WO2022215373A1 - 位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット - Google Patents

位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット Download PDF

Info

Publication number
WO2022215373A1
WO2022215373A1 PCT/JP2022/006921 JP2022006921W WO2022215373A1 WO 2022215373 A1 WO2022215373 A1 WO 2022215373A1 JP 2022006921 W JP2022006921 W JP 2022006921W WO 2022215373 A1 WO2022215373 A1 WO 2022215373A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
link
arm
work machine
extension
Prior art date
Application number
PCT/JP2022/006921
Other languages
English (en)
French (fr)
Inventor
光彦 竃門
峻 酒井
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to DE112022001080.0T priority Critical patent/DE112022001080T5/de
Priority to KR1020237029721A priority patent/KR20230136210A/ko
Priority to CN202280018596.0A priority patent/CN117015645A/zh
Priority to US18/550,198 priority patent/US20240159023A1/en
Publication of WO2022215373A1 publication Critical patent/WO2022215373A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/301Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom with more than two arms (boom included), e.g. two-part boom with additional dipper-arm
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/302Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom with an additional link
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present disclosure relates to position estimation systems, position estimation units, work machines, and extension units.
  • the working machine disclosed in Patent Document 1 includes a vehicle body and a working machine.
  • a vehicle body is provided with, for example, a GNSS (Global Navigation Satellite System) antenna for detecting the position of the vehicle body.
  • an IMU Inertial Measurement Unit
  • the IMU detects the roll angle and pitch angle of the vehicle body.
  • a working machine has a boom, an arm, a bucket, and a hydraulic cylinder that drives them.
  • the controller of the work machine calculates the blade edge position of the bucket from the position and attitude of the vehicle body, the dimensions of each part of the work machine, the swing angle of each part of the work machine, and the like.
  • Patent Document 1 describes that an angle sensor is attached to the swinging portion of each work machine when detecting the swing angle of each part of the work machine.
  • the angle sensor is attached to the bucket or bucket pin, the part where the angle sensor is placed may be submerged in water, so the angle sensor can be damaged. It is highly resistant and needs to be strongly protected to prevent damage.
  • An object of the present disclosure is to provide a position estimation system, a position estimation unit, a work machine, and an extension unit that are less susceptible to work. (means to solve the problem)
  • a position estimation system includes a work machine body, an arm, a bucket, and a bucket cylinder that drives the bucket, and is capable of swinging with respect to the work machine body;
  • a first attitude detector and a controller are provided.
  • a first attitude detector is positionable on the linkage. The controller determines the position of the bucket with respect to the work machine based on data on the shape of the first work machine, data on the shape of the second work machine, information on the attitude of the first work machine, and values detected by the first attitude detector.
  • the second work machine has an extension portion including a first end connectable to the bucket and a second end connectable to the arm.
  • the link mechanism has a first link portion, a second link portion, and a third link portion.
  • the first link portion is connected to the extension portion via the first connecting portion, and is connectable to the bucket link portion connected to the bucket via the second connecting portion.
  • the second link portion is connected to the first link portion via the second connecting portion and extends toward the second end portion.
  • the third link portion is arranged closer to the second end than the first link portion, is connected to the extension portion via the third connecting portion, and is connected to the second link portion via the fourth connecting portion. .
  • a position estimation unit includes a work machine body, an arm, a bucket, and a bucket cylinder that drives the bucket, and is capable of swinging with respect to the work machine body;
  • a position estimating unit for estimating information about the position of a bucket of a working machine including a second working machine that has a link mechanism that transmits the drive of a cylinder to the bucket and that can be mounted between an arm and the bucket.
  • a first attitude detector is positionable on the linkage. The detector controller obtains a detection value from the first attitude detector and transmits information based on the detection value to the working machine body.
  • the second work machine has an extension portion including a first end connectable to the bucket and a second end connectable to the arm.
  • the link mechanism has a first link portion, a second link portion, and a third link portion.
  • the first link portion is connected to the extension portion via the first connecting portion, and is connectable to the bucket link portion connected to the bucket via the second connecting portion.
  • the second link portion is connected to the first link portion via the second connecting portion and extends toward the second end portion.
  • the third link portion is arranged closer to the second end than the first link portion, is connected to the extension portion via the third connecting portion, and is connected to the second link portion via the fourth connecting portion. .
  • a working machine includes a working machine main body, a first working machine, a second working machine, a first attitude detector, and a controller.
  • the first work machine has an arm, a bucket, and a bucket cylinder that drives the bucket, and is swingable with respect to the work machine body.
  • the second work machine has a link mechanism that transmits the drive of the bucket cylinder to the bucket, and can be mounted between the arm and the bucket.
  • the first attitude detector is arranged on the link mechanism.
  • the controller obtains data about the shape of the first work machine, data about the shape of the second work machine, information about the attitude of the first work machine, and information about the position of the bucket based on values detected by the first attitude detector. presume.
  • the second work machine has an extension portion including a first end connectable to the bucket and a second end connectable to the arm.
  • the link mechanism has a first link portion, a second link portion, and a third link portion.
  • the first link portion is connected to the extension portion via the first connecting portion, and is connectable to the bucket link portion connected to the bucket via the second connecting portion.
  • the second link portion is connected to the first link portion via the second connecting portion and extends toward the second end portion.
  • the third link portion is arranged closer to the second end than the first link portion, is connected to the extension portion via the third connecting portion, and is connected to the second link portion via the fourth connecting portion. .
  • An extension unit includes an extension arm and a first attitude detector.
  • the extension arm has an extension portion and a link mechanism.
  • the extension portion includes a first end connectable with the bucket and a second end connectable with the arm.
  • the link mechanism transmits the drive of the bucket cylinder to the bucket.
  • the link mechanism includes a first link portion, a second link portion, and a third link portion.
  • the first link portion is connected to the extension portion via the first connecting portion, and is connectable to the bucket link portion connected to the bucket via the second connecting portion.
  • the second link portion is connected to the first link portion via the second connecting portion and extends toward the arm side.
  • the third link portion is arranged closer to the second end than the first link portion, is connected to the extension portion via the third connecting portion, and is connected to the second link portion via the fourth connecting portion.
  • FIG. 1 is a perspective view of a work machine according to an embodiment of the present disclosure
  • FIG. 1 is a side view of a working machine in an embodiment according to the present disclosure
  • FIG. 1 is a plan view of a working machine in an embodiment according to the present disclosure
  • FIG. (a) A side view of the bucket in the embodiment according to the present disclosure
  • (b) A diagram showing a state in which the side portion on the front side of the paper plane is removed from the bucket of FIG. 4(a).
  • 1 is a block diagram showing the configuration of a position estimation system according to an embodiment of the present disclosure
  • FIG. It is a figure which shows the structure of a working machine typically. It is a figure which shows an example of a guide screen.
  • FIG. 1 is a perspective view of a work machine according to an embodiment of the present disclosure
  • FIG. 1 is a side view of a working machine in an embodiment according to the present disclosure
  • FIG. 1 is a plan view of a working machine in an embodiment according to the present disclosure
  • FIG. 2 is a side view showing the first working machine of the working machine according to the embodiment of the present disclosure with the extension arm removed except for the third link portion; (a) to (c) are diagrams showing information transmitted from a position estimation unit according to another embodiment of the present disclosure to a vehicle body.
  • FIG. 4 is a side view showing an extension arm having a link mechanism according to another embodiment of the present disclosure; (a) A plan view showing an arrangement state of a bucket angle sensor according to another embodiment of the present disclosure on a third link portion, (b) A third link of a bucket angle sensor according to another embodiment of the present disclosure The side view which shows the arrangement
  • FIG. 1 is a perspective view of a working machine 1 according to an embodiment.
  • the work machine 1 mainly includes a vehicle body 2 (an example of a work machine body), a work machine 3, and a position estimation system 50 (see FIG. 5).
  • vehicle body 2 has a revolving body 4 and a travel device 5 .
  • the revolving body 4 is rotatably supported with respect to the travel device 5 .
  • An operator's cab 6 is arranged in the revolving body 4 .
  • Traveling device 5 includes crawler belts 5a and 5b. The work machine 1 travels by rotating the crawler belts 5a and 5b.
  • Work machine 3 The working machine 3 is attached to the vehicle body 2 .
  • Work machine 3 includes a first work machine 25 and an extension arm 12 (an example of a second work machine).
  • the extension arm 12 is configured to be detachable from the first working machine 25 .
  • the first working machine 25 includes a boom 10, an arm 11, and a bucket 13.
  • the base end of the boom 10 is rotatably attached to the vehicle body 2 via a boom pin 14.
  • a base end of the arm 11 is rotatably attached to a tip of the boom 10 via an arm pin 15 .
  • a proximal end of the extension arm 12 is attached to a distal end of the arm 11 via two connecting pins 16 and 17 .
  • Bucket 13 is rotatably attached to the tip of extension arm 12 via bucket pin 18 .
  • the work machine 3 includes a pair of boom cylinders 19, an arm cylinder 20, and a bucket cylinder 21.
  • the boom cylinder 19, the arm cylinder 20, and the bucket cylinder 21 are each hydraulic cylinders.
  • a pair of boom cylinders 19 are arranged with the boom 10 interposed therebetween.
  • the bottom end of each boom cylinder 19 is rotatably attached to the revolving body 4 via a boom cylinder foot pin 19a.
  • the rod end of each boom cylinder 19 is rotatably attached to the boom 10 via a boom cylinder top pin 19b.
  • the bottom end of the arm cylinder 20 is attached to the boom 10 via an arm cylinder foot pin (not shown).
  • a rod-side end of the arm cylinder 20 is attached to the arm 11 via an arm cylinder top pin 20b.
  • the bottom end of the bucket cylinder 21 is attached to the arm 11 via a bucket cylinder foot pin 21a.
  • a rod-side end of the bucket cylinder 21 is attached to the extension arm 12 via a third link pin 38 (described later).
  • the boom 10 operates as the boom cylinder 19 expands and contracts.
  • the arm cylinder 20 expands and contracts, the arm 11 and the extension arm 12 operate.
  • the bucket 13 is operated by the expansion and contraction of the bucket cylinder 21 .
  • FIG. 2 is a side view showing the working machine 3.
  • FIG. 3 is a plan view of FIG. 2.
  • the extension arm 12 includes an extension portion 31 and a link mechanism 32.
  • the extension part 31 is attached between the arm 11 and the bucket 13 .
  • the extension portion 31 has a base end portion 31b (an example of a second end portion) attached to the arm 11 and a tip end portion 31a (an example of a first end portion) to which the bucket 13 is attached.
  • the extension portion 31 is attached to the arm 11 via connecting pins 16 and 17 at the base end portion 31b.
  • the connecting pin 16 and the connecting pin 17 are arranged side by side along the longitudinal direction of the arm 11 .
  • the connecting pin 16 is arranged closer to the proximal end of the arm 11 than the connecting pin 17 is.
  • a bucket 13 is attached to the extension part 31 via a bucket pin 18 at a tip part 31a.
  • the link mechanism 32 transmits the expansion and contraction of the bucket cylinder 21 to the bucket 13.
  • the link mechanism 32 is attached to the extension portion 31 .
  • the link mechanism 32 has a first link portion 33 , a second link member 34 (an example of a second link portion), and a third link portion 35 .
  • the first link portion 33 is arranged at the tip portion 31 a of the extension portion 31 .
  • the first link portion 33 has a pair of first link members 33a arranged with the extension portion 31 interposed therebetween, as shown in FIG.
  • one end of each first link member 33a is attached to the extension portion 31 via a first link pin 36 (an example of a first connecting portion) on the base end portion 31b side of the bucket pin 18. It is rotatably connected to the side.
  • the other end of each first link member 33a is rotatably connected to a bucket link member 47a rotatably connected to the bucket 13 via a second link pin 37 (an example of a second connecting portion). .
  • the second link member 34 is rotatably connected to the other end of the pair of first link members 33a via a second link pin 37.
  • the second link member 34 is a member formed to extend from the portion where the second link pin 37 is arranged toward the base end portion 31b.
  • the other end of the second link member 34 is rotatably connected to the rod-side tip of the bucket cylinder 21 via a third link pin 38 .
  • the third link portion 35 is arranged closer to the arm 11 (toward the proximal end portion 31b) than the first link portion 33 is. In this embodiment, the third link portion 35 is arranged at the proximal end portion 31b.
  • the third link portion 35 has a pair of third link members 35a arranged with the extension portion 31 interposed therebetween, as shown in FIG.
  • One end of each third link member 35a is rotatably connected to the other end of the second link member 34 and the rod-side tip of the bucket cylinder 21 via a third link pin 38 (an example of a fourth connecting portion).
  • the other end of each third link member 35a is rotatably connected to the side surface of the extension portion 31 via a connecting pin 16 (an example of a third connecting portion).
  • the link mechanism 32 constitutes a four-bar link having the first link pin 36, the second link pin 37, the third link pin 38, and the connecting pin 16 as nodes, but is not a parallel link.
  • FIG. 4(a) is a side view of the bucket 13.
  • FIG. Bucket 13 includes a bucket body 41 , a connecting portion 42 and teeth 43 .
  • the connecting portion 42 is connected to the bucket body 41 and includes a portion attached to the extension arm 12 .
  • FIG. 4(b) is a diagram showing a state in which the side wall portion 41c on the front side of the paper surface of the bucket 13 of FIG. 4(a) is removed.
  • the bottom surface portion 41a has a curved shape when viewed from the side.
  • the rear portion 41b is connected to the bottom portion 41a at a position 41p.
  • the pair of side wall portions 41c are arranged to face each other and cover the sides of the space surrounded by the bottom surface portion 41a and the rear surface portion 41b.
  • the opening to the external space of the space surrounded by the bottom surface portion 41a, the rear surface portion 41b, and the pair of side wall portions 41c is shown as the opening portion 13a.
  • the bottom surface portion 41a has a front lip 41d, a front surface portion 41e, and a curved portion 41f.
  • the front surface portion 41e is a flat plate-like portion and has a linear shape when viewed from the side.
  • the curved portion 41f is a curved plate-like portion, and has a shape that is convexly curved toward the outside of the bucket body 41 in a side view.
  • the curved portion 41f is connected to the front portion 41e at a position 41q.
  • the front lip 41d is a flat plate-like member and has a linear shape when viewed from the side.
  • the front lip 41d is fixed to the end of the front face portion 41e opposite to the position 41q.
  • the thickness of the front lip 41d is greater than the thickness of the front portion 41e.
  • the front lip 41d is a member to which the teeth 43 are fixed.
  • the back portion 41b has a first member 41g and a second member 41h.
  • the first member 41g has a plate shape and is connected to the curved portion 41f of the bottom portion 41a at a position 41p.
  • the second member 41h is arranged on the outside of the first member 41g and has an outwardly convexly curved portion.
  • the connecting portion 42 is arranged on the back portion 41b.
  • the connecting portion 42 includes a pair of brackets 42a (see FIG. 1).
  • the pair of brackets 42a are arranged to face each other in the width direction.
  • the bracket 42a is fixed to the rear portion 41b as shown in FIGS. 4(a) and 4(b).
  • the bracket 42a stands outward from the rear surface portion 41b.
  • Each bracket 42a includes a first hole 42b and a second hole 42c. As shown in FIG. 2, the bucket pin 18 is inserted into the first hole 42b on the opening 13a side.
  • a bucket link pin 46 for attaching the bucket 13 to the bucket link portion 47 is passed through the second hole 42c on the bottom surface portion 41a side.
  • the bucket link portion 47 has a pair of bucket link members 47a as shown in FIG. One end of each bucket link member 47a is rotatably connected via a bucket link pin 46 to the bracket 42a. The other end of each bucket link member 47a is rotatably connected to the first link member 33a and the second link member 34 via the second link pin 37. As shown in FIG. The teeth 43 are arranged at the tip of the bottom surface portion 41a on the side opposite to the back surface portion 41b.
  • FIG. 5 is a block diagram showing the configuration of the position estimation system 50. As shown in FIG.
  • the position estimation system 50 includes an input device 52, a display 53, a controller 54, a storage device 55, a position sensor 56 (an example of a state detector), and an orientation sensor 57, as shown in FIG. .
  • the input device 52 and the display 53 are arranged in the driver's cab 6.
  • the input device 52 receives an operator's operation for setting the control of the work machine 1 and outputs an operation signal according to the operation.
  • Input device 52 is, for example, a touch screen.
  • the input device 52 may include levers, switches.
  • the operator can use the input device 52 to input the shape data of the vehicle body 2 and the work implement 3 . For example, when installing a new extension arm 12 , the shape data of the extension arm 12 can be input using the input device 52 .
  • the display 53 displays images corresponding to command signals input to the input device 52 .
  • the display 53 displays a guide screen for assisting work by the work machine 1 .
  • the display 53 displays, for example, terrain data and the current position of the cutting edge 13p of the bucket 13 (an example of information regarding the position of the bucket).
  • the controller 54 calculates the bucket angle ⁇ 3 based on the acquired data, and displays the terrain data and the position of the cutting edge 13p of the bucket 13 on the display 53.
  • the controller 54 includes a processor such as a CPU (Central Processing Unit) and memories such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • the storage device 55 includes a semiconductor memory, hard disk, or the like. Storage device 55 is an example of a recording medium readable by non-transitory controller 54 .
  • the storage device 55 stores computer instructions executable by the processor to estimate the position of the cutting edge 13p of the bucket 13 and to provide an indication of the position of the cutting edge 13p.
  • the position sensor 56 measures the position of the work machine 1.
  • the position sensor 56 is arranged on the vehicle body 2 .
  • the position sensor 56 includes a GNSS (Global Navigation Satellite System) receiver 61 , an antenna 62 and an IMU 63 .
  • the GNSS receiver 61 is, for example, a GPS (Global Positioning System) receiver.
  • the GNSS receiver 61 receives positioning signals from satellites, calculates the position of the antenna 62 based on the positioning signals, and generates vehicle body position data.
  • the controller 54 acquires vehicle body position data (an example of position information) from the GNSS receiver 61 .
  • the IMU 63 is an inertial measurement unit.
  • the IMU 63 acquires tilt angle data (an example of tilt information).
  • the tilt angle data includes an angle (pitch angle) in the longitudinal direction of the vehicle with respect to the horizontal and an angle (roll angle) in the lateral direction of the vehicle with respect to the horizontal.
  • the attitude sensor 57 detects attitude data indicating the attitude of the working machine 3 .
  • the attitude sensor 57 includes a boom angle sensor 64 (an example of a third attitude detector), an arm angle sensor 65 (an example of a second attitude detector), a bucket angle sensor 66 (an example of a first attitude detector), including.
  • a boom angle sensor 64 detects a boom angle ⁇ 1.
  • FIG. 6 is a diagram schematically showing the configuration of the work machine 1. As shown in FIG. As shown in FIG. 5, the boom angle ⁇ 1 indicates the tilt angle of the boom 10 in the vehicle body 2. As shown in FIG. An arm angle sensor 65 detects an arm angle ⁇ 2. An arm angle ⁇ 2 indicates an inclination angle of the arm 11 with respect to the boom 10 .
  • the boom angle sensor 64 is, for example, an IMU and is arranged on the boom 10.
  • the boom angle sensor 64 outputs a detection signal indicating the boom angle to the controller 54 .
  • the controller 54 calculates the boom angle ⁇ 1 from the tilt angle data of the vehicle body 2 and the detection signal.
  • the arm angle sensor 65 is, for example, an IMU and is arranged on the arm 11. Arm angle sensor 65 outputs a detection signal indicating the arm angle to controller 54 .
  • the controller 54 calculates the arm angle ⁇ 2 from the tilt angle data of the vehicle body 2, the boom angle ⁇ 1, and the detection signal.
  • the boom angle sensor 64 and the arm angle sensor 65 may be sensors that detect the cylinder stroke.
  • the controller 54 calculates the boom angle ⁇ 1 and the arm angle ⁇ 2 based on the cylinder stroke.
  • the bucket angle sensor 66 is an IMU. As shown in FIGS. 2 and 3, the bucket angle sensor 66 is attached to the outer side surface 35b (an example of the outer side surface) of the third link member 35a. The bucket angle sensor 66 is housed inside a housing case 68 . In a side view, the straight line connecting the arm pin 15 and the connecting pin 16 is L1, and the line segment passing through the center of the third link member 35a (the line segment connecting the connecting pin 16 and the third link pin 38) is L2. Based on the detected value of the sensor 66, the angle ⁇ 1 formed by the straight line L1 (an example of the third straight line) and the line segment L2 can be detected.
  • the detected value of the bucket angle sensor 66 is transmitted to the controller 54 arranged on the vehicle body 2 via the harness 67.
  • the harness 67 exits the storage case 68 and extends toward the vehicle body 2 along side surfaces of the third link member 35 a and the arm 11 .
  • Harness 67 is preferably waterproof. Power is supplied to the bucket angle sensor 66 through the harness 67 .
  • the storage device 55 stores shape data of the vehicle body 2 and the working machine 3 .
  • the shape data of the vehicle body 2 indicates the shape of the vehicle body 2 .
  • the shape data of the vehicle body 2 indicates the positional relationship between the antenna 62 and the reference position on the vehicle body 2 .
  • the shape data of the vehicle body 2 indicates the positional relationship between the reference position on the vehicle body 2 and the boom pin 14 .
  • the shape data of the working machine 3 indicates the shape of each part of the working machine 3.
  • the shape data of the work machine 3 includes shape data of the first work machine 25 (an example of data regarding the shape of the first work machine) and shape data of the extension arm 12 (an example of data regarding the shape of the second work machine). .
  • the shape data includes boom length L11, arm length L12, and bucket length L13.
  • a boom length L11 is the length from the boom pin 14 to the arm pin 15 .
  • Arm length L12 is the length from arm pin 15 to bucket pin 18 .
  • Bucket length L13 is the length from bucket pin 18 to cutting edge 13p of bucket 13 .
  • the shape data of the extension arm 12 includes the positional relationship of the connecting pin 16, the bucket pin 18 and the first link pin 36 with respect to the arm pin 15, the length from the first link pin 36 to the second link pin 37, the length of the connecting pin 16 to the third link pin 38 and the length from the second link pin 37 to the third link pin 38 .
  • the shape data of the bucket 13 also includes the positional relationship between the bucket pin 18 and the bucket link pin 46, the length from the bucket link pin 46 to the first link pin 36, and the positional relationship between the bucket pin 18 and the cutting edge 13p.
  • the controller 54 calculates the bucket angle ⁇ 3 shown in FIG. 6 based on the angle ⁇ 1 obtained from the detection value of the bucket angle sensor 66.
  • L3 is a straight line connecting the arm pin 15 and the bucket pin 18 in a side view
  • L4 is a line segment passing through the center of the first link member 33a (a line segment connecting the first link pin 36 and the second link pin 37). do.
  • the controller 54 detects the angle based on the detection value detected by the bucket angle sensor 66, the tilt angle data, the boom angle ⁇ 1, the arm angle ⁇ 2, the shape data of the work implement 3, and the shape data of the extension arm 12. ⁇ 1 is calculated, and the angle ⁇ 2 formed by the straight line L3 (an example of the first straight line) and the straight line L4 is calculated.
  • the controller 54 calculates the bucket angle ⁇ 3 based on the angle ⁇ 2, the shape data of the work implement 3, and the shape data of the extension arm 12.
  • the bucket angle ⁇ 3 is an angle formed by a straight line L5 (an example of a second straight line) connecting the bucket pin 18 and the cutting edge 13p and the straight line L3 in a side view.
  • the controller 54 acquires the boom angle ⁇ 1, the arm angle ⁇ 2, and the bucket angle ⁇ 3.
  • the boom angle ⁇ 1, arm angle ⁇ 2 and bucket angle ⁇ 3 are included in the attitude data.
  • the controller 54 calculates bucket position data from the vehicle body position data detected by the position sensor 56 based on the tilt angle data, posture data, and shape data.
  • Bucket position data indicates the position of the cutting edge 13p of the bucket 13, for example.
  • Bucket angle ⁇ 3 may be included in the bucket position data.
  • the storage device 55 stores current terrain data and designed terrain data.
  • the existing topography data indicates the current topography of the work site.
  • the design terrain data indicates the target shape of the work site.
  • the controller 54 displays a guide screen 71 shown in FIG. 7 on the display 53 based on the current terrain data, designed terrain data, and shape data. As shown in FIG. 7 , the guide screen 71 shows the positions of the current landform 72 , the designed landform 73 , and the work machine 1 .
  • the shape data includes data indicating the shape of the bucket 13 .
  • the controller 54 indicates the position of the bucket 13 with respect to the current landform 72 and the design landform 73 on the guide screen 71 based on the shape data of the bucket 13 and the position of the cutting edge 13p of the bucket 13 .
  • the operator of the work machine 1 can grasp the positional relationship between the bucket 13 , the current topography 72 and the design topography 73 from the guide screen 71 .
  • Position estimation system 50 of the present embodiment described above is a position estimation system that estimates information about the position of bucket 13 of work machine 1 including vehicle body 2, first work machine 25, and extension arm 12. It includes a bucket angle sensor 66 and a controller 54 .
  • First working machine 25 has arm 11 , bucket 13 , and bucket cylinder 21 that drives bucket 13 , and can swing relative to vehicle body 2 .
  • the extension arm 12 has a link mechanism 32 that transmits the drive of the bucket cylinder 21 to the bucket 13 and can be mounted between the arm 11 and the bucket 13 .
  • Bucket angle sensor 66 may be located on linkage 32 .
  • the controller 54 adjusts the bucket 13 relative to the work machine 1 based on the shape data of the first work machine 25, the shape data of the extension arm 12, the information about the attitude of the first work machine 25, and the detection value of the bucket angle sensor 66. to estimate the position of the cutting edge 13p.
  • the extension arm 12 has an extension portion 31 .
  • the extension portion 31 includes a tip portion 31 a connectable to the bucket 13 and a base end portion 31 b connectable to the arm 11 .
  • the link mechanism 32 has a first link portion 33 , a second link member 34 and a third link portion 35 .
  • the first link portion 33 is connected to the extension portion 31 via the first link pin 36 and is connectable to the bucket link portion 47 connected to the bucket 13 via the second link pin 37 .
  • the second link member 34 is connected to the first link portion 33 via a second link pin 37 and extends toward the base end portion 31b.
  • the third link portion 35 is arranged closer to the base end portion 31 b than the first link portion 33 , is connected to the extension portion 31 via the connecting pin 16 , and is connected to the extension portion 31 via the second link member 34 and the third link pin 38 . Connected.
  • bucket angle sensor 66 is arranged on third link portion 35 .
  • the length of the harness 67 extending from the bucket angle sensor 66 to the vehicle body 2 can be made shorter than when the bucket angle sensor 66 is provided at another position of the link mechanism 32 .
  • the third link portion 35 is connected to the arm 11 and the bucket 13 is attached to the arm 11 . Since there is no need to replace the harness 67 or the like, attachment and detachment work is facilitated.
  • FIG. 8 is a diagram showing a state in which the extension arm 12 excluding the third link portion 35 is removed from between the bucket 13 and the arm 11.
  • FIG. 8 the bucket link member 47a is rotatably connected to the third link member 35a through the third link pin 38.
  • the bucket pin 18 is arranged at the portion of the arm 11 where the connecting pin 17 was arranged, and the bucket 13 is rotatably connected to the arm 11 via the bucket pin 18 . In this way, regardless of whether the extension arm 12 is attached or detached, the state in which the bucket angle sensor 66 is arranged on the third link portion 35 can be maintained. It can be performed.
  • the bucket angle sensor 66 is arranged on the outer side surface 35 b of the third link portion 35 .
  • the information on the position of the bucket 13 is the position of the bucket 13 relative to the straight line L3 connecting the bucket pin 18 that connects the bucket 13 to the extension portion 31 and the arm pin 15 that is the swing fulcrum of the arm 11.
  • 13 includes a bucket angle ⁇ 3, which is the angle of a straight line L5 connecting the blade edge 13p of 13 and the bucket pin 18 .
  • the controller 54 calculates the rotation angle ⁇ 1 of the third link portion 35 with respect to the straight line L1 connecting the connecting pin 16 connecting the extension portion 31 to the arm 11 and the arm pin 15.
  • the rotation angle ⁇ 2 of the first link portion 33 with respect to the straight line L3 is calculated based on the rotation angle ⁇ 1 of the third link portion 35, and the bucket angle ⁇ 3 is calculated based on the rotation angle ⁇ 2 of the first link portion 33.
  • the bucket angle ⁇ 3 can be estimated by calculating the rotation angle ⁇ 2 of the first link portion 33 based on the rotation angle ⁇ 1 of the third link portion 35 .
  • first working machine 25 further includes boom 10 connected to vehicle body 2 and arm 11 .
  • Position estimation system 50 further comprises arm angle sensor 65 and boom angle sensor 64 .
  • Arm angle sensor 65 detects the posture of arm 11 .
  • a boom angle sensor 64 detects the attitude of the boom 10 .
  • Controller 54 estimates the position of bucket 13 based on the estimated bucket angle ⁇ 3 and the detected values of arm angle sensor 65 and boom angle sensor 64 .
  • the position of the bucket 13 can be estimated using the bucket angle ⁇ 3.
  • the position estimation system 50 of this embodiment further includes a position sensor 56 .
  • the position sensor 56 detects information regarding the position and tilt of the vehicle body 2 .
  • Controller 54 estimates the position of bucket 13 based on information about the position of bucket 13 relative to work machine 1 and the detection value of position sensor 56 .
  • the position of the bucket 13 in the global coordinate system can be estimated.
  • Working machine 1 of the present embodiment includes vehicle body 2 , first working machine 25 , extension arm 12 , bucket angle sensor 66 , and controller 54 .
  • First working machine 25 has arm 11 , bucket 13 , and bucket cylinder 21 that drives bucket 13 , and can swing relative to vehicle body 2 .
  • the extension arm 12 has a link mechanism 32 that transmits the drive of the bucket cylinder 21 to the bucket 13 and can be mounted between the arm 11 and the bucket 13 .
  • the bucket angle sensor 66 is arranged on the link mechanism 32 .
  • the controller 54 adjusts the bucket angle ⁇ 3 with respect to the vehicle body 2 based on the shape data of the first working machine 25, the shape data of the extension arm 12, the information about the attitude of the first working machine 25, and the value detected by the bucket angle sensor 66.
  • the extension arm 12 has an extension portion 31 .
  • the extension portion 31 includes a tip portion 31 a connectable to the bucket 13 and a base end portion 31 b connectable to the arm 11 .
  • the link mechanism 32 has a first link portion 33 , a second link member 34 and a third link portion 35 .
  • the first link portion 33 is connected to the extension portion 31 via the first link pin 36 and is connectable to the bucket link portion 47 connected to the bucket 13 via the second link pin 37 .
  • the second link member 34 is connected to the first link portion 33 via a second link pin 37 and extends toward the base end portion 31b.
  • the third link portion 35 is arranged closer to the base end portion 31 b than the first link portion 33 , is connected to the extension portion 31 via the connecting pin 16 , and is connected to the extension portion 31 via the second link member 34 and the third link pin 38 . Connected.
  • the extension unit of the present embodiment includes extension arm 12 and bucket angle sensor 66 .
  • the extension arm 12 has the vehicle body 2 , the arm 11 , the bucket 13 and the bucket cylinder 21 that drives the bucket 13 , and is provided with a first work machine 25 that can swing with respect to the vehicle body 2 . It can be mounted between the arm 11 and the bucket 13 .
  • a bucket angle sensor 66 is arranged on the extension arm 12 .
  • the extension arm 12 has an extension portion 31 and a link mechanism 32 .
  • the extension portion 31 includes a tip portion 31 a connectable to the bucket 13 and a base end portion 31 b connectable to the arm 11 .
  • the link mechanism 32 transmits the drive of the bucket cylinder 21 to the bucket 13 .
  • the link mechanism 32 has a first link portion 33 , a second link member 34 and a third link portion 35 .
  • the first link portion 33 is connected to the extension portion 31 via the first link pin 36 and is connectable to the bucket link portion 47 connected to the bucket 13 via the second link pin 37 .
  • the second link member 34 is connected to the first link portion 33 via a second link pin 37 and extends toward the base end portion 31b.
  • the third link portion 35 is arranged closer to the base end portion 31 b than the first link portion 33 , is connected to the extension portion 31 via the connecting pin 16 , and is connected to the extension portion 31 via the second link member 34 and the third link pin 38 . It is connected.
  • the extension arm 12 in which the bucket angle sensor 66 is arranged in the link mechanism 32 can be provided.
  • the bucket angle sensor 66 is arranged on the third link portion 35, and the detection value of the bucket angle sensor 66 is preset to be acquired by the controller 54.
  • the bucket angle sensor 66 may be retrofitted to the working machine.
  • the existing work machine can be provided with the position estimation unit 80 having the bucket angle sensor 66, the harness 67, and the sensor controller 81 (an example of the detector controller) that controls the bucket angle sensor 66.
  • the sensor controller 81 acquires the detected value Vd of the bucket angle sensor 66, and transmits the detected value Vd (an example of information based on the detected value) to the controller 54 of the vehicle body 2 via the harness 67. ) may be sent.
  • the controller 54 calculates the bucket angle ⁇ 3 from the detected value Vd.
  • the sensor controller 81 acquires the detected value Vd of the bucket angle sensor 66, and from the detected value Vd, tilt angle data, boom angle ⁇ 1, arm angle ⁇ 2, and the shape of the work implement 3.
  • the angle ⁇ 1 may be calculated based on the data and the shape data of the extension arm 12 .
  • Data of the angle ⁇ 1 (an example of information based on the detected value) is transmitted from the sensor controller 81 to the controller 54 of the vehicle body 2 via the harness 67 .
  • the controller 54 calculates the bucket angle ⁇ 3 from the data of the angle ⁇ 1. In this case, the sensor controller 81 acquires data to calculate the angle ⁇ 1.
  • the sensor controller 81 obtains the tilt angle data, the boom angle ⁇ 1, the arm angle ⁇ 2, and the shape data of the work implement 3 from the detection value Vd acquired from the bucket angle sensor 66.
  • the angle ⁇ 2 may be calculated based on the shape data of the extension arm 12 .
  • Data of the angle ⁇ 2 (an example of information based on the detected value) is transmitted from the sensor controller 81 to the controller 54 of the vehicle body 2 via the harness 67 .
  • the controller 54 calculates the bucket angle ⁇ 3 from the data of the angle ⁇ 2. In this case, the sensor controller 81 acquires data for calculating the angle ⁇ 2.
  • the sensor controller 81 may obtain the bucket angle ⁇ 3 from the detected value of the bucket angle sensor 66 and transmit data of the bucket angle ⁇ 3 (an example of information based on the detected value) to the controller 54 of the vehicle body 2 .
  • the sensor controller 81 includes a processor such as a CPU (Central Processing Unit), memory and storage devices such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • the storage device includes a semiconductor memory, hard disk, or the like.
  • a storage device is an example of a recording medium readable by the non-transitory sensor controller 81 .
  • the memory stores computer instructions executable by the processor to carry out the controls described above.
  • the position of the cutting edge 13p of the bucket 13 can be acquired by retrofitting the position estimation unit 80 to the work machine.
  • the link mechanism 32 of the extension arm 12 of the above embodiment has a length of a line segment L4 from the first link pin 36 to the second link pin 37 and a length of a line segment L2 from the connecting pin 16 to the third link pin 38. are different, but may be the same.
  • FIG. 10 is a diagram showing an extension arm 12' having a link mechanism 32' that is a parallel link. Note that the harness 67 is omitted in FIG.
  • the length of the third link member 35a' of the third link portion 35' is the same as the length of the first link member 33a' of the first link portion 33'.
  • the length of the line segment L4' from the link pin 36 to the second link pin 37 and the length of the line segment L2' from the connecting pin 16 to the third link pin 38 are configured to be the same.
  • the bucket angle ⁇ 3 can be calculated based on the shape data of the bucket 13 from the angle ⁇ 1.
  • the bucket angle ⁇ 3 can be estimated more accurately.
  • the bucket angle sensor 66 is arranged on the outer side surface 35b (see FIG. 3) of the third link member 35a, but this need not be the case.
  • FIG. 11(a) is a plan view showing the storage case 68 and the third link portion 35''.
  • FIG. 11(b) is a side view showing the storage case 68 and the third link portion 35''.
  • a connecting portion 35c is provided to connect between the pair of third link members 35a, and a storage case 68 containing the bucket angle sensor 66 is attached to the upper surface of the connecting portion 35c.
  • the third link portion 35'' may be arranged other than the side surface 35b of the third link member 35a.
  • the position of the cutting edge 13p of the bucket 13 is estimated as the information regarding the position of the bucket, but it is not limited to the position of the cutting edge 13p. A position other than the cutting edge 13p of the bucket 13 may be estimated.
  • the posture of the bucket 13 can be displayed on the guide screen 71 from this position and the shape data of the bucket 13 .
  • the work machine 1 is not limited to the hydraulic excavator described above, and may be other machines such as a mechanical excavator and a rope excavator.
  • the work machine 1 according to the above embodiment is a so-called backfour type excavator, but may be a face excavator.
  • the excavator is not limited to a crawler-type excavator, and may be a wheel-type excavator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

位置推定システム(50)は、バケット角センサ(66)と、コントローラ(54)と、を備える。第1作業機(25)は、アーム(11)、バケット(13)およびバケット(13)を駆動するバケットシリンダ(21)を有し、車両本体(2)に対して揺動可能である。エクステンションアーム(12)は、バケットシリンダ(21)の駆動をバケット(13)に伝達するリンク機構(32)を有し、アーム(11)とバケット(13)の間に装着可能である。バケット角センサ(66)は、リンク機構(32)に配置可能である。コントローラ(54)は、第1作業機(25)の形状データと、エクステンションアーム(12)の形状データと、第1作業機(25)の姿勢に関する情報と、バケット角センサ(66)による検出値に基づいてバケット(13)の刃先(13p)の位置を推定する。

Description

位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット
 本開示は、位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニットに関する。
 作業機を有する作業機械において、バケットの刃先の位置を算出する技術が、知られている。例えば、特許文献1の作業機械は、車両本体と作業機とを備えている。車両本体には、車体の位置を検出するために、例えばGNSS(Global Navigation Satellite System)のアンテナが設けられている。また、車両本体には、例えばIMU(Inertial Measurement Unit)が配置されている。IMUは、車両本体のロール角、及び、ピッチ角などを検出する。作業機は、ブームと、アームと、バケットと、それらを駆動する油圧シリンダとを有している。作業機械のコントローラは、車両本体の位置と姿勢、作業機の各部分の寸法、及び、作業機の各部分が揺動する角度などから、バケットの刃先位置を算出する。
 特許文献1には、作業機の各部分が揺動する角度を検出する際に、各作業機の揺動部に角度センサを取り付けることが記載されている。
 また、作業範囲を拡大するためにエクステンションアームが装着された場合には、エクステンションアームの各部分の寸法を入力することによって補正を行い、バケットの刃先位置を算出している。
再表2016/056676号公報
 しかしながら、エクステンションアームを装着して浚渫作業等を行う場合にも、バケットやバケットピンに角度センサを取り付けていると、角度センサを配置した部分が水没する可能性があるため、角度センサの破損可能性が高く、破損を防ぐためには強固に保護を行う必要があった。
 本開示は、作業による影響を受けにくい位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニットを提供することを目的とする。
(課題を解決するための手段)
 本開示の第1の態様に係る位置推定システムは、作業機械本体と、アーム、バケットおよびバケットを駆動するバケットシリンダを有し、作業機械本体に対して揺動可能な第1作業機と、バケットシリンダの駆動をバケットに伝達するリンク機構を有し、アームとバケットの間に装着可能な第2作業機と、を備えた作業機械のバケットの位置に関する情報を推定する位置推定システムであって、第1姿勢検出器と、コントローラと、を備える。第1姿勢検出器は、リンク機構に配置可能である。コントローラは、第1作業機の形状に関するデータと、第2作業機の形状に関するデータと、第1作業機の姿勢に関する情報と、第1姿勢検出器による検出値に基づいて作業機械に対するバケットの位置に関する情報を推定する。第2作業機は、バケットと接続可能な第1端部とアームと接続可能な第2端部と、を含むエクステンション部を有する。リンク機構は、第1リンク部と、第2リンク部と、第3リンク部と、を有する。第1リンク部は、エクステンション部と第1連結部を介して接続され、バケットに接続されたバケットリンク部と第2連結部を介して接続可能である。第2リンク部は、第1リンク部に第2連結部を介して接続され、第2端部側に向かって延びる。第3リンク部は、第1リンク部よりも第2端部側に配置され、エクステンション部と第3連結部を介して接続され、第2リンク部と第4連結部を介して接続されている。
 本開示の第2の態様に係る位置推定ユニットは、作業機械本体と、アーム、バケットおよびバケットを駆動するバケットシリンダを有し、作業機械本体に対して揺動可能な第1作業機と、バケットシリンダの駆動を前記バケットに伝達するリンク機構を有し、アームとバケットの間に装着可能な第2作業機と、を備えた作業機械のバケットの位置に関する情報を推定する位置推定ユニットであって、第1姿勢検出器と、検出器コントローラと、を備える。第1姿勢検出器は、リンク機構に配置可能である。検出器コントローラは、第1姿勢検出器による検出値を取得し、検出値に基づいた情報を作業機械本体に送信する。第2作業機は、バケットと接続可能な第1端部とアームと接続可能な第2端部と、を含むエクステンション部を有する。リンク機構は、第1リンク部と、第2リンク部と、第3リンク部と、を有する。第1リンク部は、エクステンション部と第1連結部を介して接続され、バケットに接続されたバケットリンク部と第2連結部を介して接続可能である。第2リンク部は、第1リンク部に第2連結部を介して接続され、第2端部側に向かって延びる。第3リンク部は、第1リンク部よりも第2端部側に配置され、エクステンション部と第3連結部を介して接続され、第2リンク部と第4連結部を介して接続されている。
 本開示の第3の態様に係る作業機械は、作業機本体と、第1作業機と、第2作業機と、第1姿勢検出器と、コントローラと、を備える。第1作業機は、アーム、バケットおよびバケットを駆動するバケットシリンダを有し、作業機械本体に対して揺動可能である。第2作業機は、バケットシリンダの駆動をバケットに伝達するリンク機構を有し、アームとバケットの間に装着可能である。第1姿勢検出器は、リンク機構に配置されている。コントローラは、第1作業機の形状に関するデータと、第2作業機の形状に関するデータと、第1作業機の姿勢に関する情報と、第1姿勢検出器による検出値に基づいてバケットの位置に関する情報を推定する。第2作業機は、バケットと接続可能な第1端部とアームと接続可能な第2端部と、を含むエクステンション部を有する。リンク機構は、第1リンク部と、第2リンク部と、第3リンク部と、を有する。第1リンク部は、エクステンション部と第1連結部を介して接続され、バケットに接続されたバケットリンク部と第2連結部を介して接続可能である。第2リンク部は、第1リンク部に第2連結部を介して接続され、第2端部側に向かって延びる。第3リンク部は、第1リンク部よりも第2端部側に配置され、エクステンション部と第3連結部を介して接続され、第2リンク部と第4連結部を介して接続されている。
 本開示の第4の態様に係るエクステンションユニットは、エクステンションアームと、第1姿勢検出器と、を備える。エクステンションアームは、エクステンション部と、リンク機構と、を有する。エクステンション部は、バケットと接続可能な第1端部およびアームと接続可能な第2端部と、を含む。リンク機構は、バケットシリンダの駆動をバケットに伝達する。リンク機構は、第1リンク部と、第2リンク部と、第3リンク部と、を含む。第1リンク部は、エクステンション部と第1連結部を介して接続され、バケットに接続されたバケットリンク部と第2連結部を介して接続可能である。第2リンク部は、第1リンク部と第2連結部を介して接続され、アーム側に向かって延びる。第3リンク部は、第1リンク部よりも第2端部側に配置され、エクステンション部と第3連結部を介して接続され、第2リンク部と第4連結部を介して接続される。
(発明の効果)
 本開示によれば、作業による影響を受けにくい位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニットを提供することができる。
本開示にかかる実施の形態における作業機械の斜視図。 本開示にかかる実施の形態における作業機の側面図。 本開示にかかる実施の形態における作業機の平面図。 (a)本開示にかかる実施の形態におけるバケットの側面図、(b)図4(a)のバケットから紙面手前側の側面部を取り除いた状態を示す図。 本開示にかかる実施の形態における位置推定システムの構成を示すブロック図。 作業機械の構成を模式的に示す図である。 ガイド画面の一例を示す図である。 本開示にかかる実施の形態の作業機において第3リンク部を除くエクステンションアームを取り外した状態の第1作業機を示す側面図。 (a)~(c)本開示に係る他の実施の形態の位置推定ユニットから車両本体に送信する情報を示す図。 本開示に係る他の実施の形態のリンク機構を有するエクステンションアームを示す側面図。 (a)本開示にかかる他の実施の形態のバケット角センサの第3リンク部への配置状態を示す平面図、(b)本開示にかかる他の実施の形態のバケット角センサの第3リンク部への配置状態を示す側面図。
 以下、図面を参照して、本開示の一実施形態に係る位置推定システム、作業機械、およびエクステンションユニットについて説明する。
 (作業機械1の概要)
 図1は、実施形態に係る作業機械1の斜視図である。
 作業機械1は、車両本体2(作業機械本体の一例)と、作業機3と、位置推定システム50(図5参照)と、を主に有する。車両本体2は、旋回体4と走行装置5とを有する。旋回体4は、走行装置5に対して旋回可能に支持されている。旋回体4には、運転室6が配置されている。走行装置5は履帯5a,5bを含む。履帯5a,5bが回転することにより作業機械1が走行する。
 (作業機3)
 作業機3は、車両本体2に取り付けられている。作業機3は、第1作業機25とエクステンションアーム12(第2作業機の一例)とを含む。エクステンションアーム12は、第1作業機25に着脱可能に構成されている。
 第1作業機25は、ブーム10と、アーム11と、バケット13とを含む。
 ブーム10の基端部は、ブームピン14を介して車両本体2に回転可能に取り付けられている。アーム11の基端部は、アームピン15を介してブーム10の先端部に回転可能に取り付けられている。エクステンションアーム12の基端部は、2つの連結ピン16、17を介してアーム11の先端部に取り付けられている。バケット13は、バケットピン18を介して、エクステンションアーム12の先端部に回転可能に取り付けられている。
 作業機3は、一対のブームシリンダ19と、アームシリンダ20と、バケットシリンダ21とを含む。ブームシリンダ19と、アームシリンダ20と、バケットシリンダ21とは、それぞれ油圧シリンダである。
 一対のブームシリンダ19は、ブーム10を挟んで配置されている。各々のブームシリンダ19のボトム側の端は、ブームシリンダフートピン19aを介して旋回体4に回転可能に取り付けられている。各々のブームシリンダ19のロッド側の端は、ブームシリンダトップピン19bを介してブーム10に回転可能に取り付けられている。
 アームシリンダ20のボトム側の端は、アームシリンダフートピン(図示せず)を介して、ブーム10に取り付けられている。アームシリンダ20のロッド側の端は、アームシリンダトップピン20bを介してアーム11に取り付けられている。
 バケットシリンダ21のボトム側の端は、バケットシリンダフートピン21aを介してアーム11に取り付けられている。バケットシリンダ21のロッド側の端は、第3リンクピン38(後述する)を介して、エクステンションアーム12に取り付けられている。
 ブームシリンダ19が伸縮することで、ブーム10が動作する。アームシリンダ20が伸縮することで、アーム11およびエクステンションアーム12が動作する。バケットシリンダ21が伸縮することで、バケット13が動作する。
 (エクステンションアーム12)
 図2は、作業機3を示す側面図である。図3は、図2の平面図である。
 エクステンションアーム12は、エクステンション部31と、リンク機構32と、を備える。
 エクステンション部31は、アーム11とバケット13の間に取り付けられる。エクステンション部31は、アーム11に装着される基端部31b(第2端部の一例)と、バケット13が装着される先端部31a(第1端部の一例)とを有する。
 エクステンション部31は、基端部31bにおいて、連結ピン16、17を介してアーム11に取り付けられている。連結ピン16と連結ピン17は、アーム11の長手方向に沿って並んで配置されている。連結ピン16は、連結ピン17よりもアーム11の基端側に配置されている。
 エクステンション部31には、先端部31aにおいて、バケットピン18を介してバケット13が取り付けられている。
 リンク機構32は、バケットシリンダ21の伸縮をバケット13に伝達する。リンク機構32は、エクステンション部31に取り付けられている。リンク機構32は、第1リンク部33と、第2リンク部材34(第2リンク部の一例)と、第3リンク部35と、を有する。
 第1リンク部33は、エクステンション部31の先端部31aに配置されている。第1リンク部33は、図3に示すように、エクステンション部31を挟んで配置された一対の第1リンク部材33aを有している。各々の第1リンク部材33aの一端は、図2に示すように、バケットピン18よりも基端部31b側において、第1リンクピン36(第1連結部の一例)を介してエクステンション部31の側面に回転可能に接続されている。各々の第1リンク部材33aの他端は、バケット13に回転可能に接続されているバケットリンク部材47aと第2リンクピン37(第2連結部の一例)を介して回転可能に接続されている。
 第2リンク部材34の一端は、一対の第1リンク部材33aの他端と第2リンクピン37を介して回転可能に接続されている。第2リンク部材34は、第2リンクピン37が配置されている部分から基端部31b側に向かって延びるように形成された部材である。第2リンク部材34の他端は、第3リンクピン38を介してバケットシリンダ21のロッド側の先端と回転可能に接続されている。
 第3リンク部35は、第1リンク部33よりもアーム11側(基端部31b側)に配置されている。本実施の形態では、第3リンク部35は、基端部31bに配置されている。第3リンク部35は、図3に示すように、エクステンション部31を挟んで配置された一対の第3リンク部材35aを有している。各々の第3リンク部材35aの一端は、第3リンクピン38(第4連結部の一例)を介して第2リンク部材34の他端およびバケットシリンダ21のロッド側の先端と回転可能に接続されている。各々の第3リンク部材35aの他端は、連結ピン16(第3連結部の一例)を介してエクステンション部31の側面に回転可能に接続されている。
 本実施の形態では、連結ピン16と第3リンクピン38を結ぶ線分L2と、第1リンクピン36と第2リンクピン37を結ぶ線分L4の長さが異なっており、L2がL4よりも長くなっている。このため、リンク機構32は、第1リンクピン36、第2リンクピン37、第3リンクピン38、および連結ピン16を節とする4節リンクを構成するが、平行リンクではない。
 (バケット13)
 図4(a)は、バケット13の側面図である。バケット13は、バケット本体41と、接続部42と、ティース43とを含む。接続部42は、バケット本体41に接続されており、エクステンションアーム12に取り付けられる部分を含む。
 ティース43は、バケット本体41に接続されている。バケット13の刃先13pは、ティース43の先端に位置する。バケット本体41は、主に、底面部41aと、背面部41bと、一対の側壁部41cと、を有する。図4(b)は、図4(a)のバケット13の紙面手前側の側壁部41cを取り除いた状態を示す図である。
 底面部41aは、側面視において湾曲した形状を有する。背面部41bは、底面部41aと位置41pにおいて繋がっている。一対の側壁部41cは、互いに対向して配置されており、底面部41aと背面部41bによって囲まれた空間の側方を覆う。底面部41aと背面部41bと一対の側壁部41cによって囲まれた空間の外部空間への開口が開口部13aとして示されている。
 底面部41aは、図4(b)に示すように、フロントリップ41dと、前面部41eと、湾曲部41fと、を有する。前面部41eは、平坦な板状の部分であり、側面視において直線状の形状を有する。湾曲部41fは、湾曲した板状の部分であり、側面視においてバケット本体41の外側に向けて凸に湾曲した形状を有する。湾曲部41fは、位置41qにおいて前面部41eに繋がっている。
 フロントリップ41dは、平坦な板状の部材であり、側面視において直線状の形状を有する。フロントリップ41dは、前面部41eの位置41qと反対側の端に固定されている。フロントリップ41dの厚さは、前面部41eの厚さよりも大きい。フロントリップ41dは、ティース43が固定される部材である。
 背面部41bは、第1部材41gと、第2部材41hと、を有する。第1部材41gは、板状であり、底面部41aの湾曲部41fに位置41pで繋がっている。第2部材41hは、第1部材41gの外側に配置されており、外側に向かって凸に湾曲した部分を有する。
 接続部42は、背面部41bに配置されている。接続部42は、一対のブラケット42aを含む(図1参照)。一対のブラケット42aは、幅方向に対向して配置されている。ブラケット42aは、図4(a)および図4(b)に示すように、背面部41bに固定されている。ブラケット42aは、背面部41bから外側に向かって立設している。各々のブラケット42aは、第1孔42bと第2孔42cとを含む。開口部13a側の第1孔42bには、図2に示すようにバケットピン18が挿入される。底面部41a側の第2孔42cには、バケット13をバケットリンク部47に取り付けるためのバケットリンクピン46が通される。
 なお、バケットリンク部47は、図1に示すように、一対のバケットリンク部材47aを有している。各々のバケットリンク部材47aの一端が、バケットリンクピン46を介してブラケット42aに回転可能に接続されている。各々のバケットリンク部材47aの他端が、第2リンクピン37を介して、第1リンク部材33aおよび第2リンク部材34に回転可能に接続されている。ティース43は、底面部41aの背面部41bとは反対側の先端に配置されている。
 (位置推定システム50)
 図5は、位置推定システム50の構成を示すブロック図である。
 位置推定システム50は、図5に示すように、入力装置52と、ディスプレイ53と、コントローラ54と、記憶装置55と、位置センサ56(状態検出器の一例)と、姿勢センサ57と、を備える。
 入力装置52と、ディスプレイ53とは、運転室6に配置されている。入力装置52は、作業機械1の制御の設定を行うためのオペレータによる操作を受け付け、操作に応じた操作信号を出力する。入力装置52は、例えばタッチスクリーンである。或いは、入力装置52は、レバー、スイッチを含んでもよい。オペレータは、入力装置52を用いて、車両本体2および作業機3の形状データを入力することができる。例えば、新たなエクステンションアーム12を装着する場合には、入力装置52を用いてエクステンションアーム12の形状データを入力することができる。
 ディスプレイ53は、入力装置52に入力される指令信号に応じた画像を表示する。ディスプレイ53は、作業機械1による作業を補助するためのガイド画面を表示する。
ガイド画面として、ディスプレイ53は、例えば、地形データと、現在のバケット13の刃先13pの位置(バケットの位置に関する情報の一例)を表示する。
 コントローラ54は、取得したデータに基づいて、バケット角θ3を算出し、ディスプレイ53に、地形データとバケット13の刃先13pの位置を表示する。
 コントローラ54は、CPU(Central Processing Unit)などのプロセッサと、RAM(Random Access Memory)、及びROM(Read Only Memory)などのメモリとを含む。記憶装置55は、半導体メモリ、或いはハードディスクなどを含む。記憶装置55は、非一時的な(non-transitory)コントローラ54で読み取り可能な記録媒体の一例である。記憶装置55は、プロセッサによって実行可能でありバケット13の刃先13pの位置を推定し、刃先13pの位置の表示を行うためのコンピュータ指令を記録している。
 位置センサ56は、作業機械1の位置を測定する。位置センサ56は、車両本体2に配置されている。位置センサ56は、GNSS(Global Navigation Satellite System)レシーバ61と、アンテナ62と、IMU63とを備える。GNSSレシーバ61は、例えばGPS(Global Positioning System)用の受信機である。GNSSレシーバ61は、衛星より測位信号を受信し、測位信号によりアンテナ62の位置を演算して車体位置データを生成する。コントローラ54は、GNSSレシーバ61から車体位置データ(位置に関する情報の一例)を取得する。IMU63は、慣性計測装置(Inertial Measurement Unit)である。IMU63は、傾斜角データ(傾斜に関する情報の一例)を取得する。傾斜角データは、車両前後方向の水平に対する角度(ピッチ角)、および車両横方向の水平に対する角度(ロール角)を含む。
 姿勢センサ57は、作業機3の姿勢を示す姿勢データを検出する。姿勢センサ57は、ブーム角センサ64(第3姿勢検出器の一例)と、アーム角センサ65(第2姿勢検出器の一例)と、バケット角センサ66(第1姿勢検出器の一例)と、を含む。ブーム角センサ64は、ブーム角θ1を検出する。図6は、作業機械1の構成を模式的に示す図である。図5に示すように、ブーム角θ1は、車両本体2におけるブーム10の傾斜角を示す。アーム角センサ65は、アーム角θ2を検出する。アーム角θ2は、ブーム10に対するアーム11の傾斜角を示す。
 ブーム角センサ64は、例えばIMUであり、ブーム10に配置されている。ブーム角センサ64は、ブーム角度を示す検出信号をコントローラ54に出力する。コントローラ54は、車両本体2の傾斜角データと検出信号からブーム角θ1を算出する。
 アーム角センサ65は、例えば、IMUであり、アーム11に配置されている。アーム角センサ65は、アーム角度を示す検出信号をコントローラ54に出力する。コントローラ54は、車両本体2の傾斜角データとブーム角θ1と検出信号からアーム角θ2を算出する。
 なお、ブーム角センサ64およびアーム角センサ65は、シリンダのストロークを検出するセンサであってもよく、この場合、シリンダストロークに基づいて、コントローラ54がブーム角θ1とアーム角θ2を算出する。
 バケット角センサ66は、IMUである。図2および図3に示すように、バケット角センサ66は、第3リンク部材35aの外側の側面35b(外側面の一例)に取り付けられている。バケット角センサ66は、収納ケース68の内側に収納されている。側面視において、アームピン15と連結ピン16を結ぶ直線をL1とし、第3リンク部材35aの中心を通る線分(連結ピン16と第3リンクピン38を結ぶ線分)をL2とすると、バケット角センサ66の検出値に基づいて、直線L1(第3直線の一例)と線分L2の形成する角度Φ1を検出することができる。
 バケット角センサ66の検出値は、車両本体2に配置されたコントローラ54にハーネス67を介して送信される。ハーネス67は、収納ケース68から出て、第3リンク部材35aおよびアーム11の側面に沿って車両本体2に向かって延びている。ハーネス67は、防水である方が好ましい。ハーネス67を通じてバケット角センサ66に電力が供給される。
 記憶装置55は、車両本体2と、作業機3の形状データとを記憶している。車両本体2の形状データは、車両本体2の形状を示す。車両本体2の形状データは、アンテナ62と車両本体2における基準位置との位置関係を示す。車両本体2の形状データは、車両本体2における基準位置と、ブームピン14との位置関係を示す。
 作業機3の形状データは、作業機3の各部の形状を示す。作業機3の形状データは、第1作業機25の形状データ(第1作業機の形状に関するデータの一例)とエクステンションアーム12の形状データ(第2作業機の形状に関するデータの一例)とを含む。
 形状データは、ブーム長L11と、アーム長L12と、バケット長L13とを含む。ブーム長L11は、ブームピン14からアームピン15までの長さである。アーム長L12は、アームピン15からバケットピン18までの長さである。バケット長L13は、バケットピン18からバケット13の刃先13pまでの長さである。
 また、エクステンションアーム12の形状データは、アームピン15に対する連結ピン16、バケットピン18、および第1リンクピン36の位置関係、第1リンクピン36から第2リンクピン37までの長さ、連結ピン16から第3リンクピン38までの長さ、並びに、第2リンクピン37から第3リンクピン38までの長さを含む。
 また、バケット13の形状データは、バケットピン18とバケットリンクピン46の位置関係、バケットリンクピン46から第1リンクピン36までの長さ、およびバケットピン18と刃先13pとの位置関係を含む。
 コントローラ54は、バケット角センサ66の検出値から求められる角度Φ1に基づいて、図6に示すバケット角θ3を算出する。ここで、側面視においてアームピン15とバケットピン18を結ぶ直線をL3とし、第1リンク部材33aの中心を通る線分(第1リンクピン36と第2リンクピン37を結ぶ線分)をL4とする。
 詳しく説明すると、コントローラ54は、バケット角センサ66によって検出された検出値と、傾斜角データ、ブーム角θ1およびアーム角θ2と、作業機3の形状データとエクステンションアーム12の形状データに基づいて角度Φ1を算出し、さらに直線L3(第1直線の一例)と直線L4の成す角度Φ2を算出する。
 コントローラ54は、角度Φ2と作業機3の形状データとエクステンションアーム12の形状データに基づいて、バケット角θ3を算出する。バケット角θ3は、側面視において、バケットピン18と刃先13pを結ぶ直線L5(第2直線の一例)と、直線L3の成す角度である。
 このように、コントローラ54は、ブーム角θ1、アーム角θ2、およびバケット角θ3を取得する。ブーム角θ1、アーム角θ2およびバケット角θ3は、姿勢データに含まれる。
 コントローラ54は、傾斜角データと、姿勢データと、形状データとに基づいて、位置センサ56が検出した車体位置データから、バケット位置データを算出する。バケット位置データは、例えば、バケット13の刃先13pの位置を示す。バケット角θ3は、バケット位置データに含まれ得る。
 記憶装置55は、現況地形データと設計地形データとを記憶している。現況地形データは、作業現場の現況地形を示す。設計地形データは、作業現場の目標形状を示す。コントローラ54は、現況地形データと、設計地形データと、形状データとに基づいて、図7に示すガイド画面71をディスプレイ53に表示する。図7に示すように、ガイド画面71は、現況地形72と、設計地形73と、作業機械1との位置を示す。形状データは、バケット13の形状を示すデータを含む。コントローラ54は、バケット13の形状データとバケット13の刃先13p位置とに基づいて、現況地形72及び設計地形73に対するバケット13の位置をガイド画面71に示す。
 作業機械1のオペレータは、ガイド画面71によって、バケット13と現況地形72と設計地形73との位置関係を把握することができる。
 (特徴等)
 (1)
 上述した本実施の形態の位置推定システム50は、車両本体2と、第1作業機25と、エクステンションアーム12と、を備えた作業機械1のバケット13の位置に関する情報を推定する位置推定システムであって、バケット角センサ66と、コントローラ54と、を備える。第1作業機25は、アーム11、バケット13およびバケット13を駆動するバケットシリンダ21を有し、車両本体2に対して揺動可能である。エクステンションアーム12は、バケットシリンダ21の駆動をバケット13に伝達するリンク機構32を有し、アーム11とバケット13の間に装着可能である。バケット角センサ66は、リンク機構32に配置可能である。コントローラ54は、第1作業機25の形状データと、エクステンションアーム12の形状データと、第1作業機25の姿勢に関する情報と、バケット角センサ66による検出値に基づいて、作業機械1に対するバケット13の刃先13pの位置を推定する。図2に示すように、エクステンションアーム12は、エクステンション部31を有する。エクステンション部31は、バケット13と接続可能な先端部31aおよびアーム11と接続可能な基端部31bと、を含む。リンク機構32は、第1リンク部33と、第2リンク部材34と、第3リンク部35と、を有する。第1リンク部33は、エクステンション部31と第1リンクピン36を介して接続され、バケット13に接続されたバケットリンク部47と第2リンクピン37を介して接続可能である。第2リンク部材34は、第1リンク部33と第2リンクピン37を介して接続され、基端部31b側に向かって延びる。第3リンク部35は、第1リンク部33よりも基端部31b側に配置され、エクステンション部31と連結ピン16を介して接続され、第2リンク部材34と第3リンクピン38を介して接続される。
 このように、バケット角センサ66をリンク機構32に配置することによって、例えば浚渫作業における水没可能性を低減することができ、作業による影響を受け難くすることができる。
 (2)
 本実施の形態の位置推定システム50では、バケット角センサ66は、第3リンク部35に配置されている。
 このように、アーム11寄りに配置されている第3リンク部35にバケット角センサ66を設けることにより、水没の可能性を更に低減することができる。また、収納ケース68の防水性能を簡易にすることができる。
 また、リンク機構32の他の位置にバケット角センサ66を設けるよりも、バケット角センサ66から車両本体2に伸ばすハーネス67の長さを短くすることができる。
 また、第3リンク部35を含むエクステンションアーム12を取り外した後に、第3リンク部35をアーム11に接続してバケット13をアーム11に取り付けることによって、バケット角センサ66やバケット角センサ66から延びるハーネス67等の付け替え作業が必要なくなるため、脱着の作業が容易となる。
 図8は、第3リンク部35を除くエクステンションアーム12をバケット13とアーム11の間から取り外した状態を示す図である。図8に示す構成では、バケットリンク部材47aが第3リンクピン38を介して第3リンク部材35aに回転可能に接続されている。バケットピン18は、アーム11の連結ピン17が配置されていた部分に配置されており、バケットピン18を介してバケット13がアーム11に回転可能に接続されている。このように、エクステンションアーム12の脱着にかかわらず、第3リンク部35にバケット角センサ66を配置した状態が維持できるため、センサの付け替え作業等を行わなくてよく、簡便にエクステンションアーム12の着脱を行うことができる。
 (3)
 本実施の形態の位置推定システム50では、バケット角センサ66は、第3リンク部35の外側の側面35bに配置される。
 これにより、バケット角センサ66のメンテナンスや交換を行い易くなる。
 (4)
 本実施の形態の位置推定システム50では、バケット13の位置に関する情報は、エクステンション部31にバケット13を連結するバケットピン18とアーム11の揺動支点であるアームピン15とを結ぶ直線L3に対する、バケット13の刃先13pとバケットピン18を結ぶ直線L5の角度であるバケット角θ3を含む。コントローラ54は、バケット角センサ66の検出値に基づいて、アーム11にエクステンション部31を連結する連結ピン16とアームピン15との間を結ぶ直線L1に対する第3リンク部35の回転角度Φ1を算出し、第3リンク部35の回転角度Φ1に基づいて、直線L3に対する第1リンク部33の回転角度Φ2を算出し、第1リンク部33の回転角度Φ2に基づいて、バケット角θ3を算出する。
 このように、第3リンク部35の回転角度Φ1に基づいて、第1リンク部33の回転角度Φ2を算出することによって、バケット角θ3を推定することができる。
 (5)
 本実施の形態の位置推定システム50では、第1作業機25は、車両本体2とアーム11に接続されたブーム10を更に有する。位置推定システム50は、アーム角センサ65と、ブーム角センサ64と、を更に備える。アーム角センサ65は、アーム11の姿勢を検出する。ブーム角センサ64は、ブーム10の姿勢を検出する。コントローラ54は、推定したバケット角θ3と、アーム角センサ65およびブーム角センサ64の検出値とに基づいて、バケット13の位置を推定する。
 これにより、バケット角θ3を用いて、バケット13の位置を推定することができる。
 (6)
 本実施の形態の位置推定システム50は、位置センサ56を更に備える。位置センサ56は、車両本体2の位置および傾斜に関する情報を検出する。コントローラ54は、作業機械1に対するバケット13の位置に関する情報と、位置センサ56の検出値に基づいて、バケット13の位置を推定する。
 これによって、バケット13のグローバル座標系における位置を推定することができる。
 (7)
 本実施の形態の作業機械1は、車両本体2と、第1作業機25と、エクステンションアーム12と、バケット角センサ66と、コントローラ54と、を備える。第1作業機25は、アーム11、バケット13およびバケット13を駆動するバケットシリンダ21を有し、車両本体2に対して揺動可能である。エクステンションアーム12は、バケットシリンダ21の駆動をバケット13に伝達するリンク機構32を有し、アーム11とバケット13の間に装着可能である。バケット角センサ66は、リンク機構32に配置されている。コントローラ54は、第1作業機25の形状データと、エクステンションアーム12の形状データと、第1作業機25の姿勢に関する情報と、バケット角センサ66による検出値に基づいて車両本体2に対するバケット角θ3を推定する。エクステンションアーム12は、エクステンション部31を有する。エクステンション部31は、バケット13と接続可能な先端部31aおよびアーム11と接続可能な基端部31bと、を含む。リンク機構32は、第1リンク部33と、第2リンク部材34と、第3リンク部35と、を有する。第1リンク部33は、エクステンション部31と第1リンクピン36を介して接続され、バケット13に接続されたバケットリンク部47と第2リンクピン37を介して接続可能である。第2リンク部材34は、第1リンク部33と第2リンクピン37を介して接続され、基端部31b側に向かって延びる。第3リンク部35は、第1リンク部33よりも基端部31b側に配置され、エクステンション部31と連結ピン16を介して接続され、第2リンク部材34と第3リンクピン38を介して接続される。
 このように、バケット角センサ66をリンク機構32に配置することによって、例えば浚渫作業における水没可能性を低減することができ、作業による影響を受け難くすることができる。
 (8)
 本実施の形態のエクステンションユニットは、エクステンションアーム12と、バケット角センサ66と、を備える。エクステンションアーム12は、車両本体2と、アーム11、バケット13およびバケット13を駆動するバケットシリンダ21を有し、車両本体2に対して揺動可能な第1作業機25を備えた作業機械1のアーム11とバケット13の間に装着可能である。バケット角センサ66は、エクステンションアーム12に配置されている。エクステンションアーム12は、エクステンション部31と、リンク機構32と、を有する。エクステンション部31は、バケット13と接続可能な先端部31aおよびアーム11と接続可能な基端部31bと、を含む。リンク機構32は、バケットシリンダ21の駆動をバケット13に伝達する。リンク機構32は、第1リンク部33と、第2リンク部材34と、第3リンク部35と、を有する。第1リンク部33は、エクステンション部31と第1リンクピン36を介して接続され、バケット13に接続されたバケットリンク部47と第2リンクピン37を介して接続可能である。第2リンク部材34は、第1リンク部33に第2リンクピン37を介して接続され、基端部31b側に向かって延びる。第3リンク部35は、第1リンク部33よりも基端部31b側に配置され、エクステンション部31と連結ピン16を介して接続され、第2リンク部材34と第3リンクピン38を介して接続されている。
 これにより、リンク機構32にバケット角センサ66が配置されたエクステンションアーム12を提供することができる。
 (他の実施形態)
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施の形態では、バケット角センサ66が第3リンク部35に配置され、バケット角センサ66の検出値がコントローラ54によって取得されるように予め設定されているが、エクステンションアームが装着可能な既存の作業機械に、バケット角センサ66を後付けで装着してもよい。この場合、バケット角センサ66と、ハーネス67と、バケット角センサ66を制御するセンサコントローラ81(検出器コントローラの一例)と、を有する位置推定ユニット80として既存の作業機械に提供することができる。
 図9(a)に示すように、センサコントローラ81がバケット角センサ66の検出値Vdを取得し、ハーネス67を介して車両本体2のコントローラ54に検出値Vd(検出値に基づいた情報の一例)を送信してもよい。コントローラ54は、検出値Vdから、バケット角度θ3を算出する。
 図9(b)に示すように、センサコントローラ81がバケット角センサ66の検出値Vdを取得し、検出値Vdから、傾斜角データと、ブーム角θ1およびアーム角θ2と、作業機3の形状データと、エクステンションアーム12の形状データに基づいて角度Φ1を算出してもよい。センサコントローラ81からハーネス67を介して角度Φ1のデータ(検出値に基づいた情報の一例)が車両本体2のコントローラ54に送信される。コントローラ54は、角度Φ1のデータから、バケット角度θ3を算出する。この場合、センサコントローラ81は、角度Φ1を算出するためにデータを取得する。
 また、図9(c)に示すように、センサコントローラ81が、バケット角センサ66から取得した検出値Vdから、傾斜角データと、ブーム角θ1およびアーム角θ2と、作業機3の形状データとエクステンションアーム12の形状データに基づいて角度Φ2を算出してもよい。センサコントローラ81からハーネス67を介して角度Φ2のデータ(検出値に基づいた情報の一例)が車両本体2のコントローラ54に送信される。コントローラ54は、角度Φ2のデータから、バケット角度θ3を算出する。この場合、センサコントローラ81は、角度Φ2を算出するためのデータを取得する。
 さらに、センサコントローラ81が、バケット角センサ66の検出値からバケット角度θ3を求め、バケット角度θ3のデータ(検出値に基づいた情報の一例)を車両本体2のコントローラ54に送信してもよい。
 なお、センサコントローラ81は、CPU(Central Processing Unit)などのプロセッサと、RAM(Random Access Memory)、及びROM(Read Only Memory)などのメモリや記憶装置を含む。記憶装置は、半導体メモリ、或いはハードディスクなどを含む。記憶装置は、非一時的な(non-transitory)センサコントローラ81で読み取り可能な記録媒体の一例である。記憶装置は、プロセッサによって実行可能であり上述した制御を実行するためのコンピュータ指令を記録している。
 これにより、既存の作業機械にエクステンションアーム12を装着した場合であっても後付けで位置推定ユニット80を作業機械に取り付けることによって、バケット13の刃先13pの位置を取得することができる。
 (B)
 上記実施の形態のエクステンションアーム12のリンク機構32は、第1リンクピン36から第2リンクピン37までの線分L4の長さと、連結ピン16から第3リンクピン38までの線分L2の長さが異なっているが、同じであってもよい。
 図10は、平行リンクであるリンク機構32´を有するエクステンションアーム12´を示す図である。なお、図10では、ハーネス67は省略している。
 図10に示すエクステンションアーム12´では、第3リンク部35´の第3リンク部材35a´の長さが、第1リンク部33´の第1リンク部材33a´の長さと同じであり、第1リンクピン36から第2リンクピン37までの線分L4´の長さと、連結ピン16から第3リンクピン38までの線分L2´の長さが同じに構成されている。
 この場合、角度Φ1と、角度Φ2は同じ値になるため、角度Φ1からバケット13の形状データに基づいてバケット角θ3を算出することができる。
 このため、角度Φ1から角度Φ2を演算によって推定する必要がないため、より精度よくバケット角θ3を推定することができる。
 (C)
 上記実施の形態では、バケット角センサ66は、第3リンク部材35aの外側の側面35b(図3参照)に配置されているが、これに限らなくてもよい。
 図11(a)は、収納ケース68と第3リンク部35´´を示す平面図である。図11(b)は、収納ケース68と第3リンク部35´´を示す側面図である。
 図に示すように、一対の第3リンク部材35aの間を接続する接続部分35cが設けられており、接続部分35cの上面にバケット角センサ66を収納された収納ケース68が取り付けられている。このように、第3リンク部35´´において、第3リンク部材35aの側面35b以外に配置されていてもよい。
 (D)
 上記実施の形態では、バケットの位置に関する情報として、バケット13の刃先13pの位置を推定しているが、刃先13pの位置に限らなくてもよい。バケット13の刃先13p以外の他の位置を推定してもよい。この位置とバケット13の形状データから、ガイド画面71にバケット13の姿勢を表示することができる。
 (E)
 作業機械1は、上述した油圧ショベルに限らず、機械式ショベル、ロープショベル等の他の機械であってもよい。上記の実施形態に係る作業機械1は、いわゆるバックフォー型のショベルであるが、フェースショベルであってもよい。また、履帯式のショベルに限らず、ホイール式のショベルであってもよい。
 本開示によれば、作業による影響を受けにくい位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニットを提供することができる。
11   アーム
12   エクステンションアーム
13   バケット
13p  刃先
21   バケットシリンダ
25   第1作業機
32   リンク機構
50   位置推定システム
54   コントローラ
66   バケット角センサ
 

Claims (11)

  1.  作業機械本体と、アーム、バケットおよび前記バケットを駆動するバケットシリンダを有し、前記作業機械本体に対して揺動可能な第1作業機と、前記バケットシリンダの駆動を前記バケットに伝達するリンク機構を有し、前記アームと前記バケットの間に装着可能な第2作業機と、を備えた作業機械の前記バケットの位置に関する情報を推定する位置推定システムであって、
     前記リンク機構に配置可能な第1姿勢検出器と、
     前記第1作業機の形状に関するデータと、前記第2作業機の形状に関するデータと、前記第1作業機の姿勢に関する情報と、前記第1姿勢検出器による検出値に基づいて、前記作業機械に対する前記バケットの位置に関する情報を推定するコントローラと、を備え、
     前記第2作業機は、
     前記バケットと接続可能な第1端部と前記アームと接続可能な第2端部と、を含むエクステンション部を有し、
     前記リンク機構は、
     前記エクステンション部と第1連結部を介して接続され、前記バケットに接続されたバケットリンク部と第2連結部を介して接続可能な第1リンク部と、
     前記第1リンク部に前記第2連結部を介して接続され、前記第2端部側に向かって延びる第2リンク部と、
     前記第1リンク部よりも前記第2端部側に配置され、前記エクステンション部と第3連結部を介して接続され、前記第2リンク部と第4連結部を介して接続された第3リンク部と、を有する、
    位置推定システム。
  2.  前記第1姿勢検出器は、前記第3リンク部に配置されている、
    請求項1に記載の位置推定システム。
  3.  前記第1姿勢検出器は、前記第3リンク部の外側面に配置される、
    請求項2に記載の位置推定システム。
  4.  前記バケットの位置に関する情報は、前記エクステンション部に前記バケットを連結するバケットピンと前記アームの揺動支点であるアームピンとを結ぶ第1直線に対する、前記バケットの刃先と前記バケットピンを結ぶ第2直線の角度であるバケット角を含み、
     前記コントローラは、
     前記第1姿勢検出器の検出値に基づいて、前記アームに前記エクステンション部を連結する連結ピンと前記アームピンとの間を結ぶ第3直線に対する前記第3リンク部の回転角度を算出し、
     前記第3リンク部の回転角度に基づいて、前記第2直線に対する前記第1リンク部の回転角度を算出し、
     前記第1リンク部の回転角度に基づいて、前記バケット角を算出する、
    請求項2に記載の位置推定システム。
  5.  前記第1作業機は、前記作業機械本体と前記アームに接続されたブームを更に有し、
     前記アームの姿勢を検出する第2姿勢検出器と、
     前記ブームの姿勢を検出する第3姿勢検出器と、を更に備え、
     前記コントローラは、推定した前記バケット角と、前記第2姿勢検出器、および前記第3姿勢検出器の検出値に基づいて、前記バケットの位置を推定する、
    請求項4に記載の位置推定システム。
  6.  前記リンク機構は、平行リンクである、
    請求項1~5のいずれか1項に記載の位置推定システム。
  7.  前記作業機械本体の位置および傾斜を検出する状態検出器を更に備え、
     前記コントローラは、前記作業機械に対する前記バケットの位置に関する情報と、前記状態検出器の検出値に基づいて、前記バケットの位置を推定する、
    請求項1~6のいずれか1項に記載の位置推定システム。
  8.  前記第1姿勢検出器は、IMU(Inertial Measurement Unit)である、
    請求項1~7のいずれか1項に記載の位置推定システム。
  9.  作業機械本体と、アーム、バケットおよび前記バケットを駆動するバケットシリンダを有し、前記作業機械本体に対して揺動可能な第1作業機と、前記バケットシリンダの駆動を前記バケットに伝達するリンク機構を有し、前記アームと前記バケットの間に装着可能な第2作業機と、を備えた作業機械の前記バケットの位置に関する情報を推定する位置推定ユニットであって、
     前記リンク機構に配置可能な第1姿勢検出器と、
     前記第1姿勢検出器による検出値を取得し、前記検出値に基づいた情報を前記作業機械本体に送信する検出器コントローラと、を備え、
     前記第2作業機は、
     前記バケットと接続可能な第1端部と前記アームと接続可能な第2端部と、を含むエクステンション部を有し、
     前記リンク機構は、
     前記エクステンション部と第1連結部を介して接続され、前記バケットに接続されたバケットリンク部と第2連結部を介して接続可能な第1リンク部と、
     前記第1リンク部に前記第2連結部を介して接続され、前記第2端部側に向かって延びる第2リンク部と、
     前記第1リンク部よりも前記第2端部側に配置され、前記エクステンション部と第3連結部を介して接続され、前記第2リンク部と第4連結部を介して接続された第3リンク部と、を有する、
    位置推定ユニット。
  10.  作業機械本体と、
     アーム、バケットおよび前記バケットを駆動するバケットシリンダを有し、前記作業機械本体に対して揺動可能な第1作業機と、
     前記バケットシリンダの駆動を前記バケットに伝達するリンク機構を有し、前記アームと前記バケットの間に装着可能な第2作業機と、
     前記リンク機構に配置された第1姿勢検出器と、
     前記第1作業機の形状に関するデータと、前記第2作業機の形状に関するデータと、前記第1作業機の姿勢に関する情報と、前記第1姿勢検出器による検出値に基づいて前記作業機械本体に対する前記バケットの位置に関する情報を推定するコントローラと、を備え、
     前記第2作業機は、
     前記バケットと接続可能な第1端部と前記アームと接続可能な第2端部と、を含むエクステンション部を有し、
     前記リンク機構は、
     前記エクステンション部と第1連結部を介して接続され、前記バケットに接続されたバケットリンク部と第2連結部を介して接続可能な第1リンク部と、
     前記第1リンク部に前記第2連結部を介して接続され、前記第2端部側に向かって延びる第2リンク部と、
     前記第1リンク部よりも前記第2端部側に配置され、前記エクステンション部と第3連結部を介して接続され、前記第2リンク部と第4連結部を介して接続された第3リンク部と、を有する、
    作業機械。
  11.  作業機械本体と、アーム、バケットおよび前記バケットを駆動するバケットシリンダを有し、前記作業機械本体に対して揺動可能な第1作業機とを備えた作業機械の前記アームと前記バケットの間に装着可能なエクステンションアームと、
     前記エクステンションアームに配置された姿勢検出器と、を備え、
     前記エクステンションアームは、
     前記バケットと接続可能な第1端部および前記アームと接続可能な第2端部と、を含むエクステンション部と、
     前記バケットシリンダの駆動を前記バケットに伝達するリンク機構と、を有し、
     前記リンク機構は、
     前記エクステンション部と第1連結部を介して接続され、前記バケットに接続されたバケットリンク部と第2連結部を介して接続可能な第1リンク部と、
     前記第1リンク部に前記第2連結部を介して接続され、前記第2端部側に向かって延びる第2リンク部と、
     前記第1リンク部よりも前記第2端部側に配置され、前記エクステンション部と第3連結部を介して接続され、前記第2リンク部と第4連結部を介して接続された第3リンク部と、を含む、
    エクステンションユニット。
     
PCT/JP2022/006921 2021-04-08 2022-02-21 位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット WO2022215373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022001080.0T DE112022001080T5 (de) 2021-04-08 2022-02-21 Positionsschätzsystem, positionsschätzeinheit, arbeitsmaschine und verlängerungseinheit
KR1020237029721A KR20230136210A (ko) 2021-04-08 2022-02-21 위치 추정 시스템, 위치 추정 유닛, 작업 기계, 및 익스텐션 유닛
CN202280018596.0A CN117015645A (zh) 2021-04-08 2022-02-21 位置推定系统、位置推定单元、作业机械、及伸长单元
US18/550,198 US20240159023A1 (en) 2021-04-08 2022-02-21 Position estimating system, position estimating unit, work machine, and extension unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-065967 2021-04-08
JP2021065967A JP2022161283A (ja) 2021-04-08 2021-04-08 位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット

Publications (1)

Publication Number Publication Date
WO2022215373A1 true WO2022215373A1 (ja) 2022-10-13

Family

ID=83545818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006921 WO2022215373A1 (ja) 2021-04-08 2022-02-21 位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット

Country Status (6)

Country Link
US (1) US20240159023A1 (ja)
JP (1) JP2022161283A (ja)
KR (1) KR20230136210A (ja)
CN (1) CN117015645A (ja)
DE (1) DE112022001080T5 (ja)
WO (1) WO2022215373A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523231A (en) * 1978-08-04 1980-02-19 Hitachi Constr Mach Co Ltd Bucket pose controller for excavator
JP2003119818A (ja) * 2001-10-09 2003-04-23 Fukuzawa Corporation:Kk 掘削装置、この駆動方法、及び傾斜角計測装置
US6755604B1 (en) * 1998-11-20 2004-06-29 Schaeff-Terex Gmbh & Co. Kg Wheeled shovel loader
WO2016056676A1 (ja) * 2015-10-30 2016-04-14 株式会社小松製作所 作業機械、及び作業機械の作業機パラメータ補正方法
JP2017181340A (ja) * 2016-03-31 2017-10-05 日立建機株式会社 建設機械及び建設機械の較正方法
JP2019132038A (ja) * 2018-01-31 2019-08-08 住友重機械工業株式会社 ショベル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672234B1 (ko) 2014-11-12 2016-11-04 한국과학기술연구원 인 제거용 키토산-멜라민 복합체 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523231A (en) * 1978-08-04 1980-02-19 Hitachi Constr Mach Co Ltd Bucket pose controller for excavator
US6755604B1 (en) * 1998-11-20 2004-06-29 Schaeff-Terex Gmbh & Co. Kg Wheeled shovel loader
JP2003119818A (ja) * 2001-10-09 2003-04-23 Fukuzawa Corporation:Kk 掘削装置、この駆動方法、及び傾斜角計測装置
WO2016056676A1 (ja) * 2015-10-30 2016-04-14 株式会社小松製作所 作業機械、及び作業機械の作業機パラメータ補正方法
JP2017181340A (ja) * 2016-03-31 2017-10-05 日立建機株式会社 建設機械及び建設機械の較正方法
JP2019132038A (ja) * 2018-01-31 2019-08-08 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
US20240159023A1 (en) 2024-05-16
KR20230136210A (ko) 2023-09-26
DE112022001080T5 (de) 2023-12-21
CN117015645A (zh) 2023-11-07
JP2022161283A (ja) 2022-10-21

Similar Documents

Publication Publication Date Title
KR101547586B1 (ko) 유압 셔블의 굴삭 제어 시스템
KR101516693B1 (ko) 유압 셔블의 굴삭 제어 시스템
JP6162807B2 (ja) 作業機械の制御システム及び作業機械
JP6025372B2 (ja) 油圧ショベルの掘削制御システム及び掘削制御方法
EP3235960B1 (en) Controller and method for determining wear of a component of a shovel
US20170107688A1 (en) Work vehicle, bucket device, and method for obtaining tilt angle
US9689145B1 (en) Work vehicle and method for obtaining tilt angle
JP6289534B2 (ja) 作業機械の制御システム及び作業機械
JP6848039B2 (ja) ショベル
KR102166900B1 (ko) 작업기 제어 장치 및 작업 기계
JP7223823B2 (ja) 旋回作業車
JP6454383B2 (ja) 建設機械の表示システムおよびその制御方法
US20230257967A1 (en) Revolving work vehicle, and method for detecting position of working end of revolving work vehicle
WO2022215373A1 (ja) 位置推定システム、位置推定ユニット、作業機械、およびエクステンションユニット
JP2017186875A5 (ja)
JP2019203291A (ja) 油圧ショベル、およびシステム
JP2018035644A (ja) 作業機械
JP6912687B2 (ja) 油圧ショベル
JP7143117B2 (ja) ショベル
WO2023210133A1 (ja) 取付位置決定方法、作業機、作業機械および姿勢検出センサ
JP6745839B2 (ja) 油圧ショベルの掘削制御システム
WO2023053700A1 (ja) 作業機械を制御するためのシステムおよび方法
JP2022128423A (ja) 作業機を有する作業機械において作業機の形状を示す形状データを取得するためのシステム及び方法
JP7324100B2 (ja) 作業機械
JPH059953A (ja) 掘削作業車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237029721

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280018596.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18550198

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001080

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784358

Country of ref document: EP

Kind code of ref document: A1