material of shaft 40 may be, for example, a conductive material (metal).
  • the ceramics constituting the shaft 40 is, for example, a sintered body whose main component is aluminum nitride (AlN), aluminum oxide ( Al2O3 , alumina), silicon carbide (SiC), silicon nitride ( Si3N4 ), or the like. is.
  • the slits 22, 22A to 22G may be bottomed slits that do not penetrate the electrode 20 in the thickness direction. Even in this case, part of the substrate 10 is positioned in the slits 22, 22A-22G.
  • a base is formed by laminating a plurality of ceramic green sheets.
  • a ceramic green sheet forming the substrate and a metal sheet forming the electrode are prepared.
  • the plurality of ceramic green sheets are pre-formed with a plurality of first holes having a relatively small diameter, and the metal sheets are provided with relatively
  • a plurality of second holes having a large diameter are formed in advance.
  • the metal sheet is pre-formed with one or more slits.
  • the prepared sheets are stacked so that each first hole corresponds to each second hole.
  • the electrodes may be formed by printing using a metal paste instead of laminating the metal sheets.
  • the laminate of ceramic green sheets and metal sheets is degreased and fired.
  • the firing temperature is, for example, 1700° C. or higher and 1850° C. or lower. This results in a shower plate according to the present disclosure.
  • the laminate may warp due to the difference in coefficient of thermal expansion between the ceramic green sheet and the metal sheet.
  • one or more slits are formed in advance in the metal sheets of the laminate, deformation of the metal sheets is suppressed. As a result, it is possible to reduce warpage in the laminated body after firing.
  • the shower plate (eg, shower plate 1, 1A) according to the embodiment includes a substrate (eg, substrate 10, 10A) and an electrode (eg, electrode 20).
  • the substrate is made of ceramics and has a plurality of gas holes (for example, gas holes 11 and 11A) for ejecting heated gas.
  • the electrode is a solid electrode positioned inside the substrate, and has a plurality of through holes (for example, through holes 21) corresponding to the positions of the plurality of gas holes.
  • the electrodes have one or more slits (eg, slits 22, 22A-22G) in which portions of the substrate are located.
  • the electrode according to the embodiment has a central portion (for example, central portion 20a) that does not have a plurality of through holes, and an annular peripheral portion (for example, peripheral portion 20b) that surrounds the central portion and has a plurality of through holes. and may have One or more slits may be located on the periphery.
  • a central portion for example, central portion 20a
  • an annular peripheral portion for example, peripheral portion 20b
  • One or more slits may be located on the periphery.
  • one or more slits according to the embodiment may extend in the radial direction of the peripheral portion. Also, the one or more slits may extend in the circumferential direction of the periphery.
  • the shower plate of the embodiment it is possible to further reduce the concentration of stress on the portion of the substrate that is in contact with the outer periphery of the electrode.
  • one or more slits according to the embodiment may be arranged along the radial direction of the peripheral portion. Further, among the one or more slits, the slit positioned radially outermost in the peripheral portion may be positioned radially outside the peripheral portion relative to the plurality of through-holes. Thereby, according to the shower plate according to the embodiment, it is possible to improve heat uniformity.
  • one or more slits according to the embodiment may be arranged along the radial direction of the peripheral portion.
  • the width of the slit relatively close to the central portion may be greater than the width of the slit relatively distant from the central portion.
  • the one or more slits according to the embodiment include a first slit (for example, a first slit 22-1) extending in the radial direction of the peripheral portion and a second slit extending in the circumferential direction of the peripheral portion and intersecting the first slit. slit (eg, second slit 22-2).
  • a first slit for example, a first slit 22-1
  • a second slit extending in the circumferential direction of the peripheral portion and intersecting the first slit.
  • slit eg, second slit 22-2
  • each of the one or more slits according to the embodiment may be greater than the diameter of each of the plurality of through holes.
  • the ends of one or more slits according to the embodiment may be rounded.
  • the shower plate of the embodiment even if the vicinity of the slit of the electrode thermally expands due to the thermal cycle, the stress applied from the expanded electrode to a portion of the substrate positioned within the slit is dispersed. can be made
  • one or more slits according to the embodiment may have recesses (for example, recesses 22b) recessed in the width direction of the one or more slits on the inner wall surface.
  • one or more slits according to the embodiment may be positioned so as to partially overlap at least one through-hole in a plan view.
  • the inner wall surface of the recess may be formed by the inner wall surface of at least one through hole partially overlapping with one or more slits.
  • a boundary portion (for example, boundary portion 22ba) that intersects the inner wall surface of one or more slits of the recess according to the embodiment may be rounded.
  • a gap may be formed between the boundary portion of the concave portion according to the embodiment and a portion of the base positioned within the one or more slits.
  • a gap may be formed between at least a portion of the inner wall surface of the one or more slits according to the embodiment and a portion of the substrate positioned within the one or more slits.
  • the substrate according to the embodiment includes a channel (eg, channel 12) for supplying gas to a plurality of gas holes (eg, gas hole 11A), and an inlet (for example, it may have an inlet 13).
  • the introduction port may be positioned so as to overlap with the central portion in plan view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

シャワープレートは、基体と、電極とを備える。基体は、セラミックスからなり、加熱されたガスを噴出する複数のガス孔を有する。電極は、基体の内部に位置し、複数のガス孔の位置にそれぞれ対応して複数の貫通孔を有する。電極は、基体の一部が位置する一以上のスリットを有する。

Description

シャワープレート
 開示の実施形態は、シャワープレートに関する。
 従来、例えば半導体の製造工程において半導体ウエハ等の基板に対して加熱されたガスを噴出するシャワープレートが知られている。シャワープレートは、ガスのプラズマを発生させるためのRF(高周波)電力を印可可能なRF電極としての機能も兼ね備える。かかるシャワープレートとして、例えば、セラミックスからなり、加熱されたガスを噴出する複数のガス孔が形成された基体と、基体に埋設される電極とを有するシャワープレートが知られている(特許文献1参照)。
特許第3904886号公報
 実施形態の一態様によるシャワープレートは、基体と、電極とを備える。基体は、セラミックスからなり、加熱されたガスを噴出する複数のガス孔を有する。電極は、基体の内部に位置し、複数のガス孔の位置にそれぞれ対応して複数の貫通孔を有する。電極は、基体の一部が位置する一以上のスリットを有する。
図1は、第1実施形態に係るシャワープレートの概略を示す平面図である。 図2は、図1に示すII-II線の矢視断面図である。 図3は、第1実施形態に係るシャワープレートにおける電極周辺の平面断面図である。 図4は、図3に示すE部の模式的な拡大図である。 図5は、第1実施形態の変形例1に係るシャワープレートにおける電極周辺の平面断面図である。 図6は、第1実施形態の変形例2に係るシャワープレートにおける電極周辺の平面断面図である。 図7は、第1実施形態の変形例3に係るシャワープレートにおける電極周辺の平面断面図である。 図8は、第1実施形態の変形例4に係るシャワープレートにおける電極周辺の平面断面図である。 図9は、第1実施形態の変形例5に係るシャワープレートにおける電極周辺の平面断面図である。 図10は、第1実施形態の変形例6に係るシャワープレートにおけるスリット周辺を拡大した平面断面図である。 図11は、第1実施形態の変形例7に係るシャワープレートにおけるスリット周辺を拡大した平面断面図である。 図12は、第2実施形態に係るシャワープレートの概略を示す側断面図である。 図13は、第2実施形態に係るシャワープレートにおける電極周辺の平面断面図である。
 以下、添付図面を参照して、本願の開示するシャワープレートの実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
[第1実施形態]
 図1は、第1実施形態に係るシャワープレート1の概略を示す平面図である。図2は、図1に示すII-II線の矢視断面図である。
 図1に示すシャワープレート1は、例えば半導体の製造工程において半導体ウエハ等の基板に対して加熱されたガスを噴出する。シャワープレート1は、例えば、基板に対してプラズマ処理等を行う基板処理装置に搭載される。
 図1に示すように、シャワープレート1は、基体10と、電極20とを有する。
 基体10は、平面視で円形の上面および下面を含む円板形状を有する。
 基体10は、例えばセラミックスからなり、絶縁性を有する。基体10を構成するセラミックスは、たとえば、窒化アルミニウム(AlN)、酸化アルミニウム(Al、アルミナ)、炭化珪素(SiC)、窒化珪素(Si)等を主成分とする焼結体である。なお、主成分は、たとえば、その材料の50質量%以上または80質量%以上を占める材料である。基体10の主成分が窒化アルミニウムである場合、基体10は、イットリウム(Y)の化合物を含んでいてもよい。Y化合物としては、たとえば、YAG(YAl12)およびYを挙げることができる。
 基体10は、厚み方向に基体10を貫通し、加熱されたガスを噴出する複数のガス孔11を有する。複数のガス孔11から噴出されるガスは、例えば、基体10の内部に位置する抵抗発熱体(不図示)によって加熱される。
 なお、基体10の形状は任意である。たとえば、第1実施形態において、基体10の形状は、平面視円形状であるが、これに限らず、平面視において楕円形状、矩形状、台形状などであってもよい。
 電極20は、図2に示すように、基体10の内部に位置する。電極20は、中実の構造体であってもよい。電極20は、例えば平面視で、基体10よりも径が小さい円板形状を有する。電極20は、例えば、Ni、W、MoおよびPt等の金属、または、上記金属の少なくとも1つを含む合金からなる。
 電極20は、基体10の複数のガス孔11の位置にそれぞれ対応して複数の貫通孔21を有する。複数の貫通孔21の各々は、複数のガス孔11の各々よりも径が大きい。
 また、電極20は、図1に示すように、基体10の一部が位置する一以上のスリット22を有する。図1においては、電極20が4つのスリット22を有する場合の例を示しているが、スリット22の数は、4つに限定されない。スリット22の数は、一つであってもよく、5つ以上であってもよい。
 電極20は、例えばガスのプラズマを発生させるためのRF(高周波)電力を印可可能なRF電極であってもよい。シャワープレート1を搭載する基板処理装置は、基体10の複数のガス孔11からチャンバ内へ加熱されたガスが噴出された状態で、電極20にRF電力を印可することにより、チャンバ内においてガスのプラズマを発生させることができる。
 ところで、シャワープレート1では、基体10と電極20の熱膨張率に差が存在する。このため、例えばプラズマを発生させるための熱サイクルに伴う膨張および収縮が繰り返される際に、基体10の電極20の外周縁と接する部分に応力が集中し、基体10にクラックが発生する可能性がある。
 これに対し、第1実施形態に係るシャワープレート1は、電極20に一以上のスリット22を有する。スリット22には、基体10の一部が位置する。熱サイクルに伴う膨張および収縮が繰り返される際に、スリット22内に位置する基体10の一部がスリット22の内壁面に接する。このため、熱サイクルに伴う膨張および収縮が繰り返される際に、スリット22内の基体10の一部に電極20からの応力が分散され、基体10の電極20の外周縁と接する部分における応力の集中が低減される。これにより、第1実施形態に係るシャワープレート1によれば、基体10におけるクラックの発生を抑制することができ、結果として、熱サイクルに対する信頼性を向上させることができる。
 ここで、図3および図4を参照して、スリット22の構成についてさらに詳細に説明する。図3は、第1実施形態に係るシャワープレート1における電極20周辺の平面断面図である。なお、図3には、図2に示すIII-III線の矢視断面図が示されている。上述の通り、電極20は、基体10の一部が位置する一以上のスリット22を有する。
 電極20は、複数の貫通孔21を有さない中央部20aと、中央部20aを囲み、複数の貫通孔21を有する環状の周辺部20bとを有していてもよい。一以上のスリット22は、電極20の周辺部20bに位置していてもよい。言い換えると、電極20の中央部20aは、複数の貫通孔21および一以上のスリット22を有さなくてもよい。電極20の中央部20aではなく周辺部20bにスリット22を設けることにより、中央部20aの強度を保つことができることから、基体10を介して電極20に外力が付加される場合であっても、電極20の破損を抑制することができる。また、周辺部20bにスリット22を設けることにより、例えば、電極20にRF電力が印可される場合に、中央部20aと周辺部20bとの間の電流の流れがスリット22によって妨げられる事態を抑制することができる。
 一以上のスリット22は、電極20の周辺部20bの径方向に延びていてもよい。具体的には、一以上のスリット22は、周辺部20bの径方向に沿って電極20の外周縁から中央部20aに近接する位置まで延びていてもよい。一以上のスリット22が周辺部20bの径方向に延びることにより、周辺部20bの周方向に沿った電極20の熱膨張が緩和されることから、基体10の電極20の外周縁と接する部分に対する応力の集中をより低減することができる。
 一以上のスリット22の各々の長さは、複数の貫通孔21の各々の径よりも大きくてもよい。これにより、熱サイクルに伴う膨張および収縮が繰り返される際に、スリット22の内壁面とスリット22内に位置する基体10の一部とが接触する面積を増大させることができることから、電極20からの応力を基体10の一部に効率よく分散させることができる。
 図4は、図3に示すE部の模式的な拡大図である。図4に示すように、一以上のスリット22の端部22aは、丸みを帯びていてもよい。一以上のスリット22の端部22aが丸みを帯びていることにより、熱サイクルに伴って電極20のスリット22近傍が熱膨張した場合であっても、膨張した電極20からスリット22内に位置する基体10の一部に加わる応力を分散させることができる。
 なお、第1実施形態に係るスリット22の構成は、図3および図4の例に限られない。図5は、第1実施形態の変形例1に係るシャワープレート1における電極20周辺の平面断面図である。なお、図5には、図2に示すIII-III線の矢視断面図に相当する平面断面図が示されている。
 図5に示すように、変形例1に係る一以上のスリット22Aは、電極20の周辺部20bの周方向に延びていてもよい。具体的には、一以上のスリット22Aは、周辺部20bの周方向に沿って所定の長さの円弧状に延びていてもよい。一以上のスリット22Aが周辺部20bの周方向に延びることにより、周辺部20bの径方向に沿った電極20の熱膨張が緩和されることから、基体10の電極20の外周縁と接する部分に対する応力の集中をより低減することができる。
 なお、ここで、「周辺部20bの周方向」とは、周辺部20bの径方向と直交する方向を指す。したがって、一以上のスリット22Aは、必ずしも周辺部20bの周方向に沿って円弧状に延びることを要しない。例えば、一以上のスリット22Aは、周辺部20bの周方向(つまり、周辺部20bの径方向と直交する方向)に沿って直線状に延びてもよい。
 図6は、第1実施形態の変形例2に係るシャワープレート1における電極20周辺の平面断面図である。なお、図6には、図2に示すIII-III線の矢視断面図に相当する平面断面図が示されている。
 図6に示すように、変形例2に係る一以上のスリット22Bは、変形例1に係るスリット22Aと同様に、電極20の周辺部20bの周方向に延びている。一以上のスリット22Bは、電極20の周辺部20bの径方向に沿って並べられている。一以上のスリット22Bのうち、周辺部20bの径方向の最も外側に位置するスリット22Bは、複数の貫通孔21よりも周辺部20bの径方向の外側に位置している。
 このように、複数の貫通孔21よりも周辺部20bの径方向の外側にスリット22Bを位置させることにより、スリット22B内に位置する基体10の一部を電極20の外周縁に近づけることができる。これにより、電極20の外周縁からの熱引きがスリット22B内に位置する基体10の一部によって遮断されることから、シャワープレート1の均熱性を向上させることができる。
 図7は、第1実施形態の変形例3に係るシャワープレート1における電極20周辺の平面断面図である。なお、図7には、図2に示すIII-III線の矢視断面図に相当する平面断面図が示されている。
 図7に示すように、変形例3に係る一以上のスリット22Cは、変形例1に係るスリット22Aと同様に、電極20の周辺部20bの周方向に延びていてもよい。一以上のスリット22Cは、電極20の周辺部20bの径方向に沿って並べられていてもよい。一以上のスリット22Cのうち、相対的に電極20の中央部20aに近いスリット22Cの幅は、相対的に中央部20aから遠いスリット22Cの幅よりも大きくてもよい。電極20の中央部20aは、熱サイクルに伴う膨張および収縮が繰り返される際に、他の部位よりも熱応力を発生させやすい部位である。かかる中央部20aに近いスリット22Cの幅を大きくすると、中央部20aに近いスリット22C内に位置する基体10の一部の強度を増大させることができることから、熱応力に対する耐久性を向上させることができる。
 図8は、第1実施形態の変形例4に係るシャワープレート1における電極20周辺の平面断面図である。なお、図8には、図2に示すIII-III線の矢視断面図に相当する平面断面図が示されている。
 図8に示すように、変形例4に係る一以上のスリット22Dは、第1スリット22-1と、第2スリット22-2とを有していてもよい。第1スリット22-1は、電極20の周辺部20bの径方向に延びている。第2スリット22-2は、電極20の周辺部20bの周方向に延びており、第1スリット22-1と交差していてもよい。
 このように、一以上のスリット22Dが周辺部20bの径方向及び周方向にそれぞれ延び且つ互いに交差する第1スリット22-1および第2スリット22-2を有することにより、周辺部20bの径方向及び周方向に沿った電極20の熱膨張が緩和される。これにより、基体10の電極20の外周縁と接する部分に対する応力の集中をより低減することができる。
 図9は、第1実施形態の変形例5に係るシャワープレート1における電極20周辺の平面断面図である。なお、図9には、図2に示すIII-III線の矢視断面図に相当する平面断面図が示されている。
 図9に示すように、変形例5に係る一以上のスリット22Eは、長手方向に並ぶ複数の個別スリットに分断されていてもよい。これにより、熱サイクルに伴う膨張および収縮が繰り返される際に、各個別スリットの内壁面と各個別スリット内に位置する基体10の一部とが接触する面積を増大させることができ、電極20からの応力を基体10の一部に効率よく分散させることができる。
 図10は、第1実施形態の変形例6に係るシャワープレート1におけるスリット22F周辺を拡大した平面断面図である。
 図10に示すように、変形例6に係る一以上のスリット22Fは、内壁面に一以上のスリット22Fの幅方向に凹む凹部22bを有する。具体的には、一以上のスリット22Fは、少なくとも一つ(図10の例では、3つ)の貫通孔21の一部と平面視で重なるように位置している。そして、凹部22bの内壁面は、一以上のスリット22Fと一部が重なる少なくとも一つの貫通孔21の内壁面によって形成されている。
 このように、一以上のスリット22Fの内壁面に凹部22bを設けることにより、熱サイクルに伴う膨張および収縮が繰り返される際に、スリット22Fの内壁面とスリット22F内に位置する基体10の一部とが接触する面積を増大させることができる。これにより、熱サイクルに伴う膨張および収縮が繰り返される際に、電極20からの応力を基体10の一部に効率よく分散させることができる。
 図11は、第1実施形態の変形例7に係るシャワープレート1におけるスリット22G周辺を拡大した平面断面図である。
 図11に示すように、変形例7に係る一以上のスリット22Gは、変形例6に係る一以上のスリット22Fと同様に、内壁面に凹部22bを有する。凹部22bの一以上のスリット22Gの内壁面と交差する境界部分22baは、丸みを帯びている。凹部22bの境界部分22baは、熱サイクルに伴う膨張および収縮が繰り返される際に、他の部位よりも熱応力を発生させやすい部位である。かかる凹部22bの境界部分22baが丸みを帯びていることにより、熱サイクルに伴って電極20のスリット22G近傍が熱膨張した場合であっても、膨張した電極20からスリット22G内に位置する基体10の一部に加わる応力を分散させることができる。
 また、凹部22bの境界部分22baと、一以上のスリット22G内に位置する基体10の一部との間には、隙間が形成されてもよい。凹部22bの境界部分22baが基体10の一部と間に隙間を隔てて位置することにより、例えば熱サイクルに伴って電極20のスリット22G近傍が熱膨張した場合であっても、基体10の一部は境界部分22baからの応力を受けにくい。これにより、スリット22G内に位置する基体10の一部における損傷を抑制することができる。
 また、ここでは、凹部22bの境界部分22baと、基体10の一部との間に隙間が形成される場合を例に示しているが、一以上のスリット22Gの内壁面のうち凹部22bとは異なる部位と基体10の一部との間に隙間が形成されてもよい。要するに、一以上のスリット22Gの内壁面の少なくとも一部と、一以上のスリット22G内に位置する基体10の一部との間に隙間が形成されればよい。一以上のスリット22Gの内壁面の少なくとも一部が基体10の一部と間に隙間を隔てて位置することにより、例えば熱サイクルに伴って電極20のスリット22G近傍が熱膨張した場合であっても、基体10の一部はスリット22Gの内壁面からの応力を受けにくい。これにより、スリット22G内に位置する基体10の一部における損傷を抑制することができる。
[第2実施形態]
 図12は、第2実施形態に係るシャワープレート1Aの概略を示す側断面図である。図13は、第2実施形態に係るシャワープレート1Aにおける電極20周辺の平面断面図である。なお、図13には、図12に示すXIII-XIII線の矢視断面図が示されている。
 図12に示すように、第2実施形態に係るシャワープレート1Aは、基体10Aと、電極20と、抵抗発熱体30と、シャフト40とを有する。
 基体10Aは、複数のガス孔11Aと、流路12と、導入口13とを有する。
 複数のガス孔11Aは、後述する抵抗発熱体30によって加熱されたガスを噴出する。
 流路12は、複数のガス孔11Aに加熱されたガスを供給する。流路12には、流路12を支持するように基体10Aの厚み方向に延びる複数の支柱12aが設けられてもよい。複数の支柱12aで流路12を適切に支持することにより、例えば基体10Aが厚み方向に外力を受けた場合であっても、基体10Aの変形による不具合を低減することができる。
 導入口13は、流路12に加熱されたガスを導入する。導入口13から流路12に導入されるガスは、抵抗発熱体30によって加熱されながら流路12において拡散され、その後、複数のガス孔11Aから外部へ噴出される。
 導入口13は、図13に示すように、電極20の中央部20aと平面視で重なるように位置していてもよい。図13においては、導入口13の位置が二点鎖線によって示されている。導入口13が電極20の中央部20aと平面視で重なるように位置することにより、導入口13から流路12に導入されるガスを電極20の中央部20aに衝突させることができる。中央部20aに衝突するガスの熱は、中央部20aを囲む周辺部20bに伝わりやすい。これにより、電極20の均熱性が保たれる。したがって、第2実施形態に係るシャワープレート1Aによれば、電極20の均熱性を保ちつつ、加熱されたガスを噴出することができる。電極20は、貫通孔21およびスリット22以外の領域において、分断されておらず、一体物となっていてもよい。このような形態を中実と表現してもよい。
 図12の説明に戻る。電極20および抵抗発熱体30は、基体10Aの内部に位置する。具体的には、電極20は、基体10Aの流路12よりもガスの流れ方向の下流側に位置し、抵抗発熱体30は、基体10Aの流路12よりもガスの流れ方向の上流側に位置する。抵抗発熱体30は、図12に示す位置に限らず、基体10Aの流路12よりもガスの流れ方向の下流側に位置してもよい。電極20の構成は、第1実施形態における電極20と同様である。
 抵抗発熱体30は、例えば渦巻き状やミアンダ状などの所定のパターンを描きながら平面視での外形が円形状となるように張り巡らされている。
 抵抗発熱体30は、電力供給部(不図示)から供給される電力によって生じるジュール熱により発熱する。これにより、抵抗発熱体30は、複数のガス孔11Aから噴出されるガスを加熱することができる。
 シャフト40は、両端が開放された筒形状を有していてもよい。シャフト40は、基体10Aの導入口13に接続されていてもよい。1つの態様として、シャフト40は、接着材によって基体10Aの表面に接合(接着)されることによって、導入口13に接続される。その他の態様として、シャフト40は、固相接合によって基体10Aの表面に接合されてもよい。シャフト40は、ガス供給源(不図示)から供給されるガスを導入口13に供給する。
 シャフト40の形状は任意である。1つの態様として、シャフト40の形状は、円筒形状を呈している。その他の態様として、シャフト40の形状は、たとえば、角筒などの形状を呈していてもよい。
 シャフト40の材料は、任意である。1つの態様として、シャフト40の材料は絶縁性のセラミックスである。その他の態様として、シャフト40の材料は、たとえば、導電性の材料(金属)であってもよい。シャフト40を構成するセラミックスは、たとえば、窒化アルミニウム(AlN)、酸化アルミニウム(Al、アルミナ)、炭化珪素(SiC)、窒化珪素(Si)等を主成分とする焼結体である。
[その他]
 上述した各実施形態において、スリット22、22A~22Gは、電極20を厚み方向に貫通しない、有底状のスリットであってもよい。この場合であっても、スリット22、22A~22Gには、基体10の一部が位置する。電極20に有底状のスリットであるスリット22、22A~22Gを設けることにより、電極20の強度を保ちつつ基体10におけるクラックの発生を抑制することができる。
[シャワープレートの製造方法]
 次に、本開示によるシャワープレートの製造方法について説明する。ここでは、一例として、第1実施形態に係るシャワープレート1の製造方法について説明する。
 まず、複数のセラミックグリーンシートを積層することによって基体が成形される。具体的には、基体を構成するセラミックグリーンシートと、電極を構成する金属シートとを用意する。ここで、複数のガス孔および複数の貫通孔を形成するために、複数のセラミックグリーンシートには、相対的に径が小さい複数の第1孔があらかじめ形成され、金属シートには、相対的に径が大きい複数の第2孔があらかじめ形成される。また、金属シートには、一以上のスリットがあらかじめ形成される。そして、用意したシートを各第1孔と各第2孔とが対応するように積層する。なお、金属シートの積層に代えて、金属ペーストを用いた印刷によって電極を形成してもよい。
 つづいて、セラミックグリーンシートおよび金属シートの積層体を脱脂および焼成する。焼成温度は、例えば1700℃以上1850℃以下の温度である。これにより、本開示によるシャワープレートが得られる。なお、積層体を焼成する間、セラミックグリーンシートおよび金属シートの熱膨張率の差に起因して積層体に反りが発生する可能性がある。ここで、積層体の金属シートに一以上のスリットがあらかじめ形成されていることにより、金属シートの変形が抑制される。結果として、焼成後の積層体における反りを低減することができる。
[効果]
 以上のように、実施形態に係るシャワープレート(例えば、シャワープレート1、1A)は、基体(例えば、基体10、10A)と、電極(例えば、電極20)とを備える。基体は、セラミックスからなり、加熱されたガスを噴出する複数のガス孔(例えば、ガス孔11、11A)を有する。電極は、基体の内部に位置する中実の電極であって、複数のガス孔の位置にそれぞれ対応して複数の貫通孔(例えば、貫通孔21)を有する。電極は、基体の一部が位置する一以上のスリット(例えば、スリット22、22A~22G)を有する。これにより、実施形態に係るシャワープレートによれば、熱サイクルに対する信頼性を向上させることができる。
 また、実施形態に係る電極は、複数の貫通孔を有さない中央部(例えば、中央部20a)と、中央部を囲み、複数の貫通孔を有する環状の周辺部(例えば、周辺部20b)とを有してもよい。一以上のスリットは、周辺部に位置してもよい。これにより、実施形態に係るシャワープレートによれば、基体を介して電極に外力が付加される場合であっても、電極の破損を抑制することができる。
 また、実施形態に係る一以上のスリットは、周辺部の径方向に延びてもよい。また、一以上のスリットは、周辺部の周方向に延びてもよい。これにより、実施形態に係るシャワープレートによれば、基体の電極の外周縁と接する部分に対する応力の集中をより低減することができる。
 また、実施形態に係る一以上のスリットは、周辺部の径方向に沿って並べられてもよい。また、一以上のスリットのうち、周辺部の径方向の最も外側に位置するスリットは、複数の貫通孔よりも周辺部の径方向の外側に位置してもよい。これにより、実施形態に係るシャワープレートによれば、均熱性を向上させることができる。
 また、実施形態に係る一以上のスリットは、周辺部の径方向に沿って並べられてもよい。一以上のスリットのうち、相対的に中央部に近いスリットの幅は、相対的に中央部から遠いスリットの幅よりも大きくてもよい。これにより、実施形態に係るシャワープレートによれば、熱応力に対する耐久性を向上させることができる。
 また、実施形態に係る一以上のスリットは、周辺部の径方向に延びる第1スリット(例えば、第1スリット22-1)と、周辺部の周方向に延び、第1スリットと交差する第2スリット(例えば、第2スリット22-2)とを含んでもよい。これにより、実施形態に係るシャワープレートによれば、基体の電極の外周縁と接する部分に対する応力の集中をより低減することができる。
 また、実施形態に係る一以上のスリットの各々の長さは、複数の貫通孔の各々の径よりも大きくてもよい。これにより、実施形態に係るシャワープレートによれば、電極からの応力を基体の一部に効率よく分散させることができる。
 また、実施形態に係る一以上のスリットの端部(例えば、端部22a)は、丸みを帯びていてもよい。これにより、実施形態に係るシャワープレートによれば、熱サイクルに伴って電極のスリット近傍が熱膨張した場合であっても、膨張した電極からスリット内に位置する基体の一部に加わる応力を分散させることができる。
 また、実施形態に係る一以上のスリットは、内壁面に一以上のスリットの幅方向に凹む凹部(例えば、凹部22b)を有してもよい。これにより、実施形態に係るシャワープレートによれば、熱サイクルに伴う膨張および収縮が繰り返される際に、電極からの応力を基体の一部に効率よく分散させることができる。
 また、実施形態に係る一以上のスリットは、少なくとも一つの貫通孔の一部と平面視で重なるように位置してもよい。凹部の内壁面は、一以上のスリットと一部が重なる少なくとも一つの貫通孔の内壁面によって形成されてもよい。これにより、実施形態に係るシャワープレートによれば、熱サイクルに伴う膨張および収縮が繰り返される際に、電極からの応力を基体の一部に効率よく分散させることができる。
 また、実施形態に係る凹部の一以上のスリットの内壁面と交差する境界部分(例えば、境界部分22ba)は、丸みを帯びてもよい。これにより、実施形態に係るシャワープレートによれば、熱サイクルに伴って電極のスリット近傍が熱膨張した場合であっても、膨張した電極からスリット内に位置する基体の一部に加わる応力を分散させることができる。
 また、実施形態に係る凹部の境界部分と、一以上のスリット内に位置する基体の一部との間に隙間が形成されてもよい。これにより、実施形態に係るシャワープレートによれば、スリット内に位置する基体の一部における損傷を抑制することができる。
 また、実施形態に係る一以上のスリットの内壁面の少なくとも一部と、一以上のスリット内に位置する基体の一部との間に隙間が形成されてもよい。これにより、実施形態に係るシャワープレートによれば、スリット内に位置する基体の一部における損傷を抑制することができる。
 また、実施形態に係る基体は、複数のガス孔(例えば、ガス孔11A)にガスを供給するための流路(例えば、流路12)と、流路にガスを導入するための導入口(例えば、導入口13)とを有してもよい。導入口は、中央部と平面視で重なるように位置してもよい。これにより、実施形態に係るシャワープレートによれば、電極の均熱性を保ちつつ、加熱されたガスを噴出することができる。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1、1A シャワープレート
10、10A 基体
11、11A ガス孔
12 流路
13 導入口
20 電極
20a 中央部
20b 周辺部
21 貫通孔
22、22A~22G スリット
22-1 第1スリット
22-2 第2スリット
22a 端部
22b 凹部
22ba 境界部分

Claims (15)

  1.  セラミックスからなり、加熱されたガスを噴出する複数のガス孔を有する基体と、
     前記基体の内部に位置し、前記複数のガス孔の位置にそれぞれ対応して複数の貫通孔を有する電極と
     を備え、
     前記電極は、前記基体の一部が位置する一以上のスリットを有する、シャワープレート。
  2.  前記電極は、
     前記複数の貫通孔を有さない中央部と、
     前記中央部を囲み、前記複数の貫通孔を有する環状の周辺部と
     を有し、
     前記一以上のスリットは、前記周辺部に位置する、請求項1に記載のシャワープレート。
  3.  前記一以上のスリットは、前記周辺部の径方向に延びる、請求項2に記載のシャワープレート。
  4.  前記一以上のスリットは、前記周辺部の周方向に延びる、請求項2に記載のシャワープレート。
  5.  前記一以上のスリットは、前記周辺部の径方向に沿って並べられ、
     前記一以上のスリットのうち、前記周辺部の径方向の最も外側に位置する前記スリットは、前記複数の貫通孔よりも前記周辺部の径方向の外側に位置している、請求項4に記載のシャワープレート。
  6.  前記一以上のスリットは、前記周辺部の径方向に沿って並べられ、
     前記一以上のスリットのうち、相対的に前記中央部に近い前記スリットの幅は、相対的に前記中央部から遠い前記スリットの幅よりも大きい、請求項4に記載のシャワープレート。
  7.  前記一以上のスリットは、
     前記周辺部の径方向に延びる第1スリットと、
     前記周辺部の周方向に延び、前記第1スリットと交差する第2スリットと
     を含む、請求項2に記載のシャワープレート。
  8.  前記一以上のスリットの各々の長さは、前記複数の貫通孔の各々の径よりも大きい、請求項1に記載のシャワープレート。
  9.  前記一以上のスリットの端部は、丸みを帯びている、請求項1に記載のシャワープレート。
  10.  前記一以上のスリットは、内壁面に前記一以上のスリットの幅方向に凹む凹部を有する、請求項1に記載のシャワープレート。
  11.  前記一以上のスリットは、少なくとも一つの前記貫通孔の一部と平面視で重なるように位置し、
     前記凹部の内壁面は、前記一以上のスリットと一部が重なる少なくとも一つの前記貫通孔の内壁面によって形成される、請求項10に記載のシャワープレート。
  12.  前記凹部の前記一以上のスリットの内壁面と交差する境界部分は、丸みを帯びている、請求項10または11に記載のシャワープレート。
  13.  前記凹部の前記境界部分と、前記一以上のスリット内に位置する前記基体の一部との間に隙間が形成される、請求項12に記載のシャワープレート。
  14.  前記一以上のスリットの内壁面の少なくとも一部と、前記一以上のスリット内に位置する前記基体の一部との間に隙間が形成される、請求項1に記載のシャワープレート。
  15.  前記基体は、
     前記複数のガス孔に前記ガスを供給するための流路と、
     前記流路に前記ガスを導入するための導入口と
     を有し、
     前記導入口は、前記中央部と平面視で重なるように位置する、請求項2に記載のシャワープレート。
PCT/JP2022/017238 2021-04-07 2022-04-07 シャワープレート WO2022215722A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023513042A JPWO2022215722A1 (ja) 2021-04-07 2022-04-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021065359 2021-04-07
JP2021-065359 2021-04-07

Publications (1)

Publication Number Publication Date
WO2022215722A1 true WO2022215722A1 (ja) 2022-10-13

Family

ID=83546132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017238 WO2022215722A1 (ja) 2021-04-07 2022-04-07 シャワープレート

Country Status (2)

Country Link
JP (1) JPWO2022215722A1 (ja)
WO (1) WO2022215722A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321399A (ja) * 1995-05-25 1996-12-03 Tadahiro Omi プラズマ処理装置
WO2018190218A1 (ja) * 2017-04-14 2018-10-18 住友電気工業株式会社 シャワーヘッド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321399A (ja) * 1995-05-25 1996-12-03 Tadahiro Omi プラズマ処理装置
WO2018190218A1 (ja) * 2017-04-14 2018-10-18 住友電気工業株式会社 シャワーヘッド

Also Published As

Publication number Publication date
JPWO2022215722A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
JP4929150B2 (ja) 静電チャック及び基板温調固定装置
JP5423632B2 (ja) 静電チャック装置
KR100859061B1 (ko) 정전 척
KR101905158B1 (ko) 국부적으로 가열되는 다-구역 기판 지지부
JPWO2019188681A1 (ja) 静電チャックヒータ
JP7216746B2 (ja) セラミックヒータ
JP5846186B2 (ja) 静電チャック装置および静電チャック装置の製造方法
US20230030510A1 (en) Electrostatic chuck and substrate fixing device
JP7291046B2 (ja) 基板固定装置
TWI713408B (zh) 陶瓷加熱器
CN111316419B (zh) 静电卡盘装置
JP4540407B2 (ja) 静電チャック
JP6510440B2 (ja) ヒータ及び静電チャック並びにプラズマ発生用部材
WO2022215722A1 (ja) シャワープレート
JP2004071647A (ja) 複合ヒータ
KR102539719B1 (ko) 세라믹 서셉터
KR20210068128A (ko) 세라믹 히터
JP2022023284A (ja) 保持装置
JP7483952B2 (ja) ヒータ
US20210242046A1 (en) Ceramic heater
JP7125262B2 (ja) シャワーヘッド用ガス分配体
JP7551888B1 (ja) 保持装置
JP7514990B1 (ja) 保持装置
WO2022260042A1 (ja) シャワープレート
US12144067B2 (en) Ceramic heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023513042

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784704

Country of ref document: EP

Kind code of ref document: A1