WO2022215510A1 - 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体 - Google Patents

硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体 Download PDF

Info

Publication number
WO2022215510A1
WO2022215510A1 PCT/JP2022/013226 JP2022013226W WO2022215510A1 WO 2022215510 A1 WO2022215510 A1 WO 2022215510A1 JP 2022013226 W JP2022013226 W JP 2022013226W WO 2022215510 A1 WO2022215510 A1 WO 2022215510A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
parts
thermally conductive
curable organopolysiloxane
Prior art date
Application number
PCT/JP2022/013226
Other languages
English (en)
French (fr)
Inventor
健治 太田
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to EP22784495.8A priority Critical patent/EP4321572A1/en
Priority to US18/285,966 priority patent/US20240199935A1/en
Priority to JP2023512910A priority patent/JPWO2022215510A1/ja
Priority to CN202280031048.1A priority patent/CN117203284A/zh
Priority to KR1020237037867A priority patent/KR20230169195A/ko
Publication of WO2022215510A1 publication Critical patent/WO2022215510A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention has a high thermal conductivity and suppresses changes in the hardness of the cured product even after heat aging.
  • the present invention relates to a curable organopolysiloxane composition that provides an organopolysiloxane cured product capable of maintaining relaxation properties, a thermally conductive member comprising the same, and a heat dissipation structure using the same.
  • thermally conductive silicone compositions comprising organopolysiloxane and thermally conductive fillers such as aluminum oxide powder and zinc oxide powder are widely used.
  • thermally conductive silicone compositions filled with a large amount of thermally conductive filler have been proposed in order to cope with high heat dissipation.
  • the thermally conductive silicone composition has excellent heat resistance, and even if the thermally conductive filler is mixed at a high concentration and a high volume %, the cured product is rubbery, so it has a certain degree of flexibility and stress relaxation. It is expected that the heat-dissipating structure can maintain followability and adhesion to the heat source, and maintain the heat-dissipating performance. On the other hand, in recent years, there has been a tendency to require high amounts of thermally conductive fillers, but in general, rubber physical properties derived from high-molecular silicone cured products tend to be impaired when a large amount of thermally conductive fillers are blended.
  • thermoelectrically conductive cured product will become too hard, creating a gap between the material to be radiated and the conformability and stress relaxation properties. Heat dissipation may not be achieved.
  • controlling the hardness of the thermoelectrically conductive cured product is an extremely important issue in realizing heat dissipation.
  • Patent Document 1 discloses that a stearic acid compound is added in a limited amount for the purpose of preventing moisture absorption and conductivity and improving releasability in a silicone-based insulating heat-dissipating sheet composition containing boron nitride powder. Proposed. However, Patent Document 1 does not disclose any composition with high heat dissipation that contains a thermally conductive filler at a high volume % of more than 500 parts by weight with respect to 100 parts by weight of organopolysiloxane. do not have.
  • Patent Document 1 when a stearic acid compound is used for a cured product highly filled with a thermally conductive filler, there is no description or suggestion about the effect on the hardness. It does not provide the problem and solution of controlling the hardness of an object.
  • Patent Document 2 proposes a conductive silicone adhesive that uses a catalytic amount of a condensation catalyst containing a metal salt of a carboxylic acid such as iron stearate.
  • Patent Document 2 does not describe or suggest any hydrosilylation reaction-curable composition, and does not disclose any composition with high heat dissipation that contains a high volume percent of a thermally conductive filler.
  • iron stearate or the like is only a condensation catalyst, and the component is a hydrosilylation reaction curable composition, and when it is used for a cured product highly filled with a thermally conductive filler , does not describe or suggest any effect on the hardness, and does not provide the problem and solution of controlling the hardness of the thermoelectrically conductive cured product.
  • Patent Document 3 does not describe or suggest any hydrosilylation reaction-curable composition, and does not disclose any highly heat-dissipating composition containing a high volume percent of a thermally conductive filler. not Further, in Patent Document 3, it is described that the surfaces of metal particles in the form of flakes may be treated with a fatty acid or fatty acid ester.
  • JP-A-07-330927 Japanese Patent Application Laid-Open No. 2002-80816 JP-A-2002-088227
  • the present inventors have found a new problem in the hydrosilylation reaction-curable thermally conductive silicone composition.
  • a thermally conductive silicone composition containing a large amount of thermally conductive filler is cured, the cured product tends to harden, and there is a trade-off between high thermal conductivity and flexibility of the cured product.
  • thermally conductive silicone compositions are designed with controlled hardness and thermal conductivity of the cured product, a very high volume percent of such thermally conductive fillers (e.g., (60% by volume or more relative to the solid content)), the cured product rapidly hardens after heat aging and loses flexibility and rubber elasticity, resulting in stress relaxation and heat dissipation structure.
  • followability and adhesion in may be impaired. As a result, the intended heat dissipation characteristics may not be sufficiently achieved.
  • the present invention has been made to solve the above problems, and because it contains a thermally conductive filler in a very high volume%, it has a high thermal conductivity and the hardness of the cured product even after heat aging.
  • a curable organopolysiloxane composition that gives an organopolysiloxane cured product whose change is suppressed and that can maintain flexibility and stress relaxation properties even when a thermally conductive member made of the cured product is used at high temperatures, and
  • An object of the present invention is to provide a thermally conductive member and a heat dissipation structure using the same.
  • thermally conductive filler specifically, a range of 60 to 90% by volume relative to the total solid content of the composition
  • a curable organopolysiloxane composition which is a hydrosilylation reaction-curable composition and which contains at least one fatty acid-based compound selected from fatty acids, fatty acid esters, and fatty acid metal salts, and a certain amount of a heat resistance-imparting agent.
  • the fatty acid-based compound is a saturated fatty acid-based compound typified by stearic acid, an alkali metal salt of stearic acid (lithium salt, etc.), and an alkaline earth metal salt of stearic acid (calcium salt, etc.). is particularly preferred.
  • the timing of the fatty acid-based compound is arbitrary, and even if it is mixed with the alkenyl group-containing organopolysiloxane and the thermally conductive filler that are the main ingredients of the composition and heated (base heat)
  • the alkenyl group-containing organopolysiloxane and the thermally conductive filler may be mixed and added to the post-base heat mixture along with the other ingredients. That is, the technical effects of the present invention can be achieved even if the fatty acid-based compound is added to the composition of the present invention at a timing other than the timing when it becomes the surface treatment agent for the thermally conductive filler. (See Examples)
  • the object of the present invention is to: (A) 100 parts by mass of an alkenyl group-containing organopolysiloxane having a viscosity of 10 to 100,000 mPa s at 25°C; (B) Organohydrogenpolysiloxane: an amount such that the number of silicon-bonded hydrogen atoms in component (B) is 0.1 to 10 mol per 1 mol of alkenyl groups contained in component (A); (C) a thermally conductive filler amount ranging from 60 to 90% by volume based on the total solid content in the composition; (D) at least one kind selected from fatty acids, fatty acid esters and fatty acid metal salts; (E) a catalytic amount of a hydrosilylation reaction catalyst; (F) contains a heat resistance imparting agent, further optionally, (G) one or more components (G1) selected from the following components (G1) and components (G2); general formula (1): (In the formula, R 1 is independently an unsubstituted or substituted
  • R alk R 3 2 SiO(R 3 2 SiO) c R 3 2 Si—R 4 —SiR 3 (3-d) (OR 5 ) d
  • R alk is an alkenyl group
  • R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having no carbon-carbon double bond
  • R 4 is an oxygen atom or a divalent hydrocarbon group
  • R 5 is independently a hydrogen atom, an alkyl group, an alkoxyalkyl group, or an acyl group
  • c is an integer of 1 to 250
  • d is an integer of 1 to 3.
  • 25 A siloxane-based compound having an alkenyl group and a hydrolyzable silyl group at the molecular chain end and having a viscosity in the range of
  • a curable organopolysiloxane composition which may contain a hydrosilylation reaction inhibitor, an adhesion promoter, an organic solvent and other additives, a cured product thereof, a thermally conductive member comprising the same, and a heat dissipation structure using the same and their method of manufacture.
  • a curable organopolysiloxane composition is provided that yields a cured organopolysiloxane that can maintain relaxation properties.
  • a heat conductive member obtained by curing the curable organopolysiloxane composition, and a heat dissipation structure using the same member especially, a heat dissipation structure for electric/electronic parts and a heat dissipation structure for secondary batteries) heat dissipation structure for electrical and electronic equipment, including
  • the cured product of the curable organopolysiloxane composition according to the present invention is excellent in stress relaxation and flexibility, and has various shapes because the change in hardness is suppressed even when used at high temperatures.
  • the cured product of the curable organopolysiloxane composition according to the present invention is excellent in stress relaxation and flexibility, and has various shapes because the change in hardness is suppressed even when used at high temperatures.
  • the heat-dissipating object even if it is used under high temperature for a long period of time, there will be peeling and gaps (including the generation of gaps due to partial/temporary separation from the member, the same below) from the exothermic member due to vibration, etc. Since it is difficult to occur and excellent adhesion and followability are maintained, there is an advantage that the heat dissipation efficiency at the initial stage of application is maintained without being impaired.
  • the durability and heat dissipation performance of the heat dissipation material are superior, and it can be applied to heat dissipation targets with various shapes, and it is difficult to peel off even when used for assembly under high temperatures. , has the advantage that it can be used for heat dissipation process under high temperature for a long time.
  • composition comprises (A) an alkenyl group-containing organopolysiloxane having a viscosity of 10 to 100,000 mPa ⁇ s at 25° C., (B) an organohydrogenpolysiloxane, (C) a thermally conductive filler, (D) at least one selected from fatty acids, fatty acid esters and fatty acid metal salts (hereinafter sometimes referred to as "fatty acid compounds"), (E) a hydrosilylation reaction catalyst, and (F) a heat resistance imparting agent.
  • composition according to the present invention may be in the form of a one-component composition or a multi-component composition such as a two-component composition. Each component and its addition amount will be described below.
  • Component (A) the alkenyl group-containing organopolysiloxane
  • Component (A) is the main component of the present composition, and has a viscosity at 25°C within the range of 10 to 100,000 mPa ⁇ s.
  • the viscosity of component (A) at 25° C. is preferably in the range of 10 to 100,00 mPa ⁇ s, more preferably in the range of 10 to 10,000 mPa ⁇ s. If the viscosity of component (A) is less than 10 mPa ⁇ s, the mechanical strength of the resulting cured organopolysiloxane tends to decrease. Since it is too viscous, it tends to be difficult to handle and apply to fine details.
  • Component (A) is composed of one or more alkenyl group-containing organopolysiloxanes.
  • the molecular structure of such alkenyl group-containing organopolysiloxanes is not particularly limited, and examples thereof include linear, branched, cyclic, three-dimensional network structures, and combinations thereof.
  • Alkenyl groups in the molecule of component (A) are exemplified by vinyl groups, allyl groups, butenyl groups, hexenyl groups and the like.
  • organic groups other than alkenyl groups in component (A) include alkyl groups such as methyl groups; aryl groups such as phenyl groups; and alkenyl groups such as halogenated alkyl groups such as 3,3,3-trifluoropropyl groups. are exemplified by monovalent hydrocarbon groups except for , and industrially preferred is a methyl group or a phenyl group.
  • component (A) is a linear alkenyl group-containing organopolysiloxane, such as dimethylpolysiloxane having both molecular chain terminals blocked with dimethylvinylsiloxy groups, dimethylsiloxane having both molecular chain terminals blocked with dimethylvinylsiloxy groups.
  • Methylphenylsiloxane copolymer trimethylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane copolymer at both molecular chain ends, dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer with trimethylsiloxy group-blocked at both molecular chain ends, both molecular chain ends Terminal silanol group-blocked dimethylsiloxane/methylvinylsiloxane copolymer, part of the methyl groups of these polymers are ethyl groups, alkyl groups other than methyl groups such as propyl groups, 3,3,3-trifluoropropyl groups, etc.
  • polymers substituted with halogenated alkyl groups polymers in which the vinyl groups of these polymers are substituted with alkenyl groups other than vinyl groups such as allyl groups, butenyl groups, hexenyl groups, and two of these polymers Mixtures of more than one species are included.
  • alkenyl group-containing organopolysiloxanes low-molecular-weight siloxane oligomers (octamethyltetrasiloxane (D4), decamethylpentasiloxane (D5)) should be reduced or removed from the standpoint of preventing contact failure. is preferred.
  • Component (B) is the main cross-linking agent of the composition of the present invention, and any organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in the molecule can be used without particular limitation.
  • the number (average value) of silicon-bonded hydrogen atoms in the organohydrogenpolysiloxane molecule is preferably not more than 8 from the standpoint of flexibility and adhesion retention to substrates.
  • (B1) has a viscosity of 1 to 1,000 mPa s at 25° C. and contains an average of 2 to 4 silicon-bonded hydrogen atoms in the molecule, of which an average of at least 1 is in the molecule. It preferably contains at least a linear organohydrogenpolysiloxane having a chain side chain.
  • Examples of such component (B1) include a methylhydrogensiloxane/dimethylsiloxane copolymer having both molecular chain terminals blocked with trimethylsiloxy groups and a methylhydrogensiloxane/dimethylsiloxane copolymer having both molecular chain terminals blocked with dimethylhydrogensiloxy groups. be done.
  • these examples are non-limiting, and a part of the methyl group may be substituted with a phenyl group, a hydroxyl group, an alkoxy group, or the like.
  • the viscosity of component (B1) at 25° C. is not particularly limited, but is preferably in the range of 1 to 500 mPa ⁇ s, particularly preferably in the range of 1 to 100 mPa ⁇ s, and from the standpoint of preventing contact failure.
  • low-molecular-weight siloxane oligomers octamethyltetrasiloxane (D4), decamethylpentasiloxane (D5)
  • D4 octamethyltetrasiloxane
  • D5 decamethylpentasiloxane
  • the amount of component (B) is such that at least 0.1 to 10 moles of silicon-bonded hydrogen atoms in component (B) per 1 mole of alkenyl groups contained in component (A). and is in the range of 0.2 to 5.0 mol, 0.3 to 3.0 mol, or 0.4 to 2.0 mol. is particularly preferred from the viewpoint of the mechanical strength and adhesive properties of the resulting cured organopolysiloxane.
  • Component (C) is a thermally conductive filler for imparting thermal conductivity to the present composition and thermally conductive members obtained by curing the present composition.
  • Such component (C) is selected from the group consisting of pure metals, alloys, metal oxides, metal hydroxides, metal nitrides, metal carbides, metal silicides, carbon, soft magnetic alloys and ferrites. At least one or more powders and/or fibers are preferred, and metal powders, metal oxide powders, metal nitride powders, or carbon powders are preferred.
  • the shape of component (C) is not particularly limited, but may be, for example, spherical, needle-like, disk-like, rod-like, or amorphous, preferably spherical or amorphous.
  • the average particle size of component (C) is not particularly limited, but is preferably in the range of 0.01 to 500 ⁇ m, more preferably in the range of 0.01 to 300 ⁇ m.
  • component (C) are silver powder, aluminum powder, aluminum oxide powder, zinc oxide powder, magnesium oxide powder, aluminum nitride powder or graphite.
  • the present composition is preferably a metal oxide powder or a metal nitride powder, particularly aluminum oxide powder, zinc oxide powder, magnesium oxide powder, or Aluminum nitride powder is preferred.
  • Such a thermally conductive filler is a siloxane compound having an alkoxy group on at least one terminal, which is component (G), and/or an alkoxysilane having a long-chain alkyl group, which is component (H).
  • the part may be surface-treated, and is preferred.
  • these powders and/or fibers may be treated with various surface treatment agents known as coupling agents.
  • Surface treatment agents for treating the powder and/or fibers of component (C) include component (G), component (H), surfactants, other silane coupling agents, and aluminum-based coupling agents. and silicone-based surface treatment agents.
  • the component (C) is, for example, a combination of a large particle size powder and a small particle size powder in a ratio that follows the close-packing theoretical distribution curve. Viscosity and high thermal conductivity can be achieved.
  • (C3) selected from amorphous aluminum nitride powders having an average particle size of 0.01 to 50 ⁇ m, and a mixture of two or more different particle sizes or shapes may be used to improve the filling efficiency, and preferred.
  • the content of component (C) is in the range of 60 to 90% by volume based on the total solid content (components that form a cured product by curing reaction) in the composition. and preferably in the range of 65 to 90% by volume, 70 to 90% by volume, and 70 to 85% by volume. If the content of component (C) is less than the above lower limit, the resulting composition will have a thermal conductivity of less than 2.0 W/mK, and the desired high thermal conductivity may not be achieved.
  • component (C) described later component (G) or component (H) is blended or used for surface treatment of component (C), In some cases, the viscosity of the composition becomes extremely high, and the initial cured product becomes extremely hard, resulting in deterioration in handling workability, stress relaxation properties, adhesion to substrates, and the like.
  • the amount of component (C) used is more preferably in the range of 600 to 4500 parts by mass, particularly preferably in the range of 800 to 4000 parts by mass, per 100 parts by mass of component (A).
  • the problems of the present invention can be solved particularly favorably.
  • composition of the present invention contains, as optional components, inorganic fillers such as fumed silica, wet silica, crushed quartz, titanium oxide, magnesium carbonate, zinc oxide, iron oxide, diatomaceous earth, and carbon black (“inorganic fillers”).
  • inorganic fillers such as fumed silica, wet silica, crushed quartz, titanium oxide, magnesium carbonate, zinc oxide, iron oxide, diatomaceous earth, and carbon black
  • inorganic fillers also referred to as "material”
  • the surface of such an inorganic filler is blended with an inorganic filler obtained by hydrophobically treating the surface of the inorganic filler with component (G), component (H) and/or other organosilicon compounds (silazanes, etc.) described later. good too.
  • substantially no filler other than component (C) is contained.
  • the above-mentioned fillers may be used in combination within a range that does not impair the technical effects of the present invention, and are preferred in the present invention. Included in one of the embodiments.
  • Component (C) according to the present invention is preferably surface-treated with component (G) and/or component (H) described below.
  • the surface treatment method with these components is not particularly limited, but a direct treatment method, an integral blend method, a dry concentrate method, etc., for the thermally conductive inorganic filler that is the component (C) can be used. can.
  • part or all of the component (A), the component (G) and the component (H) are mixed in advance from the viewpoint of improving the filling property of the composition as a whole and the adhesive strength of the cured product.
  • the most suitable example is a heating surface treatment method in which the component (C) is sequentially mixed in the mixture, homogenized, and then heated (base heat).
  • the surface treatment method can heat and stir the mixture at 100 to 200 ° C. under reduced pressure, and the temperature conditions and stirring time can be designed according to the amount of the sample. A range of 0.25 to 10 hours is preferred.
  • the surface treatment step for component (C) is optional, but from the viewpoint of improving the fluidity, gap-filling properties and thixotropic properties of the present composition, at least a part of component (C) is It may be a stepwise treatment process including a step in which component (C) is surface treated and then component (C) is surface treated with component (H).
  • the apparatus used for the above mixing is not particularly limited, and examples thereof include a single-screw or twin-screw continuous mixer, two-roll mixer, Ross mixer, Hobart mixer, dental mixer, planetary mixer, kneader mixer, and Henschel mixer.
  • Component (D) is a component that suppresses changes in hardness during heat aging of the present composition and the cured product, which is a silicone-based thermally conductive member obtained by curing the present composition.
  • the amount of the thermally conductive filler, which is the component (C) is within the above range, and when the component (D) is not used, the cured product rapidly hardens during heat aging, resulting in stress relaxation, Flexibility and adhesion to substrates may be impaired, but component (D) and, preferably, component (F), which will be described later, can be used in combination in the hydrosilylation-curable reactive composition.
  • the cured product has high thermal conductivity, maintains initial hardness, and can achieve good stress relaxation, flexibility and adhesion to substrates.
  • Component (D) is specifically at least one selected from fatty acids, fatty acid esters and fatty acid metal salts, and includes caproic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, Fatty acids such as palmitic acid, stearic acid, behenic acid and oleic acid; fatty acid esters which are alkyl esters thereof; alkali metal salts of fatty acids such as sodium, lithium and potassium; alkaline earth metal salts of fatty acids such as calcium.
  • component (D) is (D1) at least one selected from saturated fatty acids and saturated fatty acid metal salts, and (D1-1) stearic acid, alkali metal salts of stearic acid, and alkaline earth stearic acid.
  • One or more selected from group metal salts is particularly preferable.
  • component (D) suppresses changes in the hardness of the cured product, particularly in a combined system with component (F)
  • fatty acids such as fatty acids, fatty acid salts (soaps), and fatty acid esters
  • the presence of a limited amount of the fatty acid-based compound in the cured silicone matrix with improved heat resistance in the presence of the component (F) allows the thermally conductive filler particle surface or its vicinity to be freed from these fatty acid-based compounds.
  • a water-resistant and lubricating thin film or local structure is formed, chemically lowers or inactivates the particle surface at high temperatures, and prevents the aggregation of the surfaces of the thermally conductive filler and the formation of coarse particles.
  • component (D) exhibits a technical effect even if it is not used as a surface treatment agent for the thermally conductive filler, but simply mixed uniformly with other components.
  • the timing of adding component (D) to the product is not limited.
  • the amount of component (D) to be blended must be in the range of 0.05 to 2.0 parts by mass with respect to 100 parts by mass of component (C) (the total amount when consisting of more than one), which is a thermally conductive filler. be.
  • the amount of component (D) must be within the above range, and the above range has critical significance. That is, if the amount of the component (D) is less than the lower limit, even if it is used in combination with the component (F), the change in hardness of the cured product may not be suppressed (for example, Comparative Example 1 described later, Comparative Example 3). On the other hand, if the amount of the component (D) exceeds the upper limit, the change in hardness of the cured product may not be suppressed (for example, Comparative Example 4 described later).
  • the hydrosilylation reaction catalyst is a component necessary for curing the present composition, and is exemplified by platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Platinum-based catalysts are preferred because they can significantly accelerate the curing of the present composition. Examples of platinum-based catalysts include platinum fine powder, chloroplatinic acid, chloroplatinic acid alcohol solutions, platinum-alkenylsiloxane complexes, platinum-olefin complexes, platinum-carbonyl complexes, and these platinum-based catalysts, silicone resins, polycarbonates.
  • Catalysts dispersed or encapsulated in thermoplastic resins such as resins and acrylic resins are exemplified, and platinum-alkenylsiloxane complexes are particularly preferred.
  • a 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum is particularly preferable, and it is preferable to add the complex in the form of an alkenylsiloxane solution.
  • a particulate platinum-containing hydrosilylation reaction catalyst dispersed or encapsulated in a thermoplastic resin may be used.
  • non-platinum metal catalysts such as iron, ruthenium, and iron/cobalt may be used.
  • hydrosilylation reaction catalysts include so-called high-energy beam activation catalysts such as (methylcyclopentadienyl)trimethylplatinum(IV) complexes and bis(2,4-pentanedionato)platinum(II) complexes.
  • a photoactivated catalyst may be used.
  • the high-energy rays ultraviolet rays are preferable from the viewpoint of catalyst activation efficiency, and ultraviolet rays having a wavelength in the range of 280 to 380 nm are preferable from the standpoint of industrial use.
  • the irradiation dose varies depending on the type of high-energy ray-activating catalyst, but in the case of ultraviolet rays, the cumulative irradiation dose at a wavelength of 365 nm is preferably within the range of 100 mJ/cm 2 to 100 J/cm 2 .
  • the amount of the hydrosilylation reaction catalyst to be added may be a catalytic amount.
  • the amount is in the range of ⁇ 100 ppm, or the amount is in the range of 0.01 to 50 ppm.
  • the composition according to the present invention and its cured product contain a certain amount of (D) a fatty acid-based compound and use (F) a heat resistance-imparting agent in combination, so that the technical effect can be realized.
  • the amount of the heat resistance imparting agent may be in the range of 0.01 to 5.0% by mass, 0.05 to 2.0% by mass, and 0.07 to 0.5% by mass of the total composition (solid content). It may be in the range of % by mass.
  • heat resistance imparting agents include metal oxides such as iron oxide, titanium oxide, cerium oxide, magnesium oxide and zinc oxide, metal hydroxides such as cerium hydroxide, phthalocyanine compounds, cerium silanolates, and cerium fatty acid salts. , a reaction product of an organopolysiloxane and a cerium carboxylate.
  • (F1) a phthalocyanine compound for example, an additive selected from the group consisting of metal-free phthalocyanine compounds and metal-containing phthalocyanine compounds disclosed in Japanese Patent Application Laid-Open No. 2014-503680 is preferably used, Among metal-containing phthalocyanine compounds, copper phthalocyanine compounds are particularly preferred.
  • One of the most preferred non-limiting heat resistance agents is 29H,31H-phthalocyaninato(2-)-N29,N30,N31,N32 copper.
  • phthalocyanine compounds are commercially available, eg, Stan-toneTM 40SP03 from PolyOne Corporation, Avon Lake, Ohio, USA.
  • Component (G) is an optional component of the composition according to the present invention, and includes (G1) a specific organopolysiloxane having an alkoxy group only at one molecular chain end and (G2) an alkenyl group and hydrolyzed at the molecular chain end. It is one or more selected from specific siloxane-based compounds having a silyl group. These are surface treatment agents having an alkoxy group at one end of the molecular chain and at least a portion of a polysiloxane structure. ) to improve the fluidity, gap-filling properties and thixotropic properties of the present composition even when a large amount of the thermally conductive filler as the component (D) is blended.
  • a composition can be provided.
  • Component (G) is one or more selected from component (G1) and component (G2), and either one of them may be used alone, or both may be used in combination in the form of a mixture or the like.
  • a particularly preferred component (G) has a trialkoxysilyl group or a trialkoxysiloxy group at one end of the molecular chain.
  • Component (G1) has the general formula (1): and has a viscosity of 10 to less than 10,000 mPa ⁇ s at 25°C.
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having no carbon-carbon double bond, examples of which include linear alkyl groups, branched alkyl groups, cyclic alkyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups.
  • R 1 is preferably a methyl group or a phenyl group, preferably a methyl group from the viewpoint of heat resistance.
  • R2 is independently a hydrogen atom, an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group. From the standpoint of surface treatment, R2 is preferably an alkyl group, more preferably a methyl group or an ethyl group.
  • a is an integer in the range of 5-250, preferably in the range of 10-200.
  • b is an integer of 1 to 3, preferably 2 or 3.
  • Preferred examples of the component (G1) according to the present invention include polydimethylsiloxanes in which b is 3, a trialkoxysiloxy group is present at one end of the molecular chain, and R 1 is a methyl group. .
  • Component (G2) is General formula (2): R alk R 3 2 SiO(R 3 2 SiO) c R 3 2 Si—R 4 —SiR 3 (3-d) (OR 5 ) d It is a siloxane compound having an alkenyl group and a hydrolyzable silyl group at the molecular chain end and having a viscosity in the range of 10 to 10,000 mPa ⁇ s at 25°C.
  • R alk is an alkenyl group, exemplified by alkenyl groups having 2 to 10 carbon atoms such as vinyl group, allyl group and hexenyl group. Since component (G2) has an alkenyl group at one end of the molecular chain, it may improve curability and adhesive properties when used in combination with component (C).
  • R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having no carbon-carbon double bond, linear alkyl group, branched alkyl group, cyclic alkyl group, alkenyl group, aryl group, an aralkyl group, and a halogenated alkyl group, and from an industrial point of view, it is a methyl group or a phenyl group, and from a heat resistance point of view, a methyl group is preferred.
  • R4 is an oxygen atom or a divalent hydrocarbon group.
  • Examples of the divalent hydrocarbon group for R 4 include alkylene groups such as a methylene group; and alkyleneoxyalkylene groups such as an ethyleneoxyethylene group and an ethyleneoxypropylene group.
  • R 4 may and preferably is an oxygen atom.
  • R5 is independently a hydrogen atom, an alkyl group, an alkoxyalkyl group, or an acyl group, preferably an alkyl group, and particularly preferably a methyl group or an ethyl group from the standpoint of surface treatment.
  • Component (G2) has a hydrolyzable silyl group in the molecule due to the one-end structure represented by Si(OR 5 ), and therefore exhibits an excellent surface treatment effect when used in combination with component (C).
  • c is the degree of polymerization of the diorganosiloxane unit of component (G2) (excluding the terminal) and is an integer of 1 to 250, preferably an integer of 1 to 100, and an integer of 1 to 50. It is particularly preferred to have d in the formula is an integer of 1 to 3, preferably 3. When d is 3, one end of component (G2) is particularly preferably a trimethoxysilyl group (--Si (OMe) 3 ).
  • the amount of component (G) (the total amount when component (G1) and component (G2) are used together) is not particularly limited as long as it is sufficient for surface treatment of component (C). , for example, within the range of 0.005 to 100 parts by weight, preferably 0.05 to 100 parts by weight, relative to 100 parts by weight of component (A) in the entire composition, 0.5 to 50 parts by weight Part is more preferred.
  • Component (H) C6 or higher alkylalkoxysilane or hydrolytic condensate thereof Component (H), like component (G), is a component that functions as a surface treatment agent for the thermally conductive filler that is component (C) in the composition, and improves the blending amount of component (C). In addition, it is a component that improves the viscosity and fluidity of the composition as a whole and improves the adhesive properties.
  • Such an alkoxysilane must have an alkyl group of C6 or more, and when an alkylalkoxysilane containing only an alkyl group of less than C6 such as a methyl group or a hydrolytic condensate thereof is used, for example, component (G) Even if a tackifier of component (I), which will be described later, is used in combination, sufficient adhesive properties may not be achieved in some cases.
  • alkyl groups having 6 or more carbon atoms include alkyl groups such as hexyl group, octyl group, dodecyl group, tetradecyl group, hexadecyl group and octadecyl group, and aralkyl groups such as benzyl group and phenylethyl group.
  • An alkyl group having 6 to 20 carbon atoms is particularly preferred.
  • component (H) has the following structural formula: YnSi(OR) 4- n (Wherein, Y is an alkyl group having 6 to 18 carbon atoms, R is an alkyl group having 1 to 5 carbon atoms, and n is a number of 1 to 3.)
  • the OR group is exemplified by methoxy, ethoxy, propoxy and butoxy groups, with methoxy and ethoxy groups being particularly preferred.
  • n is 1, 2 or 3, and 1 is particularly preferable.
  • Such component (E1) is specifically C6H13Si ( OCH3) 3 , C8H17Si ( OC2H5 ) 3 , C10H21Si ( OCH3)3 , C 11 H 23 Si(OCH 3 ) 3 , C 12 H 25 Si(OCH 3 ) 3 , C 14 H 29 Si(OC 2 H 5 ) 3 and the like are exemplified, and decyltrimethoxysilane is most preferred.
  • the amount of component (H) is not particularly limited as long as it is sufficient for surface treatment of component (C). 0.005 to 20 parts by mass, preferably 0.05 to 10 parts by mass, more preferably 0.5 to 7.5 parts by mass.
  • composition according to the present invention essentially comprises components (A) to (F), may optionally contain component (G) and/or component (H) as a surface treatment agent for component (C), and may contain other components of
  • the composition of the present invention preferably further contains a hydrosilylation reaction inhibitor.
  • the hydrosilylation reaction inhibitor is a component for inhibiting the hydrosilylation reaction of the curable organopolysiloxane composition of the present invention.
  • Reaction inhibitors such as carboxylic acid ester-based and phosphite-based inhibitors are included.
  • the amount of the reaction inhibitor added is usually 0.001 to 5% by weight of the total curable organopolysiloxane composition.
  • composition of the present invention may further contain a tackifier for the purpose of improving the adhesive strength and permanent adhesion to substrates of the cured product.
  • a tackifier for the purpose of improving the adhesive strength and permanent adhesion to substrates of the cured product.
  • the tackifier that can be used in the present invention includes reaction mixtures of conventionally known tackifiers of amino group-containing organoalkoxysilanes and epoxy group-containing organoalkoxysilanes (carbasilatrane derivatives and silatrane derivatives having a specific structure).
  • disilaalkane compounds e.g., 1,6-bis(trimethoxysilyl)hexane
  • organic compounds having two or more alkoxysilyl groups in the molecule, epoxy group-containing silanes, or partial hydrolytic condensates thereof
  • tackifiers selected from these may be used in combination, which is preferred.
  • the tackifier is (IA-1) general formula: R a n Si(OR b ) 4-n (In the formula, R a is a monovalent epoxy group-containing organic group, R b is an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and n is a number in the range of 1 to 3.) and (IA-2) having at least two alkoxysilyl groups in one molecule and having a silicon-oxygen bond between those silyl groups other than a silicon-oxygen bond An organic compound containing a bond at a mass ratio of 5:95 to 95:5, preferably 50:50 to 95:5, more preferably 60:40 to 90:30. .
  • 3-glycidoxyprolyltrimethoxysilane 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3 ,4-epoxycyclohexyl)ethylmethyldimethoxysilane is exemplified.
  • tackifiers other than the above components (IA-1) and (IA-2) amino group-containing organoalkoxysilanes and epoxy groups disclosed in JP-B-52-8854 and JP-A-10-195085.
  • a reaction mixture with the containing organoalkoxysilane may be used in combination.
  • the curable organopolysiloxane composition of the present invention may contain optional components within a range that does not impair the object of the present invention.
  • the optional components include organopolysiloxanes containing no silicon-bonded hydrogen atoms and silicon-bonded alkenyl groups, cold resistance-imparting agents, flame-retardant-imparting agents, pigments, dyes, and the like.
  • the curable organopolysiloxane composition of the present invention optionally contains one or more antistatic agents consisting of known surfactants; dielectric fillers; electrically conductive fillers; agents; antifungal agents and the like can be included.
  • an organic solvent may be added.
  • the curable organopolysiloxane composition of the present invention can be prepared by mixing the components described above, and examples of mixing equipment include the same equipment as those exemplified for the surface treatment of component (C). Further, as described above, the component (D) may be added at the timing after the surface treatment/base heating of the component (C), or may be added together with the surface treatment agent of the component (C).
  • compositions according to the invention are i) After mixing components (A), (C), and optionally components (G) and/or components (H), the mixture is heated and mixed, then component (D) and other A manufacturing method comprising the step of mixing the ingredients; ii) After mixing the components (A), (C), (D), and optionally (G) and/or (H), the mixture is heated and mixed, and then other It is preferably manufactured by any manufacturing method (mixing process) having a step of mixing components.
  • the heating conditions are the same as the base heating conditions described above for the surface treatment of component (C), and it is preferable to mix so that the whole is substantially uniform during mixing.
  • the curable organopolysiloxane composition according to the present invention may be a one-component composition, preferably a composition containing the hydrosilylation reaction inhibitor and other ingredients, which are stored separately. It may be a multicomponent composition comprising more than one type of composition. In the case of a multicomponent composition, it is necessary not to contain the above components (A), (B) and (E) at the same time. This is because when these components (main agent, cross-linking agent and catalyst) are blended at the same time, the cross-linking reaction starts spontaneously and the storage stability of the composition is lost in a short period of time. storage stability and handling workability over a period of time may not be achievable. At the time of use, the multi-component composition is stirred in a common container using mechanical force such as a mixer, or is mixed using a dispenser or the like suitable for mixing multi-components before being applied or applied.
  • the curable organopolysiloxane composition according to the present invention is cured by a hydrosilylation reaction, has excellent thermal conductivity, suppresses changes in hardness even after heat aging, and has excellent flexibility and stress relaxation properties. Forms an excellent organopolysiloxane cured product.
  • the temperature conditions for curing this hydrosilylation-curable silicone composition are not particularly limited, but are usually in the range of 20°C to 200°C, preferably 20°C to 150°C, and more preferably. is in the range of 20-80°C.
  • the material may be cured at a high temperature for a short period of time, or may be cured at a low temperature such as room temperature for a long period of time (for example, several hours to several days), and is not particularly limited.
  • a high-energy beam activation catalyst or a photoactivation catalyst as at least part of the component (E)
  • curing triggered by high-energy beam irradiation may be performed.
  • the curable organopolysiloxane composition is applied to a heat dissipating component or a circuit board on which the heat dissipating component is mounted, and the temperature is maintained at 20°C to 150°C, preferably at 20°C to 150°C. , a cured product is formed at a temperature of less than 130° C., for example, in the range of 20 to 125° C., and a heat dissipating structure provided with a heat dissipating member can be obtained.
  • the curable organopolysiloxane composition of the present invention can stably be highly filled with a thermally conductive filler, and has a thermal conductivity of 2.5 W/mK or more, preferably 3.0 W/mK or more, more preferably 7 W/mK or more. It has a thermal conductivity of 0 W/mK or higher.
  • the curable organopolysiloxane composition of the present invention has a thermal conductivity of 2.5 to 9.5 W/mK, and optionally a thermal conductivity of 7.0 to 9.5 W/mK. can be designed, and hardness change is suppressed even after heat aging, and a thermally conductive cured product excellent in flexibility and stress relaxation properties can be realized.
  • the curable organopolysiloxane composition of the present invention and its cured product are interposed at the interface between the thermal interface of the exothermic part and the heat dissipating member such as a heat sink or circuit board in order to cool the exothermic part by heat conduction. It is useful as a heat transfer material (thermally conductive member), and can be used to form a heat dissipating structure.
  • the type, size, and detailed structure of the heat-generating part are not particularly limited, but the cured product obtained by curing the curable organopolysiloxane composition of the present invention has high thermal conductivity.
  • the structure of such a heat dissipating structure is not particularly limited. can be exemplified.
  • an electronic component which is a heat-dissipating component
  • a circuit board for example, an electronic component, which is a heat-dissipating component, is mounted on a circuit board, and heat generated from the electronic component is transferred to the heat-dissipating member through a thin film layer of the curable organopolysiloxane composition or its cured product.
  • These members have a small change in hardness after heat aging, which is a feature of the present invention, maintain the flexibility and stress relaxation of the heat radiating member, and have excellent adhesion and followability. Therefore, it may be suitably arranged not only on a horizontal plane but also on an inclined plane or a vertical plane.
  • the thickness of the curable organopolysiloxane composition or its cured product is not particularly limited, but may be in the range of 0.1 to 100 mm. Heat generated from the filled electronic component can be efficiently transferred to the heat radiating member.
  • Electrical and electronic devices equipped with a member made of the above-described thermally conductive silicone composition are not particularly limited. Batteries; Electronic circuit boards such as printed circuit boards; IC chips packaged with optical semiconductor elements such as diodes (LED), organic electric field elements (organic EL), laser diodes, and LED arrays; personal computers, digital video discs, mobile phones Examples include CPUs used in electronic devices such as telephones and smartphones; LSI chips such as driver ICs and memories. Particularly in high performance digital switching circuits fabricated at high integration densities, heat removal (dissipation) is a major factor in the performance and reliability of integrated circuits.
  • a thermally conductive member made of a polysiloxane composition has excellent heat dissipation and handling workability even when applied to power semiconductor applications such as engine control, power train system, air conditioner control in transportation equipment, and electronic It maintains strong adhesion to parts and achieves excellent heat resistance and thermal conductivity even when it is incorporated in automotive electronic parts such as control units (ECUs) and used in harsh environments.
  • power semiconductor applications such as engine control, power train system, air conditioner control in transportation equipment, and electronic It maintains strong adhesion to parts and achieves excellent heat resistance and thermal conductivity even when it is incorporated in automotive electronic parts such as control units (ECUs) and used in harsh environments.
  • ECUs control units
  • thermally conductive silicone compositions [Preparation of composition and production of cured thermally conductive silicone product (evaluation sample)] Each component was mixed by the method described below to obtain curable organopolysiloxane compositions (hereinafter sometimes referred to as "thermally conductive silicone compositions") of Examples 1 to 12 and Comparative Examples 1 to 6. After that, each thermally conductive silicone composition is filled into a mold with a height of 6 mm, a length of 50 mm, and a width of 30 mm, cured at 50° C. for 30 minutes, removed from the mold, and the thermally conductive silicone A cured product was obtained. The thermal conductivity, hardness, and change in hardness after heat aging of the resulting thermally conductive silicone cured product were measured by the following methods.
  • Thermoelectric conductivity The thermal conductivity was measured by TPS-500 (hot disk method) manufactured by Kyoto Electronics Industry Co., Ltd. using two sheets of the cured thermally conductive silicone material obtained under the above conditions.
  • Hardness type E hardness
  • the hardness was measured by stacking two sheets of the thermally conductive silicone cured product obtained under the above conditions and measuring the value after 3 seconds using an ASKER TYPE E hardness tester manufactured by ASKER.
  • ASKER TYPE E hardness tester manufactured by ASKER.
  • Two sheets of the thermally conductive silicone cured product obtained under the above conditions were cured in a hot air circulating oven at 150° C. for 100 hours.
  • thermally conductive cured silicone material After removing and cooling to 25° C., two sheets of the thermally conductive cured silicone material were stacked, and the value after 3 seconds was measured using an ASKER TYPE E-type hardness tester manufactured by ASKER. The difference in hardness before curing and after curing at 150°C was measured.
  • composition of the present invention is made up of the following components.
  • C-2 Polyhedral spherical ⁇ -type aluminum oxide powder with an average particle size of 2 ⁇ m (manufactured by Sumitomo Chemical Co., Ltd., AA2)
  • C-3 Crushed aluminum oxide powder with an average particle size of 0.4 ⁇ m (AES-12, manufactured by Sumitomo Chemical Co., Ltd.)
  • C-5 Spherical molten solidified aluminum oxide powder with an average particle size of 95 ⁇ m (DAW-90 manufactured by Denka Co., Ltd.)
  • C-6 Irregular aluminum nitride powder with an average particle size of
  • D-1 Calcium stearate (manufactured by Fujifilm Wako Pure Chemical Industries)
  • D-2 stearic acid (manufactured by Fujifilm Wako Pure Chemical Industries)
  • D-3 Lithium stearate (manufactured by Fuji Film Wako Pure Chemical Industries)
  • Example 1 100 parts by mass of component (A-1) and 1.33 parts by mass of component (F-1) were weighed, and 128 parts by mass of component (C-1) and 180 parts by mass of component (C-2) were added over 60 minutes. , 317.5 parts by mass of component (C-5), 66.4 parts by mass of component (C-6), and 161 parts by mass of component (C-7) were sequentially mixed. After homogenization, the mixture was heated and mixed at 160° C. for 60 minutes under reduced pressure, and then cooled to room temperature to obtain a mixture.
  • the mass parts were uniformly mixed.
  • 0.66 parts by mass of component (E-1) was uniformly mixed to obtain a thermally conductive silicone composition.
  • a HIVIS MIX (model number) was used as the mixing device.
  • Example 2 A thermally conductive silicone composition was obtained in the same manner as in Example 1, except that 0.95 parts by mass of component (D-1) in Example 1 was replaced with 0.95 parts by mass of component (D-2).
  • Example 1 A thermally conductive silicone composition was obtained in the same manner as in Example 1, except that 0.95 parts by mass of component (D-1) was omitted from Example 1.
  • Table 1 shows the composition, thermal conductivity, hardness, and change in hardness after heat aging of the cured thermally conductive silicone compositions obtained. .
  • Component (A-1) 100 parts by mass, Component (B-1) 26.4 parts by mass, Component (F-1) 4.8 parts by mass, filler treatment agent (1) 41.6 parts by mass, filler treatment agent ( 2) Weigh 6.4 parts by mass, add 457.6 parts by mass of component (C-1), 640 parts by mass of component (C-2), 1120 parts by mass of component (C-5) over 60 minutes, 224 parts by mass of (C-6) and 576 parts by mass of component (C-7) were sequentially mixed. After homogenization, the mixture was heated and mixed at 160° C. for 60 minutes under reduced pressure, and then cooled to room temperature to obtain a mixture.
  • component (B-2) 0.64 parts by mass of component (B-2), 3.2 parts by mass of component (D-1) and 0.053 parts by mass of phenylbutynol as a reaction inhibitor were uniformly mixed. Thereafter, 2.4 parts by mass of component (E-1) was uniformly mixed to obtain a thermally conductive silicone composition.
  • Example 4 A thermally conductive silicone composition was obtained in the same manner as in Example 3, except that 30.1 parts by mass of component (D-1) in Example 3 was changed from 3.2 parts by mass.
  • Example 5 A thermally conductive silicone composition was obtained in the same manner as in Example 3, except that 3.2 parts by mass of component (D-1) in Example 3 was changed to 45.1 parts by mass.
  • Example 6 A thermally conductive silicone composition was obtained in the same manner as in Example 3, except that 3.2 parts by mass of component (D-1) in Example 3 was changed to 60.5 parts by mass.
  • Example 7 Component (A-1) 100 parts by mass, Component (B-1) 27.4 parts by mass, Component (D-1) 1.61 parts by mass, Component (F-1) 4.8 parts by mass, filler treatment agent ( 1) 40.3 parts by mass and 6.45 parts by mass of filler treatment agent (2) were weighed, and 461.3 parts by mass of component (C-1) and 645.2 parts by mass of component (C-2) were added over 60 minutes. Parts by mass, 1129 parts by mass of component (C-5), 225.8 parts by mass of component (C-6) and 580.6 parts by mass of component (C-7) were sequentially mixed. After homogenization, the mixture was heated and mixed at 160° C.
  • component (B-2) 0.65 parts by mass of component (B-2) and 0.054 parts by mass of phenylbutynol as a reaction inhibitor were uniformly mixed. Thereafter, 2.4 parts by mass of component (E-1) was uniformly mixed to obtain a thermally conductive silicone composition.
  • Example 8 In the same manner as in Example 7, except that 1.61 parts by mass of the component (D-1) in Example 7 was changed to 3.23 parts by mass, and 40.3 parts by mass of the filler treatment agent (1) was changed to 38.7 parts by mass. A thermally conductive silicone composition was obtained.
  • Table 2 shows the composition, thermal conductivity, hardness, and change in hardness after heat aging of the thermally conductive silicone compositions of Examples 3 to 8.
  • Example 2 A thermally conductive silicone composition was obtained in the same manner as in Example 3, except that 3.20 parts by mass of component (D-1) was omitted.
  • Example 3 A thermally conductive silicone composition was obtained in the same manner as in Example 3, except that 3.20 parts by mass of component (D-1) in Example 3 was changed to 0.32 parts by mass.
  • Example 4 A thermally conductive silicone composition was obtained in the same manner as in Example 3, except that 3.20 parts by mass of component (D-1) in Example 3 was changed to 64 parts by mass.
  • Table 3 shows the composition, thermal conductivity, hardness, and change in hardness after heat aging of the thermally conductive silicone compositions of Comparative Examples 2 to 4.
  • Component (A-1) 100 parts by mass, Component (B-1) 25.9 parts by mass, Component (D-1) 3.45 parts by mass, Component (F-1) 5.2 parts by mass, filler treatment agent ( 1) 55.2 parts by mass and 6.9 parts by mass of filler treatment agent (2) were weighed, and over 60 minutes, 500 parts by mass of component (C-1), 690 parts by mass of component (C-2), and 241 parts by mass of (C-6), 621 parts by mass of component (C-7) and 1200 parts by mass of component (C-8) were sequentially mixed. After homogenization, the mixture was heated and mixed at 160° C. for 60 minutes under reduced pressure, and then cooled to room temperature to obtain a mixture.
  • component (B-2) 0.69 parts by mass of component (B-2) and 0.057 parts by mass of phenylbutynol as a reaction inhibitor were uniformly mixed. Thereafter, 2.6 parts by mass of component (E-1) was uniformly mixed to obtain a thermally conductive silicone composition.
  • Example 10 A thermally conductive silicone composition was obtained in the same manner as in Example 9, except that 5.17 parts by mass of component (B-3) was further mixed with Example 9.
  • Example 11 A thermally conductive silicone composition was obtained in the same manner as in Example 9, except that 3.45 parts by mass of component (D-1) in Example 9 was replaced with 3.45 parts by mass of component (D-3).
  • Example 5 A thermally conductive silicone composition was obtained in the same manner as in Example 9, except that 3.45 parts by mass of component (D-1) was omitted.
  • Table 4 shows the composition, thermal conductivity, hardness, and change in hardness after heat aging of the cured thermally conductive silicone compositions obtained. .
  • Example 12 100 parts by mass of component (A-2), 1.8 parts by mass of component (F-1), and 5.0 parts by mass of filler treatment agent (2) were weighed, and 243 parts by mass of component (C-3) was added thereto over 60 minutes. Parts by mass and 540 parts by mass of component (C-4) were sequentially mixed. After homogenization, the mixture was heated and mixed at 160° C. for 60 minutes under reduced pressure, and then cooled to room temperature to obtain a mixture. To this mixture, 8.5 parts by mass of component (B-1), 0.14 parts by mass of component (B-2), 0.9 parts by mass of component (D-1), and 0.015 part of phenylbutynol as a reaction inhibitor. The mass parts were uniformly mixed. Thereafter, 0.68 part by mass of component (E-1) was uniformly mixed to obtain a thermally conductive silicone composition.
  • Example 6 A thermally conductive silicone composition was obtained in the same manner as in Example 12, except that 0.9 part by mass of component (D-1) was omitted.
  • Table 5 shows the composition of the thermally conductive silicone compositions of Example 12 and Comparative Example 6, the thermal conductivity of the resulting thermally conductive cured product, the hardness, and the change in hardness after heat aging.
  • Comparative Example 1 in which component (D) is not blended has a hardness change of +20 after curing at 150 ° C. for 100 hours, whereas component (D) is added to 100 parts by mass of component (C).
  • the hardness changes of Examples 1 and 2 in which 0.11 parts by mass of was blended were +3 and +5, respectively, and the hardness change was suppressed.
  • the hardness change in Comparative Example 3 in which the component (D) of Example 3 was 0.011 parts by mass with respect to 100 parts by mass of the component (C) was +28, and the component (D) was 2.12 parts by mass.
  • Comparative Example 5 in which component (D) is not blended has a hardness change of +38 after curing at 150 ° C. for 100 hours, whereas component (D) is added to 100 parts by mass of component (C).
  • Example 9 to 11 in which 0.11 parts by mass of was blended the hardness change was +11 to +6, and the hardness change was suppressed.
  • Comparative Example 6 which does not contain component (D), has a hardness change of +10 after curing for 100 hours at 150 ° C., whereas component (D ) in which 0.11 parts by mass of ) was blended, the change in hardness was +2, and the change in hardness was suppressed.
  • the fatty acid compound (fatty acid or fatty acid metal salt as component (D)) is within the range of 0.05 to 2 parts by mass with respect to 100 parts by mass of the inorganic filler (or heat dissipation filler).
  • the hardness change was suppressed even when the composition was aged at a high temperature of 150° C. for a long period of time. Therefore, it is expected that these heat radiating members can realize sufficient heat radiating properties without losing their stress relaxation properties and flexibility even when used under high temperature conditions for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題]高い熱伝導率を有しながら、加熱エージング後にも硬化物の硬さ変化が抑制されており、当該硬化物からなる熱伝導性部材を高温下で使用した場合でも柔軟性および応力緩和特性を維持できるオルガノポリシロキサン硬化物を与える硬化性オルガノポリシロキサン組成物、それからなる熱伝導性部材およびそれを用いる放熱構造体を提供する。 [解決手段](A)特定粘度のアルケニル基含有オルガノポリシロキサン、(B)オルガノハイドロジェンポリシロキサン、(C)熱伝導性充填剤 組成物中の固形分全体に対して60~90体積%の範囲となる量、(D)脂肪酸、脂肪酸エステルおよび脂肪酸金属塩から選ばれる少なくとも1種類以上 成分(C)100質量部に対して0.05~2.00質量部となる範囲の量、(E)触媒量のヒドロシリル化反応用触媒、(F)耐熱性付与剤を含有する、硬化性オルガノポリシロキサン組成物およびその使用。

Description

硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
本発明は、高い熱伝導率を有しながら、加熱エージング後にも硬化物の硬さ変化が抑制されており、当該硬化物からなる熱伝導性部材を高温下で使用した場合でも柔軟性および応力緩和特性を維持できるオルガノポリシロキサン硬化物を与える硬化性オルガノポリシロキサン組成物、それからなる熱伝導性部材およびそれを用いる放熱構造体に関する。
近年、トランジスター、IC、メモリー素子等の電子部品を登載したプリント回路基板やハイブリッドICの高密度・高集積化、二次電池(セル式)の容量の増大にともなって、電子部品や電池等の電子・電気機器から発生する熱を効率よく放熱するために、オルガノポリシロキサン、および酸化アルミニウム粉末、酸化亜鉛粉末等の熱伝導性充填剤からなる熱伝導性シリコーン組成物が広く利用されており、特に、高い放熱量に対応すべく、多量の熱伝導性充填剤を充填した熱伝導性シリコーン組成物が提案されている。熱伝導性シリコーン組成物は、耐熱性に優れ、かつ、熱伝導性充填剤を高濃度かつ高体積%で配合しても、その硬化物がゴム状であるので、一定の柔軟性と応力緩和性を有し、放熱構造体における熱源に対する追従性と密着性を維持し、放熱性能を維持できることが期待される。一方、近年では、熱伝導性充填剤の高配合が求められる傾向があるが、一般的に、高分子シリコーン硬化物由来のゴム物性は、熱伝導性充填剤を多量に配合すると損なわれる傾向があり、熱伝導性充填剤の含有量が多すぎると、得られる硬化物が硬くなりすぎてしまい、放熱対象との間隙を生じたりして追従性や応力緩和性が損なわれ、かえって、十分な放熱性が実現できなくなる場合がある。すなわち、硬化性の熱伝導性シリコーン組成物において、その熱電伝導性硬化物の硬さをコントロールすることは放熱性の実現上、極めて重要な課題である。
一方、特許文献1には、窒化ほう素粉末を含むシリコーン系の絶縁放熱シート用組成物において、ステアリン酸化合物を吸湿導電の防止剤および離型性改善の目的で限られた量添加することが提案されている。しかしながら、特許文献1には、オルガノポリシロキサン100重量部に対して、500重量部を超えるような、熱伝導性充填剤を高い体積%で含むような高放熱性の組成物は何ら開示されていない。さらに、特許文献1には、ステアリン酸化合物を熱伝導性充填剤を高充填した硬化物について使用した場合、その硬さに及ぼす影響について、いかなる記載も示唆もされておらず、熱電伝導性硬化物の硬さをコントロールするという課題および解決手段を与えるものではない。
また、特許文献2には、ステアリン酸鉄等のカルボン酸の金属塩を含む、触媒量の縮合触媒を用いる導電性シリコーン接着剤が提案されている。しかしながら、特許文献2には、ヒドロシリル化反応硬化性の組成物は何ら記載も示唆もされておらず、熱伝導性充填剤を高い体積%で含むような高放熱性の組成物は何ら開示されていない。さらに、特許文献2には、ステアリン酸鉄等はあくまで縮合触媒であって、当該成分をヒドロシリル化反応硬化性の組成物であって、熱伝導性充填剤を高充填した硬化物について使用した場合、その硬さに及ぼす影響について、いかなる記載も示唆もされておらず、熱電伝導性硬化物の硬さをコントロールするという課題および解決手段を与えるものではない。
同様に、特許文献3には、電気伝導性の硬化シリコーン生成物が提案されている。しかしながら、特許文献3には、ヒドロシリル化反応硬化性の組成物は何ら記載も示唆もされておらず、熱伝導性充填剤を高い体積%で含むような高放熱性の組成物は何ら開示されていない。また、特許文献3において、フレークの形態の金属粒子表面を脂肪酸または脂肪酸エステルで処理してもよい旨が記載されているが、その処理量や、ヒドロシリル化反応硬化性組成物に適用した場合の効果等は何ら記載も示唆もされておらず、脂肪酸の記載は一般的な粉体表面処理の範囲にとどまり、その技術的効果、特にヒドロシリル化反応硬化性の組成物であって、熱伝導性充填剤を高充填した硬化物について使用した場合、その硬さに及ぼす影響について何ら記載も示唆もされていない。
なお、上記のいずれの文献にも、ヒドロシリル化反応硬化性のシリコーン組成物において、脂肪酸等をフタロシアニン化合物等の耐熱性付与剤と併用することについて、いかなる記載も示唆もされていない。
特開平07-330927号公報 特開2002-80816公報 特開2002-088227号公報
一方、本件発明者らは、ヒドロシリル化反応硬化性の熱伝導性シリコーン組成物において、新たな課題を見出した。上記の通り、熱伝導性充填剤を多量に配合した熱伝導性シリコーン組成物を硬化させると、硬化物が硬くなりやすく、高い熱伝導率と硬化物の柔軟性はトレードオフの関係にあることが多い。しかしながら、硬化物の硬さと熱伝導率を調節して熱伝導性シリコーン組成物を設計した場合であっても、上記のような熱伝導性充填剤を非常に高い体積%(例えば、組成物全体(固形分)に対して60体積%以上)で含むような高放熱性の組成物の場合、硬化物が加熱エージング後に急激に硬くなって柔軟性およびゴム弾性を失い、応力緩和性や放熱構造における追従性、密着性が損なわれる場合がある。これに伴い、本来予定している放熱特性が十分に実現できなくなる場合がある。
本発明は、上記課題を解決すべくなされたものであり、熱伝導性充填剤を非常に高い体積%で含有するため、高い熱伝導率を有しながら、加熱エージング後にも硬化物の硬さ変化が抑制されており、当該硬化物からなる熱伝導性部材を高温下で使用した場合でも柔軟性および応力緩和特性を維持できるオルガノポリシロキサン硬化物を与える、硬化性オルガノポリシロキサン組成物、それからなる熱伝導性部材およびそれを用いる放熱構造体を提供することを目的とする。
鋭意検討の結果、本発明者らは、高い熱伝導率を与えるために熱伝導性充填剤を多量(具体的には組成物の固形分全体に対して60~90体積%となる範囲)に含み、ヒドロシリル化反応硬化性の組成物であって、脂肪酸、脂肪酸エステルおよび脂肪酸金属塩から選ばれる少なくとも1種類以上の脂肪酸系の化合物および耐熱性付与剤を一定量含む硬化性オルガノポリシロキサン組成物により、上記課題を解決可能であることを見出し、本発明に到達した。ここで、脂肪酸系の化合物は、ステアリン酸、ステアリン酸のアルカリ金属塩(リチウム塩等)、ステアリン酸のアルカリ土類金属塩(カルシウム塩等)に代表される、飽和脂肪酸系の化合物であることが特に好ましい。また、組成物を調整する場合、脂肪酸系の化合物のタイミングは任意であり、組成物の主剤であるアルケニル基含有オルガノポリシロキサンおよび熱伝導性充填剤と共に混合して加熱(ベースヒート)してもよく、アルケニル基含有オルガノポリシロキサンおよび熱伝導性充填剤を混合し、ベースヒート後の混合物にその他の成分と共に添加してもよい。すなわち、脂肪酸系の化合物は熱伝導性充填剤の表面処理剤となるタイミング以外で本発明にかかる組成物に添加しても、本発明の技術的効果は達成される。(実施例参照)
具体的には、本発明の目的は、
(A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
(B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.1~10モルとなる量、
(C)熱伝導性充填剤 組成物中の固形分全体に対して60~90体積%の範囲となる量、
(D)脂肪酸、脂肪酸エステルおよび脂肪酸金属塩から選ばれる少なくとも1種類以上 成分(C)100質量部に対して0.05~2.00質量部となる範囲の量、
(E)触媒量のヒドロシリル化反応用触媒、
(F)耐熱性付与剤
を含有し、
さらに任意で、
(G)以下の成分(G1)および成分(G2)から選ばれる1種類以上の成分
(G1)一般式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、R1は独立に非置換または置換の炭素―炭素二重結合を有しない一価炭化水素基であり、Rは独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・s未満であるオルガノポリシロキサン、
(G2)一般式(2):
alk SiO(R SiO) Si-R-SiR (3-d)(OR)
(式中、Ralkはアルケニル基であり、Rは独立に非置換または置換の炭素―炭素二重結合を有しない一価炭化水素基であり、Rは酸素原子または二価炭化水素基であり、Rは独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、cは1~250の整数であり、dは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・sの範囲にある、分子鎖末端にアルケニル基および加水分解性シリル基を有するシロキサン系化合物、および
(H)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランまたはその加水分解縮合物
から選ばれる1種類または2種類以上、
(I)ヒドロシリル化反応抑制剤、接着促進剤、有機溶剤およびその他の添加剤
を含んでもよい、硬化性オルガノポリシロキサン組成物、その硬化物、それからなる熱伝導性部材、それを用いる放熱構造体およびそれらの製造方法によって解決される。
本発明により、高い熱伝導率を有しながら、加熱エージング後にも硬化物の硬さ変化が抑制されており、当該硬化物からなる熱伝導性部材を高温下で使用した場合でも柔軟性および応力緩和特性を維持できるオルガノポリシロキサン硬化物を与える、硬化性オルガノポリシロキサン組成物が提供される。また、本発明により、当該硬化性オルガノポリシロキサン組成物を硬化させてなる熱伝導性部材、同部材を用いた放熱構造体(特に、電気・電子部品の放熱構造および二次電池の放熱構造を含む、電気・電子機器の放熱構造体)を提供することができる。
特に、本発明にかかる硬化性オルガノポリシロキサン組成物の硬化物は、高温下で使用した場合でも硬さ変化が抑制されているので、応力緩和性と柔軟性に優れ、様々な形状を備えた放熱対象に対して適用した場合、高温下で長期間使用しても、振動等で発熱性部材から剥落や空隙(部材からの部分的/一時的な剥離による空隙発生を含む、以下同じ)を生じにくく、優れた密着性と追従性を保ち続けるので、適応初期の放熱効率が損なわれることなく持続するという利点がある。このため、従来品に比べ、放熱部材の耐久性および放熱パフォーマンスに優れ、かつ、様々な形状を備えた放熱対象に適用でき、高温下での組み立て・アセンブリに利用しても剥落しにくく、かつ、長期にわたる高温下での放熱プロセスに利用できる利点を有する。
[硬化性オルガノポリシロキサン組成物]
本発明に係る組成物は、(A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン、(B)オルガノハイドロジェンポリシロキサン、(C)熱伝導性充填剤、(D)脂肪酸、脂肪酸エステルおよび脂肪酸金属塩から選ばれる少なくとも1種類以上(以下、「脂肪酸系化合物」ということがある)、(E)ヒドロシリル化反応用触媒、(F)耐熱性付与剤を含有してなり、さらに、任意で(G)(G1)分子鎖片末端のみにアルコキシ基を有する特定のオルガノポリシロキサン、(G2)分子鎖末端にアルケニル基および加水分解性シリル基を有する特定のシロキサン系化合物、(H)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランまたはその加水分解縮合物、および(I)ヒドロシリル化反応抑制剤、接着促進剤、有機溶剤およびその他の添加剤を含んでもよい。また、本発明にかかる組成物は、1液型の組成物であっても、2液型等の多成分型の組成物の形態であってもよい。以下、各成分およびその添加量等について説明する。
[(A)アルケニル基含有オルガノポリシロキサン]
成分(A)であるアルケニル基含有オルガノポリシロキサンは、本組成物の主剤であり、25℃における粘度が10~100,000mPa・sの範囲内である。(A)成分の25℃における粘度は、10~100,00mPa・sの範囲内であることが好ましく、10~10,000mPa・sの範囲内であることがより好ましい。(A)成分の粘度が10mPa・s未満であると、得られるオルガノポリシロキサン硬化物の機械的強度が低下する傾向があり、一方、100,000mPa・sを超えると、得られる組成物が高粘度過ぎるため、取扱作業性および細部への塗工性が低下する傾向がある。
成分(A)は、1種又は2種以上のアルケニル基含有オルガノポリシロキサンで構成される。こうしたアルケニル基含有オルガノポリシロキサンの分子構造は、特に限定されず、例えば、直鎖状、分枝鎖状、環状、三次元網状構造、並びにこれらの組み合わせが挙げられる。成分(A)の分子内のアルケニル基として、ビニル基、アリル基、ブテニル基、ヘキセニル基等が例示される。また、成分(A)中のアルケニル基以外の有機基として、メチル基等のアルキル基;フェニル基等のアリール基;3,3,3-トリフロロプロピル基等のハロゲン化アルキル基等のアルケニル基を除く一価炭化水素基が例示され、工業的にはメチル基またはフェニル基が好ましい。
特に好適には、成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンであり例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、これらの重合体のメチル基の一部がエチル基、プロピル基等のメチル基以外のアルキル基や3,3,3-トリフロロプロピル基等のハロゲン化アルキル基で置換された重合体、これらの重合体のビニル基がアリル基、ブテニル基、ヘキセニル基等のビニル基以外のアルケニル基で置換された重合体、およびこれらの重合体の2種以上の混合物が挙げられる。なお、これらのアルケニル基含有オルガノポリシロキサンは、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
[(B)オルガノハイドロジェンポリシロキサン]
成分(B)は、本発明の組成物の主たる架橋剤であり、分子内に2個以上のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンが特に制限なく利用できるが、得られる硬化物の柔軟性および基材への接着保持性の見地から、オルガノハイドロジェンポリシロキサンの分子中のケイ素原子結合水素原子の個数(平均値)は8個を超えない範囲が好ましい。特に、(B1)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも平均して1個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンを少なくとも含むことが好ましい。
このような成分(B1)は、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体が例示される。なお、これらの例示は非限定的であり、メチル基の一部はフェニル基、水酸基、アルコキシ基等で置換されていてもよい。
成分(B1)の25℃における粘度は特に限定されないが、好ましくは、1~500mPa・sの範囲内、特に好ましくは1~100mPa・sの範囲内であり、さらに、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
[組成物中のオルガノハイドロジェンポリシロキサン(架橋剤)の量]
本発明の組成物は、成分(B)について、少なくとも成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.1~10モルとなる量の範囲にあることが必要であり、0.2~5.0モルとなる量、0.3~3.0モルとなる量、または0.4~2.0モルとなる量の範囲であることが、得られるオルガノポリシロキサン硬化物の機械的強度と接着特性の点から、特に好ましい。
[(C)熱伝導性充填剤]
成分(C)は、本組成物および本組成物を硬化させてなる熱伝導性部材に熱伝導性を付与するための熱伝導性充填剤である。このような成分(C)としては、純金属、合金、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、金属ケイ化物、炭素、軟磁性合金及びフェライトからなる群から選ばれた、少なくとも1種以上の粉末及び/又はファイバーであることが好ましく、金属系粉末、金属酸化物系粉末、金属窒化物系粉末、または炭素粉末が好適である。成分(C)の形状は特に限定されないが、例えば、球状、針状、円盤状、棒状、不定形状が挙げられ、好ましくは、球状、不定形状である。また、成分(C)の平均粒子径は特に限定されないが、好ましくは、0.01~500μmの範囲内であり、さらに好ましくは、0.01~300μmの範囲内である。
成分(C)として好適には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、酸化マグネシウム粉末、窒化アルミニウム粉末またはグラファイトである。また、本組成物に、電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末であることが好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、酸化マグネシウム粉末、または窒化アルミニウム粉末であることが好ましい。
かかる熱伝導性充填剤は、後述する成分(G)である少なくとも片末端にアルコキシ基を有するシロキサン系化合物および/または成分(H)である長鎖アルキル基を有するアルコキシシランにより、その全部又は一部について表面処理がなされていてよく、かつ、好ましい。さらに、これらの成分と共に、これらの粉体及び/又はファイバーとして、カップリング剤として知られている各種表面処理剤により処理されているものを用いてもよい。成分(C)の粉体及び/又はファイバーを処理するための表面処理剤としては、成分(G)、成分(H)のほか、界面活性剤、その他のシランカップリング剤、アルミニウム系カップリング剤及びシリコーン系表面処理剤などが挙げられる。
成分(C)は、その充填効率を改善するために、例えば、粒径の大きい粉末と粒径の小さい粉末を最密充填理論分布曲線に従う比率で組み合わせることにより、充填効率が向上して、低粘度化及び高熱伝導化が可能になる。本発明においては、(C1)平均粒径が0.01~100μmである球状および破砕状の酸化アルミニウム粉末、(C2)平均粒径が0.01~100μmである球状および破砕状の酸化マグネシウム粉末、(C3)平均粒径が0.01~50μmである不定形な窒化アルミニウム粉末から選ばれ、充填効率を改善するために粒子径または形状の異なる2種類以上の混合物を使用してもよく、かつ、好ましい。
[成分(C)の含有量]
本発明において、高い熱伝導率を達成するため、成分(C)の含有量は、組成物中の固形分(硬化反応により硬化物を形成する成分)全体に対して60~90体積%の範囲であり、65~90体積%の範囲、70~90体積%の範囲、70~85体積%の範囲であることが好ましい。成分(C)の含有量が前記下限未満であると、得られる組成物の熱伝導性が2.0W/mK未満となり、目的とする高い熱伝導率が実現できなくなる場合がある。一方、上記範囲の上限を超えると、後述する成分(C)の使用や、成分(G)、成分(H)を配合又は成分(C)の表面処理に用いた場合であっても、得られる組成物の粘度が著しく高くなったり、初期の硬化物が著しく硬くなり、その取扱作業性および基材に対する応力緩和特性や密着性等が低下する場合がある。
なお、成分(C)の使用量は、成分(A)100質量部に対して600~4500質量部の範囲であることがさらに好ましく、800~4000質量部の範囲であることが特に好ましい。成分(C)の使用量が、上記の体積%の範囲かつ、成分(A)に対する使用量が上記範囲を満たす場合、本発明の課題を特に好適に解決可能である。
[その他の無機充填剤]
本発明の組成物は、任意成分として、例えば、ヒュームドシリカ、湿式シリカ、粉砕石英、酸化チタン、炭酸マグネシウム、酸化亜鉛、酸化鉄、ケイ藻土、カーボンブラック等の無機充填剤(「無機充填材」ともいう)、こうした無機充填剤の表面を後述する成分(G),成分(H)および/またはその他の有機ケイ素化合物(シラザン類等)により疎水処理してなる無機充填剤を配合してもよい。本発明の技術的効果、特に、高い熱伝導性および硬化物の柔軟性と応力緩和特性、基材に対する密着性を両立する見地からは、成分(C)以外の充填剤を実質的に含まない組成であってよい。一方、機械的強度の改善(補強)や粘度の調整等のその他の機能を目的として上記の充填剤を本発明の技術的効果を損なわない範囲で併用してもよく、かつ、本発明の好ましい実施形態の一つに含まれる。
[成分(C)の表面処理]
本発明にかかる成分(C)は、後述する成分(G)および/または成分(H)により表面処理されていることが好ましい。これらの成分による表面処理方法は、特に制限されるものではないが、成分(C)である熱伝導性無機充填剤への直接処理法、インテグラルブレンド法、ドライコンセントレート法等を用いることができる。本発明において、組成物全体としての充填性および硬化物の接着強度の改善の見地から、前記の成分(A)の一部または全部と成分(G)および成分(H)を予め混合しておき、当該混合物中に成分(C)を順次混合し、均一化した後に加熱(ベースヒート)する、加熱表面処理法が最も好適に例示できる。当該表面処理法は、減圧下において、100~200℃で当該混合物を加熱攪拌することができ、温度条件および攪拌時間はサンプルの量に応じて設計可能であるが、120~180℃かつ、0.25~10時間の範囲が好ましい。なお、成分(C)の表面処理工程は任意であるが、本組成物の流動性、ギャップフィル性およびチクソトロピー性の改善の見地から、成分(G)により、成分(C)の少なくとも一部が表面処理され、次いで、成分(H)により成分(C)が表面処理されている工程を含む、段階的な処理工程であってもよい。
上記混合に用いる装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ヘンシェルミキサー等が例示される。
[(D)脂肪酸系化合物]
成分(D)は、本組成物および本組成物を硬化させてなる、シリコーン系の熱伝導性部材である硬化物について、加熱エージング時における硬さ変化を抑制する成分である。特に、成分(C)である熱伝導性充填剤の配合量が上記範囲にある場合、成分(D)を使用しない場合には、硬化物の加熱エージング時に急激に硬くなり、その応力緩和性、柔軟性および基材密着性などが損なわれてしまう場合があるが、成分(D)と、好適には後述する成分(F)とをヒドロシリル化硬化反応性組成物において併用することで、得られる硬化物は高い熱伝導率を有し、かつ、初期の硬さを維持し、良好な応力緩和性、柔軟性および基材密着性を実現することができる。
成分(D)は、具体的には、脂肪酸、脂肪酸エステルおよび脂肪酸金属塩から選ばれる少なくとも1種類以上であり、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸等の脂肪酸;そのアルキルエステルである脂肪酸エステル;ナトリウム、リチウム、カリウム等の脂肪酸のアルカリ金属塩;カルシウム等の脂肪酸のアルカリ土類金属塩が例示できる。好適には、成分(D)は、(D1)飽和脂肪酸および飽和脂肪酸金属塩から選ばれる少なくとも1種類以上であり、(D1-1)ステアリン酸、ステアリン酸のアルカリ金属塩、ステアリン酸のアルカリ土類金属塩から選ばれる1種以上であることが特に好ましい。
成分(D)が、特に成分(F)との併用系で硬化物の硬さ変化を抑制する作用機序は明確に特定されていないが、脂肪酸、脂肪酸塩(石鹸)、脂肪酸エステル等の脂肪酸系化合物が成分(F)の存在下で耐熱性が改善されたシリコーン硬化物マトリックス内に限られた量存在することで、熱伝導性充填剤の粒子表面乃至近傍に、これらの脂肪酸系化合物からなる耐水性かつ潤滑性の薄膜または局所構造が形成され、高温下での粒子表面を化学的に低活性乃至不活性化し、かつ、熱伝導性充填剤の表面同士の凝集や粗大粒子の形成を効果的に防止しているのではないかと推測される。ただし、後述する通り、成分(D)は、熱伝導性充填剤の表面処理剤として使用しなくても、単に他の成分と均一混合するだけで技術的効果を発揮するため、本発明において組成物中に成分(D)を添加するタイミングは限定されるものではない。
成分(D)の配合量は、熱伝導性充填剤である成分(C)(複数からなる場合には総量)100質量部に対して0.05~2.0質量部の範囲である必要がある。本発明の技術的効果を達成するためには、成分(D)の配合量は前記の範囲である必要があり、前記の範囲は臨界的意義を有する。すなわち、成分(D)の配合量が前記下限未満であると、たとえ成分(F)と併用しても、硬化物の硬さ変化が抑制できない場合がある(例えば、後述する比較例1、比較例3)。一方、成分(D)の配合量が前記上限を超えると、硬化物の硬さ変化が抑制できない場合がある(例えば、後述する比較例4)。
[(E)ヒドロシリル化反応用触媒]
ヒドロシリル化反応用触媒は、本組成物の硬化に必要な成分であり、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。特に、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体であることが好ましく、当該錯体のアルケニルシロキサン溶液の形態で添加することが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
他方で、ヒドロシリル化反応用触媒としては、(メチルシクロペンタジエニル)トリメチル白金(IV)錯体、ビス(2,4-ペンタンジオナト)白金(II)錯体等の、いわゆる高エネルギー線活性化触媒又は光活性化触媒を用いてもよい。このようなヒドロシリル化反応用触媒を使用することで、組成物全体として、高エネルギー線の照射をトリガーとして低温でも硬化が可能であり、保存安定性に優れ、かつ、反応のコントロールが容易であるため、取り扱い作業性に優れるという特性を実現することができる場合がある。この場合、高エネルギー線として、紫外線が触媒活性化の効率の点から好ましく、波長280~380nmの範囲の紫外線が工業的利用の見地から好ましい。また、照射量は、高エネルギー線活性型触媒の種類により異なるが、紫外線の場合は、波長365nmでの積算照射量が100mJ/cm~100J/cmの範囲内であることが好ましい。
ヒドロシリル化反応用触媒の添加量は触媒量であればよく、より具体的には、組成物全体に対して、金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、あるいは、0.01~50ppmの範囲内となる量であることが好ましい。
[(F)耐熱性付与剤]
本発明にかかる組成物およびその硬化物は、前述の(D)脂肪酸系化合物を一定量含み、かつ、(F)耐熱性付与剤を併用することでその技術的効果を実現することができる。耐熱性付与剤の配合量は、組成物全体(固形分)の0.01~5.0質量%の範囲であってよく、0.05~2.0質量%、0.07~0.5質量%の範囲であってもよい。
耐熱性付与剤は、例えば、酸化鉄、酸化チタン、酸化セリウム、酸化マグネシウム、酸化亜鉛等の金属酸化物、水酸化セリウム等の金属水酸化物、フタロシアニン化合物、セリウムシラノレ-ト、セリウム脂肪酸塩、オルガノポリシロキサンとセリウムのカルボン酸塩との反応生成物等が挙げられる。特に好適には、(F1)フタロシアニン化合物であり、例えば、特表2014-503680号公報に開示された無金属フタロシアニン化合物及び金属含有フタロシアニン化合物からなる群より選択される添加剤が好適に用いられ、金属含有フタロシアニン化合物のうち、銅フタロシアニン化合物が特に好適である。最も好適かつ非限定的な耐熱性付与剤の一例は、29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅である。このようなフタロシアニン化合物は市販されており、例えば、PolyOne Corporation(Avon Lake,Ohio,USA)のStan-tone(商標)40SP03がある。
[(G)分子鎖片末端にアルコキシ基を有するシロキサン系化合物]
成分(G)は、本発明にかかる組成物の任意の構成であり、(G1)分子鎖片末端のみにアルコキシ基を有する特定のオルガノポリシロキサンおよび(G2)分子鎖末端にアルケニル基および加水分解性シリル基を有する特定のシロキサン系化合物から選ばれる1種類以上である。これらは、分子鎖片末端にアルコキシ基を有し、かつ、少なくとも一部にポリシロキサン構造を有する表面処理剤であり、成分(C)である熱伝導性充填剤の少なくとも一部について成分(G)による表面処理を行うことにより、成分(D)である熱伝導性充填剤が大量に配合されても、本組成物の流動性、ギャップフィル性およびチクソトロピー性が改善された硬化性オルガノポリシロキサン組成物を提供することができる。
成分(G)は、成分(G1)および成分(G2)から選ばれる1種類以上であり、いずれか一方のみを使用してもよく、両者を混合物等の形で併用してもよい。本発明において、特に好適な成分(G)は、分子鎖片末端にトリアルコキシシリル基またはトリアルコキシシロキシ基を有するものである。
成分(G1)は、一般式(1):
Figure JPOXMLDOC01-appb-C000003
で表され、25℃における粘度が10~10,000mPa・s未満であるオルガノポリシロキサンである。
一般式(1)中、R1は独立に非置換または置換の炭素―炭素二重結合を有しない一価の炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。工業的には、R1は好ましくはメチル基またはフェニル基であり、耐熱性の見地から、メチル基が好ましい。
は独立に水素原子、アルキル基、アルコキシアルキル基、アルケニル基、またはアシル基である。表面処理の見地から、Rはアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
一般式(1)中、aは5~250の範囲の整数であり、10~200の範囲が好ましい。また、bは1~3の整数であり、好ましくは、2または3である。本発明にかかる成分(G1)として、好適には、bは3であり、分子鎖片末端に、トリアルコキシシロキシ基を有し、R1がメチル基であるポリジメチルシロキサンが好適に例示される。
成分(G2)は、
一般式(2):
alk SiO(R SiO) Si-R-SiR (3-d)(OR)
で表され、25℃における粘度が10~10,000mPa・sの範囲にある、分子鎖末端にアルケニル基および加水分解性シリル基を有するシロキサン系化合物である。
ここで、Ralkはアルケニル基であり、ビニル基、アリル基、ヘキセニル基等の炭素原子数2~10のアルケニル基が例示される。成分(G2)は分子鎖の片末端にアルケニル基を有するため、成分(C)と併用した場合の硬化性、および接着特性を改善できる場合がある。
式中、Rは独立に非置換または置換の炭素―炭素二重結合を有しない一価炭化水素基であり、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられ、工業的見地からはメチル基またはフェニル基であり、耐熱性の見地から、メチル基が好ましい。Rは酸素原子または二価炭化水素基である。Rである二価炭化水素基としては、メチレン基等のアルキレン基;エチレンオキシエチレン基、エチレンオキシプロピレン基等のアルキレンオキシアルキレン基が挙げられる。一方、Rは酸素原子であってよく、かつ好ましい。
式中、Rは独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、アルキル基であることが好ましく、表面処理の見地から、特にはメチル基、エチル基であることが好ましい。成分(G2)はSi(OR)で表される片末端構造により、分子内に、加水分解性シリル基を有するため、成分(C)と併用した場合の表面処理効果に優れる。
式中のcは成分(G2)のジオルガノシロキサン単位の重合度(末端を除く)であり、1~250の整数であり、1~100の整数であることが好ましく、1~50の整数であることが特に好ましい。式中のdは1~3の整数であり、好ましくは3である。dが3である場合、成分(G2)の片末端は、特に好適には、トリメトキシシリル基(-Si (OMe))である。
成分(G)の配合量(成分(G1)と成分(G2)を併用する場合は、その総量)は、成分(C)の表面処理に十分な量であれば特に制限されるものではないが、一例として、組成物全体における成分(A)100質量部に対して0.005~100質量部の範囲内であり、0.05~100質量部であることが好ましく、0.5~50質量部であることがさらに好ましい。
[(H)C6以上のアルキルアルコキシシランまたはその加水分解縮合物]
成分(H)は成分(G)と同様に、組成物中で成分(C)である熱伝導性充填剤の表面処理剤として機能する成分であり、成分(C)の配合量を改善し、かつ、組成物全体の粘度および流動性を改善するとともに、接着特性を改善する成分である。このようなアルコキシシランは、C6以上のアルキル基を有する必要があり、メチル基等のC6未満のアルキル基のみを含むアルキルアルコキシシランまたはその加水分解縮合物を用いた場合、例え、成分(G)、後述する成分(I)のうち接着付与剤を併用しても十分な接着特性が実現できない場合がある。
炭素原子数6以上のアルキル基の具体例としてはヘキシル基、オクチル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基やベンジル基、フェニルエチル基等のアラルキル基などが挙げられるが、特に炭素数6~20のアルキル基が好ましい。
好適には、成分(H)は、下記構造式:
Si(OR)4-n
(式中、Yは炭素原子数6~18のアルキル基であり、Rは炭素原子数1~5のアルキル基であり、nは1~3の数である)
で表されるアルコキシシランであり、OR基としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが例示され、特にメトキシ基及びエトキシ基が好ましい。なお、nは1,2又は3であり、特に1であることが好ましい。
このような成分(E1)は、具体的には、C613Si(OCH33、C817Si(OC253、C1021Si(OCH33、C1123Si(OCH33、C1225Si(OCH33、C1429Si(OC253等が例示され、最も好適には、デシルトリメトキシシランである。
成分(H)の配合量は、成分(C)の表面処理に十分な量であれば特に制限されるものではないが、一例として、組成物全体における成分(A)100質量部に対して0.005~20質量部の範囲内であり、0.05~10質量部であることが好ましく、0.5~7.5質量部であることがさらに好ましい。
[(I)ヒドロシリル化反応抑制剤、接着促進剤、有機溶剤およびその他の添加剤]
本発明にかかる組成物は、成分(A)~(F)を必須とし、任意で成分(C)の表面処理剤として成分(G)および/または成分(H)を含んでもよく、かつ、以下のその他の成分を含んでよい。
[ヒドロシリル化反応抑制剤]
本発明の組成物には、その取扱作業性の見地から、さらにヒドロシリル化反応抑制剤を含むことが好ましい。ヒドロシリル化反応抑制剤は、本発明の硬化性オルガノポリシロキサン組成物のヒドロシリル化反応を抑制するための成分であって、具体的には、例えば、エチニルシクロヘキサノールのようなアセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤が挙げられる。反応抑制剤の添加量は、通常、硬化性オルガノポリシロキサン組成物全体の0.001~5質量%である。特に、本組成物の取扱作業性を向上させる目的では、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-フェニル-1-ブチン-3-オール(=フェニルブチノール)等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のシクロアルケニルシロキサン;ベンゾトリアゾール等のトリアゾール化合物等が特に制限なく使用することができる。
[接着付与剤]
本発明の組成物には、その硬化物の接着強度および基材に対する永久接着性を改善する目的で、さらに、接着付与剤を配合してもよい。本発明において使用可能な接着付与剤は、従来公知の接着付与剤であるアミノ基含有オルガノアルコキシシランとエポキシ基含有オルガノアルコキシシランとの反応混合物(特定の構造を有するカルバシラトラン誘導体、シラトラン誘導体を含む)、ジシラアルカン化合物(例えば、1,6-ビス(トリメトキシシリル)ヘキサン)に代表されるアルコキシシリル基を分子中に二つ以上有する有機化合物、エポキシ基含有シランまたはその部分加水分解縮合物から選ばれる1種類以上であってよく、これらの中から選ばれる2種類以上の接着付与剤を組み合わせて使用してもよく、かつ、好ましい。
好適には、接着付与剤は、
(IA-1)一般式:
  R Si(OR)4-n
(式中、Rは一価のエポキシ基含有有機基であり、Rは炭素原子数1~6のアルキル基または水素原子である。nは1~3の範囲の数である)
で表されるエポキシ基含有シランまたはその部分加水分解縮合物、および
(IA-2)一分子中に少なくとも二つのアルコキシシリル基を有し,かつそれらのシリル基の間にケイ素-酸素結合以外の結合が含まれている有機化合物
を、5:95~95:5の質量比、好ましくは50:50~95:5の質量比、より好ましくは60:40~90:30の質量比で含むものである。なお、これらの成分は、単独でもオルガノポリシロキサン硬化物の初期接着性を改善するものであるが、前記の質量比で併用することで、オルガノポリシロキサン硬化物の初期接着性、接着耐久性および接着強度(永久接着性)が大幅に改善される場合がある。
上記の成分(IA-1)として、3-グリシドキシプロリルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシランが例示される。
上記の成分(IA-2)として、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,4-ビス(トリメトキシシリル)ヘキサン、1,5-ビス(トリメトキシシリル)ヘキサン、2,5-ビス(トリメトキシシリル)ヘキサン、1-メチルジメトキシシリル-6-トリメトキシシリルヘキサン、1-フェニルジエトキシシリル-6-トリエトキシシリルヘキサン、1,6-ビス(メチルジメトキシシリル)ヘキサン等のジシラアルカン類が例示される。
上記の成分(IA-1),(IA-2)以外の接着付与剤として、特公昭52-8854号公報や特開平10-195085号公報に開示されているアミノ基含有オルガノアルコキシシランとエポキシ基含有オルガノアルコキシシランとの反応混合物(特定の構造を有するカルバシラトラン誘導体、シラトラン誘導体を含む)をさらに併用してもよい。
[有機溶媒その他の添加剤]
本発明の硬化性オルガノポリシロキサン組成物は、上記した成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、ケイ素原子結合水素原子およびケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、耐寒性付与剤、難燃性付与剤、顔料、染料等が挙げられる。また、本発明の硬化性オルガノポリシロキサン組成物は、所望により、公知の界面活性剤などからなる1種類以上の帯電防止剤;誘電性フィラー;電気伝導性フィラー;離型性成分;チクソ性付与剤;防カビ剤などを含むことができる。また、所望により、有機溶媒を添加してもよい。
[組成物の製造方法および剤形]
本発明の硬化性オルガノポリシロキサン組成物は、上記の各成分を混合することにより調製でき、混合装置としては、成分(C)の表面処理において例示したものと同様な装置が例示される。また、前記の通り、成分(D)は、成分(C)の表面処理/ベースヒート後のタイミングで添加してもよく、成分(C)の表面処理剤と共に添加してもよく、いずれのタイミングで添加しても本発明の技術的効果を達成可能である。
より具体的には、本発明にかかる組成物は、
i)前記の成分(A)、成分(C)、および、任意で成分(G)および/または成分(H)を混合後、当該混合物を加熱混合する工程の後、成分(D)およびその他の成分を混合する工程を有する製造方法;
ii)前記の成分(A)、成分(C)、成分(D)、および、任意で成分(G)および/または成分(H)を混合後、当該混合物を加熱混合する工程の後、その他の成分を混合する工程を有する製造方法
のいずれかの製造方法(混合プロセス)により製造することが好ましい。なお、加熱条件は、先に成分(C)の表面処理において述べたベースヒート条件と同様であり、混合時には全体が実質的に均一になるように混合することが好ましい。
本発明にかかる硬化性オルガノポリシロキサン組成物は1液型の組成物、好適には、前記のヒドロシリル化反応抑制剤およびその他の成分を含む組成物であってもよく、個別に保存される2種類以上の組成物からなる多成分型の組成物であってもよい。多成分型の組成物の場合、上記の成分(A)、成分(B)成分および成分(E)を同時に含まないことが必要である。これは、これらの成分(主剤、架橋剤および触媒)を同時に配合すると架橋反応が自発的に始まり、当該組成物の貯蔵安定性が短期間に失われ、多成分型組成物の目的である長期にわたる貯蔵安定性および取扱作業性が実現できなくなる場合がある。なお、多成分型組成物は、使用時に共通容器中でミキサー等の機械力を用いて攪拌したり、多成分の混合に対応したディスペンサー等を用いて混合されて塗布ないし適用される。
[硬化性]
本発明にかかる硬化性オルガノポリシロキサン組成物は、ヒドロシリル化反応により硬化して、熱伝導性に優れ、かつ、加熱エージング後であっても硬さ変化が抑制され、柔軟性及び応力緩和特性に優れたオルガノポリシロキサン硬化物を形成する。このヒドロシリル化反応硬化型のシリコーン組成物を硬化するための温度条件は、特に限定されないが、通常、20℃~200℃の範囲内、好ましくは20℃~150℃の範囲内であり、より好ましくは20~80℃の範囲内である。所望により、高温短時間で硬化させてもよく、室温等の低温で長時間(例えば数時間~数日)かけて硬化させてもよく、特に制限されるものではない。なお、成分(E)の少なくとも一部に高エネルギー線活性化触媒又は光活性化触媒を選択することで、高エネルギー線の照射をトリガーとする硬化を行ってもよい。
本発明にかかる硬化性オルガノポリシロキサン組成物を用いることで、放熱部品または該放熱部品を搭載した回路基板に、前記の硬化性オルガノポリシロキサン組成物を適用し、20℃~150℃、好ましくは、130℃未満、例えば20~125℃の範囲で硬化物を形成させ、放熱部材を設けてなる放熱構造体を得ることができる。
[熱伝導率]
本発明の硬化性オルガノポリシロキサン組成物は、熱伝導性充填剤を安定的に高充填することができ、2.5W/mK以上、好適には3.0W/mK以上、より好適には7.0W/mK以上の熱伝導率を備える。なお、本発明の硬化性オルガノポリシロキサン組成物においては、熱伝導率が2.5~9.5W/mK、所望により熱伝導率が7.0~9.5W/mKの組成物および硬化物を設計可能であり、かつ、加熱エージング後であっても硬さ変化が抑制され、柔軟性及び応力緩和特性に優れた熱伝導性硬化物を実現可能である。
[用途および放熱構造体]
本発明の硬化性オルガノポリシロキサン組成物およびその硬化物は、熱伝導による発熱性部品の冷却のために、発熱性部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料(熱伝導性部材)として有用であり、これを備えた放熱構造体を形成することができる。ここで、発熱性部品の種類や大きさ、細部の構造は特に限定されるものではないが、本発明の硬化性オルガノポリシロキサン組成物を硬化させてなる硬化物は、高い熱伝導性を有しながら、部材への初期接着性および接着強度に優れるだけでなく、加熱エージング後であっても長期間にわたって硬さ変化が抑制され、柔軟性及び応力緩和特性を維持できるので、振動等で発熱性部材から剥落や空隙を生じにくく、密着性と追従性が高く、かつ、工業的生産性に優れるので、自動車部品、電気・電子部品又はセル方式の二次電池類を含む電気・電子機器の放熱構造体に好適に適用される。
このような放熱構造体の構造は、特に制限されるものではないが、放熱部品または該放熱部品を搭載した回路基板に、前記の硬化性オルガノポリシロキサン組成物またはその硬化物を介して放熱部材を設けてなる放熱構造体が例示できる。このような構造は、例えば、放熱性部品である電子部品が回路基板上に搭載され、当該電子部品から発生する熱を硬化性オルガノポリシロキサン組成物またはその硬化物の薄膜層を介して放熱部材で放熱する構造が例示され、これらの部材は、本発明の特徴である加熱エージング後の硬さ変化が小さく、放熱部材の柔軟性、応力緩和性を維持し、密着性と追従性に優れることから、水平面だけでなく傾斜面乃至垂直面にも好適に配置されてもよい。
このような放熱構造体において、硬化性オルガノポリシロキサン組成物またはその硬化物の厚さは特に限定されないが、0.1~100mmの範囲であってよく、当該組成物またはその硬化物が隙間なく充填された電子部品から発生する熱を放熱部材に効率よく伝えることができる。
前記の熱伝導性シリコーン組成物からなる部材を備えた電気・電子機器は特に制限されるものではないが、例えば、セル方式のリチウムイオン電極二次電池、セルスタック式の燃料電池等の二次電池;プリント基板のような電子回路基板;ダイオード(LED)、有機電界素子(有機EL)、レーザーダイオード、LEDアレイのような光半導体素子がパッケージされたICチップ;パーソナルコンピューター、デジタルビデオディスク、携帯電話、スマートフォン等の電子機器に使用されるCPU;ドライバICやメモリー等のLSIチップ等が例示される。特に、高集積密度で形成された高性能デジタル・スイッチング回路においては、集積回路の性能及び信頼性に対して熱除去(放熱)が主要な要素となっているが、本発明に係る硬化性オルガノポリシロキサン組成物を用いてなる熱伝導性部材は、輸送機中のエンジン制御やパワー・トレーン系、エアコン制御などのパワー半導体用途に適用した場合にも、放熱性および取扱作業性に優れ、電子制御ユニット(ECU)など車載電子部品に組み込まれて過酷な環境下で使用された場合にも、部材との強固な接着力を維持し、優れた耐熱性および熱伝導性を実現できる。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例および比較例では下記の化合物ないし組成物を原料に用いた。
[組成物の調製および熱伝導性シリコーン硬化物(評価サンプル)の作成]
各成分を後述する方法で混合して、実施例1~12および比較例1~6の硬化性オルガノポリシロキサン組成物(以下、「熱伝導性シリコーン組成物」ということがある)を得た。その後、各々の熱伝導性シリコーン組成物を、高さ6mm、縦50mm、横30mmの金型に充填し、50℃で30分かけて硬化させた後、金型から取り出して、熱伝導性シリコーン硬化物を得た。得られた熱伝導性シリコーン硬化物の熱伝導率、硬さおよび加熱エージング後の硬さ変化は以下の方法で測定した。
[熱電伝導率]
 熱伝導率の測定は上記の条件で得られた熱伝導性シリコーン硬化物を2枚用いて、京都電子工業株式会社製TPS-500(ホットディスク法)により測定した。
[硬さ(タイプE硬さ)]
 硬さの測定は上記の条件で得られた熱伝導性シリコーン硬化物を2枚重ね、ASKER社製ASKER TYPE E型硬度計を使用して3秒後の値を測定した。
[硬さ変化]
 上記の条件で得られた熱伝導性シリコーン硬化物2枚を150℃の熱風循環式オーブン中で100時間養生した。取り出し後、25℃まで冷却したのち、熱伝導性シリコーン硬化物を2枚重ね、ASKER社製ASKER TYPE E型硬度計を使用して3秒後の値を測定した。養生前と150℃養生後の硬さの差を測定した。
本発明組成物は以下の各成分により形成されている。
成分(A):
A-1:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度 60mPa・s,Vi含有量 1.52質量%)
A-2:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度 400mPa・s,Vi含有量 0.43質量%)
成分(B):
B-1:分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内に平均2個、分子鎖側鎖に平均2個(粘度 20mPa・s,Si-H 含有量 0.10質量%)
B-2:分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内に平均5個、分子鎖側鎖に平均5個(粘度 5mPa・s,Si-H 含有量 0.75質量%)
B-3:1,1,1,3,5,5,5-ヘプタメチルトリシロキサン(Si-H 含有量 0.45質量%)
成分(C):
C-1:平均粒径0.5μmの多面体球状α型酸化アルミニウム粉末(住友化学株式会社製、AA04)
C-2:平均粒径2μmの多面体球状α型酸化アルミニウム粉末(住友化学株式会社製、AA2)
C-3:平均粒径0.4μmの破砕状酸化アルミニウム粉末(住友化学株式会社製、AES-12)
C-4:平均粒径2.5μmの破砕状酸化アルミニウム粉末(住友化学株式会社製、AL-M73A)
C-5:平均粒径95μmの球状溶融固化酸化アルミニウム粉末(デンカ株式会社製、DAW-90)
C-6:平均粒子径19μmの不定形窒化アルミニウム粉末(東洋アルミニウム株式会社製、TFZ-S20P)
C-7:平均粒径27μmの不定形窒化アルミニウム粉末(東洋アルミニウム株式会社製、TFZ-S30P)
C-8:平均粒径90μmの球状酸化マグネシウム粉末
成分(D):
D-1:ステアリン酸カルシウム(富士フィルム和光純薬製)
D-2:ステアリン酸(富士フィルム和光純薬製)
D-3:ステアリン酸リチウム(富士フィルム和光純薬製)
成分(E):
E-1:白金濃度が0.6重量%である白金と1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの錯体
成分(F):
F-1:29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅
硬化遅延剤:フェニルブチノール
成分(G1):
フィラー処理剤(1):式:(CH)SiO[(CH)SiO]30Si(OCH)
で表されるオルガノポリシロキサン
成分(H):
フィラー処理剤(2):デシルトリメトキシシラン
[実施例1]
成分(A-1)100質量部、成分(F-1)1.33質量部を計量し、そこに60分かけて成分(C-1)128質量部、成分(C-2)180質量部、成分(C-5)317.5質量部、成分(C-6)66.4質量部、成分(C-7)161質量部を順次混合した。均一にしたのち、減圧下で160℃で60分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(B-1)28.4質量部、成分(B-2)0.28質量部、成分(D-1)0.95質量部、反応抑制剤としてフェニルブチノール 0.016質量部を均一混合した。その後、成分(E-1)0.66質量部を均一混合し、熱伝導性シリコーン組成物を得た。なお、本発明における各実施例/比較例における混合にはTOKUSHU KIKA KOGYO CO.,LTD.製T.K.HIVIS MIX(型番)を混合装置として使用した。
[実施例2]
実施例1の成分(D-1)0.95質量部を成分(D-2)0.95質量部に置き換えた以外は実施例1と同様に熱伝導性シリコーン組成物を得た。
[比較例1]
実施例1から成分(D-1)0.95質量部を除いた以外は実施例1と同様に熱伝導性シリコーン組成物を得た。
実施例1、2および比較例1の熱伝導性シリコーン組成物について、組成、得られた熱伝導性シリコーン硬化物の熱伝導率、硬さおよび加熱エージング後の硬さ変化等を表1に示す。
Figure JPOXMLDOC01-appb-T000004


[実施例3]
成分(A-1)100質量部、成分(B-1)26.4質量部、成分(F-1)4.8質量部、フィラー処理剤(1)41.6質量部、フィラー処理剤(2)6.4質量部を計量し、そこに60分かけて成分(C-1)457.6質量部、成分(C-2)640質量部、成分(C-5)1120質量部、成分(C-6)224質量部、成分(C-7)576質量部を順次混合した。均一にしたのち、減圧下で160℃で60分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(B-2)0.64質量部、成分(D-1)3.2質量部、反応抑制剤としてフェニルブチノール 0.053質量部を均一混合した。その後、成分(E-1)2.4質量部を均一混合し、熱伝導性シリコーン組成物を得た。
[実施例4]
実施例3の成分(D-1)3.2質量部を30.1質量部とした以外は実施例3と同様に熱伝導性シリコーン組成物を得た。
[実施例5]
実施例3の成分(D-1)3.2質量部を45.1質量部とした以外は実施例3と同様に熱伝導性シリコーン組成物を得た。
[実施例6]
実施例3の成分(D-1)3.2質量部を60.5質量部とした以外は実施例3と同様に熱伝導性シリコーン組成物を得た。
[実施例7]
成分(A-1)100質量部、成分(B-1)27.4質量部、成分(D-1)1.61質量部、成分(F-1)4.8質量部、フィラー処理剤(1)40.3質量部、フィラー処理剤(2)6.45質量部を計量し、そこに60分かけて成分(C-1)461.3質量部、成分(C-2)645.2質量部、成分(C-5)1129質量部、成分(C-6)225.8質量部、成分(C-7)580.6質量部を順次混合した。均一にしたのち、減圧下で160℃で60分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(B-2)0.65質量部、反応抑制剤としてフェニルブチノール 0.054質量部を均一混合した。その後、成分(E-1)2.4質量部を均一混合し、熱伝導性シリコーン組成物を得た。
[実施例8]
実施例7の成分(D-1)1.61質量部を3.23質量部とし、フィラー処理剤(1)40.3質量部を38.7質量部とした以外は実施例7と同様に熱伝導性シリコーン組成物を得た。
実施例3~8の熱伝導性シリコーン組成物について、組成、得られた熱伝導性シリコーン硬化物の熱伝導率、硬さおよび加熱エージング後の硬さ変化等を表2に示す。
Figure JPOXMLDOC01-appb-T000005

[比較例2]
実施例3から成分(D-1)3.20質量部を除いた以外は実施例3と同様に熱伝導性シリコーン組成物を得た。
[比較例3]
実施例3の成分(D-1)3.20質量部を0.32質量部とした以外は実施例3と同様に熱伝導性シリコーン組成物を得た。
[比較例4]
実施例3の成分(D-1)3.20質量部を64質量部とした以外は実施例3と同様に熱伝導性シリコーン組成物を得た。
比較例2~4の熱伝導性シリコーン組成物について、組成、得られた熱伝導性シリコーン硬化物の熱伝導率、硬さおよび加熱エージング後の硬さ変化等を表3に示す。
Figure JPOXMLDOC01-appb-T000006

[実施例9]
成分(A-1)100質量部、成分(B-1)25.9質量部、成分(D-1)3.45質量部、成分(F-1)5.2質量部、フィラー処理剤(1)55.2質量部、フィラー処理剤(2)6.9質量部を計量し、そこに60分かけて成分(C-1)500質量部、成分(C-2)690質量部、成分(C-6)241質量部、成分(C-7)621質量部、成分(C-8)1200質量部を順次混合した。均一にしたのち、減圧下で160℃で60分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(B-2)0.69質量部、反応抑制剤としてフェニルブチノール 0.057質量部を均一混合した。その後、成分(E-1)2.6質量部を均一混合し、熱伝導性シリコーン組成物を得た。
[実施例10]
実施例9に更に成分(B-3)5.17質量部を混合した以外は実施例9と同様に熱伝導性シリコーン組成物を得た。
[実施例11]
実施例9の成分(D-1)3.45質量部を成分(D-3)3.45質量部に置き換えた以外は実施例9と同様に熱伝導性シリコーン組成物を得た。
[比較例5]
実施例9から成分(D-1)3.45質量部を除いた以外は実施例9と同様に熱伝導性シリコーン組成物を得た。
実施例9~11、比較例5の熱伝導性シリコーン組成物について、組成、得られた熱伝導性シリコーン硬化物の熱伝導率、硬さおよび加熱エージング後の硬さ変化等を表4に示す。
Figure JPOXMLDOC01-appb-T000007

[実施例12]
成分(A-2)100質量部、成分(F-1)1.8質量部、フィラー処理剤(2)5.0質量部を計量し、そこに60分かけて成分(C-3)243質量部、成分(C-4)540質量部を順次混合した。均一にしたのち、減圧下で160℃で60分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(B-1)8.5質量部、成分(B-2)0.14質量部、成分(D-1)0.9質量部、反応抑制剤としてフェニルブチノール 0.015質量部を均一混合した。その後、成分(E-1)0.68質量部を均一混合し、熱伝導性シリコーン組成物を得た。
[比較例6]
実施例12から成分(D-1)0.9質量部を除いた以外は実施例12と同様に熱伝導性シリコーン組成物を得た。
実施例12、比較例6の熱伝導性シリコーン組成物について、組成、得られた熱伝導性シリコーン硬化物の熱伝導率、硬さおよび加熱エージング後の硬さ変化等を表5に示す。
Figure JPOXMLDOC01-appb-T000008


表1に示すとおり、成分(D)を配合しない比較例1は150℃で100時間養生後の硬さ変化が+20であるのに対し、成分(C)100質量部に対して成分(D)を0.11質量部配合した実施例1と実施例2の硬さ変化はそれぞれ+3と+5であり、硬さ変化が抑えられていた。
表2に示すとおり、成分(D)を成分(C)100質量部に対して0.05から2質量部の範囲内で配合した実施例3~8は150℃で100時間養生後の硬さ変化が+11から+18であった。これに対し、表3に示す通り、実施例3から成分(D)を除いた比較例2の硬さ変化は+41であった。また、実施例3の成分(D)を成分(C)100質量部に対して0.011質量部とした比較例3の硬さ変化は+28であり、成分(D)を2.12質量部とした比較例4の硬さ変化は+28であった。このことから、比較例2~4に対して実施例3~8では硬さ変化が抑えられていること、成分(D)の配合量が本発明の規定範囲外(比較例3、4)においては、硬さ変化が抑制できないことが確認でき、量的限定の臨界的意義が示された。
表4に示すとおり、成分(D)を配合しない比較例5は150℃で100時間養生後の硬さ変化が+38であるのに対し、成分(C)100質量部に対して成分(D)を0.11質量部配合した実施例9~11では硬さ変化が+11~6であり、硬さ変化が抑えられていた。
表-5に示すとおり、成分(D)を配合しない比較例6は150℃で100時間養生後の硬さ変化が+10であるのに対し、成分(C)100質量部に対して成分(D)を0.11質量部配合した実施例12では硬さ変化が+2であり、硬さ変化が抑えられていた。
[総括]
実施例1~12の結果から、脂肪酸系化合物(成分(D)である脂肪酸または脂肪酸金属塩)が無機フィラー(もしくは放熱フィラー)100質量部に対して0.05~2質量部の範囲内である場合、本組成物は150℃という高温度条件で長期間エージングした場合であっても硬さ変化が抑制されていた。このため、これらの放熱部材は、高温度条件で長期間使用した場合でも、その応力緩和特性や柔軟性が損なわれず、十分な放熱特性が実現できるものと期待される。
一方で、比較例1~6より、脂肪酸系化合物(成分(D)である脂肪酸または脂肪酸金属塩)を配合しない場合や、その配合量が本発明の特許請求の範囲外である場合、これらの比較例にかかる組成物は、150℃という高温度条件で長期間エージングした場合、急激な硬さの変化を起こした。このため、本発明の実施例と異なり、特に高温で長期間これらの熱伝導性部材を使用した場合、硬さ変化に伴い、放熱体から振動によって物理的に剥落したり間隙を生じたりする原因となり、当初予定した放熱性能が実現できなくなることが強く懸念される。

Claims (15)

  1. (A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
    (B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.1~10モルとなる量、
    (C)熱伝導性充填剤 組成物中の固形分全体に対して60~90体積%の範囲となる量、
    (D)脂肪酸、脂肪酸エステルおよび脂肪酸金属塩から選ばれる少なくとも1種類以上 成分(C)100質量部に対して0.05~2.00質量部となる範囲の量、
    (E)触媒量のヒドロシリル化反応用触媒、
    (F)耐熱性付与剤
    を含有する、硬化性オルガノポリシロキサン組成物。
  2. 前記の成分(D)が、(D1)飽和脂肪酸および飽和脂肪酸金属塩から選ばれる少なくとも1種類以上である、請求項1に記載の硬化性オルガノポリシロキサン組成物。
  3. 前記の成分(D)が、(D1-1)ステアリン酸、ステアリン酸のアルカリ金属塩、ステアリン酸のアルカリ土類金属塩から選ばれる1種以上である、請求項1または請求項2に記載の硬化性オルガノポリシロキサン組成物。
  4. 前記の成分(F)が、(F1)フタロシアニン化合物を少なくとも一部に含む耐熱性付与剤である、請求項1~請求項3のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  5. さらに、
    (G)以下の成分(G1)および成分(G2)から選ばれる1種類以上の成分
    (G1)一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は独立に非置換または置換の炭素―炭素二重結合を有しない一価炭化水素基であり、Rは独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・s未満であるオルガノポリシロキサン、
    (G2)一般式(2):
    alk SiO(R SiO) Si-R-SiR (3-d)(OR)
    (式中、Ralkはアルケニル基であり、Rは独立に非置換または置換の炭素―炭素二重結合を有しない一価炭化水素基であり、Rは酸素原子または二価炭化水素基であり、Rは独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、cは1~250の整数であり、dは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・sの範囲にある、分子鎖末端にアルケニル基および加水分解性シリル基を有するシロキサン系化合物、および
    (H)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランまたはその加水分解縮合物
    から選ばれる1種類または2種類以上を含む、請求項1~請求項4のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  6. 組成物を硬化して得られる硬化物の熱伝導率が2.5W/mK以上であることを特徴とする、請求項1~請求項5のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  7. 前記の成分(C)の含有量が組成物全体に対して70~90体積%の範囲となる量であり、前記の成分(A)100質量部に対して、前記の成分(G)を0.005~100質量部の範囲内で含み、かつ、前記の成分(H)を0.005~20質量部の範囲内で含み、組成物を硬化して得られる硬化物の熱伝導率が7.0W/mK以上であることを特徴とする、請求項5に記載の硬化性オルガノポリシロキサン組成物。
  8. 請求項1~請求項7のいずれか1項に記載の硬化性オルガノポリシロキサン組成物またはその硬化物からなる熱伝導性部材。
  9. 請求項8に記載の熱伝導性部材を備えた放熱構造体。
  10. 放熱部品または該放熱部品を搭載した回路基板に、請求項1~請求項7のいずれか1項に記載の硬化性オルガノポリシロキサン組成物またはその硬化物を介して放熱部材を設けてなる放熱構造体。
  11. 電気・電子機器である、請求項9または請求項10に記載の放熱構造体。
  12. 電気・電子部品または二次電池である、請求項9または請求項10に記載の放熱構造体。
  13. 前記の成分(A)、成分(C)、および、任意で成分(G)および/または成分(H)を混合後、当該混合物を加熱混合する工程の後、成分(D)およびその他の成分を混合する工程を有する、請求項1~請求項7のいずれか1項に記載の硬化性オルガノポリシロキサン組成物の製造方法。
  14. 前記の成分(A)、成分(C)、成分(D)、および、任意で成分(G)および/または成分(H)を混合後、当該混合物を加熱混合する工程の後、その他の成分を混合する工程を有する、請求項1~請求項7のいずれか1項に記載の硬化性オルガノポリシロキサン組成物の製造方法。
  15. 放熱部品または該放熱部品を搭載した回路基板に、請求項1~請求項7のいずれか1項に記載の硬化性オルガノポリシロキサン組成物を適用し、130℃未満の温度で硬化させる工程を有する、放熱構造体の製造方法。
PCT/JP2022/013226 2021-04-09 2022-03-22 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体 WO2022215510A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22784495.8A EP4321572A1 (en) 2021-04-09 2022-03-22 Curable organopolysiloxane composition, thermally conductive member, and heat dissipation structure
US18/285,966 US20240199935A1 (en) 2021-04-09 2022-03-22 Curable organopolysiloxane composition, thermally conductive member, and heat dissipation structure
JP2023512910A JPWO2022215510A1 (ja) 2021-04-09 2022-03-22
CN202280031048.1A CN117203284A (zh) 2021-04-09 2022-03-22 固化性聚有机硅氧烷组合物、导热性构件以及散热结构体
KR1020237037867A KR20230169195A (ko) 2021-04-09 2022-03-22 경화성 오가노폴리실록산 조성물, 열전도성 부재 및 방열 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066179 2021-04-09
JP2021-066179 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215510A1 true WO2022215510A1 (ja) 2022-10-13

Family

ID=83545350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013226 WO2022215510A1 (ja) 2021-04-09 2022-03-22 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体

Country Status (7)

Country Link
US (1) US20240199935A1 (ja)
EP (1) EP4321572A1 (ja)
JP (1) JPWO2022215510A1 (ja)
KR (1) KR20230169195A (ja)
CN (1) CN117203284A (ja)
TW (1) TW202307172A (ja)
WO (1) WO2022215510A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503224B1 (ja) 2023-07-06 2024-06-19 富士高分子工業株式会社 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (ja) 1972-01-13 1977-03-11
JPH07330927A (ja) 1994-06-14 1995-12-19 Shin Etsu Chem Co Ltd 絶縁放熱シート用組成物および絶縁放熱シート
JP2002080816A (ja) 2000-07-20 2002-03-22 Dow Corning Corp シリコーン組成物及びそれから形成される導電性シリコーン接着剤
JP2002088227A (ja) 2000-08-08 2002-03-27 Dow Corning Corp シリコーン組成物及び電気伝導性の硬化シリコーン生成物
WO2011007789A1 (ja) * 2009-07-15 2011-01-20 株式会社カネカ 光学材料用硬化性組成物
WO2013051600A1 (ja) * 2011-10-04 2013-04-11 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2019021826A1 (ja) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 多成分硬化型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
WO2020203299A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (ja) 1972-01-13 1977-03-11
JPH07330927A (ja) 1994-06-14 1995-12-19 Shin Etsu Chem Co Ltd 絶縁放熱シート用組成物および絶縁放熱シート
JP2002080816A (ja) 2000-07-20 2002-03-22 Dow Corning Corp シリコーン組成物及びそれから形成される導電性シリコーン接着剤
JP2002088227A (ja) 2000-08-08 2002-03-27 Dow Corning Corp シリコーン組成物及び電気伝導性の硬化シリコーン生成物
WO2011007789A1 (ja) * 2009-07-15 2011-01-20 株式会社カネカ 光学材料用硬化性組成物
WO2013051600A1 (ja) * 2011-10-04 2013-04-11 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2019021826A1 (ja) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 多成分硬化型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
WO2020203299A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503224B1 (ja) 2023-07-06 2024-06-19 富士高分子工業株式会社 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法

Also Published As

Publication number Publication date
KR20230169195A (ko) 2023-12-15
CN117203284A (zh) 2023-12-08
US20240199935A1 (en) 2024-06-20
TW202307172A (zh) 2023-02-16
JPWO2022215510A1 (ja) 2022-10-13
EP4321572A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US11549043B2 (en) Multicomponent-curable thermally-conductive silicone gel composition, thermally-conductive member and heat dissipation structure
US11578245B2 (en) Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
JP7160508B2 (ja) 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
TWI743247B (zh) 導熱性聚矽氧組成物及其之硬化物,以及製造方法
JP7144542B2 (ja) サーマルギャップフィラー及びバッテリーマネジメントシステムへのその用途
TW202100663A (zh) 多成分型導熱性聚矽氧凝膠組成物、導熱性構件及散熱結構體
WO2022215510A1 (ja) 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
CN116113663A (zh) 导热性有机硅组合物及导热性构件
WO2022038888A1 (ja) 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512910

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280031048.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237037867

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237037867

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022784495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784495

Country of ref document: EP

Effective date: 20231109