WO2022211061A1 - 波長可変レーザ - Google Patents
波長可変レーザ Download PDFInfo
- Publication number
- WO2022211061A1 WO2022211061A1 PCT/JP2022/016713 JP2022016713W WO2022211061A1 WO 2022211061 A1 WO2022211061 A1 WO 2022211061A1 JP 2022016713 W JP2022016713 W JP 2022016713W WO 2022211061 A1 WO2022211061 A1 WO 2022211061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- wavelength
- wavelength control
- gain
- length
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 23
- 230000000737 periodic effect Effects 0.000 description 22
- 238000000985 reflectance spectrum Methods 0.000 description 16
- 239000000758 substrate Substances 0.000 description 14
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 230000010355 oscillation Effects 0.000 description 12
- 239000010931 gold Substances 0.000 description 9
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000927 Ge alloy Inorganic materials 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present disclosure relates to wavelength tunable lasers.
- a tunable laser having a gain function and a wavelength control function for laser oscillation is known.
- regions having gain and regions for wavelength control are alternately arranged in a laser element (Patent Document 1, etc.).
- a wavelength tunable laser includes gain regions and wavelength control regions alternately arranged along a light propagation direction, and diffraction gratings arranged corresponding to the gain regions and the wavelength control regions, respectively. and a plurality of regions without the diffraction grating located at least one of the end of the gain region and the end of the wavelength control region at the boundary between the gain region and the wavelength control region.
- the length of the region without the diffraction grating is 5% or more and 30% or less of the length of the gain region or the wavelength control region to which it belongs.
- FIG. 1 is a plan view illustrating the wavelength tunable laser according to the first embodiment.
- FIG. 2 is a cross-sectional view along line AA of FIG.
- FIG. 3 is an enlarged view of the gain region and wavelength control region.
- FIG. 4 is a cross-sectional view along line BB of FIG. 5 is a cross-sectional view along line CC of FIG. 3.
- FIG. 6A is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 6B is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 6C is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 6A is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 6B is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 6C is a cross-sectional view illustrating
- FIG. 7A is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 7B is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 7C is a cross-sectional view illustrating a method of manufacturing a tunable laser.
- FIG. 8 is a cross-sectional view illustrating a tunable laser according to a comparative example.
- FIG. 9A is a reflectance spectrum.
- FIG. 9B is a reflectance spectrum.
- FIG. 9C is a reflectance spectrum.
- FIG. 10A is a reflectance spectrum.
- FIG. 10B is a reflectance spectrum.
- FIG. 10C is a reflectance spectrum.
- FIG. 10D is a reflectance spectrum.
- FIG. 11 is a diagram showing the relationship between region length and peak height.
- FIG. 12A is an enlarged view of the diffraction grating layer, active layer and wavelength control layer.
- FIG. 12B is an enlarged view of the diffraction grating layer, active layer and wavelength control layer.
- FIG. 13 is a cross-sectional view illustrating a tunable light source.
- FIG. 14A is a reflectance spectrum.
- FIG. 14B is a reflectance spectrum.
- FIG. 14C is a reflectance spectrum.
- FIG. 15 is a diagram showing the relationship between region length and peak height.
- FIG. 16 is a cross-sectional view illustrating a wavelength tunable light source.
- FIG. 17A is a reflectance spectrum.
- FIG. 17B is a reflectance spectrum.
- FIG. 17C is a reflectance spectrum.
- FIG. 18 is a diagram showing the relationship between region length and peak height.
- Light is generated by injecting current into the gain region.
- the oscillation wavelength is changed. If the refractive index of the wavelength control region is significantly different from that of the gain region, so-called mode hopping may occur, in which light oscillates at a wavelength different from the desired wavelength.
- mode hopping may occur, in which light oscillates at a wavelength different from the desired wavelength. Note that the amount of change in the refractive index of the wavelength control region where mode hopping occurs varies depending on the structure of the laser and the semiconductor material. Accordingly, it is an object of the present invention to provide a tunable laser capable of suppressing mode hopping.
- An embodiment of the present disclosure is (1) a gain region and a wavelength control region alternately arranged along a light propagation direction, and diffraction gratings arranged corresponding to each of the gain region and the wavelength control region. and a plurality of regions without the diffraction grating located at least one of the end of the gain region and the end of the wavelength control region at the boundary between the gain region and the wavelength control region; wherein the length of the region without the diffraction grating is 5% or more and 30% or less of the length of the gain region to which it belongs or the length of the wavelength control region.
- the number of regions having no diffraction grating may be 70% or more of the total number of boundaries between the gain region and the wavelength control region.
- the region without the diffraction grating may be arranged also at the extreme end of the gain region or the wavelength control region.
- the length of the region without the diffraction grating may be 10% or more and 25% or less of the length of the gain region or the wavelength control region to which it belongs.
- the length of the region without the diffraction grating may be 15% or more and 20% or less of the length of the gain region or the wavelength control region to which it belongs.
- It may further include an optical modulator optically coupled with the gain region and the wavelength control region.
- a variable optical attenuator may be arranged between the gain region and the wavelength control region and the optical modulator.
- a semiconductor optical amplifier may be arranged at the output of the optical modulator.
- the refractive index of the wavelength control region may be controlled by current injection.
- the refractive index of the wavelength control region may be controlled by a heater.
- the regions having no diffraction grating may be arranged at either end of either the gain region or the wavelength control region.
- the regions having no diffraction grating may be arranged at both ends of both the gain region and the wavelength control region.
- the region without the diffraction grating may be arranged only at one end of either one of the gain region and the wavelength control region.
- FIG. 1 is a plan view illustrating the wavelength tunable laser 100 according to the first embodiment.
- the tunable laser 100 includes a tunable light source 10, a variable optical attenuator (VOA) 12, an optical modulator (MOD) 14, and a semiconductor optical amplifier (SOA).
- VOA variable optical attenuator
- MOD optical modulator
- SOA semiconductor optical amplifier
- 16 is an electro-absorption modulator integrated laser (EML).
- a tunable light source 10 is optically coupled to VOA 12 , MOD 14 and SOA 16 .
- the XY plane is the direction in which the top surface of the tunable laser 100 extends.
- the X-axis direction is the extending direction of the optical waveguide 11 and the light propagation direction.
- the Y-axis direction is orthogonal to the X-axis direction.
- the Z-axis direction is the thickness direction of the tunable laser 100, is orthogonal to the X-axis direction, and is orthogonal to the Y-axis direction.
- the length of the tunable laser 100 in the Y-axis direction is, for example, 250 ⁇ m.
- the length of the wavelength tunable light source 10 in the X-axis direction is, for example, 520 ⁇ m.
- wavelength tunable light source 10, VOA 12, MOD 14, and SOA 16 include optical waveguide 11, and are arranged in this order along the direction in which optical waveguide 11 extends. Electrodes 13 , 15 , 19 , 32 and 34 are provided on the upper surface of the tunable laser 100 . Electrodes 32 and 34 are provided on wavelength tunable light source 10 . Electrode 13 is provided on VOA 12 . Electrode 15 is provided on MOD 14 . Electrode 19 is provided on SOA 16 . Electrodes 13, 15, 19, 32 and 34 are spaced apart from each other. The distance between the electrodes 32 and 34 in the Y-axis direction is, for example, 10 ⁇ m. The distance in the X-axis direction is, for example, 7 ⁇ m.
- An antireflection (AR) film may be provided at both ends of the wavelength tunable laser 100 in the X-axis direction.
- the AR layer has, for example, a two-layer structure of titanium oxynitride (TiON) and titanium dioxide (TiO 2 ), or a two-layer structure of aluminum oxide (Al 2 O 3 ) and titanium dioxide.
- FIG. 2 is a cross-sectional view along line AA in FIG. 1, illustrating the tunable light source 10.
- wavelength tunable light source 10 includes multiple gain regions 17 and multiple wavelength control regions 18 .
- the gain region 17 and the wavelength control region 18 respectively refer to regions extending over the entire thickness of the wavelength tunable light source 10 .
- the number of gain regions 17 is seven, for example.
- the number of wavelength control regions 18 is six, for example.
- the plurality of gain regions 17 and the plurality of wavelength control regions 18 are arranged alternately along the light propagation direction (X-axis direction). Gain regions 17 are positioned at both ends of the wavelength tunable light source 10 in the X-axis direction.
- FIG. 3 is an enlarged view of the gain region 17 and the wavelength control region 18.
- FIG. FIG. 4 is a cross-sectional view along line BB of FIG. 3 illustrating gain region 17 .
- FIG. 5 is a cross-sectional view along line CC of FIG. 3, illustrating the wavelength control region 18.
- the length L1 in the X-axis direction of one gain region 17 shown in FIG. 3 is, for example, 40 ⁇ m.
- the length L2 of one wavelength control region 18 in the X-axis direction is equal to L1, for example, and is 40 ⁇ m.
- the wavelength tunable laser 100 has a substrate 20, a buffer layer 21, a diffraction grating layer 22, an active layer 24, a wavelength control layer 25, a clad layer 26, and a contact layer .
- a substrate 20, a buffer layer 21, a diffraction grating layer 22, an active layer 24, a clad layer 26, and a contact layer 28 are laminated in this order in the Z-axis direction. to form a mesa 38 as shown in FIG.
- the mesa 38 protrudes from the substrate 20 in the Z-axis direction and extends in the X-axis direction.
- the height of the mesa 38 is, for example, 3.6 ⁇ m.
- a portion of the substrate 20 other than the mesa 38 is recessed by, for example, 1.4 ⁇ m compared to the portion included in the mesa 38 .
- the width of the mesa 38 in the Y-axis direction is, for example, 1.3 ⁇ m.
- Buried layers 29 are provided on both sides of the mesa 38 in the Y-axis direction.
- An optical confinement layer (not shown) is provided between the active layer 24 and the diffraction grating layer 22 .
- An optical confinement layer (not shown) is provided between the active layer 24 and the clad layer 26 .
- the substrate 20, the buffer layer 21, the diffraction grating layer 22, the wavelength control layer 25, the cladding layer 26, and the contact layer 28 are aligned in the Z-axis direction. are laminated in this order to form a mesa 38 as shown in FIG. Buried layers 29 are provided on both sides of the mesa 38 in the Y-axis direction.
- a clad layer (not shown) may be provided between the active layer 24 and the wavelength control layer 25 and the diffraction grating layer 22 .
- the contact layer 28 of the wavelength control region 18 is separated from the contact layer 28 of the gain region 17 by, for example, 5 ⁇ m.
- the active layer 24 and the wavelength control layer 25 are positioned at the same height in the Z-axis direction and are adjacent to each other in the X-axis direction.
- the active layer 24 of the gain region 17, the wavelength control layer 25 of the wavelength control region 18, and the like form the optical waveguide 11 of FIG.
- the insulating film 30 is provided on the multiple gain regions 17 and the multiple wavelength control regions 18 and covers the contact layer 28 .
- the insulating film 30 has openings above each of the plurality of gain regions 17 and each of the plurality of wavelength control regions 18 .
- the contact layer 28 is exposed through the opening.
- the electrodes 32 and 34 are provided on the top surface of the wavelength tunable laser 100 .
- electrodes 32 first electrodes
- the electrode 34 (second electrode) contacts the top surface of the contact layer 28 in the multiple wavelength control regions 18 .
- Electrode 32 is separated from electrode 34 by a distance of, for example, 7 ⁇ m.
- Electrode 36 is provided on the underside of substrate 20 as shown in FIG. 2 and extends over multiple gain regions 17 and multiple wavelength control regions 18, as well as VOA 12, MOD 14 and SOA 16 of FIG.
- the substrate 20 is a semiconductor substrate made of, for example, n-type indium phosphide (InP).
- the buffer layer 21 is made of, for example, n-type InP with a thickness of 93 nm.
- the n-type semiconductor layer is doped with tin (Sn) or sulfur (S), for example.
- An n-type InP clad layer (not shown) may be provided between the active layer 24 and the wavelength control layer 25 and the diffraction grating layer 22 .
- the active layer 24 has a multiple quantum well structure (MQW: Multi Quantum Well).
- the PL (Photoluminescence) wavelength of the active layer 24 is, for example, 1520 nm.
- the active layer 24 has ten well layers and ten barrier layers, for example. The well layers and barrier layers are alternately stacked in the Z-axis direction.
- the well layer is made of, for example, indium gallium arsenide phosphide (InGaAsP) having a compressive strain of 0.6% and a thickness of 5.1 nm.
- the barrier layer is made of InGaAsP with a thickness of 10 nm, for example, and has a band gap corresponding to the PL wavelength of 1.3 ⁇ m (Q1.3).
- the term (Q “PL wavelength”) including the PL wavelength is used.
- Q1.3 the term (Q1.3).
- a light confinement layer (Q1.15) with a thickness of 50 nm is provided between the active layer 24 and the buffer layer 21 .
- a light confinement layer (Q1.15) having a thickness of 50 nm is provided between the active layer 24 and the clad layer 26 .
- the wavelength control layer 25 is a layer whose refractive index is changed by current injection. It is preferable that changes in gain and loss due to current injection be small with respect to light of the oscillation wavelength.
- the wavelength control layer 25 may be a bulk layer or may have a multiple quantum well structure, and is formed of, for example, Q1.44 InGaAsP or aluminum gallium indium arsenide (AlGaInAs).
- the PL wavelength of the wavelength control layer 25 is, for example, a wavelength shorter than the oscillation wavelength by 75 nm or more.
- the thickness of the wavelength control layer 25 is, for example, 212 nm.
- the refractive index of the wavelength control region 18 can also be changed by controlling the temperature with a titanium (Ti) heater, for example. In this case, a heater element is provided in the region instead of the electrode 34 .
- the buried layer 29 is made of semi-insulating InP doped with iron (Fe), for example.
- the clad layer 26 and the contact layer 28 are p-type semiconductor layers doped with zinc (Zn), for example.
- the cladding layer 26 is made of p-type InP with a thickness of 1.6 ⁇ m, for example.
- the dopant concentration of the cladding layer 26 is, for example, 5 ⁇ 10 17 cm ⁇ 3 or more and 1.5 ⁇ 10 18 cm ⁇ 3 or less.
- the contact layer 28 is made of, for example, p-type indium gallium arsenide (InGaAs) and indium gallium arsenide phosphide (InGaAsP).
- the contact layer 28 is a stack of InGaAs layers and InGaAsP layers.
- an InGaAsP layer Q1.08) with a thickness of 50 nm
- an InGaAsP layer Q1.30 with a thickness of 100 nm
- an InGaAs layer with a thickness of 100 nm are laminated in order from the cladding layer 26 side.
- the dopant concentrations of these three layers are, for example, 2.0 ⁇ 10 18 cm -3 or higher, 2.0 ⁇ 10 18 cm -3 or higher, and 1.0 ⁇ 10 19 cm -3 or higher, respectively.
- the wavelength tunable laser 100 may be made of compound semiconductors other than those described above.
- the insulating film 30 is made of an insulator such as silicon nitride (SiN) or silicon oxide (SiO 2 ). The thickness of the insulating film 30 is, for example, 600 nm.
- Electrodes 32 and 34 are p-type electrodes formed of, for example, a metal multilayer structure.
- the electrodes 32 and 34 may have a laminated structure (AuZn/TiW/Au) in which, for example, an alloy layer of gold and zinc, an alloy layer of titanium and tungsten, and a gold layer are laminated in this order from the substrate 20 side, or titanium, A laminated structure of platinum and gold (Ti/Pt/Au) may also be used.
- the electrode 36 is an n-type electrode formed of a laminated structure (AuGe/Au/Ti/Au) in which, for example, an alloy of gold and germanium, gold, titanium, and gold are laminated in order from the substrate 20 side.
- the diffraction grating layer 22 has multiple regions 40 (first regions), multiple regions 42 (second regions), and one region 43 .
- the region 43 is located, for example, in the center of the wavelength tunable light source 10 in the X-axis direction.
- a region 43 is a ⁇ /4 phase shift region that does not have a diffraction grating 23, which will be described later.
- the region 43 may be provided at a position other than the center in the X-axis direction in the wavelength tunable light source 10 .
- Region 43 may be a ⁇ /6 phase shift region.
- the diffraction grating layer 22 has regions 40 and 42.
- Region 40 occupies the center of gain region 17 in the X-axis direction.
- the regions 42 are adjacent to the region 40 in the X-axis direction and located at both ends of the gain region 17 in the X-axis direction.
- the region 42 extends from the boundary between the gain region 17 and the wavelength control region 18 toward the gain region 17 in the X-axis direction.
- those positioned at both ends of the wavelength tunable laser 100 also have regions 42 .
- Region 42 is also located at the extreme end of gain region 17 .
- the length L3 in the X-axis direction of one region 42 shown in FIG. 3 is 17.5% of the length L1 of the gain region 17, for example.
- the length L1 is 40 ⁇ m and the length L3 is 7 ⁇ m.
- grating layer 22 has region 40 and does not have region 42 .
- the region 42 may be provided only at one end of the gain region 17 in the X-axis direction. In this case, it is preferable to provide the region 42 aligned with one side of the gain region 17 in the X-axis direction (only the right side or the left side in the figure).
- a region 40 of the diffraction grating layer 22 includes, for example, an indium gallium arsenide phosphide (InGaAsP) layer 22a and an InP layer 22b.
- the InP layer 22b is an n-type InP layer.
- the InGaAsP layer 22a is strain-free with respect to InP and has a band gap corresponding to the PL wavelength of 1150 nm (Q1.15).
- the refractive index of the InGaAsP layer 22a is different from that of the InP layer 22b.
- the plurality of InGaAsP layers 22a and the plurality of InP layers 22b are periodically and alternately arranged along the X-axis direction.
- a portion where the plurality of InGaAsP layers 22 a and the plurality of InP layers 22 b are arranged functions as a diffraction grating 23 . That is, the region 40 of the grating layer 22 has the grating 23 .
- the period (pitch) of the diffraction grating 23 is constant, eg, 236.9 nm.
- the region 42 of the diffraction grating layer 22 is formed of the InGaAsP layer 22a and does not include the InP layer 22b.
- the InGaAsP layer 22a and the InP layer 22b are not arranged periodically, and only the InGaAsP layer 22a is provided. That is, region 42 does not have diffraction grating 23 . That is, no diffraction gratings 23 are provided at both ends of the gain region 17 .
- a diffraction grating 23 is provided on the center side of the gain region 17 and the wavelength control region 18 .
- the region 42 may be formed of only the InP layer 22b instead of the InGaAsP layer 22a.
- the coupling coefficient ⁇ of the diffraction grating 23 is, for example, 71 cm ⁇ 1 .
- the length of the diffraction grating 23 in the entire wavelength tunable light source 10 is 422 ⁇ m.
- the product of the coupling coefficient ⁇ and the length (normalized coupling coefficient) is approximately 3.0.
- the wavelength tunable light source 10 functions as a distributed feedback (DFB) laser.
- Active layer 24 has an optical gain. Electrodes 32 and 36 are used to inject current into active layer 24 of gain region 17 to produce light. Light propagates in the X-axis direction and is oscillated at a specific wavelength by the diffraction grating 23 of the diffraction grating layer 22 . A current is injected into the wavelength control layer 25 of the wavelength control region 18 using the electrodes 34 and 36 to change the refractive index of the wavelength control region 18 and change the oscillation wavelength.
- the VOA 12 can attenuate the light
- the MOD 14 can modulate the light
- the SOA 16 can amplify the light.
- (Production method) 6A to 7C are cross-sectional views illustrating a method of manufacturing the wavelength tunable laser 100, showing cross sections of the wavelength tunable light source 10 of the wavelength tunable laser 100 corresponding to FIG.
- the buffer layer 21 and the InGaAsP layer 22a are epitaxially grown on the upper surface of the substrate 20 by, for example, metal organic chemical vapor deposition (MOCVD).
- MOCVD metal organic chemical vapor deposition
- a mask (not shown) is formed on the InGaAsP layer 22a by electron beam writing and photolithography.
- a plurality of openings are formed in the InGaAsP layer 22a by etching the InGaAsP layer 22a using a mask. The multiple openings are periodically arranged in the X-axis direction.
- the diffraction grating layer 22 is formed by epitaxially growing an InP layer 22b in the opening.
- a region 40 is formed where the InGaAsP layer 22a and the InP layer 22b are aligned.
- a region 42 is formed in a portion where the InP layer 22b is not buried. Remove the mask.
- the active layer 24 and the light confinement layer are epitaxially grown on the diffraction grating layer 22 .
- the active layer 24 is periodically etched along the X-axis direction.
- the wavelength control layer 25 is epitaxially grown. The remaining active layer 24 and the grown wavelength control layer 25 are arranged side by side.
- a cladding layer 26 and a contact layer 28 are epitaxially grown on the upper surfaces of the active layer 24 and the wavelength control layer 25 in this order.
- the mesa 38 shown in FIGS. 4 and 5 is formed.
- a buried layer 29 is epitaxially grown on the etched portion.
- an insulating film 30 is formed on the upper surface of the contact layer 28 by plasma CVD, for example.
- a plurality of openings are formed in the insulating film 30 .
- Electrodes 32 and 34 are formed on the contact layer 28 and the insulating film 30 by vacuum deposition, lift-off, or the like.
- An electrode 36 is formed on the bottom surface of the substrate 20 .
- the wavelength tunable laser 100 is formed through the above steps.
- FIG. 8 is a cross-sectional view illustrating a wavelength tunable laser according to a comparative example, and shows a cross section of the wavelength tunable light source 10R as in FIG.
- the diffraction grating layer 22 in the comparative example does not have the regions 42 .
- Diffraction gratings 23 are provided in the diffraction grating layer 22 at the center and both ends of the gain region 17 in the X-axis direction and at the center and both ends of the wavelength control region 18 .
- the coupling coefficient ⁇ of the diffraction grating 23 is, for example, 58 cm ⁇ 1 .
- the product of the coupling coefficient ⁇ and the length of the diffraction grating 23 (eg, 422 ⁇ m) is approximately 3.0. Other configurations are the same as those of the first embodiment.
- Figures 9A-10D are reflectance spectra.
- the horizontal axis represents the wavelength of light.
- the vertical axis represents light reflectance.
- the reflectance is the reflectance when light travels from a reference position (for example, area 43) to one side in the X-axis direction (for example, the left side in FIG. 2) and returns to the reference position, and the reflectance when light travels from the reference position to the X-axis direction. It is the product of the reflectance when traveling to the other side of the direction (eg, the right side in FIG. 2) and returning to the reference position.
- Laser light oscillates at a wavelength at which the reflectance is 1.
- FIG. 9A to 9C show the reflectance in the comparative example.
- no current is injected into the wavelength control region 18 .
- the reflectance becomes 1 at a wavelength of approximately 1532 nm. That is, the oscillation wavelength is approximately 1532 nm.
- P0 be the peak of the reflectance at the oscillation wavelength. Reflectance at other wavelengths is lower than peak P0.
- FIG. 9B is an example in which the refractive index of the wavelength control region 18 is lowered by -0.4% by injecting a current into the wavelength control region 18 compared to the case where no current is injected.
- the peak P0 is shifted about 2.8 nm toward shorter wavelengths from the wavelength in FIG. 9A.
- the amount of shift is determined by the product of the ratio of the length of the wavelength control region 18 to the sum of the length of the gain region 17 and the length of the wavelength control region 18 and the rate of change of the refractive index.
- a peak P1a occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the short wavelength side.
- P1b occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the longer wavelength side.
- Peak P0 is the largest among peaks P0, P1a and P1b.
- the oscillation wavelength in FIG. 9B is the wavelength of peak P0.
- FIG. 9C is an example in which the refractive index of the wavelength control region 18 is lowered by -0.8% by injecting current into the wavelength control region 18 compared to the case where no current is injected.
- the peak P0 is shifted about 5.6 nm toward shorter wavelengths from the wavelength in FIG. 9A.
- peaks P1a and P1b and peaks P2a and P2b occur.
- a peak P1a occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the short wavelength side.
- a peak P2a occurs at a wavelength separated from the peak P1a by a wavelength interval ⁇ 1 on the short wavelength side.
- a peak P1b occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the longer wavelength side.
- a peak P2b occurs at a wavelength separated from the peak P1b by a wavelength interval ⁇ 1 on the longer wavelength side.
- Peak P1b is the largest among the five peaks.
- a mode hop occurs in which the oscillation wavelength changes from the wavelength of peak P0 to the wavelength of peak P1b.
- 10A to 10D are spectra in the first embodiment.
- the length of one region 42 is 7 ⁇ m.
- the length of one region 42 corresponds to 17.5% of the total length of one gain region 17 .
- no current is injected into the wavelength control region 18 .
- the reflectance exhibits a peak P0 at a wavelength of approximately 1532 nm. That is, light oscillates at a wavelength of approximately 1532 nm.
- a current is injected into the wavelength control region 18 to reduce the refractive index of the wavelength control region 18 by -0.4% compared to the case where no current is injected.
- the peak P0 is shifted about 2.8 nm toward shorter wavelengths from the wavelength in FIG. 10A.
- a peak P1a occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the short wavelength side.
- a peak P1b occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the longer wavelength side.
- a peak P2a occurs at a wavelength spaced apart from the peak P0 by a wavelength interval of ⁇ 2 on the short wavelength side and at a wavelength spaced apart by a wavelength interval of ⁇ 1 on the short wavelength side from the peak P1a.
- a peak P2b occurs at a wavelength separated by a wavelength interval ⁇ 2 on the longer wavelength side from the peak P0 and separated by a wavelength interval ⁇ 1 on the longer wavelength side from the peak P1b.
- Peak P2a is the smallest among the five peaks.
- Peak P1a in FIG. 10B has approximately the same magnitude as peak P1a in FIG. 9B.
- Peak P1b in FIG. 10B is lower than peak P1b in FIG. 9B.
- Peak P0 is the largest among five peaks P1a, P1b, P2a, P2b, and P0.
- the refractive index of the wavelength control region 18 is lowered by -0.7% compared to the case where no current is injected into the wavelength control region 18.
- the refractive index of the wavelength control region 18 is decreased by -0.8% compared to the case where current injection is not performed.
- the peak P0 shifts about 5.6 nm to the short wavelength side from the wavelength in FIG. 10A.
- peaks P1a and P1b occur at wavelengths ⁇ 1 apart from peak P0, and peaks P2a and P2b occur at wavelengths ⁇ 2 apart.
- Peak P0 is the largest among five peaks P1a, P1b, P2a, P2b, and P0.
- Peak P1b in FIG. 10D is smaller than peak P1b in FIG. 9C.
- the peak P0 is the largest among the five peaks P1a, P1b, P2a, P2b, and P0.
- mode hopping is suppressed and light can be oscillated at the wavelength of peak P0.
- the refractive index of the wavelength control region 18 is decreased by -0.9% or more, the peak P1a becomes larger than the peak P0, and mode hopping may occur on the short wavelength side.
- FIG. 11 is a diagram showing the relationship between the length of the region 42 and the height of unnecessary sub-peaks other than the target peak P0.
- the horizontal axis is the ratio of the length of one region 42 to one wavelength control region 18 .
- the vertical axis represents the sub-peak height (reflectance).
- the dotted line represents the height of peak P2a.
- a solid line represents the height of the peak P1a.
- the dashed line represents the height of peak P1b.
- a dashed line represents the height of peak P2b. Assume that the magnitude of the peak P1b is 1 when the region 42 is not provided (the length of the region 42 is 0). In the example of FIG.
- the refractive index of the wavelength control region 18 is lowered by -0.7% compared to the refractive index when no current is injected.
- the product of the length of the wavelength tunable light source 10 and the coupling coefficient of the diffraction grating 23 is 3.0.
- sub-peaks P1a, P1b, P2b begin to fall.
- Sub-peak P2a gradually increases as the ratio of the length of region 42 becomes greater than zero.
- the sub-peak P2a is sufficiently suppressed in the region where the ratio of the length of the region 42 is close to zero.
- the proportion of the length of region 42 is greater than 30%, subpeak P2a exceeds 0.9 and approaches 1 when the proportion is 35%.
- the preferred length percentage range of region 42 according to the present disclosure is 5% or more and 30% or less.
- the preferred ratio of region 42 to gain region 17 varies with the magnitude of the refractive index applied to wavelength control region 18 .
- the refractive index applied to the wavelength control region 18 is ⁇ 0.7% or less compared to the refractive index when current injection is not performed, the ratio is 5% or more and 30% or less.
- the refractive index of the wavelength control region 18 is -0.8 or more, the above range is 15% or more and 20% or less.
- FIG. 12A and 12B are enlarged views of the diffraction grating layer 22, active layer 24 and wavelength control layer 25.
- FIG. FIG. 12A illustrates a comparative example.
- FIG. 12B illustrates the first embodiment.
- the refractive index of the wavelength control region 18 is equal to the refractive index of the gain region 17 .
- the reflection and transmission properties of wavelength control region 18 are equal to the reflection and transmission properties of gain region 17 .
- the oscillation wavelength of light is determined by the reflection characteristics of the gain region 17 and the wavelength control region 18 and the gain region. As shown in FIGS. 9A and 10A, laser light oscillates at the wavelength of peak P0. No sub-peaks occur.
- a gain region 17 with a high refractive index and a wavelength control region 18 with a low refractive index are periodically arranged along the X-axis direction, forming a periodic structure 50 as shown in FIGS. 12A and 12B. be.
- the periodic structure 50 extends from the center of one gain region 17 to the center of the nearest gain region 17 and from the center of one wavelength control region 18 to the center of the nearest wavelength control region 18 .
- the length ⁇ L1 of the periodic structure 50 is equal to the sum of the length of one gain region 17 and the length of one wavelength control region 18, eg, 80 ⁇ m.
- the reflectance of light changes for each period ⁇ L1 of the periodic structure 50 .
- the Bragg wavelength of the gain region 17 is 1531 nm. If the refractive index of the wavelength control region 18 is 0.4% lower than that of the gain region 17, the Bragg wavelength of the wavelength control region 18 is 1524.9 nm. Light with a wavelength of 1531 nm is strongly reflected each time it passes through the gain region 17 . Light with a wavelength of 1524.9 nm is strongly reflected each time it passes through the wavelength control region 18 . The intensity of Bragg reflection changes for each period ⁇ L1 of the periodic structure 50 .
- a sub-peak is generated by the periodic structure 50 functioning as a resonator.
- a wavelength interval ⁇ between the wavelength ⁇ 0 of the light mode and the wavelength of the mode (sub-peak) adjacent to the mode is determined by the following equation (1).
- ⁇ L is the period of the periodic structure.
- ⁇ 0 is the wavelength of the peak P0
- light resonates at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 to generate a sub-peak.
- ⁇ 0 is the wavelength of the sub-peak
- another sub-peak occurs at a wavelength separated from the sub-peak by the wavelength interval ⁇ 1.
- the periodic structure 50 produces two sub-peaks (peaks P1a and P1b) adjacent to peak P0.
- the periodic structure 50 causes four sub-peaks (peaks P1a, P1b, P2a, P2b).
- the periodic structure 50 is formed by changing the refractive index of the wavelength control region 18 .
- the diffraction grating layer 22 has regions 42 at both ends of each of the plurality of gain regions 17 .
- a diffraction grating 23 is not provided in the region 42 .
- a periodic structure 52 is formed from one region 42 to the nearest region 42 .
- the length of the periodic structure 52 (period ⁇ L2) is equal to the length L1 of one gain region 17 and approximately half the length ⁇ L1 of the periodic structure 50 .
- the wavelength interval ⁇ 2 is calculated.
- the wavelength spacing ⁇ 2 is approximately twice ⁇ 1 and is 80 nm.
- the peaks P2a and P2b separated by the wavelength interval ⁇ 2 from the peak P0 are affected by both the resonance of the periodic structure 50 and the resonance of the periodic structure 52 .
- the resonant mode of the periodic structure 52 is in phase with the resonant mode of the periodic structure 50 . Therefore, peaks P2a and P2b in FIGS. 10B to 10D are larger than the corresponding peaks of the comparative example.
- the resonance mode of periodic structure 52 is in phase opposition to the resonance mode of periodic structure 50 . Therefore, in the first embodiment, the resonance modes (peaks P1a and P1b) of the periodic structure 50 are suppressed.
- the tunable laser 100 has multiple gain regions 17 and multiple wavelength control regions 18 .
- Grating layer 22 has regions 40 in wavelength control region 18 . That is, the wavelength control region 18 is provided with the diffraction grating 23 .
- Grating layer 22 has regions 42 at both ends of gain region 17 . In other words, no diffraction gratings 23 are provided at both ends of the gain region 17 .
- FIGS. 10B to 10D sub-peaks can be suppressed low and mode hopping can be suppressed.
- grating layer 22 preferably has regions 42 at both ends of each of the plurality of gain regions 17 . That is, no diffraction gratings 23 are provided at both ends of each of the plurality of gain regions 17 . It is possible to effectively suppress sub-peaks and oscillate at a desired wavelength.
- the number of regions 42 is preferably 70% or more of the total number of boundaries between the gain regions 17 and the wavelength control regions 18 .
- the ratio of the length of one region 42 to the length of one gain region 17 may be, for example, 5% or more and 30% or less, or may be, for example, 10% or more and 25% or less.
- the reflectance of each sub-peak can be sufficiently reduced by making the ratio of the length of the region 42 close to 17.5%.
- the diffraction grating layer 22 includes an InGaAsP layer 22a and an InP layer 22b.
- the diffraction grating 23 is formed by alternately arranging a plurality of InGaAsP layers 22a and a plurality of InP layers 22b in the X-axis direction.
- the InP layer 22b is not provided, and the InGaAsP layer 22a is provided. Therefore, no diffraction grating 23 is formed in the region 42 .
- the diffraction grating layer 22 may include semiconductor layers other than the InGaAsP layer 22a and the InP layer 22b.
- the diffraction grating 23 is formed by alternately arranging two semiconductor layers having different refractive indices.
- the diffraction grating layer 22 may be provided between the active layer 24/wavelength control layer 25 and the buffer layer 21, or may be provided between the active layer 24/wavelength control layer 25 and the cladding layer 26. .
- An electrode 32 is provided in the gain region 17 .
- An electrode 34 is provided in the wavelength control region 18 . Currents can be injected into the gain region 17 and the wavelength control region 18 independently of each other. Light is emitted from the gain region 17 . The wavelength of light is controlled by changing the refractive index of the wavelength control region 18 .
- the number of gain regions 17 may be seven or less, or may be seven or more.
- the number of wavelength control regions 18 may be six or less, or six or more.
- the length L1 of gain region 17 may be equal to or different from the length L2 of wavelength control region 18 . For example, both lengths L1 and L2 may be 40 ⁇ m.
- the length L1 may be 35 ⁇ m and the length L2 may be 45 ⁇ m.
- the wavelength tunable laser 100 includes a wavelength tunable light source 10, VOA 12 . It is an integrated laser device comprising MOD 14 and SOA 16 . It is possible to attenuate, modulate and amplify the light emitted by the wavelength tunable light source 10 .
- the wavelength tunable laser 100 can oscillate at wavelengths from 1532 nm to 1537.6 nm, for example, and can be applied to wavelength division multiplex communication systems. Tunable laser 100 may have tunable light source 10 without at least one of VOA 12 , MOD 14 and SOA 16 .
- FIG. 13 is a cross-sectional view illustrating the wavelength tunable light source 10, showing a cross section corresponding to FIG.
- the diffraction grating layer 22 in the second embodiment has the region 40 and does not have the region 42 in the gain region 17 .
- the diffraction grating layer 22 has a region 40 in the center of the wavelength control region 18 in the X-axis direction, and regions 42 at both ends. That is, the diffraction grating 23 is provided on the central side of the wavelength control region 18, and the diffraction gratings 23 are not provided on both ends.
- the length of one region 42 is 17.5% of the length of the wavelength control region 18, for example.
- the thickness of the n-type buffer layer 21 is, for example, 98 nm.
- the coupling coefficient ⁇ of the diffraction grating 23 is, for example, 69 cm ⁇ 1 .
- the product of the coupling coefficient ⁇ and the length of the diffraction grating 23 (eg, 436 ⁇ m) is approximately 3.0.
- Other configurations are the same as those of the first embodiment.
- the region 42 may be positioned only at one end of the wavelength control region 18 in the X-axis direction. In this case, it is desirable that they are aligned on one side of the wavelength control region 18 in the X-axis direction.
- 14A to 14C are reflectance spectra.
- the length of one region 42 is 7 ⁇ m.
- no current is injected into the wavelength control region 18 .
- the reflectance exhibits a peak P0.
- a current is injected into the wavelength control region 18 to reduce the refractive index of the wavelength control region 18 by -0.4% compared to the case where no current is injected.
- the peak P0 shifts to shorter wavelengths from the wavelength in FIG. 14A.
- peaks P1b, P2a and P2b occur.
- a peak P2a occurs at a wavelength spaced apart from the peak P0 by a wavelength interval of ⁇ 2 on the short wavelength side and at a wavelength spaced apart by a wavelength interval of ⁇ 1 on the short wavelength side from the peak P1a.
- a peak P1b occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the longer wavelength side.
- a peak P2b occurs at a wavelength separated by a wavelength interval ⁇ 2 on the longer wavelength side from the peak P0 and separated by a wavelength interval ⁇ 1 on the longer wavelength side from the peak P1b. No peak occurs at a wavelength separated from the peak P0 by the wavelength interval ⁇ 1 on the short wavelength side.
- the peak P0 is the largest among the four peaks P1b, P2a, P2b, and P0.
- the refractive index of the wavelength control region 18 is lowered by -0.8% compared to the case where no current is injected.
- the peak P0 shifts to shorter wavelengths from the wavelength in FIG. 14A. Peaks P1a and P1b occur at wavelengths separated by ⁇ 1 from peak P0, and peaks P2a and P2b occur at wavelengths separated by ⁇ 2. Peak P0 is the largest among five peaks P1a, P1b, P2a, P2b, and P0.
- the peak P0 is the largest in any of the examples of FIGS. 14A to 14C. Even if the refractive index of the wavelength control region 18 is changed to -0.8%, mode hopping is suppressed and the wavelength tunable laser oscillates at the wavelength of peak P0. If the refractive index of the wavelength control region 18 is decreased by -0.9% or more, the peak P1b becomes larger than the peak P0, and mode hopping may occur on the short wavelength side.
- FIG. 15 is a diagram showing the relationship between the length of the region 42 and the peak height.
- the horizontal axis is the ratio of the length of one region 42 to one wavelength control region 18 .
- the vertical axis represents the peak height (reflectance).
- the refractive index of the wavelength control region 18 is decreased by -0.7% compared to the refractive index when current injection is not performed.
- the product of the length of the wavelength tunable light source 10 and the coupling coefficient of the diffraction grating 23 is 3.0.
- the ratio of the length of the region 42 is greater than 5%, the peaks P1a, P1b and P2b become smaller and the peak P2a becomes larger.
- the ratio of the length of the region 42 is in the range of 0% to 20%, the peak P1b is the largest among the peaks P1a, P1b, P2a and P2b.
- the magnitude of peak P1b drops to about 0.8. All peaks are below 0.8 when the length percentage is around 15% to 20%.
- peak P2b is the largest among the four peaks. If the length ratio exceeds 30%, the magnitude of peak P2b approaches 1 and mode hopping may occur.
- the ratio of the length of the region 42 is preferably, for example, 5% or more and 30% or less.
- the grating layer 22 has regions 40 in the gain region 17 . That is, the gain region 17 is provided with the diffraction grating 23 .
- Grating layer 22 has regions 42 at both ends of wavelength control region 18 . In other words, no diffraction gratings 23 are provided at both ends of the wavelength control region 18 . Sub-peaks can be suppressed to a low level, and mode hopping can be suppressed.
- Sub-peaks can be suppressed even when diffraction gratings 23 are not provided at both ends of some of the plurality of wavelength control regions 18 .
- the grating layer 22 preferably has regions 42 at both ends of each of the plurality of wavelength control regions 18 .
- the diffraction gratings 23 are not provided at both ends of each of the multiple wavelength control regions 18 . It is possible to effectively suppress sub-peaks and oscillate at a desired wavelength.
- the ratio of the number of wavelength control regions 18 having regions 42 to the number of wavelength control regions 18 is preferably 70% or more.
- a preferred ratio of the region 42 to the wavelength control region 18 varies depending on the magnitude of the refractive index applied to the wavelength control region 18.
- the ratio is 5% or more and 30% or less.
- the refractive index of the wavelength control region 18 is -0.8 or more, the above range is 15% or more and 20% or less.
- the ratio of the length of one region 42 to the length of one wavelength control region 18 may be, for example, 10% or more and 25% or less.
- the reflectance of each sub-peak can be sufficiently reduced by making the ratio of the length of the region 42 close to 17.5%.
- FIG. 16 is a cross-sectional view illustrating the wavelength tunable light source 10, showing a cross section corresponding to FIG.
- the diffraction grating layer 22 in the third embodiment has regions 40 and 42 in the gain region 17 and wavelength control region 18 .
- the region 40 is provided on the center side of the gain region 17 and on the center side of the wavelength control region 18 . That is, the diffraction gratings 23 are provided on the central side of the gain region 17 and on the central side of the wavelength control region 18 .
- the region 42 extends from the edge of one gain region 17 to the edge of the adjacent wavelength control region 18 in the X-axis direction.
- No diffraction gratings 23 are provided at both ends of the gain region 17 and both ends of the wavelength control region 18 .
- One region 42 occupies a length obtained by adding a predetermined proportion of the length of one gain region 17 in the X-axis direction and a length of a predetermined proportion of the length of one wavelength control region 18 .
- the predetermined percentage is 17.5% in this embodiment.
- the proportion of one region 42 in one gain region 17 is equal to the proportion of one region 42 in one wavelength control region 18 . Therefore, when the gain region 17 and the wavelength control region 18 have different lengths, the center position of the region 42 spanning both the gain region 17 and the wavelength control region 18 is shifted from the boundary between the gain region 17 and the wavelength control region 18. will do.
- the coupling coefficient ⁇ of the diffraction grating 23 is, for example, 89 cm ⁇ 1 .
- the product of the coupling coefficient ⁇ and the length of the diffraction grating 23 (eg, 338 ⁇ m) is about 3.0.
- the thickness of the n-type buffer layer 21 is, for example, 51 nm. Other configurations are the same as those of the first embodiment.
- 17A to 17C are reflectance spectra.
- the length of one region 42 is 7 ⁇ m.
- no current is injected into the wavelength control region 18 .
- the reflectance exhibits a peak P0.
- a peak P2a occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 2 on the short wavelength side.
- a peak P2b occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 2 on the longer wavelength side.
- Peak P0 is the largest of the three peaks.
- a current is injected into the wavelength control region 18 to reduce the refractive index of the wavelength control region 18 by -0.4% compared to the case where no current is injected.
- the peak P0 shifts to shorter wavelengths from the wavelength in FIG. 17A.
- peaks P1b, P2a and P2b occur.
- a peak P1b occurs at a wavelength separated from the peak P0 by a wavelength interval ⁇ 1 on the longer wavelength side.
- No peak occurs at a wavelength separated from the peak P0 by the wavelength interval ⁇ 1 on the short wavelength side.
- the peak P0 is the largest among the four peaks P1b, P2a, P2b, and P0.
- the refractive index of the wavelength control region 18 is lowered by -0.8% compared to the case where no current is injected.
- the peak P0 shifts to shorter wavelengths from the wavelength in FIG. 17A.
- Peaks P1a and P1b occur at wavelengths ⁇ 1 away from peak P0.
- Peaks P2a and P2b occur at wavelengths separated by ⁇ 2 from peak P0.
- Peak P0 is the largest among five peaks P1a, P1b, P2a, P2b, and P0. Peak P0 is the largest in any of the examples of FIGS. 17A to 17C. Even if the refractive index of the wavelength control region 18 is changed to -0.8%, mode hopping is suppressed and the wavelength tunable laser oscillates at the wavelength of peak P0.
- FIG. 18 is a diagram showing the relationship between the length of the region 42 and the peak height.
- the horizontal axis is the ratio of the length of one region 42 to one wavelength control region 18 .
- the vertical axis represents the peak height (reflectance). Assume that the magnitude of the peak P1b is 1 when the region 42 is not provided (the length of the region 42 is 0).
- the refractive index of the wavelength control region 18 is decreased by -0.7% compared to the refractive index when current injection is not performed.
- the product of the length of the wavelength tunable light source 10 and the coupling coefficient of the diffraction grating 23 is 3.0.
- the region 42 is a region having a length obtained by adding a predetermined proportion of the length of one gain region 17 in the X-axis direction and a length of a predetermined proportion of the length of one wavelength control region 18 .
- the ratio of the length of region 42 corresponds to the predetermined ratio multiplied by both gain region 17 and wavelength control region 18 .
- peaks P1a and P1b are smaller and peaks P2a and P2b are larger.
- Peak P1b is the largest of peaks P1a, P1b, P2a and P2b when the percentage of the length of region 42 is in the range of 5% to about 15%. For length percentages from 10% to 30%, all peaks fall below approximately 0.8.
- peaks fall below 0.7 when the length percentage is greater than or equal to approximately 15% and less than or equal to 20%.
- peak P2b is the largest among the four peaks. If the length ratio exceeds 30%, the magnitudes of peaks P2a and P2b approach 1 and mode hops may occur.
- the ratio of the length of the region 42 is, for example, 5% or more and 30% or less.
- the diffraction grating layer 22 has regions 42 at both ends of the gain region 17 and both ends of the wavelength control region 18 . That is, the diffraction gratings 23 are not provided at both ends of the gain region 17 and both ends of the wavelength control region 18 . Sub-peaks can be suppressed to a low level, and mode hopping can be suppressed.
- Grating layer 22 preferably has regions 42 at both ends of each of the plurality of gain regions 17 and at both ends of each of the plurality of wavelength control regions 18 . That is, no diffraction gratings 23 are provided at both ends of each of the plurality of gain regions 17 and at both ends of each of the plurality of wavelength control regions 18 . It is possible to effectively suppress sub-peaks and oscillate at a desired wavelength.
- the ratio of the number of the gain regions 17 having the region 42 to the number of the plurality of gain regions 17 is 70% or more.
- the ratio of the number of wavelength control regions 18 having the region 42 to the number of multiple wavelength control regions 18 is preferably 70% or more.
- the ratio of the length of the region 42 described above changes according to the magnitude of the refractive index applied to the wavelength control region 18 .
- the length ratio is 5% to 30%.
- the refractive index of the wavelength control region 18 is -0.8 or more, the length ratio is in the range of 15% to 20%.
- the ratio of the length of one region 42 to the length of one wavelength control region 18 may be, for example, 10% or more and 25% or less.
- the reflectance of each sub-peak can be sufficiently reduced by making the ratio of the length of the region 42 close to 17.5%.
- the diffraction grating 23 is not provided at both ends of at least one of the gain region 17 and the wavelength control region 18.
- FIG. The light intensity in the center of the gain region 17 and the wavelength control region 18 is greater than the intensity in the portions other than the center. If the diffraction grating 23 is not provided in the center of the gain region 17 and the wavelength control region 18, light is less likely to be reflected by the diffraction grating 23.
- FIG. At least one of the gain region 17 and the wavelength control region 18 is not provided with the diffraction grating 23 at both ends, but is provided with the diffraction grating 23 at the center. Light can be reflected by the diffraction grating 23 to allow the wavelength tunable light source 10 to function as a DFB laser. Also, sub-peaks can be suppressed.
- Reference Signs List 10 10R wavelength tunable light source 11 optical waveguide 12 variable optical attenuator 13, 15, 19, 32, 34, 36 electrode 14 modulator 16 semiconductor optical amplifier 17 gain region 18 wavelength control region 20 substrate 21 buffer layer 22 diffraction grating layer 22a InGaAsP layer 22b InP layer 23 diffraction grating 24 active layer 25 wavelength control layer 26 clad layer 28 contact layer 29 buried layer 30 insulating film 38 mesa 40, 42, 43 regions 50, 52 periodic structure 100 wavelength tunable laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
光の伝搬方向に沿って交互に配置された、利得領域および波長制御領域と、前記利得領域と前記波長制御領域のそれぞれに対応して配置された回折格子と、前記利得領域と前記波長制御領域との境界において、前記利得領域の端部および前記波長制御領域の端部のうち少なくとも一方に位置する、複数の前記回析格子を有さない領域と、を備え、前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して5%以上30%以下である波長可変レーザ。
Description
本開示は波長可変レーザに関するものである。
光学デバイスとして、レーザ発振に対する利得機能と波長制御機能とを備える波長可変レーザが知られている。例えば利得を有する領域と波長制御のための領域とをレーザ素子の中で交互に配置する(特許文献1など)。
本開示に係る波長可変レーザは、光の伝搬方向に沿って交互に配置された、利得領域および波長制御領域と、前記利得領域と前記波長制御領域のそれぞれに対応して配置された回折格子と、前記利得領域と前記波長制御領域との境界において、前記利得領域の端部および前記波長制御領域の端部のうち少なくとも一方に位置する、複数の前記回析格子を有さない領域と、を備え、前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して5%以上30%以下である。
[本開示が解決しようとする課題]
利得領域に電流を注入することで光を生成する。波長制御領域に電流を注入し、屈折率を変えることで、発振波長を変化させる。波長制御領域の屈折率が利得領域の屈折率とは大きく異なる場合は、所望の波長とは異なる波長において光が発振する、いわゆるモードホップが発生することがある。なお、モードホップが生じる波長制御領域の屈折率変化量は、レーザの構造や半導体材料によって異なる。そこで、モードホップを抑制することが可能な波長可変レーザを提供することを目的とする。
利得領域に電流を注入することで光を生成する。波長制御領域に電流を注入し、屈折率を変えることで、発振波長を変化させる。波長制御領域の屈折率が利得領域の屈折率とは大きく異なる場合は、所望の波長とは異なる波長において光が発振する、いわゆるモードホップが発生することがある。なお、モードホップが生じる波長制御領域の屈折率変化量は、レーザの構造や半導体材料によって異なる。そこで、モードホップを抑制することが可能な波長可変レーザを提供することを目的とする。
[本開示の効果]
本開示によればモードホップを抑制することが可能な波長可変レーザを提供することが可能である。
本開示によればモードホップを抑制することが可能な波長可変レーザを提供することが可能である。
[本開示の実施形態の説明]
最初に本開示の実施形態の内容を列記して説明する。
最初に本開示の実施形態の内容を列記して説明する。
本開示の一形態は、(1)光の伝搬方向に沿って交互に配置された、利得領域および波長制御領域と、前記利得領域と前記波長制御領域のそれぞれに対応して配置された回折格子と、前記利得領域と前記波長制御領域との境界において、前記利得領域の端部および前記波長制御領域の端部のうち少なくとも一方に位置する、複数の前記回析格子を有さない領域と、を備え、前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して5%以上30%以下である波長可変レーザである。この構成を備えることで、モードホップを抑制することができる。
(2)前記回折格子を有さない領域の個数は、前記利得領域と前記波長制御領域でなす境界の全ての個数の70%以上でもよい。
(3)前記回折格子を有さない領域は、前記利得領域あるいは前記波長制御領域のうち、最も端部にも配置されてもよい。
(4)前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して10%以上25%以下でもよい。
(5)前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して15%以上20%以下でもよい。
(6)前記利得領域および前記波長制御領域と光結合する光変調器を更に備えてもよい。
(7)前記利得領域および前記波長制御領域と前記光変調器との間には、可変光減衰器が配置されてもよい。
(8)前記光変調器の出力には、半導体光増幅器が配置されてもよい。
(9)前記波長制御領域の屈折率は、電流注入により制御されてもよい。
(10)前記波長制御領域の屈折率は、ヒータにより制御されてもよい。
(11)前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の何れか一方の両端に配置されてもよい。
(12)前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の両方の領域の両端に配置されてもよい。
(13)前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の何れか一方の領域の片方の端部だけに配置されてもよい。
(2)前記回折格子を有さない領域の個数は、前記利得領域と前記波長制御領域でなす境界の全ての個数の70%以上でもよい。
(3)前記回折格子を有さない領域は、前記利得領域あるいは前記波長制御領域のうち、最も端部にも配置されてもよい。
(4)前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して10%以上25%以下でもよい。
(5)前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して15%以上20%以下でもよい。
(6)前記利得領域および前記波長制御領域と光結合する光変調器を更に備えてもよい。
(7)前記利得領域および前記波長制御領域と前記光変調器との間には、可変光減衰器が配置されてもよい。
(8)前記光変調器の出力には、半導体光増幅器が配置されてもよい。
(9)前記波長制御領域の屈折率は、電流注入により制御されてもよい。
(10)前記波長制御領域の屈折率は、ヒータにより制御されてもよい。
(11)前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の何れか一方の両端に配置されてもよい。
(12)前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の両方の領域の両端に配置されてもよい。
(13)前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の何れか一方の領域の片方の端部だけに配置されてもよい。
[本開示の実施形態の詳細]
本開示の実施形態に係る波長可変レーザの具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本開示の実施形態に係る波長可変レーザの具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<第1実施形態>
(波長可変レーザ)
図1は、第1実施形態に係る波長可変レーザ100を例示する平面図である。図1に示すように、波長可変レーザ100は波長可変光源10、可変光減衰器(VOA:Various Optical Attenuator)12、光変調器(MOD:Modulator)14、半導体光増幅器(SOA:Semiconductor Optical Amplifier)16を備える電界吸収型変調器集積レーザ(EML:Electro-absorption Modulator Laser Diode)である。波長可変光源10は、VOA12、MOD14、およびSOA16に光結合する。XY平面は、波長可変レーザ100の上面の広がる方向である。X軸方向は、光導波路11の延伸方向であり、光の伝搬方向である。Y軸方向は、X軸方向に直交する。Z軸方向は、波長可変レーザ100の厚さ方向であり、X軸方向に直交し、Y軸方向に直交する。波長可変レーザ100のY軸方向の長さは、例えば250μmである。波長可変光源10のX軸方向の長さは、例えば520μmである。
(波長可変レーザ)
図1は、第1実施形態に係る波長可変レーザ100を例示する平面図である。図1に示すように、波長可変レーザ100は波長可変光源10、可変光減衰器(VOA:Various Optical Attenuator)12、光変調器(MOD:Modulator)14、半導体光増幅器(SOA:Semiconductor Optical Amplifier)16を備える電界吸収型変調器集積レーザ(EML:Electro-absorption Modulator Laser Diode)である。波長可変光源10は、VOA12、MOD14、およびSOA16に光結合する。XY平面は、波長可変レーザ100の上面の広がる方向である。X軸方向は、光導波路11の延伸方向であり、光の伝搬方向である。Y軸方向は、X軸方向に直交する。Z軸方向は、波長可変レーザ100の厚さ方向であり、X軸方向に直交し、Y軸方向に直交する。波長可変レーザ100のY軸方向の長さは、例えば250μmである。波長可変光源10のX軸方向の長さは、例えば520μmである。
図1に示すように波長可変光源10、VOA12、MOD14およびSOA16は光導波路11を含み、光導波路11の延伸方向に沿って、この順に並ぶ。波長可変レーザ100の上面に電極13、15、19、32および34が設けられている。電極32および34は、波長可変光源10に設けられている。電極13は、VOA12に設けられている。電極15は、MOD14に設けられている。電極19は、SOA16に設けられている。電極13、15、19、32および34は、互いに離間する。Y軸方向における電極32と電極34との間の距離は、例えば10μmである。X軸方向における距離は、例えば7μmである。波長可変レーザ100のX軸方向の両端には、反射防止層(AR:Anti Reflection)膜が設けられてもよい。AR層は例えば、酸窒化チタン(TiON)と二酸化チタン(TiO2)との二層構造、または酸化アルミニウム(Al2O3)と二酸化チタンとの二層構造などである。
図2は、図1の線A-Aに沿った断面図であり、波長可変光源10を図示している。図2に示すように、波長可変光源10は、複数の利得領域17および複数の波長制御領域18を含む。ここで、利得領域17および波長制御領域18は、それぞれ波長可変光源10の厚み方向全体にわたる領域を指している。利得領域17の数は例えば7個である。波長制御領域18の数は例えば6個である。複数の利得領域17および複数の波長制御領域18は、光の伝搬方向(X軸方向)に沿って交互に並ぶ。波長可変光源10のX軸方向の両方の端部には利得領域17が位置する。
図3は、利得領域17および波長制御領域18を拡大した図である。図4は、図3の線B-Bに沿った断面図であり、利得領域17を図示している。図5は、図3の線C-Cに沿った断面図であり、波長制御領域18を図示している。図3に示す1つの利得領域17のX軸方向の長さL1は、例えば40μmである。1つの波長制御領域18のX軸方向の長さL2は、例えばL1に等しく、40μmである。
図2に示すように、波長可変レーザ100は、基板20、バッファ層21、回折格子層22、活性層24、波長制御層25、クラッド層26、およびコンタクト層28を有する。図2から図4に示すように、利得領域17においては、基板20、バッファ層21、回折格子層22、活性層24、クラッド層26、およびコンタクト層28が、Z軸方向にこの順で積層され、図4に示すようにメサ38を形成する。メサ38は、基板20からZ軸方向に突出し、X軸方向に延伸する。メサ38の高さは、例えば3.6μmである。基板20のうちメサ38以外の部分は、メサ38に含まれる部分に比べて例えば1.4μm窪んでいる。メサ38のY軸方向の幅は、例えば1.3μmである。メサ38のY軸方向両側には埋込層29が設けられている。活性層24と回折格子層22との間に、不図示の光閉じ込め層が設けられる。活性層24とクラッド層26との間に、不図示の光閉じ込め層が設けられる。
図2、図3および図5に示すように、波長制御領域18においては、基板20、バッファ層21、回折格子層22、波長制御層25、クラッド層26、およびコンタクト層28が、Z軸方向にこの順で積層されており、図5に示すようにメサ38を形成する。メサ38のY軸方向両側には埋込層29が設けられている。なお、活性層24および波長制御層25と、回折格子層22との間には、クラッド層(不図示)を設けてもよい。
図2に示すように、波長制御領域18のコンタクト層28は、例えば5μmの間隔で、利得領域17のコンタクト層28とは離間している。活性層24と波長制御層25とは、Z軸方向において同じ高さに位置し、X軸方向において互いに隣接する。利得領域17の活性層24および波長制御領域18の波長制御層25などが、図1の光導波路11を形成する。
絶縁膜30は、複数の利得領域17および複数の波長制御領域18の上に設けられ、コンタクト層28を覆う。絶縁膜30は、複数の利得領域17のそれぞれおよび複数の波長制御領域18のそれぞれの上に開口部を有する。開口部からコンタクト層28が露出する。
図1に示すように、電極32および34は、波長可変レーザ100の上面に設けられている。図2に示すように、電極32(第1電極)は、複数の利得領域17においてコンタクト層28の上面に接触する。電極34(第2電極)は、複数の波長制御領域18においてコンタクト層28の上面に接触する。電極32は、例えば7μmの間隔で電極34とは離間する。電極36は、図2に示すように基板20の下面に設けられ、複数の利得領域17および複数の波長制御領域18に広がり、図1のVOA12、MOD14およびSOA16にも広がる。
基板20は例えばn型インジウムリン(InP)で形成された半導体基板である。バッファ層21は、例えば厚さ93nmのn型InPで形成されている。n型の半導体層には、例えばスズ(Sn)または硫黄(S)がドープされている。なお、活性層24および波長制御層25と回折格子層22との間に、n型InPのクラッド層(不図示)を設けてもよい。
活性層24は、多重量子井戸構造(MQW:Multi Quantum Well)を有する。活性層24のPL(Photoluminescence)波長は例えば1520nmである。活性層24は、例えば10個の井戸層と10個のバリア層とを有する。井戸層とバリア層とは、Z軸方向に交互に積層されている。井戸層は、例えば0.6%圧縮歪、厚さ5.1nmのインジウムガリウム砒素リン(InGaAsP)で形成されている。バリア層は、例えば厚さ10nmのInGaAsPで形成され、PL波長1.3μmに相当するバンドギャップを有する(Q1.3)。以下、四元化合物半導体材料の説明においては、そのPL波長を含め(Q「PL波長」)と記載する。たとえば四元化合物半導体で、PL波長が1.3μmの材料の場合、(Q1.3)と記載する。
活性層24とバッファ層21との間には、厚さ50nmの光閉じ込め層(Q1.15)が設けられる。活性層24とクラッド層26との間には、厚さ50nmの光閉じ込め層(Q1.15)が設けられる。
波長制御層25は、電流の注入によって屈折率の変化が生じる層である。発振波長の光に対して、電流注入による利得および損失の変化が小さいことが好ましい。波長制御層25は、バルク層でもよいし、多重量子井戸構造を有してもよく、例えばQ1.44のInGaAsPまたはアルミニウムガリウムインジウム砒素(AlGaInAs)などで形成されている。波長制御層25のPL波長は、例えば発振波長から75nm以上短い波長である。波長制御層25の厚さは、例えば212nmである。また、例えばチタン(Ti)のヒータで温度制御することによっても、波長制御領域18の屈折率を変化させることができる。この場合、当該領域には電極34に代えてヒータ素子が設けられる。
埋込層29は、例えば鉄(Fe)をドープされた半絶縁性のInPで形成されている。クラッド層26およびコンタクト層28は、p型の半導体層であり、例えば亜鉛(Zn)がドープされている。クラッド層26は、例えば厚さ1.6μmのp型InPで形成されている。クラッド層26のドーパント濃度は、例えば5×1017cm-3以上、1.5×1018cm-3以下である。コンタクト層28は例えばp型のインジウムガリウム砒素(InGaAs)、およびインジウムガリウム砒素リン(InGaAsP)で形成されている。より詳細には、コンタクト層28は、InGaAs層およびInGaAsP層を積層したものである。例えば、クラッド層26側から順に、厚さ50nmのInGaAsP層(Q1.08)、厚さ100nmのInGaAsP層(Q1.30)、厚さ100nmのInGaAs層が積層されている。これら3つの層のドーパント濃度は、それぞれ例えば2.0×1018cm-3以上、2.0×1018cm-3以上、および1.0×1019cm-3以上である。波長可変レーザ100は上記以外の化合物半導体で形成されてもよい。
絶縁膜30は、例えば窒化シリコン(SiN)または酸化シリコン(SiO2)などの絶縁体で形成されている。絶縁膜30の厚さは、例えば600nmである。電極32および34は、例えば金属の多層構造で形成されたp型電極である。電極32および34は、例えば基板20側から順に、金と亜鉛との合金層、チタンとタングステンとの合金層、金の層を積層した積層構造(AuZn/TiW/Au)でもよいし、チタン、白金および金の積層構造(Ti/Pt/Au)でもよい。電極36は、例えば基板20側から順に、金とゲルマニウムとの合金、金、チタン、金を積層した積層構造(AuGe/Au/Ti/Au)で形成されたn型電極である。
図2に示すように、回折格子層22は、複数の領域40(第1領域)、複数の領域42(第2領域)、および1つの領域43を有する。領域43は、例えば波長可変光源10のX軸方向の中央に位置する。領域43は、後述の回折格子23を有さない、λ/4位相シフト領域である。領域43は、波長可変光源10のうち、X軸方向の中央以外の位置に設けられてもよい。領域43は、λ/6位相シフト領域でもよい。
図2および図3に示すように、利得領域17において、回折格子層22は、領域40と領域42とを有する。X軸方向において、領域40は利得領域17の中央を占める。領域42は、X軸方向で領域40に隣接し、利得領域17のX軸方向の両方の端部に位置する。領域42は、X軸方向において、利得領域17と波長制御領域18との境界から利得領域17側に延伸する。また、図2に示すように、複数の利得領域17のうち波長可変レーザ100の両端に位置にするものも、領域42を有する。領域42は、利得領域17の最も端部においても配置される。図3に示す1つの領域42のX軸方向の長さL3は、例えば利得領域17の長さL1の17.5%である。一例として、長さL1が40μmであり、長さL3は7μmである。波長制御領域18において、回折格子層22は、領域40を有し、領域42を有さない。また、図示しないが、領域42は利得領域17のX軸方向の片側の端部のみに設けてもよい。この場合、利得領域17のX軸方向の一方側(図中の右側のみまたは左側のみ)にそろえて領域42を設けることが好ましい。
回折格子層22の領域40は、例えばインジウムガリウム砒素リン(InGaAsP)層22aとInP層22bとを含む。InP層22bは、バッファ層21と同様にn型のInP層である。InGaAsP層22aは、InPに対して無歪みであり、PL波長1150nmに相当するバンドギャップを持つ(Q1.15)。InGaAsP層22aの屈折率は、InP層22bの屈折率とは異なる。複数のInGaAsP層22aと複数のInP層22bとは、X軸方向に沿って周期的に交互に並ぶ。複数のInGaAsP層22aと複数のInP層22bとが並ぶ部分は、回折格子23として機能する。つまり、回折格子層22の領域40は回折格子23を有する。回折格子23の周期(ピッチ)は一定であり、例えば236.9nmである。
一方、回折格子層22の領域42は、InGaAsP層22aで形成されており、InP層22bを含まない。領域42では、InGaAsP層22aとInP層22bとが周期的に並んでおらず、InGaAsP層22aだけが設けられている。つまり、領域42は回折格子23を有さない。すなわち、利得領域17の両端には回折格子23が設けられていない。利得領域17の中央側、および波長制御領域18には回折格子23が設けられている。領域42は、InGaAsP層22aに代えてInP層22bだけで形成されてもよい。
回折格子23の結合係数κは例えば71cm-1である。波長可変光源10の全体における回折格子23の長さは422μmである。結合係数κと長さとの積(規格化結合係数)は、およそ3.0である。
波長可変光源10は、分布帰還型(DFB:Distributed Feedback)レーザとして機能する。活性層24は光学利得を有する。電極32および36を用いて利得領域17の活性層24に電流を注入し、光を生成する。光はX軸方向に伝搬し、回折格子層22の回折格子23によって特定の波長で発振する。電極34および36を用いて波長制御領域18の波長制御層25に電流を注入し、波長制御領域18の屈折率を変化させ、発振波長を変化させる。VOA12により光を減衰し、MOD14により光を変調し、SOA16により光を増幅することができる。
(製造方法)
図6Aから図7Cは、波長可変レーザ100の製造方法を例示する断面図であり、波長可変レーザ100のうち波長可変光源10の図2に対応する断面を図示している。
図6Aから図7Cは、波長可変レーザ100の製造方法を例示する断面図であり、波長可変レーザ100のうち波長可変光源10の図2に対応する断面を図示している。
図6Aに示すように、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)などにより、基板20の上面に、バッファ層21およびInGaAsP層22aをエピタキシャル成長する。
電子線描画およびフォトリソグラフィなどにより、InGaAsP層22aの上に不図示のマスクを形成する。マスクを用いてInGaAsP層22aをエッチングすることで、InGaAsP層22aに複数の開口部を形成する。複数の開口部は、X軸方向に周期的に並ぶ。図6Bに示すように、開口部にInP層22bをエピタキシャル成長することで、回折格子層22を形成する。InGaAsP層22aとInP層22bとが並ぶ部分に領域40が形成される。InP層22bが埋め込まれない部分に、領域42が形成される。マスクは除去する。
図6Cに示すように、回折格子層22の上に活性層24および光閉じ込め層をエピタキシャル成長する。活性層24をX軸方向に沿って周期的にエッチングする。図7Aに示すように、波長制御層25をエピタキシャル成長する。残存した活性層24と、成長した波長制御層25とが並ぶ。
図7Bに示すように、活性層24および波長制御層25の上面に、クラッド層26およびコンタクト層28を順にエピタキシャル成長する。コンタクト層28から基板20のZ軸方向の途中までエッチングすることで、図4および図5に示したメサ38を形成する。エッチングした部分に埋込層29をエピタキシャル成長する。
図7Cに示すように、例えばプラズマCVD法などにより、コンタクト層28の上面に絶縁膜30を形成する。絶縁膜30に複数の開口部を形成する。真空蒸着およびリフトオフなどにより、コンタクト層28および絶縁膜30の上に電極32および34を形成する。基板20の下面には電極36を形成する。以上の工程で波長可変レーザ100を形成する。
図8は、比較例に係る波長可変レーザを例示する断面図であり、図2と同様に波長可変光源10Rの断面を図示している。比較例における回折格子層22は、領域42を有さない。回折格子層22のうち、利得領域17のX軸方向の中央および両端、波長制御領域18の中央および両端に回折格子23が設けられている。回折格子23の結合係数κは例えば58cm-1である。結合係数κと、回折格子23の長さ(例えば422μm)との積は、およそ3.0である。他の構成は第1実施形態と同じである。
(反射率)
図9Aから図10Dは、反射率のスペクトルである。横軸は、光の波長を表す。縦軸は、光の反射率を表す。反射率とは、光が基準位置(例えば領域43)からX軸方向の一方側(例えば図2の左側)に進行し基準位置に戻ってくる際の反射率と、光が基準位置からX軸方向のもう一方の側(例えば図2の右側)に進行し基準位置に戻ってくる際の反射率との積である。反射率が1になる波長において、レーザ光が発振する。
図9Aから図10Dは、反射率のスペクトルである。横軸は、光の波長を表す。縦軸は、光の反射率を表す。反射率とは、光が基準位置(例えば領域43)からX軸方向の一方側(例えば図2の左側)に進行し基準位置に戻ってくる際の反射率と、光が基準位置からX軸方向のもう一方の側(例えば図2の右側)に進行し基準位置に戻ってくる際の反射率との積である。反射率が1になる波長において、レーザ光が発振する。
図9Aから図9Cは、比較例における反射率を表す。図9Aの例では、波長制御領域18に電流を注入していない。図9Aの例ではおよそ1532nmの波長で、反射率が1になる。すなわち、発振波長は約1532nmである。発振波長における反射率のピークをピークP0とする。他の波長における反射率は、ピークP0よりも低い。
図9Bの例は、波長制御領域18に電流を注入することで、電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.4%低下させた例である。ピークP0が、図9Aの波長から短波長側に約2.8nmシフトする。シフト量は、利得領域17の長さと波長制御領域18の長さとの和に対する波長制御領域18の長さの比と、屈折率の変化率との積によって決まる。ピークP0から短波長側に波長間隔Δλ1離れた波長に、ピークP1aが発生する。ピークP0から長波長側に波長間隔Δλ1離れた波長に、P1bが発生する。ピークP0、P1aおよびP1bのうち、ピークP0が最も大きい。図9Bにおける発振波長は、ピークP0の波長である。
図9Cの例は、波長制御領域18に電流を注入することで、電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.8%低下させた例である。ピークP0は、図9Aの波長から短波長側に約5.6nmシフトする。ピークP0の他に、ピークP1aおよびP1b、ピークP2aおよびP2bが発生する。ピークP0から短波長側に波長間隔Δλ1離れた波長に、ピークP1aが発生する。ピークP1aから短波長側に波長間隔Δλ1離れた波長に、ピークP2aが発生する。ピークP0から長波長側に波長間隔Δλ1離れた波長に、ピークP1bが発生する。ピークP1bから長波長側に波長間隔Δλ1離れた波長に、ピークP2bが発生する。5つのピークのうち、ピークP1bが最も大きい。発振波長が、ピークP0の波長からピークP1bの波長に変化する、モードホップが発生する。このように、比較例においては、波長制御領域18の屈折率を変化させると、モードホップが発生する。このため光を所望の波長で発振することが困難になる。
図10Aから図10Dは、第1実施形態におけるスペクトルである。1つの領域42の長さは7μmである。1つの領域42の長さは1つの利得領域17の全長の17.5%に相当する。図10Aの例では、波長制御領域18に電流を注入していない。図10Aにおいては、図9Aと同様に、およそ1532nmの波長で、反射率はピークP0を示す。すなわち、光はおよそ波長1532nmで発振する。
図10Bの例では、波長制御領域18に電流を注入し、電流注入をしない場合に比べて、波長制御領域18の屈折率を‐0.4%低下させる。ピークP0が、図10Aの波長から短波長側に約2.8nmシフトする。ピークP0から短波長側に波長間隔Δλ1離れた波長に、ピークP1aが発生する。ピークP0から長波長側に波長間隔Δλ1離れた波長に、ピークP1bが発生する。ピークP0から短波長側に波長間隔Δλ2離れ、ピークP1aから短波長側に波長間隔Δλ1離れた波長に、ピークP2aが発生する。ピークP0から長波長側に波長間隔Δλ2離れ、ピークP1bから長波長側に波長間隔Δλ1離れた波長に、ピークP2bが発生する。
ピークP2aは、5つのピークの中で最も小さい。図10BのピークP1aは、図9BのピークP1aと同程度の大きさを有する。図10BのピークP1bは、図9BのピークP1bよりも低い。5つのピークP1a、P1b、P2a、P2b、P0のうち、ピークP0が最も大きい。
図10Cの例では、波長制御領域18に電流を注入することで、波長制御領域18に電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.7%低下させる。図10Dの例では、電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.8%低下させる。ピークP0が、図10Aの波長から短波長側に約5.6nmシフトする。図10Cの例および図10Dの例においても、ピークP0からΔλ1離れた波長にピークP1aおよびP1bが発生し、Δλ2離れた波長にピークP2aおよびP2bが発生する。5つのピークP1a、P1b、P2a、P2b、P0のうち、ピークP0が最も大きい。図10DのピークP1bは、図9CのピークP1bより小さい。
図10Bから図10Dのいずれの例においても、5つのピークP1a、P1b、P2a、P2b、P0のうち、ピークP0が最も大きい。図10Bから図10Dにおいて、モードホップが抑制され、光をピークP0の波長で発振することできる。一方、波長制御領域18の屈折率を-0.9%以上低下させると、ピークP1aがピークP0より大きくなり、短波長側にモードホップが発生する恐れがある。
図11は、領域42の長さと、目的とするピークP0以外の不要なサブピークの高さとの関係を示す図である。横軸は、1つの波長制御領域18に対する1つの領域42の長さの割合である。縦軸は、サブピークの高さ(反射率)を表す。点線はピークP2aの高さを表す。実線はピークP1aの高さを表す。破線はピークP1bの高さを表す。一点鎖線はピークP2bの高さを表す。領域42を設けないとき(領域42の長さが0)のピークP1bの大きさを1とする。図11の例では、波長制御領域18に電流を注入することで、電流注入を行わないときの屈折率に比べて、波長制御領域18の屈折率を‐0.7%低下させる。波長可変光源10の長さと回折格子23の結合係数との積は3.0である。
本開示により、領域42の長さの割合が0より大きくなる場合、サブピークP1a、P1b、P2bは低下し始める。サブピークP2aは領域42の長さの割合が0より大きくなるにつれ徐々に増加する。しかし、領域42の長さの割合が0に近い領域ではサブピークP2aは十分に小さく抑えられている。領域42の長さの割合が5%の領域では、サブピークP1a、P1b、P2a、P2bいずれも低く抑えられて、ピークP0による発振が優勢になる。領域42の長さの割合が30%より大きくなると、サブピークP2aは0.9を超え、割合が35%の場合は1に近づいてしまう。この場合、ピークP0に代わりサブピークP2aによる発振が生じる可能性がある。このため、本開示による好ましい領域42の長さの割合の範囲は、5%以上、30%以下である。領域42の利得領域17に対する好ましい割合は、波長制御領域18に印加される屈折率の大きさによって変化する。波長制御領域18に印加される屈折率が電流注入を行わないときの屈折率に比べて-0.7%以下の場合、上記割合は5%以上、30%以下である。また波長制御領域18の屈折率が-0.8以上の場合、上記範囲は15%以上、20%以下の範囲である。
図12Aおよび図12Bは、回折格子層22、活性層24および波長制御層25を拡大した図である。図12Aは比較例を図示している。図12Bは第1実施形態を図示している。
波長制御領域18に電流を注入しない場合、波長制御領域18の屈折率は、利得領域17の屈折率に等しい。波長制御領域18の反射特性および透過特性は、利得領域17の反射特性および透過特性に等しい。光の発振波長は、利得領域17および波長制御領域18の反射特性および利得領域で決まる。図9Aおよび図10Aのように、ピークP0の波長でレーザ光が発振する。サブピークは発生しない。
波長制御領域18に電流を注入すると、波長制御領域18の屈折率は、利得領域17の屈折率よりも低くなる。X軸方向に沿って、屈折率の高い利得領域17と、屈折率の低い波長制御領域18とが周期的に並ぶことになり、図12Aおよび図12Bに示すように、周期構造50が形成される。1つの利得領域17の中央から最も近い利得領域17の中央まで、および1つの波長制御領域18の中央から最も近い波長制御領域18の中央までが、周期構造50となる。周期構造50の長さΔL1は、1つの利得領域17の長さと1つの波長制御領域18との長さの和に等しく、例えば80μmである。
周期構造50の周期ΔL1ごとに、光の反射率が変化する。例えば、利得領域17のブラッグ波長が1531nmとする。波長制御領域18の屈折率が利得領域17の屈折率に対して0.4%低下している場合、波長制御領域18のブラッグ波長は1524.9nmである。波長が1531nmの光は、利得領域17を通過するたびに強く反射される。波長が1524.9nmの光は、波長制御領域18を通過するたびに強く反射される。周期構造50の周期ΔL1ごとに、ブラッグ反射の強さが変わる。
周期構造50が共振器として機能することで、サブピークが発生する。光のモードの波長λ0と、当該モードに隣接するモード(サブピーク)の波長との波長間隔Δλは、次の式(1)で決まる。ΔLは周期構造の周期である。nは波長可変レーザ100の実効屈折率である。
Δλ=λ02/2nΔL (1)
Δλ=λ02/2nΔL (1)
式(1)に、λ0=1532nm、n=3.5、ΔL1=80μmを代入して得られる波長間隔Δλ1は、4.2nmである。λ0がピークP0の波長の場合、ピークP0から波長間隔Δλ1離れた波長において光が共振して、サブピークが発生する。λ0がサブピークの波長の場合、当該サブピークから波長間隔Δλ1離れた波長に、別のサブピークが発生する。図9Bの例では、周期構造50によって、ピークP0に隣接する2つのサブピーク(ピークP1aおよびP1b)が発生する。図9Cの例では、周期構造50によって、4つのサブピーク(ピークP1a、P1b、P2a、P2b)が発生する。
図12Bに示すように、第1実施形態においても、波長制御領域18の屈折率が変化することで周期構造50が形成される。また、回折格子層22は、複数の利得領域17それぞれの両端に領域42を有する。領域42には回折格子23が設けられていない。1つの領域42から、最も近い領域42までの周期構造52が形成される。周期構造52の長さ(周期ΔL2)は、1つの利得領域17の長さL1に等しく、周期構造50の長さΔL1のおよそ半分である。式(1)に周期構造52の長さΔL2を代入することで波長間隔Δλ2が算出される。波長間隔Δλ2は、Δλ1のおよそ2倍であり、80nmである。
実施結果に基づく、発明者の推測からすると、ピークP0から波長間隔Δλ2離れたピークP2aおよびP2bは、周期構造50の共振、および周期構造52の共振の両方の影響を受ける。周期構造52の共振モードは、周期構造50の共振モードに対して同位相になる。このため、図10Bから図10DにおけるピークP2aおよびP2bは、対応する比較例のピークよりも大きくなる。一方、ピークP0から波長間隔Δλ1離れたピークP1aおよびP1bについては、周期構造52の共振モードは、周期構造50の共振モードに対して逆位相になる。このため、第1実施形態においては、周期構造50の共振モード(ピークP1aおよびP1b)が抑制される。
第1実施形態によれば、波長可変レーザ100は、複数の利得領域17と複数の波長制御領域18とを有する。回折格子層22は、波長制御領域18において領域40を有する。つまり、波長制御領域18には回折格子23が設けられている。回折格子層22は、利得領域17の両端に領域42を有する。つまり、利得領域17の両端に回折格子23が設けられていない。図10Bから図10Dに示すように、サブピークを低く抑制し、モードホップを抑制することができる。波長制御領域18の屈折を変化させることでピークP0の波長を変化させ、かつピークP0の波長でレーザ光を発振することが可能である。
複数の利得領域17のうち一部の両端に、回折格子23が設けられていない場合でも、サブピークを抑制することができる。図2に示すように、回折格子層22は、複数の利得領域17それぞれの両端に領域42を有することが好ましい。つまり、複数の利得領域17それぞれの両端に回折格子23が設けられていない。サブピークを効果的に抑制し、所望の波長で発振することが可能である。領域42の個数は、利得領域17と波長制御領域18とでなす境界の全ての個数の70%以上であることが好ましい。
1つの利得領域17の長さに対する1つの領域42の長さの割合は、例えば5%以上、30%以下でもよいし、例えば10%以上、25%以下などでもよい。領域42の長さの割合を17.5%に近づけることで、各サブピークの反射率を十分に低下させることができる。
回折格子層22は、InGaAsP層22aとInP層22bとを含む。領域40においては、複数のInGaAsP層22aと複数のInP層22bとがX軸方向に交互に並ぶことで、回折格子23を形成する。領域42においては、InP層22bが設けられておらず、InGaAsP層22aが設けられている。このため、領域42に回折格子23が形成されない。回折格子層22は、InGaAsP層22aおよびInP層22b以外の半導体層を含んでもよい。屈折率の異なる2つの半導体層が交互に並ぶことで、回折格子23が形成される。
回折格子層22は、活性層24および波長制御層25とバッファ層21との間に設けられてもよいし、活性層24および波長制御層25とクラッド層26との間に設けられてもよい。
利得領域17に電極32が設けられている。波長制御領域18に電極34が設けられている。利得領域17と波長制御領域18とに、互いに独立して電流を注入することができる。利得領域17から光を出射する。波長制御領域18の屈折率を変化させることで、光の波長を制御する。利得領域17の数は7つ以下でもよいし、7つ以上でもよい。波長制御領域18の数は6つ以下でもよいし、6つ以上でもよい。利得領域17の長さL1は波長制御領域18の長さL2に等しくてもよいし、異なってもよい。例えば長さL1およびL2を、どちらも40μmとしてもよい。例えば長さL1を35μmとし、長さL2を45μmとしてもよい。
波長可変レーザ100は、波長可変光源10、VOA12.MOD14およびSOA16を備える集積型のレーザ素子である。波長可変光源10が出射する光の減衰、変調および増幅が可能である。波長可変レーザ100は例えば1532nmから1537.6nmの波長で発振が可能であり、波長分割多重通信システムへの応用が可能である。波長可変レーザ100はVOA12、MOD14およびSOA16の少なくとも1つを有さずに、波長可変光源10を有してもよい。
<第2実施形態>
図13は、波長可変光源10を例示する断面図であり、図2に対応する断面を図示している。図13に示すように、第2実施形態における回折格子層22は、利得領域17において、回折格子層22は領域40を有し、領域42を有さない。回折格子層22は、波長制御領域18のX軸方向の中央に領域40を有し、両端に領域42を有する。つまり、波長制御領域18の中央側に回折格子23が設けられ、両端には回折格子23が設けられていない。1つの領域42の長さは、例えば波長制御領域18の長さの17.5%である。n型のバッファ層21の厚さは例えば98nmである。回折格子23の結合係数κは例えば69cm-1である。結合係数κと回折格子23の長さ(例えば436μm)との積は、約3.0である。他の構成は第1実施形態と同じである。また、図示しないが、領域42は、波長制御領域18のX軸方向の片側の端部のみに位置してもよい。この場合、波長制御領域18のX軸方向の一方側にそろえて位置することが望ましい。
図13は、波長可変光源10を例示する断面図であり、図2に対応する断面を図示している。図13に示すように、第2実施形態における回折格子層22は、利得領域17において、回折格子層22は領域40を有し、領域42を有さない。回折格子層22は、波長制御領域18のX軸方向の中央に領域40を有し、両端に領域42を有する。つまり、波長制御領域18の中央側に回折格子23が設けられ、両端には回折格子23が設けられていない。1つの領域42の長さは、例えば波長制御領域18の長さの17.5%である。n型のバッファ層21の厚さは例えば98nmである。回折格子23の結合係数κは例えば69cm-1である。結合係数κと回折格子23の長さ(例えば436μm)との積は、約3.0である。他の構成は第1実施形態と同じである。また、図示しないが、領域42は、波長制御領域18のX軸方向の片側の端部のみに位置してもよい。この場合、波長制御領域18のX軸方向の一方側にそろえて位置することが望ましい。
図14Aから図14Cは、反射率のスペクトルである。1つの領域42の長さは7μmである。図14Aの例では、波長制御領域18に電流を注入していない。図14Aにおいては、およそ1532nmの波長で、反射率はピークP0を示す。
図14Bの例では、波長制御領域18に電流を注入し、電流注入をしない場合に比べて、波長制御領域18の屈折率を‐0.4%低下させる。ピークP0が、図14Aの波長から短波長側にシフトする。ピークP0の他に、ピークP1b、P2aおよびP2bが発生する。ピークP0から短波長側に波長間隔Δλ2離れ、ピークP1aから短波長側に波長間隔Δλ1離れた波長に、ピークP2aが発生する。ピークP0から長波長側に波長間隔Δλ1離れた波長に、ピークP1bが発生する。ピークP0から長波長側に波長間隔Δλ2離れ、ピークP1bから長波長側に波長間隔Δλ1離れた波長に、ピークP2bが発生する。ピークP0から短波長側に波長間隔Δλ1離れた波長に、ピークは発生しない。4つのピークP1b、P2a、P2b、P0のうち、ピークP0が最も大きい。
図14Cの例では、電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.8%低下させる。ピークP0が、図14Aの波長から短波長側にシフトする。ピークP0からΔλ1離れた波長にピークP1aおよびP1bが発生し、Δλ2離れた波長にピークP2aおよびP2bが発生する。5つのピークP1a、P1b、P2a、P2b、P0のうち、ピークP0が最も大きい。
図14Aから図14Cのいずれの例においても、ピークP0が最も大きい。波長制御領域18の屈折率を-0.8%まで変化させても、モードホップが抑制され、波長可変レーザはピークP0の波長で発振する。波長制御領域18の屈折率を-0.9%以上低下させると、ピークP1bがピークP0より大きくなり、短波長側にモードホップが発生する恐れがある。
図15は、領域42の長さとピークの高さとの関係を示す図である。横軸は、1つの波長制御領域18に対する1つの領域42の長さの割合である。縦軸は、ピークの高さ(反射率)を表す。電流注入を行わないときの屈折率に比べて、波長制御領域18の屈折率を-0.7%低下させる。波長可変光源10の長さと回折格子23の結合係数との積は3.0である。
領域42の長さの割合が5%よりも大きくなると、ピークP1a、P1bおよびP2bは小さくなり、ピークP2aは大きくなる。領域42の長さの割合が0%から20%までの範囲では、ピークP1a、P1b、P2aおよびP2bのうち、ピークP1bが最も大きい。長さの割合が15%の場合、ピークP1bの大きさは約0.8まで低下する。長さの割合が15%から20%付近の場合、すべてのピークは0.8以下である。長さの割合が20%を超えると、4つのピークのうちでピークP2bが最大になる。長さの割合が30%を超える場合、ピークP2bの大きさが1に近づき、モードホップが発生する恐れがある。サブピークP1a、P1b、P2aおよびP2bを抑制し、モードホップを抑制するために、領域42の長さの割合は例えば5%以上、30%以下が好ましい。
第2実施形態によれば、回折格子層22は、利得領域17において領域40を有する。つまり、利得領域17には回折格子23が設けられている。回折格子層22は、波長制御領域18の両端に領域42を有する。つまり、波長制御領域18の両端に回折格子23が設けられていない。サブピークを低く抑制し、モードホップを抑制することができる。
複数の波長制御領域18のうち一部の両端に、回折格子23が設けられていない場合でも、サブピークを抑制することができる。回折格子層22は、複数の波長制御領域18それぞれの両端に領域42を有することが好ましい。つまり、複数の波長制御領域18それぞれの両端に回折格子23が設けられていない。サブピークを効果的に抑制し、所望の波長で発振することが可能である。例えば、波長制御領域18の個数に対する、領域42を有する波長制御領域18の個数の割合は、70%以上であることが好ましい。
領域42の波長制御領域18に対する好ましい割合は、波長制御領域18に印加される屈折率の大きさによって変化する。波長制御領域18に印加される屈折率が電流注入を行わないときの屈折率に比べて-0.7%以下の場合、上記割合は5%以上、30%以下である。また波長制御領域18の屈折率が-0.8以上の場合、上記範囲は15%以上、20%以下の範囲である。1つの波長制御領域18の長さに対する1つの領域42の長さの割合は、例えば10%以上、25%以下などでもよい。領域42の長さの割合を17.5%に近づけることで、各サブピークの反射率を十分に低下させることができる。
<第3実施形態>
図16は、波長可変光源10を例示する断面図であり、図2に対応する断面を図示している。図16に示すように、第3実施形態における回折格子層22は、利得領域17および波長制御領域18において、領域40および42を有する。領域40は、利得領域17の中央側、および波長制御領域18の中央側に設けられている。つまり、利得領域17の中央側、および波長制御領域18の中央側に回折格子23が設けられている。領域42は、X軸方向において、1つの利得領域17の端部から、隣接する波長制御領域18の端部まで延伸する。利得領域17の両端、および波長制御領域18の両端には回折格子23が設けられていない。1つの領域42は、1つの利得領域17のX軸方向の長さに対する所定割合の長さと、1つの波長制御領域18の長さの所定割合の長さを合計した長さを占める。ここで所定割合は本実施形態では17.5%である。また、1つの領域42が1つの利得領域17に占める割合は、1つの領域42が1つの波長制御領域18に占める割合に等しい。したがって、利得領域17と波長制御領域18の長さが異なる場合、利得領域17と波長制御領域18の双方に跨る領域42の中心位置は、利得領域17と波長制御領域18の境界からずれて位置することになる。回折格子23の結合係数κは例えば89cm-1である。結合係数κと回折格子23の長さ(例えば338μm)との積は、約3.0である。n型のバッファ層21の厚さは例えば51nmである。他の構成は第1実施形態と同じである。
図16は、波長可変光源10を例示する断面図であり、図2に対応する断面を図示している。図16に示すように、第3実施形態における回折格子層22は、利得領域17および波長制御領域18において、領域40および42を有する。領域40は、利得領域17の中央側、および波長制御領域18の中央側に設けられている。つまり、利得領域17の中央側、および波長制御領域18の中央側に回折格子23が設けられている。領域42は、X軸方向において、1つの利得領域17の端部から、隣接する波長制御領域18の端部まで延伸する。利得領域17の両端、および波長制御領域18の両端には回折格子23が設けられていない。1つの領域42は、1つの利得領域17のX軸方向の長さに対する所定割合の長さと、1つの波長制御領域18の長さの所定割合の長さを合計した長さを占める。ここで所定割合は本実施形態では17.5%である。また、1つの領域42が1つの利得領域17に占める割合は、1つの領域42が1つの波長制御領域18に占める割合に等しい。したがって、利得領域17と波長制御領域18の長さが異なる場合、利得領域17と波長制御領域18の双方に跨る領域42の中心位置は、利得領域17と波長制御領域18の境界からずれて位置することになる。回折格子23の結合係数κは例えば89cm-1である。結合係数κと回折格子23の長さ(例えば338μm)との積は、約3.0である。n型のバッファ層21の厚さは例えば51nmである。他の構成は第1実施形態と同じである。
図17Aから図17Cは、反射率のスペクトルである。1つの領域42の長さは7μmである。図17Aの例では、波長制御領域18に電流を注入していない。図17Aにおいては、およそ1532nmの波長で、反射率はピークP0を示す。ピークP0から短波長側に波長間隔Δλ2離れた波長にピークP2aが発生する。ピークP0から長波長側に波長間隔Δλ2離れた波長にピークP2bが発生する。3つのピークのうち、ピークP0が最も大きい。
図17Bの例では、波長制御領域18に電流を注入し、電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.4%低下させる。ピークP0が、図17Aの波長から短波長側にシフトする。ピークP0の他に、ピークP1b、P2aおよびP2bが発生する。ピークP0から長波長側に波長間隔Δλ1離れた波長に、ピークP1bが発生する。ピークP0から短波長側に波長間隔Δλ1離れた波長に、ピークは発生しない。4つのピークP1b、P2a、P2b、P0のうち、ピークP0が最も大きい。
図17Cの例では、電流注入をしない場合に比べて、波長制御領域18の屈折率を-0.8%低下させる。ピークP0が、図17Aの波長から短波長側にシフトする。ピークP0からΔλ1離れた波長にピークP1aおよびP1bが発生する。ピークP0からΔλ2離れた波長にピークP2aおよびP2bが発生する。5つのピークP1a、P1b、P2a、P2b、P0のうち、ピークP0が最も大きい。図17Aから図17Cのいずれの例においても、ピークP0が最も大きい。波長制御領域18の屈折率を-0.8%まで変化させても、モードホップが抑制され、波長可変レーザはピークP0の波長で発振する。
図18は、領域42の長さとピークの高さとの関係を示す図である。横軸は、1つの波長制御領域18に対する1つの領域42の長さの割合である。縦軸は、ピークの高さ(反射率)を表す。領域42を設けないとき(領域42の長さが0)のピークP1bの大きさを1とする。電流注入を行わないときの屈折率に比べて、波長制御領域18の屈折率を-0.7%低下させる。波長可変光源10の長さと回折格子23の結合係数との積は3.0である。
領域42は、1つの利得領域17のX軸方向の長さに対する所定割合の長さと、1つの波長制御領域18の長さの所定割合の長さとを合計した長さの領域である。領域42の長さの割合とは、利得領域17および波長制御領域18の双方に乗じられる上記所定割合に対応する。領域42の長さの割合が5%よりも大きくなると、ピークP1aおよびP1bは小さくなり、ピークP2aおよびP2bは大きくなる。領域42の長さの割合が5%から約15%までの範囲では、ピークP1a、P1b、P2aおよびP2bのうち、ピークP1bが最も大きい。長さの割合が10%から30%までの場合、すべてのピークはおおよそ0.8以下になる。長さの割合がおよそ15%以上、20%以下の場合、すべてのピークは0.7以下になる。長さの割合が15%を超えると、4つのピークのうちでピークP2bが最大になる。長さの割合が30%を超える場合、ピークP2aおよびP2bの大きさが1に近づき、モードホップが発生する恐れがある。サブピークP1a、P1b、P2aおよびP2bを抑制し、かつP2aへのモードホップを抑制するために、領域42の長さの割合は例えば5%以上、30%以下とする。
第3実施形態によれば、回折格子層22は、利得領域17の両端、および波長制御領域18の両端に領域42を有する。つまり、利得領域17の両端、および波長制御領域18の両端に回折格子23が設けられていない。サブピークを低く抑制し、モードホップを抑制することができる。
複数の利得領域17のうち一部の両端、および複数の波長制御領域18のうち一部の両端に、回折格子23が設けられていない場合でも、サブピークを抑制することができる。回折格子層22は、複数の利得領域17それぞれの両端、および複数の波長制御領域18それぞれの両端に領域42を有することが好ましい。つまり、複数の利得領域17それぞれの両端、および複数の波長制御領域18それぞれの両端に回折格子23が設けられていない。サブピークを効果的に抑制し、所望の波長で発振することが可能である。例えば、複数の利得領域17の個数に対する、領域42を有する利得領域17の個数の割合は70%以上であることが好ましい。例えば、複数の波長制御領域18の個数に対する、領域42を有する波長制御領域18の個数の割合は70%以上であることが好ましい。
前記した領域42の長さの割合は、波長制御領域18に印加される屈折率の大きさによって変化する。波長制御領域18に印加される屈折率が電流注入を行わないときの屈折率に比べて-0.7%以下の場合、上記長さの割合は5%から30%である。また波長制御領域18の屈折率が-0.8以上の場合、上記長さの割合は15%から20%の範囲である。1つの波長制御領域18の長さに対する1つの領域42の長さの割合は、例えば10%以上、25%以下などでもよい。領域42の長さの割合を17.5%に近づけることで、各サブピークの反射率を十分に低下させることができる。
図2、図13および図16に示すように、利得領域17および波長制御領域18の少なくとも一方の両端において、回折格子23が設けられていない。利得領域17および波長制御領域18の中央における光の強度は、中央以外の部分における強度より大きい。利得領域17および波長制御領域18の中央に回折格子23が設けられていない場合、光が回折格子23によって反射されにくくなる。利得領域17および波長制御領域18の少なくとも一方の両端に回折格子23を設けず、中央には回折格子23を設ける。回折格子23によって光を反射し、波長可変光源10をDFBレーザとして機能させることができる。また、サブピークを抑制することができる。
以上、本開示の実施形態について詳述したが、本開示は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。
10、10R 波長可変光源
11 光導波路
12 可変光減衰器
13、15、19、32、34、36 電極
14 変調器
16 半導体光増幅器
17 利得領域
18 波長制御領域
20 基板
21 バッファ層
22 回折格子層
22a InGaAsP層
22b InP層
23 回折格子
24 活性層
25 波長制御層
26 クラッド層
28 コンタクト層
29 埋込層
30 絶縁膜
38 メサ
40、42、43 領域
50、52 周期構造
100 波長可変レーザ
11 光導波路
12 可変光減衰器
13、15、19、32、34、36 電極
14 変調器
16 半導体光増幅器
17 利得領域
18 波長制御領域
20 基板
21 バッファ層
22 回折格子層
22a InGaAsP層
22b InP層
23 回折格子
24 活性層
25 波長制御層
26 クラッド層
28 コンタクト層
29 埋込層
30 絶縁膜
38 メサ
40、42、43 領域
50、52 周期構造
100 波長可変レーザ
Claims (13)
- 光の伝搬方向に沿って交互に配置された、利得領域および波長制御領域と、
前記利得領域と前記波長制御領域のそれぞれに対応して配置された回折格子と、
前記利得領域と前記波長制御領域との境界において、前記利得領域の端部および前記波長制御領域の端部のうち少なくとも一方に位置する、複数の前記回析格子を有さない領域と、を備え、
前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して5%以上30%以下である波長可変レーザ。 - 前記回折格子を有さない領域の個数は、前記利得領域と前記波長制御領域でなす境界の全ての個数の70%以上である、請求項1に記載の波長可変レーザ。
- 前記回折格子を有さない領域は、前記利得領域あるいは前記波長制御領域のうち、最も端部にも配置される、請求項1に記載の波長可変レーザ。
- 前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して10%以上25%以下である請求項1に記載の波長可変レーザ。
- 前記回折格子を有さない領域の長さは、それが属する前記利得領域の長さまたは前記波長制御領域の長さに対して15%以上20%以下である請求項1に記載の波長可変レーザ。
- 前記利得領域および前記波長制御領域と光結合する光変調器を更に備える、請求項1から請求項5のいずれか一項に記載の波長可変レーザ。
- 前記利得領域および前記波長制御領域と前記光変調器との間には、可変光減衰器が配置される、請求項6に記載の波長可変レーザ。
- 前記光変調器の出力には、半導体光増幅器が配置される、請求項6または請求項7に記載の波長可変レーザ。
- 前記波長制御領域の屈折率は、電流注入により制御される、請求項1に記載の波長可変レーザ。
- 前記波長制御領域の屈折率は、ヒータにより制御される、請求項1に記載の波長可変レーザ。
- 前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の何れか一方の両端に配置される、請求項1に記載の波長可変レーザ。
- 前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の両方の領域の両端に配置される、請求項1に記載の波長可変レーザ。
- 前記回折格子を有さない領域は、前記利得領域と前記波長制御領域の何れか一方の領域の片方の端部だけに配置される、請求項1に記載の波長可変レーザ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280024180.XA CN117136478A (zh) | 2021-03-31 | 2022-03-31 | 波长可调谐激光器 |
JP2023511732A JPWO2022211061A1 (ja) | 2021-03-31 | 2022-03-31 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-061343 | 2021-03-31 | ||
JP2021061343 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022211061A1 true WO2022211061A1 (ja) | 2022-10-06 |
Family
ID=83456649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/016713 WO2022211061A1 (ja) | 2021-03-31 | 2022-03-31 | 波長可変レーザ |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022211061A1 (ja) |
CN (1) | CN117136478A (ja) |
WO (1) | WO2022211061A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118399186A (zh) * | 2024-07-01 | 2024-07-26 | 山东省科学院激光研究所 | 单纵模光纤激光器的控制方法和控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006527485A (ja) * | 2003-06-10 | 2006-11-30 | フォトナミ・インコーポレイテッド | 2次以上の分布帰還型レーザにおける空間的ホールバーニングを抑制するための方法と装置 |
WO2007080891A1 (ja) * | 2006-01-11 | 2007-07-19 | Nec Corporation | 半導体レーザ、モジュール、及び、光送信機 |
JP2011249618A (ja) * | 2010-05-27 | 2011-12-08 | Sumitomo Electric Ind Ltd | 半導体レーザ |
JP2013168513A (ja) * | 2012-02-15 | 2013-08-29 | Nippon Telegr & Teleph Corp <Ntt> | 半導体レーザおよび光半導体装置 |
JP2015079092A (ja) * | 2013-10-16 | 2015-04-23 | 住友電気工業株式会社 | 全二重光トランシーバ |
-
2022
- 2022-03-31 WO PCT/JP2022/016713 patent/WO2022211061A1/ja active Application Filing
- 2022-03-31 CN CN202280024180.XA patent/CN117136478A/zh active Pending
- 2022-03-31 JP JP2023511732A patent/JPWO2022211061A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006527485A (ja) * | 2003-06-10 | 2006-11-30 | フォトナミ・インコーポレイテッド | 2次以上の分布帰還型レーザにおける空間的ホールバーニングを抑制するための方法と装置 |
WO2007080891A1 (ja) * | 2006-01-11 | 2007-07-19 | Nec Corporation | 半導体レーザ、モジュール、及び、光送信機 |
JP2011249618A (ja) * | 2010-05-27 | 2011-12-08 | Sumitomo Electric Ind Ltd | 半導体レーザ |
JP2013168513A (ja) * | 2012-02-15 | 2013-08-29 | Nippon Telegr & Teleph Corp <Ntt> | 半導体レーザおよび光半導体装置 |
JP2015079092A (ja) * | 2013-10-16 | 2015-04-23 | 住友電気工業株式会社 | 全二重光トランシーバ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118399186A (zh) * | 2024-07-01 | 2024-07-26 | 山东省科学院激光研究所 | 单纵模光纤激光器的控制方法和控制系统 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022211061A1 (ja) | 2022-10-06 |
CN117136478A (zh) | 2023-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10193305B2 (en) | Wavelength tunable laser device and laser module | |
US8705583B2 (en) | Semiconductor laser | |
US6426515B2 (en) | Semiconductor light-emitting device | |
US6201824B1 (en) | Strongly complex coupled DFB laser series | |
US8319229B2 (en) | Optical semiconductor device and method for manufacturing the same | |
US8494320B2 (en) | Optical element and method for manufacturing the same | |
US8457452B2 (en) | Integrated semiconductor optical device | |
JPH07326820A (ja) | 波長可変半導体レーザ装置 | |
JP3195159B2 (ja) | 光半導体素子 | |
JP6588859B2 (ja) | 半導体レーザ | |
US20150357792A1 (en) | Semiconductor laser element, integrated semiconductor laser element, and method for producing semiconductor laser element | |
WO2005025017A2 (en) | Single longitudinal mode laser diode | |
US8472760B2 (en) | Integrated semiconductor optical device | |
JP3682367B2 (ja) | 分布帰還型半導体レーザ | |
US7949020B2 (en) | Semiconductor laser and optical integrated semiconductor device | |
US5276702A (en) | Gain-coupled distributed-feedback semiconductor laser | |
US9952390B2 (en) | Optical element, optical module, and optical transmission system | |
WO2005053124A1 (ja) | 分布帰還型半導体レーザ、分布帰還型半導体レーザアレイ及び光モジュール | |
WO2022211061A1 (ja) | 波長可変レーザ | |
JP5143985B2 (ja) | 分布帰還型半導体レーザ素子 | |
CN107623250B (zh) | 一种短腔长面发射激光器及其制造方法 | |
US20210143609A1 (en) | Semiconductor optical device and method for producing semiconductor optical device | |
EP1037343A2 (en) | Distributed feedback semiconductor laser | |
JP2950302B2 (ja) | 半導体レーザ | |
JP2003218462A (ja) | 分布帰還型半導体レーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22781271 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023511732 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22781271 Country of ref document: EP Kind code of ref document: A1 |