WO2023017604A1 - 端末および通信方法 - Google Patents

端末および通信方法 Download PDF

Info

Publication number
WO2023017604A1
WO2023017604A1 PCT/JP2021/029754 JP2021029754W WO2023017604A1 WO 2023017604 A1 WO2023017604 A1 WO 2023017604A1 JP 2021029754 W JP2021029754 W JP 2021029754W WO 2023017604 A1 WO2023017604 A1 WO 2023017604A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
positioning
period
signal
transmission
Prior art date
Application number
PCT/JP2021/029754
Other languages
English (en)
French (fr)
Inventor
真哉 岡村
知也 小原
拓真 中村
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/029754 priority Critical patent/WO2023017604A1/ja
Publication of WO2023017604A1 publication Critical patent/WO2023017604A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a terminal and communication method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • Non-Patent Document 2 a discontinuous reception (DRX) operation in which a terminal periodically attempts to receive a paging message from the network is being studied in order to save power in the terminal.
  • DRX discontinuous reception
  • Release 17 NR positioning compared to Release 16 NR positioning, it is targeted to improve positioning accuracy and reduce latency.
  • new scenarios such as industrial IoT (Internet of Things) use cases have been added (for example, Non-Patent Document 3).
  • 3GPP TS 38.300 V16.6.0 (2021-07) 3GPP TS 38.321 V16.5.0 (2021-07) 3GPP TR 38.857 V17.0.0 (2021-03)
  • Release 18NR improvements to positioning accuracy, consistency, and power efficiency carried over from Release 17NR are being considered.
  • Release 16 NR positioning does not define specifications that consider discontinuous reception (DRX) operation.
  • a terminal for which discontinuous reception (DRX) operation is set does not transmit an uplink signal for position positioning except during the ON period, so there is a problem that position positioning accuracy is degraded.
  • the present invention has been made in view of the above points, and an object thereof is to provide a technique that enables position measurement in consideration of intermittent reception operation.
  • a terminal comprising a transmitting unit that transmits a signal for positioning, and a control unit that controls to transmit the signal for positioning in periods other than the ON period of intermittent reception operation is provided.
  • a technique that enables position positioning that takes intermittent reception into consideration.
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention
  • FIG. FIG. 4 is a diagram for explaining the transmission timing of positioning signals according to the embodiment of the present invention
  • FIG. 10 is a first diagram for explaining the transmission timing of positioning signals according to option 1-2 of alternative 2 of embodiment 1
  • FIG. 10 is a second diagram for explaining the transmission timing of the positioning signal according to option 1-2 of alternative 2 of embodiment 1
  • FIG. 10 is a diagram for explaining the transmission timing of a positioning signal according to option 2 of alternative 2 of embodiment 1
  • FIG. 10 is a diagram for explaining the transmission timing of a positioning signal according to option 3 of alternative 2 of embodiment 1
  • FIG. 10 is a first diagram for explaining the transmission timing of positioning signals according to Alternative 3 of Embodiment 1
  • FIG. 12 is a second diagram for explaining the transmission timing of the positioning signal according to alternative 3 of the first embodiment;
  • FIG. 12 is a diagram for explaining the transmission timing of the positioning signal according to Alternative 1 to Pattern 1 of Example 2;
  • FIG. 11 is a first diagram for explaining the transmission timing of positioning signals according to Variation 1 of Alternative 1 of Pattern 2 of Embodiment 2;
  • FIG. 10 is a second diagram for explaining the transmission timing of the positioning signal according to Variation 1 of Alternative 1 of Pattern 2 of Embodiment 2;
  • FIG. 10 is a first diagram for explaining the transmission timing of positioning signals according to Variation 2 of Alternative 1 of Pattern 2 of Embodiment 2;
  • FIG. 10 is a second diagram for explaining the transmission timing of positioning signals according to Variation 2 of Alternative 1 of Pattern 2 of Embodiment 2;
  • FIG. 10 is a second diagram for explaining the transmission timing of positioning signals according to Variation 2 of Alternative 1 of Pattern 2 of Embodiment 2;
  • FIG. 12 is a second diagram for explaining the transmission timing of positioning signals
  • FIG. 12 is a third diagram for explaining the transmission timing of the positioning signal according to Variation 2 of Alternative 1 of Pattern 2 of Example 2;
  • FIG. 14 is a fourth diagram for explaining the transmission timing of the positioning signal according to Variation 2 of Alternative 1 of Pattern 2 of Example 2;
  • FIG. 12 is a fifth diagram for explaining the transmission timing of the positioning signal according to Variation 2 of Alternative 1 of Pattern 2 of Example 2;
  • FIG. 11 is a diagram for explaining the transmission timing of the positioning signal according to Alternative 2 to Pattern 2 of Example 2;
  • FIG. 11 is a diagram for explaining resource mapping of PRSs according to the third embodiment;
  • FIG. 11 is a first diagram for explaining transmission timings of positioning signals according to the fourth embodiment;
  • 15 is a second diagram for explaining the transmission timing of the positioning signal according to the fourth embodiment; It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention.
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention;
  • FIG. 2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention;
  • Existing technologies are appropriately used for the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technology is, for example, existing NR, but is not limited to existing NR.
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention.
  • a radio communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example and there may be more than one.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
  • the base station 10 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled and communicated with the terminal 20 .
  • multiple CCs component carriers
  • carrier aggregation one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • Synchronization signals are, for example, NR-PSS and NR-SSS.
  • the synchronization signal may be SSB.
  • the system information is transmitted by, for example, NR-PBCH (Physical Broadcast Channel) or PDSCH (Physical Downlink Shared Channel), and is also called broadcast information.
  • NR-PBCH Physical Broadcast Channel
  • PDSCH Physical Downlink Shared Channel
  • control channels such as PUCCH (Physical Uplink Control Channel) and PDCCH (Physical Downlink Control Channel)
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1 , the terminal 20 receives control signals or data from the base station 10 on the DL and transmits control signals or data to the base station 10 on the UL, thereby performing various functions provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
  • the terminal when monitoring of other channels is not requested frequently, the terminal is set to have a longer DRX cycle in order to increase the power saving effect, so the positioning accuracy is more likely to deteriorate.
  • uplink signals for positioning are transmitted even during periods other than the ON period of the discontinuous reception (DRX) operation.
  • the terminal 20 may assume transmission of uplink signals in periods other than the ON period.
  • the assumed uplink signal may be a partial signal or channel.
  • Terminals 20 may assume that the signals or channels to transmit are configured, enabled or directed by base station 10 in RRC, MAC-CE or DCI.
  • Some signals to be transmitted are SRS, UL-PRS (UL Positioning Reference Signal), PUSCH, PUCCH, PRACH, etc.
  • SRS Signal
  • UL-PRS UL Positioning Reference Signal
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Uplink Control Channel
  • FIG. 2 is a diagram for explaining the transmission timing of the positioning signal according to the embodiment of the present invention.
  • the terminal 20 is configured, enabled, or instructed by the base station 10 by RRC, MAC-CE, or DCI to indicate whether or not to perform uplink signal transmission during periods other than the ON period. can be assumed.
  • the upper part of FIG. 2 shows a case where uplink signal transmission is performed during periods other than the ON period, and the lower part of FIG. 2 shows a case where the uplink signal transmission is not performed during periods other than the ON period.
  • the terminal 20 may transmit to the base station 10 a terminal capability signal indicating the transmission operation of the uplink signal during periods other than the ON period.
  • Example 1 Example 2, Example 3, and Example 4 will be described below as specific examples according to the present embodiment.
  • Example 1 In this embodiment, an example is shown in which a period during which the terminal 20 transmits a signal such as UL-PRS (hereinafter referred to as a positioning ON period) is set. Specifically, the terminal 20 may perform any of the following alternatives when in the DRX state.
  • a period during which the terminal 20 transmits a signal such as UL-PRS hereinafter referred to as a positioning ON period
  • ⁇ Alternative Plan 1> The terminal 20 assumes only the transmission of the UL-PRS signal during the ON period for positioning.
  • Terminal 20 assumes that any of the following options are configured, enabled or indicated by base station 10 in RRC, MAC-CE or DCI.
  • the terminal 20 is configured, enabled, or instructed with only the DRX ON period. That is, the terminal 20 is not set, activated, or instructed to have an ON period for positioning. In this case, the terminal 20 may further assume any of the following optional actions.
  • the terminal 20 assumes transmission of UL-PRS only during the DRX ON period.
  • the terminal 20 assumes transmission of the UL-PRS even in periods other than the DRX ON period.
  • FIG. 3 is a first diagram for explaining the transmission timing of positioning signals according to option 1-2 of alternative 2 of embodiment 1.
  • terminal 20 may assume the timing of waking up for UL-PRS transmission based on parameters such as the period of UL-PRS.
  • FIG. 4 is a second diagram for explaining the transmission timing of positioning signals according to option 1-2 of alternative 2 of embodiment 1.
  • the terminal 20 may assume a preparation period immediately before the UL-PRS transmission timing, as shown in FIG.
  • the terminal 20 may assume that the value indicating the length of the preparation period is set, activated or instructed by the base station 10 in RRC, MAC-CE or DCI. Also, a value indicating the length of the preparation period may be defined in advance in the specifications.
  • FIG. 5 is a diagram for explaining the transmission timing of the positioning signal according to option 2 of alternative 2 of the first embodiment.
  • Terminal 20 as shown in FIG. 5, assumes transmission of UL-PRS only during positioning ON periods.
  • the terminal 20 may assume that the DRX ON period and the positioning ON period overlap.
  • FIG. 6 is a diagram for explaining the transmission timing of the positioning signal according to option 3 of alternative 2 of the first embodiment.
  • Terminal 20 assumes transmission of UL-PRS in both DRX ON periods and positioning ON periods, as shown in FIG.
  • the terminal 20 may determine whether or not to wake up for UL-PRS transmission in the position positioning ON period based on the UL-PRS settings such as the transmission cycle.
  • FIG. 7 is a first diagram for explaining the transmission timing of the positioning signal according to alternative 3 of the first embodiment. As shown in FIG. 7, it may be assumed that the terminal 20 is waking up for measurement and transmits UL-PRS or the like immediately after measurement.
  • FIG. 8 is a second diagram for explaining the transmission timing of the positioning signal according to alternative 3 of the first embodiment. As shown in FIG. 7, it may be assumed that the terminal 20 is waking up for measurement and transmits UL-PRS or the like immediately before measurement.
  • the number of times the terminal 20 wakes up can be reduced.
  • the terminal 20 may assume that the transmission timing of the UL-PRS or the like is set, enabled or instructed by the base station 10 by RRC, MAC-CE or DCI to be immediately before or after measurement. Also, a value indicating whether the transmission timing of UL-PRS or the like is immediately before or after measurement may be defined in advance in the specifications.
  • the terminal 20 may determine whether to transmit the UL-PRS or the like in the DRX state based on some criteria when executing any of the alternatives. For example, the terminal 20 may assume that the base station 10 notifies the terminal 20 of reference thresholds for positioning accuracy, measurement quality, and the like. In this case, the terminal 20 transmits UL-PRS or the like in the DRX state when, for example, the measured value of positioning or the like does not exceed the reference threshold (measurement quality is low), and the measured value of positioning or the like does not exceed the reference threshold. If it exceeds (measurement quality is high), UL-PRS etc. are not transmitted in the DRX state.
  • Example 2 In this embodiment, an example is shown in which the terminal 20 determines whether or not to wake up in the DRX ON period by a wake-up signal (WUS). Specifically, any of the following patterns may be used.
  • WUS wake-up signal
  • Pattern 1 is the case where the ON period for position positioning is not defined (Release 16NR).
  • terminal 20 may adopt any of the following alternatives.
  • FIG. 9 is a diagram for explaining the transmission timing of the positioning signal according to alternative 1 to pattern 1 of the second embodiment.
  • Terminal 20 handles UL-PRS and the like in the same way as other signals. That is, it is assumed that the terminal 20 decides whether to wake up to transmit UL-PRS, etc. by WUS, as shown in FIG.
  • the terminal 20 may assume any of the following variations.
  • Terminal 20 assumes that wakeup indicator information (WI) is common to UL-PRS and other signals. This variation corresponds to the operation of Release 16NR.
  • the terminal 20 assumes that the WI is notified separately by UL-PRS etc. and other signals. For example, it may be assumed that terminal 20 is informed to wake up only for UL-PRS transmissions on one WUS and not for other signals.
  • Pattern 2 is a case where the ON period for positioning is specified.
  • terminal 20 may adopt any of the following alternatives.
  • the terminal 20 determines whether to wake up in the positioning ON period based on the WUS in the DRX ON period. For example, the terminal 20 may assume a WUS group in which the DRX ON period and the positioning ON period are combined. Here, it may be assumed that the terminal 20 is notified of the number of the group to be woken up by WUS, or it may be assumed that the numbers of a plurality of groups are notified.
  • the terminal 20 may adopt any of the following variations.
  • ⁇ Variation 1> It is assumed that whether or not the terminal 20 wakes up during the DRX ON period and the positioning ON period is common.
  • the WI may be common between the DRX ON period and the positioning ON period.
  • WI when WI is 0, it indicates that wakeup is not performed, and when WI is 0, it indicates that wakeup is not performed.
  • FIG. 10 is a first diagram for explaining the transmission timing of the positioning signal according to variation 1 of alternative 1 of pattern 2 of the second embodiment.
  • WI when WI is 1, terminal 20 wakes up in both the grouped DRX ON period and the positioning ON period, and when WI is 0, terminal 20 wakes up during grouping. It does not wake up during any of the DRX on periods and positioning on periods that are set.
  • ⁇ Variation 2> It is assumed that whether the terminal 20 wakes up during the DRX ON period and the positioning ON period is not common. For example, it is assumed that the terminal 20 is notified of the WI during the DRX ON period and the WI during the positioning ON period.
  • the terminal 20 is notified of the WI during the DRX ON period and the WI during the positioning ON period in one WUS.
  • FIG. 12 is a first diagram for explaining the transmission timing of the positioning signal according to variation 2 of alternative 1 of pattern 2 of the second embodiment.
  • FIG. 13 is a second diagram for explaining the transmission timing of the positioning signal according to variation 2 of alternative 1 of pattern 2 of the second embodiment.
  • the number N_g of groups for which wakeup notification is performed in one WUS may be defined in the specifications.
  • Terminal 20 may be assumed to be configured, enabled or directed by base station 10 in RRC, MAC-CE or DCI. For example, it is assumed that the value of N_g is increased when the frequency of positioning may be low or for IoT devices.
  • FIG. 15 is a fourth diagram for explaining the transmission timing of the positioning signal according to variation 2 of alternative 1 of pattern 2 of the second embodiment.
  • N_g is defined as 2 or is set, activated, or instructed by the base station 10
  • the terminal 20 wakes up during the DRX ON period and the positioning ON period included in two groups in one WUS. It is assumed that you will receive instructions from
  • FIG. 16 is a fifth diagram for explaining the transmission timing of the positioning signal according to variation 2 of alternative 1 of pattern 2 of the second embodiment.
  • N_g is defined as 3 or is set, activated, or instructed by the base station 10
  • the terminal 20 wakes up during the DRX ON period and the positioning ON period included in three groups in one WUS. It is assumed that you will receive instructions from
  • the terminal 20 may assume that all DRX ON periods and positioning ON periods up to the next WUS are to be notified.
  • the above group may include one DRX ON period and one positioning ON period, or two or more DRX ON periods and/or positioning ON periods. However, either the DRX ON period or the positioning ON period may not be included.
  • the terminal 20 may assume that the base station 10 notifies the WUS for the positioning ON period separately from the WUS for the DRX ON period.
  • FIG. 17 is a diagram for explaining the transmission timing of the positioning signal according to alternative 2 of pattern 2 of the second embodiment. As shown in FIG. 17, the terminal 20 may assume that different reception timing offsets are set for WUS during the DRX ON period and WUS during the positioning ON period.
  • the terminal 20 may assume that a common offset is set for the WUS during the DRX ON period and the WUS during the positioning ON period.
  • Example 3 This embodiment shows an example in which the terminal 20 assumes that the PRS parameters for the DRX state are configured.
  • the PRS parameters are, for example, transmission cycle, resource mapping, and the like.
  • FIG. 18 is a diagram for explaining PRS resource mapping according to the third embodiment.
  • the terminal 20 may apply different PRS resource mappings depending on whether it is in the DRX state or not.
  • Release 16NR stipulates that the frequency resources used for UL-PRS are non-contiguous. Therefore, when the terminal 20 is not in the DRX state, the terminal 20 uses non-contiguous frequency resources for UL-PRS transmission, and when in the DRX state, uses continuous frequency resources as shown in FIG. may be envisaged to be used.
  • Terminals in the DRX state have less frequency of transmission and reception, so there is less interference with other terminals, and it is considered that there is no problem even if the frequency resources are continuous, which can improve the accuracy of positioning.
  • the terminal 20 can notify different UL-PRS settings to a terminal in DRX state and a terminal not in DRX state.
  • Example 4 This embodiment shows an example in which the terminal 20 determines whether or not to assume transmission of an uplink signal during a period other than the DRX ON period based on a timer when DRX is set.
  • the terminal 20 may transition to the default operation when the timer that measures the elapsed time since the last transmission of the UL-PRS or the like expires.
  • the default operation is, for example, an operation that assumes no transmission of an uplink signal except during the ON period.
  • FIG. 19 is a first diagram for explaining the transmission timing of positioning signals according to the fourth embodiment.
  • Terminal 20 if the time T since the previous transmission of UL-PRS or the like does not exceed the threshold value T_e of elapsed time, assumes that the timer has not expired and transmits an uplink signal. can be left as is.
  • FIG. 20 is a second diagram for explaining the transmission timing of the positioning signal according to the fourth embodiment.
  • the terminal 20 does not assume transmission of an uplink signal until a timer that measures the elapsed time since the previous transmission of UL-PRS or the like expires, and transmits an uplink signal when the timer expires. You can assume.
  • the terminal 20 may determine whether to assume transmission of the uplink signal outside the DRX ON period based on criteria other than the timer. For example, the terminal 20 may determine whether or not to assume uplink signal transmission during periods other than the DRX on period, based on whether the positioning accuracy, measurement quality, reception quality, etc. satisfy criteria. That is, the terminal 20 may assume transmission of an uplink signal when positioning accuracy, measurement quality, reception quality, etc. do not meet the criteria.
  • the terminal 20 may determine whether or not to assume transmission of an uplink signal outside the DRX ON period based on a timer and criteria other than the timer.
  • the above-mentioned thresholds such as T_e, positioning accuracy, measurement quality, reception quality, and other criteria may be defined in the specifications.
  • the terminal 20 assumes that the above-described thresholds such as T_e, positioning accuracy, measurement quality, reception quality, and other criteria are set, validated, or instructed by the base station 10 via RRC, MAC-CE, or DCI. may
  • DRX includes "Connected DRX” (CDRX/C-DRX), “Extended DRX” (EDRX/E-DRX/ECDRX/E-CDRX), “ Enhanced DRX” (EDRX/E-DRX/ECDRX/E-CDRX) or the like.
  • Preparation time may be replaced with “Preparation period”, “Additional time”, “Additional period”, “offset”, etc.
  • the UL-PRS according to each embodiment described above may mean an SRS for measurement, may mean a simple SRS, or may mean a PRS different from them.
  • the explanation of the transmission timing of UL-PRS and the like may be read as the explanation of the reception timing of DL-PRS and the like. Furthermore, even if it is assumed that the terminal 20 is set, enabled, or instructed by the base station 10 in RRC, MAC-CE, or DCI for switching between transmission of UL-PRS and the like and reception of DL-PRS and the like. good.
  • FIG. 21 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 21 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary. Also, the transmitting unit 110 and the receiving unit 120 may be collectively referred to as a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals. Further, the transmission section 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI by PDCCH, data by PDSCH, and the like to the terminal 20 .
  • the setting unit 130 stores preset setting information and various types of setting information to be transmitted to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
  • the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110 . Also, the control unit 140 includes a function of performing LBT. A functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and a functional unit related to signal reception in control unit 140 may be included in receiving unit 120 . Also, the transmitter 110 may be called a transmitter, and the receiver 120 may be called a receiver.
  • FIG. 22 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitter 210 , a receiver 220 , a setter 230 and a controller 240 .
  • the functional configuration shown in FIG. 22 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 210 and the receiving unit 220 may be collectively referred to as a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal.
  • the receiving unit 220 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, and the like transmitted from the base station 10 .
  • the transmission unit 210 as D2D communication, to the other terminal 20, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Channel) etc.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Channel
  • the receiving unit 120 may receive PSCCH, PSSCH, PSDCH, PSBCH, or the like from another terminal 20 .
  • the setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in the storage device provided in the setting unit 230, and reads them from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 controls the terminal 20 . Also, the control unit 240 includes a function of performing LBT.
  • the terminal of this embodiment may be configured as a terminal shown in each section below. Also, the following communication methods may be implemented.
  • the control unit turns on the intermittent reception operation based on at least one of the elapsed time from the transmission of the signal for positioning and the quality of the positioning. Determining whether to assume transmission of signals for said positioning outside of time periods; 5.
  • the terminal according to any one of items 1 to 4.
  • (Section 6) transmitting a signal for positioning; and controlling to transmit the signal for positioning, except for the ON period of the intermittent reception operation. The method of communication performed by the terminal.
  • any of the above configurations provides a technology that enables position positioning that takes intermittent reception into consideration.
  • the second term even when the terminal 20 is in the intermittent reception state, it is possible to realize positioning in a short cycle.
  • the third term it is possible to realize flexible positioning even when the terminal 20 is in the intermittent reception state.
  • the terminal 20 can notify different settings to terminals in the discontinuous reception state and terminals not in the discontinuous reception state.
  • the fifth term it is possible to moderately control the wakeup frequency for signal transmission for positioning.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 23 is a diagram illustrating an example of a hardware configuration of base station 10 and terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 21 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • the control unit 240 of the terminal 20 shown in FIG. 22 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), FPGAs (Field Programmable Gates and other hardware arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are stored in random access memory (RAM), flash memory, read-only memory, respectively. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI, UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information (MIB ( Master Information Block (SIB), System Information Block (SIB), other signals, or a combination thereof.
  • RRC signaling may also be referred to as RRC messages, for example, RRC Connection Setup (RRC Connection Setup) message, RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • a specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with the terminal 20 may be performed by the base station 10 and other network nodes other than the base station 10 (eg, but not limited to MME or S-GW).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean (Boolean: true or false), or may be a numerical comparison (for example , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.), the website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, cell, frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station may have the functions that the terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry (eg, lookup in a table, database, or other data structure);
  • “judgment” and “determination” are used to refer to receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (Accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • “judgment” and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc.
  • judgment and “decision" can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming", “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • one slot may be called a unit time. The unit time may differ from cell to cell depending on the neurology.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRB: Physical RB), sub-carrier groups (SCG: Sub-Carrier Group), resource element groups (REG: Resource Element Group), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth, etc.) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the Cyclic Prefix (CP) length, etc.
  • CP Cyclic Prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

位置測位のための信号を送信する送信部と、間欠受信動作のオン期間以外において、前記位置測位のための信号を送信するように制御する制御部と、を備える端末である。

Description

端末および通信方法
 本発明は、無線通信システムにおける端末および通信方法に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 NRにおいては、端末の省電力化を図るために、端末がネットワークからのページングメッセージの受信を周期的に試みる間欠受信(DRX;Discontinuous Reception)動作について検討されている(例えば非特許文献2)。
 また、リリース17NR位置測位(Positioning)では、リリース16NR位置測位と比較して測位精度の向上及び低遅延化がターゲットとされている。また、インダストリアルIoT(Internet of Things)ユースケース等、新規シナリオが追加されている(例えば非特許文献3)。
3GPP TS 38.300 V16.6.0 (2021-07) 3GPP TS 38.321 V16.5.0 (2021-07) 3GPP TR 38.857 V17.0.0 (2021-03)
 リリース18NRでは、リリース17NRから持ち越しとなった位置測位の精度、整合性、および電力効率の向上が検討されている。
 しかしながら、リリース16NR位置測位では、間欠受信(DRX)動作を考慮した仕様が規定されていない。間欠受信(DRX)動作が設定されている端末は、オン期間以外において位置測位のためのアップリンク信号を送信しないため、位置測位の精度が劣化するという問題がある。
 本発明は上記の点に鑑みてなされたものであり、間欠受信動作を考慮した位置測位を可能とする技術を提供することを目的とする。
 開示の技術によれば、位置測位のための信号を送信する送信部と、間欠受信動作のオン期間以外において、前記位置測位のための信号を送信するように制御する制御部と、を備える端末が提供される。
 開示の技術によれば、間欠受信動作を考慮した位置測位を可能とする技術が提供される。
本発明の実施の形態に係る無線通信システムについて説明するための図である。 本発明の実施の形態に係る位置測位信号の送信タイミングについて説明するための図である。 実施例1の代替案2のオプション1-2に係る位置測位信号の送信タイミングについて説明するための第一の図である。 実施例1の代替案2のオプション1-2に係る位置測位信号の送信タイミングについて説明するための第二の図である。 実施例1の代替案2のオプション2に係る位置測位信号の送信タイミングについて説明するための図である。 実施例1の代替案2のオプション3に係る位置測位信号の送信タイミングについて説明するための図である。 実施例1の代替案3に係る位置測位信号の送信タイミングについて説明するための第一の図である。 実施例1の代替案3に係る位置測位信号の送信タイミングについて説明するための第二の図である。 実施例2のパターン1の代替案1に係る位置測位信号の送信タイミングについて説明するための図である。 実施例2のパターン2の代替案1のバリエーション1に係る位置測位信号の送信タイミングについて説明するための第一の図である。 実施例2のパターン2の代替案1のバリエーション1に係る位置測位信号の送信タイミングについて説明するための第二の図である。 実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第一の図である。 実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第二の図である。 実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第三の図である。 実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第四の図である。 実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第五の図である。 実施例2のパターン2の代替案2に係る位置測位信号の送信タイミングについて説明するための図である。 実施例3に係るPRSのリソースマッピングについて説明するための図である。 実施例4に係る位置測位信号の送信タイミングについて説明するための第一の図である。 実施例4に係る位置測位信号の送信タイミングについて説明するための第二の図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。当該既存技術は、例えば既存のNRであるが、既存のNRに限られない。
 また、本明細書では、PDCCH、RRC、MAC、DCI等の既存のNRあるいはLTEの仕様書で使用されている用語を用いているが、本明細書で使用するチャネル名、プロトコル名、信号名、機能名等で表わされるものが別の名前で呼ばれてもよい。
 (システム構成)
 図1は、本発明の実施の形態に係る無線通信システムについて説明するための図である。
本発明の実施の形態に係る無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセル(PCell, Primary Cell)と1以上のセカンダリセル(SCell, Secondary Cell)が使用される。
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。また、同期信号がSSBであってもよい。システム情報は、例えば、NR-PBCH(Physical Broadcast Channel)あるいはPDSCH(Physical Downlink Shared Channel)にて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 (本実施の形態の概要)
 前述した通り、従来のNRでは、、間欠受信(DRX)動作を考慮した仕様が規定されていない。間欠受信(DRX)動作が設定されている端末は、オン期間以外において位置測位のためのアップリンク信号を送信しないため、位置測位の精度が劣化するという問題がある。
 特に、他のチャンネルのモニタリングが頻繁に要求されない場合、端末は、省電力効果を上げるために、DRXサイクルを長く設定されるため、より位置測位の精度が劣化しやすい。
 本実施の形態では、上記の課題に対応するため、間欠受信(DRX)動作のオン期間以外においても位置測位のためのアップリンク信号を送信する。
 端末20は、DRXが設定された場合、オン期間以外でアップリンク信号の送信を想定してもよい。
 ここで、想定するアップリンク信号は、一部の信号またはチャネルであってもよい。端末20は、送信する信号またはチャネルが、RRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。
 送信される一部の信号は、SRS、UL-PRS(UL Positioning Reference Signal)、PUSCH、PUCCH、PRACH等である。例えば、端末20は、UL-PRSの送信を想定する場合、オン期間以外で位置測位用SRSまたはSRSまたはその両方のいずれかの送信を想定してもよい。
 図2は、本発明の実施の形態に係る位置測位信号の送信タイミングについて説明するための図である。端末20は、図2に示すように、オン期間以外でのアップリンク信号送信を行うか否かを示す情報をRRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。図2の上段は、オン期間以外でのアップリンク信号送信を行う場合を示し、図2の下段は、オン期間以外でのアップリンク信号送信を行わない場合を示している。
 端末20は、オン期間以外でのアップリンク信号の送信動作を示す端末能力信号を基地局10に送信してもよい。
 以下、本実施の形態に係る具体的な実施例として、実施例1、実施例2、実施例3および実施例4について説明する。
 (実施例1)
 本実施例では、端末20がUL-PRS等の信号を送信する期間(以下、位置測位用オン期間と呼ぶ)が設定される例を示す。具体的には、端末20は、DRX状態である場合、次に示す代替案のいずれかを実行してもよい。
 <代替案1>
 端末20は、位置測位用オン期間では、UL-PRS信号の送信のみを想定する。
 <代替案2>
 端末20は、以下のオプションのいずれかがRRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定する。
  <オプション1>
 端末20は、DRXオン期間のみが設定、有効化または指示される。すなわち、端末20は、位置測位用オン期間が設定、有効化または指示されない。この場合、端末20は、さらに以下のオプションのいずれかの動作を想定してもよい。
   <オプション1-1>
 端末20は、DRXオン期間においてのみ、UL-PRSの送信を想定する。
   <オプション1-2>
 端末20は、DRXオン期間以外においてもUL-PRSの送信を想定する。
 図3は、実施例1の代替案2のオプション1-2に係る位置測位信号の送信タイミングについて説明するための第一の図である。端末20は、図3に示されるように、UL-PRSの周期等についてのパラメータに基づいて、UL-PRSの送信のためにウェイクアップするタイミングを想定してもよい。
 図4は、実施例1の代替案2のオプション1-2に係る位置測位信号の送信タイミングについて説明するための第二の図である。端末20は、図4に示されるように、UL-PRSの送信タイミングの直前に準備期間を想定してもよい。
 端末20は、準備期間の長さを示す値が、RRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。また、準備期間の長さを示す値が、仕様であらかじめ規定されていてもよい。
  <オプション2>
 図5は、実施例1の代替案2のオプション2に係る位置測位信号の送信タイミングについて説明するための図である。端末20は、図5に示されるように、位置測位用オン期間でのみUL-PRSの送信を想定する。
 なお、端末20は、DRXオン期間と位置測位用オン期間が重なることを想定してもよい。
  <オプション3>
 図6は、実施例1の代替案2のオプション3に係る位置測位信号の送信タイミングについて説明するための図である。端末20は、図6に示されるように、DRXオン期間と位置測位用オン期間の両方でUL-PRSの送信を想定する。例えば、端末20は、送信周期等のUL-PRSの設定値に基づいて、位置測位用オン期間でUL-PRSの送信のためにウェイクアップするか否かを決定してもよい。
 <代替案3>
 端末20は、計測用のRSまたはSSBを使用する場合において、計測のためのウェイクアップ中にUL-PRS等を送信することを想定する。例えば、端末20は、計測の直後または直前にUL-PRS等を送信することを想定してもよい。
 図7は、実施例1の代替案3に係る位置測位信号の送信タイミングについて説明するための第一の図である。端末20は、図7に示されるように、計測のためのウェイクアップ中であって、計測の直後にUL-PRS等を送信することを想定してもよい。
 図8は、実施例1の代替案3に係る位置測位信号の送信タイミングについて説明するための第二の図である。端末20は、図7に示されるように、計測のためのウェイクアップ中であって、計測の直前にUL-PRS等を送信することを想定してもよい。
 計測の直前または直後のように、計測のためのウェイクアップ中にUL-PRS等を送信することによって、端末20のウェイクアップの回数を少なく抑えることができる。
 端末20は、UL-PRS等の送信タイミングが計測の直前と直後のいずれかを、RRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。また、UL-PRS等の送信タイミングが計測の直前と直後のいずれかを示す値が、仕様であらかじめ規定されていてもよい。
 端末20は、いずれの代替案を実行する場合でも、DRX状態でUL-PRS等を送信するか否かを、なんらかの基準に基づいて決定してもよい。例えば、端末20は、位置測位精度、測定品質等についての基準閾値が基地局10から通知されると想定してもよい。この場合、端末20は、例えば、位置測位等の測定値が基準閾値を超えない(測定品質が低い)場合はDRX状態でUL-PRS等を送信し、位置測位等の測定値が基準閾値を超える(測定品質が高い)場合はDRX状態でUL-PRS等を送信しない。
 (実施例1の効果)
 本実施例に係る無線通信システムによれば、端末20がDRX状態においても、短い周期での位置測位を実現させることができる。
 (実施例2)
 本実施例では、端末20が起動信号(WUS;Wake Up Signal)によってDRXオン期間でウェイクアップするか否かを決定する例を示す。具体的には、以下のパターンのいずれかであってもよい。
 <パターン1>
 パターン1は、位置測位用オン期間が規定されない場合(リリース16NR)である。本パターンにおいて、端末20は、以下の代替案のいずれかを採用してもよい。
  <代替案1>
 図9は、実施例2のパターン1の代替案1に係る位置測位信号の送信タイミングについて説明するための図である。端末20は、UL-PRS等を他の信号と同様に扱う。すなわち、端末20は、図9に示されるように、WUSによってUL-PRS等を送信するためにウェイクアップするか否かを決定すると想定する。
 この場合、端末20は、以下のバリエーションのいずれかを想定してもよい。
   <バリエーション1>
 端末20は、ウェイクアップ指示情報(WI;Wakeup indicator)が、UL-PRS等と他の信号とで共通であると想定する。本バリエーションは、リリース16NRの動作に相当する。
   <バリエーション2>
 端末20は、WIが、UL-PRS等と他の信号とでそれぞれ個別に通知されると想定する。例えば、端末20は、1つのWUSでUL-PRSの送信のみのためにウェイクアップし、他の信号のためにはウェイクアップしないことが通知されると想定してもよい。
  <代替案2>
 端末20は、UL-PRS等の送信については、WUSを無視すると想定する。すなわち、端末20は、WUSの有無に関わらず、UL-PRS等を送信してもよい。
 <パターン2>
 パターン2は、位置測位用オン期間が規定されている場合である。本パターンにおいて、端末20は、以下の代替案のいずれかを採用してもよい。
  <代替案1>
 端末20は、DRXオン期間のWUSに基づいて、位置測位用オン期間でウェイクアップするか否かを決定することを想定する。例えば、端末20は、DRXオン期間と位置測位用オン期間とを合わせたWUSのグループを想定してもよい。ここで、端末20は、WUSでウェイクアップするグループの番号が通知されると想定してもよく、複数のグループの番号が通知されると想定してもよい。
 さらに、端末20は、以下のバリエーションのいずれかを採用してもよい。
   <バリエーション1>
 端末20は、DRXオン期間と位置測位用オン期間におけるウェイクアップするか否かが共通であると想定する。例えば、DRXオン期間と位置測位用オン期間とでWIが共通であってもよい。以下、WIが0の場合にウェイクアップしないことを示し、WIが0の場合にウェイクアップしないことを示すものとする。
 図10は、実施例2のパターン2の代替案1のバリエーション1に係る位置測位信号の送信タイミングについて説明するための第一の図である。図10に示されるように、端末20は、WIが1の場合には、グルーピングされたDRXオン期間と位置測位用オン期間とのいずれにおいてもウェイクアップし、WIが0の場合には、グルーピングされたDRXオン期間と位置測位用オン期間とのいずれにおいてもウェイクアップしない。
 図11は、実施例2のパターン2の代替案1のバリエーション1に係る位置測位信号の送信タイミングについて説明するための第二の図である。端末20は、WUSによってWIとともにウェイクアップするグループの番号を通知されると想定してもよい。例えば、図11に示されるように、端末20は、1つのWUSにおいて、グループの番号0および1と、WI=1とが通知される。これによって、端末20は、グループ番号0に含まれるDRXオン期間と位置測位用オン期間とのいずれにおいてもウェイクアップし、さらにグループ番号1に含まれるDRXオン期間と位置測位用オン期間とのいずれにおいてもウェイクアップする。
   <バリエーション2>
 端末20は、DRXオン期間と位置測位用オン期間におけるウェイクアップするか否かが共通でないと想定する。例えば、端末20は、DRXオン期間のWIと位置測位用オン期間のWIがそれぞれ通知されると想定する。
 例えば、端末20は、1つのWUSにおいてDRXオン期間のWIと位置測位用オン期間のWIがそれぞれ通知される。
 図12は、実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第一の図である。端末20は、1つのWUSにおいてDRXオン期間のWI=1、位置測位用オン期間のWI=1と通知されると、同一のグループに含まれるDRXオン期間と位置測位用オン期間とのいずれにおいてもウェイクアップする。
 図13は、実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第二の図である。端末20は、1つのWUSにおいてDRXオン期間のWI=1および位置測位用オン期間のWI=0が通知されると、同一のグループに含まれるDRXオン期間においてはウェイクアップし、位置測位用オン期間においてはウェイクアップしない。
 図14は、実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第三の図である。端末20は、WUSによってWIとともにウェイクアップするグループの番号を通知されると想定してもよい。例えば、図14に示されるように、端末20は、1つのWUSにおいて、グループの番号0および1と、DRXオン期間のWI=0および位置測位用オン期間のWI=1とが通知される。これによって、端末20は、グループ番号0およびグループ番号1にそれぞれ含まれるDRXオン期間においてはウェイクアップせず、位置測位用オン期間においてはウェイクアップする。
 1つのWUSにおいてウェイクアップの通知を行うグループの数N_gが仕様で規定されていてもよい。端末20は、RRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。例えば、位置測位の頻度が少なくてよい場合やIoT機器のためには、N_gの値を大きくすることが想定される。
 図15は、実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第四の図である。端末20は、N_gが2と規定されているか、または基地局10から設定、有効化または指示されると、1つのWUSにおいて2つのグループに含まれるDRXオン期間と位置測位用オン期間におけるウェイクアップの指示を受けることを想定する。
 図16は、実施例2のパターン2の代替案1のバリエーション2に係る位置測位信号の送信タイミングについて説明するための第五の図である。端末20は、N_gが3と規定されているか、または基地局10から設定、有効化または指示されると、1つのWUSにおいて3つのグループに含まれるDRXオン期間と位置測位用オン期間におけるウェイクアップの指示を受けることを想定する。
 また、端末20は、WUSにおいてグループ番号を通知されるのではなく、次のWUSまでの全てのDRXオン期間と位置測位用オン期間を通知の対象と想定してもよい。
 上述のグループには、DRXオン期間と位置測位用オン期間とが1つずつ含まれてもよいし、DRXオン期間および位置測位用オン期間のいずれかまたは両方が2つ以上含まれてもよいし、DRXオン期間および位置測位用オン期間のいずれかが含まれていなくてもよい。
  <代替案2>
 端末20は、DRXオン期間のWUSとは別に、位置測位用オン期間のWUSが基地局10から通知されると想定してもよい。
 図17は、実施例2のパターン2の代替案2に係る位置測位信号の送信タイミングについて説明するための図である。図17に示されるように、端末20は、DRXオン期間のWUSと位置測位用オン期間のWUSにそれぞれ異なる受信タイミングのオフセットが設定されると想定してもよい。
 なお、端末20は、DRXオン期間のWUSと位置測位用オン期間のWUSに共通のオフセットが設定されると想定してもよい。
 (実施例2の効果)
 本実施例に係る無線通信システムによれば、端末20がDRX状態においても、柔軟な位置測位を実現させることができる。また、端末20は、位置測位が不要なタイミングでのウェイクアップを回避でき、電力の消費を少なく抑えることができる。
 (実施例3)
 本実施例では、端末20がDRX状態のためのPRSパラメータが設定されると想定する例を示す。PRSパラメータは、例えば送信周期、リソースマッピング等である。
 図18は、実施例3に係るPRSのリソースマッピングについて説明するための図である。端末20は、DRX状態である場合とDRX状態でない場合とで異なるPRSのリソースマッピングを適用してもよい。
 例えば、リリース16NRでは、UL-PRSに使用する周波数リソースが非連続であることが規定されている。そこで、端末20は、DRX状態でない場合には、UL-PRSの送信に、非連続な周波数リソースを使用し、DRX状態である場合には、図18に示されるように、連続な周波数リソースを使用することを想定してもよい。
 DRX状態の端末は、送受信の頻度が少ないことから他の端末との干渉が少なく、周波数リソースを連続にしても問題ないと考えられ、これによって位置測位の測定精度を向上させることができる。
 (実施例3の効果)
 本実施例に係る無線通信システムによれば、端末20がDRX状態の端末とDRX状態ではない端末とにそれぞれ異なるUL-PRS設定を通知することができる。
 (実施例4)
 本実施例では、端末20が、DRXが設定された場合に、タイマーに基づいて、DRXオン期間以外でアップリンク信号の送信を想定するか否かを決定する例を示す。
 例えば、端末20は、前回UL-PRS等を送信してからの時間経過を測るタイマーが終了した場合はデフォルト動作へ遷移してもよい。デフォルト動作は、例えばON期間以外でアップリンク信号の送信を想定しない動作である。
 図19は、実施例4に係る位置測位信号の送信タイミングについて説明するための第一の図である。端末20は、前回UL-PRS等を送信してからの時間Tが、時間経過の閾値T_eを超えていない場合には、タイマーが終了していないものとして、アップリンク信号の送信を想定する動作のままとしてもよい。
 図20は、実施例4に係る位置測位信号の送信タイミングについて説明するための第二の図である。端末20は、前回UL-PRS等を送信してからの時間Tが、時間経過の閾値T_eを超えた場合に、タイマーが終了したものとして、アップリンク信号の送信を想定しない動作に遷移してもよい。
 なお、端末20は、前回UL-PRS等を送信してからの時間経過を測るタイマーが終了するまでは、アップリンク信号の送信を想定せず、タイマーが終了した場合にアップリンク信号の送信を想定するようにしてもよい。
 また、端末20は、タイマー以外の基準に基づいて、DRXオン期間以外でアップリンク信号の送信を想定するか否かを決定してもよい。例えば、端末20は、位置測位精度、測定品質、受信品質等が基準に満たすか否かに基づいて、DRXオン期間以外でアップリンク信号の送信を想定するか否かを決定してもよい。すなわち、端末20は、位置測位精度、測定品質、受信品質等が基準を満たさない場合に、アップリンク信号の送信を想定するようにしてもよい。
 さらに、端末20は、タイマーとタイマー以外の基準とに基づいて、DRXオン期間以外でアップリンク信号の送信を想定するか否かを決定してもよい。
 上述のT_e等の閾値、位置測位精度、測定品質、受信品質等の基準等は、仕様で規定されていてもよい。また、端末20は、上述のT_e等の閾値、位置測位精度、測定品質、受信品質等の基準等がRRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。
 (実施例4の効果)
 本実施例に係る無線通信システムによれば、UL-PRS送信のためのウェイクアップの頻度を適度に制御することができる。
 (変形例)
 上述の各実施例に係る無線通信システムにおいて、「DRX」という文言は、「Connected DRX」(CDRX/C-DRX)、「Extended DRX」(EDRX/E-DRX/ECDRX/E-CDRX)、「Enhanced DRX」(EDRX/E-DRX/ECDRX/E-CDRX)などに置き換えられてもよい。
 「準備期間(Preparation time)」という文言は、「Preparation period」、「Additional time」、「Additional period」、「offset」などに置き換えられてもよい。
 上述の各実施例に係るUL-PRSは、測定用のSRSのことを意味してもよいし、単なるSRSを意味してもよく、また、それらとは異なるPRSを意味してもよい。
 上述の各実施例において、UL-PRS等の送信タイミングについての説明は、DL-PRS等の受信タイミングについての説明と読み替えてもよい。さらに、端末20は、UL-PRS等の送信と、DL-PRS等の受信との切り替えについて、RRC、MAC-CEまたはDCIで基地局10から設定、有効化または指示されると想定してもよい。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
 <基地局10>
 図21は、基地局10の機能構成の一例を示す図である。図21に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図21に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。
 制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリングを行う。また、制御部140は、LBTを行う機能を含む。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。
 <端末20>
 図22は、端末20の機能構成の一例を示す図である。図22に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図22に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。
 設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20の制御を行う。また、制御部240はLBTを行う機能を含む。
 本実施の形態の端末は下記の各項に示す端末として構成されてもよい。また、下記の通信方法が実施されてもよい。
 <本実施の形態に関する構成>
(第1項)
 位置測位のための信号を送信する送信部と、
 間欠受信動作のオン期間以外において、前記位置測位のための信号を送信するように制御する制御部と、を備える、
 端末。
(第2項)
 前記制御部は、前記位置測位のための信号を送信する期間として設定された期間において、前記位置測位のための信号を送信するように制御する、
 第1項に記載の端末。
(第3項)
 前記制御部は、起動信号によって前記位置測位のための信号を送信する期間として設定された期間でウェイクアップするか否かを決定する、
 第2項に記載の端末。
(第4項)
 前記制御部は、前記間欠受信動作の状態における前記位置測位のための信号についてのパラメータが設定される、
 第1項から第3項のいずれか1項に記載の端末。
(第5項)
 前記制御部は、前記間欠受信動作が設定された場合に、前記位置測位のための信号を送信してからの時間経過および位置測位の品質の少なくともいずれかに基づいて、前記間欠受信動作のオン期間以外において前記位置測位のための信号の送信を想定するか否かを決定する、
 第1項から第4項のいずれか1項に記載の端末。
(第6項)
 位置測位のための信号を送信するステップと、
 間欠受信動作のオン期間以外において、前記位置測位のための信号を送信するように制御するステップと、を備える、
 端末が実行する通信方法。
 上記構成のいずれによっても、間欠受信動作を考慮した位置測位を可能とする技術が提供される。第2項によれば、端末20が間欠受信状態においても、短い周期での位置測位を実現させることができる。第3項によれば、端末20が間欠受信状態においても、柔軟な位置測位を実現させることができる。第4項によれば、端末20が間欠受信状態の端末と間欠受信状態ではない端末とにそれぞれ異なる設定を通知することができる。第5項によれば、位置測位のための信号送信のためのウェイクアップの頻度を適度に制御することができる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図21及び図22)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図23は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図21に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図22に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  位置測位のための信号を送信する送信部と、
     間欠受信動作のオン期間以外において、前記位置測位のための信号を送信するように制御する制御部と、を備える、
     端末。
  2.  前記制御部は、前記位置測位のための信号を送信する期間として設定された期間において、前記位置測位のための信号を送信するように制御する、
     請求項1に記載の端末。
  3.  前記制御部は、起動信号によって前記位置測位のための信号を送信する期間として設定された期間でウェイクアップするか否かを決定する、
     請求項2に記載の端末。
  4.  前記制御部は、前記間欠受信動作の状態における前記位置測位のための信号についてのパラメータが設定される、
     請求項1から3のいずれか1項に記載の端末。
  5.  前記制御部は、前記間欠受信動作が設定された場合に、前記位置測位のための信号を送信してからの時間経過および位置測位の品質の少なくともいずれかに基づいて、前記間欠受信動作のオン期間以外において前記位置測位のための信号の送信を想定するか否かを決定する、
     請求項1から4のいずれか1項に記載の端末。
  6.  位置測位のための信号を送信するステップと、
     間欠受信動作のオン期間以外において、前記位置測位のための信号を送信するように制御するステップと、を備える、
     端末が実行する通信方法。
PCT/JP2021/029754 2021-08-12 2021-08-12 端末および通信方法 WO2023017604A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029754 WO2023017604A1 (ja) 2021-08-12 2021-08-12 端末および通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029754 WO2023017604A1 (ja) 2021-08-12 2021-08-12 端末および通信方法

Publications (1)

Publication Number Publication Date
WO2023017604A1 true WO2023017604A1 (ja) 2023-02-16

Family

ID=85200100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029754 WO2023017604A1 (ja) 2021-08-12 2021-08-12 端末および通信方法

Country Status (1)

Country Link
WO (1) WO2023017604A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050978A1 (en) * 2019-08-12 2021-02-18 Qualcomm Incorporated Interaction of discontinuous reception (drx) with positioning reference signal (prs) resources

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050978A1 (en) * 2019-08-12 2021-02-18 Qualcomm Incorporated Interaction of discontinuous reception (drx) with positioning reference signal (prs) resources

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TR 38.857, March 2021 (2021-03-01)
3GPP TS 38.300, July 2021 (2021-07-01)
3GPP TS 38.321, July 2021 (2021-07-01)

Similar Documents

Publication Publication Date Title
JP7308277B2 (ja) 端末、基地局、通信方法及び通信システム
JP7339956B2 (ja) 端末、無線通信方法及び無線通信システム
JPWO2020166027A1 (ja) ユーザ装置及び通信方法
US20220201608A1 (en) Base station apparatus and user equipment
JP7317847B2 (ja) 端末、無線通信方法及び無線通信システム
WO2022157953A1 (ja) 端末、基地局、および、通信方法
WO2022195778A1 (ja) 端末、基地局、及び送信方法
WO2021171932A1 (ja) 端末及び通信方法
JP7248709B2 (ja) 端末、基地局、通信方法及び無線通信システム
JP7250048B2 (ja) 端末、基地局、通信方法及び無線通信システム
JP7203199B2 (ja) 端末、基地局及び通信方法
JP7321268B2 (ja) 端末、基地局、通信システム、及び通信方法
JP7273859B2 (ja) ユーザ装置及び基地局装置
JP7201786B2 (ja) 端末、基地局、通信方法及び無線通信システム
WO2023017604A1 (ja) 端末および通信方法
WO2022215209A1 (ja) 端末、及びページングモニタリング方法
WO2023276015A1 (ja) 端末およびpdcchモニタリング方法
WO2023276014A1 (ja) 端末およびpdcchモニタリング方法
WO2022201555A1 (ja) 端末、基地局、及び無線通信システム
WO2022153550A1 (ja) 端末、基地局、及び受信方法
WO2023286179A1 (ja) 端末及び通信方法
WO2022153515A1 (ja) 端末及び通信方法
WO2022208635A1 (ja) 端末及び通信方法
WO2022030024A1 (ja) 端末及び通信方法
WO2022239089A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953499

Country of ref document: EP

Effective date: 20240312