WO2022215209A1 - 端末、及びページングモニタリング方法 - Google Patents

端末、及びページングモニタリング方法 Download PDF

Info

Publication number
WO2022215209A1
WO2022215209A1 PCT/JP2021/014817 JP2021014817W WO2022215209A1 WO 2022215209 A1 WO2022215209 A1 WO 2022215209A1 JP 2021014817 W JP2021014817 W JP 2021014817W WO 2022215209 A1 WO2022215209 A1 WO 2022215209A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
instruction
base station
dci
pei
Prior art date
Application number
PCT/JP2021/014817
Other languages
English (en)
French (fr)
Inventor
拓真 中村
知也 小原
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/014817 priority Critical patent/WO2022215209A1/ja
Priority to EP21936013.8A priority patent/EP4322640A1/en
Publication of WO2022215209A1 publication Critical patent/WO2022215209A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0241Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where no transmission is received, e.g. out of range of the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication

Definitions

  • the present invention relates to terminals in wireless communication systems.
  • NR New Radio
  • 3GPP 3rd Generation Partnership Project
  • 5G or NR New Radio
  • NR New Radio
  • various radio technologies and network architectures are being studied in order to meet the requirements of realizing a throughput of 10 Gbps or more and keeping the delay in the radio section to 1 ms or less.
  • paging is performed to call a terminal that is on standby when receiving an incoming call.
  • a terminal in RRC_IDLE state or RRC_INACTIVE state performs discontinuous reception operation for power saving in order to monitor paging DCI (Non-Patent Document 1).
  • the intermittent reception operation the period during which the terminal wakes up from the sleep state and performs paging monitoring is called PO (paging occasion).
  • a terminal in RRC_IDLE state or RRC_INACTIVE state may be called an idle/inactive mode UE.
  • idle/inactive mode UE in NR When idle/inactive mode UE in NR performs paging monitoring in PO (paging occurrence), multiple SSB (synchronization signal blocks) are used to perform time/frequency tracking and AGC (auto gain control) in advance. receive processing.
  • PO paging occurrence
  • multiple SSB synchronization signal blocks
  • AGC auto gain control
  • PEI Paging early indication
  • the present invention has been made in view of the above points, and an object thereof is to provide a technology that enables appropriate power consumption reduction of terminals in paging monitoring.
  • a receiving unit that receives a first instruction regarding paging monitoring from a base station; a control unit that determines whether or not to receive a second instruction by the receiving unit based on the first instruction, When the receiving unit receives the second instruction, the receiving unit skips paging monitoring or performs paging monitoring based on the second instruction.
  • a technique that enables appropriate power consumption reduction of terminals in paging monitoring.
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing an operation example for paging monitoring; It is a figure for demonstrating PEI.
  • FIG. 4 is a diagram showing an operation example for paging monitoring; BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the outline
  • FIG. FIG. 11 is a diagram for explaining Example 3-1
  • FIG. 10 is a diagram for explaining Example 3-2
  • FIG. 11 is a diagram for explaining Example 3-3
  • FIG. 11 is a diagram for explaining Example 4;
  • FIG. 11 is a diagram for explaining Example 5;
  • FIG. 11 is a diagram for explaining Example 5;
  • It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention.
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention;
  • FIG. 2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention;
  • Existing technologies are appropriately used for the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technology is, for example, existing NR, but is not limited to existing NR.
  • terminal operation in this embodiment is an idle/inactive mode terminal operation, but this is an example, and the technology according to the present invention is applied to a connected mode terminal. good too.
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and terminals 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example and there may be more than one.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • Synchronization signals are, for example, NR-PSS and NR-SSS.
  • the synchronization signal may be SSB.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also called broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink) and receives control signals or data from the terminal 20 on UL (Uplink).
  • control channels such as PUCCH and PDCCH
  • a shared channel such as PUSCH and PDSCH
  • the terminal 20 is a communication device having a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1 , the terminal 20 receives control signals or data from the base station 10 on the DL and transmits control signals or data to the base station 10 on the UL, thereby performing various functions provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
  • FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is performed.
  • a base station 10A serving as MN (Master Node) and a base station 10B serving as SN (Secondary Node) are provided.
  • the base station 10A and base station 10B are each connected to a core network.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • a cell group provided by the MN base station 10A is called MCG (Master Cell Group), and a cell group provided by the SN base station 10B is called SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the processing operations in the present embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
  • paging monitoring operation An operation example of paging monitoring in the terminal 20 will be described below.
  • paging is performed to call a terminal that is on standby when receiving an incoming call.
  • the terminal 20 performs discontinuous reception operation for power saving in order to monitor the paging DCI (Non-Patent Document 1).
  • the intermittent reception operation the period during which the terminal 20 wakes up from the sleep state and performs paging monitoring is called PO (paging occasion).
  • the terminal 20 monitors one PO per one DRX cycle, for example.
  • a PO for example, consists of a plurality of slots.
  • SSB synchronization signal blocks
  • FIG. 3 shows the SSB reception operation, and the lower side shows the power consumption of the terminal 20 .
  • FIG. 3 shows an example in which the SSB period is 20 ms and three SSBs are received before the PO.
  • the terminal 20 sleeps for a long time before the SSB timing indicated by A, and wakes up at the SSB timing indicated by A. After receiving the SSB indicated by A, it goes to sleep, but since it is a short-time sleep, it is necessary to keep some circuits active, which consumes power. Similarly, SSB reception is performed at timings B and C, and paging monitoring is performed at the PO.
  • the terminal 20 since SSB is transmitted in a relatively long cycle, the terminal 20 must wake up early with respect to the PO reception timing for SSB reception processing. As a result, a long sleep cannot be ensured, leading to an increase in terminal power consumption. In the example of FIG. 3, the long sleep must end 60 ms before the PO.
  • TRS/CSI-RS which is a reference signal transmitted at a shorter period than SSB
  • TRS/CSI-RS can be used.
  • time/frequency tracking and AGC auto gain control
  • TRS/CSI-RS is a reference signal for use by terminal 20 (connected mode UE) in RRC connection state, and is not always transmitted in the cell (and beam) where terminal 20 is located. do not have. For example, if there is not even one connected mode UE connected to the beam in the cell, the base station 10 determines that there is no need to transmit TRS/CSI-RS. In some cases, control is performed so that RS is not transmitted.
  • the terminal 20 cannot determine in advance at what timing it is sufficient to wake up. Therefore, as in the case of using the SSB shown in FIG. 3, it is necessary to wake up before the PO for a longer period of time, increasing power consumption.
  • DCI-based PEI DCI-based PEI
  • RS/sequence-based PEI reference signals (or sequences)
  • FIG. 4 An operation example of the terminal 20 when using PEI is shown with reference to FIG.
  • the terminal 20 receives the PEI indicating that it does not need to wake up on the PO, it does not monitor the PDCCH on the PO indicated by B.
  • the PO indicated by D monitors the PDCCH. Since unnecessary PO monitoring can be avoided by PEI, power consumption can be reduced accordingly.
  • TRS/CSI-RS information for enabling the terminal 20 to use TRS/CSI-RS for paging monitoring at PO is transmitted from the base station 10 to the terminal 20 by PEI.
  • TRS / CSI-RS is mentioned as a reference signal used for paging monitoring, but this is an example, and reference signals other than TRS / CSI-RS may be used. .
  • FIG. 5 shows an operation example when terminal 20 uses TRS for paging monitoring at PO using the information notified by the PEI.
  • FIG. 5 shows a case of using TRS as an example, CSI-RS may be used instead of TRS.
  • the upper side of FIG. 5 shows the reception operation of TRS, etc., and the lower side shows the power consumption of the terminal 20.
  • FIG. 5 shows a case of using TRS as an example, CSI-RS may be used instead of TRS.
  • the upper side of FIG. 5 shows the reception operation of TRS, etc., and the lower side shows the power consumption of the terminal 20.
  • the terminal 20 sleeps for a long time until the SSB timing indicated by C, and wakes up at the SSB timing indicated by C.
  • the terminal 20 performs TRS reception at timings D and C, and performs paging monitoring at PO.
  • DCI-based PEI is highly reliable and highly functional, it is sensitive to synchronization errors.
  • RS/sequence-based PEI is not sensitive to synchronization errors, so it can be received relatively easily. It is difficult to Therefore, RS/sequence-based PEI alone cannot be used in combination with other Power Saving technologies (e.g. Sub-grouping or use for TRS/CSI-RS synchronization, etc.). There is a problem that there is a possibility that the operation of
  • terminal 20 receives DCI-based PEI when instructed to wake up at PO by RS/Sequence-based PEI. It is to detect DCI-based PEI by performing a DCI-based PEI monitoring operation. When terminal 20 is not instructed to wake up in PO by RS/Sequence-based PEI (for example, when instructed to perform Go to sleep operation), it does not need to receive DCI-based PEI (DCI-based PEI monitoring).
  • the terminal 20 receives RS/Sequence-based PEI, and based on the RS/Sequence-based PEI, determines whether or not to receive DCI-based PEI. Such an operation is intended to achieve a reduction in power consumption.
  • the notification called "DCI-based PEI” may be DCI that is not PEI, or may be PDCCH.
  • FIG. (a) shows a timeline of terminal operation in this embodiment, showing the time position of each signal/occasion that the terminal 20 can receive.
  • (b) and (c) show an operation example of the terminal 20 according to the PEI.
  • signal transmission (received by terminal 20) is performed from base station 10 to terminal 20 in the order of RS/Sequence-based PEI ⁇ SSB ⁇ DCI-based PEI, but this is an example. is.
  • the terminal 20 When the terminal 20 is instructed to wake up in the PO by the RS/Sequence-based PEI shown in (a), the terminal 20 performs a DCI-based PEI monitoring operation and receives the DCI-based PEI.
  • terminal 20 When terminal 20 is notified of information for using TRS/CSI-RS by DCI-based PEI, as shown in (c), it skips reception of SSB before TRS and receives TRS. , PO monitoring.
  • FIG. 7 is an example of a sequence in this embodiment.
  • the base station 10 transmits RS/sequence-based PEI
  • the terminal 20 receives the RS/sequence-based PEI.
  • the base station 10 transmits DCI-based PEI, and the terminal 20 receives the DCI-based PEI. It should be noted that if the RS/sequence-based PEI in S101 notifies that Wakeup is unnecessary at the PO, or if notifying or setting that reception of DCI-based PEI is unnecessary, The terminal 20 does not receive the DCI-based PEI in S102. Also, in this case, the base station 10 may not transmit the DCI-based PEI in S102.
  • the terminal 20 when the terminal 20 receives information for using TRS by DCI-based PEI (eg, TRS time/frequency resources, etc.), the terminal 20 sleeps until S103 and wakes up in S103. up to receive TRS. The terminal 20 performs paging monitoring in S104.
  • DCI-based PEI eg, TRS time/frequency resources, etc.
  • Examples 1 to 5 will be described below as more specific examples. Examples 1 to 5 can be implemented in any combination. It is also possible to arbitrarily combine multiple examples or multiple options described in each embodiment.
  • Example 1 When terminal 20 is instructed to wake up at PO by RS/Sequence-based PEI from base station 10 (that is, when notified of Wake Up Indication), for example, one of option 1 and option 2 below Either operation may be performed.
  • terminal 20 performs a DCI-based PEI monitoring operation (blind decoding, etc.).
  • the RNTI used by the terminal 20 for blind decoding DCI-based PEI may be specified in the specifications, or notified from the base station 10 by RRC signaling, MAC CE, DCI, etc. It can be anything.
  • the search space that the terminal 20 monitors when blind-decoding DCI-based PEI may be the one defined in the specifications, or the RRC signaling from the base station 10, MAC CE, DCI, etc. It may be notified by
  • the normal Timeline operation is, for example, the operation of SSB reception ⁇ PO Wake Up, as shown in FIG.
  • Option 3 Another example in the first embodiment will be described as option 3.
  • Terminal 20 is notified of Wake Up Indication by RS/Sequence-based PEI from base station 10, and even when notified of information instructing to sleep in PO (Go to sleep Indication), option 1 may be performed.
  • the information notified from the base station 10 to the terminal 20 by the DCI-based PEI may be one of the following (1) to (7), or (1) to Any one or more of (7) may be sufficient.
  • the following (1) to (7) are examples, and information different from any of the following (1) to (7) may be notified by the DCI-based PEI.
  • Wake up indication (2) Go to sleep indication (3)
  • Sub-grouping Information (4) Information on CSI-RS/TRS (eg Configuration, Availability) (5) SI change (6)
  • ETWS Information on P-RNTI (for example, notifying a specific P-RNTI when multiple P-RNTIs are defined)
  • various information can be notified to the terminal 20 by using DCI-based PEI.
  • Example 3-1 An example in which Sub-grouping Information is notified by DCI-based PEI will be described.
  • Sub-grouping Information is information that notifies each terminal 20 of the Sub-group.
  • Information that notifies the Sub-group may be, for example, an ID corresponding to the Sub-group, a bit in a bitmap (the position of the 1 bit indicates the Sub-group), or other information.
  • Each terminal belonging to a certain Sub-group monitors the same PO. Which Sub-group each terminal 20 belongs to may be specified in the specifications, or may be notified from the base station 10 to the terminal 20 by RRC signaling, MAC CE, DCI, or the like.
  • Example 3-1 Sub-grouping, which divides a group into one or more subgroups, is targeted, but Example 3-1 is also applied to "grouping" without “Sub” in Sub-grouping It is possible.
  • the terminal 20 When the terminal 20 is notified of the Sub-group to which it belongs, it performs paging monitoring in the PO.
  • the terminal 20 When each terminal 20 belonging to Sub-group #G1 receives Sub-grouping Information indicating #G1 by DCI-based PEI, it wakes up, performs SSB reception, and performs A Paging monitoring is performed at the PO indicated by .
  • each terminal 20 belonging to Sub-group #G2 receives Sub-grouping Information indicating #G1 by DCI-based PEI, it determines that paging monitoring at PO indicated by A is unnecessary, and SSB Receive, skip monitoring at PO. With this kind of operation, it is possible to wake up only when PO monitoring is necessary (that is, when there is a possibility of receiving paging at PO), so power consumption can be appropriately reduced.
  • Example 3-2 an operation example of terminal 20 when TRS/CSI-RS information is notified from base station 10 to terminal 20 by DCI-based PEI will be described with reference to FIG.
  • the operation when the TRS/CSI-RS information is notified is the same as the operation described with reference to FIG.
  • the terminal 20 receives information for using TRS (TRS resource information to be used, etc.) from the base station 10 by DCI-based PEI shown in A, it skips SSB reception and receives the TRS shown in B. By doing so, synchronization processing and the like are performed, and paging monitoring at the PO indicated by C is performed.
  • TRS resource information to be used, etc. TRS resource information to be used, etc.
  • the terminal 20 can sleep while SSB reception is skipped, so power consumption can be reduced.
  • Example 3-3 an operation example of the terminal 20 when a Wake Up Indication or a Go to sleep Indication is notified from the base station 10 to the terminal 20 by DCI-based PEI will be described.
  • terminal 20 when terminal 20 is notified of Wake Up Indication by DCI-based PEI from base station 10, terminal 20 performs SSB reception, performs paging monitoring at PO, and performs DCI-based PEI from base station 10.
  • terminal 20 When a Go to sleep indication is notified by PEI, it sleeps without receiving SSB and monitoring with PO.
  • FIG. 10 shows an operation example of the terminal 20 when the base station 10 notifies Go to sleep indication by DCI-based PEI.
  • the information notified by RS/sequence-based PEI received by terminal 20 prior to DCI-based PEI may differ from the information notified by DCI-based PEI.
  • the Wake Up Indication is notified by RS/sequence-based PEI and Go to sleep Indication is notified by DCI-based PEI
  • Go to sleep Indication is notified by RS/sequence-based PEI and DCI- This is the case where the Wake Up Indication is notified by the based PEI.
  • the terminal 20 When the information notified by RS/sequence-based PEI and the information notified by DCI-based PEI are different as described above, the terminal 20 performs any of the following (1) to (4) One or more actions may be performed. Which of the operations (1) to (4) the terminal 20 performs may be defined in the specification, or notified from the base station 10 to the terminal 20 by RRC signaling, MAC CE, DCI, etc. may
  • the terminal 20 prioritizes the DCI-based PEI notification content over the RS/sequence-based PEI notification content, and operates according to the DCI-based PEI notification content.
  • the terminal 20 gives priority to the notification contents of RS/sequence-based PEI over the notification contents of DCI-based PEI, and operates according to the notification contents of RS/sequence-based PEI.
  • the base station 10 notifies the terminal 20 in advance which of the DCI-based PEI notification content and the RS/sequence-based PEI notification content has priority.
  • Terminal 20 operates according to the notification.
  • the method of notification from the base station 10 to the terminal 20 may be SIB, DCI, MAC CE, or RRC signaling.
  • the terminal 20 may determine which one to prioritize based on the power intensity of the received PEI (receiving quality or the like may be used). Based on the reception strength/reception quality, the specifications may stipulate which of the notification contents of DCI-based PEI and the notification contents of RS/sequence-based PEI should be prioritized. 20 may be notified by RRC signaling, MAC CE, DCI, or the like.
  • the terminal 20 gives priority to the PEI notification content with the better reception quality (or the one with the greater reception strength), and Act according to the content.
  • DCI-based PEI if the reception quality of DCI-based PEI is X dB or higher, priority may be given to DCI-based PEI, and otherwise, priority may be given to RS-based PEI.
  • the value of "X" may be specified in the specification, or may be notified from the base station 10 to the terminal 20 by RRC signaling, MAC CE, or the like.
  • the terminal 20 can operate properly even if the information notified by RS/sequence-based PEI and the information notified by DCI-based PEI are different.
  • Example 4 Next, Example 4 will be described.
  • the operation of the terminal 20 when the terminal 20 fails to detect the RS/Sequence-based PEI transmitted from the base station 10 will be described.
  • a terminal 20 that fails to detect the RS/Sequence-based PEI transmitted from the base station 10 may perform, for example, the following option 1 or option 2 operation.
  • Terminal 20 performs blind decoding of DCI-based PEI on the assumption that DCI-based PEI is notified from base station 10 .
  • Performing blind decoding of DCI-based PEI may be rephrased as monitoring DCI-based PEI.
  • the terminal 20 successfully decodes the DCI-based PEI and, for example, is notified of the Wake Up Indication by the DCI-based PEI. Is going.
  • Terminal 20 sleeps on the assumption that DCI-based PEI will not be notified from base station 10 .
  • the terminal 20 since the terminal 20 could not detect the RS/Sequence-based PEI, it sleeps and skips subsequent signal reception.
  • Example 5 is an example regarding placement of DCI-based PEI.
  • Options 1 to 3 are described below as examples of DCI-based PEI deployments. Although an example of DCI-based PEI placement will be described below, the placement methods described in Options 1 to 3 below may also be applied to RS/sequence-based PEI.
  • the time position of DCI-based PEI may be offset in the time direction from the time position of a specific channel (or a specific signal).
  • the frequency position of DCI-based PEI may be set offset in the frequency direction from the frequency position of a specific channel (or a specific signal).
  • the time/frequency position of DCI-based PEI may be set by offsetting in the time direction and frequency direction from the time/frequency position of a specific channel (or a specific signal).
  • the offset value in each of the above examples may be defined in the specifications, or may be notified from the base station 10 to the terminal 20 by RRC signaling, MAC CE, DCI, or the like.
  • the terminal 20 can grasp the DCI-based PEI resource position and receive the PEI based on the time position/frequency position of a specific channel (or a specific signal) and the offset.
  • RS/sequence-based PEI is used as a specific signal.
  • the DCI-based PEI is arranged at a time position offset by a predetermined time from the central time position of the RS/sequence-based PEI.
  • FIG. 13 shows an example of using the frequency direction offset.
  • RS/sequence-based PEI is also used as a specific signal, and DCI-based PEI having a lower end at a frequency position offset by f offset from the lower end frequency position of RS/sequence-based PEI. PEI is placed.
  • PO As the specific channel/specific signal in option 1, PO, SSB, etc. may be used in addition to RS/sequence-based PEI.
  • An absolute value may be used to set the time position of the DCI-based PEI.
  • the frequency position of DCI-based PEI may be set with an absolute value.
  • the time/frequency position of the DCI-based PEI may be set by an absolute value.
  • a setting available in the existing PDCCH (DCI) may be used.
  • the available settings for the existing PDCCH (DCI) are search space settings or CORESET settings.
  • a provision (or setting) to monitor search space A for reception of DCI-based PEI may be made.
  • terminal 20 receives DCI-based PEI by monitoring search space A.
  • the terminal 20 can distinguish between DCI_A and DCI-based PEI by performing blind decoding using different RNTIs for DCI_A and DCI-based PEI. For example, if the RNTI for DCI-based PEI is RNTI_PEI, the terminal 20 determines that DCI successfully decoded using RNTI_PEI is DCI-based PEI.
  • the terminal 20 can appropriately grasp the DCI-based PEI resource location.
  • the base station 10 and terminal 20 include functionality to implement Examples 1-5 described above. However, each of the base station 10 and the terminal 20 may have only the functions of any one of the first to fifth embodiments.
  • FIG. 14 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 14 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 110 and the receiving unit 120 may be called a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals.
  • the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20 .
  • the transmission unit 110 transmits the notification (instruction) described in the first to fifth embodiments to the terminal 20 .
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary.
  • the control unit 140 performs, for example, resource allocation, overall control of the base station 10, and the like. It should be noted that the functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and the functional unit related to signal reception in control unit 140 may be included in receiving unit 120 . Also, the transmitting unit 110 and the receiving unit 120 may be called a transmitter and a receiver, respectively.
  • FIG. 15 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 15 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 210 and the receiving unit 220 may be called a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal.
  • the setting unit 230 stores various types of setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the contents of the setting information are, for example, information necessary for the operations described in the first to fifth embodiments.
  • the control unit 240 controls paging monitoring in the PO based on the information received from the base station 10. It should be noted that the functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and the functional unit related to signal reception in control unit 240 may be included in receiving unit 220 . Also, the transmitting section 210 and the receiving section 220 may be called a transmitter and a receiver, respectively.
  • This embodiment provides at least a terminal and a paging monitoring method described in, for example, the following items.
  • a receiving unit that receives from a base station a first indication regarding paging monitoring; a control unit that determines whether or not to receive a second instruction by the receiving unit based on the first instruction, When the receiving unit receives the second instruction, the receiving unit skips paging monitoring or performs paging monitoring based on the second instruction.
  • Terminal (Section 2) 2. The terminal according to claim 1, wherein the receiving unit skips reception of a synchronization signal and receives a reference signal to perform paging monitoring based on the second instruction. (Section 3) 3.
  • the control unit controls the received power intensity or reception quality of the first instruction and the second Determine which of the information notified by the first instruction and the information notified by the second instruction should be prioritized based on the received power strength or received quality of the instruction. 4.
  • a terminal according to any one of 3. (Section 5) When the receiving unit fails to detect the first instruction, The control unit determines to receive the second instruction on the assumption that the second instruction is transmitted from the base station, or the second instruction is not transmitted from the base station. 5.
  • any of items 1 to 6 it is possible to appropriately reduce the power consumption of the terminal during paging monitoring.
  • the second item it is possible to efficiently perform paging monitoring using the reference signal.
  • paging monitoring can be efficiently performed using subgroup information.
  • the fourth aspect it is possible to appropriately operate even when the information notified by the first instruction and the information notified by the second instruction are different. According to item 5, even if the first instruction cannot be detected, it is possible to perform an appropriate operation.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) responsible for transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 16 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 14 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • the control unit 240 of the terminal 20 shown in FIG. 15 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Auxiliary storage device 1003 may also be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), FPGAs (Field Programmable Gates and other hardware arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are stored in random access memory (RAM), flash memory, read-only memory, respectively. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • a specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with the terminal 20 may be performed by the base station 10 and other network nodes other than the base station 10 (eg, but not limited to MME or S-GW).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean (Boolean: true or false), or may be a numerical comparison (for example , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.), the website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, cell, frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • the names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUSCH, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are in no way restrictive. not a name.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is defined by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, terminal , a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station may have the functions that the terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry (eg, lookup in a table, database, or other data structure);
  • “judgment” and “determination” are used to refer to receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (Accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • “judgment” and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc.
  • judgment and “decision" can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming", “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRB: Physical RB), sub-carrier groups (SCG: Sub-Carrier Group), resource element groups (REG: Resource Element Group), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth, etc.) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the Cyclic Prefix (CP) length, etc.
  • CP Cyclic Prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • the SS block or CSI-RS is an example of a synchronization signal or reference signal.
  • base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ページングのモニタリングに関する第1の指示を基地局から受信する受信部と、 前記第1の指示に基づいて、前記受信部により第2の指示を受信するか否かを判断する制御部と、を備え、前記受信部が前記第2の指示を受信した場合に、前記受信部は、前記第2の指示に基づいて、ページングのモニタリングをスキップする、又は、ページングのモニタリングを実行する端末。

Description

端末、及びページングモニタリング方法
 本発明は、無線通信システムにおける端末に関連するものである。
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。NRでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている。
 NRにおいてもLTEと同様に、着信時に待受け在圏中の端末を呼び出すページング(paging)が行われる。NRでは、RRC_IDLE状態又はRRC_INACTIVE状態の端末は、ページングDCIをモニタするために、省電力化のための間欠受信動作を行う(非特許文献1)。間欠受信動作において、端末が、スリープ状態から起きて(Wake upして)、pagingモニタリングを行う期間をPO(paging occasion、ページング機会)と呼ぶ。以降、RRC_IDLE状態又はRRC_INACTIVE状態の端末を、idle/inactive mode UEと呼ぶ場合がある。
3GPP TS 38.304 V16.1.0(2020-07)
 NRにおけるidle/inactive mode UEが、PO(paging occasion)においてpagingモニタリングを行うときに、事前にtime/frequency tracking及びAGC(auto gain control)等を行うために、複数個のSSB(synchronization signal block)の受信処理を行う必要がある。
 しかし、SSBは比較的長い周期で送信されるため、端末はSSB受信処理のために、PO受信のタイミングに対してより早期にWake upしなければならない。そのため、長時間のスリープが確保できなくなり、端末消費電力の増大につながる。
 POにおいて端末がWake upする必要があるか否かを事前に通知するPaging early indication(以降、PEIと呼ぶ)が提案されている。しかし、従来技術において提案されているPEIでは、端末の消費電力削減を適切に行うことができない可能性があるという課題があった。
 本発明は上記の点に鑑みてなされたものであり、ページングのモニタリングにおいて、端末の消費電力削減を適切に行うことを可能とする技術を提供することを目的とする。
 開示の技術によれば、ページングのモニタリングに関する第1の指示を基地局から受信する受信部と、
 前記第1の指示に基づいて、前記受信部により第2の指示を受信するか否かを判断する制御部と、を備え、
 前記受信部が前記第2の指示を受信した場合に、前記受信部は、前記第2の指示に基づいて、ページングのモニタリングをスキップする、又は、ページングのモニタリングを実行する
 端末が提供される。
 開示の技術によれば、ページングのモニタリングにおいて、端末の消費電力削減を適切に行うことを可能とする技術が提供される。
本発明の実施の形態における無線通信システムを説明するための図である。 本発明の実施の形態における無線通信システムを説明するための図である。 pagingモニタリングのための動作例を示す図である。 PEIを説明するための図である。 pagingモニタリングのための動作例を示す図である。 実施の形態の概要を説明するための図である。 基本的な動作例を示すシーケンス図である。 実施例3-1を説明するための図である。 実施例3-2を説明するための図である。 実施例3-3を説明するための図である。 実施例4を説明するための図である。 実施例5を説明するための図である。 実施例5を説明するための図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。当該既存技術は、例えば既存のNRであるが、既存のNRに限られない。
 また、本明細書では、PDCCH、RRC、MAC、DCI等の既存のNRあるいはLTEの仕様書で使用されている用語を用いているが、本明細書で使用するチャネル名、プロトコル名、信号名、機能名等で表わされるものが別の名前で呼ばれてもよい。また、本実施の形態における端末動作は、idle/inactive modeの端末の動作であることを想定しているが、これは例であり、本発明に係る技術は、connected modeの端末に適用してもよい。
 (システム構成)
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。また、同期信号がSSBであってもよい。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示すとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。
 (pagingモニタリング動作例)
 以下、端末20におけるpagingモニタリングの動作例を説明する。NRでもLTEと同様に、着信時に待受け在圏中の端末を呼び出すページング(paging)が行われる。NRでは、端末20は、ページングDCIをモニタするために、省電力化のための間欠受信動作を行う(非特許文献1)。間欠受信動作において、端末20が、スリープ状態から起きて(Wake upして)、pagingモニタリングを行う期間をPO(paging occasion、ページング機会)と呼ぶ。
 端末20は、例えば、1DRXサイクル当たり、1つのPOをモニタする。POは、例えば、複数のスロットからなる。
 前述したように、端末20が、PO(paging occasion)においてpagingモニタリングを行うときに、事前にtime/frequency tracking及びAGC(auto gain control)等を行うために、複数個のSSB(synchronization signal block)の受信処理を行う必要がある。なお、この事前に受信するSSBの個数は、受信品質によって異なる。
 図3を参照して、POの前にSSB受信を行う場合における端末20の動作例を説明する。図3の上側はSSBの受信動作を示し、下側は、端末20の電力消費を示している。
 図3は、一例としてSSBの周期が20msであり、POの前に3個のSSBを受信する場合の例を示している。端末20は、Aで示すSSBのタイミングの前まで長時間sleepしており、Aで示すSSBのタイミングでwake upする。Aで示すSSBの受信後は、sleepするが、短時間sleepであるため一部の回路は起動させておく必要があるので、電力の消費がある。B、Cのタイミングで同様にSSB受信を行って、POにてpagingモニタリングを行う。
 しかし、SSBは比較的長い周期で送信されるため、端末20はSSB受信処理のために、PO受信のタイミングに対して早期にwake upしなければならない。そのため、長時間のスリープが確保できないため、端末消費電力の増大につながる。図3の例では、POの60ms前から長時間スリープを終了しなければならない。
 pagingモニタリングのために、SSBに加えて、又は、SSBに代えて、SSBよりも短い周期で送信される参照信号であるTRS/CSI-RSを利用することもできる。つまり、TRS/CSI-RSを利用してtime/frequency tracking及びAGC(auto gain control)等を行うことが考えられる。
 しかし、TRS/CSI-RSは、RRC接続状態の端末20(connected mode UE)が用いるための参照信号であり、端末20が在圏するセル(及びビーム)において、常に送信されているとは限らない。例えば、当該セル内の当該ビーム内に接続しているconnected mode UEが1つも存在しない場合には、基地局10は、TRS/CSI-RSを送信する必要がないと判断し、TRS/CSI-RSを送信しない制御を行う場合がある。
 TRS/CSI-RSが送信されているかどうか不明な場合、端末20は事前にどのタイミングでwake upすれば十分かを判断できない。そのため、図3に示したSSBを用いる場合と同様に、POよりも長い時間だけ前にwake upする必要があり、消費電力量が増大する。
 上記のような消費電力量の増大を回避するために、前述したように、POにおいて端末20がwake upする必要があるか否かを事前に通知するPEIが提案されている。具体的には、DCIを用いて通知を行うDCI-based PEI(DCIベースPEI)と、参照信号(あるいは系列)を用いて通知を行うRS/sequence-based PEI(RS/sequenceベースPEI)が提案されている。
 図4を参照して、PEIを用いた場合の端末20の動作例を示す。図4のAで示す時点において、端末20は、POでwake upする必要がないことを示すPEIを受けると、Bで示すPOにおいてPDCCHのモニタリングを行わない。Cで示す時点において、POでwake upすることを指示するPEIを受信すると、Dで示すPOにおいてPDCCHのモニタリングを行う。PEIにより、不要なPOのモニタリングを回避できるので、その分の消費電力削減が可能となる。
 PEIにより、消費電力を削減してTRS/CSI-RSを利用したPOモニタリングを行うことも可能である。すなわち、PEIにより、POでのpagingモニタリングのために端末20がTRS/CSI-RSを利用することを可能とするための情報が、基地局10から端末20に送信される。なお、本実施の形態では、pagingモニタリングのために利用する参照信号としてTRS/CSI-RSを挙げているが、これは例であり、TRS/CSI-RS以外の参照信号を利用してもよい。
 図5は、上記のPEIにより通知される情報を利用して、端末20が、POでのpagingモニタリングのためにTRSを利用する場合の動作例を示している。図5は一例としてTRSを利用する場合を示しているが、TRSに代えてCSI-RSを利用してもよい。図5の上側はTRS等の受信動作を示し、下側は、端末20の電力消費を示している。
 端末20は、基地局10から受信した上記の情報により、図5のD、Eに示すTRSが送信されること、及びそのタイミング、時間周波数リソース等を知っているものとする。
 端末20は、Cで示すSSBのタイミングの前まで長時間sleepしており、Cで示すSSBのタイミングでwake upする。端末20は、D、CのタイミングでTRS受信を行って、POにてpagingモニタリングを行う。
 (課題について)
 前述したように、PEIとして、DCI-based PEI及びRS/sequence-based PEIが提案されている。
 ここで、DCI-based PEIは、高信頼・高機能である反面、同期エラーにセンシティブである。一方、RS/sequence-based PEIは、同期エラーにセンシティブではないので、比較的容易に受信できるが、端末20へ通知できる情報量が少なく、wake up(あるいはGo to sleep)通知以外の情報を通知することが困難である。そのため、RS/sequence-based PEIのみでは、他のPower Saving技術(例:Sub-groupingあるいはTRS/CSI-RSの同期への活用など)と組み合わせた活用ができず、適切な消費電力削減のための動作を行うことができない可能性があるという課題があった。
 (実施の形態の概要)
 本実施の形態では、上記の課題を解決するために、端末20がRS/Sequence-based PEIによってPOにおけるWake upを指示された場合に、DCI-based PEIを受信する。DCI-based PEIのモニタリング動作を行って、DCI-based PEIを検出することである。端末20がRS/Sequence-based PEIによってPOにおけるWake upを指示されない場合(例えば、Go to sleep動作を指示された場合)には、DCI-based PEIを受信しなくてもよい(DCI-based PEIのモニタリングを行わなくてよい)。
 すなわち、端末20は、RS/Sequence-based PEIを受信し、RS/Sequence-based PEIに基づいて、DCI-based PEIを受信するか否かを判断する。このような動作により、消費電力削減を達成することとしている。
 なお、本実施の形態において、「DCI-based PEI」と呼ばれる通知は、PEIではないDCIであってもよいし、PDCCHであってもよい。
 図6を参照して、端末20の動作の概要を説明する。(a)は、本実施の形態における端末動作のタイムラインを示しており、端末20が受信し得る各信号/occasionの時間位置を示している。(b)、(c)は、PEIに応じた端末20動作例を示している。なお、本実施の形態では、基地局10から端末20に対して、RS/Sequence-based PEI→SSB→DCI-based PEIの順番で信号送信(端末20は受信)が行われるが、これは一例である。
 (a)に示すRS/Sequence-based PEIにより、端末20がPOにおけるWake upを指示されると、端末20は、DCI-based PEIのモニタ動作を行って、DCI-based PEIを受信する。
 端末20が、DCI-based PEIによりSub-grouping Information(ここでは、端末20のサブグループ以外のサブグループを指示)を通知された場合、(b)に示すように、SSB受信をスキップするとともに、POでのモニタリングをスキップする。
 端末20が、DCI-based PEIによりTRS/CSI-RSを利用するための情報を通知された場合、(c)に示すように、TRSの前のSSBの受信をスキップし、TRSを受信して、POでのモニタリングを行う。
 (シーケンス例)
 図7は、本実施の形態におけるシーケンスの例である。S101において、基地局10がRS/sequence‐based PEIを送信し、端末20が当該RS/sequence‐based PEIを受信する。
 S102において、基地局10がDCI‐based PEIを送信し、端末20が当該DCI‐based PEIを受信する。なお、S101のRS/sequence‐based PEIによりPOでのWake upが不要であることの通知がされた場合、あるいは、DCI‐based PEIの受信が不要であることの通知あるいは設定がされた場合、端末20は、S102におけるDCI‐based PEIの受信を行わない。また、この場合に、基地局10は、S102におけるDCI‐based PEIの送信を行わないこととしてもよい。
 S102において、端末20が、DCI‐based PEIによりTRSを利用するための情報(例:TRSの時間・周波数リソース等)を受信したとすると、端末20は、S103の前までスリープし、S103においてWake upしてTRSを受信する。端末20は、S104においてpagingモニタリングを行う。
 以下、より具体的な例として、実施例1~実施例5を説明する。実施例1~5は任意に組み合わせて実施することが可能である。各実施例内で説明する複数の例あるいは複数のオプションについても任意に組み合わせて実施することが可能である。
 (実施例1)
 端末20は、基地局10からRS/Sequence-based PEIによってPOでWake upする指示をされた場合(つまり、Wake Up Indicationを通知された場合)、例えば、下記のオプション1とオプション2のうちのいずれかの動作を行うこととしてよい。
  <オプション1>
 端末20は、基地局10からDCI-based PEIが通知されることを想定して、DCI-based PEIのモニタリング動作を行う(ブラインドデコーディング等)。
 端末20がDCI-based PEIをブラインドデコーディングする際に使用するRNTIは、仕様書で規定されているものであってもよいし、基地局10からRRCシグナリング、MAC CE、又はDCI等により通知されたものであってもよい。
 また、端末20がDCI-based PEIをブラインドデコーディングする際にモニタするサーチスペースは、仕様書で規定されているものであってもよいし、基地局10からRRCシグナリング、MAC CE、又はDCI等により通知されたものであってもよい。
  <オプション2>
 DCI-based PEIが通知されないことが事前に端末20に設定されている場合、又は、DCI-based PEIが通知されないことが事前に基地局10から端末20に通知されている場合、端末20は、DCI-based PEIのブラインドデコーディングを実施せず、通常のTimeline動作を行う。通常のTimeline動作とは、例えば図3に示したように、SSB受信→PO Wake Upの動作のことである。
 DCI-based PEIが通知されないことを示す情報は、例えば、基地局10から端末20に対して、SIB、DCI、MAC CE、又はRRCシグナリング等を用いて通知される。
  <オプション3>
 実施例1におけるその他の例をオプション3として説明する。端末20は、基地局10からRS/Sequence-based PEIによってWake Up Indicationを通知された場合に加えて、POにおいてsleepすることを指示する情報(Go to sleep Indication)を通知された場合でも、オプション1の動作を行うこととしてもよい。
 この場合、RS/Sequence-based PEIにより受信する情報と、DCI-based PEIで受信する情報に差異がある可能性がある。このように差異がある場合に、どちらを優先するかについては後述する実施例3-3において説明する。
 (実施例2)
 本実施の形態において、DCI-based PEIにより、基地局10から端末20に通知される情報は、下記の(1)~(7)のうちの1つであってもよいし、(1)~(7)のうちのいずれか複数であってもよい。下記(1)~(7)は例であり、下記の(1)~(7)のいずれとも異なる情報がDCI-based PEIにより通知されてもよい。
 (1)Wake UP Indication
 (2)Go to Sleep Indication
 (3)Sub-grouping Information
 (4)CSI-RS/TRSに関する情報(例:Configuration、Availability)
 (5)SI change
 (6)ETWS
 (7)P-RNTIに関する情報(例えば、multiple P-RNTIが規定された場合において、特定のP-RNTIを通知する)
 上記のように、DCI-based PEIを用いることにより、様々な情報を端末20に通知することができる。
 (実施例3)
 実施例3では、実施例2で説明した、DCI-based PEIにより通知される情報を用いた端末動作の具体例として、実施例3-1~3-3を説明する。
  <実施例3-1>
 実施例3-1では、DCI-based PEIにより、Sub-grouping Informationが通知される場合の例について説明する。
 ここでは、複数端末が1以上のSub-groupに分けられており、Sub-grouping Informationは、各端末20に対してSub-groupを通知する情報であるとする。Sub-groupを通知する情報は、例えば、Sub-groupに対応するIDであってもよいし、ビットマップにおけるビット(1のビットの位置がSub-groupを示す)であってもよいし、その他の情報であってもよい。
 あるSub-groupに属する各端末は、同じPOをモニタリングする。各端末20がどのSub-groupに属するかについては、仕様で規定されてもよいし、基地局10から端末20にRRCシグナリング、MAC CE、DCI等で通知されてもよい。
 なお、実施例3-1では、あるグループを1以上のサブグループに分けるSub-groupingを対象としているが、Sub-groupingの「Sub」を付けない「grouping」についても実施例3-1を適用可能である。
 端末20は、自身が属するSub-groupを通知された場合にPOでのpagingモニタリングを行う。図8に示す例では、Sub-group#G1に属する各端末20は、DCI-based PEIにより、#G1を示すSub-grouping Informationを受信した場合、Wake upして、SSB受信を行って、Aで示すPOにてpagingモニタリングを行う。
 一方、Sub-group#G2に属する各端末20は、DCI-based PEIにより、#G1を示すSub-grouping Informationを受信した場合、Aで示すPOでのpagingモニタリングは不要であると判断し、SSB受信、POでのモニタリングをスキップする。このような動作により、POモニタリングが必要な場合(つまり、POにてpagingを受信する可能性がある場合)にのみWake upすることができるので、消費電力を適切に削減できる。
  <実施例3-2>
 実施例3-2では、DCI-based PEIにより、基地局10から端末20に対してTRS/CSI-RS情報が通知された場合における端末20の動作例を、図9を参照して説明する。TRS/CSI-RS情報が通知された場合の動作は、図5を参照して説明した動作と同様である。
 ここでは、TRSを用いる場合について説明する。また、TRSが、POの周辺に設定されているとする。端末20が、Aに示すDCI-based PEIにより、基地局10からTRSを利用するための情報(利用するTRSのリソース情報等)を受信すると、SSB受信をスキップして、Bに示すTRSを受信することで同期処理等を行って、Cで示すPOでのpagingモニタリングを行う。
 図9に示すように、SSB受信をスキップしている期間において、端末20はSleepできるため消費電力削減が可能である。
  <実施例3-3>
 実施例3-3では、DCI-based PEIにより、基地局10から端末20に対してWake Up Indication又はGo to sleep Indicationを通知された場合における端末20の動作例を説明する。
 基本的には、端末20は、基地局10からDCI-based PEIによりWake Up Indicationを通知された場合には、SSB受信を行って、POにてpagingモニタリングを行い、基地局10からDCI-based PEIによりGo to sleep Indicationを通知された場合には、SSB受信及びPOでのモニタリングを行わずにsleepする。図10は、基地局10からDCI-based PEIによりGo to sleep Indicationを通知された場合の端末20の動作例を示している。
 一方、端末20がDCI-based PEIよりも前に受信したRS/sequence‐based PEIで通知された情報と、DCI-based PEIで通知された情報とが異なる場合があり得る。例えば、RS/sequence‐based PEIによりWake Up Indicationが通知され、DCI-based PEIによりGo to sleep Indicationが通知される場合、あるいは、RS/sequence‐based PEIによりGo to sleep Indicationが通知され、DCI-based PEIによりWake Up Indicationが通知される場合である。
 上記のようにRS/sequence‐based PEIで通知された情報と、DCI-based PEIで通知された情報とが異なる場合において、端末20は、下記の(1)~(4)のうちのいずれか1つ又は複数の動作を行ってもよい。端末20が、(1)~(4)のうちのどの動作を行うかについて、仕様書で規定されていてもよいし、基地局10から端末20にRRCシグナリング、MAC CE、DCI等で通知されてもよい。
 (1)端末20は、DCI-based PEIの通知内容をRS/sequence‐based PEIの通知内容よりも優先し、DCI-based PEIの通知内容に従って動作する。
 (2)端末20は、RS/sequence‐based PEIの通知内容をDCI-based PEIの通知内容よりも優先し、RS/sequence‐based PEIの通知内容に従って動作する。
 (3)基地局10から端末20に対して、DCI-based PEIの通知内容とRS/sequence‐based PEIの通知内容のうちのどちらを優先するかを事前に通知する。端末20は、その通知に従って動作する。基地局10から端末20への通知方法については、SIBでもよいし、DCIでもよいし、MAC CEでもよいし、RRCシグナリングでもよい。
 (4)端末20は、受信したPEIの電力強度(受信品質等でもよい)によりどちらを優先するかを判断してもよい。受信強度/受信品質に基づき、DCI-based PEIの通知内容とRS/sequence‐based PEIの通知内容のうちのどちらを優先するかについて、仕様で規定されていてもよいし、基地局10から端末20にRRCシグナリング、MAC CE,DCI等で通知されてもよい。
 例えば、端末20は、DCI-based PEIの通知内容とRS/sequence‐based PEIの通知内容のうち、受信品質のよいほう(あるいは受信強度の大きいほう)のPEIの通知内容を優先し、その通知内容に従って動作する。
 また、例えば、DCI-based PEIの受信品質がXdB以上であればDCI-based PEIを優先し、それ以外であればRS-based PEIを優先することとしてもよい。「X」の値は、仕様で規定されていてもよいし、基地局10から端末20にRRCシグナリング、MAC CE等で通知されてもよい。
 実施例3-3により、RS/sequence‐based PEIで通知された情報と、DCI-based PEIで通知された情報とが異なる場合でも、端末20は適切に動作することができる。
 (実施例4)
 次に、実施例4を説明する。実施例4では、端末20が、基地局10から送信されたRS/Sequence-based PEIを検出できなかった場合における端末20の動作について説明する。基地局10から送信されたRS/Sequence-based PEIを検出できなかった端末20は、例えば、下記のオプション1又はオプション2の動作を行ってもよい。
  <オプション1>
 端末20は、基地局10からDCI-based PEIが通知されることを想定して、DCI-based PEIのブラインドデコーディングを行う。DCI-based PEIのブラインドデコーディングを行うことを、DCI-based PEIをモニタすると言い換えてもよい。図11の(a)に示す例では、端末20は、DCI-based PEIのデコードに成功し、例えば、DCI-based PEIによりWake Up Indicationを通知されたので、SSB受信、及びPOでのモニタリングを行っている。
  <オプション2>
 端末20は、基地局10からDCI-based PEIが通知されないことを想定してSleepする。図11の(b)に示す例では、端末20は、RS/Sequence-based PEIを検出できなかったので、sleepし、その後の信号受信をスキップする。
 (実施例5)
 次に、実施例5を説明する。実施例5は、DCI-based PEIの配置に関する実施例である。以下、DCI-based PEIの配置の例として、オプション1~3を説明する。なお、以下では、DCI-based PEIの配置に関する例を説明するが、RS/sequence‐based PEIについても下記のオプション1~オプション3で説明する配置方法が適用されてもよい。
  <オプション1>
 DCI-based PEIの時間位置は、特定のchannel(特定のSignalでもよい)の時間位置から時間方向にオフセットして設定されてもよい。また、DCI-based PEIの周波数位置は、特定のchannel(特定のSignalでもよい)の周波数位置から周波数方向にオフセットして設定されてもよい。また、DCI-based PEIの時間・周波数位置は、特定のchannel(特定のSignalでもよい)の時間・周波数位置から時間方向及び周波数方向にオフセットして設定されてもよい。
 上記各例におけるオフセットの値については、仕様書で規定されてもよいし、基地局10から端末20にRRCシグナリング、MAC CE、DCI等で通知されてもよい。端末20は、特定のchannel(特定のSignalでもよい)の時間位置/周波数位置と、オフセットに基づいて、DCI-based PEIのリソース位置を把握でき、PEIを受信することができる。
 時間方向オフセットを用いる場合の例を図12に示す。図12に示す例では、特定のsignalとしてRS/sequence‐based PEIが使用されている。図12に示すとおり、RS/sequence‐based PEIの中央の時間位置から所定時間だけオフセットした時間位置に、DCI-based PEIが配置されている。
 周波数方向オフセットを用いる場合の例を図13に示す。図13に示す例でも、特定のsignalとしてRS/sequence‐based PEIが使用されており、RS/sequence‐based PEIの下端の周波数位置からfoffsetだけオフセットされた周波数位置に下端を有するDCI-based PEIが配置されている。
 オプション1における特定のchannel/特定のSignalとしては、RS/sequence‐based PEIの他、PO、SSB等を用いてもよい。
  <オプション2>
 絶対値でDCI-based PEIの時間位置を設定してもよい。また、絶対値でDCI-based PEIの周波数位置を設定してもよい。また、絶対値でDCI-based PEIの時間・周波数位置を設定してもよい。これらの絶対値は、仕様書で規定されていてもよいし、基地局10から端末20にRRCシグナリング、MAC CE、DCI等で設定されてもよい。端末20は、DCI-based PEIの時間位置/周波数位置を示す絶対値によりDCI-based PEIのリソースを把握し、DCI-based PEIを受信することができる。
  <オプション3>
 DCI-based PEIの配置(リソース)の設定として、既存のPDCCH(DCI)で利用可能な設定を利用してもよい。既存のPDCCH(DCI)で利用可能な設定とは、サーチスペースの設定、あるいはCORESETの設定である。
 例えば、サーチスペースAをモニタリングすることで既存のDCI_Aを受信する規定(又は設定)がなされている場合において、DCI-based PEIの受信のために、サーチスペースAをモニタリングするとの規定(又は設定)がなされてもよい。この場合、端末20は、サーチスペースAをモニタリングすることでDCI-based PEIを受信する。
 この場合、例えば、端末20は、DCI_AとDCI-based PEIとで異なるRNTIを用いてブラインドデコーディングを行うことで、DCI_AとDCI-based PEIを区別することができる。例えば、DCI-based PEIに対するRNTIがRNTI_PEIであるとすると、端末20は、RNTI_PEIを用いてデコーディングに成功したDCIをDCI-based PEIであると判断する。
 実施例5によれば、端末20は、DCI-based PEIのリソース位置を適切に把握できる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例1~5を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例1~5のうちのいずれかの実施例の機能のみを備えることとしてもよい。
 <基地局10>
 図14は、基地局10の機能構成の一例を示す図である。図14に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図14に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例1~5で説明した通知(指示)を端末20に送信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。
 制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図15は、端末20の機能構成の一例を示す図である。図15に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図15に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、実施例1~5で説明した動作に必要な情報である。
 制御部240は、基地局10から受信した情報に基づいて、POにおけるpagingモニタリングの制御を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 本実施の形態により、少なくとも、例えば下記の各項に記載された端末、ページングモニタリング方法が提供される。
(第1項)
 ページングのモニタリングに関する第1の指示を基地局から受信する受信部と、
 前記第1の指示に基づいて、前記受信部により第2の指示を受信するか否かを判断する制御部と、を備え、
 前記受信部が前記第2の指示を受信した場合に、前記受信部は、前記第2の指示に基づいて、ページングのモニタリングをスキップする、又は、ページングのモニタリングを実行する
 端末。
(第2項)
 前記受信部は、前記第2の指示に基づいて、同期信号の受信をスキップし、参照信号の受信を行ってページングのモニタリングを実行する
 第1項に記載の端末。
(第3項)
 前記第2の指示が、前記端末が属するサブグループを示す場合に、前記受信部は、ページングのモニタリングを実行する
 第1項又は第2項に記載の端末。
(第4項)
 前記第1の指示により通知される情報と、前記第2の指示により通知される情報とが異なる場合において、前記制御部は、前記第1の指示の受信電力強度又は受信品質と前記第2の指示の受信電力強度又は受信品質に基づいて、前記第1の指示により通知される情報と、前記第2の指示により通知される情報のうちのどちらを優先するかを決定する
 第1項ないし第3項のうちいずれか1項に記載の端末。
(第5項)
 前記受信部が前記第1の指示を検出できなかった場合において、
 前記制御部は、前記基地局から前記第2の指示が送信されると想定して、前記第2の指示を受信することを決定する、又は、前記基地局から前記第2の指示が送信されないと想定して、前記第2の指示を受信しないことを決定する
 第1項ないし第4項のうちいずれか1項に記載の端末。
(第6項)
 ページングのモニタリングに関する第1の指示を基地局から受信するステップと、
 前記第1の指示に基づいて、第2の指示を受信するか否かを判断するステップと、
 前記第2の指示を受信した場合に、前記第2の指示に基づいて、ページングのモニタリングをスキップする、又は、ページングのモニタリングを実行するステップと、
 を備える、端末が実行するページングモニタリング方法。
 第1項~第6項のいずれによっても、ページングのモニタリングにおいて、端末の消費電力削減を適切に行うことが可能となる。第2項によれば、参照信号を利用して効率的にページングモニタリングを行うことができる。第3項によれば、サブグループ情報を利用して効率的にページングモニタリングを行うことができる。第4項によれば、前記第1の指示により通知される情報と、前記第2の指示により通知される情報とが異なる場合でも適切に動作を行うことができる。第5項によれば、第1の指示を検出できなかった場合でも、適切に動作を行うことができる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図14及び図15)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)あるいは送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図14に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図15に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUSCH、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa,an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、SSブロック又はCSI-RSは、同期信号又は参照信号の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  ページングのモニタリングに関する第1の指示を基地局から受信する受信部と、
     前記第1の指示に基づいて、前記受信部により第2の指示を受信するか否かを判断する制御部と、を備え、
     前記受信部が前記第2の指示を受信した場合に、前記受信部は、前記第2の指示に基づいて、ページングのモニタリングをスキップする、又は、ページングのモニタリングを実行する
     端末。
  2.  前記受信部は、前記第2の指示に基づいて、同期信号の受信をスキップし、参照信号の受信を行ってページングのモニタリングを実行する
     請求項1に記載の端末。
  3.  前記第2の指示が、前記端末が属するサブグループを示す場合に、前記受信部は、ページングのモニタリングを実行する
     請求項1又は2に記載の端末。
  4.  前記第1の指示により通知される情報と、前記第2の指示により通知される情報とが異なる場合において、前記制御部は、前記第1の指示の受信電力強度又は受信品質と前記第2の指示の受信電力強度又は受信品質に基づいて、前記第1の指示により通知される情報と、前記第2の指示により通知される情報のうちのどちらを優先するかを決定する
     請求項1ないし3のうちいずれか1項に記載の端末。
  5.  前記受信部が前記第1の指示を検出できなかった場合において、
     前記制御部は、前記基地局から前記第2の指示が送信されると想定して、前記第2の指示を受信することを決定する、又は、前記基地局から前記第2の指示が送信されないと想定して、前記第2の指示を受信しないことを決定する
     請求項1ないし4のうちいずれか1項に記載の端末。
  6.  ページングのモニタリングに関する第1の指示を基地局から受信するステップと、
     前記第1の指示に基づいて、第2の指示を受信するか否かを判断するステップと、
     前記第2の指示を受信した場合に、前記第2の指示に基づいて、ページングのモニタリングをスキップする、又は、ページングのモニタリングを実行するステップと、
     を備える、端末が実行するページングモニタリング方法。
PCT/JP2021/014817 2021-04-07 2021-04-07 端末、及びページングモニタリング方法 WO2022215209A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/014817 WO2022215209A1 (ja) 2021-04-07 2021-04-07 端末、及びページングモニタリング方法
EP21936013.8A EP4322640A1 (en) 2021-04-07 2021-04-07 Terminal and paging monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014817 WO2022215209A1 (ja) 2021-04-07 2021-04-07 端末、及びページングモニタリング方法

Publications (1)

Publication Number Publication Date
WO2022215209A1 true WO2022215209A1 (ja) 2022-10-13

Family

ID=83545251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014817 WO2022215209A1 (ja) 2021-04-07 2021-04-07 端末、及びページングモニタリング方法

Country Status (2)

Country Link
EP (1) EP4322640A1 (ja)
WO (1) WO2022215209A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.304, July 2020 (2020-07-01)
NTT DOCOMO, INC.: "Discussion on paging enhancements", 3GPP DRAFT; R1-2101622, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971777 *
SONY: "Paging enhancements for IDLE/INACTIVE", 3GPP DRAFT; R1-2100866, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971218 *
XIAOMI: "Paging enhancements for power saving", 3GPP DRAFT; R1-2102991, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993337 *

Also Published As

Publication number Publication date
EP4322640A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP7288919B2 (ja) 端末、通信システム及び通信方法
WO2020222281A1 (ja) ユーザ装置
JP7163419B2 (ja) 無線ノード、及び、無線通信制御方法
JP7339956B2 (ja) 端末、無線通信方法及び無線通信システム
JP2023016940A (ja) 端末、無線通信システム及び無線通信方法
WO2022195778A1 (ja) 端末、基地局、及び送信方法
WO2022157953A1 (ja) 端末、基地局、および、通信方法
JP7250048B2 (ja) 端末、基地局、通信方法及び無線通信システム
JP7248709B2 (ja) 端末、基地局、通信方法及び無線通信システム
JP7203199B2 (ja) 端末、基地局及び通信方法
JP7321268B2 (ja) 端末、基地局、通信システム、及び通信方法
WO2022215209A1 (ja) 端末、及びページングモニタリング方法
JP2023046416A (ja) 端末及び通信方法
WO2023017604A1 (ja) 端末および通信方法
WO2022153550A1 (ja) 端末、基地局、及び受信方法
WO2022239089A1 (ja) 端末及び通信方法
WO2022074748A1 (ja) 端末、基地局、及びページング方法
WO2023276015A1 (ja) 端末およびpdcchモニタリング方法
WO2023276014A1 (ja) 端末およびpdcchモニタリング方法
WO2023286179A1 (ja) 端末及び通信方法
WO2023002586A1 (ja) 端末および通信方法
WO2023002587A1 (ja) 端末および通信方法
WO2022208635A1 (ja) 端末及び通信方法
WO2022030023A1 (ja) 端末及び通信方法
WO2022030024A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021936013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021936013

Country of ref document: EP

Effective date: 20231107