WO2022210972A1 - 水硬性組成物用添加剤及びそれを用いた水硬性組成物 - Google Patents

水硬性組成物用添加剤及びそれを用いた水硬性組成物 Download PDF

Info

Publication number
WO2022210972A1
WO2022210972A1 PCT/JP2022/016290 JP2022016290W WO2022210972A1 WO 2022210972 A1 WO2022210972 A1 WO 2022210972A1 JP 2022016290 W JP2022016290 W JP 2022016290W WO 2022210972 A1 WO2022210972 A1 WO 2022210972A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon
water
additive
hydraulic
Prior art date
Application number
PCT/JP2022/016290
Other languages
English (en)
French (fr)
Inventor
知也 新村
浩規 阪本
将大 裏野
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to JP2023511527A priority Critical patent/JPWO2022210972A1/ja
Priority to AU2022248648A priority patent/AU2022248648A1/en
Priority to CA3214212A priority patent/CA3214212A1/en
Priority to EP22781182.5A priority patent/EP4317102A1/en
Publication of WO2022210972A1 publication Critical patent/WO2022210972A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to a hydraulic composition additive and a hydraulic composition using the same.
  • Graphene sheets form a sheet-like structure in which carbon atoms are hexagonally bonded like a network.
  • the thickness is extremely thin, about 1 nm, and it is light and has high strength. and has the advantage of high thermal conductivity.
  • Non-Patent Document 1 it is known that adding several hundred grams of graphene sheets to 1 m 3 of concrete increases the strength by about two times.
  • Non-Patent Document 1 has extremely poor production efficiency and is not suitable for efficiently and inexpensively producing large amounts of graphene.
  • Non-Patent Document 1 there is a description that the manufacturing method has progressed by citing Non-Patent Document 2, which describes the original manufacturing method.
  • Non-Patent Document 2 graphene is obtained by charging 50 mg / ml (5% by mass) of graphite, performing mixer treatment for a long time, and centrifuging. Only 1 to 10 ⁇ g/ml (0.0001 to 0.001%) can be obtained, and the absolute amount obtained and the yield from the original graphite are only about 0.01%, which is not sufficient.
  • the step of centrifuging and collecting the supernatant is difficult to scale up.
  • an object of the present invention is to provide an additive capable of improving the strength of a hydraulic composition in an efficient manner.
  • the present inventors have found that by containing flaky carbon and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon, an efficient method found that the strength of the hydraulic composition can be improved.
  • the inventors of the present invention have further studied based on this knowledge, and have completed the present invention. That is, the present invention includes the following configurations.
  • Item 1 An additive for a hydraulic composition, comprising flaky carbon and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon.
  • Section 2. The additive for hydraulic compositions according to Item 1, further comprising water.
  • hydrophilic group is represented by general formulas (1) to (6):
  • —OH in general formula (1) represents a hydroxyl group.
  • the oxygen atom in general formula (2) represents an ether bond.
  • General formula (5) represents an acid anhydride group.
  • R 1 represents a divalent organic group.
  • R2 represents a hydrogen atom or an alkyl group.
  • X 1 denotes a hydrogen atom, alkali metal, NH4 or organic ammonium.
  • X2 represents a hydrogen atom, alkali metal, NH4 , organic ammonium or alkyl group.
  • Item 3 The additive for hydraulic compositions according to item 1 or 2, comprising at least one of the above.
  • Section 4. The hydrophilic group according to any one of items 1 to 3, wherein the hydrophilic group includes at least one selected from the group consisting of an alcoholic hydroxyl group, —SO 3 Na, —COONa, —COOCH 3 , and a polyoxyethylene group. Additive for hydraulic compositions.
  • Item 5 Any one of items 1 to 4, wherein the hydrophobic group comprises at least one selected from the group consisting of an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and a polyoxyalkylene group having 3 or more carbon atoms. Additive for hydraulic compositions as described.
  • Item 6 The hydraulic composition according to any one of Items 1 to 5, wherein the hydrophobic group comprises an aryl group to which at least one oxygen atom is bound and/or an aryl group having two or more aromatic rings. Additive for
  • the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is selected from the group consisting of an AE agent, a water reducing agent, a curing accelerator, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent and a fluidizing agent.
  • the additive for hydraulic composition according to any one of Items 1 to 6, which is at least one chemical admixture for concrete.
  • Item 8. The additive for hydraulic composition according to any one of Items 1 to 7, wherein the carbon content of the flaky carbon is 95.0% by mass or more.
  • Item 9 The additive for hydraulic compositions according to any one of Items 1 to 8, wherein the size of the flaky carbon is 0.1 to 30.0 ⁇ m.
  • Item 10 The additive for hydraulic composition according to any one of Items 1 to 9, wherein the thickness of the flaky carbon is 0.335 to 100 nm.
  • Item 11 The hydraulic property according to any one of Items 1 to 10, which contains 1 to 1000 parts by mass of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon with respect to 100 parts by mass of the flaky carbon. Additives for compositions.
  • Item 12 A method for producing the additive for hydraulic compositions according to any one of Items 1 to 11, A carbonaceous material having a layered structure, a water-soluble compound having a hydrophobic group having a high affinity for carbon and a hydrophilic group, and a carbonaceous material dispersion containing a solvent are subjected to a pressure treatment of 30 MPa or more, By the pressure treatment, (i) colliding two or more of the carbonaceous material dispersions; At least one selected from the group consisting of (ii) colliding the carbonaceous material dispersion with a metal or ceramic material, and (iii) passing the carbonaceous material dispersion through a space having a cross-sectional area of 1 cm 2 or less.
  • the production method wherein seeds are treated, the solvent contains water, and the content of the water is 70% by mass or more in the solvent.
  • Item 13 A method for producing the additive for hydraulic compositions according to any one of Items 1 to 11, Between the rotating rotating disk and the disk installed substantially parallel to the rotating disk, installing a composition containing a carbonaceous material having a layered structure, a hydrophobic group having a high affinity for carbon, a water-soluble compound having a hydrophilic group, and a solvent; a step of applying shear to the carbonaceous material in the composition while adjusting the shortest distance between the rotating disk and the disk to be 200 ⁇ m or less, wherein the solvent contains water, and The production method, wherein the content of water is 70% by mass or more in the solvent.
  • Item 14 The production method according to Item 12 or 13, wherein part or all of the solvent is removed after the pressure treatment or shear treatment.
  • Item 15 A hydraulic composition comprising the additive for a hydraulic composition according to any one of Items 1 to 11 and a hydraulic component.
  • Item 16 The hydraulic composition according to item 15, wherein the content of the hydraulic composition additive is 0.01 to 10 parts by mass with respect to 100 parts by mass of the hydraulic component.
  • Item 17. A hydraulic composition according to Item 15 or 16, which is a cement hydration product.
  • Item 18 A method for producing a hydraulic composition according to any one of Items 15 to 17, A manufacturing method comprising a step of mixing a hydraulic powder material and the additive for a hydraulic composition.
  • Item 19 The manufacturing method according to Item 18, wherein in the mixing step, a concrete admixture is further mixed.
  • the present invention it is possible to provide an additive capable of improving the strength of a hydraulic composition in an efficient manner.
  • the present invention when compared with Non-Patent Document 1, when the charged graphite concentration is also 5% by mass, about 10000 times (with respect to the yield of 0.01%, the total amount used is 100%). It is possible to improve the strength of the hydraulic composition by a production method that is efficient in production, easy to scale up, and free from graphite loss.
  • the additive for hydraulic composition of the present invention contains flaky carbon and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon.
  • Flaky Carbon functions as a strength improver.
  • the flaky carbon preferably has a high carbon content from the viewpoint of improving the strength of the hydraulic composition.
  • the carbon content of the flaky carbon is preferably 95.0% by mass or more, more preferably 97.0% by mass or more, and 97.5% by mass or more, assuming that the total amount of flaky carbon is 100% by mass. is more preferable, and 98.0% by mass or more is particularly preferable.
  • the upper limit of the carbon content of the flaky carbon is not particularly limited, and is usually 100% by mass.
  • the content of flaky carbon having a thickness of 0.335 to 20 nm is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more, based on the total number of flaky carbon as 100%. preferable. That is, although flaky carbon having a large thickness may be included, the thickness of many flaky carbon is preferably 20 nm or less. The thickness of the flaky carbon is measured by observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • flaky carbon having a layered structure in which 3 to 60 layers of graphene are laminated is more preferable.
  • the content of flaky carbon having 1 to 60 layers is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more, where the total number of flaky carbon is 100%. preferable.
  • flaky carbon having a large thickness may be included, but the thickness of a large number of flaky carbon is preferably 60 layers or less. Note that the lamination of flaky carbon is calculated from the thickness measured by observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • flaky carbon usually has a planar shape with many convex and reentrant angles, it is difficult to categorically define the size other than the thickness.
  • the distance between the furthest convex corners in a piece of flaky carbon is defined as the size of that flaky carbon.
  • the size of such flaky carbon is preferably 0.1 to 30.0 ⁇ m, more preferably 0.3 to 20.0 ⁇ m, even more preferably 0.5 to 15.0 ⁇ m.
  • flaky carbon having such a size it is easy to further improve the strength improvement characteristics of the hydraulic composition.
  • the size of the flaky carbon is measured by observation with a transmission electron microscope (TEM).
  • the content of flaky carbon is not particularly limited, but from the viewpoint of strength improvement characteristics for the hydraulic composition, the total amount of the additive for hydraulic composition of the present invention is Based on 100% by mass, 1 to 50% by mass is preferable, 2 to 40% by mass is more preferable, and 2.5 to 30% by mass is even more preferable.
  • (1-2) Organic compound having a hydrophilic group and a hydrophobic group with high affinity with carbon
  • the graphene structure is maintained by using an organic compound having a hydrophilic group and a hydrophobic group with high affinity with carbon. It is possible to maintain the flaky carbon in the additive for hydraulic composition of the present invention in a uniformly dispersed state without aggregating the flaky carbon, and as a result, strengthen the strength improvement characteristics of the hydraulic composition. can do.
  • An organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can also function as a dispersant for uniformly dispersing the flaky carbon.
  • Such an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is not particularly limited, and various organic compounds (especially water-soluble compounds) that can function as a dispersant for flaky carbon. can be used.
  • the hydrophobic group possessed by the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is not particularly limited, but an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a poly An oxyalkylene group and the like are preferred.
  • An organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can contain one or more of such hydrophobic groups.
  • the same hydrophobic groups may be used in a plurality, the same hydrophobic groups may be used in a plurality, or different hydrophobic groups may be used in a plurality.
  • the alkyl group may be a straight-chain alkyl group or a branched-chain alkyl group, but from the viewpoint of affinity with carbon, a straight-chain alkyl group is preferable.
  • the number of carbon atoms in the alkyl group is preferably 2 or more, more preferably 3 to 22, and even more preferably 4 to 18, from the viewpoint of affinity with carbon.
  • alkyl groups examples include n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group, n-undecyl group, n-dodecyl group (or n-lauryl group), n-tridecyl group, n-tetradecyl group (or n-myristyl group), n-pentadecyl group, n-hexadecyl group (or n-cetyl group), n-octadecyl group and the like.
  • This alkyl group may or may not have a substituent.
  • substituents include cycloalkyl groups, aryl groups, aralkyl groups and the like.
  • cycloalkyl group and the aryl group those described later are exemplified.
  • the aralkyl group as a substituent of the alkyl group is preferably an aralkyl group having 7 to 14 carbon atoms and having an aryl group and an alkyl group having 1 to 6 carbon atoms, and specifically, benzyl group, phenethyl group and the like. preferable.
  • the substituent is not limited to the above, and may have a group derived from a fluorene structure (such as a fluorenyl group).
  • a fluorene structure such as a fluorenyl group.
  • a phenyl group or the like is preferable as a substituent, and when emphasizing compatibility with flaky carbon, strength improvement characteristics for hydraulic compositions, etc., a naphthyl group, fluorenyl group, or the like is used as a substituent. preferable.
  • the alkenyl group preferably has 2 or more carbon atoms, more preferably 3 to 100 carbon atoms, and even more preferably 4 to 30 carbon atoms, from the viewpoint of affinity with carbon and water solubility.
  • alkenyl groups include butenyl, hexenyl, octenyl, decenyl, dodecenyl, oleyl and linoleyl groups.
  • This alkenyl group may or may not have a substituent.
  • substituents include alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, and the like.
  • the aralkyl group is exemplified by those mentioned above, and the cycloalkyl group and aryl group are exemplified below.
  • the alkyl group as a substituent of the alkenyl group is preferably an alkyl group having 1 to 6 carbon atoms, and specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, A sec-butyl group, a tert-butyl group and the like are preferred.
  • the substituent is not limited to the above, and may have a group derived from a fluorene structure (such as a fluorenyl group).
  • a fluorene structure such as a fluorenyl group.
  • a phenyl group or the like is preferable as a substituent, and when emphasizing compatibility with flaky carbon, strength improvement characteristics for hydraulic compositions, etc., a naphthyl group, fluorenyl group, or the like is used as a substituent. preferable.
  • a cycloalkyl group having 5 to 10 carbon atoms is preferable, and specifically, a cyclopentyl group, a cyclohexyl group and the like are preferable.
  • This cycloalkyl group may or may not have a substituent.
  • substituents include alkyl groups, aryl groups, aralkyl groups, and the like.
  • the alkyl group as a substituent of the cycloalkyl group is preferably an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl group. , sec-butyl group, tert-butyl group and the like are preferred.
  • Examples of the aryl group and aralkyl group as substituents of the cycloalkyl group include those exemplified above.
  • the substituent is not limited to the above, and may have a group derived from a fluorene structure (such as a fluorenyl group).
  • a fluorene structure such as a fluorenyl group.
  • a phenyl group or the like is preferable as a substituent, and when emphasizing compatibility with flaky carbon, strength improvement characteristics for hydraulic compositions, etc., a naphthyl group, fluorenyl group, or the like is used as a substituent. preferable.
  • aryl group an aryl group having 6 to 22 carbon atoms (especially 6 to 18) is preferable, and any of monocyclic aryl groups, condensed ring aryl groups and polycyclic aryl groups can be employed. Examples include phenyl group, naphthyl group, anthracenyl group, tetracenyl group, phenanthrenyl group, biphenyl group, terphenyl group, fluorenyl group, acenaphthenyl group, acenaphthylenyl group, pyrenyl group, chrysenyl group, triphenylenyl group and the like.
  • This aryl group may or may not have a substituent.
  • substituents include phenolic hydroxyl groups, alkyl groups, hydroxyalkyl groups, formylalkyl groups, cycloalkyl groups, aralkyl groups, alkoxy groups and the like.
  • the alkyl group as a substituent of the aryl group is preferably an alkyl group having 1 to 6 carbon atoms, and specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, A sec-butyl group, a tert-butyl group and the like are preferred.
  • the hydroxyalkyl group as a substituent of the aryl group is preferably a hydroxyalkyl group having 1 to 6 carbon atoms, and specifically, a hydroxymethyl group (-CH 2 OH), a 2-hydroxyethyl group (-CH 2 CH 2 OH), 2-hydroxypropyl group (--CH 2 CHOHCH 3 ), 3-hydroxypropyl group (--CH 2 CH 2 CH 2 OH) and the like are preferred.
  • the formylalkyl group as a substituent of the aryl group is preferably a formylalkyl group having 1 to 6 carbon atoms, and specifically, a formylmethyl group (-CH 2 CHO), a 2-formylethyl group (-CH 2 CH 2 CHO), 3-formylpropyl group (--CH 2 CH 2 CH 2 CHO) and the like are preferred.
  • Examples of the cycloalkyl group and aralkyl group as substituents of the aryl group include those exemplified above.
  • the alkoxy group as a substituent of the aryl group is preferably an alkoxy group having 1 to 6 carbon atoms, and specific examples thereof include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy and isobutyl. Oxy group, sec-butyloxy group, tert-butyloxy group and the like are preferred.
  • the substituent is not limited to the above, and may have a group derived from a fluorene structure (such as a fluorenyl group).
  • the aryl group mentioned above is an aryl group to which at least one oxygen atom is bonded (such as an aryl group to which a phenolic hydroxyl group is bonded), from the viewpoint of affinity with carbon, strength improvement properties for hydraulic compositions, and the like.
  • aryl groups having two or more aromatic rings condensed aryl groups and polycyclic aryl groups, and the like are preferred.
  • Polyoxyethylene groups are usually hydrophilic, but polyoxyalkylene groups with 3 or more carbon atoms, such as polyoxypropylene groups and polyoxybutylene groups, become more hydrophobic as the degree of polymerization increases, and function as hydrophobic groups.
  • a polyoxypropylene group with a degree of polymerization of 4 or more and a polyoxybutylene group with a degree of polymerization of 3 or more are particularly preferable.
  • the degree of polymerization of the polyoxyalkylene group portion having 3 or more carbon atoms is preferably 10,000 or less.
  • polyoxyethylene-polyoxypropylene or polyoxyethylene-polyoxybutylene is used as an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon
  • the polyoxypropylene group and the polyoxybutylene group are also It can function as a hydrophobic group.
  • This polyoxyalkylene group having 3 or more carbon atoms may or may not have a substituent.
  • substituents include alkyl groups, cycloalkyl groups, aralkyl groups, aryl groups, and the like.
  • the alkyl group as a substituent of the polyoxyalkylene group having 3 or more carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n -butyl group, isobutyl group, sec-butyl group, tert-butyl group and the like are preferred.
  • Examples of the cycloalkyl group, aralkyl group and aryl group as substituents of the polyoxyalkylene group having 3 or more carbon atoms include those exemplified above.
  • the substituent is not limited to the above, and may have a group derived from a fluorene structure (such as a fluorenyl group).
  • a fluorene structure such as a fluorenyl group.
  • a phenyl group or the like is preferable as a substituent, and when emphasizing compatibility with flaky carbon, strength improvement characteristics for hydraulic compositions, etc., a naphthyl group, fluorenyl group, or the like is used as a substituent. preferable.
  • Such a hydrophobic group is preferably an aryl group or a polyoxyalkylene group having 3 or more carbon atoms, more preferably an aryl group, and at least More preferred are aryl groups with one oxygen atom (such as aryl groups with phenolic hydroxyl groups) and aryl groups with two or more aromatic rings (condensed aryl groups and polycyclic aryl groups).
  • hydroxyphenyl group methoxyphenyl group, 3-hydroxypropylphenyl group, naphthyl group, hydroxynaphthyl group, anthracenyl group, hydroxyanthracenyl group, tetracenyl group, hydroxytetracenyl group, phenanthrenyl group, hydroxyphenyl group, nanthrenyl group, biphenyl group, hydroxybiphenyl group, terphenyl group, fluorenyl group, hydroxyfluorenyl group, acenaphthenyl group, acenaphthylenyl group, pyrenyl group, chrysenyl group, triphenylenyl group, polyoxypropylene group having a degree of polymerization of 4 or more, A polyoxybutylene group having a degree of polymerization of 3 or more is preferred.
  • the hydrophilic group possessed by the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon can increase the solubility in water of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon.
  • the hydrophilic group possessed by the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon can increase the solubility in water of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon.
  • —OH in general formula (1) represents a hydroxyl group.
  • the oxygen atom in general formula (2) represents an ether bond.
  • General formula (5) represents an acid anhydride group.
  • R 1 represents a divalent organic group.
  • R2 represents a hydrogen atom or an alkyl group.
  • X 1 denotes a hydrogen atom, alkali metal, NH4 or organic ammonium.
  • X2 represents a hydrogen atom, alkali metal, NH4 , organic ammonium or alkyl group.
  • a hydrophilic group represented by is preferred.
  • An organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can contain one or more of such hydrophilic groups.
  • hydrophilic groups when a plurality of hydrophilic groups are used, a plurality of the same hydrophilic groups may be used, a plurality of types of hydrophilic groups represented by the same general formula may be used, or hydrophilic groups represented by different general formulas may be used. A plurality of types of groups may be used.
  • —OH represents a hydroxyl group, and from the viewpoint of hydrophilicity, it preferably represents an alcoholic hydroxyl group.
  • the divalent organic group represented by R 1 is not particularly limited, and is preferably a divalent hydrocarbon group.
  • divalent hydrocarbon groups include aliphatic hydrocarbon groups (alkylene groups (or alkylidene groups), cycloalkylene groups, alkylene (or alkylidene)-cycloalkylene groups, bi- or tricycloalkylene groups, etc.), aromatic hydrocarbons groups (arylene group, alkylene (or alkylidene)-arylene group, etc.) and the like.
  • the alkylene group (or alkylidene group) represented by the group R 1 is preferably an alkylene group, more preferably a C 1-8 alkylene group, still more preferably a C 1-4 alkylene group, and a C 2 Particularly preferred are -4 alkylene groups, most preferred are C 2-3 alkylene groups. Specifically, methylene group, ethylene group, ethylidene group, trimethylene group, propylene group, propylidene group, tetramethylene group, ethylethylene group, butan-2-ylidene group, 1,2-dimethylethylene group, pentamethylene group, A pentane-2,3-diyl group and the like can be exemplified.
  • the cycloalkylene group represented by R 1 is preferably a C 5-10 cycloalkylene group, more preferably a C 5-8 cycloalkylene group. Specific examples include a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group, and the like.
  • the alkylene (or alkylidene)-cycloalkylene group represented by R 1 is preferably an alkylene-cycloalkylene group, more preferably a C 1-6 alkylene-C 5-10 cycloalkylene group, More preferred is a C 1-4 alkylene-C 5-8 cycloalkylene group.
  • Specific examples include a methylene-cyclohexylene group, an ethylene-cyclohexylene group, an ethylene-methylcyclohexylene group, an ethylidene-cyclohexylene group, and the like.
  • the bi- or tricycloalkylene group represented by group R 1 can be specifically exemplified by norbornane-diyl group and the like.
  • the arylene group represented by group R 1 is preferably a C 6-10 arylene group. Specifically, a phenylene group, a naphthalenediyl group, and the like can be exemplified.
  • the alkylene (or alkylidene)-arylene group represented by R 1 is preferably an alkylene-arylene group, more preferably a C 1-6 alkylene-C 6-20 arylene group, and a C 1- A 4 -alkylene-C 6-10 arylene group is more preferred, and a C 1-2 alkylene-phenylene group is particularly preferred.
  • Specific examples include a methylene-phenylene group, an ethylene-phenylene group, an ethylene-methylphenylene group, an ethylidenephenylene group and the like.
  • a divalent aliphatic hydrocarbon group particularly an alkylene group (eg, a C 1-4 alkylene group such as a methylene group, an ethylene group, etc.) is preferred.
  • alkylene (or alkylidene)-cycloalkylene group and an alkylene (alkylidene)-arylene group are -R a -R b - (wherein R a is a separate oxygen atom in general formula (2). a bonded alkylene group or alkylidene group, and Rb represents a cycloalkylene group or arylene group).
  • the hydrophilic group represented by the general formula (2) is not particularly limited, and for example, -C 2 H 4 O-, -C 3 H 6 O-, -CH 2 O- and the like can be used. . Those having a plurality (preferably 3 to 100) of these can also be preferably used, and for example, a trioxyethylene group, a tetraoxyethylene group, a polyoxymethylene group, a polyoxyethylene group and the like can be used. However, since the polyoxyalkylene group having 3 or more carbon atoms is a hydrophobic group as described above, when the number of carbon atoms in R 1 is 3 or more, the hydrophilic group represented by this general formula (2) is used alone. It is preferred to include (not repeat multiple times).
  • hydrophilic group represented by the general formula (2) particularly a polyoxyethylene group
  • it is particularly excellent in reinforcing properties such as strength improvement properties for hydraulic compositions.
  • the alkali metal represented by X1 is not particularly limited, and includes sodium, potassium, lithium and the like.
  • the organic ammonium represented by X1 is preferably a quaternary ammonium, and tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium and the like can be preferably used.
  • the hydrophilic group represented by the general formula (3) is not particularly limited, but is, for example, -SO 3 -H + , -SO 3 -Na + , -SO 3 -K + , -SO 3 -Li + , -SO 3 - NH 4 + , -SO 3 - N(CH 3 ) 4 + , -SO 3 - N(C 2 H 5 ) 4 + , -SO 3 - N(C 3 H 7 ) 4 + , —SO 3 — N(C 4 H 9 ) 4 + and the like.
  • Examples of the alkali metal and organic ammonium represented by X 2 in the general formula (4) include those exemplified above.
  • the alkyl group represented by X 2 may be a straight-chain alkyl group or a branched-chain alkyl group.
  • a linear alkyl group is preferred from the viewpoint of properties.
  • the number of carbon atoms in the alkyl group is preferably 1 to 2 from the viewpoints of affinity with carbon, strength improvement properties for hydraulic compositions, and the like.
  • the hydrophilic group represented by the general formula (4) is not particularly limited, but examples include -COOH, -COONa, -COOK, -COOLi, -COONH 4 , -COON(CH 3 ) 4 , -COON (C 2 H 5 ) 4 , —COON(C 3 H 7 ) 4 + , —COON(C 4 H 9 ) 4 + and the like.
  • the group represented by general formula (5) represents an acid anhydride group.
  • hydrophilic groups the general formula (1 ) to (5) are preferable, hydrophilic groups represented by general formulas (1) to (4) are more preferable, and general formulas (1), (3) and (4) are represented. Hydrophilic groups are more preferred. Specifically, alcoholic hydroxyl groups, ether groups, —SO 3 H, —SO 3 Na, —COOH, —COONa, —COOCH 3 , acid anhydride groups, polyoxyethylene groups, etc. are preferred, and alcoholic hydroxyl groups, ether groups, etc. are preferred. Group, —SO 3 H, —SO 3 Na, polyoxyethylene group and the like are more preferable, and alcoholic hydroxyl group, —SO 3 H, —SO 3 Na and the like are more preferable.
  • the HLB value is From the viewpoint of the water solubility of organic compounds having hydrophobic groups that have a high affinity with carbon, the dispersibility of flaky carbon, and strengthening properties such as strength improvement properties for hydraulic compositions, 12 or more is preferable, and 13 to 19 are more. preferable.
  • the hydrophobic groups are the same (when the affinity with the flaky carbon is about the same), the higher the HLB value, the better.
  • the organic compound having a hydrophilic group that satisfies the above conditions and a hydrophobic group that has a high affinity for carbon is not particularly limited, but AE agents, water reducing agents, curing accelerators, AE water reducing agents, high performance water reducing agents, Examples include chemical admixtures for concrete such as high performance AE water reducing agents and fluidizing agents. From these, it can also be used individually and can also be used in combination of 2 or more type. These chemical admixtures conform to JIS A 6204.
  • the AE agent is not particularly limited, but may be (special) anionic surfactants, alkyl ether-based anionic surfactants, (natural) resinate-based (special) anionic surfactants, or carboxylic acid-based anionic surfactants. , (modified) rosin anionic surfactant, natural resin acid/alkyl ether anionic surfactant, (special) nonionic surfactant, (special) anionic/nonionic surfactant, hydrocarbon sulfonate, Examples include imidazoline laurate derivatives, polyoxyethylene alkyl ether sulfates, and the like. These AE agents can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • the water reducing agent is not particularly limited, but standard water reducing agents include naphthalenesulfonic acid compounds, (modified) ligninsulfonic acid compounds, methylolmelamine condensates, polycarboxylic acid compounds, polycarboxylic acid ether compounds, and oxycarboxylic acid compounds.
  • standard water reducing agents include formalin (high) condensates of naphthalenesulfonate, (modified) ligninsulfonic acid compounds, oxycarboxylic acid compounds, and the like. These water reducing agents can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • the curing accelerator is not particularly limited, but includes nitrogen-based inorganic salt compounds (nitrite compounds, nitrate compounds, etc.), calcium silicate hydrate, and the like. These curing accelerators can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • the AE water reducing agent is not particularly limited, but standard AE water reducing agents include (modified) ligninsulfonic acid compounds, (natural) resinate compounds, organic acid compounds, (special) ether compounds, polyether compounds, ( modified) polyol compounds, cellulose ether compounds, polycarboxylic acid compounds, polycarboxylic acid ether compounds, polycarboxylic acid polyether polymers, polyalkylene glycol compounds, polycarboxylic acid compounds, oxycarboxylic acid compounds, PAE compounds, etc.;
  • Type AE water reducing agents include (modified) ligninsulfonic acid compounds, polycarboxylic acid compounds, hydroxycarboxylic acid compounds, oxycarboxylic acid compounds, organic acid compounds, glycitol compounds, natural resin acid compounds, polyether compounds, and (special) ether compounds.
  • modified polyol compounds polyalkylene glycol compounds, polycarboxylic acid ether compounds, polycarboxylic acid polyether polymers, cellulose ether compounds, PAE compounds, etc.; system inorganic salt compounds (nitrite compounds, nitrate compounds, etc.), polycarboxylic acid compounds, organic acid compounds, polycarboxylic acid ether compounds, modified polyol compounds, rhodan compounds, amine compounds, and the like.
  • the PAE compound means a dispersant composed of a predetermined polycondensation product, and the details thereof are also described in International Publication No. WO 2019/116425, so the description thereof is incorporated herein.
  • These AE water reducing agents can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • the high-performance water reducing agent is not particularly limited, but naphthalenesulfonic acid compounds, naphthalenesulfonic acid formalin (high) condensates, polyether compounds, (modified) polyol compounds, carboxy group-containing polyether compounds, polyalkylene glycol compounds, Polycarboxylic acid compounds, polycarboxylic acid/(special) thickener complexes, polycarboxylic acid ether compounds, melamine sulfonic acid compounds, melamine sulfonic acid (high) condensate salts, aminosulfonic acid compounds, nitrogen-containing sulfonates, Amidosulfonic acid-modified melamine condensates, alkylallyl sulfonate (high) condensates, (modified) methylol melamine condensates, ester compounds, polycarboxylic acid ether compounds, PAE compounds and the like.
  • the PAE compound means a dispersant composed of a predetermined polycondensation product, and the details thereof are also described in International Publication No. WO 2019/116425, so the description thereof is incorporated herein.
  • These superplasticizers can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • the high-performance AE water-reducing agent is not particularly limited, but standard high-performance AE water-reducing agents include (modified) ligninsulfonic acid compounds, aminosulfonic acid compounds, polycarboxylic acid compounds, polyether compounds, and carboxy group-containing polyethers. compounds, polyalkylene glycol compounds, ester compounds, PAE compounds, etc.; delayed high performance AE water reducing agents include (modified) ligninsulfonic acid compounds, polycarboxylic acid compounds, polycarboxylic acid ether compounds, polyether compounds, carboxy Group-containing polyether compounds, polyalkylene glycol compounds, PAE compounds and the like can be mentioned.
  • the PAE compound means a dispersant composed of a predetermined polycondensation product, and the details thereof are also described in International Publication No. WO 2019/116425, so the description thereof is incorporated herein.
  • These high performance AE water reducing agents can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • fluidizing agent there are no particular restrictions on the fluidizing agent, but standard fluidizing agents include melamine sulfonic acid compounds, alkylallyl sulfonic acid (high) condensates, (special) polycarboxylic acid compounds, polycarboxylic acid ether compounds, (special ) hydroxycarboxylic acid compounds, oxycarboxylic acid compounds, polyalkylene glycol compounds, and the like; and delay type fluidizing agents, such as polycarboxylic acid compounds and polycarboxylic acid ether compounds. These fluidizing agents can be used alone or in combination of two or more. A complex consisting of two or more of these can also be used.
  • Examples of such organic compounds having a hydrophilic group and a hydrophobic group having a high affinity for carbon include Mighty AE-03, Mighty 100, Mighty 150, Mighty 150RX, Mighty 21HS, Mighty 21VS and Mighty manufactured by Kao Corporation.
  • Tupole SSP-104 Tupole SSP-104H, Tupole HSP, Tupole EX, Tupole EX20, Tupole EX50, Tupole Tupole EX60, Tupole EX60T, Tupole EX60LB, Tupole LS-A, Tupole NR, Tupole NR20, Tupole EX50R, Tupole EX60R, Tupole EX60TR, Tupole EX60LBR, Tupole LS-AR, Tupole NZ , Tupole HP-8, Tupole HP-11, Tupole HP-11W , Tupole SR, Tupole HP-70, Tupole HP-70B, Tupole HF-70, Tupole HF-70R, Pole Fine MF, Pole Fine 510, Pole Fine SPA-2, High Fluid H; Nippon Sika ( Sikament Co., Ltd.
  • Accelerate 100, Super Melamine; Lion Corporation Leopak G-100, Leopak G- 200, etc. can be used.
  • These organic compounds having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be used alone, or two or more of them can be used in combination. A complex consisting of two or more of these can also be used.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group with high affinity with carbon in the additive for hydraulic composition of the present invention is not particularly limited, but it has a hydrophilic group and a hydrophobic group with high affinity with carbon.
  • the total amount of the additive for hydraulic compositions of the present invention is 100% by mass, and the amount is 0.1 to 50 mass. %, more preferably 0.2 to 40% by mass, even more preferably 0.3 to 30% by mass.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon in the additive for hydraulic composition of the present invention is not particularly limited, but a hydrophilic group and a hydrophobic group having a high affinity with carbon 10 to 1000 parts by mass is preferable with respect to 100 parts by mass of flaky carbon, and 20 to 500 parts by mass, from the viewpoint of the water solubility of the organic compound having the parts is more preferred, and 30 to 300 parts by mass is even more preferred.
  • the additive for a hydraulic composition of the present invention is applied to the surface of the flaky carbon with a hydrophilic group and an affinity with carbon. It has a structure coated with an organic compound having a highly hydrophobic group (Fig. 1).
  • the additive for hydraulic composition of the present invention is an organic compound having a hydrophobic group having a high affinity with carbon. It has a structure in which flaky carbon is dispersed inside (Fig. 2).
  • an organic compound having a hydrophilic group and a hydrophobic group that has a high affinity with carbon is interposed around the flaky carbon, thereby suppressing aggregation of the flaky carbon and improving the dispersibility of the flaky carbon. , it is possible to obtain a material capable of improving strength-enhancing properties for hydraulic compositions.
  • the additive for hydraulic composition of the present invention contains other components.
  • Such other components include, for example, carbon fiber (especially carbon nanofiber with a fiber diameter of 500 nm or less), activated carbon, carbon black (acetylene black, oil furnace black, etc.); black), vitreous carbon, carbon microcoils, fullerenes, biomass-based carbon materials (bagasse, sorghum, wood chips, sawdust, bamboo, tree bark, rice straw, rice husks, coffee grounds, used tea leaves, okara lees, rice bran, pulp waste, etc.
  • Raw materials carbon fiber manufactured from lignin, etc.), cellulose nanofiber, boron nitride, molybdenum compounds (molybdenum disulfide, organic molybdenum, etc.), tungsten disulfide, melamine cyanurate, phthalocyanine, lead oxide, calcium fluoride, Layered minerals (mica, talc, etc.) and the like can also be used as long as they do not impair the effects of the present invention.
  • the content of other components is small. It is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, based on 100% by mass as the total amount of the additive for hydraulic compositions of the present invention.
  • the shape of the additive for hydraulic compositions of the present invention is not particularly limited, and examples thereof include a coating film, a sheet, and an aggregate. Moreover, without being limited to a solid, it may contain water to form an aqueous dispersion, which will be described later.
  • the additive for hydraulic composition of the present invention is excellent in water solubility of organic compounds having hydrophilic groups and hydrophobic groups with high affinity with carbon, dispersibility of flaky carbon, and hydraulic composition. It is a material that can improve the strength improvement characteristics for objects.
  • Such a hydraulic composition additive of the present invention is a material that can be added to a hydraulic composition to improve the strength after curing, and can be used for paste, mortar, concrete, and the like.
  • the additive for hydraulic composition of the present invention contains, for example, water, and the content of water is 70% by mass or more in the solvent using a solvent.
  • a carbonaceous material having a layered structure, a water-soluble compound having a hydrophobic group having a high affinity for carbon and a hydrophilic group, and a carbonaceous material dispersion containing a solvent are subjected to a pressure treatment of 30 MPa or more, By the pressure treatment, (i) colliding two or more of the carbonaceous material dispersions; At least one selected from the group consisting of (ii) colliding the carbonaceous material dispersion with a metal or ceramic material, and (iii) passing the carbonaceous material dispersion through a space having a cross-sectional area of 1 cm 2 or less.
  • composition containing a carbonaceous material having a layered structure, a hydrophobic group having a high affinity for carbon, a water-soluble compound having a hydrophilic group, and a solvent is obtained by applying shear to the carbonaceous material in the composition while adjusting the shortest distance between the rotating disk and the disk to be 50 ⁇ m or less. can be manufactured.
  • a dispersion flaky carbon dispersion
  • an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon and a solvent, flaky carbon, hydrophilic groups and affinity with carbon
  • the above description can be adopted for the organic compound having a hydrophobic group with high affinity.
  • the flaky carbon dispersion may also contain other components as described above, if necessary.
  • This flaky carbon dispersion may be formed as a dispersion liquid, or may be formed as a coating film on a substrate.
  • the solvent used for preparing the flaky carbon dispersion includes dispersibility of flaky carbon, strength improvement properties for the hydraulic composition, and the like. From this point of view, it is preferable to use water as the main solvent.
  • the content of water in the solvent to be used is not particularly limited, but from the viewpoint of the dispersibility of flaky carbon, strength improvement properties for hydraulic compositions, etc., the total amount of the solvent is 100% by mass, and it is 70% by mass or more ( 70 to 100% by mass), more preferably 75 to 100% by mass.
  • the solvent only water may be used, and the organic solvent may not necessarily be used.
  • Monohydric alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol;
  • Organic solvents such as polyhydric alcohols; 2-methoxyethanol may also be used.
  • the content of the organic solvent in the solvent to be used is the solubility of the organic compound having a hydrophilic group and a hydrophobic group with high affinity with carbon, the strength improvement characteristic for the hydraulic composition, etc., and the total amount of the solvent is 100% by mass. is preferably 30% by mass or less (0 to 30% by mass), more preferably 5 to 25% by mass.
  • the content of the flaky carbon is not particularly limited, but from the viewpoint of easy composition of the additive for the hydraulic composition of the present invention, the total amount of the flaky carbon dispersion is 100% by mass. , preferably 30% by mass or less, more preferably 0.001 to 20% by mass, and even more preferably 0.1 to 10% by mass.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is not particularly limited, but from the viewpoint of easy composition of the durability improving agent of the present invention, the flaky carbon dispersion Taking the total amount as 100% by mass, it is preferably 0.01 to 50% by mass, more preferably 0.1 to 40% by mass, and even more preferably 0.5 to 30% by mass.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon in the flaky carbon dispersion is not particularly limited, but it is easy to make the composition of the additive for the hydraulic composition of the present invention. From a viewpoint, it is preferably 10 to 1,000 parts by mass, more preferably 20 to 500 parts by mass, and even more preferably 30 to 300 parts by mass with respect to 100 parts by mass of flaky carbon.
  • the content of the solvent is not particularly limited, but from the viewpoint of easy composition of the additive for the hydraulic composition of the present invention, the total amount of the flaky carbon dispersion is 100% by mass, 50 to 99.9998% by mass is preferred, 60 to 99.998 mass % is more preferred, and 70 to 99.98 mass % is even more preferred.
  • the method for producing the flaky carbon dispersion is not particularly limited, and the solvent has a high affinity for flaky carbon and hydrophilic groups and carbon.
  • An organic compound having a hydrophobic group can also be introduced.
  • flaky carbon can be added to a dispersion of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon, or flaky carbon can be added to a dispersion having a hydrophilic group and a high affinity with carbon.
  • Organic compounds with highly hydrophobic groups can also be introduced.
  • flaky carbon and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be added to the solvent at the same time.
  • the rotating rotating disk and the rotating disk are installed substantially parallel to the rotating disk.
  • a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is placed between the rotating disc and the disc, and the shortest distance between the rotating disc and the disc. It is preferable to apply shear to the carbonaceous material in the composition while adjusting the distance to be 200 ⁇ m or less (grinding method).
  • the flaky carbon dispersion is obtained by applying pressure of 30 MPa or more to a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon. (High-pressure dispersion method).
  • the flaky carbon maintaining the graphene structure is uniformly dispersed without aggregating (flaky carbon
  • the flaky carbon can be obtained in the dispersion), the obtained flaky carbon is hardly broken, and the flaky carbon can be obtained in a short time, and the lumps that fail to peel off hardly remain.
  • the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can also function as a dispersant for uniformly dispersing the flaky carbon.
  • the direction in which the force is applied is parallel to the surface direction of the carbonaceous material having a layered structure, and the treatment is performed in a narrow space.
  • flaky carbon of a larger size for example, flaky carbon with a size of 1 ⁇ m or more
  • the treatment is performed in a short time (with a small number of passes) with high peeling efficiency.
  • thick lumps that fail to peel off are less likely to remain.
  • the carbonaceous material having a layered structure is not particularly limited, and includes natural graphite, artificial graphite, expanded graphite, earthy graphite, graphite oxide and the like.
  • Oxidized graphite may be graphite oxidized with one or more oxidizing agents such as sulfuric acid, nitric acid, potassium permanganate, and hydrogen peroxide.
  • the graphite when obtaining graphite oxide by the Hammers method, the graphite is immersed in concentrated sulfuric acid, potassium permanganate is added to oxidize the graphite, and then the reactant is quenched with dilute sulfuric acid and/or hydrogen peroxide, After that, by washing with distilled water or the like, oxygen atoms are bonded to the carbon atoms and oxygen atoms are introduced between the layers to obtain graphite oxide.
  • graphite oxide may be used when emphasis is placed on ease of manufacture.
  • solvent molecules are easily inserted between the layers, it is easy to peel only in the layer direction, and the exfoliation efficiency and dispersibility are improved, so it is possible to shorten the treatment time. be.
  • graphite oxide when graphite oxide is used, reduction treatment is required later, and from the viewpoint of maintaining the graphene structure, conductivity and strength, other materials (natural graphite, artificial graphite, expanded graphite, earthy graphite) is preferred.
  • earthy graphite in order to further improve the dispersibility.
  • other materials naturally graphite, artificial graphite, expanded graphite, graphite oxide
  • crystallinity, purity and structure maintenance are preferable from the viewpoint of crystallinity, purity and structure maintenance.
  • artificial graphite can be used when the crystallinity, strength, structure maintenance, etc. of the obtained flaky carbon are emphasized.
  • the content of the carbonaceous material having a layered structure in the composition containing the carbonaceous material having a layered structure and the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is not particularly limited.
  • the total amount of the composition used for producing the flaky carbon dispersion is 100% by mass, preferably 30% by mass or less, more preferably 0.001 to 20% by mass, and further 0.1 to 10% by mass. preferable.
  • the thinner the content of the carbonaceous material having a layered structure the easier it is for flaky carbon to occur (delamination between layers). It tends to be easy to perform shearing treatment and the like while maintaining an appropriate viscosity.
  • the content of the carbonaceous material having a layered structure in the flaky carbon dispersion is preferably within the above range.
  • Organic Compound Having a Hydrophilic Group and a Hydrophobic Group Having a High Affinity with Carbon As the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon, those mentioned above can be used.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group with high affinity with carbon in the composition used for producing the flaky carbon dispersion is not particularly limited, but the flaky carbon dispersion 0.01 to 50% by mass, more preferably 0.1 to 40% by mass, and even more preferably 0.5 to 30% by mass, when the total amount of the composition used for producing is 100% by mass.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon in the composition used for producing the flaky carbon dispersion is 100% of the carbonaceous material having a layered structure.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon the thinner the content, the higher the content of the carbonaceous material having a relatively layered structure, and the strength of the hydraulic composition tends to be improved. At the same time, it is inexpensive and easy to process.
  • flaky carbon tends to be obtained more efficiently because flaking (delamination) occurs more easily. Conversely, when the viscosity increases, the exfoliation efficiency may decrease.
  • the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is within the above range. is preferred.
  • a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is used.
  • a specific treatment from the viewpoint of exfoliation efficiency of the carbonaceous material having a layered structure, improvement in the strength of the obtained hydraulic composition, etc., a carbonaceous material having a layered structure, a hydrophilic group and carbon It is preferable to perform a specific treatment on the carbonaceous material dispersion containing an organic compound having a hydrophobic group that has a high affinity with .
  • the carbonaceous material dispersion may be formed as a dispersion liquid, or may be formed as a coating film on a substrate.
  • the solvent used to prepare the carbonaceous material dispersion (carbonaceous material dispersion or carbonaceous material coating film)
  • the above-mentioned solvents can be adopted.
  • the total amount of the solvent in the carbonaceous material dispersion is not particularly limited. From the viewpoint of efficiency, solubility of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon, etc., the total amount of the carbonaceous material dispersion is 100% by mass, and 50 to 99.9998% by mass is preferable, and 60 to 99% by mass. 0.998 mass % is more preferred, and 70 to 99.98 mass % is even more preferred.
  • the carbonaceous material dispersion when a specific treatment is performed using a carbonaceous material dispersion using a solvent, the carbonaceous material dispersion has a layered structure of an organic compound dispersion having a hydrophilic group and a hydrophobic group having a high affinity with carbon. or an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may be added to a carbonaceous material dispersion having a layered structure.
  • a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may be introduced into the solvent at the same time.
  • a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may contain other ingredients.
  • the finally obtained flaky carbon dispersion and the additive for the hydraulic composition can contain these other components.
  • those mentioned above can be employed, and may be used within a range that does not impair the effects of the present invention.
  • the content of other components is small. It is preferably 0.00001 to 5% by mass, more preferably 0.0001 to 2% by mass, based on 100% by mass as the total amount of the carbonaceous material dispersion.
  • Shear treatment (grinding method)
  • a carbonaceous material having a layered structure, a hydrophilic group and a carbon A composition containing an organic compound having a hydrophobic group that has a high affinity with is installed, and while adjusting the shortest distance between the rotating disk and the disk to be 200 ⁇ m or less, the carbonaceous material in the composition It is preferable to apply a shearing treatment.
  • the carbonaceous material dispersion is placed between a rotating rotating disk and a disk installed substantially parallel to the rotating disk, It is preferable to apply shear to the carbonaceous material in the carbonaceous material dispersion while adjusting the shortest distance from the disc to 200 ⁇ m or less.
  • the carbonaceous material having a layered structure is atomized by the shearing treatment, the graphene structure may not be maintained depending on the conditions, but the carbonaceous material having a layered structure is efficiently thinned. can reduce the processing time.
  • the rotating disk and the disk are installed substantially parallel when performing such shearing treatment, they do not have to be strictly parallel.
  • the angle between the axis perpendicular to the rotating disk and the axis perpendicular to the disk is preferably 10° or less, more preferably 5° or less. Most preferably, the axis perpendicular to the rotating disc and the axis perpendicular to the disc are strictly parallel.
  • the shortest distance between the two surfaces when performing such a shearing treatment is not particularly limited as long as the carbonaceous material having a layered structure can be sufficiently thinned, but is preferably 200 ⁇ m or less, and 50 ⁇ m. The following is more preferable, and 30 ⁇ m or less is even more preferable.
  • the shortest distance between the two surfaces when shearing is performed is the carbonaceous material having a layered structure from the shortest distance actually measured between the rotating disc and the hydrophilic group and carbon. means the distance excluding the thickness of the composition containing the organic compound having a high hydrophobic group.
  • the fact that the measured shortest distance between the rotating disk and the disk is 0 ⁇ m means that the carbonaceous material having a layered structure and the hydrophilic group and the hydrophilic group and the carbon-affinity material are placed in close contact between the rotating disk and the disk.
  • a composition containing an organic compound having a high hydrophobic group is placed, that is, a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon are placed between the rotating discs It means that there is no space other than compounds.
  • the rotating disk and the disk are installed substantially parallel, the distance between the rotating disk and the disk may vary depending on the location.
  • the shortest distance between the rotating disc and the disc means the shortest distance between the rotating disc and the disc.
  • the material to be processed may be sandwiched between the rotating disk and the disk, and the rotating disk and the disk are kept in contact, A carbonaceous material having a layered structure may be sandwiched between the rotating disk and the disk so as to widen.
  • Such shearing treatment may be performed using a stone mill, vibratory mixer, spin coater, grinder, or the like, as long as there is a mechanism for rotating a plate-like object.
  • the size of the rotating disc and disc that can be used at this time is not particularly limited, and is preferably 5 to 500 mm, more preferably 10 to 200 mm.
  • the number of rotations of the rotating disk during the shearing treatment is not particularly limited, and is preferably within a range where the carbonaceous material having a layered structure can be sufficiently thinned, for example, preferably 1000 to 10000 ppm. , 1500 to 3000 ppm is more preferred.
  • the carbonaceous material having a layered structure is brought into contact with the carbonaceous material having a layered structure, and the carbonaceous material having a layered structure and the carbonaceous material having a layered structure are contacted to form a layered structure on the carbonaceous material having a layered structure.
  • Shear can be applied in a direction parallel to the graphene layers of the structured carbonaceous material.
  • This shearing operation can be performed one or more times, preferably three or more times.
  • the temperature at which the shearing treatment is performed is not particularly limited, and may be a temperature at which the carbonaceous material having a layered structure can be sufficiently thinned. obtain.
  • the temperature at which the shear treatment is performed is preferably under conditions where the solubility of the organic compound having a hydrophilic group and a hydrophobic group with high affinity with carbon is high, and when the solubility increases at a higher temperature, a higher temperature is preferable, and has a cloud point. When using a water-soluble compound, it is preferable to keep the temperature below the cloud point.
  • a stirring device, an ultrasonic dispersing device, etc. are used in order to bring the carbonaceous material having a layered structure into good contact with the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon.
  • the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may be blended with the surface of the carbonaceous material having a layered structure by stirring in advance before preparing the composition.
  • graphite oxide when used as the carbonaceous material having a layered structure, it exists as an oxide of flaky carbon in the sheared dispersion. Therefore, when graphite oxide is used as the carbonaceous material having a layered structure, it is preferable to perform a reduction treatment as a post-treatment.
  • a reduction treatment various methods such as chemical reduction and electrochemical reduction can be employed, but chemical reduction is preferred. Among them, chemical reduction with reducing agents such as hydrazine and sodium borohydride is preferred.
  • the amount of the reducing agent is preferably 1 to 1000 parts by mass, more preferably 20 to 500 parts by mass, and even more preferably 30 to 300 parts by mass with respect to 100 parts by mass of the flaky carbon oxide.
  • the heating temperature is preferably 40 to 200°C, more preferably 50 to 150°C, even more preferably 60 to 120°C.
  • the reduction time is preferably 10 minutes to 64 hours, more preferably 30 minutes to 48 hours, even more preferably 1 to 24 hours. However, it is preferably to the extent that the graphene structure is not destroyed excessively.
  • the flaky carbon can be obtained as the flaky carbon dispersion described above.
  • the flaky carbon dispersion also contains an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon.
  • This organic compound having a hydrophilic group and a hydrophobic group that has a high affinity with carbon can also be adsorbed on the surface of flaky carbon and isolated and dispersed flaky carbon at a high concentration in a solvent, so that flaky carbon dispersion It also functions as a dispersant in the body.
  • an organic compound having a hydrophilic group and a hydrophobic group that has a high affinity with carbon is adsorbed on the surface of the flaky carbon.
  • the weight loss in the range of 100 to 450° C. where the influence of adsorbed water can be eliminated is preferably 2.00 to 20.00% by mass, and 3.00 to 10.0%. 00% by mass is more preferable. This makes it particularly easy to improve the strength of the hydraulic composition.
  • the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be used as a commercially available product, and is superior to conventional products in terms of both cost and dispersibility.
  • the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can impart sufficient strength to the hydraulic composition by remaining on the surface of the flaky carbon.
  • an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may exist in the vicinity of the flaky carbon without being adsorbed on the surface of the flaky carbon. Even if it is not adsorbed on the surface of the flaky carbon, it is present between the flaky carbon, making it easy to prevent strong agglomeration due to van der Waals forces between the flaky carbon, and promotes dispersion after addition to concrete. It's easy to do.
  • the additive for the hydraulic composition is solid and includes other than the organic compound adsorbed on the surface of the flaky carbon, the effect of preventing the aggregation of the flaky carbon, the effect of promoting dispersion, and the interaction with the concrete via the organic matter.
  • the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon contained in the additive for hydraulic composition is 1 to 1000 parts by mass with respect to 100 parts by mass of flaky carbon. is preferred, and 10 to 200 parts by mass is more preferred.
  • the plastic substrate is hydrolyzed during the reduction treatment, and when the reduction treatment is applied, the flaky carbon aggregates and cannot exist as a dispersion. Therefore, it was impossible to form a flaky carbon dispersion on a plastic substrate.
  • a specific By performing the treatment it is also possible to form a flaky carbon dispersion on a substrate of plastic such as polyethylene terephthalate (PET) without undergoing hydrolysis.
  • PET polyethylene terephthalate
  • Pressure treatment (high pressure dispersion method)
  • the composition containing the carbonaceous material having a layered structure and the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is subjected to a pressure of 30 MPa. It is preferable to perform the above pressure treatment.
  • the carbonaceous material having a layered structure is atomized by the pressure treatment, the graphene structure may not be maintained depending on the conditions, but the carbonaceous material having a layered structure can be efficiently thinned. can be performed and the processing time can be reduced.
  • the pressure level when performing such pressure treatment is not particularly limited as long as the carbonaceous material having a layered structure can be sufficiently thinned, but is preferably 30 MPa or more, and 50 to 400 MPa. is more preferable, and 100 to 300 MPa is even more preferable.
  • Such pressure treatment can be performed using a high-pressure dispersion device, a supercritical water preparation device, or the like.
  • a high-pressure dispersing device can disperse by applying mechanical pressure, and a supercritical water-producing device can raise the pressure of the system by heating water.
  • Such pressurization causes, for example, (i) colliding two or more of the carbonaceous material dispersions; (ii) colliding the carbonaceous material dispersion with a metal or ceramic material (high-hardness material such as silicon carbide or alumina); (iii) A treatment such as passing the carbonaceous material dispersion through a space having a cross-sectional area of 1 cm 2 or less can be performed.
  • the pressurizing conditions can be made stronger, the carbonaceous material having a layered structure can be thinned more efficiently, and the processing time can be further reduced. be able to. Moreover, according to the above (iii), the carbonaceous material having a layered structure can be thinned more appropriately while maintaining the graphene structure.
  • This pressurizing operation can be performed once or more, preferably 10 times or more.
  • the pressing temperature is not particularly limited, and may be a temperature at which the carbonaceous material having a layered structure can be sufficiently thinned. ⁇ 95°C.
  • the temperature is preferably 0 to 100 ° C., and when pressure is generated by the supercritical state of water, 373 to 700 ° C. is preferable, and 380 to 450 ° C. is more preferable. preferable.
  • an ultrasonic dispersion treatment as a preliminary treatment (pretreatment) to atomize the carbonaceous material having a layered structure. This can have effects such as clogging prevention.
  • the output power when performing ultrasonic dispersion treatment it should be stronger than the ultrasonic dispersion treatment (about 40 to 50 W) that is usually performed from the viewpoint of thinning the carbonaceous material having a layered structure. is preferred.
  • the output of the ultrasonic dispersion treatment is preferably 100 W or more, more preferably 300 to 20000 W, even more preferably 400 to 18000 W.
  • the ultrasonic dispersion temperature is not particularly limited, and may be a temperature at which the carbonaceous material having a layered structure can be sufficiently thinned.
  • the ultrasonic dispersion time is not particularly limited, and may be set to a time sufficient to thin the carbonaceous material having a layered structure, and may be 1 to 600 minutes, particularly 3 to 120 minutes.
  • dispersion treatment using other dispersing devices such as normal mechanical stirring, dispersing treatment using an emulsifying device, dispersing treatment using a bead mill, etc. may be used in combination.
  • graphite oxide when used as the carbonaceous material having a layered structure, it exists as an oxide of flaky carbon in the pressure-treated dispersion. Therefore, when graphite oxide is used as the carbonaceous material having a layered structure, it is preferable to perform a reduction treatment as a post-treatment.
  • a reduction treatment various methods such as chemical reduction and electrochemical reduction can be employed, but chemical reduction is preferred. Among them, chemical reduction with reducing agents such as hydrazine and sodium borohydride is preferred.
  • the amount of the reducing agent is preferably 1 to 1000 parts by mass, more preferably 10 to 500 parts by mass, and even more preferably 50 to 300 parts by mass with respect to 100 parts by mass of the flaky carbon oxide.
  • the heating temperature is preferably 40 to 200°C, more preferably 50 to 150°C, even more preferably 60 to 120°C.
  • the reduction time is preferably 10 minutes to 64 hours, more preferably 30 minutes to 48 hours, even more preferably 1 to 24 hours. However, it is preferably to the extent that the graphene structure is not destroyed excessively.
  • the additive for hydraulic composition of the present invention is obtained by removing the solvent from the flaky carbon dispersion, if necessary. can be done.
  • a method of concentrating the flaky carbon dispersion In order to remove the solvent, there is a method of concentrating the flaky carbon dispersion. It can be carried out by a method of recovering the heat conductive material of the present invention by solid-liquid separation.
  • a method for solid-liquid separation for example, a method commonly used for solid-liquid separation, for example, a method of filtering using a filter paper, a glass filter, etc.; a method of filtering after centrifugation; The method can be exemplified.
  • the drying method is not particularly limited, and for example, a method of drying at about 50 to 200° C. for about 1 to 24 hours using a hot air dryer or the like can be exemplified.
  • the above flaky carbon dispersion from which the solvent has been removed can be used if necessary, but if necessary, an organic compound having a hydrophilic group and a hydrophobic group with high affinity for carbon It can also be removed.
  • a chemical admixture which will be described later, can be added again to obtain the additive for the hydraulic composition of the present invention.
  • a water-soluble compound having a hydrophobic group that has a high affinity for carbon and a hydrophilic group can be removed by washing the flaky carbon composition with water, an organic solvent, or the like. The washing treatment can be removed by washing with dilute acid or dilute alkali in addition to water and organic solvent.
  • the water-soluble compound having a hydrophobic group having a high affinity for carbon and a hydrophilic group is an organic ammonium salt
  • heat treatment at 150 to 400°C, preferably 200 to 350°C will decompose the organic ammonium salt.
  • a water-soluble compound having a hydrophobic group having a high affinity for carbon and a hydrophilic group can also be removed by heat treatment.
  • the water-soluble compound having a hydrophobic group and a hydrophilic group, which have a high affinity for carbon, used in the present invention does not form a chemical bond with the flaky carbon, and its molecular weight is small, so its adsorptive power is weaker than that of conventional products. . Therefore, the water-soluble compound used in the present invention has the advantage of being easier to remove from the flaky carbon composition than the conventional product.
  • the washing for removing the water-soluble compound having a hydrophobic group with a high affinity for carbon and a hydrophilic group can be performed by bringing the flaky carbon composition into contact with a washing liquid.
  • a washing liquid water, various organic solvents, and the like can be used as long as they can dissolve a water-soluble compound having a hydrophobic group having a high affinity for carbon and a hydrophilic group.
  • organic solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA) (especially alcohols having 1 to 6 carbon atoms), acetone, N-methylpyrrolidone, dimethylformamide, and the like. These may be used alone or in combination of two or more.
  • an organic solvent that evaporates from the flaky carbon composition in a short time after washing is preferred.
  • the organic solvent include those having a boiling point of about 50 to 250° C., particularly about 60 to 200° C. at normal pressure, such as methanol, ethanol, acetone, N-methylpyrrolidone, and dimethylformamide.
  • the flaky carbon composition is contacted with a dilute acid or dilute alkali for washing to remove a water-soluble compound having a hydrophobic group with a high affinity for carbon and a hydrophilic group, and then You may carry out by washing with water.
  • the dilute acid is preferably 0.1-5% hydrochloric acid
  • the dilute alkali is preferably 0.1-3% aqueous ammonia.
  • the cleaning liquid and the flaky carbon composition should be brought into contact.
  • the immersion time is preferably within 30 minutes, more preferably within 20 minutes, in order to maintain the shape of the flaky carbon composition.
  • the amount of the cleaning liquid used is not particularly limited as long as it is an effective amount for cleaning, and can be appropriately selected from a wide range. Good results are obtained when about 1000 to 5000 parts by weight are used.
  • Hydraulic Composition contains the additive for hydraulic compositions of the present invention.
  • the configuration other than the additive for hydraulic compositions of the present invention can be the same as that of conventional hydraulic compositions.
  • the hydraulic composition of the present invention preferably contains the additive for hydraulic compositions of the present invention and a hydraulic component (hydraulic powder, etc.).
  • the hydraulic component is not particularly limited, and for example, cement can be used, including Portland cement and mixed cement. Known or commercially available products can be used for these cements. These hydraulic components (hydraulic powder, etc.) can be used alone or in combination of two or more.
  • the content of the hydraulic component is not particularly limited. It is preferably 200 to 2,000 kg/m 3 , more preferably 240 to 1,500 kg/m 3 per 1 m 3 of material.
  • the content of the additive for hydraulic compositions of the present invention is determined from the viewpoint of filling property, fluidity, strength after curing, etc. It is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 1 part by mass, based on 100 parts by mass.
  • the content of water is 5 parts per 100 parts by mass of the hydraulic component (hydraulic powder, etc.) from the viewpoint of filling properties, fluidity, strength after curing, etc. 80 parts by mass is preferable, and 10 to 70 parts by mass is more preferable.
  • the additive for hydraulic composition of the present invention contains water, addition of water so that the total with water in the additive for hydraulic composition of the present invention is within the above range. It is preferable to adjust the amount.
  • the hydraulic composition of the present invention further contains aggregates (silica sand, river sand, land sand, mountain sand) in addition to the above-described additives for hydraulic compositions of the present invention and hydraulic components (hydraulic powder, etc.). , sea sand, blast furnace slag fine aggregate, stone powder, silica fume, fly ash, natural zeolite, synthetic zeolite, pumice stone, fine aggregate such as kaolin; coarse aggregate such as blast furnace slag coarse aggregate) and water.
  • aggregates sica sand, river sand, land sand, mountain sand
  • hydraulic components hydraulic powder, etc.
  • the additive for hydraulic composition of the present invention contains the above-mentioned organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon, addition of a chemical admixture is not necessarily essential. However, from the viewpoint of filling property, fluidity, etc., a chemical admixture may be further included.
  • the chemical admixture is not particularly limited, but those conventionally used in hydraulic compositions can be used. Those described in the organic compound having can be used. At this time, the same type of organic compound as the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon contained in the additive for hydraulic composition of the present invention can be used, or a different type can be used. You can also
  • the amount used is appropriately selected from the viewpoint of filling properties, fluidity, strength after curing, etc., and may be used within a range that does not impair the effects of the present invention. It is preferably 0.0005 to 10 parts by mass, more preferably 0.001 to 6 parts by mass, per 100 parts by mass of the component (hydraulic powder, etc.).
  • the hydraulic composition of the present invention can also contain swelling agents, foaming agents, foaming agents, waterproofing agents, and the like, as long as they do not impair the effects of the present invention.
  • the method for producing the hydraulic composition of the present invention does not differ from the conventional one except that the additive for hydraulic compositions of the present invention is used, and it can be produced according to a conventional method. Also, the method for curing the hydraulic composition of the present invention is not different from the conventional method, and can be carried out according to the conventional method.
  • the chemical admixture is supplied as an aqueous solution, and the concentration varies depending on the product. Since the ratio of graphene to dispersant is generally discussed in terms of mass ratio to solid matter, the concentration was measured. The results are as follows. Master Pozzolith No.
  • Example 1 Dispersibility of flaky carbon dispersion
  • Example 1-1 A mixture was obtained by mixing and stirring 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 250 g of polyoxyethylene naphthalyl ether (molecular weight: 1200 to 1300) and 9250 g of water. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • Example 1-2 In Example 1-1, Master Pozzolith No. 2 was applied to the obtained flaky carbon dispersion. A flaky carbon dispersion having the composition shown in Table 1 was produced in the same manner, except that 12 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) was added instead of 70 (manufactured by BASF Japan Ltd.). .
  • Example 1-3 Master Pozzolith No. 70 (manufactured by BASF Japan Ltd.) 12 g was diluted with 24 g of water and added to the flaky carbon dispersion obtained in Example 1-1. A flaky carbon dispersion was produced. As a result, the solid content concentration of the chemical admixture was adjusted to the same level as in Example 2.
  • Examples 1-4 From the flaky carbon dispersion liquid obtained in Example 1-1, 0.2 g of flaky carbon, 9.8 g of water and Master Pozzolith No. 70 (manufactured by BASF Japan Ltd.) 1.2 g of a flaky carbon dispersion was taken out, and 30 g of water and Master Pozzolith No. 2 were added thereto. 3.6 g of 70 (manufactured by BASF Japan Ltd.) was added to prepare a flaky carbon dispersion having the composition shown in Table 1. This composition corresponds to 125 g of flaky carbon/m 3 of concrete in the tests described below.
  • Examples 1-5 A dispersion consisting of 0.2 g of flaky carbon, 9.8 g of water, and 1.2 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) was taken out from the flaky carbon dispersion obtained in Example 1-2. , and 30 g of water and 3.6 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) were added thereto to produce a flaky carbon dispersion having the composition shown in Table 1. This composition corresponds to 125 g of flaky carbon/m 3 of concrete in the tests described below.
  • Example 1-6 The dispersion obtained in Example 1-4 was diluted with water so that the concentration of flaky carbon in water was 0.005% by mass, and a flaky carbon dispersion having the composition shown in Table 1 was produced. In the previous report, there are cases where the dispersibility is improved when the concentration in water is less than 0.01% by mass, so this was carried out.
  • Test Example 1 Dispersibility After standing the dispersibility of the dispersions obtained in Examples 1 to 6, the dispersibility was visually observed for the presence or absence of precipitates, etc. A: Dispersed even 10 minutes after the end of the dispersing treatment. B: It was evaluated that a suspended substance was generated immediately after the end of the dispersing treatment. Table 1 shows the results. As a result, all of Examples 1-1 to 1-6 were excellent in dispersibility, and among them, Examples 1-1, 1-3 and 1-4 were particularly excellent in dispersibility.
  • Example 2 Mortar (Part 1)
  • Example 2-1 1000 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 100 g of polyoxyethylene naphthalyl ether (molecular weight: 1200 to 1300) and 18900 g of water were mixed and stirred to obtain a mixture. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • JIS R5201 Physical Test Method for Cement
  • the inclusion of 0.73 g of flaky carbon means that the cement amount is 307 kg/concrete m 3 with a design standard strength of 24 N/mm 2 and a blend of 24-12-20 N. On the assumption that 500 g of flaky carbon is put in, the amount of cement in the mortar of this example is 450 g.
  • Example 2-2 A mixture was obtained by mixing and stirring 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 250 g of polyoxyethylene naphthalyl ether (molecular weight: 1200 to 1300) and 9250 g of water. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • JIS R5201 Physical Test Method for Cement
  • the inclusion of 0.73 g of flaky carbon means that the cement amount is 307 kg/concrete m 3 with a design standard strength of 24 N/mm 2 and a blend of 24-12-20 N. On the assumption that 500 g of flaky carbon is put in, the amount of cement in the mortar of this example is 450 g.
  • Example 2-3 A mixture was obtained by mixing and stirring 80 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 480 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 3440 g of water. This mixture was sheared twice at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • JIS R5201 Physical Test Method for Cement
  • the inclusion of 0.73 g of flaky carbon means that the cement amount is 307 kg/concrete m 3 with a design standard strength of 24 N/mm 2 and a blend of 24-12-20 N. It was calculated from the fact that the amount of cement was 450 g on the assumption that 500 g of flaky carbon was put in.
  • Test Example 2 Fresh Properties of Mortar The mortars obtained in Examples 2-1 to 2-3 were removed from the mold one day after production, and the setting and hardening conditions were visually observed. As a result, no abnormality was observed in any of Examples 2-1 to 2-3.
  • Test Example 3 Change over time of slump flow For Examples 2-1 to 2-3, two batches of mortar were produced, and after combining the samples for each of Examples 2-1 to 2-3, cement 5 stroke flow was measured in accordance with the physical test method (JIS R5201). Table 2 shows the results.
  • Example 3 Concrete
  • the base concrete is mixed with a design standard strength of about 24 N/mm 2 , and 305 kg/m 3 of ordinary Portland cement (manufactured by Sumitomo Osaka Cement Co., Ltd.) and 997 kg/m 3 of Nishijima crushed stone as coarse aggregate per 1 m 3 of concrete. 3. 569 kg/m 3 of Ibigawa river sand as fine aggregate, 246 kg/m 3 of crushed sand from Ibaraki as fine aggregate, and 3.0 kg/m of Master Polyheed 15S (manufactured by BASF Japan Ltd.) as chemical admixture.
  • Example 3-1 750 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 375 g of polyoxyethylene naphthalyl ether (molecular weight: 1200 to 1300) and 13875 g of water were mixed and stirred to obtain a mixture. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Example 3-1 When producing kneading water, 0.2418 kg of the obtained flaky carbon dispersion was added, and the concrete of Example 3-1 was prepared in the same manner as in Comparative Example 3-1, except that the amount of water was adjusted. manufactured. Thus, the amount of flaky carbon added is 350 g/m 3 of concrete.
  • Example 3-2 750 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 375 g of polyoxyethylene naphthalyl ether (molecular weight: 1200 to 1300) and 13875 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Example 3-2 When producing kneading water, 0.2356 kg of the obtained flaky carbon dispersion was added, and the concrete of Example 3-2 was prepared in the same manner as in Comparative Example 3-1 except that the amount of water was adjusted. manufactured. Thus, the amount of flaky carbon added is 350 g/m 3 of concrete.
  • Example 3-3 When producing kneading water, 0.4836 kg of the flaky carbon dispersion obtained in Example 3-1 was added, and the amount of water was adjusted in the same manner as in Comparative Example 3-1. 3-3 concretes were produced. Accordingly, the amount of flaky carbon added is 700 g/m 3 of concrete.
  • Example 3-4 When producing kneading water, 0.4712 kg of the flaky carbon dispersion obtained in Example 3-2 was added, and the amount of water was adjusted in the same manner as in Comparative Example 3-1. 3-4 concretes were produced. Accordingly, the amount of flaky carbon added is 700 g/m 3 of concrete.
  • Test Example 5 Fresh Properties of Concrete
  • the slump of the concrete obtained in Examples 3-1 to 3-4 and Comparative Example 3-1 conforms to JIS A1101, after the completion of kneading, 30 minutes and 60 minutes after pouring water. Measurement was performed later, and the air content was measured after kneading was completed in accordance with JIS A1128. Also, the concrete temperature (room temperature 20° C.) was measured at the same time as the slump measurement. Table 4 shows the results.
  • Test Example 6 Compressive Strength Test and Static Modulus of Elasticity Test A steel mold (100 mm in diameter ⁇ 200 mm) was used to prepare 12 test pieces per compound after kneading was completed. On the next day, all the specimens were removed from the molds and cured in water at 20°C until they reach a predetermined material age. At the time of demolding, the state of setting and hardening at 1 day of material age was checked in the same manner as in Test Example 2, and no abnormalities were found.
  • Example 4 Mortar (Part 2)
  • Comparative Example 4-1 4.40 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 220.6 g of water were mixed to obtain kneaded water.
  • Example 4-1 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 250 g of carboxymethyl cellulose sodium salt (manufactured by Sigma-Aldrich) and 9250 g of water were mixed and stirred to obtain a mixture. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Example 4-2 A mixture was obtained by mixing and stirring 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 1428 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 8070 g of water. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Example 4-3 A mixture was obtained by mixing and stirring 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 1428 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 8070 g of water. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Example 4-4 A mixture was obtained by mixing and stirring 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 2857 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 8070 g of water. This mixture was sheared once at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Example 4-5 A mixture was obtained by mixing and stirring 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 2125 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 8070 g of water. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Test Example 7 Mortar flow test For Comparative Example 4-1 and Examples 4-1 to 4-5, two batches of mortar were produced for each of Comparative Example 4-1 and Examples 4-1 to 4-5. After combining the samples into one, the 15-stroke flow was measured in accordance with the cement physical test method (JIS R5201). Table 5 shows the results.
  • Test Example 8 Mortar air content Two batches of mortar were produced, and the samples of each of Comparative Example 4-1 and Examples 4-1 to 4-5 were combined into one, and then the polymer cement mortar test method ( According to JIS A1171), the amount of air was measured after kneading. Table 5 shows the results.
  • Test Example 9 Compressive strength test When the flow value of the mortar falls within the range of 240 ⁇ 40 mm and the air content falls within the range of 10.5 ⁇ 1.5%, a simple steel formwork with a diameter of 50 mm ⁇ 100 mm is used to divide the specimen into 1 Nine tubes were produced per formulation.
  • the mold was filled with mortar in two layers, and each layer was poked eight times using a ramming rod. Next, the weight of the test piece after molding was measured one by one, and it was confirmed that the standard value was 370 g or more (excluding the weight of the formwork).
  • the addition of the flaky carbon dispersion increased the compressive strength compared to the base concrete, and a maximum strength improvement of 28.4% was observed at the age of 28 days.
  • Example 5 Mortar (Part 3)
  • Comparative Example 5-1 12.375 g of Master Glenium SP8SB (manufactured by BASF Japan Ltd.) and 212.625 g of water were mixed to obtain kneaded water.
  • Example 5-1 250 g of natural graphite (manufactured by Fuji Graphite Industries Co., Ltd.), 2989 g of master glenium SP8SB (manufactured by BASF Japan Ltd.) and 1761 g of water were mixed and stirred to obtain a mixture. This mixture was sheared 5 times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Comparative Example 5-2 7.875 g of Master Ease 3030 (manufactured by BASF Japan Ltd.) and 217.125 g of water were mixed to obtain kneaded water.
  • Example 5-2 250 g of natural graphite (manufactured by Fuji Graphite Industries Co., Ltd.), 1902 g of Master Ease 3030 (manufactured by BASF Japan Ltd.), and 2848 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Example 5-3 250 g of natural graphite (manufactured by Fuji Graphite Industries Co., Ltd.), 1359 g of Mighty 3000S (manufactured by Kao Corporation) and 3391 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Comparative Example 5-4 7.875 g of Mighty 3000H (manufactured by Kao Corporation) and 217.125 g of water were mixed to obtain kneaded water.
  • Example 5-4 250 g of natural graphite (manufactured by Fuji Graphite Industries Co., Ltd.), 1902 g of Mighty 3000H (manufactured by Kao Corporation), and 2848 g of water were mixed and stirred to obtain a mixed liquid. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Comparative Example 5-5 4.725 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 220.275 g of water were mixed to obtain kneaded water.
  • Example 5-5 250 g of natural graphite (manufactured by Fuji Graphite Industries Co., Ltd.), 1141 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 3609 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 25 ⁇ m.
  • Test Example 10 Mortar Flow Test For Comparative Examples 5-1 to 5-5 and Examples 5-1 to 5-5, two batches of mortar were produced, and Comparative Examples 5-1 to 5-5 and implementation After combining the samples for each of Examples 5-1 to 5-5, 15-stroke flow was measured according to the cement physical test method (JIS R5201). Table 6 shows the results.
  • Test Example 11 Compressive strength test When the flow value of the mortar fell within the range of ⁇ 40 mm of the flow value of the comparative example, 3 specimens were produced per formulation using a simple steel formwork with a diameter of 50 mm ⁇ 100 mm. .
  • Example 5-1 is Comparative Example 5-1
  • Example 5-2 is Comparative Example 5-2
  • Example 5-3 is Comparative Example 5-3
  • Example 5-4 is Comparative Example 5-4 and Example 5-5 were compared with Comparative Example 5-5, respectively.
  • the mold was filled with mortar in two layers, and each layer was poked eight times using a ramming rod. Next, the weight of the test piece after molding was measured one by one, and it was confirmed that the standard value was 370 g or more (excluding the weight of the formwork).
  • the specimen was allowed to stand still in a test room at 20 ⁇ 2°C, and after confirming that there was no curing failure at 7 days of material age, it was removed from the mold. After demolding, the specimen was placed in a water tank at 20 ⁇ 1° C. and cured in water until it reached a predetermined material age.
  • the addition of the flaky carbon dispersion increased the compressive strength compared to the base concrete, and a maximum strength improvement of 89.9% was observed at the age of 28 days.
  • Comparative Example 6-1 7.875 g of Master Glenium SP8SV (manufactured by BASF Japan Ltd.) and 217.125 g of water were mixed to obtain kneaded water.
  • Example 6-1 250 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 1902 g of master glenium SP8SV (manufactured by BASF Japan Ltd.) and 2848 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Comparative Example 6-2 12.375 g of Master Glenium SP8SB (manufactured by BASF Japan Ltd.) and 212.625 g of water were mixed to obtain kneaded water.
  • Example 6-2 250 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 2989 g of master glenium SP8SB (manufactured by BASF Japan Ltd.) and 1761 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 15 ⁇ m.
  • Comparative Example 6-3 5.625 g of Mighty 3000S (manufactured by Kao Corporation) and 219.375 g of water were mixed to obtain kneaded water.
  • Example 6-3 250 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 1359 g of Mighty 3000S (manufactured by Kao Corporation), and 3391 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 25 ⁇ m.
  • Comparative Example 6-4 4.725 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 220.275 g of water were mixed to obtain kneaded water.
  • Example 6-4 250 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 1141 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 3609 g of water were mixed and stirred to obtain a mixture. This mixture was sheared five times at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Test Example 12 Mortar flow test For Comparative Examples 6-1 to 6-5 and Examples 6-1 to 6-5, two batches of mortar were produced and Comparative Examples 6-1 to 6-5 and Examples were prepared. After combining the samples every 6-1 to 6-5, the 15-stroke flow was measured according to the cement physical test method (JIS R5201). Table 7 shows the results.
  • Test Example 13 Compressive strength test When the flow value of the mortar fell within the range of ⁇ 40 mm of the flow value of the comparative example, 3 specimens were produced per formulation using a simple steel formwork with a diameter of 50 mm ⁇ 100 mm. .
  • Example 6-1 is Comparative Example 6-1
  • Example 6-2 is Comparative Example 6-2
  • Example 6-3 is Comparative Example 6-3
  • Example 6-4 is Comparative Example 6-4.
  • Example 6-5 were compared with Comparative Example 6-5, respectively.
  • the mold was filled with mortar in two layers, and each layer was poked eight times using a ramming rod. Next, the weight of the test piece after molding was measured one by one, and it was confirmed that the standard value was 370 g or more (excluding the weight of the formwork).
  • the addition of the flaky carbon dispersion increased the compressive strength compared to the base concrete, and a maximum strength improvement of 74.1% was observed at the age of 28 days.
  • Comparative Example 7-1 0.151 kg of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 7.74 kg of water were mixed to obtain kneaded water.
  • Example 7-1 250 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), 1141 g of Master Polyheed 15S (manufactured by BASF Japan Ltd.) and 3609 g of water were mixed and stirred to obtain a mixture. This mixture was sheared twice at 1700 rpm using a ceramic grinder with a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 ⁇ m.
  • the flake-like carbon had a flake size of 1 to 20 ⁇ m.
  • Test Example 14 Fresh Properties of Concrete For Comparative Example 7-1 and Example 7-1, concrete was produced, and the fresh properties were measured according to JIS A1101 for slump and JIS A1128 for air content. Table 8 shows the results.
  • Test Example 15 Compressive Strength Test According to the description of JIS A4308 "Ready Mixed Concrete”, when the concrete slump falls within the range of 12.0 ⁇ 2.5 cm and the air content falls within the range of 4.5 ⁇ 1.5%. , JIS A1132 "How to make concrete strength test specimens", three specimens each having a diameter of 100 mm x 200 mm were prepared for each composition.
  • the addition of the flaky carbon dispersion increased the compressive strength compared to the base concrete, and a maximum strength improvement of 23.1% was observed at the age of 28 days.
  • Test Example 16 Bending Strength Test According to the description of JIS A4308 "Ready Mixed Concrete", when the concrete slump fell within the range of 120 ⁇ 2.5 cm and the air content was within the range of 4.5 ⁇ 1.5%, JIS Three specimens of 100 mm ⁇ 100 mm ⁇ 400 mm were prepared for each formulation in accordance with A1132 “Manufacturing of Specimens for Concrete Strength Test”.
  • the formwork was filled with concrete in two layers, each layer of 1000 mm2 was poked with a ram, and a metal spatula was used to poke along the side and end faces of the formwork. Spating was carried out with a hammer, and molding was carried out by tapping the side of the mold with a wooden mallet.
  • the addition of the flaky carbon dispersion increased the bending strength compared to the base concrete, and a maximum strength improvement of 6.63% was observed at the age of 28 days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する、水硬性組成物用添加剤は、効率的に、水硬性組成物の強度を向上させることができる。

Description

水硬性組成物用添加剤及びそれを用いた水硬性組成物
 本発明は、水硬性組成物用添加剤及びそれを用いた水硬性組成物に関する。
 グラフェンシートは、炭素原子が網目のように六角形に結合しながらシート状を形成しており、1層のみのグラフェンシートの場合、その厚みは1nm程度と極めて薄く軽いうえに、高強度を有し、熱伝導率が高いという利点を有している。
 非特許文献1では、コンクリート1mに数百gのグラフェンシートを添加することで、強度が2倍程度に発現することが知られている。
Advanced Functional Materials,2018,28,1705183 K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J. N. Coleman, Nat. Mater.2014, 13, 624 Paton, Keith R., et al. "Scale-up of Liquid Exfoliation of Graphene."
 しかしながら、非特許文献1の方法では、生産効率が極めて悪く、大量のグラフェンを効率よく安価に製造するのに適さない。
 非特許文献1においては元となる製法が記載されている非特許文献2を引用し製法が進歩を遂げたとの記載がある。しかし、非特許文献2においては50mg/ml(5質量%)の黒鉛を仕込み長時間ミキサー処理を行い、遠心分離を行うことによってグラフェンを得るが、グラフェンは最適化を行っても20分当たり精々1~10μg/ml(0.0001~0.001%)しか得ることができず、得られる絶対量も元の黒鉛からの収率も0.01%程度であり十分ではない。また、遠心分離を行い上澄みを集める工程はスケールアップが困難である。実際、非特許文献3において、300Lスケールの製造を試みているが、1時間当たりの製造量は5g=0.0016質量%である。
 以上から、本発明は、効率的な方法で、水硬性組成物の強度を向上させることができる添加剤を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有することで、効率的な方法で、水硬性組成物の強度を向上させることができることを見出した。本発明者らは、当該知見に基づきさらに研究を重ね、本発明を完成するに至った。即ち、本発明は以下の構成を包含する。
 項1.薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する、水硬性組成物用添加剤。
 項2.さらに、水を含有する、項1に記載の水硬性組成物用添加剤。
 項3.前記親水基が、一般式(1)~(6):
Figure JPOXMLDOC01-appb-C000002
[式中、一般式(1)の-OHは水酸基を示す。一般式(2)の酸素原子はエーテル結合を示す。一般式(5)は酸無水物基を示す。Rは2価の有機基を示す。Rは水素原子又はアルキル基を示す。Xは水素原子、アルカリ金属、NH又は有機アンモニウムを示す。Xは水素原子、アルカリ金属、NH、有機アンモニウム又はアルキル基を示す。]
で表される少なくとも1種を含む、項1又は2に記載の水硬性組成物用添加剤。
 項4.前記親水基が、アルコール性水酸基、-SONa、-COONa、-COOCH、及びポリオキシエチレン基よりなる群から選ばれる少なくとも1種を含む、項1~3のいずれか1項に記載の水硬性組成物用添加剤。
 項5.前記疎水基が、アルキル基、アルケニル基、シクロアルキル基、アリール基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種を含む、項1~4のいずれか1項に記載の水硬性組成物用添加剤。
 項6.前記疎水基が、少なくとも1つの酸素原子が結合しているアリール基、及び/又は2個以上の芳香環を有するアリール基を含む、項1~5のいずれか1項に記載の水硬性組成物用添加剤。
 項7.親水基及び炭素と親和性の高い疎水基を有する有機化合物が、AE剤、減水剤、硬化促進剤、AE減水剤、高性能減水剤、高性能AE減水剤及び流動化剤よりなる群から選ばれる少なくとも1種のコンクリート用化学混和剤である、項1~6のいずれか1項に記載の水硬性組成物用添加剤。
 項8.前記薄片状カーボンの炭素含有率が95.0質量%以上である、項1~7のいずれか1項に記載の水硬性組成物用添加剤。
 項9.前記薄片状カーボンの大きさが0.1~30.0μmである、項1~8のいずれか1項に記載の水硬性組成物用添加剤。
 項10.前記薄片状カーボンの厚みが0.335~100nmである、項1~9のいずれか1項に記載の水硬性組成物用添加剤。
 項11.前記薄片状カーボン100質量部に対して、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物を1~1000質量部含有する、項1~10のいずれか1項に記載の水硬性組成物用添加剤。
 項12.項1~11のいずれか1項に記載の水硬性組成物用添加剤の製造方法であって、
層状構造を有する炭素質材料、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物、及び溶媒を含有する炭素質材料分散体に対して、30MPa以上の加圧処理を行い、該加圧処理により、
(i)2個以上の前記炭素質材料分散体同士を衝突させること、
(ii)前記炭素質材料分散体と金属又はセラミックス材料とを衝突させること、及び
(iii)前記炭素質材料分散体を断面積1cm以下の空間を通過させること
よりなる群から選ばれる少なくとも1種の処理を行い、前記溶媒が水を含有し、且つ、該水の含有量が、前記溶媒中の70質量%以上である、製造方法。
 項13.項1~11のいずれか1項に記載の水硬性組成物用添加剤の製造方法であって、
回転する回転盤と、前記回転盤と略平行に設置された盤との間に、
層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物と、溶媒とを含む組成物を設置し、
前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加える工程
を備え、前記溶媒が水を含有し、且つ、該水の含有量が、前記溶媒中の70質量%以上である、製造方法。
 項14.前記加圧処理又はせん断処理の後、溶媒の一部又は全部を除去する、項12又は13に記載の製造方法。
 項15.項1~11のいずれか1項に記載の水硬性組成物用添加剤と、水硬性成分とを含有する、水硬性組成物。
 項16.前記水硬性組成物用添加剤の含有量が、前記水硬性成分100質量部に対して、0.01~10質量部である、項15に記載の水硬性組成物。
 項17.セメント水和生成物である、項15又は16に記載の水硬性組成物。
 項18.項15~17のいずれか1項に記載の水硬性組成物の製造方法であって、
水硬性粉体材料と、前記水硬性組成物用添加剤とを混合する工程
を備える、製造方法。
 項19.前記混合工程において、さらに、コンクリート用混和剤を混合する、項18に記載の製造方法。
 本発明によれば、効率的な方法で、水硬性組成物の強度を向上させることができる添加剤を提供することができる。なお、本発明においては、非特許文献1と比較すると、仕込みの黒鉛濃度を同じく5質量%とした場合に、約10000倍(収率0.01%に対して、100%の全量使用)の生産効率で、且つスケールアップも容易で、黒鉛のロスもない製法で水硬性組成物の強度を向上させることも可能である。
親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が少ない場合(薄片状カーボンの表面に親水基及び炭素と親和性の高い疎水基を有する有機化合物が被覆されている場合)の本発明の水硬性組成物用添加剤の構成を示す。 親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が多い場合(炭素と親和性の高い疎水基を有する有機化合物中に薄片状カーボンが分散している場合)の本発明の水硬性組成物用添加剤の構成を示す。 試験例6の結果を示すコンクリートの圧縮強度及び静弾性係数である。 試験例9の結果を示すモルタルの圧縮強度である。 試験例11の結果を示すモルタルの圧縮強度である。 試験例13の結果を示すモルタルの圧縮強度である。 試験例15の結果を示すコンクリートの圧縮強度である。 試験例16の結果を示すコンクリートの曲げ強度である。
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。
 また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。
 1.水硬性組成物用添加剤
 本発明の水硬性組成物用添加剤は、薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する。
 (1-1)薄片状カーボン
 薄片状カーボンは、強度向上剤として機能する。
 この薄片状カーボンとしては、水硬性組成物に対する強度向上特性の観点から、炭素含有率は高いことが好ましい。このような観点から、薄片状カーボンの炭素含有率は、薄片状カーボンの総量100質量%として、95.0質量%以上が好ましく、97.0質量%以上がより好ましく、97.5質量%以上がさらに好ましく、98.0質量%以上が特に好ましい。なお、薄片状カーボンの炭素含有率の上限値は特に制限はなく、通常100質量%である。
 薄片状カーボンとしては、薄いほうが水硬性組成物に対する強度向上特性に優れるため好ましいが、その厚みは0.335~100nmが好ましく、0.670~50nmがより好ましく、1~20nmがさらに好ましい。また、同様に、厚みが0.335~20nmである薄片状カーボンの含有割合は、薄片状カーボンの総数を100%として、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。つまり、厚みが大きい薄片状カーボンが含まれてもよいが、多数の薄片状カーボンの厚みは20nm以下であることが好ましい。なお、薄片状カーボンの厚みは、透過型電子顕微鏡(TEM)観察により測定する。
 薄片状カーボンは、薄いほうが水硬性組成物に対する強度向上特性に優れるため好ましいが、300層以下(つまり1~300層)のグラフェンが積層した層状構造を有する薄片状カーボンが好ましく、2~150層のグラフェンが積層した層状構造を有する薄片状カーボンがより好ましく、3~60層のグラフェンが積層した層状構造を有する薄片状カーボンがさらに好ましい。また、同様に、積層数が1~60層である薄片状カーボンの含有割合は、薄片状カーボンの総数を100%として、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。つまり、厚みが大きい薄片状カーボンが含まれてもよいが、多数の薄片状カーボンの厚みは60層以下であることが好ましい。なお、薄片状カーボンの積層は、透過型電子顕微鏡(TEM)観察により測定した厚みにより算出する。
 薄片状カーボンは、通常、多くの凸角と凹角を有する平面形状をしているため、厚み以外のサイズは一概には規定しにくい。本明細書では、一枚の薄片状カーボンにおいて最も離れている凸角間の距離をその薄片状カーボンの大きさとする。
 このような薄片状カーボンの大きさは、0.1~30.0μmが好ましく、0.3~20.0μmがより好ましく、0.5~15.0μmがさらに好ましい。このような大きさの薄片状カーボンを使用することにより、水硬性組成物に対する強度向上特性をさらに向上させやすい。また、薄片状カーボンの大きさは、透過型電子顕微鏡(TEM)観察により測定する。
 本発明の水硬性組成物用添加剤において、薄片状カーボンの含有量は、特に制限されないが、水硬性組成物に対する強度向上特性の観点から、本発明の水硬性組成物用添加剤の総量を100質量%として、1~50質量%が好ましく、2~40質量%がより好ましく、2.5~30質量%がさらに好ましい。
 (1-2)親水基及び炭素と親和性の高い疎水基を有する有機化合物
 本発明においては、親水基及び炭素と親和性の高い疎水基を有する有機化合物を使用することにより、グラフェン構造を維持した薄片状カーボンが凝集することなく、本発明の水硬性組成物用添加剤中の薄片状カーボンを均一分散した状態で維持することができ、この結果、水硬性組成物に対する強度向上特性を強化することができる。なお、親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボンを均一分散させるための分散剤としても機能し得る。
 このような親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、特に制限されるわけではなく、薄片状カーボンの分散剤として機能し得る種々多様な有機化合物(特に水溶性化合物)を使用し得る。
 なかでも、親水基及び炭素と親和性の高い疎水基を有する有機化合物が有する疎水基としては、特に制限はないが、アルキル基、アルケニル基、シクロアルキル基、アリール基、炭素数3以上のポリオキシアルキレン基等が好ましい。親水基及び炭素と親和性の高い疎水基を有する有機化合物は、このような疎水基を、1種又は2種以上含むことができる。また、複数の疎水基を使用する場合には、同じ疎水基を複数用いてもよいし、同じ疎水基を複数用いてもよいし、異なる疎水基を複数用いてもよい。
 アルキル基としては、直鎖状アルキル基でも分岐鎖状アルキル基でもよいが、炭素との親和性の観点から、直鎖状アルキル基が好ましい。また、アルキル基の炭素数は、炭素との親和性の観点から、2以上が好ましく、3~22がより好ましく、4~18がさらに好ましい。このようなアルキル基としては、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ウンデシル基、n-ドデシル基(又はn-ラウリル基)、n-トリデシル基、n-テトラデシル基(又はn-ミリスチル基)、n-ペンタデシル基、n-ヘキサデシル基(又はn-セチル基)、n-オクタデシル基等が挙げられる。
 このアルキル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、シクロアルキル基、アリール基、アラルキル基等が挙げられる。なお、シクロアルキル基及びアリール基としては、後述のものが例示される。
 アルキル基の置換基としてのアラルキル基としては、後述のアリール基と炭素数1~6のアルキル基を有する炭素数7~14のアラルキル基が好ましく、具体的には、ベンジル基、フェネチル基等が好ましい。
 なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性、水硬性組成物に対する強度向上特性等を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
 アルケニル基としては、炭素との親和性と水溶性の観点から、炭素数は2以上が好ましく、3~100がより好ましく、4~30がさらに好ましい。このようなアルケニル基としては、例えば、ブテニル基、ヘキセニル基、オクテニル基、デセニル基、ドデセニル基、オレイル基、リノレイル基等が挙げられる。
 このアルケニル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基等が挙げられる。なお、アラルキル基としては前記したものが例示され、シクロアルキル基及びアリール基としては、後述のものが例示される。
 アルケニル基の置換基としてのアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が好ましい。
 なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性、水硬性組成物に対する強度向上特性等を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
 シクロアルキル基としては、炭素数5~10(好ましくは5~8、特に5~6)のシクロアルキル基が好ましく、具体的には、シクロペンチル基、シクロへキシル基等が好ましい。
 このシクロアルキル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、アリール基、アラルキル基等が挙げられる。
 シクロアルキル基の置換基としてのアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が好ましい。
 シクロアルキル基の置換基としてのアリール基及びアラルキル基としては、前記例示したものが挙げられる。
 なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性、水硬性組成物に対する強度向上特性等を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
 アリール基としては、炭素数6~22(特に6~18)のアリール基が好ましく、単環アリール基、縮環アリール基及び多環アリール基のいずれも採用でき、例えば、フェニル基、ナフチル基、アントラセニル基、テトラセニル基、フェナントレニル基、ビフェニル基、ターフェニル基、フルオレニル基、アセナフテニル基、アセナフチレニル基、ピレニル基、クリセニル基、トリフェニレニル基等が挙げられる。
 このアリール基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、フェノール性水酸基、アルキル基、ヒドロキシアルキル基、ホルミルアルキル基、シクロアルキル基、アラルキル基、アルコキシ基等が挙げられる。
 アリール基の置換基としてのアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が好ましい。
 アリール基の置換基としてのヒドロキシアルキル基としては、炭素数1~6のヒドロキシアルキル基が好ましく、具体的には、ヒドロキシメチル基(-CHOH)、2-ヒドロキシエチル基(-CHCHOH)、2-ヒドロキシプロピル基(-CHCHOHCH)、3-ヒドロキシプロピル基(-CHCHCHOH)等が好ましい。
 アリール基の置換基としてのホルミルアルキル基としては、炭素数1~6のホルミルアルキル基が好ましく、具体的には、ホルミルメチル基(-CHCHO)、2-ホルミルエチル基(-CHCHCHO)、3-ホルミルプロピル基(-CHCHCHCHO)等が好ましい。
 アリール基の置換基としてのシクロアルキル基及びアラルキル基としては、前記例示したものが挙げられる。
 アリール基の置換基としてのアルコキシ基としては、炭素数1~6のアルコキシ基が好ましく、具体的には、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基等が好ましい。
 なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。
 上記したアリール基としては、炭素との親和性や、水硬性組成物に対する強度向上特性等の観点から、少なくとも1つの酸素原子が結合しているアリール基(フェノール性水酸基が結合したアリール基等)、2個以上の芳香環を有するアリール基(縮環アリール基及び多環アリール基)等が好ましい。
 ポリオキシエチレン基は通常親水性であるが、ポリオキシプロピレン基、ポリオキシブチレン基等、炭素数3以上のポリオキシアルキレン基は重合度が上がるほど疎水性が増し、疎水基として機能する。特に重合度4以上のポリオキシプロピレン基、重合度3以上のポリオキシブチレン基が好ましい。ただし、水硬性組成物に対する溶解性及び水硬性組成物添加後の流動性の観点では、炭素数3以上のポリオキシアルキレン基部分の重合度は10000以下が好ましい。例えば、ポリオキシエチレン-ポリオキシプロピレンやポリオキシエチレン-ポリオキシブチレンを親水基及び炭素と親和性の高い疎水基を有する有機化合物として使用した場合には、ポリオキシプロピレン基及びポリオキシブチレン基も疎水基として機能し得る。
 この炭素数3以上のポリオキシアルキレン基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、シクロアルキル基、アラルキル基、アリール基等が挙げられる。
 炭素数3以上のポリオキシアルキレン基の置換基としてのアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が好ましい。
 炭素数3以上のポリオキシアルキレン基の置換基としてのシクロアルキル基、アラルキル基及びアリール基としては、前記例示したものが挙げられる。
 なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性、水硬性組成物に対する強度向上特性等を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
 このような疎水基としては、炭素との親和性や、水硬性組成物に対する強度向上特性等の観点から、アリール基及び炭素数3以上のポリオキシアルキレン基が好ましく、アリール基がより好ましく、少なくとも1つの酸素原子が結合しているアリール基(フェノール性水酸基が結合したアリール基等)及び2個以上の芳香環を有するアリール基(縮環アリール基及び多環アリール基)がさらに好ましい。具体的には、ヒドロキシフェニル基、メトキシフェニル基、3-ヒドロキシプロピルフェニル基、ナフチル基、ヒドロキシナフチル基、アントラセニル基、ヒドロキシアントラセニル基、テトラセニル基、ヒドロキシテトラセニル基、フェナントレニル基、ヒドロキシフェナントレニル基、ビフェニル基、ヒドロキシビフェニル基、ターフェニル基、フルオレニル基、ヒドロキシフルオレニル基、アセナフテニル基、アセナフチレニル基、ピレニル基、クリセニル基、トリフェニレニル基、重合度4以上のポリオキシプロピレン基、重合度3以上のポリオキシブチレン基等が好ましい。
 また、親水基及び炭素と親和性の高い疎水基を有する有機化合物が有する親水基としては、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物の水に対する溶解度を上昇させることができるものであれば特に制限はないが、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点から、一般式(1)~(6):
Figure JPOXMLDOC01-appb-C000003
[式中、一般式(1)の-OHは水酸基を示す。一般式(2)の酸素原子はエーテル結合を示す。一般式(5)は酸無水物基を示す。Rは2価の有機基を示す。Rは水素原子又はアルキル基を示す。Xは水素原子、アルカリ金属、NH又は有機アンモニウムを示す。Xは水素原子、アルカリ金属、NH、有機アンモニウム又はアルキル基を示す。]
で表される親水基が好ましい。親水基及び炭素と親和性の高い疎水基を有する有機化合物は、このような親水基を、1種又は2種以上含むことができる。また、複数の親水基を使用する場合には、同じ親水基を複数用いてもよいし、同じ一般式で表される親水基を複数種用いてもよいし、異なる一般式で表される親水基を複数種用いてもよい。
 一般式(1)において、-OHは水酸基を示し、なかでも、親水性の観点から、アルコール性水酸基を示すことが好ましい。
 一般式(2)において、Rで示される2価の有機基としては、特に制限されず、2価の炭化水素基が好ましい。2価の炭化水素基としては、脂肪族炭化水素基(アルキレン基(又はアルキリデン基)、シクロアルキレン基、アルキレン(又はアルキリデン)-シクロアルキレン基、ビ又はトリシクロアルキレン基等)、芳香族炭化水素基(アリーレン基、アルキレン(又はアルキリデン)-アリーレン基等)等が挙げられる。
 一般式(2)において、基Rで示されるアルキレン基(又はアルキリデン基)としては、アルキレン基が好ましく、C1-8アルキレン基がより好ましく、C1-4アルキレン基がさらに好ましく、C2-4アルキレン基が特に好ましく、C2-3アルキレン基が最も好ましい。具体的には、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピレン基、プロピリデン基、テトラメチレン基、エチルエチレン基、ブタン-2-イリデン基、1,2-ジメチルエチレン基、ペンタメチレン基、ペンタン-2,3-ジイル基等が例示できる。
 一般式(2)において、基Rで示されるシクロアルキレン基としては、C5-10シクロアルキレン基が好ましく、C5-8シクロアルキレン基がより好ましい。具体的には、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、シクロへプチレン基等が例示できる。
 一般式(2)において、基Rで示されるアルキレン(又はアルキリデン)-シクロアルキレン基としては、アルキレン-シクロアルキレン基が好ましく、C1-6アルキレン-C5-10シクロアルキレン基がより好ましく、C1-4アルキレン-C5-8シクロアルキレン基がさらに好ましい。具体的には、メチレン-シクロへキシレン基、エチレン-シクロへキシレン基、エチレン-メチルシクロへキシレン基、エチリデン-シクロへキシレン基等が例示できる。
 一般式(2)において、基Rで示されるビ又はトリシクロアルキレン基としては、具体的には、ノルボルナン-ジイル基等が例示できる。
 一般式(2)において、基Rで示されるアリーレン基としては、C6-10アリーレン基が好ましい。具体的には、フェニレン基、ナフタレンジイル基等が例示できる。
 一般式(2)において、基Rで示されるアルキレン(又はアルキリデン)-アリーレン基としては、アルキレン-アリーレン基が好ましく、C1-6アルキレン-C6-20アリーレン基がより好ましく、C1-4アルキレン-C6-10アリーレン基がさらに好ましく、C1-2アルキレン-フェニレン基が特に好ましい。具体的には、メチレン-フェニレン基、エチレン-フェニレン基、エチレン-メチルフェニレン基、エチリデンフェニレン基等が例示できる。
 これらのうち、2価の脂肪族炭化水素基、特に、アルキレン基(例えば、メチレン基、エチレン基等のC1-4アルキレン基等)が好ましい。
 なお、アルキレン(若しくはアルキリデン)-シクロアルキレン基並びにアルキレン(アルキリデン)-アリーレン基とは、-R-R-(式中、Rは、一般式(2)において、それぞれ別個の酸素原子に結合したアルキレン基又はアルキリデン基、Rはシクロアルキレン基又はアリーレン基を示す)で表される基を示す。
 このような一般式(2)で表される親水基としては、特に制限されず、例えば、-CO-、-CO-、-CHO-等が使用され得る。これらを複数(好ましくは3~100個)有するものも好ましく使用することができ、例えば、トリオキシエチレン基、テトラオキシエチレン基、ポリオキシメチレン基、ポリオキシエチレン基等を使用することができる。ただし、炭素数3以上のポリオキシアルキレン基は、上記のとおり疎水基であることから、Rの炭素数が3以上の場合は、この一般式(2)で表される親水基を単独で含む(複数回繰り返さない)ことが好ましい。
 このような一般式(2)で表される親水基、特にポリオキシエチレン基を有する場合は、水硬性組成物に対する強度向上特性等の強化特性に特に優れる。
 一般式(3)において、Xで示されるアルカリ金属としては、特に制限されず、ナトリウム、カリウム、リチウム等が挙げられる。
 一般式(3)において、Xで示される有機アンモニウムとしては、第四級アンモニウムが好適であり、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等が好適に使用され得る。
 このような一般式(3)で表される親水基としては、特に制限されないが、例えば、-SO 、-SO Na、-SO 、-SO Li、-SO NH 、-SO N(CH 、-SO N(C 、-SO N(C 、-SO N(C 等が挙げられる。
 一般式(4)において、Xで示されるアルカリ金属及び有機アンモニウムとしては、上記例示したものが挙げられる。
 一般式(4)において、Xで示されるアルキル基としては、直鎖状アルキル基でも分岐鎖状アルキル基でもよいが、炭素との親和性や、水硬性組成物に対する強度向上特性等の強化特性の観点から、直鎖状アルキル基が好ましい。また、アルキル基の炭素数は、炭素との親和性や、水硬性組成物に対する強度向上特性等の観点から、1~2が好ましい。
 このような一般式(4)で表される親水基としては、特に制限されないが、例えば、-COOH、-COONa、-COOK、-COOLi、-COONH、-COON(CH、-COON(C、-COON(C 、-COON(C 等が挙げられる。
 一般式(5)で示される基は、酸無水物基を示す。
 これら親水基のなかでも、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点から、一般式(1)~(5)で表される親水基が好ましく、一般式(1)~(4)で表される親水基がより好ましく、一般式(1)、(3)及び(4)で表される親水基がさらに好ましい。具体的には、アルコール性水酸基、エーテル基、-SOH、-SONa、-COOH、-COONa、-COOCH、酸無水物基、ポリオキシエチレン基等が好ましく、アルコール性水酸基、エーテル基、-SOH、-SONa、ポリオキシエチレン基等がより好ましく、アルコール性水酸基、-SOH、-SONa等がさらに好ましい。
 また、本発明において、親水基及び炭素と親和性の高い疎水基を有する有機化合物として、非イオン系材料(ノニオン界面活性剤等)を使用する場合には、そのHLB値は、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の強化特性等の観点から、12以上が好ましく、13~19がより好ましい。なお、疎水基を同じとした場合(薄片状カーボンとの親和性が同程度の場合)には、HLB値は高いほど好ましい。
 上記のような条件を満たす親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、特に制限はないが、AE剤、減水剤、硬化促進剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤等のコンクリート用化学混和剤が挙げられる。これらのなかから、単独で用いることもでき、2種以上を組合せて用いることもできる。なお、これらの化学混和剤は、JIS A 6204に準拠したものである。
 AE剤としては、特に制限はないが、(特殊)アニオン系界面活性剤、アルキルエーテル系アニオン界面活性剤、(天然)樹脂酸塩系(特殊)アニオン界面活性剤、カルボン酸系アニオン界面活性剤、(変性)ロジン系アニオン界面活性剤、天然樹脂酸系/アルキルエーテル系アニオン界面活性剤、(特殊)ノニオン系界面活性剤、(特殊)アニオン系/ノニオン系界面活性剤、スルホン酸炭化水素、ラウリル酸イミダゾリン誘導体、ポリオキシエチレンアルキルエーテル硫酸塩等が挙げられる。これらのAE剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 減水剤としては、特に制限はないが、標準型減水剤として、ナフタレンスルホン酸化合物、(変性)リグニンスルホン酸化合物、メチロールメラミン縮合物、ポリカルボン酸化合物、ポリカルボン酸エーテル化合物、オキシカルボン酸化合物等が挙げられ;遅延型減水剤として、ナフタレンスルホン酸ホルマリン(高)縮合物、(変性)リグニンスルホン酸化合物、オキシカルボン酸化合物等が挙げられる。これらの減水剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 硬化促進剤としては、特に制限はないが、窒素系無機塩化合物(亜硝酸塩化合物、硝酸塩化合物等)、カルシウムシリケート水和物等が挙げられる。これらの硬化促進剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 AE減水剤としては、特に制限はないが、標準型AE減水剤として、(変性)リグニンスルホン酸化合物、(天然)樹脂酸塩化合物、有機酸化合物、(特殊)エーテル化合物、ポリエーテル化合物、(変性)ポリオール化合物、セルロースエーテル化合物、ポリカルボン酸化合物、ポリカルボン酸エーテル化合物、ポリカルボン酸ポリエーテルポリマー、ポリアルキレングリコール化合物、ポリカルボン酸化合物、オキシカルボン酸化合物、PAE化合物等が挙げられ;遅延型AE減水剤として、(変性)リグニンスルホン酸化合物、ポリカルボン酸化合物、ヒドロキシカルボン酸化合物、オキシカルボン酸化合物、有機酸化合物、グリシトール化合物、天然樹脂酸化合物、ポリエーテル化合物、(特殊)エーテル化合物、変性ポリオール化合物、ポリアルキレングリコール化合物、ポリカルボン酸エーテル化合物、ポリカルボン酸ポリエーテルポリマー、セルロースエーテル化合物、PAE化合物等が挙げられ;促進型AE減水剤として、(変性)リグニンスルホン酸化合物、窒素系無機塩化合物(亜硝酸塩化合物、硝酸塩化合物等)、ポリカルボン酸化合物、有機酸化合物、ポリカルボン酸エーテル化合物、変性ポリオール化合物、ロダン化合物、アミン化合物等が挙げられる。なお、PAE化合物は、所定の重縮合生成物からなる分散剤を意味しており、その詳細は、国際公開第2019/116425号にも記載されているので、当該記載を援用する。これらのAE減水剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 高性能減水剤としては、特に制限はないが、ナフタレンスルホン酸化合物、ナフタレンスルホン酸ホルマリン(高)縮合物、ポリエーテル化合物、(変性)ポリオール化合物、カルボキシ基含有ポリエーテル化合物、ポリアルキレングリコール化合物、ポリカルボン酸化合物、ポリカルボン酸・(特殊)増粘剤複合体、ポリカルボン酸エーテル化合物、メラミンスルホン酸化合物、メラミンスルホン酸(高)縮合物塩、アミノスルホン酸化合物、含窒素スルホン酸塩、アミドスルホン酸変性メラミン縮合物、アルキルアリルスルホン酸塩(高)縮合物、(変性)メチロールメラミン縮合物、エステル化合物、ポリカルボン酸エーテル系化合物、PAE化合物等が挙げられる。なお、PAE化合物は、所定の重縮合生成物からなる分散剤を意味しており、その詳細は、国際公開第2019/116425号にも記載されているので、当該記載を援用する。これらの高性能減水剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 高性能AE減水剤としては、特に制限はないが、標準型高性能AE減水剤として、(変性)リグニンスルホン酸化合物、アミノスルホン酸化合物、ポリカルボン酸化合物、ポリエーテル化合物、カルボキシ基含有ポリエーテル化合物、ポリアルキレングリコール化合物、エステル化合物、PAE化合物等が挙げられ;遅延型高性能AE減水剤として、(変性)リグニンスルホン酸化合物、ポリカルボン酸化合物、ポリカルボン酸エーテル化合物、ポリエーテル化合物、カルボキシ基含有ポリエーテル化合物、ポリアルキレングリコール化合物、PAE化合物等が挙げられる。なお、PAE化合物は、所定の重縮合生成物からなる分散剤を意味しており、その詳細は、国際公開第2019/116425号にも記載されているので、当該記載を援用する。これらの高性能AE減水剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 流動化剤としては、特に制限はないが、標準型流動化剤として、メラミンスルホン酸化合物、アルキルアリルスルホン酸(高)縮合物、(特殊)ポリカルボン酸化合物、ポリカルボン酸エーテル化合物、(特殊)ヒドロキシカルボン酸化合物、オキシカルボン酸化合物、ポリアルキレングリコール化合物等が挙げられ;遅延型流動化剤として、ポリカルボン酸化合物、ポリカルボン酸エーテル化合物等が挙げられる。これらの流動化剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 このような親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、例えば、花王(株)製のマイテイAE-03、マイテイ100、マイテイ150、マイテイ150RX、マイテイ21HS、マイテイ21VS、マイテイ21HF、マイテイ21LV、マイテイ21LV-S、マイテイ21HP、マイテイ3000TH、マイテイ150R、マイテイ1000S、マイテイ1000Z、マイテイ1000SR、マイテイ1000ZR、マイテイ3000S、マイテイ3000H、マイテイ3000V、マイテイ3000SR;GCPケミカルズ製のダラベアAEA、ダラベアAEA-FA、ダラベアTA、ダラベアAEA-S、ダラベアAE-140G、ダラタード、ダラタードHCブロックミックスS、ダラセムM-F、ダラセムM、ダラセムM-E、ダラセムMR-F、ダラセムMR、ブロックミックスD、ブロックミックスG、スーパー200、スーパー120IF、スーパー300N、スーパー300M、スーパー300E、スーパー300ES、スーパー300CF、スーパー300K、スーパー300P、スーパー1000N、スーパー1000N-213、スーパー100pHX、スーパー100pHW、スーパー100pEC、スーパー20F、スーパー30F、FT-3S、FTN-30、FTN-30S、ADVA-CAST、ADVA-SHOT、ADVA-FLOW、ADVA-SRA100、ADVA-PLUS、ポーラーセット、ポーラーセットN-2、ポーラーセットEX-3、WRDA、P-7、F-1、F-1P、F-1R、NC-3;竹本油脂(株)製のAE-200、AE-300、AE-400、チューポールC、チューポールFA-10、チューポールNV-80、チューポールNV-80E、チューポールNV-S、チューポールSSP-104、チューポールSSP-104H、チューポールHSP、チューポールEX、チューポールEX20、チューポールEX50、チューポールEX60、チューポールEX60T、チューポールEX60LB、チューポールLS-A、チューポールNR、チューポールNR20、チューポールEX50R、チューポールEX60R、チューポールEX60TR、チューポールEX60LBR、チューポールLS-AR、チューポールNZ、チューポールHP-8、チューポールHP-11、チューポールHP-11W、チューポールSR、チューポールHP-70、チューポールHP-70B、チューポールHF-70、チューポールHF-70R、ポールファインMF、ポールファイン510、ポールファインSPA-2、ハイフルードH;日本シーカ(株)製のシーカAER-20、シーカAER-50、シーカAER-G、シーカAER-FA、シーカPC-165A、シーカAF-15、シーカメントFF、シーカメントFF86、シーカメント1200N、シーカメント1200N-AS、シーカメント2200、シーカメント2400、シーカメント2200FS、シーカメントFF24、シーカメントJ、シーカメントJS、シーカメントJS-AS、シーカメントJR、シーカメントJSR、シーカメントJSR-AS、シーカメント1100NT、シーカメント1100NT-AS、シーカメント1100NT-H、シーカメント2300、シーカメント2500、シーカメント1100NTV、シーカメント2300FS、シーカメントOVSP、シーカラピッドC-100WS、プラストクリートNC、プラストクリート20N、プラストクリート30N、プラストクリートR、プラストクリート20R、プラストクリート30R、プラスチメント;BASFジャパン(株)製のマスターエア101、マスターエア202、マスターエア303A、マスターエア775、マスターエア775S、マスターエア785、マスターエア785D、マスターグレニウムSP8HU、マスターグレニウム8000S、マスターグレニウム8000E、マスターグレニウム8000H、マスターグレニウム8000P、マスターグレニウム8000W、マスターグレニウム8000DS、マスターグレニウムNT1000、マスターグレニウムNT500、マスターグレニウムACE390、マスターグレニウム6520、マスターグレニウムUG2000、マスターグレニウムSP8N、マスターグレニウムSP8S、マスターグレニウムSP8SV、マスターグレニウムSP8SB、マスターグレニウムSP8HV、マスターグレニウム800S、マスターグレニウム6500、マスターグレニウムNP80、マスターグレニウム6510、マスターイース5070、マスターイース3030、マスターイース8000、マスターシュア350、マスターポゾリスNo.89、マスターポゾリスNo.70、マスターポゾリスNo.70L、マスターポゾリス78S、マスターポゾリス78P、マスターポゾリスNo.75、マスターポゾリスNo.8、マスターポゾリスNo.70LR、マスターポゾリス78R、マスターセットFZP99、マスターエックスシード120JP、マスターポリヒード15L、マスターポリヒード15S、マスターポリヒード15SC、マスターポリヒード15H、マスターポリヒード15DS、マスターポリヒード15LR、マスターポリヒード15SR、マスターポリヒード15SRC、マスターポリヒード15HR、マスターポリヒード15DSR、マスターポリヒード1505、マスターポリヒード2000、マスターポリヒード1500、マスターレオシュア150、マスターレオシュア700、マスターレオシュア155、マスターレオシュア705、ノンフリーズ;(株)フローリック製のフローリックAE-4、フローリックAE-6、フローリックAE-9B、フローリックAE150、フローリックAE400、フローリックMA、フローリックPS、フローリックPSR110、フローリックMS、フローリックVP200、フローリックPC、フローリックVP700、フローリックVP900M、フローリックVP900A、フローリックSF500U、フローリックSF500UK、フローリックTN、フローリックH60、フローリックVP10、フローリックPA、フローリックT、フローリックAFP-2、フローリックS、フローリックSG、フローリックSV、フローリックLB、フローリックSV10L、フローリックSV10、フローリックSV10H、フローリックSV10K、フローリックR、フローリックRG、フローリックRV、フローリックRV10L、フローリックRV10、フローリックRV10H、フローリックRV10K、フローリックA、フローリックAC、フローリックAFP、フローリックSF200S、フローリックSF500S、フローリックSF500H、フローリックSF500SK、フローリックSF500F、フローリックSF500BB、フローリックFBP、フローリックNSW、フローリックSF500FP、フローリックFBL-200;山宗化学(株)製のヴィンソル、ヴィンソルW、ヴィンソル70、ヴィンソル70LT、ヴィンソル80、ヴィンソル80S、ヴィンソル80R、ヴィンソル80SR、ヴィンソル80NC、ヤマソーAE456、ヤマソーV1H-U、ヤマソーR、ヤマソーウインS、ヤマソー80P、ヤマソー90、ヤマソー90SE、ヤマソー02NL、ヤマソー02NL-P、ヤマソー09NL、ヤマソー09NL-P、ヤマソーDS-X、ヤマソー16NB、ヤマソー90R、ヤマソー90SER、ヤマソー02NLR、ヤマソー02NLR-P、ヤマソー09NLR、ヤマソー09NLR-P、ヤマソーDSR-X、ヤマソー16NBR、ヤマソーV1S、ヤマソーV1H、ヤマソーV1-DS、ヤマソーV1-FT、ヤマソーウイン;日産化学工業(株)製のアクセリート100、スーパーメラミン;ライオン(株)製のレオパックG-100、レオパックG-200等を使用できる。これらの親水基及び炭素と親和性の高い疎水基を有する有機化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これらの2種以上からなる複合体を使用することもできる。
 本発明の水硬性組成物用添加剤中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点から、本発明の水硬性組成物用添加剤の総量を100質量%として、0.1~50質量%が好ましく、0.2~40質量%がより好ましく、0.3~30質量%がさらに好ましい。
 また、本発明の水硬性組成物用添加剤中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点から、薄片状カーボン100質量部に対して、10~1000質量部が好ましく、20~500質量部がより好ましく、30~300質量部がさらに好ましい。
 なお、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が少ない場合には、本発明の水硬性組成物用添加剤は、薄片状カーボンの表面に親水基及び炭素と親和性の高い疎水基を有する有機化合物が被覆されている構成を有する(図1)。一方、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が多い場合には、本発明の水硬性組成物用添加剤は、炭素と親和性の高い疎水基を有する有機化合物中に薄片状カーボンが分散している構成を有する(図2)。いずれの場合も、親水基及び炭素と親和性の高い疎水基を有する有機化合物が薄片状カーボンの周囲に介在することで、薄片状カーボンの凝集を抑制し、薄片状カーボンの分散性を向上させ、水硬性組成物に対する強度向上特性を向上させることができる材料を得ることができる。
 (1-3)他の成分
 本発明の水硬性組成物用添加剤において、薄片状カーボン、並びに親水基及び炭素と親和性の高い疎水基を有する有機化合物以外にも、他の成分を含ませてもよい。このような他の成分としては、例えば、カーボンファイバー(特に繊維径500nm以下のカーボンナノファイバー)、活性炭、カーボンブラック(アセチレンブラック、オイルファーネスブラック等;特に導電性が高く、比表面積が大きいケッチェンブラック)、ガラス状カーボン、カーボンマイクロコイル、フラーレン、バイオマス系炭素材料(バガス、ソルガム、木くず、おがくず、竹、木皮、稲ワラ、籾殻、コーヒーかす、茶殻、おからかす、米糠、パルプくず等を原料としたもの;リグニンから製造したカーボンファイバー等)、セルロースナノファイバー、窒化ホウ素、モリブデン化合物(二硫化モリブデン、有機モリブデン等)、二硫化タングステン、メラミンシアヌレート、フタロシアニン、酸化鉛、フッ化カルシウム、層状鉱物(マイカ、タルク等)等を、本発明の効果を損なわない範囲で使用することもできる。
 ただし、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点からは、他の成分の含有量は少ないことが好ましく、本発明の水硬性組成物用添加剤の総量を100質量%として、0.01~10質量%が好ましく、0.02~5質量%がより好ましい。
 このような本発明の水硬性組成物用添加剤の形状としては、特に制限はなく、塗膜、シート、塊状体等を挙げることができる。また、固体に限定されることなく、水を含有し、後述の水分散体とすることもできる。
 このような本発明の水硬性組成物用添加剤は、上記のとおり、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性に優れ、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性を向上させることができる材料である。
 このような本発明の水硬性組成物用添加剤は、水硬性組成物に添加して、硬化後の強度を向上させることができる材料であり、ペースト、モルタル、コンクリート等に用いることができる。
 2.水硬性組成物用添加剤の製造方法
 本発明の水硬性組成物用添加剤は、例えば、水を含有し、且つ、水の含有量が、溶媒中の70質量%以上含有する溶媒を用いて、
層状構造を有する炭素質材料、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物、及び溶媒を含有する炭素質材料分散体に対して、30MPa以上の加圧処理を行い、該加圧処理により、
(i)2個以上の前記炭素質材料分散体同士を衝突させること、
(ii)前記炭素質材料分散体と金属又はセラミックス材料とを衝突させること、及び
(iii)前記炭素質材料分散体を断面積1cm以下の空間を通過させること
よりなる群から選ばれる少なくとも1種の処理を行ったり、或いは、
回転する回転盤と、前記回転盤と略平行に設置された盤との間に、
層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物と、溶媒とを含む組成物を設置し、
前記回転盤と前記盤との最短距離が50μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加えたりすること
により、本発明の水硬性組成物用添加剤を製造することができる。
 (2-1)分散体(薄片状カーボン分散体)
 薄片状カーボンと、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物と、溶媒とを含有する分散体(薄片状カーボン分散体)において、薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物については、上記した説明を採用することができる。また、薄片状カーボン分散体には、必要に応じて、上記した他の成分を含ませることもできる。
 この薄片状カーボン分散体は、分散液として形成してもよいし、基板上に塗膜として形成してもよい。この際、薄片状カーボン分散体(薄片状カーボン分散液又は薄片状カーボン塗膜)を作製するために使用される溶媒としては、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点から、水を主溶媒として用いることが好ましい。
 使用する溶媒中の水の含有量は、特に制限されないが、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点から、溶媒の総量を100質量%として、70質量%以上(70~100質量%)が好ましく、75~100質量%がより好ましい。
 なお、本発明において、溶媒としては、水のみを使用してもよく、有機溶媒は必ずしも使用しなくてもよいが、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水への溶解性をより向上させるために、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等の一価アルコール;エチレングリコール、グリセリン等の多価アルコール;2-メトキシエタノール等の有機溶媒を使用してもよい。
 使用する溶媒中の有機溶媒の含有量は、親水基及び炭素と親和性の高い疎水基を有する有機化合物の溶解度、水硬性組成物に対する強度向上特性等の観点から、溶媒の総量を100質量%として、30質量%以下(0~30質量%)が好ましく、5~25質量%がより好ましい。
 上記薄片状カーボン分散体において、薄片状カーボンの含有量は、特に制限されないが、本発明の水硬性組成物用添加剤の組成としやすい観点から、薄片状カーボン分散体の総量を100質量%として、30質量%以下が好ましく、0.001~20質量%がより好ましく、0.1~10質量%がさらに好ましい。また、同様に、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、本発明の耐久性向上剤の組成としやすい観点から、薄片状カーボン分散体の総量を100質量%として、0.01~50質量%が好ましく、0.1~40質量%がより好ましく、0.5~30質量%がさらに好ましい。同様に、上記薄片状カーボン分散体中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、本発明の水硬性組成物用添加剤の組成としやすい観点から、薄片状カーボン100質量部に対して、10~1000質量部が好ましく、20~500質量部がより好ましく、30~300質量部がさらに好ましい。さらに、溶媒の含有量は、特に制限されないが、本発明の水硬性組成物用添加剤の組成としやすい観点から、薄片状カーボン分散体の総量を100質量%として、50~99.9998質量%が好ましく、60~99.998質量%がより好ましく、70~99.98質量%がさらに好ましい。
 (2-2)薄片状カーボン分散体の製造方法
 本発明において、上記薄片状カーボン分散体の製造方法は、特に制限されず、溶媒に対して薄片状カーボン及び親水基及び炭素と親和性の高い疎水基を有する有機化合物を投入することもできる。具体的には、親水基及び炭素と親和性の高い疎水基を有する有機化合物の分散体に薄片状カーボンを投入することもできるし、薄片状カーボンの分散体に親水基及び炭素と親和性の高い疎水基を有する有機化合物を投入することもできる。また、溶媒中に、薄片状カーボン及び親水基及び炭素と親和性の高い疎水基を有する有機化合物を同時に投入することもできる。
 ただし、薄片状カーボンの分散性をより向上させて凝集しにくくし、得られる本発明の水硬性組成物の強度をさらに高める観点からは、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加えることが好ましい(磨砕法)。
 また、薄片状カーボン分散体は、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物に対して、30MPa以上の加圧処理を行うことによっても好ましく製造することができる(高圧分散法)。
 従来は、湿式法にて薄片状カーボンを作製する場合、薄片状カーボンの酸化物及び水性溶媒を含む水分散体に還元処理を施していたが、この方法ではグラフェン構造を維持することが困難であるとともに、得られる薄片状カーボンが激しく凝集してしまうため、薄片状カーボン水分散体を得ることは困難であった。また、安全性の観点でも問題があった。一方、本発明においては、親水基及び炭素と親和性の高い疎水基を有する有機化合物を使用することにより、グラフェン構造を維持した薄片状カーボンが凝集することなく、均一分散した状態(薄片状カーボン分散体)で薄片状カーボンを得ることができ、得られる薄片状カーボンも破壊されにくく、短時間で薄片状カーボンを得ることもできるうえに剥離し損ねた塊も残存しにくい。この際、親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボンを均一分散させるための分散剤としても機能し得る。
 また、せん断方法によれば、力のかかる方向が層状構造を有する炭素質材料の面方向と平行であり、且つ、狭い空間で処理するため、従来の高速攪拌、超音波処理等による製造方法と比較して、破壊が少なく、大きめのサイズの薄片状カーボン(例えば、大きさが1μm以上の薄片状カーボン)を得ることができ、剥離の効率がよく短時間(少ないパス回数)で処理を行うことができるとともに、剥離し損ねた厚みのある塊が残りにくい。
 層状構造を有する炭素質材料
 層状構造を有する炭素質材料としては、特に制限はないが、天然黒鉛、人造黒鉛、膨張黒鉛、土状黒鉛、酸化黒鉛等が挙げられる。酸化黒鉛とは、例えば、硫酸、硝酸、過マンガン酸カリウム、過酸化水素等の1種以上の酸化剤により酸化された黒鉛が使用され得る。例えば、ハマーズ法により酸化黒鉛を得る場合には、黒鉛を濃硫酸中に浸し、過マンガン酸カリウムを加えて黒鉛を酸化させた後、反応物を希硫酸及び/又は過酸化水素でクエンチし、その後、蒸留水で洗浄すること等により、炭素原子に酸素原子が結合し、層間に酸素原子が導入されて酸化黒鉛を得ることができる。
 なかでも、酸素等の異種原子を含まない純度の高い薄片状カーボンを得ようとする場合には、黒鉛を原料として用いることが好ましく、天然黒鉛及び膨張黒鉛がより好ましい。なお、膨張黒鉛を使用する場合は、グラフェン構造の酸化が少ない膨張黒鉛を採用することが好ましい。また、膨張黒鉛を使用する場合は、300~1000℃程度で10秒~5時間程度加熱処理を加えてから用いてもよい。これにより、適度に膨張させた膨張黒鉛とすることも可能である。
 また、製造の容易さを重視する場合には、酸化黒鉛を使用してもよい。酸化黒鉛を使用することにより、層間に溶媒分子が挿入されやすく、層方向にのみ剥離させることが容易であり、薄片化効率及び分散性が向上するため、処理時間をより短くすることが可能である。ただし、酸化黒鉛を使用する場合には、後に還元処理が必要となり、グラフェン構造、導電性及び強度をより維持する観点からは、他の材料(天然黒鉛、人造黒鉛、膨張黒鉛、土状黒鉛)が好ましい。
 一方、分散性をより向上させるために、土状黒鉛を採用することも可能である。ただし、結晶性、純度及び構造維持の観点からは、他の材料(天然黒鉛、人造黒鉛、膨張黒鉛、酸化黒鉛)が好ましい。
 また、得られる薄片状カーボンの結晶性、強度、構造維持等を重視する場合には、人造黒鉛を使用することもできる。
 本発明において、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物における層状構造を有する炭素質材料の含有量は、特に制限されないが、薄片状カーボン分散体を製造するために用いられる組成物の総量を100質量%として、30質量%以下が好ましく、0.001~20質量%がより好ましく、0.1~10質量%がさらに好ましい。なお、層状構造を有する炭素質材料の含有量は、薄いほうが薄片化(層間剥離)がより起こりやすいために薄片状カーボンをより効率的に得られ、処理回数をより少なくできる傾向があるとともに、粘度を適切に維持してせん断処理等を行いやすい傾向がある。一方、層状構造を有する炭素質材料の含有量が濃いほうがより生産性に優れている。このため、薄片化の効率、粘度、生産性等のバランスの観点から、層状構造を有する炭素質材料の含有量を適宜設定することが好ましい。なお、炭素質材料分散体を使用する場合は、当該薄片状カーボン分散体中の層状構造を有する炭素質材料の含有量を上記範囲内とすることが好ましい。
 親水基及び炭素と親和性の高い疎水基を有する有機化合物
 親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、上記したものを採用できる。
 本発明において、薄片状カーボン分散体を製造するために用いられる組成物中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、薄片状カーボン分散体を製造するために用いられる組成物の総量を100質量%として、0.01~50質量%が好ましく、0.1~40質量%がより好ましく、0.5~30質量%がさらに好ましい。一方、本発明において、薄片状カーボン分散体を製造するために用いられる組成物中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、層状構造を有する炭素質材料100質量部に対して、1~1000質量部が好ましく、20~500質量部がより好ましく、30~300質量部がさらに好ましい。なお、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、薄いほうが相対的に層状構造を有する炭素質材料の含有量が大きくなり水硬性組成物の強度が向上しやすいとともに、安価に処理しやすい。一方、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が濃いほうが薄片化(層間剥離)がより起こりやすいために薄片状カーボンをより効率的に得られる傾向があるが、粘度が高くなると逆に薄片化効率が下がる可能性もある。このため、水硬性組成物の強度、コスト、薄片化の効率等のバランスの観点から、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量を適宜設定することが好ましい。なお、この製造方法において、炭素質材料分散体を使用する場合は、当該炭素質材料分散体中の親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量を上記範囲内とすることが好ましい。
 溶媒
 上記した薄片状カーボン分散体の製造方法においては、上記のとおり、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を用いて、特定の処理を行うことが好ましいが、層状構造を有する炭素質材料の薄片化効率、得られる水硬性組成物の強度向上等の観点から、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む炭素質材料分散体に対して、特定の処理を行うことが好ましい。
 この炭素質材料分散体としては、分散液として形成してもよいし、基板上に塗膜として形成してもよい。
 この際、炭素質材料分散体(炭素質材料分散液又は炭素質材料塗膜)を作製するために使用される溶媒としては、上記したものを採用できる。
 本発明において、溶媒を使用した炭素質材料分散体を用いて特定の処理を行う場合、炭素質材料分散体中の溶媒の総量は、特に制限されないが、層状構造を有する炭素質材料の薄片化効率、親水基及び炭素と親和性の高い疎水基を有する有機化合物の溶解度等の観点から、炭素質材料分散体の総量を100質量%として、50~99.9998質量%が好ましく、60~99.998質量%がより好ましく、70~99.98質量%がさらに好ましい。
 本発明において、溶媒を使用した炭素質材料分散体を用いて特定の処理を行う場合、炭素質材料分散体は、親水基及び炭素と親和性の高い疎水基を有する有機化合物分散体に層状構造を有する炭素質材料を投入してもよいし、層状構造を有する炭素質材料分散体に親水基及び炭素と親和性の高い疎水基を有する有機化合物を投入してもよい。また、溶媒中に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを同時に投入してもよい。
 他の成分
 本発明において、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物(例えば、炭素質材料分散体等)には、他の成分を含ませてもよい。これにより、最終的に得られる薄片状カーボン分散体や水硬性組成物用添加剤中にも、これら他の成分を含ませることができる。このような他の成分としては、上記したものを採用でき、本発明の効果を損なわない範囲で使用してもよい。
 ただし、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、水硬性組成物に対する強度向上特性等の観点からは、他の成分の含有量は少ないことが好ましく、炭素質材料分散体の総量を100質量%として、0.00001~5質量%が好ましく、0.0001~2質量%がより好ましい。
 せん断処理(摩砕法)
 本発明では、磨砕法を採用する場合、上記のとおり、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加える処理を行うことが好ましい。なお、炭素質材料分散体を使用する場合には、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、炭素質材料分散体を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記炭素質材料分散体中の炭素質材料に対してせん断を加える処理を行うことが好ましい。
 せん断処理を施すことにより、層状構造を有する炭素質材料の微粒化が起こるために、条件によってはグラフェン構造を維持できない可能性もあるが、層状構造を有する炭素質材料の薄片化を効率よく行うことができ、処理時間を低減することができる。このようなせん断処理を施す際の前記回転盤と前記盤とは略平行に設置されているが、厳密に平行でなくてもよい。具体的には、前記回転盤に垂直な軸と、前記盤に垂直な軸とのなす角は10°以下が好ましく、5°以下がより好ましい。なお、前記回転盤に垂直な軸と、前記盤に垂直な軸とが厳密に平行であることが最も好ましい。このようなせん断処理を施す際の二面間の最短距離は、層状構造を有する炭素質材料の薄片化を十分に行うことができるものであれば特に制限はないが、200μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましい。せん断処理を施す際の二面間の最短距離は短いほど薄片化効率に優れており、通常0μmである。なお、本発明において、せん断処理を施す際の二面間の最短距離とは、回転盤と盤との間の実測の最短距離から層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物の厚みを除いた距離を意味する。つまり、回転盤と盤との間の実測の最短距離が0μmであることは、回転盤と盤との間に密接するように層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を設置する、つまり、回転盤と盤との間に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物以外の空間は存在しないことを意味する。なお、前記回転盤と前記盤とは略平行に設置されているが、前記回転盤と前記盤との距離は場所によって異なることもある。この場合、前記回転盤と前記盤との最短距離は、前記回転盤と前記盤との間の距離のうち、最も短い箇所の距離を意味する。また、必ずしもあらかじめ前記回転盤と前記盤とを空ける必要はなく、前記回転盤と前記盤との間に処理する材料を挟んでもよく、また、前記回転盤と前記盤とを接触させておき、層状構造を有する炭素質材料が挟まることにより前記回転盤と前記盤との間が広がる状態になってもよい。このようなせん断処理は、盤状のものを回転させる機構があればよく、石臼、振動式ミキサー、スピンコーター、グラインダー等を用いて行い得る。
 この際使用できる前記回転盤と前記盤の大きさは特に制限はなく、5~500mmが好ましく、10~200mmがより好ましい。また、せん断処理を行う際の回転盤の回転数は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる範囲とすることが好ましく、例えば、1000~10000ppmが好ましく、1500~3000ppmがより好ましい。
 このようなせん断処理をすることにより、盤と層状構造を有する炭素質材料、層状構造を有する炭素質材料と層状構造を有する炭素質材料を接触させて層状構造を有する炭素質材料に対して層状構造を有する炭素質材料のグラフェン層と平行方向にせん断をかけることができる。
 せん断処理における前記回転盤と前記盤との間の最短距離を小さくし、回転盤の回転速度を早くすることにより、条件をより強くすることが可能であり、層状構造を有する炭素質材料の薄片化をより効率よく行うことができ、処理時間をより低減することができる。このせん断操作は、1回以上、好ましくは3回以上行い得る。
 せん断処理を行う温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、0℃以上、さらに0~100℃、特に20~95℃とし得る。なお、せん断処理を行う温度は、親水基及び炭素と親和性の高い疎水基を有する有機化合物の溶解度が高い条件がよく、温度が高いほうが溶解度が増す場合は高温のほうが好ましく、曇点を有する水溶性化合物を使用する場合は曇点以下の温度に保持することが好ましい。
 上記のせん断処理を行う前に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とをよく接触させるため、撹拌装置、超音波分散装置等を用いて組成物を作製する前にあらかじめ撹拌し、層状構造を有する炭素質材料表面に、親水基及び炭素と親和性の高い疎水基を有する有機化合物をなじませておいてもよい。
 なお、本発明において、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、上記せん断処理を施した分散体中には、薄片状カーボンの酸化物として存在している。このため、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、後処理として還元処理を施すことが好ましい。還元処理としては、化学還元、電気化学還元等、種々の方法が採用できるが、化学還元が好ましい。なかでも、ヒドラジン、水素化ホウ素ナトリウム等のような還元剤による化学還元が好ましい。還元剤量は、薄片状カーボンの酸化物100質量部に対して、1~1000質量部が好ましく、20~500質量部がより好ましく、30~300質量部がさらに好ましい。また、還元時に加熱を行うとより還元しやすくなる。加熱温度は、40~200℃が好ましく、50~150℃がより好ましく、60~120℃がさらに好ましい。還元時間は10分~64時間が好ましく、30分~48時間がより好ましく、1~24時間がさらに好ましい。ただし、グラフェン構造が過度に破壊されない程度とすることが好ましい。
 上記した製造方法によれば、薄片状カーボンは、上記した薄片状カーボン分散体として得られ得る。この製造方法では、親水基及び炭素と親和性の高い疎水基を有する有機化合物を含んでいるため、薄片状カーボン分散体においても、親水基及び炭素と親和性の高い疎水基を有する有機化合物が含まれている。この親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボン表面に吸着して溶媒中で薄片状カーボンを高濃度に孤立分散させることも可能であるため、薄片状カーボン分散体においては分散剤としても機能する。なお、本発明においては、親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボン表面に吸着しているが、吸着量の指標として、TG-DTA(熱重量分析)によって450℃まで加熱した際に、吸着水の影響を排除することができる100~450℃の範囲における重量減少が、2.00~20.00質量%であることが好ましく、3.00~10.00質量%であることがより好ましい。これにより、水硬性組成物の強度を特に向上させやすい。また、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物は市販品を用いることができ、コスト及び分散性の両方で従来品より優位性がある。さらに、この親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボン表面に残存することによって、水硬性組成物に対して十分な強度を付与することができる。ただし、親水基及び炭素と親和性の高い疎水基を有する有機化合物が、薄片状カーボン表面に吸着せずに、薄片状カーボン近傍に存在していてもよい。薄片状カーボン表面に吸着していない状態でも、薄片状カーボンの間に存在していることで薄片状カーボン同士のファンデルワールス力による強い凝集を防止しやすく、コンクリートへの添加後の分散を促進しやすい。水硬性組成物用添加剤が固体状であり、薄片状カーボン表面に吸着している有機化合物以外も含める場合、薄片状カーボンの凝集防止効果、分散促進効果、コンクリートとの有機物を介した相互作用等の観点から、薄片状カーボン100質量部に対して、水硬性組成物用添加剤に含まれる親水基及び炭素と親和性の高い疎水基を有する有機化合物は、1~1000質量部であることが好ましく、10~200質量部であることがより好ましい。
 また、従来の酸化処理及び還元処理を行う方法においては、還元処理の際にプラスチック基板が加水分解されること、還元処理を施すと薄片状カーボンが凝集するため分散体として存在し得ないこと等から、プラスチック基板上に薄片状カーボン分散体を形成することは不可能であったが、本発明においては、上記親水基及び炭素と親和性の高い疎水基を有する有機化合物を含ませつつ特定の処理を行うことで、ポリエチレンテレフタレート(PET)等のプラスチック基板が加水分解を受けることなく、薄片状カーボン分散体を基板上に形成することも可能である。
 加圧処理(高圧分散法)
 本発明では、高圧分散法を採用する場合、上記のとおり、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物に対して、30MPa以上の加圧処理を行うことが好ましい。
 加圧処理を施すことにより、層状構造を有する炭素質材料の微粒化が起こるために、条件によってはグラフェン構造を維持できない可能性もあるが、層状構造を有する炭素質材料の薄片化を効率よく行うことができ、処理時間を低減することができる。このような加圧処理を施す際の加圧レベルは、層状構造を有する炭素質材料の薄片化を十分に行うことができるものであれば特に制限はないが、30MPa以上が好ましく、50~400MPaがより好ましく、100~300MPaがさらに好ましい。このような加圧処理は、高圧分散装置や超臨界水作製装置等を用いて行い得る。高圧分散装置は力学的な圧力をかけることにより分散することができ、超臨界水作製装置においては、水を加熱することにより系の圧力を上げることができる。
 このような加圧により、例えば、
(i)2個以上の前記炭素質材料分散体同士を衝突させること、
(ii)前記炭素質材料分散体と金属又はセラミックス材料(炭化ケイ素、アルミナ等高硬度の材料)とを衝突させること、
(iii)前記炭素質材料分散体を断面積1cm以下の空間を通過させること
等の処理を行い得る。
 上記(i)及び(ii)によれば、加圧条件をより強くすることが可能であり、層状構造を有する炭素質材料の薄片化をより効率よく行うことができ、処理時間をより低減することができる。また、上記(iii)によれば、グラフェン構造をより維持しつつ、層状構造を有する炭素質材料の薄片化をより適切に行うことができる。この加圧操作を1回以上、好ましくは10回以上行うことができる。
 加圧温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、上記(i)及び(ii)の場合は0~100℃、特に20~95℃とし得る。また、上記(iii)の場合、力学的に圧力をかける場合は、0~100℃が好ましく、水の超臨界状態により圧力を生み出す場合は、373~700℃が好ましく、380~450℃がより好ましい。
 なお、前記加圧処理を行う際には、予備処理(前処理)として、超音波分散処理を行い、層状構造を有する炭素質材料の微粒化を行っておくことが好ましい。これにより、目詰まり防止等の効果を有し得る。
 超音波分散処理を施す際の出力は特に制限はないが、層状構造を有する炭素質材料の薄片化の観点から、通常行われる超音波分散処理(40~50W程度)よりも強力なものとすることが好ましい。具体的には、超音波分散処理の出力は、100W以上が好ましく、300~20000Wがより好ましく、400~18000Wがさらに好ましい。
 超音波分散温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、0~80℃、特に10~70℃とし得る。超音波分散時間は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる時間とすればよく、1~600分、特に3~120分とし得る。
 また、これらの処理の前処理又は後処理として、通常の機械的撹拌、乳化装置による分散処理、ビーズミルによる分散処理等の他の分散装置による分散処理を併用してもよい。
 なお、本発明において、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、上記加圧処理を施した分散体中には、薄片状カーボンの酸化物として存在している。このため、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、後処理として還元処理を施すことが好ましい。還元処理としては、化学還元、電気化学還元等、種々の方法が採用できるが、化学還元が好ましい。なかでも、ヒドラジン、水素化ホウ素ナトリウム等のような還元剤による化学還元が好ましい。還元剤量は、薄片状カーボンの酸化物100質量部に対して、1~1000質量部が好ましく、10~500質量部がより好ましく、50~300質量部がさらに好ましい。また、還元時に加熱を行うとより還元しやすくなる。加熱温度は、40~200℃が好ましく、50~150℃がより好ましく、60~120℃がさらに好ましい。還元時間は10分~64時間が好ましく、30分~48時間がより好ましく、1~24時間がさらに好ましい。ただし、グラフェン構造が過度に破壊されない程度とすることが好ましい。
 (2-3)本発明の水硬性組成物用添加剤の製造方法
 本発明の水硬性組成物用添加剤は、上記の薄片状カーボン分散体から必要に応じて溶媒を除去することで得ることができる。
 溶媒を除去するためには、薄片状カーボン分散体を濃縮する方法が挙げられ、薄片状カーボン分散体の乾燥の他、基板上に薄片状カーボン分散体をスピンコートや塗布後に乾燥する方法、通常の固液分離により本発明の熱伝導材料を回収する方法等により実施することができる。固液分離を行う方法としては、例えば、通常の固液分離に使用されている方法、例えば、濾紙、ガラスフィルター等を用いて濾過する方法;遠心分離後に濾過する方法;減圧濾過器を使用する方法を例示できる。次に、乾燥方法としては、特に限定されず、例えば、温風乾燥機等を用いて50~200℃程度で1~24時間程度乾燥させる方法を例示できる。
 本発明において、上記の薄片状カーボン分散体から必要に応じて溶媒を除去したものを使用することができるが、必要に応じて、親水基及び炭素と親和性の高い疎水基を有する有機化合物を除去することもできる。そのうえで、改めて、後述の化学混和剤を添加して、本発明の水硬性組成物用添加剤とすることもできる。具体的には、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物は、薄片状カーボン組成物を水、有機溶媒等で洗浄することにより除去することができる。洗浄処理は水及び有機溶媒以外にも、希酸又は希アルカリで洗浄することによっても除去できる。なお、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が有機アンモニウム塩の場合は、150~400℃、好ましくは200~350℃の熱処理により有機アンモニウム塩が分解されるため、熱処理によっても炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去することができる。
 従来の分散剤は、分散剤分子と薄片状カーボンとの疎水性相互作用を利用して吸着していると考えられ、また分子量が比較的大きいため、その吸着力も大きいと考えられる。他方、本発明で用いる炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物は薄片状カーボンと化学結合はしておらず、また分子量が小さいため従来品と比べて吸着力も弱い。よって、本発明で用いる水溶性化合物は従来品よりも薄片状カーボン組成物から除去し易いという利点がある。
 炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去するための洗浄は、薄片状カーボン組成物と洗浄液とを接触させることにより行うことができる。洗浄液としては、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を溶解できるものであれば、水、各種の有機溶媒等が使用できる。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)等のアルコール(特に炭素数1~6のアルコール)、アセトン、N-メチルピロリドン、ジメチルホルムアミド等が使用できる。これらは単独で用いてもよいし、2種以上を組合せて用いてもよい。
 これらの中でも、洗浄後に薄片状カーボン組成物から短時間で蒸発する有機溶媒が好ましい。有機溶媒としては、常圧における沸点が50~250℃程度、特に60~200℃程度のもの、例えば、メタノール、エタノール、アセトン、N-メチルピロリドン、ジメチルホルムアミド等が例示できる。
 また、上記のように、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去するための洗浄を、薄片状カーボン組成物と希酸又は希アルカリとを接触させ、次いで水洗することにより行ってもよい。希酸は、0.1~5%塩酸が好ましく、希アルカリは0.1~3%アンモニア水が好ましい。
 洗浄操作は、洗浄液と薄片状カーボン組成物とを接触させればよい。例えば、薄片状カーボン分散体から回収された薄片状カーボン組成物を、洗浄液中に室温で静かに浸漬させるのが好ましい。浸漬時間は、薄片状カーボン組成物の形状を維持するために、30分以内が好ましく、20分以内がより好ましい。
 洗浄液の使用量は、洗浄を行うに有効な量であれば特に限定されず、広い範囲から適宜選択できるが、一般には、薄片状カーボン組成物100質量部に対して、洗浄液を100~100000質量部程度、特に1000~5000質量部程度使用すると良好な結果が得られる。
 3.水硬性組成物
 本発明の水硬性組成物は、上記した本発明の水硬性組成物用添加剤を含有する。本発明の水硬性組成物において、本発明の水硬性組成物用添加剤以外の構成は、従来の水硬性組成物と同様とすることができる。
 具体的には、本発明の水硬性組成物は、本発明の水硬性組成物用添加剤と、水硬性成分(水硬性粉体等)とを含有することが好ましい。
 水硬性成分(水硬性粉体等)としては、特に制限はなく、例えばセメントを使用することができ、ポルトランドセメント、混合セメント等が挙げられる。これらのセメントは、公知又は市販品を用いることができる。これらの水硬性成分(水硬性粉体等)は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 本発明の水硬性組成物において、水硬性成分(水硬性粉体等)の含有量は、特に制限はなく、充填性、流動性、硬化後の強度等の観点から、本発明の水硬性組成物1mあたり、200~2,000kg/mが好ましく、240~1,500kg/mがより好ましい。
 また、本発明の水硬性組成物において、本発明の水硬性組成物用添加剤の含有量は、充填性、流動性、硬化後の強度等の観点から水硬性成分(水硬性粉体等)100質量部に対して、0.01~10質量部が好ましく、0.03~1質量部がより好ましい。
 また、本発明の水硬性組成物において、水の含有量は、充填性、流動性、硬化後の強度等の観点から、水硬性成分(水硬性粉体等)100質量部に対して、5~80質量部が好ましく、10~70質量部がより好ましい。なお、本発明の水硬性組成物用添加剤が水を含んでいる場合は、本発明の水硬性組成物用添加剤中の水との合計で、上記範囲内となるように、水の添加量を調整することが好ましい。
 本発明の水硬性組成物には、上記した本発明の水硬性組成物用添加剤及び水硬性成分(水硬性粉体等)以外に、さらに、骨材(珪砂、川砂、陸砂、山砂、海砂、高炉スラグ細骨材、石粉、シリカヒューム、フライアッシュ、天然ゼオライト、合成ゼオライト、軽石、カオリン等の細骨材;川砂利、陸砂利、山砂利、海砂利、砕石、石灰砂利、高炉スラグ粗骨材等の粗骨材等)及び水を含めてもよい。
 なお、本発明の水硬性組成物用添加剤には、上記した親水基及び炭素と親和性の高い疎水基を有する有機化合物を含んでいるため、化学混和剤の添加は必ずしも必須というわけではないが、充填性、流動性等の観点から、さらに、化学混和剤を含めてもよい。
 また、化学混和剤としては、特に制限されるわけではないが、水硬性組成物において従来から使用されるものを使用することができ、例えば、上記親水基及び炭素と親和性の高い疎水基を有する有機化合物において説明したものを使用することができる。この際、本発明の水硬性組成物用添加剤中に含まれる親水基及び炭素と親和性の高い疎水基を有する有機化合物と同じ種類のものを使用することもでき、異なる種類のものを使用することもできる。
 化学混和剤を使用する場合、その使用量は、充填性、流動性、硬化後の強度等の観点から適宜選択され、本発明の効果を損なわない範囲で使用すればよいが、通常、水硬性成分(水硬性粉体等)100質量部に対して、0.0005~10質量部が好ましく、0.001~6質量部がより好ましい。
 本発明の水硬性組成物には、他にも、本発明の効果を損なわない範囲において、膨張剤、起泡剤、発泡剤、防水剤等を含ませることもできる。
 本発明の水硬性組成物の製造方法は、本発明の水硬性組成物用添加剤を使用すること以外は従来と異なることはなく、常法にしたがって製造することができる。また、本発明の水硬性組成物の硬化方法も、従来と異なることはなく、常法にしたがって行うことができる。
 以下、実施例を示して本発明を具体的に説明する。但し本発明は実施例に限定されない。
 なお、化学混和剤は、水溶液で供給されており、製品により濃度が異なる。グラフェンと分散剤の比率は一般に固体物質との質量比で議論するため、濃度を測定した。結果は以下の通りである。
マスターポゾリスNo.70(BASFジャパン(株)製;リグニンスルホン酸とポリオールとの複合体):40.21質量%
マスターポリヒード15S(BASFジャパン(株)製;リグニンスルホン酸とポリカルボン酸エーテルとの複合体):16.37質量%
マスターグレニウムSP8SB(BASFジャパン(株)製;ポリカルボン酸エーテル系化 合物と分子内架橋ポリマーの 複合体):17.92質量%
マスターグレニウムSP8SV(BASFジャパン(株)製;ポリカルボン酸エーテル系化合物):17.81質量%
マスターイース3030(BASFジャパン(株)製;PAE化合物):23.21質量%
マイテイ3000S(花王(株)製;ポリエーテル系ポリカルボン酸化合物):20.96質量%
マイテイ3000H(花王(株)製;ポリエーテル系ポリカルボン酸化合物):24.47質量%。
 [実施例1:薄片状カーボン分散液の分散性]
 実施例1-1
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とポリオキシエチレンナフタリルエーテル(分子量1200~1300)250gと水9250gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 得られた薄片状カーボンの分散液40g(薄片状カーボン2gを含む)を減圧濾過し、得られたケーキに水を加え100gとする操作を3回繰り返し、薄片状カーボンを2g含む分散液100gを作製した。
 この薄片状カーボン分散液に対して、マスターポゾリスNo.70(BASFジャパン(株)製)の水溶液を12g添加し、600Wの超音波分散装置を用いて、1分間分散処理を加え、表1に示す組成の薄片状カーボン分散液を製造した。
 実施例1-2
 実施例1-1において、得られた薄片状カーボン分散液に対して、マスターポゾリスNo.70(BASFジャパン(株)製)の代わりに、マスターポリヒード15S(BASFジャパン(株)製)を12g添加すること以外は同様に、表1に示す組成の薄片状カーボン分散液を製造した。
 実施例1-3
 マスターポゾリスNo.70(BASFジャパン(株)製)12gを、水24gで希釈し、実施例1-1において、得られた薄片状カーボン分散液に対して添加したこと以外は同様に、表1に示す組成の薄片状カーボン分散液を製造した。これにより、化学混和剤の固形分濃度を、実施例2と同程度になるように調整した。
 実施例1-4
 実施例1-1で得られた薄片状カーボン分散液から、薄片状カーボン0.2g、水9.8g及びマスターポゾリスNo.70(BASFジャパン(株)製)1.2gからなる薄片状カーボン分散液を取り出し、そこに水30g及びマスターポゾリスNo.70(BASFジャパン(株)製)3.6gを添加し、表1に示す組成の薄片状カーボン分散液を製造した。この組成は、後述の試験において、薄片状カーボン125g/コンクリートmに相当する。
 実施例1-5
 実施例1-2で得られた薄片状カーボン分散液から、薄片状カーボン0.2g、水9.8g及びマスターポリヒード15S(BASFジャパン(株)製)1.2gからなる分散液を取り出し、そこに水30g及びマスターポリヒード15S(BASFジャパン(株)製)3.6gを添加し、表1に示す組成の薄片状カーボン分散液を製造した。この組成は、後述の試験において、薄片状カーボン125g/コンクリートmに相当する。
 実施例1-6
 実施例1-4で得られた分散液を、薄片状カーボンの水に対する濃度が0.005質量%となるように水で希釈し、表1に示す組成の薄片状カーボン分散液を製造した。既報において、水に対する濃度が0.01質量%を下回ると分散性が向上する事例が存在するため実施した。
 試験例1:分散性
 実施例1~6で得られた分散液の分散性を静置した後に、分散性を目視で沈殿状態の有無等を観察し、
A:分散処理の終了後10分経過後も分散している
B:分散処理の終了直後から、懸濁状の物質が発生する
として評価した。結果を表1に示す。この結果、実施例1-1~1-6のいずれも分散性に優れており、なかでも、実施例1-1、1-3及び1-4が、特に分散性に優れていた。
Figure JPOXMLDOC01-appb-T000004
 [実施例2:モルタル(その1)]
 実施例2-1
 1000gの天然黒鉛(伊藤黒鉛工業(株)製)とポリオキシエチレンナフタリルエーテル(分子量1200~1300)100gと水18900gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 以下、JIS R5201「セメントの物理試験方法」の11.強さ試験に用いられるモルタルの配合(セメント450g、標準砂1350g、水225g)をベースとした組成のモルタルを製造した。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた薄片状カーボン分散液22.75gと、マスターポリヒード15S(BASFジャパン(株)製)4.4gと、水218.58gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表2に示す組成のモルタルを製造し、モールドにて成型した。
 なお、本実施例において、薄片状カーボンを0.73g含んでいることは、設計基準強度24N/mmの24-12-20Nの配合でセメント量が307kg/コンクリートmであり、そこに固体の薄片状カーボンを500g投入することを想定した上で、本実施例のモルタルの配合のセメント量が450gであることから算出した。
 また、マスターポリヒード15Sの固形分量4.40gは、上記コンクリートの配合で、混和剤を3kg/コンクリートm投入することを想定して算出した。
 実施例2-2
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とポリオキシエチレンナフタリルエーテル(分子量1200~1300)250gと水9250gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 以下、JIS R5201「セメントの物理試験方法」の11.強さ試験に用いられるモルタルの配合(セメント450g、標準砂1350g、水225g)をベースとした組成のモルタルを製造した。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた薄片状カーボン分散液12.46gと、マスターポリヒード15S(BASFジャパン(株)製)4.4gと、水208.87gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表2に示す組成のモルタルを製造し、モールドにて成型した。
 なお、本実施例において、薄片状カーボンを0.73g含んでいることは、設計基準強度24N/mmの24-12-20Nの配合でセメント量が307kg/コンクリートmであり、そこに固体の薄片状カーボンを500g投入することを想定した上で、本実施例のモルタルの配合のセメント量が450gであることから算出した。
 また、マスターポリヒード15Sの固形分量4.40gは、上記コンクリートの配合で、混和剤を3kg/コンクリートm投入することを想定して算出した。
 実施例2-3
 80gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)480gと水3440gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を2回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた分散液10gを水で10倍に希釈し、ろ過を行った。ろ過で得られたケーキをさらに100gの水に分散し、減圧ろ過、水の掛け洗いを行う工程を3回繰り返し、洗浄を行った。得られたろ物を150℃で乾燥し、黒色の固体を得た。
 得られた固体をTG-DTA(熱重量分析)により分析したところ、吸着水の影響を排除した100~450℃の重量減少は5.36%であり、有機物を多く吸着していることが分かった。
 以下、JIS R5201「セメントの物理試験方法」の11.強さ試験に用いられるモルタルの配合(セメント450g、標準砂1350g、水225g)をベースとした組成のモルタルを製造した。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた薄片状カーボン分散液46.42gと、水179.31gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、さじで10回かき混ぜ、表2に示す組成のモルタルを製造し、モールドにて成型した。
 なお、本実施例において、薄片状カーボンを0.73g含んでいることは、設計基準強度24N/mmの24-12-20Nの配合でセメント量が307kg/コンクリートmであり、そこに固体の薄片状カーボンを500g投入することを想定した上で、セメント量が450gであることから算出した。
 また、マスターポリヒード15Sの固形分量4.38gは、上記コンクリートの配合で、混和剤を3kg/コンクリートm投入することを想定して算出した。
 試験例2:モルタルのフレッシュ性状
 実施例2-1~2-3で得られたモルタルを製造1日後にモールドから脱型し、凝結・硬化状況を目視で確認した。この結果、実施例2-1~2-3のいずれにおいても、異常は見られなかった。
 試験例3:スランプフローの経時変化
 実施例2-1~2-3について、各2バッチ分のモルタルを製造し実施例2-1~2-3毎に試料を1つに合わせた後、セメントの物理試験方法(JIS R5201)に準拠して、5打フローを計測した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 [実施例3:コンクリート]
 比較例3-1
 ベースコンクリートの配合として、設計基準強度24N/mm程度とし、コンクリート1mあたり、普通ポルトランドセメント(住友大阪セメント(株)製)を305kg/m、粗骨材として西島産砕石を997kg/m、細骨材として揖斐川産川砂を569kg/m、細骨材として茨木産砕砂を246kg/m、化学混和剤としてマスターポリヒード15S(BASFジャパン(株)製)を3.0kg/m、水を168kg/mとし、水/セメント比(W/C)を55質量%、細骨材率(s/a)を45.0%、目標スランプを12cm、目標空気量を4.5質量%の配合に対し、コンクリートの練り混ぜ量が35Lとなる数量に対して、以下のように調製した。
 水5.775kgと化学混和剤としてマスターポリヒード15S(BASFジャパン(株)製)を0.105kgとを混合し、練り混ぜ水を得た。
 その後、粗骨材として西島産砕石を34.895kg投入し、細骨材として揖斐川産川砂を19.915kg投入し、普通ポルトランドセメント(住友大阪セメント(株)製)を10.675kg投入し、細骨材として茨木産砕砂を8.610kg投入し、強制2軸型ミキサー(光洋機械産業(株)製 KBHS-50R。軸回転数44rpm)で10秒空練りし、次に、得られた練り混ぜ水を投入し、90秒間練り混ぜ、比較例3-1のコンクリートを製造した。
 実施例3-1
 750gの天然黒鉛(伊藤黒鉛工業(株)製)とポリオキシエチレンナフタリルエーテル(分子量1200~1300)375gと水13875gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 練り混ぜ水を製造する際に、得られた薄片状カーボン分散液を0.2418kg添加し、水の量を調整すること以外は比較例3-1と同様に、実施例3-1のコンクリートを製造した。これにより、薄片状カーボンの添加量は、350g/コンクリートmである。
 実施例3-2
 750gの天然黒鉛(伊藤黒鉛工業(株)製)とポリオキシエチレンナフタリルエーテル(分子量1200~1300)375gと水13875gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 練り混ぜ水を製造する際に、得られた薄片状カーボン分散液を0.2356kg添加し、水の量を調整すること以外は比較例3-1と同様に、実施例3-2のコンクリートを製造した。これにより、薄片状カーボンの添加量は、350g/コンクリートmである。
 実施例3-3
 練り混ぜ水を製造する際に、実施例3-1で得られた薄片状カーボン分散液を0.4836kg添加し、水の量を調整すること以外は比較例3-1と同様に、実施例3-3のコンクリートを製造した。これにより、薄片状カーボンの添加量は、700g/コンクリートmである。
 実施例3-4
 練り混ぜ水を製造する際に、実施例3-2で得られた薄片状カーボン分散液を0.4712kg添加し、水の量を調整すること以外は比較例3-1と同様に、実施例3-4のコンクリートを製造した。これにより、薄片状カーボンの添加量は、700g/コンクリートmである。
Figure JPOXMLDOC01-appb-T000006
 試験例5:コンクリートのフレッシュ性状
 実施例3-1~3-4及び比較例3-1で得られたコンクリートのスランプは、JIS A1101に準拠し、練り混ぜ終了後、注水30分後及び60分後に計測を行い、空気量はJIS A1128に準拠し、練り混ぜ終了後に計測を行った。また、スランプ計測時に合わせてコンクリート温度(室温20℃)を計測した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 試験例6:圧縮強度試験及び静弾性係数試験
 鋼製型枠(直径100mm×200mm)を用いて、練り混ぜ終了後に1配合当たり12本作製した。翌日、全ての供試体を脱型し、所定材齢まで20℃で水中養生を行った。脱型時に材齢1日の凝結・硬化状況を試験例2と同様に確認したところ、いずれも異常がなかった。
 材齢7日、28日及び91日の3材齢において、JIS A1108に準拠して、圧縮強度試験を行い、JIS A1149に準拠して、静弾性係数試験を行った。また、材齢14日においては、上記圧縮強度試験のみを行った。
 結果を図3に示す。この結果、薄片状カーボンの添加量が増加するとベースコンクリートと比較して圧縮強度が上昇し、材齢28日において、最大で29.5%の強度向上が認められた。
 [実施例4:モルタル(その2)]
 比較例4-1
 マスターポリヒード15S(BASFジャパン(株)製)4.40gと、水220.6gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 実施例4-1
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とカルボキシメチルセルロースナトリウム塩250g(シグマアルドリッチ製)と水9250gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液26.906gと、マスターポリヒード15S(BASFジャパン(株)製)4.4gと、水195.2gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.6gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 実施例4-2
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)1428gと水8070gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液27.237gと、マスターポリヒード15S(BASFジャパン(株)製)1.44gと、水197.36gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 実施例4-3
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)1428gと水8070gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 得られた薄片状カーボン分散液25.704gと、マスターポリヒード15S1.44gと、水198.89gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 実施例4-4
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)2857gと水8070gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液30.194gと、水195.9gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 実施例4-5
 500gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)2125gと水8070gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 得られた薄片状カーボン分散液27.146gと、水198.9gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 試験例7:モルタルのフロー試験
 比較例4-1、実施例4-1~4-5について、各2バッチ分のモルタルを製造し比較例4-1、実施例4-1~4-5毎に試料を1つに合わせた後、セメントの物理試験方法(JIS R5201)に準拠して、15打フローを計測した。結果を表5に示す。
 試験例8:モルタルの空気量
 各2バッチ分のモルタルを製造し比較例4-1、実施例4-1~4-5毎に試料を1つに合わせた後、ポリマーセメントモルタルの試験方法(JIS A1171)に準拠し、練り混ぜ終了後に空気量を計測した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 試験例9:圧縮強度試験
 モルタルのフロー値が240±40mm且つ空気量が10.5±1.5%の範囲内に収まったとき簡易鋼製型枠直径50mm×100mmを用いて供試体を1配合当たり9本作製した。
 供試体の作製においては、型枠にモルタルを2層に分けて詰め、突き棒を用いて各層8回突く方法で成型を行った。次に、成型後の供試体重量を1個ずつ計測し、基準値として370g以上(型枠重量を除く)あることを確認した。
 また、成型後の供試体は、20±2℃の試験室内で24時間静置した後、硬化不良等異常のないものはそのまま脱型した。一部は更に24時間静置してから脱型した。脱型後の供試体は20±1℃の水槽に入れて所定材齢まで水中養生を行った。
 材齢7日、14日及び28日の時点において、供試体の端面研磨、寸法及び重量の計測を行った後、JIS A1108に準拠して、圧縮強度試験を行った。結果を図4に示す。
 この結果、薄片状カーボン分散液を添加することでベースコンクリートと比較して圧縮強度が上昇し、材齢28日において、最大で28.4%の強度向上が認められた。
 [実施例5:モルタル(その3)]
 比較例5-1
 マスターグレニウムSP8SB(BASFジャパン(株)製)12.375gと、水212.625gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 実施例5-1
 250gの天然黒鉛(富士黒鉛工業(株)製)とマスターグレニウムSP8SB(BASFジャパン(株)製)2989gと水1761gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 得られた薄片状カーボン分散液45.2gと、水180.86gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表5に示す組成のモルタルを製造し、モールドにて成型した。
 比較例5-2
 マスターイース3030(BASFジャパン(株)製)7.875gと、水217.125gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 実施例5-2
 250gの天然黒鉛(富士黒鉛工業(株)製)とマスターイース3030(BASFジャパン(株)製)1902gと水2848gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液35.3gと、水190.69gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 比較例5-3
 マイテイ3000S(花王(株)製)5.625gと、水219.375gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 実施例5-3
 250gの天然黒鉛(富士黒鉛工業(株)製)とマイテイ3000S(花王(株)製)1359gと水3391gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液41.0gと、水185.04gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 比較例5-4
 マイテイ3000H(花王(株)製)7.875gと、水217.125gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 実施例5-4
 250gの天然黒鉛(富士黒鉛工業(株)製)とマイテイ3000H(花王(株)製)1902gと水2848gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 得られた薄片状カーボン分散液30.9gと、水195.18gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 比較例5-5
 マスターポリヒード15S(BASFジャパン(株)製)4.725gと、水220.275gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 実施例5-5
 250gの天然黒鉛(富士黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)1141gと水3609gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~25μmであった。
 得られた薄片状カーボン分散液36.9gと、水189.12gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表6に示す組成のモルタルを製造し、モールドにて成型した。
 試験例10:モルタルのフロー試験
 比較例5-1~5-5及び実施例5-1~5-5について、各2バッチ分のモルタルを製造し、比較例5-1~5-5及び実施例5-1~5-5毎に試料を1つに合わせた後、セメントの物理試験方法(JIS R5201)に準拠して、15打フローを計測した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
 試験例11:圧縮強度試験
 モルタルのフロー値が比較例のフロー値の±40mmの範囲内に収まったとき、簡易鋼製型枠直径50mm×100mmを用いて供試体を1配合当たり3本作製した。実施例5-1は比較例5-1と、実施例5-2は比較例5-2と、実施例5-3は比較例5-3と、実施例5-4は比較例5-4と、実施例5-5は比較例5-5と、それぞれ対比した。
 供試体の作製においては、型枠にモルタルを2層に分けて詰め、突き棒を用いて各層8回突く方法で成型を行った。次に、成型後の供試体重量を1個ずつ計測し、基準値として370g以上(型枠重量を除く)あることを確認した。
 また、成型後の供試体は、20±2℃の試験室内で静置し、材齢7日時に、硬化不良がないことを確認してから脱型を行った。脱型後の供試体は20±1℃の水槽に入れて所定材齢まで水中養生を行った。
 材齢28日の時点において、供試体の端面研磨、寸法及び重量の計測を行った後、JIS A1108に準拠して、圧縮強度試験を行った。結果を図5に示す。
 この結果、薄片状カーボン分散液を添加することでベースコンクリートと比較して圧縮強度が上昇し、材齢28日において、最大で89.9%の強度向上が認められた。
 比較例6-1
 マスターグレニウムSP8SV(BASFジャパン(株)製)7.875gと、水217.125gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 実施例6-1
 250gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターグレニウムSP8SV(BASFジャパン(株)製)1902gと水2848gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 得られた薄片状カーボン分散液34.8gと、水191.21gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 比較例6-2
 マスターグレニウムSP8SB(BASFジャパン(株)製)12.375gと、水212.625gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 実施例6-2
 250gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターグレニウムSP8SB(BASFジャパン(株)製)2989gと水1761gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~15μmであった。
 得られた薄片状カーボン分散液37.0gと、水189.07gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 比較例6-3
 マイテイ3000S(花王(株)製)5.625gと、水219.375gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 実施例6-3
 250gの天然黒鉛(伊藤黒鉛工業(株)製)とマイテイ3000S(花王(株)製)1359gと水3391gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~25μmであった。
 得られた薄片状カーボン分散液28.0gと、水198.01gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 比較例6-4
 マスターポリヒード15S(BASFジャパン(株)製)4.725gと、水220.275gとを混合して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水225.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 実施例6-4
 250gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)1141gと水3609gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を5回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液37.0gと、水189.07gとを添加して練り混ぜ水を得た。
 JIS R5201「セメントの物理試験方法」に記載の練り混ぜ方法に準拠し、ミキサー(Hobart社製 N50)を用いて、普通ポルトランドセメント(住友大阪セメント(株)製)450gと、得られた練り混ぜ水226.0gとを、30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、細骨材として砂(1種;JIS標準砂)1350gを添加しながら30秒間低速練り混ぜ(自転速度:毎分140±5回転,公転速度:毎分62±5回転)し、次いで、30秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、次いで、ミキサーを停止させ、30秒間掻き落とし、60秒間静置し、さらに、60秒間高速練り混ぜ(自転速度:毎分285±10回転,公転速度:毎分125±10回転)し、さじで10回かき混ぜ、表7に示す組成のモルタルを製造し、モールドにて成型した。
 試験例12:モルタルのフロー試験
 比較例6-1~6-5及び実施例6-1~6-5について、各2バッチ分のモルタルを製造し比較例6-1~6-5及び実施例6-1~6-5毎に試料を1つに合わせた後、セメントの物理試験方法(JIS R5201)に準拠して、15打フローを計測した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000010
 試験例13:圧縮強度試験
 モルタルのフロー値が比較例のフロー値の±40mmの範囲内に収まったとき、簡易鋼製型枠直径50mm×100mmを用いて供試体を1配合当たり3本作製した。実施例6-1は比較例6-1と、実施例6-2は比較例6-2と、実施例6-3は比較例6-3と、実施例6-4は比較例6-4と、実施例6-5は比較例6-5と、それぞれ対比した。
 供試体の作製においては、型枠にモルタルを2層に分けて詰め、突き棒を用いて各層8回突く方法で成型を行った。次に、成型後の供試体重量を1個ずつ計測し、基準値として370g以上(型枠重量を除く)あることを確認した。
 また、成型後の供試体は、20±2℃の試験室内で24時間静置した後、硬化不良等異常のないものはそのまま脱型した。一部は更に24時間静置してから脱型した材齢1日から硬化するまで1日単位で凝結状況を目視で観察し、効果時期を判定した。材齢7日時に、硬化効果不良がないことを確認してから脱型を行った。 脱型後の供試体は20±1℃の水槽に入れて所定材齢まで水中養生を行った。
 材齢28日の時点において、供試体の端面研磨、寸法及び重量の計測を行った後、JIS A1108に準拠して、圧縮強度試験を行った。結果を図6に示す。
 この結果、薄片状カーボン分散液を添加することでベースコンクリートと比較して圧縮強度が上昇し、材齢28日において、最大で74.1%の強度向上が認められた。
 比較例7-1 
 マスターポリヒード15S(BASFジャパン(株)製)0.151kgと、水7.74kgとを混合して練り混ぜ水を得た。
 JIS A1138「試験室におけるコンクリートの作り方」に記載の練り混ぜ方法に準拠し、ミキサーを用いて、普通ポルトランドセメント(住友大阪セメント(株)製)14.3kgと、細骨材として川砂(揖斐川産)27.4kg、砕砂(茨木産)11.8kg、粗骨材として砕石(西島産)46.9kgを10秒間低速練り混ぜし、次いで得られた練り混ぜ水7.891kgを添加して90秒間低速練り混ぜた後練り舟に排出しコンクリート用ショベルで均一となるまで練り返し、表8に示す組成のコンクリートを製造した。
 実施例7-1
 250gの天然黒鉛(伊藤黒鉛工業(株)製)とマスターポリヒード15S(BASFジャパン(株)製)1141gと水3609gを混合して攪拌することで、混合液を得た。この混合液を半径300mmのセラミックグラインダーを用いて、1700rpmでせん断処理を2回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。
 この分散液をシリコンウェハーに塗布し、走査型電子顕微鏡(SEM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、フレークサイズ(大きさ)は1~20μmであった。
 得られた薄片状カーボン分散液0.784kgと、水7.14kgとを添加して練り混ぜ水を得た。
 JIS A1138「試験室におけるコンクリートの作り方」に記載の練り混ぜ方法に準拠し、ミキサーを用いて、普通ポルトランドセメント(住友大阪セメント(株)製)14.3kgと、細骨材として川砂(揖斐川産)27.4kg、砕砂(茨木産)11.8kg、粗骨材として砕石(西島産)46.9kgを10秒間低速練り混ぜし、次いで得られた練り混ぜ水7.924kgを添加して90秒間低速練り混ぜた後練り舟に排出しコンクリート用ショベルで均一となるまで練り返し、表8に示す組成のコンクリートを製造した。
 試験例14:コンクリートのフレッシュ性状
 比較例7-1及び実施例7-1について、コンクリートを製造し、スランプはJIS A1101、空気量はJIS A1128に準拠して、フレッシュ性状を計測した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000011
 試験例15:圧縮強度試験
 JIS A4308「レディーミクストコンクリート」の記載に準拠し、コンクリートのスランプが12.0±2.5cm且つ空気量が4.5±1.5%の範囲内に収まったとき、JIS A1132「コンクリートの強度試験用供試体の作り方」に準拠し、直径100mm×200mmの供試体を1配合当たり3本作製した。
 供試体の作製においては、型枠にコンクリートを2層に分けて詰め、突き棒を用いて各層1000mmに1回の割合で突き、型枠側面を木槌で軽くたたく方法で成型を行った。
 また、成型後の供試体は、20±2℃の試験室内で24時間静置した後、硬化不良等異常のないものはそのまま脱型した。一部は更に24時間静置してから脱型した材齢1日から硬化するまで1日単位で凝結状況を目視で観察し、効果時期を判定した。材齢7日時に、硬化効果不良がないことを確認してから脱型を行った。脱型後の供試体は20±1℃の水槽に入れて所定材齢まで水中養生を行った。
 材齢28日の時点において、供試体の端面研磨、寸法及び重量の計測を行った後、JIS A1108に準拠して、圧縮強度試験を行った。結果を図7に示す。
 この結果、薄片状カーボン分散液を添加することでベースコンクリートと比較して圧縮強度が上昇し、材齢28日において、最大で23.1%の強度向上が認められた。
 試験例16:曲げ強度試験
 JIS A4308「レディーミクストコンクリート」の記載に準拠し、コンクリートのスランプが120±2.5cm且つ空気量が4.5±1.5%の範囲内に収まったとき、JIS A1132「コンクリートの強度試験用供試体の作り方」に準拠し、100mm×100mm×400mmの供試体を1配合当たり3本作製した。
 供試体の作製においては、型枠にコンクリートを2層に分けて詰め、突き棒を用いて各層1000mmに1回の割合で突き、金属製のへらを用いて型枠の側面及び端面にそってスペーティング行い、型枠側面を木槌で軽くたたく方法で成型を行った。
 また、成型後の供試体は、20±2℃の試験室内で24時間静置した後、硬化不良等異常のないものはそのまま脱型した。一部は更に24時間静置してから脱型した材齢1日から硬化するまで1日単位で凝結状況を目視で観察し、効果時期を判定した。材齢7日時に、硬化効果不良がないことを確認してから脱型を行った。脱型後の供試体は20±1℃の水槽に入れて所定材齢まで水中養生を行った。
 材齢28日の時点において、供試体の端面研磨、寸法及び重量の計測を行った後、JIS A1106に準拠して、曲げ強度試験を行った。結果を図8に示す。
 この結果、薄片状カーボン分散液を添加することでベースコンクリートと比較して曲げ強度が上昇し、材齢28日において、最大で6.63%の強度向上が認められた。

Claims (19)

  1. 薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する、水硬性組成物用添加剤。
  2. さらに、水を含有する、請求項1に記載の水硬性組成物用添加剤。
  3. 前記親水基が、一般式(1)~(6):
    Figure JPOXMLDOC01-appb-C000001
    [式中、一般式(1)の-OHは水酸基を示す。一般式(2)の酸素原子はエーテル結合を示す。一般式(5)は酸無水物基を示す。Rは2価の有機基を示す。Rは水素原子又はアルキル基を示す。Xは水素原子、アルカリ金属、NH又は有機アンモニウムを示す。Xは水素原子、アルカリ金属、NH、有機アンモニウム又はアルキル基を示す。]
    で表される少なくとも1種を含む、請求項1又は2に記載の水硬性組成物用添加剤。
  4. 前記親水基が、アルコール性水酸基、-SONa、-COONa、-COOCH、及びポリオキシエチレン基よりなる群から選ばれる少なくとも1種を含む、請求項1~3のいずれか1項に記載の水硬性組成物用添加剤。
  5. 前記疎水基が、アルキル基、アルケニル基、シクロアルキル基、アリール基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種を含む、請求項1~4のいずれか1項に記載の水硬性組成物用添加剤。
  6. 前記疎水基が、少なくとも1つの酸素原子が結合しているアリール基、及び/又は2個以上の芳香環を有するアリール基を含む、請求項1~5のいずれか1項に記載の水硬性組成物用添加剤。
  7. 親水基及び炭素と親和性の高い疎水基を有する有機化合物が、AE剤、減水剤、硬化促進剤、AE減水剤、高性能減水剤、高性能AE減水剤及び流動化剤よりなる群から選ばれる少なくとも1種のコンクリート用化学混和剤である、請求項1~6のいずれか1項に記載の水硬性組成物用添加剤。
  8. 前記薄片状カーボンの炭素含有率が95.0質量%以上である、請求項1~7のいずれか1項に記載の水硬性組成物用添加剤。
  9. 前記薄片状カーボンの大きさが0.1~30.0μmである、請求項1~8のいずれか1項に記載の水硬性組成物用添加剤。
  10. 前記薄片状カーボンの厚みが0.335~100nmである、請求項1~9のいずれか1項に記載の水硬性組成物用添加剤。
  11. 前記薄片状カーボン100質量部に対して、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物を1~1000質量部含有する、請求項1~10のいずれか1項に記載の水硬性組成物用添加剤。
  12. 請求項1~11のいずれか1項に記載の水硬性組成物用添加剤の製造方法であって、
    層状構造を有する炭素質材料、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物、及び溶媒を含有する炭素質材料分散体に対して、30MPa以上の加圧処理を行い、該加圧処理により、
    (i)2個以上の前記炭素質材料分散体同士を衝突させること、
    (ii)前記炭素質材料分散体と金属又はセラミックス材料とを衝突させること、及び
    (iii)前記炭素質材料分散体を断面積1cm以下の空間を通過させること
    よりなる群から選ばれる少なくとも1種の処理を行い、前記溶媒が水を含有し、且つ、該水の含有量が、前記溶媒中の70質量%以上である、製造方法。
  13. 請求項1~11のいずれか1項に記載の水硬性組成物用添加剤の製造方法であって、
    回転する回転盤と、前記回転盤と略平行に設置された盤との間に、
    層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物と、溶媒とを含む組成物を設置し、
    前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加える工程
    を備え、前記溶媒が水を含有し、且つ、該水の含有量が、前記溶媒中の70質量%以上である、製造方法。
  14. 前記加圧処理又はせん断処理の後、溶媒の一部又は全部を除去する、請求項12又は13に記載の製造方法。
  15. 請求項1~11のいずれか1項に記載の水硬性組成物用添加剤と、水硬性成分とを含有する、水硬性組成物。
  16. 前記水硬性組成物用添加剤の含有量が、前記水硬性成分100質量部に対して、0.01~1質量部である、請求項15に記載の水硬性組成物。
  17. セメント水和生成物である、請求項15又は16に記載の水硬性組成物。
  18. 請求項15~17のいずれか1項に記載の水硬性組成物の製造方法であって、
    水硬性粉体材料と、前記水硬性組成物用添加剤とを混合する工程
    を備える、製造方法。
  19. 前記混合工程において、さらに、コンクリート用混和剤を混合する、請求項18に記載の製造方法。
PCT/JP2022/016290 2021-03-31 2022-03-30 水硬性組成物用添加剤及びそれを用いた水硬性組成物 WO2022210972A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023511527A JPWO2022210972A1 (ja) 2021-03-31 2022-03-30
AU2022248648A AU2022248648A1 (en) 2021-03-31 2022-03-30 Additive for hydraulic compositions, and hydraulic composition using same
CA3214212A CA3214212A1 (en) 2021-03-31 2022-03-30 Additive for hydraulic compositions, and hydraulic composition using same
EP22781182.5A EP4317102A1 (en) 2021-03-31 2022-03-30 Additive for hydraulic compositions, and hydraulic composition using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061536 2021-03-31
JP2021-061536 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210972A1 true WO2022210972A1 (ja) 2022-10-06

Family

ID=83459621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016290 WO2022210972A1 (ja) 2021-03-31 2022-03-30 水硬性組成物用添加剤及びそれを用いた水硬性組成物

Country Status (6)

Country Link
EP (1) EP4317102A1 (ja)
JP (1) JPWO2022210972A1 (ja)
AU (1) AU2022248648A1 (ja)
CA (1) CA3214212A1 (ja)
TW (1) TW202248172A (ja)
WO (1) WO2022210972A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186456A (zh) * 2007-12-06 2008-05-28 上海大学 亲水性石墨/氧化物复合粉体的制备方法
JP2015199647A (ja) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 薄片状カーボンの製造方法
JP2017529300A (ja) * 2014-08-18 2017-10-05 ガーマー インク.Garmor, Inc. セメント及びアスファルト複合材中へのグラファイト酸化物の取り込み
JP2018083724A (ja) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 薄片状カーボンの製造方法
JP2019502619A (ja) * 2015-11-30 2019-01-31 クナーフ ギプス カーゲーKnauf Gips Kg バルク材料にグラフェン又は酸化グラフェンを含む建材製品、及び、このような建材製品の製造方法
WO2019116425A1 (ja) 2017-12-11 2019-06-20 花王株式会社 水硬性組成物
JP2021155294A (ja) * 2020-03-27 2021-10-07 大阪瓦斯株式会社 耐久性向上剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186456A (zh) * 2007-12-06 2008-05-28 上海大学 亲水性石墨/氧化物复合粉体的制备方法
JP2015199647A (ja) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 薄片状カーボンの製造方法
JP2017529300A (ja) * 2014-08-18 2017-10-05 ガーマー インク.Garmor, Inc. セメント及びアスファルト複合材中へのグラファイト酸化物の取り込み
JP2019502619A (ja) * 2015-11-30 2019-01-31 クナーフ ギプス カーゲーKnauf Gips Kg バルク材料にグラフェン又は酸化グラフェンを含む建材製品、及び、このような建材製品の製造方法
JP2018083724A (ja) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 薄片状カーボンの製造方法
WO2019116425A1 (ja) 2017-12-11 2019-06-20 花王株式会社 水硬性組成物
JP2021155294A (ja) * 2020-03-27 2021-10-07 大阪瓦斯株式会社 耐久性向上剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADVANCED FUNCTIONAL MATERIALS, vol. 28, 2018, pages 1705183
K. R. PATONE. VARRLAC. BACKESR. J. SMITHU. KHANA. O'NEILLC. BOLANDM. LOTYAO. M. ISTRATEP. KING, NAT. MATER, vol. 13, 2014, pages 624
PATON, KEITH R. ET AL., SCALE-UP OF LIQUID EXFOLIATION OF GRAPHENE

Also Published As

Publication number Publication date
AU2022248648A1 (en) 2023-11-09
EP4317102A1 (en) 2024-02-07
CA3214212A1 (en) 2022-10-06
JPWO2022210972A1 (ja) 2022-10-06
TW202248172A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
EP2922801B1 (fr) Procede de preparation d'un melange maitre a base de nanocharges carbonees et de superplastifiant, et son utilisation dans des systemes inorganiques durcissables
JP6031611B2 (ja) 分散剤
Nguyen et al. Simultaneous effects of silanized coal fly ash and nano/micro glass fiber on fracture toughness and mechanical properties of carbon fiber‐reinforced vinyl ester resin composites
CA3026799A1 (en) Rheology modifier
CN103524142A (zh) 一种氮化硅-碳化硅-碳化钛微纳米复合材料的制备方法
CN107027305B (zh) 水泥组合物和使用该水泥组合物制造水泥质固化体的方法
WO2022210972A1 (ja) 水硬性組成物用添加剤及びそれを用いた水硬性組成物
Qian et al. A clean dispersant for nano-silica to enhance the performance of cement mortars
CN112811873B (zh) 一种再生骨料混凝土及其制备工艺
JP6619215B2 (ja) 橋梁ウェブ部材及びその製造方法
Qin et al. Study on the preparation and mechanical properties of alumina ceramic coating reinforced by graphene and multi-walled carbon nanotube
CN113321456B (zh) 一种抗裂混凝土及其制备方法
Dębska et al. Selected properties of epoxy mortars with perlite aggregate
Gao et al. Fabrication and characterization of graphene oxide modified polycarboxylic by in situ polymerization
JP2021031314A (ja) 水硬性組成物用添加剤及びその用途
JP2010083698A (ja) セメント硬化体の製造方法及びセメント硬化体
JP6474688B2 (ja) 埋設型枠用ボード
JP6516567B2 (ja) 定盤及びその製造方法
RU2405758C1 (ru) Способ приготовления бетонной смеси
Wo et al. Chemically functionalized manufactured sand as the novel additive for enhancing the properties of cement-based composites
Rudresh et al. Mechanical assisted modification of halloysite nano clay: characterization and its effects on mechanical properties of halloysite-epoxy nanocomposites
CN114787100B (zh) 一种经有机硅处理的组合物及其用途
JP2017100898A (ja) 高速度交通システム構造物用コンクリート部材、及びその製造方法
JPH1029840A (ja) 天然繊維補強セメント組成物の製造方法
Nangor et al. The Use of Recycled Polyethylene in Water-Oil Emulsion for Lightweight Concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511527

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3214212

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18553270

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: AU2022248648

Country of ref document: AU

Ref document number: 2022248648

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022781182

Country of ref document: EP

Ref document number: 11202307447Y

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022248648

Country of ref document: AU

Date of ref document: 20220330

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022781182

Country of ref document: EP

Effective date: 20231031