WO2022210945A1 - Curable resin composition, laminated structure, cured product, and electronic component - Google Patents

Curable resin composition, laminated structure, cured product, and electronic component Download PDF

Info

Publication number
WO2022210945A1
WO2022210945A1 PCT/JP2022/016206 JP2022016206W WO2022210945A1 WO 2022210945 A1 WO2022210945 A1 WO 2022210945A1 JP 2022016206 W JP2022016206 W JP 2022016206W WO 2022210945 A1 WO2022210945 A1 WO 2022210945A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
alkali
coating film
cured
Prior art date
Application number
PCT/JP2022/016206
Other languages
French (fr)
Japanese (ja)
Inventor
悠斗 小田桐
裕 横山
直之 小池
一善 米田
英和 宮部
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN202280025312.0A priority Critical patent/CN117136216A/en
Priority to KR1020237030343A priority patent/KR20230163369A/en
Publication of WO2022210945A1 publication Critical patent/WO2022210945A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a curable resin composition, a laminate structure of resin layers formed from the curable resin composition, a cured product thereof, and an electronic component having an insulating film formed from the cured product, and particularly to an alkali-developable structure. It has a curable resin composition that forms a cured film by exposure and heat treatment, a laminated structure of resin layers formed from the curable resin composition, a cured product thereof, and an insulating film composed of the cured product. Regarding electronic components.
  • a non-photosensitive resin structure formed by applying a thermosetting adhesive to a film such as polyimide has been used as a protective film for a flexible printed wiring board.
  • a method of patterning such a non-photosensitive resin structure and forming it on a flexible printed wiring board conventionally, a method of forming holes by punching and then thermocompression bonding on the flexible printed wiring board has been adopted.
  • a method has also been adopted in which a solvent-soluble thermosetting resin composition is directly pattern-printed on a flexible printed wiring board and thermally cured to form a pattern.
  • polyimide films have been used as suitable materials for flexible printed wiring boards because they are flexible and have excellent heat resistance, mechanical properties, and electrical properties (see, for example, Patent Document 1).
  • the shape of the pattern ends is lost due to the bleeding of the resin during coating or thermocompression bonding.
  • a photosensitive solder resist which is known as a permanent circuit protective film that can be microfabricated, as a coverlay for flexible printed wiring boards.
  • a photosensitive solder resist in a flexible printed wiring board requires a low crosslinking density in order to impart flexibility. Since flexible substrates are thin and easily bent, they are often stacked and fixed, stored, and transported. Due to its storage and transportation environment, it is exposed to high temperatures. When a photosensitive solder resist is applied to the coverlay, the area that protects the flexible printed wiring board becomes wider. They may stick together.
  • the first object of the present invention in view of the above problems is that the resolution of the dried coating film is good, the flexibility of the resulting cured product is good, and sticking is not caused when stored in a stack.
  • An object of the present invention is to provide a curable resin composition having small properties.
  • the second object of the present invention in view of the above problems is that the dry coating film has good developability, the obtained cured product has good heat resistance and flexibility, and the obtained cured product To provide a curable resin composition having a characteristic of little sticking when stored in a pile.
  • the present inventors have diligently studied to achieve the above first purpose. As a result, it is possible to maintain a small surface roughness (arithmetic mean roughness) at the time of the dried coating film, and use a curable resin composition that increases the surface roughness (arithmetic mean roughness) after heat curing.
  • the inventors have found that both high resolution of the film and flexibility and low sticking property of the thermosetting film can be achieved, and have completed the present invention.
  • the term "resolution” refers to the ability to express fine details of an image obtained by exposing a resin layer comprising the curable resin composition of the present invention to light and developing with an alkali.
  • the first object of the present invention is A curable resin composition that is alkali developable and forms a cured film by exposure and heat treatment,
  • the arithmetic mean roughness Ra of the dry coating film is less than 0.1 ⁇ m, and after heat curing of the dry coating film It is achieved by a curable resin composition (hereinafter also referred to as the curable resin composition of the first aspect of the present invention) in which the cured film has an arithmetic mean roughness Ra of 0.1 ⁇ m or more and 1 ⁇ m or less. It was found that
  • the term “resolution” refers to the expressiveness of fine details of an image obtained when a resin layer made of the curable resin composition of the first aspect of the present invention is pattern-exposed and alkali-developed.
  • the dry coating film when a dry coating film having a thickness of 2 to 100 ⁇ m is formed from the curable resin composition, the dry coating film has an arithmetic mean roughness Ra of It is preferably less than 0.05 ⁇ m, and the arithmetic mean roughness Ra of the cured film after thermal curing of the dried coating film is preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • it preferably contains (A) an alkali-soluble polyamide-imide resin, (B) a photobase generator, (C) a thermosetting compound, and (D) a cellulose derivative.
  • thermosetting compound is preferably an epoxy resin.
  • the first object of the present invention is a laminate structure in which at least one side of a resin layer formed from the curable resin composition of the present invention is supported or protected by a film, It can also be achieved by the curable resin composition of the present invention, the cured product of the resin layer of the laminated structure of the present invention, and the electronic component having an insulating film made of the cured product of the present invention.
  • the present inventors have diligently studied to achieve the above second purpose. As a result, it was found that by blending a cellulose derivative into the curable resin composition and adding an alkali-soluble polyimide resin to a predetermined blend, sticking between the resulting cured products is reduced. was completed.
  • the second object of the present invention is (A) an alkali-soluble polyamideimide resin; (B) a photobase generator; (C) a thermosetting compound; (D) a cellulose derivative (hereinafter also referred to as the curable resin composition of the second aspect of the present invention).
  • the alkali-soluble polyamide-imide resin preferably has a carboxyl group
  • the alkali-soluble polyamide-imide resin preferably has a carboxyl group and a phenolic hydroxyl group.
  • the curable resin composition of the second aspect of the present invention further contains (E) an alkali-soluble polyimide resin.
  • thermosetting compound is preferably an epoxy resin.
  • the second object of the present invention can also be achieved by a cured product obtained from the curable composition of the present invention and an electronic component having an insulating film made of this cured product.
  • the resolution of the obtained dried coating film is good, and the flexibility of the cured product after thermosetting is also good. Even when cured products are stacked and stored in a high-temperature environment, sticking is minimal.
  • the dry coating film of the curable composition of the second aspect of the present invention has good developability, and the cured product obtained from the curable composition of the second aspect of the present invention has heat resistance. , which has good flexibility and little sticking when stored in a pile.
  • the curable resin composition of the first aspect of the present invention is A curable resin composition that is alkali developable and forms a cured film by exposure and heat treatment, When a dry coating film having a thickness of 2 to 100 ⁇ m is formed from the curable resin composition, the dry coating film has an arithmetic mean roughness Ra of less than 0.1 ⁇ m, and a cured film after heat curing of the dry coating film. has an arithmetic mean roughness Ra of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the constituents thereof must contain alkali-soluble functional groups (hereinafter referred to as alkali a compound having a soluble group) (hereinafter also referred to as an alkali-soluble compound), (B) a photobase generator, and (C) a thermosetting compound, which will be described later.
  • alkali a compound having a soluble group hereinafter also referred to as an alkali-soluble compound
  • B a photobase generator
  • C thermosetting compound
  • the photobase generator changes its molecular structure by irradiation with light such as ultraviolet light or visible light, or the molecule is cleaved, thereby forming an alkali-soluble compound and
  • a thermosetting It functions as a catalyst for addition reactions with compounds.
  • alkali-soluble compounds include compounds having a phenolic hydroxyl group, compounds having a carboxyl group, and compounds having a phenolic hydroxyl group and a carboxyl group.
  • the alkali-soluble compound is (A) an alkali-soluble polyamide-imide resin described later.
  • the arithmetic mean of this dry coating film The roughness Ra is less than 0.1 ⁇ m, preferably less than 0.05 ⁇ m, and the arithmetic average roughness Ra of the cured film after thermal curing of the dry coating film is 0.1 ⁇ m or more and 1 ⁇ m or less, preferably 0.1 ⁇ m or more and 0.1 ⁇ m or more. 5 ⁇ m or less.
  • the dry coating film has an arithmetic mean roughness Ra of less than 0.1 ⁇ m, diffused reflection of the light applied to the coating film during exposure is suppressed, resulting in good resolution. Further, after thermal curing, the cured film has an arithmetic mean roughness Ra of 0.1 ⁇ m or more and 1 ⁇ m or less, so that small unevenness is generated on the cured film. The unevenness reduces the contact area between the stacked cured films and contributes to the reduction of sticking.
  • the phenomenon that the unevenness of the dried coating film is small in the state of the dry coating film before heat curing, and the unevenness on the cured film after heat curing is increased is due to the fact that the curable resin composition of the present invention is the above (C) It is considered that this is caused by including a polymer component having a different compatibility with a thermosetting compound or an alkali-soluble compound. That is, it is presumed that the polymer components dispersed in the dry coating film before heat curing migrate to the film surface during the heat curing reaction.
  • polymer component it is preferable to blend (D) a cellulose derivative.
  • the curable resin composition of the first aspect of the present invention preferably includes (A) an alkali-soluble polyamideimide resin, (B) a photobase generator, (C) a thermosetting compound, and (D ) a cellulose derivative.
  • the curable resin composition of the second aspect of the present invention is (A) an alkali-soluble polyamideimide resin; (B) a photobase generator; (C) a thermosetting compound; (D) a cellulose derivative.
  • the curable resin composition of the second aspect of the present invention contains (E) an alkali-soluble polyimide resin.
  • thermosetting compound is preferably an epoxy resin.
  • the alkali-soluble polyamide-imide resin is a preferred example of the alkali-soluble photocurable compound.
  • the alkali-soluble polyamide-imide resin contains alkali-soluble groups (one or more of phenolic hydroxyl groups and carboxyl groups).
  • the curable resin composition of the first aspect of the present invention preferably contains (A) an alkali-soluble polyamideimide resin, and the curable resin composition of the second aspect of the present invention comprises (A) an alkali Contains soluble polyamide-imide resin.
  • Such an alkali-soluble polyamide-imide resin is, for example, a resin obtained by reacting a carboxylic acid anhydride component and an amine component to obtain an imidized product, and then reacting the obtained imidized product with an isocyanate component. etc.
  • the alkali-soluble group is introduced by using an amine component having a carboxyl group or a phenolic hydroxyl group.
  • the imidization may be carried out by thermal imidization or by chemical imidization, and these may be used in combination.
  • carboxylic anhydride component examples include tetracarboxylic anhydrides and tricarboxylic anhydrides, but are not limited to these acid anhydrides. Acid anhydride groups that react with amino groups and isocyanate groups and Any compound having a carboxyl group can be used, including its derivatives. Also, these carboxylic acid anhydride components may be used alone or in combination.
  • amine component diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxyl group, diamines having a phenolic hydroxyl group, and the like can be used.
  • the amine component is not limited to these amines, but it is necessary to use an amine capable of introducing at least one functional group out of phenolic hydroxyl groups and carboxyl groups. Also, these amine components may be used alone or in combination.
  • diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
  • the alkali solubility (developability) of the polyamideimide resin and the mechanical properties of the cured product of the resin composition containing the polyamideimide resin From the viewpoint of improving the balance with other properties such as properties, the acid value (solid content acid value) is preferably 30 mgKOH/g or more, more preferably 30 mgKOH/g to 150 mgKOH/g, Especially preferred is 50 mg KOH/g to 120 mg KOH/g.
  • the acid value is 30 mgKOH/g or more
  • the alkali solubility that is, the developability
  • the crosslink density with the thermosetting component after light irradiation is increased, resulting in sufficient development. You can get contrast.
  • the acid value is set to 150 mgKOH/g or less, it is possible to suppress so-called heat fogging, especially in the PEB (POST EXPOSURE BAKE) process after light irradiation, which will be described later, and to increase the process margin.
  • the molecular weight of the alkali-soluble polyamideimide resin (A) is preferably 20,000 or less, and preferably 1,000 to 17,000, in consideration of developability and cured coating properties. More preferably, 2,000 to 15,000 is even more preferable.
  • the molecular weight is 20,000 or less, the alkali-solubility of the unexposed area is increased and the developability is improved.
  • the molecular weight is 1,000 or more, sufficient development resistance and cured physical properties can be obtained in the exposed area after the exposure/PEB process.
  • an alkali-soluble polyamideimide resin is contained in the curable resin composition of the present invention, in particular, a polyamide having a structure represented by the following general formula (1) and a structure represented by the following general formula (2) It is more preferable to use an imide resin from the viewpoint of further improving developability and improving flexibility and adhesion.
  • the structure represented by the general formula (1) and the structure represented by the following general formula (2) are not limited to (A) when contained in one molecule of an alkali-soluble polyamideimide resin, (A) It suffices if it is contained in the alkali-soluble polyamide-imide resin.
  • X 1 is a residue of an aliphatic diamine (a) derived from a dimer acid having 24 to 48 carbon atoms (also referred to herein as “dimer diamine (a)”)
  • X2 is a residue of aromatic diamine (b) having a carboxyl group (also referred to herein as “carboxyl group-containing diamine (b)”).
  • each Y is independently cyclohexane or an aromatic ring.
  • a mild alkaline solution such as a 1.0% by mass sodium carbonate aqueous solution
  • It can be a polyamide-imide resin excellent in alkali solubility that can dissolve also.
  • a cured product of a curable resin composition containing such a polyamideimide resin can have excellent dielectric properties.
  • the dimer diamine (a) can be obtained by reductively aminating the carboxyl group in the dimer of aliphatic unsaturated carboxylic acid having 12 to 24 carbon atoms. That is, dimer diamine (a), which is an aliphatic diamine derived from dimer acid, is obtained by polymerizing unsaturated fatty acids such as oleic acid and linoleic acid to form dimer acid, reducing this, and then aminating it. .
  • PRIAMINE 1073, 1074, and 1075 manufactured by Croda Japan Co., Ltd., trade names
  • the dimer diamine (a) may be preferably derived from a dimer acid having 28 to 44 carbon atoms, and more preferably derived from a dimer acid having 32 to 40 carbon atoms.
  • carboxyl group-containing diamine (b) examples include 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 5,5'-methylenebis(anthranilic acid), benzidine-3,3'-dicarboxylic acid, and the like. is mentioned.
  • the carboxyl group-containing diamine (b) may be composed of one type of compound, or may be composed of a plurality of types of compounds. From the viewpoint of raw material availability, the carboxyl group-containing diamine (b) preferably contains 3,5-diaminobenzoic acid and 5,5'-methylenebis(anthranilic acid).
  • the relationship between the content of the structure represented by the general formula (1) and the content of the structure represented by the general formula (2) in the polyamideimide resin is not limited.
  • the content of dimer diamine (a) (unit: % by mass) is preferably 20 to 60 mass %, more preferably 30 to 50 mass %.
  • the “content of dimer diamine (a)” refers to the charged amount of dimer diamine (a), which is positioned as one of raw materials for producing polyamide-imide resin, of the produced polyamide-imide resin. It means ratio to mass.
  • the “mass of the produced polyamide-imide resin” is the amount of water (H 2 O) produced by imidization and carbon dioxide gas (CO 2 ) is the value after subtracting the theoretical amount.
  • the portion represented by Y in the general formulas (1) and (2) preferably has a cyclohexane ring.
  • the molar ratio of the cyclohexane ring content to the aromatic ring content is preferably 85/15 to 100/0, more preferably 90/10 to 99/1, It is more preferably 90/10 to 98/2.
  • the method for producing the above (A) alkali-soluble polyamide-imide resin is not limited, and it can be produced through an imidization step and an amidimidation step using a known and commonly used method.
  • the amount of the dimer diamine (a) to be charged is preferably such that the content of the dimer diamine (a) is 20 to 60% by mass, and more preferably the amount is such that the content of the dimer diamine (a) is 30 to 50% by mass. .
  • the definition of the content of the dimer diamine (a) is as described above.
  • other diamines may be used together with the dimer diamine (a) and the carboxyl group-containing diamine (b).
  • other diamines include 2,2-bis[4-(4-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenoxy) )phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis[4-(4-aminophenoxy)phenyl]methane, 4,4′-bis(4-aminophenoxy ) biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ketone, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis( 4-aminophenoxy)benzene, 2,2′
  • cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) in the imidization step.
  • the molar ratio of the amount of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) used to the amount of trimellitic anhydride (d) used should be 85/15 to 100/0. is preferred, 90/10 to 99/1 is more preferred, and 90/10 to 98/2 is even more preferred.
  • Amount of diamine compound (specifically, dimer diamine (a), carboxyl group-containing diamine (b), and other diamines used as necessary) used to obtain imidized product and acid anhydride (Specifically, it means one or two selected from the group consisting of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) and trimellitic anhydride (d). ) is not limited.
  • the amount of the acid anhydride used is preferably such that the molar ratio with respect to the amount of the diamine compound used is 2.0 or more and 2.4 or less, and the amount is such that the molar ratio is 2.0 or more and 2.2 or less. It is more preferable to have
  • the imidized product obtained in the above imidization step is reacted with a diisocyanate compound to obtain a polyamideimide resin containing a substance having a structure represented by the general formula (3) described later.
  • the specific type of diisocyanate compound is not limited.
  • the diisocyanate compound may be composed of one type of compound, or may be composed of a plurality of types of compounds.
  • diisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate aromatic diisocyanates such as isocyanate and 2,4-tolylene dimer; aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and norbornene diisocyanate; (A) From the viewpoint of improving both the alkali solubility of the alkali-soluble polyamideimide resin and the light transmittance of the polyamideimide resin, the diisocyanate compound preferably contains an aliphatic isocyanate, and the diisocyanate compound
  • the amount of diisocyanate compound used in the amidimidation process is not limited. From the viewpoint of imparting moderate alkali solubility to the polyamide-imide resin, the amount of the diisocyanate compound used is 0.3 or more and 1.0 or less as a molar ratio with respect to the amount of the diamine compound used to obtain the imide compound. , more preferably 0.4 or more and 0.95 or less, and particularly preferably 0.50 or more and 0.90 or less.
  • the polyamideimide resin thus produced has the following general formula (3) (In the above general formula (3), X is each independently a diamine residue (a residue of a diamine compound), Y is each independently an aromatic ring or a cyclohexane ring, Z is a residue of a diisocyanate compound. n is a natural number. ) includes substances having the structure shown in
  • the total amount of the alkali-soluble polyamideimide resin and the alkali-soluble polyimide resin (E), which is an optional component described later, is based on 100 parts by mass of the curable resin composition of the present invention, for example , 10 to 85 parts by mass, preferably 15 to 80 parts by mass, particularly preferably 20 to 75 parts by mass.
  • the curable resin composition of the first aspect of the present invention includes (A) an alkali-soluble polyamideimide resin (and an optional component (E) an alkali-soluble polyimide resin described later), and (C) a thermosetting It preferably contains a compound and (B) a photobase generator, and the curable resin composition of the second aspect of the present invention contains (B) a photobase generator.
  • the photobase generator is a catalyst for the addition reaction between the polyimide resin having a carboxyl group and the thermosetting component when the molecular structure changes or the molecule is cleaved by irradiation with light such as ultraviolet light or visible light. It is a compound that produces one or more basic substances that can function as
  • Examples of basic substances include secondary amines and tertiary amines.
  • photobase generators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzylcarbamate groups, alkoxybenzyl A compound having a substituent such as a carbamate group is included. Among them, oxime ester compounds and ⁇ -aminoacetophenone compounds are preferred. As ⁇ -aminoacetophenone compounds, those having two or more nitrogen atoms are particularly preferred.
  • photobase generators include WPBG-018 (trade name: 9-anthrylmethylN,N'-diethylcarbamate), WPBG-027 (trade name: (E)-1-[3-(2-hydroxyphenyl)-2-propenoyl ]piperidine), WPBG-082 (trade name: guanidinium2-(3-benzoylphenyl)propionate), WPBG-140 (trade name: 1-(anthraquinon-2-yl)ethyl imidazolecarboxylate), etc. (Fuji Film Wako Pure Chemical Industries, Ltd. ) can also be used.
  • the ⁇ -aminoacetophenone compound has a benzoin ether bond in its molecule, and when exposed to light, it undergoes intramolecular cleavage to produce a basic substance (amine) that acts as a curing catalyst.
  • ⁇ -aminoacetophenone compounds include (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane (Omnirad 369, trade name, manufactured by IGM Resins) and 4-(methylthiobenzoyl)- 1-methyl-1-morpholinoethane (Omnirad 907, trade name, manufactured by IGM Resins), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4 -morpholinyl)phenyl]-1-butanone (Omnirad 379, trade name, manufactured by IGM Resins) or a commercially available compound or a solution thereof can be used.
  • 4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane (Omnirad 369, trade name, manufactured by IGM Resins) and 4-(methylthiobenzoyl)- 1-methyl-1-morpholinoethane (Om
  • any compound can be used as the oxime ester compound as long as it is a compound that generates a basic substance upon irradiation with light.
  • an oxime ester photobase generator having a group represented by the following general formula (4) is preferable.
  • R 1 is a hydrogen atom, an unsubstituted or C 1-6 alkyl group, a phenyl group or a phenyl group substituted with a halogen atom, an unsubstituted C 1 group substituted with one or more hydroxyl groups, -20 alkyl groups, said alkyl groups interrupted by one or more oxygen atoms, unsubstituted or C5-8 cycloalkyl groups substituted with C1-6 alkyl groups or phenyl groups, unsubstituted or an alkanoyl group having 2 to 20 carbon atoms or a benzoyl group substituted with an alkyl group having 1 to 6 carbon atoms or a phenyl group, and R 2 is unsubstituted or an alkyl group having 1 to 6 carbon atoms, a phenyl group or a halogen A phenyl group substituted with an atom, an alkyl group having 1 to 20 carbon atoms unsubstitute
  • the amount of the photobase generator (B) in the curable resin composition of the present invention is (A) relative to 100 parts by mass of the alkali-soluble polyamideimide resin, or when the alkali-soluble polyimide resin is included
  • the total amount of the alkali-soluble polyamideimide resin and the alkali-soluble polyimide resin is 100 parts by mass, for example, 0.1 parts by mass or more and 40 parts by mass or less, preferably 0.2 It is more than 20 parts by mass and less than 20 parts by mass.
  • the amount is 0.1 part by mass or more, a good contrast of development resistance between the light-irradiated area and the non-irradiated area can be obtained. Moreover, when it is 40 parts by mass or less, the properties of the cured product are improved.
  • the curable resin composition of the first aspect of the present invention preferably contains (C) a thermosetting compound from the viewpoint of imparting heat resistance and chemical resistance to the cured product after thermosetting.
  • the curable resin composition of the second aspect contains (C) a thermosetting compound.
  • Thermosetting compounds include epoxy resins, urethane resins, polyester resins, hydroxyl group-, amino- or carboxyl-containing polyurethanes, polyesters, polycarbonates, polyols, phenoxy resins, acrylic copolymer resins, vinyl resins, oxazine resins, A known and commonly used thermosetting resin such as a cyanate resin can be used.
  • thermosetting compound is preferably an epoxy resin.
  • epoxy resins include jER828 manufactured by Mitsubishi Chemical Corporation, EHPE3150 manufactured by Daicel Corporation, EPICLON840 manufactured by DIC Corporation, Epotote YD-011 manufactured by Nippon Steel Chemical & Materials, and D.I. E. R. 317, bisphenol A type epoxy resins such as Sumiepoxi ESA-011 (both trade names) manufactured by Sumitomo Chemical; , Dow Chemical Company D.I. E. R. 542, brominated epoxy resins such as Sumiepoxy ESB-400 (both trade names) manufactured by Sumitomo Chemical; jER152 manufactured by Mitsubishi Chemical; E. N.
  • Bisphenol F type epoxy Resin Hydrogenated bisphenol A type epoxy resin such as Epotato ST-2004 (trade name) manufactured by Nippon Steel Chemical &Materials; Glycidylamine type epoxy resin such as Sumiepoxy ELM-120 (both are trade names); Trihydroxyphenylmethane type epoxy resin such as EPPN-501 (all trade names) manufactured by Mitsubishi Chemical Corporation; type epoxy resins or mixtures thereof; EBPS-200 manufactured by Nippon Kayaku, EPX-30 manufactured by ADEKA, bisphenol S type epoxy resins such as EXA-1514 (trade name) manufactured by DIC; jER157S manufactured by Mitsubishi Chemical Corporation ( Bisphenol A novolac type epoxy resins such as bisphenol A novolak type epoxy resins such as TEPIC manufactured by Nissan Chemical Co., Ltd.
  • Hydrogenated bisphenol A type epoxy resin such as Epotato ST-2004 (trade name) manufactured by Nippon Steel Chemical &Materials
  • Glycidylamine type epoxy resin such as Sumiepoxy ELM-
  • biphenyl novolak type epoxy resins ESN-190 and DIC manufactured by Nippon Steel Chemical & Materials naphthalene group-containing epoxy resins such as HP-4032 manufactured by DIC Corporation; and epoxy resins having a dicyclopentadiene skeleton such as HP-7200 manufactured by DIC Corporation.
  • thermosetting compound may be in any amount, but (A) the alkali-soluble polyamideimide resin and the equivalent ratio (alkali-soluble It is preferred that the ratio of 1:0.1 to 1:10 of the functional group: thermosetting group such as epoxy group) be obtained.
  • the curable resin composition of the first aspect of the present invention contains (D) a cellulose derivative as a polymer component different in compatibility with the (C) thermosetting compound or alkali-soluble photocurable compound.
  • the curable resin composition of the second aspect of the present invention contains (D) a cellulose derivative.
  • the cellulose derivative (D) is preferably soluble in an organic solvent and has a high glass transition temperature (Tg).
  • Tg glass transition temperature
  • Cellulose derivatives include cellulose ethers, carboxymethyl celluloses, cellulose esters, etc., which will be described later.
  • Cellulose ethers include ethyl cellulose, hydroxyalkyl cellulose and the like, and commercial products of ethyl cellulose include Ethocel (registered trademark) 4, Ethocel 7, Ethocel 10, Ethocel 14, Ethocel 20, Ethocel 45, Ethocel 70, Ethocel 100 and Ethocel. 200, Ethocel 300 (all trade names manufactured by Dow Chemical Company), and commercial products of hydroxyalkyl cellulose include Metolose SM, Metolose 60SH, Metolose 65SH, Metolose 90SH, Metolose SEB, and Metolose SNB (all of which are Shin-Etsu Chemical Co., Ltd. ( (trade name) manufactured by Co., Ltd.).
  • carboxymethyl cellulose examples include CMCAB-641-0.2 (trade name manufactured by Eastman Chemical Co.), Sunrose F, Sunrose A, Sunrose P, Sunrose S, and Sunrose B (all product name of Nippon Paper Industries Co., Ltd.) and the like.
  • a more preferable cellulose derivative is a cellulose ester obtained by esterifying the hydroxyl group of cellulose with an organic acid.
  • R 1 , R 2 and R 3 are each independently hydrogen, an acyl group, or
  • R4 is hydrogen or a methyl group, and R5 is hydrogen, a methyl group, an ethyl group, or a glycidyl group.
  • R 1 , R 2 and R 3 is hydrogen, n is an integer of 1 or more, and its upper limit is regulated by the molecular weight described later.
  • the acyl group content relative to the cellulose resin is in the range of more than 0 to 60 wt% or less, preferably in the range of 5 to 55 wt%.
  • the hydroxyl group content relative to the cellulose resin is 0 to 6 wt%
  • the acetyl group content as the acyl group is 0 to 40 wt%
  • the propionyl group or/and butyryl group content is 0. 55 wt %
  • the content of the group represented by formula (6) is preferably in the range of 0 to 20 wt %.
  • "wt%” is the weight percent of hydrogen, acyl groups, or groups represented by formula (6) relative to the weight of cellulose.
  • cellulose esters include cellulose acetates such as CA-398-3, CA-398-6, CA-398-10, CA-398-30, CA-394-60S, and cellulose acetate butyrate.
  • CAP-482-0.5, CAP-482-20 all of the above cellulose derivatives are trade names manufactured by Eastman Chemical Co.), and the like.
  • cellulose acetate butyrate and cellulose acetate propionate are preferable from the viewpoint of solubility in solvents.
  • the above cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are treated with (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, ( A cellulose derivative containing a group represented by the formula (6) can be obtained by reacting with glycidyl meth)acrylate or the like.
  • the evaluation result of sticking property becomes better.
  • the number average molecular weight of (D) the cellulose derivative is not particularly limited, it is preferably 5,000 to 500,000, more preferably 10,000 to 100,000, still more preferably 10,000 to 30,000.
  • the molecular weight is within the above range, sticking is small, that is, the evaluation result of sticking property is good, and the viscosity of the curable resin composition falls within an appropriate range.
  • the glass transition temperature Tg referred to in this specification refers to the glass transition temperature measured by thermomechanical analysis (DSC) according to the method described in JIS C 6481:1996, "5.17.5 DSC method".
  • the cellulose derivative used in the present invention is preferably derived from natural products from the viewpoint of fossil fuel depletion. Furthermore, the starting material used for the cellulose derivative of the present invention can be produced from recycled products such as regenerated pulp, and it is possible to provide a composition that is preferable from the environmental aspect of CO 2 reduction.
  • a cellulose derivative can be used individually or in mixture of 2 or more types.
  • the amount of the cellulose derivative is, for example, 0.5 parts by mass or more and 20 parts by mass per 100 parts by mass of the (A) alkali-soluble polyamideimide resin (and an optional alkali-soluble polyimide resin described later). It is not more than 1 part by mass, preferably 1 part by mass or more and 15 parts by mass or less, more preferably 4 parts by mass or more and 10 parts by mass or less. When it is in the above range, the surface roughness (arithmetic mean roughness Ra) can be less than 0.1 ⁇ m at the time of the dry coating film, and the sticking is small, that is, the evaluation result of the sticking property is good.
  • the viscosity of the curable resin composition is in an appropriate range. This is because (A) the alkali-soluble polyamideimide resin, (C) the thermosetting compound, and (D) the cellulose derivative have good compatibility before heat curing, and the polymer component is dispersed in the dried coating film. presumably because it exists. In addition, after heat curing, the polymer components dispersed in the dry coating migrate to the film surface during the heat curing reaction, resulting in the surface roughness of the cured film after heat curing (arithmetic It is thought that the average roughness Ra) is larger than that of the dry coating film before heat curing.
  • the thickness Ra) can also be set to 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the curable resin composition of the present invention preferably contains (E) an alkali-soluble polyimide resin.
  • the alkali-soluble polyimide resin has an alkali-soluble functional group (hereinafter also referred to as an alkali-soluble group).
  • the alkali-soluble functional group is a functional group that enables the curable resin composition of the present invention to be developed with an alkaline solution, and includes, for example, a carboxyl group and a phenolic hydroxyl group.
  • Such (E) alkali-soluble polyimide resins include, for example, resins obtained by reacting a carboxylic anhydride component with an amine component and/or an isocyanate component.
  • the alkali-soluble group is introduced by using an amine component having a carboxyl group or a phenolic hydroxyl group.
  • the imidization may be carried out by thermal imidization or by chemical imidization, and these may be used in combination.
  • carboxylic anhydride component examples include tetracarboxylic anhydrides and tricarboxylic anhydrides, but are not limited to these acid anhydrides. Acid anhydride groups that react with amino groups and isocyanate groups and Any compound having a carboxyl group can be used, including its derivatives. Also, these carboxylic acid anhydride components may be used alone or in combination.
  • amine component diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxyl group, diamines having a phenolic hydroxyl group, and the like can be used.
  • the amine component is not limited to these amines, but it is necessary to use an amine capable of introducing at least one functional group out of phenolic hydroxyl groups and carboxyl groups. Also, these amine components may be used alone or in combination.
  • diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
  • a known and commonly used organic solvent can be used.
  • an organic solvent there is no problem as long as it does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and dissolves these raw materials, and its structure is not particularly limited.
  • aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and ⁇ -butyrolactone are preferred because of their high solubility of raw materials.
  • the alkali-soluble polyimide resin preferably has a carboxyl group as an alkali-soluble group, and particularly preferably has both a carboxyl group and a phenolic hydroxyl group as an alkali-soluble group.
  • the acid value (solid content acid value) is preferably 20 to 200 mgKOH/g, particularly preferably 60 to 150 mgKOH/g.
  • the molecular weight of the alkali-soluble polyimide resin is preferably a mass average molecular weight Mw of 100,000 or less, more preferably 1,000 to 100,000, in consideration of developability and cured coating film properties. ,000 to 50,000 are more preferred.
  • the blending ratio of (A) an alkali-soluble polyamideimide resin and (E) an alkali-soluble polyimide resin can have a mass ratio of 98:2 to 50:50, preferably 95:5 to 50:50, more preferably 95:5 to 70:30.
  • the curable resin composition of the present invention may further contain the following components as necessary.
  • the curable resin composition of the present invention can be blended with a known and commonly used polymer resin for the purpose of improving the flexibility and dryness to the touch of the resulting cured product.
  • polymer resins include polyester-based polymers, phenoxy resin-based polymers, polyvinylacetal-based polymers, polyvinyl butyral-based polymers, polyamide-based polymers, elastomers, and the like.
  • Such polymer resins may be used singly or in combination of two or more.
  • the curable resin composition of the present invention can contain an inorganic filler in order to suppress curing shrinkage of the cured product and improve properties such as adhesion and hardness.
  • inorganic fillers include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg Silicious Earth.
  • the curable resin composition of the present invention can contain known and commonly used colorants such as red, orange, blue, green, yellow, white and black. Any of pigments, dyes, and dyes may be used as such a coloring agent.
  • Organic solvent for preparing the resin composition or for adjusting the viscosity for application to a substrate or carrier film.
  • organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, and petroleum solvents. Such organic solvents may be used singly or as a mixture of two or more.
  • the curable resin composition of the present invention may further contain components such as mercapto compounds, adhesion promoters, antioxidants and ultraviolet absorbers, if necessary. Known and commonly used materials can be used as these materials.
  • thickeners such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite, antifoaming agents and/or leveling agents such as silicone-based, fluorine-based, and polymer-based agents, silane coupling agents, and rust inhibitors.
  • Known and commonly used additives such as these can be blended.
  • ⁇ Laminated structure> In the laminated structure of the present invention, at least one surface of the resin layer formed from the curable resin composition of the present invention is supported or protected by a film.
  • the resin layer may be a single layer or may have a laminated structure of two or more resin layers.
  • a resin layer formed of the curable resin composition of the present invention may be laminated, or a resin layer formed of the curable resin composition of the present invention. and a resin layer formed of a curable resin composition not according to the present invention.
  • the laminated structure includes, for example, a resin layer (A) provided on a substrate such as a flexible printed wiring board, a resin layer (B) provided on the resin layer (A), At least one side of the resin layer having a laminated structure of is supported or protected by the film.
  • the resin layer (A) is made of, for example, an alkali-developable resin composition containing an alkali-soluble resin and a heat-reactive compound.
  • the laminated structure can be manufactured, for example, as follows.
  • the curable resin composition of the present invention constituting the resin layer is diluted with an organic solvent to adjust the viscosity to an appropriate value. Apply by method.
  • the coating operation is repeated with or without changing the resin composition to be applied. Thereafter, it is usually dried at a temperature of 50 to 130° C. for 1 to 30 minutes to form a dry coating film of a resin layer in a B-stage state (semi-cured state) on the carrier film, and the laminated structure of the present invention. You can make a body.
  • the resin layer of this laminated structure is a so-called dry film.
  • a peelable cover film (protective film) can be further laminated on the dry film for the purpose of preventing dust from adhering to the surface of the dry coating film.
  • the carrier film and the cover film conventionally known plastic films can be appropriately used.
  • the cover film when the cover film is peeled off, the adhesion force between the resin layer and the carrier film should be smaller. preferable.
  • the thickness of the carrier film and cover film is not particularly limited, but is generally selected appropriately within the range of 10 to 150 ⁇ m.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention or the resin layer of the laminate structure of the present invention.
  • the curable resin composition of the present invention and the resin layer of the laminate structure of the present invention can be effectively used for electronic components such as flexible printed wiring boards.
  • a layer of the curable resin composition of the present invention or a resin layer of a laminated structure is formed on a flexible printed wiring base material, patterned by light irradiation, and an insulation formed by forming a pattern with a developer. Examples include flexible printed wiring boards having a cured film.
  • ⁇ Method for manufacturing flexible printed wiring board> An example of manufacturing a flexible printed wiring board using the curable resin composition of the present invention or the resin layer of the laminate structure of the present invention is shown below. That is, the step of forming a resin layer by applying the curable resin composition of the present invention on a flexible printed wiring substrate on which a conductive circuit is formed, or by attaching the resin layer of the laminated structure of the present invention (layer forming step ), a step of patternwise irradiating the resin layer with active energy rays (exposure step), and a step of alkali-developing the exposed resin layer to form a patterned resin layer image (development step). It is a manufacturing method including. Further, if necessary, after alkali development, further photocuring or heat curing (post-curing step) is performed to completely cure the resin layer, form a cured film, and obtain a highly reliable flexible printed wiring board. be able to.
  • the production of a flexible printed wiring board using the curable resin composition of the present invention or the resin layer of the laminated structure of the present invention can also be carried out according to other procedures. That is, the step of forming a resin layer by applying the curable resin composition of the present invention on a flexible printed wiring substrate on which a conductive circuit is formed, or by attaching the resin layer of the laminated structure of the present invention (layer forming step ), a step of irradiating the resin layer with an active energy ray in a pattern (exposure step), a step of heating the resin layer after exposure (heating (PEB) step), and alkali development of the resin layer after heating. and a step of forming a patterned resin layer image (developing step). Further, if necessary, after alkali development, further photocuring or heat curing (post-curing step) is performed to completely cure the resin layer, form a cured film, and obtain a highly reliable flexible printed wiring board. be able to.
  • part shall mean the mass part of solid content unless there is particular notice below.
  • the resulting polyamideimide resin had a mass average molecular weight Mw of 5840, a solid content of 40.4% by mass, an acid value of 62 mgKOH/g, and a dimer diamine (a) content of 40.1% by mass.
  • the resulting resin (solid content) had an acid value of 18 mg KOH, an Mw of 10,000, and a hydroxyl equivalent of 390.
  • Example of the curable resin composition of the first aspect of the present invention ⁇ 1-1.
  • Preparation of curable resin compositions of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3> According to the component composition shown in Table 1 below, the materials of the curable resin compositions of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3 were blended, respectively, and premixed with a stirrer. , and kneaded in a three-roll mill to prepare each curable resin composition for forming a resin layer.
  • the value in Table 1 is the mass part of solid content, unless there is particular notice.
  • a B-stage (semi-cured) resin layer dry coating film
  • the resolution was evaluated.
  • the flexible wiring board having the resin layer in the B-stage state (semi-cured state) and the flexible wiring board having the cured product of the resin layer are classified into the B-stage state (semi-cured state)/after heat curing.
  • the surface roughness of each coating film was evaluated.
  • heat resistance soldder heat resistance
  • gold plating resistance chemical resistance
  • flexibility and sticking properties were also evaluated for the flexible wiring board having the cured resin layer. Table 1 shows the results.
  • a flexible printed wiring substrate on which a circuit with a copper thickness of 18 ⁇ m is formed was prepared and pretreated using CZ-8100 manufactured by MEC. Thereafter, each curable resin composition obtained in Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3 was applied to the pretreated flexible printed wiring substrate, and the film thickness after drying was coated so as to have the film thickness shown in Table 1. Then, it was dried at 90° C. for 30 minutes in a hot air circulating drying oven to form a B-stage (semi-cured) resin layer (dry coating film).
  • Shape measurement laser microscope (same VK-X100) Main body (control unit) and VK observation application (Keyence VK-H1VX)
  • support film with an intermediate layer to be measured on the xy stage (the surface having the intermediate layer is the top) was placed.
  • Rotate the lens revolver of the microscope (VK-X110 manufactured by KEYENCE CORPORATION) to select an objective lens with a magnification of 10x, and roughly adjust the focus and brightness in the image observation mode of the VK observation application (same VK-H1VX). did.
  • the part of the sample surface to be measured was adjusted to be in the center of the screen.
  • the 10x objective lens was replaced with a 100x objective lens, and the surface of the sample was brought into focus using the autofocus function in the image observation mode of the VK observation application (same as VK-H1VX).
  • the simple mode of the shape measurement tab of the VK observation application (same as VK-H1VX) was selected, the measurement start button was pressed, the surface shape of the sample was measured, and a surface image file was obtained.
  • a VK analysis application (VK-H1XA manufactured by KEYENCE CORPORATION) was started to display the obtained surface image file, and then tilt correction was performed.
  • the observation measurement range (horizontal) in measuring the surface shape of the sample was 100 ⁇ m ⁇ 100 ⁇ m.
  • horizontal lines were displayed at four different locations in the surface image, and numerical values of the arithmetic mean surface roughness Ra were obtained. The average value of the obtained five numerical values was calculated and used as the arithmetic mean surface roughness Ra value of the surface of each resin layer.
  • An exposure apparatus (HMW-680-GW20: manufactured by Oak Manufacturing Co., Ltd.) equipped with a metal halide lamp was first used on each of these dry coating films to form openings of 150 ⁇ m and 200 ⁇ m in diameter through a negative mask at 300 mJ/cm 2 . Pattern exposure.
  • the substrate having the resin layer after exposure was heat-treated at 90° C. for 30 minutes.
  • the substrate was immersed in a 1% by mass sodium carbonate aqueous solution at 30° C. and developed for 1 minute, and the state of pattern formation was observed to evaluate the resolution. Evaluation criteria are as follows.
  • An opening pattern of 150 ⁇ m is well formed.
  • An opening pattern of 200 ⁇ m is well formed, but an opening pattern of 150 ⁇ m is slightly defective.
  • x The unexposed area exhibits developability, but there is a defect in the formation of a 200 ⁇ m opening pattern (insufficient resolution).
  • evaluation substrate A rosin-based flux is applied to the evaluation substrate prepared as described in, and immersed in a solder bath set to 260 ° C. in advance for 20 seconds (10 seconds x 2 times) to form a cured coating film. Blistering and peeling were observed, and heat resistance (solder heat resistance) was evaluated. Evaluation criteria are as follows.
  • There was no swelling or peeling even after being immersed twice for 10 seconds. ⁇ : No swelling or peeling occurred even after immersion for 10 seconds ⁇ 1 time, but peeling occurred in the second immersion. x: Swelling and peeling occurred when immersed once for 10 seconds.
  • the substrates for evaluation were plated with 5 ⁇ m of nickel and 0.05 ⁇ m of gold at 80 to 90° C. The substrate and the cured coating were observed. Plating resistance (chemical resistance) was evaluated. Evaluation criteria are as follows.
  • No permeation between the substrate and the cured coating film. ⁇ : Penetration is confirmed between the substrate and the cured coating film. x: Part of the cured coating film is peeled off.
  • Each of these dry coating films was first subjected to solid exposure at 300 mJ/cm 2 through a negative mask using an exposure apparatus equipped with a metal halide lamp (HMW-680-GW20: manufactured by ORC Manufacturing Co., Ltd.). After that, a PEB process was performed at 90° C. for 30 minutes, followed by development (30° C., 0.2 MPa, 1% by mass Na 2 CO 3 aqueous solution) for 60 seconds, and heat curing at 150° C. for 60 minutes to obtain a cured coating. A flexible printed wiring board (evaluation board) on which a film was formed was produced. For each cured coating film, ⁇ 1-4.
  • the arithmetic average roughness Ra of each dry coating film was measured, and the dry coating films of each example, Comparative Examples 1-2 and 1-3 were 0. .1 ⁇ m or more and 1 ⁇ m or less.
  • the dry coating film of Comparative Example 1-1 had an arithmetic mean roughness Ra of less than 0.1.
  • evaluation substrates were cut into 2 cm squares, 10 sheets were stacked, left at temperatures of 20, 30, 40, and 60°C for 72 hours, and then the presence or absence of sticking was checked. Evaluation criteria are as follows.
  • A-1 Polyamideimide resin-containing solution produced by [Synthesis Example 1] of ((A) synthesis of alkali-soluble polyamideimide resin) described above
  • A-2 The above-described ((A) alkali-soluble Polyamideimide resin-containing solution prepared by [Synthesis Example 2] in Synthesis of polyamideimide resin)
  • A-3 Produced by [Synthesis Example 3] in ((A) Synthesis of alkali-soluble polyamideimide resin)
  • Polyamideimide resin-containing solution PI-1 Alkali-soluble polyimide resin solution produced by [Synthesis Example 4] of ((E) Synthesis of alkali-soluble polyimide resin) described above
  • P7-532 Polyurethane acrylate , acid value 47 mgKOH / g (manufactured by Kyoeisha Chemical Co., Ltd.)
  • IRGACURE OXE02 oxime photopolymerization initiator (manufactured by BASF)
  • a dry coating film having a thickness of 2 to 100 ⁇ m was formed from a curable resin composition that was alkali-developable and formed a cured film by exposure and heat treatment from a comparison of Examples and Comparative Examples.
  • the arithmetic mean roughness Ra of the dry coating film is less than 0.1 ⁇ m and the arithmetic mean roughness Ra of the cured film after thermal curing of the dry coating film is 0.1 ⁇ m or more and 1 ⁇ m or less
  • the formed resin layer (dry coating film) has excellent resolution, and the cured coating film (cured product) after heat curing is not only excellent in heat resistance, gold plating resistance and flexibility, but also has excellent adhesion after high temperature storage. It was confirmed that the attachment was small.
  • the dry coating film The film thickness is 3 ⁇ m or more and 80 ⁇ m or less, the arithmetic average roughness Ra of the dry coating film is less than 0.05 ⁇ m, and the ratio of the arithmetic average roughness Ra of the cured film after heat curing to the arithmetic average roughness Ra of the dry coating film ( When the arithmetic mean roughness Ra of the cured film after heat curing/the arithmetic mean roughness Ra of the dry coating film) is 6 or more, the resolution of the formed resin layer (dry coating film) is greatly improved, In addition, it was found that the cured coating film (cured product) after thermosetting is less sticky after storage at high temperatures.
  • Example of the curable resin composition of the second aspect of the present invention ⁇ 2-1. Preparation of curable resin compositions of Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2> According to the component composition shown in Table 2 below, the materials of the curable resin compositions of Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2 were blended, respectively, and premixed with a stirrer. , and kneaded in a three-roll mill to prepare each curable resin composition for forming a resin layer. In addition, the value in Table 2 is the mass part of solid content, unless there is particular notice.
  • a resin layer (dry coating film) in a B-stage state (semi-cured state) of each curable resin composition is formed, and developability (alkali solubility) is evaluated. evaluated. Furthermore, as described later, a flexible printed wiring board having a cured product of this resin layer was formed, and heat resistance (solder heat resistance), gold plating resistance (chemical resistance), flexibility and adhesion were evaluated. Table 2 shows the results.
  • a flexible printed wiring substrate on which a circuit with a copper thickness of 18 ⁇ m is formed was prepared and pretreated using CZ-8100 manufactured by MEC. Thereafter, each curable resin composition obtained in Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2 was applied to the pretreated flexible printed wiring base material, and each film thickness after drying was applied so that the thickness was 30 ⁇ m. Then, it was dried at 90° C. for 30 minutes in a hot air circulating drying oven to form a B-stage (semi-cured) resin layer (dry coating film).
  • an exposure device HMW-680-GW20 equipped with a metal halide lamp is applied to the resin layer (dried coating film) in the B stage state (semi-cured state) on each flexible printed wiring substrate on which the resin layer is formed as described above.
  • pattern exposure was performed through a negative mask at 300 mJ/cm 2 so as to form an opening with a diameter of 200 ⁇ m.
  • a PEB process was performed at 90° C. for 30 minutes, followed by development (30° C., 0.2 MPa, 1 mass % Na 2 CO 3 aqueous solution) for 60 seconds, and curing by heat curing at 150° C. for 60 minutes.
  • a flexible printed wiring board (evaluation board) having a resin layer (cured coating film) formed thereon was produced.
  • the substrate was immersed in a 1% by mass sodium carbonate aqueous solution at 30°C and developed for 1 minute, the state of pattern formation was observed, and developability (alkali solubility) was evaluated. Evaluation criteria are as follows.
  • The exposed area exhibited developability, the unexposed area exhibited developability, and pattern formation was good.
  • x The unexposed area exhibits developability, but resolution pattern formation is poor (insufficient resolution).
  • evaluation substrate A rosin-based flux is applied to the evaluation substrate prepared as described in, and immersed in a solder bath set to 260 ° C. in advance for 20 seconds (10 seconds x 2 times) to form a cured coating film. Blistering and peeling were observed, and heat resistance (solder heat resistance) was evaluated. Evaluation criteria are as follows. ⁇ : There was no swelling or peeling even after being immersed twice for 10 seconds. ⁇ : No swelling or peeling occurred even after immersion for 10 seconds ⁇ 1 time, but peeling occurred in the second immersion. x: Swelling and peeling occurred when immersed once for 10 seconds.
  • the substrates for evaluation were plated with 5 ⁇ m of nickel and 0.05 ⁇ m of gold at 80 to 90° C. The substrate and the cured coating were observed. Plating resistance (chemical resistance) was evaluated. Evaluation criteria are as follows.
  • No permeation between the substrate and the cured coating film. ⁇ : Penetration is confirmed between the substrate and the cured coating film. x: Part of the cured coating film is peeled off.
  • evaluation substrates were cut into 2 cm squares, 10 sheets were stacked, left at temperatures of 20, 30, 40, and 60°C for 72 hours, and then the presence or absence of sticking was checked. Evaluation criteria are as follows.
  • PI-1 Alkali-soluble polyimide resin solution produced by [Synthesis Example 4] of ((E) Synthesis of alkali-soluble polyimide resin) described above
  • A-3 Alkali-soluble polyimide resin solution
  • A-3 Alkali-soluble polyimide resin solution
  • Polyamideimide resin-containing solution P7-532 Polyurethane acrylate, acid value 47 mgKOH/g (manufactured by Kyoeisha Chemical Co., Ltd.)
  • IRGACURE OXE02 oxime photobase generator (manufactured by BASF)
  • CAB-553-0.4 Cellulose acetate derivative, number average molecular weight 20,000, 20 wt% DPM solution (manufactured by
  • the curable resin composition contains (A) an alkali-soluble polyamideimide resin, (C) a thermosetting compound, and (B) a photobase generator.
  • the formed resin layer has good developability, and the resin layer after curing not only has excellent heat resistance, gold plating resistance, and flexibility, but also has little sticking. was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a curable resin composition that has good resolution in a resultant dried coating film and exhibits minimal adhesion even if cured products are stacked after heat curing and stored in a high temperature environment. [Solution] A curable resin composition that enables alkaline development and forms a cured film when subjected to exposure and heat treatment. If a dried coating film having a thickness of 2–100 μm is formed from this curable resin composition, the arithmetic mean roughness Ra of the dried coating film is less than 0.1 μm, and the arithmetic mean roughness Ra of a cured film obtained by heat curing the dried coating film is 0.1–1 μm. This curable resin composition has characteristics such that the obtained dried coating film has good resolution, and there is minimal adhesion even if cured products are stacked after heat curing and stored in a high temperature environment. [Selected drawing] None

Description

硬化性樹脂組成物、積層構造体、硬化物および電子部品Curable resin composition, laminated structure, cured product and electronic component
 本発明は、硬化性樹脂組成物、その硬化性樹脂組成物で形成された樹脂層の積層構造体、およびその硬化物ならびにその硬化物からなる絶縁膜を有する電子部品に関し、特に、アルカリ現像可能であり、露光および加熱処理により硬化膜を形成する硬化性樹脂組成物、その硬化性樹脂組成物で形成された樹脂層の積層構造体、およびその硬化物ならびにその硬化物からなる絶縁膜を有する電子部品に関する。 TECHNICAL FIELD The present invention relates to a curable resin composition, a laminate structure of resin layers formed from the curable resin composition, a cured product thereof, and an electronic component having an insulating film formed from the cured product, and particularly to an alkali-developable structure. It has a curable resin composition that forms a cured film by exposure and heat treatment, a laminated structure of resin layers formed from the curable resin composition, a cured product thereof, and an insulating film composed of the cured product. Regarding electronic components.
 従来、フレキシブルプリント配線板の保護膜として、ポリイミドなどのフィルムに熱硬化型接着剤を塗布してなる非感光性樹脂構造体が用いられてきた。かかる非感光性樹脂構造体をパターン加工してフレキシブルプリント配線板上に形成する方法としては、従来、パンチングによる孔空け加工後、フレキシブルプリント配線板上に熱圧着する手法がとられてきた。あるいは、溶剤可溶性の熱硬化型樹脂組成物をフレキシブルプリント配線板上に直接パターン印刷し、熱硬化してパターンを形成する手法もとられてきた。特に、ポリイミドフィルムは、柔軟性を有しつつ、耐熱性、機械的特性、電気的特性に優れていることからフレキシブルプリント配線板に対する好適材料として使用されてきた(例えば、特許文献1参照)。
しかしながら、上述の従来の手法ではパターン端部が塗布時や熱圧着時の樹脂の滲み出しによって形状が崩れるため、配線の微細化やフレキシブルプリント配線板に搭載されるチップ部品の小型化などで要求される微細パターンの形成は困難であった。
Conventionally, a non-photosensitive resin structure formed by applying a thermosetting adhesive to a film such as polyimide has been used as a protective film for a flexible printed wiring board. As a method of patterning such a non-photosensitive resin structure and forming it on a flexible printed wiring board, conventionally, a method of forming holes by punching and then thermocompression bonding on the flexible printed wiring board has been adopted. Alternatively, a method has also been adopted in which a solvent-soluble thermosetting resin composition is directly pattern-printed on a flexible printed wiring board and thermally cured to form a pattern. In particular, polyimide films have been used as suitable materials for flexible printed wiring boards because they are flexible and have excellent heat resistance, mechanical properties, and electrical properties (see, for example, Patent Document 1).
However, with the above-mentioned conventional method, the shape of the pattern ends is lost due to the bleeding of the resin during coating or thermocompression bonding. However, it has been difficult to form a fine pattern to be used.
WO2012/133665号公報WO2012/133665
 一方、微細加工が可能な回路永久保護膜として知られている感光性ソルダーレジストをフレキシブルプリント配線板のカバーレイとして適用することも考えられる。フレキシブルプリント配線板における感光性ソルダーレジストは柔軟性を付与するために低架橋密度化が必要となる。フレキシブル基板は薄く、折れ曲がりやすいことから、何枚も重ねて固定し、保管、輸送を行うことが多い。その保管環境、輸送環境によって高温にさらされ、感光性ソルダーレジストをカバーレイに適用した場合、フレキシブルプリント配線板を保護する面積が広くなるため、低架橋密度化により、基板に形成された塗膜同士が貼り付くことがある。 On the other hand, it is also conceivable to apply a photosensitive solder resist, which is known as a permanent circuit protective film that can be microfabricated, as a coverlay for flexible printed wiring boards. A photosensitive solder resist in a flexible printed wiring board requires a low crosslinking density in order to impart flexibility. Since flexible substrates are thin and easily bent, they are often stacked and fixed, stored, and transported. Due to its storage and transportation environment, it is exposed to high temperatures. When a photosensitive solder resist is applied to the coverlay, the area that protects the flexible printed wiring board becomes wider. They may stick together.
 また、近年、リジット基板を用いる分野においても薄膜化の要求が多くなってきている。フレキシブル基板に限らず、厚さ0.1mmのリジッド基板等の薄い基板においても、同様に塗膜同士が貼り付く現象は起こり得る。 Also, in recent years, there has been an increasing demand for thinner films in fields that use rigid substrates. Not only flexible substrates, but also thin substrates such as rigid substrates with a thickness of 0.1 mm, the phenomenon of sticking of coating films to each other may occur.
 それを解決するため、塗膜の表面粗さを大きくすると接触する表面積が小さくなって、貼り付きは起こらなくなる。しかしながら、表面粗さの大きい塗膜をフォトリソグラフィによりパターニングしようとすると、塗膜表面でハレーションを起こしてしまい、十分な解像性が得られない。 In order to solve this problem, if the surface roughness of the coating film is increased, the contact surface area will become smaller and sticking will not occur. However, when a coating film having a large surface roughness is patterned by photolithography, halation occurs on the coating film surface, and sufficient resolution cannot be obtained.
 前記課題を鑑みた本願発明の第一の目的は、乾燥塗膜の解像性が良好であって、得られた硬化物の柔軟性も良好であるとともに、積み重ねて保管した場合に貼り付きが小さい特性を有する硬化性樹脂組成物を提供することにある。 The first object of the present invention in view of the above problems is that the resolution of the dried coating film is good, the flexibility of the resulting cured product is good, and sticking is not caused when stored in a stack. An object of the present invention is to provide a curable resin composition having small properties.
 また、前記課題を鑑みた本願発明の第二の目的は、乾燥塗膜の現像性が良好であって、得られた硬化物の耐熱性、柔軟性が良好であり、且つ得られた硬化物を積み重ねて保管した場合に貼り付きが小さい特性を有する硬化性樹脂組成物を提供することにある。 Further, the second object of the present invention in view of the above problems is that the dry coating film has good developability, the obtained cured product has good heat resistance and flexibility, and the obtained cured product To provide a curable resin composition having a characteristic of little sticking when stored in a pile.
 本発明者らは、上記第一の目的達成に向け鋭意検討を行った。その結果、乾燥塗膜の時点では表面粗さ(算術平均粗さ)が小さく維持でき、熱硬化後には表面粗さ(算術平均粗さ)が大きくなる硬化性樹脂組成物を用いることで乾燥塗膜の高い解像性、熱硬化膜の柔軟性および低貼り付き性を両立し得ることを見出し、本発明を完成させるに至った。なお、本明細書において、解像性とは、本発明の硬化性樹脂組成物からなる樹脂層を露光し、アルカリ現像した場合に得られる像の細部表現力をいうものとする。 The present inventors have diligently studied to achieve the above first purpose. As a result, it is possible to maintain a small surface roughness (arithmetic mean roughness) at the time of the dried coating film, and use a curable resin composition that increases the surface roughness (arithmetic mean roughness) after heat curing. The inventors have found that both high resolution of the film and flexibility and low sticking property of the thermosetting film can be achieved, and have completed the present invention. In this specification, the term "resolution" refers to the ability to express fine details of an image obtained by exposing a resin layer comprising the curable resin composition of the present invention to light and developing with an alkali.
 すなわち、本発明の前記第一の目的は、
 アルカリ現像可能であり、露光および加熱処理により硬化膜を形成する硬化性樹脂組成物であって、
 前記硬化性樹脂組成物から厚さ2~100μmの乾燥塗膜を形成した場合に、前記乾燥塗膜の算術平均粗さRaが0.1μm未満であるとともに、前記乾燥塗膜の熱硬化後の硬化膜の算術平均粗さRaが0.1μm以上1μm以下となることを特徴とする硬化性樹脂組成物(以下、本発明の第一の態様の硬化性樹脂組成物ともいう)により達成されることが見いだされた。
That is, the first object of the present invention is
A curable resin composition that is alkali developable and forms a cured film by exposure and heat treatment,
When a dry coating film having a thickness of 2 to 100 μm is formed from the curable resin composition, the arithmetic mean roughness Ra of the dry coating film is less than 0.1 μm, and after heat curing of the dry coating film It is achieved by a curable resin composition (hereinafter also referred to as the curable resin composition of the first aspect of the present invention) in which the cured film has an arithmetic mean roughness Ra of 0.1 μm or more and 1 μm or less. It was found that
 なお、本明細書において、解像性とは、本発明の第一の態様の硬化性樹脂組成物からなる樹脂層をパターン露光し、アルカリ現像した場合に得られる像の細部表現性をいうものとする。 In this specification, the term "resolution" refers to the expressiveness of fine details of an image obtained when a resin layer made of the curable resin composition of the first aspect of the present invention is pattern-exposed and alkali-developed. and
 また、本発明の第一の態様の硬化性樹脂組成物は、その硬化性樹脂組成物から厚さ2~100μmの乾燥塗膜を形成した場合に、前記乾燥塗膜の算術平均粗さRaが0.05μm未満であるとともに、前記乾燥塗膜の熱硬化後の硬化膜の算術平均粗さRaが0.1μm以上0.5μm以下となることが好ましい。 Further, in the curable resin composition of the first aspect of the present invention, when a dry coating film having a thickness of 2 to 100 μm is formed from the curable resin composition, the dry coating film has an arithmetic mean roughness Ra of It is preferably less than 0.05 μm, and the arithmetic mean roughness Ra of the cured film after thermal curing of the dried coating film is preferably 0.1 μm or more and 0.5 μm or less.
 さらに、(A)アルカリ溶解性のポリアミドイミド樹脂と、(B)光塩基発生剤と、(C)熱硬化性化合物と、(D)セルロース誘導体と、を含有することが好ましい。 Further, it preferably contains (A) an alkali-soluble polyamide-imide resin, (B) a photobase generator, (C) a thermosetting compound, and (D) a cellulose derivative.
 また、(C)熱硬化性化合物が、エポキシ樹脂であることが好ましい。 Also, (C) the thermosetting compound is preferably an epoxy resin.
 そのうえ、本発明の前記第一の目的は、本発明の硬化性樹脂組成物で形成された樹脂層の少なくとも片面が、フィルムで支持または保護されている積層構造体、
 本発明の硬化性樹脂組成物または本発明の積層構造体の樹脂層の硬化物、および本発明の硬化物からなる絶縁膜を有する電子部品によっても達成することができる。
Moreover, the first object of the present invention is a laminate structure in which at least one side of a resin layer formed from the curable resin composition of the present invention is supported or protected by a film,
It can also be achieved by the curable resin composition of the present invention, the cured product of the resin layer of the laminated structure of the present invention, and the electronic component having an insulating film made of the cured product of the present invention.
 また、本発明者らは、上記第二の目的達成に向け鋭意検討を行った。その結果、硬化性樹脂組成物にセルロース誘導体を配合するとともに、アルカリ溶解性のポリイミド樹脂を含む所定の配合とすることで、得られた硬化物同士の貼り付きが小さくなることを見出し、本発明を完成するに至った。 In addition, the present inventors have diligently studied to achieve the above second purpose. As a result, it was found that by blending a cellulose derivative into the curable resin composition and adding an alkali-soluble polyimide resin to a predetermined blend, sticking between the resulting cured products is reduced. was completed.
 すなわち、本発明の前記第二の目的は、
(A)アルカリ溶解性のポリアミドイミド樹脂と、
 (B)光塩基発生剤と、
 (C)熱硬化性化合物と、
 (D)セルロース誘導体と
を含有することを特徴とする硬化性樹脂組成物(以下、本発明の第二の態様の硬化性樹脂組成物ともいう)により達成されることが見いだされた。
That is, the second object of the present invention is
(A) an alkali-soluble polyamideimide resin;
(B) a photobase generator;
(C) a thermosetting compound;
(D) a cellulose derivative (hereinafter also referred to as the curable resin composition of the second aspect of the present invention).
 また、(A)アルカリ溶解性のポリアミドイミド樹脂が、カルボキシル基を有することが好ましく、(A)アルカリ溶解性のポリアミドイミド樹脂が、カルボキシル基とフェノール性水酸基とを有することがさらに好ましい。 In addition, (A) the alkali-soluble polyamide-imide resin preferably has a carboxyl group, and (A) the alkali-soluble polyamide-imide resin preferably has a carboxyl group and a phenolic hydroxyl group.
 さらに、本発明の第二の態様の硬化性樹脂組成物が、さらに(E)アルカリ溶解性のポリイミド樹脂を含むことが好ましい。 Furthermore, it is preferable that the curable resin composition of the second aspect of the present invention further contains (E) an alkali-soluble polyimide resin.
 そのうえ、(C)熱硬化性化合物がエポキシ樹脂であることが好ましい。 In addition, (C) the thermosetting compound is preferably an epoxy resin.
 さらに、本発明の前記第二の目的は、本発明の硬化性組成物より得られる硬化物、およびこの硬化物からなる絶縁膜を有する電子部品によっても達成することができる。 Furthermore, the second object of the present invention can also be achieved by a cured product obtained from the curable composition of the present invention and an electronic component having an insulating film made of this cured product.
 本発明の第一の態様の硬化性樹脂組成物によれば、得られた乾燥塗膜の解像性が良好で、得られた熱硬化後の硬化物の柔軟性も良好であるとともに、この硬化物を積み重ねて高温環境下で保管した場合であっても貼り付きが小さい特性を有する。
 また、本発明の第二の態様の硬化性組成物の乾燥塗膜の現像性は良好であり、また、本発明の第二の態様の硬化性組成物により得られた硬化物は、耐熱性、柔軟性が良好であるとともに、積み重ねて保管した場合に貼り付きが小さい特性を有する。
According to the curable resin composition of the first aspect of the present invention, the resolution of the obtained dried coating film is good, and the flexibility of the cured product after thermosetting is also good. Even when cured products are stacked and stored in a high-temperature environment, sticking is minimal.
In addition, the dry coating film of the curable composition of the second aspect of the present invention has good developability, and the cured product obtained from the curable composition of the second aspect of the present invention has heat resistance. , which has good flexibility and little sticking when stored in a pile.
実施例で作製した評価基板を試験片として行ったMIT試験の説明図である。It is explanatory drawing of the MIT test which performed the evaluation board|substrate produced in the Example as a test piece.
<本発明の第一の態様の硬化性樹脂組成物>
 本発明の第一の態様の硬化性樹脂組成物は、
 アルカリ現像可能であり、露光および加熱処理により硬化膜を形成する硬化性樹脂組成物であって、
 硬化性樹脂組成物から厚さ2~100μmの乾燥塗膜を形成した場合に、この乾燥塗膜の算術平均粗さRaが0.1μm未満であるとともに、乾燥塗膜の熱硬化後の硬化膜の算術平均粗さRaが0.1μm以上1μm以下となる。
<Curable resin composition of the first aspect of the present invention>
The curable resin composition of the first aspect of the present invention is
A curable resin composition that is alkali developable and forms a cured film by exposure and heat treatment,
When a dry coating film having a thickness of 2 to 100 μm is formed from the curable resin composition, the dry coating film has an arithmetic mean roughness Ra of less than 0.1 μm, and a cured film after heat curing of the dry coating film. has an arithmetic mean roughness Ra of 0.1 μm or more and 1 μm or less.
 本発明の第一の態様の硬化性樹脂組成物が、アルカリ現像可能であり、露光および加熱処理により硬化膜を形成するためには、その構成成分が、アルカリ溶解性の官能基(以下、アルカリ溶解性基ともいう)を有する化合物(以下、アルカリ溶解性の化合物ともいう)と、後述する(B)光塩基発生剤および(C)熱硬化性化合物と、を有する。 In order for the curable resin composition of the first aspect of the present invention to be alkali-developable and to form a cured film by exposure and heat treatment, the constituents thereof must contain alkali-soluble functional groups (hereinafter referred to as alkali a compound having a soluble group) (hereinafter also referred to as an alkali-soluble compound), (B) a photobase generator, and (C) a thermosetting compound, which will be described later.
 これらのうち、(B)光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、アルカリ溶解性の化合物と(C)熱硬化性化合物との付加反応の触媒として機能する。 Among these, (B) the photobase generator changes its molecular structure by irradiation with light such as ultraviolet light or visible light, or the molecule is cleaved, thereby forming an alkali-soluble compound and (C) a thermosetting It functions as a catalyst for addition reactions with compounds.
 アルカリ溶解性の化合物としては、例えば、フェノール性水酸基を有する化合物、カルボキシル基を有する化合物、フェノール性水酸基およびカルボキシル基を有する化合物が挙げられる。好ましくは、アルカリ溶解性の化合物は、後述する(A)アルカリ溶解性のポリアミドイミド樹脂である。中でも、(A)アルカリ溶解性のポリアミドイミド樹脂として、後述する一般式(1)で示される構造および下記一般式(2)で示される構造を有するポリアミドイミド樹脂を用いることが好ましい。 Examples of alkali-soluble compounds include compounds having a phenolic hydroxyl group, compounds having a carboxyl group, and compounds having a phenolic hydroxyl group and a carboxyl group. Preferably, the alkali-soluble compound is (A) an alkali-soluble polyamide-imide resin described later. Among them, it is preferable to use a polyamideimide resin having a structure represented by the following general formula (1) and a structure represented by the following general formula (2) as (A) the alkali-soluble polyamideimide resin.
 本発明の第一の態様の硬化性樹脂組成物から厚さ2~100μm、解像性向上の観点からより好ましくは3~80μmの乾燥塗膜を形成した場合に、この乾燥塗膜の算術平均粗さRaは0.1μm未満、好ましくは0.05μm未満であり、乾燥塗膜の熱硬化後の硬化膜の算術平均粗さRaは0.1μm以上1μm以下、好ましくは0.1μm以上0.5μm以下である。 When a dry coating film having a thickness of 2 to 100 μm, more preferably 3 to 80 μm from the viewpoint of improving resolution is formed from the curable resin composition of the first aspect of the present invention, the arithmetic mean of this dry coating film The roughness Ra is less than 0.1 μm, preferably less than 0.05 μm, and the arithmetic average roughness Ra of the cured film after thermal curing of the dry coating film is 0.1 μm or more and 1 μm or less, preferably 0.1 μm or more and 0.1 μm or more. 5 μm or less.
 乾燥塗膜の算術平均粗さRaが0.1μm未満であることで、露光時に塗膜に照射された光の乱反射が抑制され、解像性が良好なものとなる。また、熱硬化後においては硬化膜の算術平均粗さRaが0.1μm以上1μm以下となることで硬化膜上に小さな凹凸が生じる。この凹凸があることで、積み重ねて配置された硬化膜同士の接触面積が小さくなり、貼り付きの低下に貢献する。 When the dry coating film has an arithmetic mean roughness Ra of less than 0.1 μm, diffused reflection of the light applied to the coating film during exposure is suppressed, resulting in good resolution. Further, after thermal curing, the cured film has an arithmetic mean roughness Ra of 0.1 μm or more and 1 μm or less, so that small unevenness is generated on the cured film. The unevenness reduces the contact area between the stacked cured films and contributes to the reduction of sticking.
 熱硬化前の乾燥塗膜の状態では乾燥塗膜の凹凸が小さく、熱硬化後の硬化膜において硬化膜上に凹凸を大きくする現象は、本発明の硬化性樹脂組成物が、上記(C)熱硬化性化合物やアルカリ溶解性の化合物とは相溶性が異なる高分子成分を含ませることにより生じるものと考えられる。すなわち、熱硬化前には乾燥塗膜中に分散して存在していた高分子成分が、熱硬化反応の過程で膜表面に移行することにより生じるものと推察される。 The phenomenon that the unevenness of the dried coating film is small in the state of the dry coating film before heat curing, and the unevenness on the cured film after heat curing is increased is due to the fact that the curable resin composition of the present invention is the above (C) It is considered that this is caused by including a polymer component having a different compatibility with a thermosetting compound or an alkali-soluble compound. That is, it is presumed that the polymer components dispersed in the dry coating film before heat curing migrate to the film surface during the heat curing reaction.
 この高分子成分としては、(D)セルロース誘導体を配合することが好ましい。 As this polymer component, it is preferable to blend (D) a cellulose derivative.
 本発明の第一の態様の硬化性樹脂組成物は、好ましくは、(A)アルカリ溶解性のポリアミドイミド樹脂と、(B)光塩基発生剤と、(C)熱硬化性化合物と、(D)セルロース誘導体と、を含有する。 The curable resin composition of the first aspect of the present invention preferably includes (A) an alkali-soluble polyamideimide resin, (B) a photobase generator, (C) a thermosetting compound, and (D ) a cellulose derivative.
<本発明の第二の態様の硬化性樹脂組成物>
 本発明の第二の態様の硬化性樹脂組成物は、
 (A)アルカリ溶解性のポリアミドイミド樹脂と、
 (B)光塩基発生剤と、
 (C)熱硬化性化合物と、
 (D)セルロース誘導体と
を含有する。
<Curable resin composition of the second aspect of the present invention>
The curable resin composition of the second aspect of the present invention is
(A) an alkali-soluble polyamideimide resin;
(B) a photobase generator;
(C) a thermosetting compound;
(D) a cellulose derivative.
 さらに、本発明の第二の態様の硬化性樹脂組成物が、(E)アルカリ溶解性のポリイミド樹脂を含むことが好ましい。 Furthermore, it is preferable that the curable resin composition of the second aspect of the present invention contains (E) an alkali-soluble polyimide resin.
 そのうえ、(C)熱硬化性化合物がエポキシ樹脂であることが好ましい。 In addition, (C) the thermosetting compound is preferably an epoxy resin.
[(A)アルカリ溶解性のポリアミドイミド樹脂]
 (A)アルカリ溶解性のポリアミドイミド樹脂は、上記アルカリ溶解性の光硬化性化合物の好ましい例である。(A)アルカリ溶解性のポリアミドイミド樹脂は、アルカリ溶解性基(フェノール性水酸基、カルボキシル基のうち1種以上)を含有する。本発明の第一の態様の硬化性樹脂組成物は、(A)アルカリ溶解性のポリアミドイミド樹脂を含むことが好ましく、本発明の第二の態様の硬化性樹脂組成物は、(A)アルカリ溶解性のポリアミドイミド樹脂を含む。
[(A) alkali-soluble polyamideimide resin]
(A) The alkali-soluble polyamide-imide resin is a preferred example of the alkali-soluble photocurable compound. (A) The alkali-soluble polyamide-imide resin contains alkali-soluble groups (one or more of phenolic hydroxyl groups and carboxyl groups). The curable resin composition of the first aspect of the present invention preferably contains (A) an alkali-soluble polyamideimide resin, and the curable resin composition of the second aspect of the present invention comprises (A) an alkali Contains soluble polyamide-imide resin.
 このようなアルカリ溶解性のポリアミドイミド樹脂は、例えば、カルボン酸無水物成分とアミン成分とを反応させてイミド化物を得た後、得られたイミド化物とイソシアネート成分とを反応させて得られる樹脂等が挙げられる。ここで、アルカリ溶解性基は、カルボキシル基やフェノール性水酸基を有するアミン成分を用いることにより導入される。また、イミド化は、熱イミド化で行っても、化学イミド化で行ってもよく、またこれらを併用して実施することもできる。 Such an alkali-soluble polyamide-imide resin is, for example, a resin obtained by reacting a carboxylic acid anhydride component and an amine component to obtain an imidized product, and then reacting the obtained imidized product with an isocyanate component. etc. Here, the alkali-soluble group is introduced by using an amine component having a carboxyl group or a phenolic hydroxyl group. Further, the imidization may be carried out by thermal imidization or by chemical imidization, and these may be used in combination.
 カルボン酸無水物成分としては、テトラカルボン酸無水物やトリカルボン酸無水物などが挙げられるが、これらの酸無水物に限定されるものではなく、アミノ基やイソシアネート基と反応する酸無水物基およびカルボキシル基を有する化合物であれば、その誘導体を含め用いることができる。また、これらのカルボン酸無水物成分は、単独でまたは組み合わせて使用してもよい。 Examples of the carboxylic anhydride component include tetracarboxylic anhydrides and tricarboxylic anhydrides, but are not limited to these acid anhydrides. Acid anhydride groups that react with amino groups and isocyanate groups and Any compound having a carboxyl group can be used, including its derivatives. Also, these carboxylic acid anhydride components may be used alone or in combination.
 アミン成分としては、脂肪族ジアミンや芳香族ジアミンなどのジアミン、脂肪族ポリエーテルアミンなどの多価アミン、カルボキシル基を有するジアミン、フェノール性水酸基を有するジアミンなどを用いることができる。アミン成分としては、これらのアミンに限定されるものではないが、少なくともフェノール性水酸基、カルボキシル基のうち1種の官能基を導入できるアミンを用いることが必要である。また、これらのアミン成分は、単独でまたは組み合わせて使用してもよい。 As the amine component, diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxyl group, diamines having a phenolic hydroxyl group, and the like can be used. The amine component is not limited to these amines, but it is necessary to use an amine capable of introducing at least one functional group out of phenolic hydroxyl groups and carboxyl groups. Also, these amine components may be used alone or in combination.
 イソシアネート成分としては、芳香族ジイソシアネートおよびその異性体や多量体、脂肪族ジイソシアネート類、脂環式ジイソシアネート類およびその異性体などのジイソシアネートやその他汎用のジイソシアネート類を用いることができるが、これらのイソシアネートに限定されるものではない。また、これらのイソシアネート成分は、単独でまたは組み合わせて使用してもよい。 As the isocyanate component, diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
 (A)アルカリ溶解性のポリアミドイミド樹脂が本発明の硬化性樹脂組成物に含まれる場合、ポリアミドイミド樹脂のアルカリ溶解性(現像性)と、ポリアミドイミド樹脂を含む樹脂組成物の硬化物の機械特性など他の特性とのバランスを良好にする観点から、その酸価(固形分酸価)は、30mgKOH/g以上とすることが好ましく、30mgKOH/g~150mgKOH/gとすることがより好ましく、50mgKOH/g~120mgKOH/gとすることが特に好ましい。具体的には、この酸価を30mgKOH/g以上とすることにより、アルカリ溶解性、すなわち現像性が良好となり、さらには、光照射後の熱硬化成分との架橋密度が高くなり、十分な現像コントラストを得ることができる。また、この酸価を150mgKOH/g以下とすることにより、特に、後述する光照射後のPEB(POST EXPOSURE BAKE)工程でのいわゆる熱かぶりを抑制でき、プロセスマージンが大きくなる。 (A) When an alkali-soluble polyamideimide resin is contained in the curable resin composition of the present invention, the alkali solubility (developability) of the polyamideimide resin and the mechanical properties of the cured product of the resin composition containing the polyamideimide resin From the viewpoint of improving the balance with other properties such as properties, the acid value (solid content acid value) is preferably 30 mgKOH/g or more, more preferably 30 mgKOH/g to 150 mgKOH/g, Especially preferred is 50 mg KOH/g to 120 mg KOH/g. Specifically, when the acid value is 30 mgKOH/g or more, the alkali solubility, that is, the developability, is improved, and the crosslink density with the thermosetting component after light irradiation is increased, resulting in sufficient development. You can get contrast. In addition, by setting the acid value to 150 mgKOH/g or less, it is possible to suppress so-called heat fogging, especially in the PEB (POST EXPOSURE BAKE) process after light irradiation, which will be described later, and to increase the process margin.
 また、(A)アルカリ溶解性のポリアミドイミド樹脂の分子量は、現像性と硬化塗膜特性を考慮すると、質量平均分子量は、20,000以下であることが好ましく、1,000~17,000がより好ましく、2,000~15,000がさらに好ましい。分子量が20,000以下であると、未露光部のアルカリ溶解性が増加し、現像性が向上する。一方、分子量が1,000以上であると、露光・PEB工程後に、露光部において十分な耐現像性と硬化物性を得ることができる。 Further, the molecular weight of the alkali-soluble polyamideimide resin (A) is preferably 20,000 or less, and preferably 1,000 to 17,000, in consideration of developability and cured coating properties. More preferably, 2,000 to 15,000 is even more preferable. When the molecular weight is 20,000 or less, the alkali-solubility of the unexposed area is increased and the developability is improved. On the other hand, when the molecular weight is 1,000 or more, sufficient development resistance and cured physical properties can be obtained in the exposed area after the exposure/PEB process.
 (A)アルカリ溶解性のポリアミドイミド樹脂が本発明の硬化性樹脂組成物に含まれる場合、特に、下記一般式(1)で示される構造および下記一般式(2)で示される構造を有するポリアミドイミド樹脂を用いることが、現像性をさらに向上させ、柔軟性、貼り付き性も向上させる点でより好ましい。なお、一般式(1)で示される構造および下記一般式(2)で示される構造は、(A)アルカリ溶解性のポリアミドイミド樹脂一分子中に含まれている場合に限らず、(A)アルカリ溶解性のポリアミドイミド樹脂中に含まれていればよい。 (A) When an alkali-soluble polyamideimide resin is contained in the curable resin composition of the present invention, in particular, a polyamide having a structure represented by the following general formula (1) and a structure represented by the following general formula (2) It is more preferable to use an imide resin from the viewpoint of further improving developability and improving flexibility and adhesion. It should be noted that the structure represented by the general formula (1) and the structure represented by the following general formula (2) are not limited to (A) when contained in one molecule of an alkali-soluble polyamideimide resin, (A) It suffices if it is contained in the alkali-soluble polyamide-imide resin.
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-I000002
 (一般式(1)中、Xは炭素数が24~48のダイマー酸由来の脂肪族ジアミン(a)(本明細書において「ダイマージアミン(a)」ともいう。)の残基であり、
 一般式(2)中、Xはカルボキシル基を有する芳香族ジアミン(b)(本明細書において「カルボキシル基含有ジアミン(b)」ともいう。)の残基である。一般式(1)および(2)において、Yはそれぞれ独立にシクロヘキサンまたは芳香環である。)
(In the general formula (1), X 1 is a residue of an aliphatic diamine (a) derived from a dimer acid having 24 to 48 carbon atoms (also referred to herein as "dimer diamine (a)"),
In general formula ( 2 ), X2 is a residue of aromatic diamine (b) having a carboxyl group (also referred to herein as "carboxyl group-containing diamine (b)"). In general formulas (1) and (2), each Y is independently cyclohexane or an aromatic ring. )
 上記一般式(1)で示される構造および上記一般式(2)で示される構造を含むことにより、1.0質量%の炭酸ナトリウム水溶液のようなマイルドなアルカリ溶液が用いられた場合であっても溶解しうるアルカリ溶解性に優れたポリアミドイミド樹脂とすることができる。また、かかるポリアミドイミド樹脂を含む硬化性樹脂組成物の硬化物は、優れた誘電特性を有することができる。 By including the structure represented by the general formula (1) and the structure represented by the general formula (2), even when a mild alkaline solution such as a 1.0% by mass sodium carbonate aqueous solution is used, It can be a polyamide-imide resin excellent in alkali solubility that can dissolve also. Moreover, a cured product of a curable resin composition containing such a polyamideimide resin can have excellent dielectric properties.
 ダイマージアミン(a)は、炭素数12~24の脂肪族不飽和カルボン酸の二量体におけるカルボキシル基を還元的アミノ化することにより得ることができる。すなわち、ダイマー酸由来の脂肪族ジアミンであるダイマージアミン(a)は、例えばオレイン酸、リノール酸等の不飽和脂肪酸を重合させてダイマー酸とし、これを還元した後、アミノ化することで得られる。このような脂肪族ジアミンとして、例えば炭素数36の骨格を有するジアミンであるPRIAMINE1073、1074、1075(クローダジャパン社製、商品名)等の市販品を用いることができる。ダイマージアミン(a)は、炭素数が28~44のダイマー酸由来であることが好ましい場合があり、炭素数が32~40のダイマー酸由来であることがより好ましい場合がある。 The dimer diamine (a) can be obtained by reductively aminating the carboxyl group in the dimer of aliphatic unsaturated carboxylic acid having 12 to 24 carbon atoms. That is, dimer diamine (a), which is an aliphatic diamine derived from dimer acid, is obtained by polymerizing unsaturated fatty acids such as oleic acid and linoleic acid to form dimer acid, reducing this, and then aminating it. . As such an aliphatic diamine, commercially available products such as PRIAMINE 1073, 1074, and 1075 (manufactured by Croda Japan Co., Ltd., trade names), which are diamines having a skeleton of 36 carbon atoms, can be used. The dimer diamine (a) may be preferably derived from a dimer acid having 28 to 44 carbon atoms, and more preferably derived from a dimer acid having 32 to 40 carbon atoms.
 カルボキシル基含有ジアミン(b)の具体例としては、3,5‐ジアミノ安息香酸、3,4‐ジアミノ安息香酸、5,5’‐メチレンビス(アントラニル酸)、ベンジジン‐3,3’‐ジカルボン酸などが挙げられる。カルボキシル基含有ジアミン(b)は1種類の化合物から構成されていてもよいし、複数種類の化合物から構成されていてもよい。原料入手性の観点から、カルボキシル基含有ジアミン(b)は、3,5‐ジアミノ安息香酸、5,5’‐メチレンビス(アントラニル酸)を含有することが好ましい。 Specific examples of the carboxyl group-containing diamine (b) include 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 5,5'-methylenebis(anthranilic acid), benzidine-3,3'-dicarboxylic acid, and the like. is mentioned. The carboxyl group-containing diamine (b) may be composed of one type of compound, or may be composed of a plurality of types of compounds. From the viewpoint of raw material availability, the carboxyl group-containing diamine (b) preferably contains 3,5-diaminobenzoic acid and 5,5'-methylenebis(anthranilic acid).
 上記ポリアミドイミド樹脂における、上記一般式(1)で示される構造の含有量と上記一般式(2)で示される構造の含有量との関係は限定されない。ポリアミドイミド樹脂のアルカリ溶解性と、ポリアミドイミド樹脂を含む硬化性樹脂組成物の硬化物の機械特性など他の特性とのバランスを良好にする観点から、ダイマージアミン(a)の含有量(単位:質量%)は、20~60質量%が好ましく、30~50質量%がより好ましい。本明細書において、「ダイマージアミン(a)の含有量」とは、ポリアミドイミド樹脂を製造する際の原料の一つとして位置付けられるダイマージアミン(a)の仕込み量の、製造されたポリアミドイミド樹脂の質量に対する割合を意味する。ここで、「製造されたポリアミドイミド樹脂の質量」は、ポリアミドイミド樹脂を製造するための全ての原料の仕込み量から、イミド化で生じる水(HO)およびアミド化で生じる炭酸ガス(CO)の理論量を差し引いた値である。 The relationship between the content of the structure represented by the general formula (1) and the content of the structure represented by the general formula (2) in the polyamideimide resin is not limited. The content of dimer diamine (a) (unit: % by mass) is preferably 20 to 60 mass %, more preferably 30 to 50 mass %. In the present specification, the "content of dimer diamine (a)" refers to the charged amount of dimer diamine (a), which is positioned as one of raw materials for producing polyamide-imide resin, of the produced polyamide-imide resin. It means ratio to mass. Here, the "mass of the produced polyamide-imide resin" is the amount of water (H 2 O) produced by imidization and carbon dioxide gas (CO 2 ) is the value after subtracting the theoretical amount.
 ポリアミドイミド樹脂のアルカリ溶解性を高める観点から、上記一般式(1)および上記一般式(2)においてYで示される部分は、シクロヘキサン環を有することが好ましい。ポリアミドイミド樹脂のアルカリ溶解性と、ポリアミドイミド樹脂を含む樹脂組成物の硬化物の機械特性など他の特性とのバランスを良好にする観点から、上記のYで示される部分における芳香環とシクロヘキサン環との量的関係は、シクロヘキサン環の含有量の芳香環の含有量に対するモル比が、85/15~100/0であることが好ましく、90/10~99/1であることがより好ましく、90/10~98/2であることがさらに好ましい。 From the viewpoint of increasing the alkali solubility of the polyamideimide resin, the portion represented by Y in the general formulas (1) and (2) preferably has a cyclohexane ring. From the viewpoint of improving the balance between the alkali solubility of the polyamideimide resin and other properties such as the mechanical properties of the cured product of the resin composition containing the polyamideimide resin, the aromatic ring and the cyclohexane ring in the portion represented by Y above. The molar ratio of the cyclohexane ring content to the aromatic ring content is preferably 85/15 to 100/0, more preferably 90/10 to 99/1, It is more preferably 90/10 to 98/2.
 上記(A)アルカリ溶解性のポリアミドイミド樹脂の製造方法は限定されず、公知慣用の方法を用いてイミド化工程およびアミドイミド化工程を経て製造することができる。 The method for producing the above (A) alkali-soluble polyamide-imide resin is not limited, and it can be produced through an imidization step and an amidimidation step using a known and commonly used method.
 イミド化工程では、ダイマージアミン(a)、カルボキシル基含有ジアミン(b)、およびシクロヘキサン‐1,2,4‐トリカルボン酸‐1,2‐無水物(c)と無水トリメリット酸(d)とからなる群から選ばれる1種または2種を反応させてイミド化物を得る。 In the imidization step, from dimer diamine (a), carboxyl group-containing diamine (b), and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) and trimellitic anhydride (d) An imidized product is obtained by reacting one or two selected from the group consisting of:
 ダイマージアミン(a)の仕込み量は、ダイマージアミン(a)の含有量が20~60質量%となる量が好ましく、ダイマージアミン(a)の含有量が30~50質量%となる量がより好ましい。ダイマージアミン(a)の含有量の定義は前述のとおりである。 The amount of the dimer diamine (a) to be charged is preferably such that the content of the dimer diamine (a) is 20 to 60% by mass, and more preferably the amount is such that the content of the dimer diamine (a) is 30 to 50% by mass. . The definition of the content of the dimer diamine (a) is as described above.
 必要に応じて、ダイマージアミン(a)およびカルボキシル基含有ジアミン(b)とともに、その他のジアミンを使用してもよい。その他のジアミンの具体例としては、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ビフェニル-4,4’-ジアミン、2,6,2’,6’-テトラメチル-4,4’-ジアミン、5,5’-ジメチル-2,2’-スルフォニル-ビフェニル-4,4’-ジアミン、3,3’-ジヒドロキシビフェニル-4,4’-ジアミン、(4,4’-ジアミノ)ジフェニルエーテル、(4,4’-ジアミノ)ジフェニルスルホン、(4,4’-ジアミノ)ベンゾフェノン、(3,3’―ジアミノ)ベンゾフェノン、(4,4’-ジアミノ)ジフェニルメタン、(4,4’-ジアミノ)ジフェニルエーテル、(3,3’―ジアミノ)ジフェニルエーテルなどの芳香族ジアミンが挙げられ、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、オクタデカメチレンジアミン、4,4’‐メチレンビス(シクロへキシルアミン)、イソホロンジアミン、1,4‐シクロへキサンジアミン、ノルボルネンジアミンなど脂肪族ジアミンが挙げられる。 If necessary, other diamines may be used together with the dimer diamine (a) and the carboxyl group-containing diamine (b). Specific examples of other diamines include 2,2-bis[4-(4-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenoxy) )phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis[4-(4-aminophenoxy)phenyl]methane, 4,4′-bis(4-aminophenoxy ) biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ketone, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis( 4-aminophenoxy)benzene, 2,2′-dimethylbiphenyl-4,4′-diamine, 2,2′-bis(trifluoromethyl)biphenyl-4,4′-diamine, 2,6,2′,6 '-tetramethyl-4,4'-diamine, 5,5'-dimethyl-2,2'-sulfonyl-biphenyl-4,4'-diamine, 3,3'-dihydroxybiphenyl-4,4'-diamine, (4,4'-diamino)diphenyl ether, (4,4'-diamino)diphenylsulfone, (4,4'-diamino)benzophenone, (3,3'-diamino)benzophenone, (4,4'-diamino)diphenylmethane , (4,4′-diamino)diphenyl ether, (3,3′-diamino)diphenyl ether, hexamethylenediamine, octamethylenediamine, decamethylenediamine, dodecamethylenediamine, octadecamethylenediamine, Aliphatic diamines such as 4,4′-methylenebis(cyclohexylamine), isophoronediamine, 1,4-cyclohexanediamine and norbornenediamine are included.
 ポリアミドイミド樹脂のアルカリ溶解性を高める観点から、イミド化工程において、シクロヘキサン‐1,2,4‐トリカルボン酸‐1,2‐無水物(c)を使用することが好ましい。シクロヘキサン‐1,2,4‐トリカルボン酸‐1,2‐無水物(c)の使用量の、無水トリメリット酸(d)の使用量に対するモル比は、85/15~100/0であることが好ましく、90/10~99/1であることがより好ましく、90/10~98/2であることがさらに好ましい。 From the viewpoint of increasing the alkali solubility of the polyamideimide resin, it is preferable to use cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) in the imidization step. The molar ratio of the amount of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) used to the amount of trimellitic anhydride (d) used should be 85/15 to 100/0. is preferred, 90/10 to 99/1 is more preferred, and 90/10 to 98/2 is even more preferred.
 イミド化物を得るために使用されるジアミン化合物(具体的には、ダイマージアミン(a)およびカルボキシル基含有ジアミン(b)ならびに必要に応じ用いられるその他のジアミンを意味する。)の量と酸無水物(具体的には、シクロヘキサン‐1,2,4‐トリカルボン酸‐1,2‐無水物(c)と無水トリメリット酸(d)とからなる群から選ばれる1種または2種を意味する。)の量との関係は限定されない。酸無水物の使用量は、ジアミン化合物の使用量に対するモル比率が2.0以上2.4以下となる量であることが好ましく、当該モル比率が2.0以上2.2以下となる量であることがより好ましい。 Amount of diamine compound (specifically, dimer diamine (a), carboxyl group-containing diamine (b), and other diamines used as necessary) used to obtain imidized product and acid anhydride (Specifically, it means one or two selected from the group consisting of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (c) and trimellitic anhydride (d). ) is not limited. The amount of the acid anhydride used is preferably such that the molar ratio with respect to the amount of the diamine compound used is 2.0 or more and 2.4 or less, and the amount is such that the molar ratio is 2.0 or more and 2.2 or less. It is more preferable to have
 アミドイミド化工程では、上記のイミド化工程により得られたイミド化物に、ジイソシアネート化合物を反応させて後述する一般式(3)で示される構造を有する物質を含むポリアミドイミド樹脂を得る。 In the amidization step, the imidized product obtained in the above imidization step is reacted with a diisocyanate compound to obtain a polyamideimide resin containing a substance having a structure represented by the general formula (3) described later.
 ジイソシアネート化合物の具体的な種類は限定されない。ジイソシアネート化合物は1種類の化合物から構成されていてもよいし、複数種類の化合物から構成されていてもよい。 The specific type of diisocyanate compound is not limited. The diisocyanate compound may be composed of one type of compound, or may be composed of a plurality of types of compounds.
 ジイソシアネート化合物の具体例としては、4,4’‐ジフェニルメタンジイソシアネート、2,4‐トリレンジイソシアネート、2,6‐トリレンジイソシアネート、ナフタレン‐1,5‐ジイソシアネート、o‐キシリレンジイソシアネート、m‐キシリレンジイソシアネート、2,4‐トリレンダイマー等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂肪族ジイソシアネートなどが挙げられる。(A)アルカリ溶解性のポリアミドイミド樹脂のアルカリ溶解性およびポリアミドイミド樹脂の光透過性を共に良好にする観点から、ジイソシアネート化合物は脂肪族イソシアネートを含有することが好ましく、ジイソシアネート化合物は脂肪族イソシアネートであることがより好ましい。 Specific examples of diisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate aromatic diisocyanates such as isocyanate and 2,4-tolylene dimer; aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and norbornene diisocyanate; (A) From the viewpoint of improving both the alkali solubility of the alkali-soluble polyamideimide resin and the light transmittance of the polyamideimide resin, the diisocyanate compound preferably contains an aliphatic isocyanate, and the diisocyanate compound is an aliphatic isocyanate. It is more preferable to have
 アミドイミド化工程におけるジイソシアネート化合物の使用量は限定されない。ポリアミドイミド樹脂に適度なアルカリ溶解性を付与する観点から、ジイソシアネート化合物の使用量は、イミド化合物を得るために使用したジアミン化合物の量に対するモル比率として、0.3以上1.0以下とすることが好ましく、0.4以上0.95以下とすることがより好ましく、0.50以上0.90以下とすることが特に好ましい。 The amount of diisocyanate compound used in the amidimidation process is not limited. From the viewpoint of imparting moderate alkali solubility to the polyamide-imide resin, the amount of the diisocyanate compound used is 0.3 or more and 1.0 or less as a molar ratio with respect to the amount of the diamine compound used to obtain the imide compound. , more preferably 0.4 or more and 0.95 or less, and particularly preferably 0.50 or more and 0.90 or less.
 このようにして製造されるポリアミドイミド樹脂は、下記一般式(3)
Figure JPOXMLDOC01-appb-C000003
 (上記一般式(3)中、Xはそれぞれ独立にジアミン残基(ジアミン化合物の残基)、Yはそれぞれ独立に芳香環またはシクロヘキサン環、Zはジイソシアネート化合物の残基である。nは自然数である。)で示される構造を有する物質を含む。
The polyamideimide resin thus produced has the following general formula (3)
Figure JPOXMLDOC01-appb-C000003
(In the above general formula (3), X is each independently a diamine residue (a residue of a diamine compound), Y is each independently an aromatic ring or a cyclohexane ring, Z is a residue of a diisocyanate compound. n is a natural number. ) includes substances having the structure shown in
 (A)アルカリ溶解性のポリアミドイミド樹脂と後述する任意成分である(E)アルカリ溶解性のポリイミド樹脂とを合算した配合量は、本発明の硬化性樹脂組成物100質量部に対して、例えば、10質量部以上85質量部以下であり、好ましくは15質量部以上80質量部以下であり、特に好ましくは20質量部以上75質量部以下である。 (A) The total amount of the alkali-soluble polyamideimide resin and the alkali-soluble polyimide resin (E), which is an optional component described later, is based on 100 parts by mass of the curable resin composition of the present invention, for example , 10 to 85 parts by mass, preferably 15 to 80 parts by mass, particularly preferably 20 to 75 parts by mass.
[(B)光塩基発生剤]
 本発明の第一の態様の硬化性樹脂組成物は、(A)アルカリ溶解性のポリアミドイミド樹脂(および後述する任意成分の(E)アルカリ溶解性のポリイミド樹脂)と、(C)熱硬化性化合物と(B)光塩基発生剤を含むことが好ましく、本発明の第二の態様の硬化性樹脂組成物は、(B)光塩基発生剤を含む。(B)光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、カルボキシル基を有するポリイミド樹脂と熱硬化成分との付加反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。
[(B) Photobase generator]
The curable resin composition of the first aspect of the present invention includes (A) an alkali-soluble polyamideimide resin (and an optional component (E) an alkali-soluble polyimide resin described later), and (C) a thermosetting It preferably contains a compound and (B) a photobase generator, and the curable resin composition of the second aspect of the present invention contains (B) a photobase generator. (B) The photobase generator is a catalyst for the addition reaction between the polyimide resin having a carboxyl group and the thermosetting component when the molecular structure changes or the molecule is cleaved by irradiation with light such as ultraviolet light or visible light. It is a compound that produces one or more basic substances that can function as
 塩基性物質としては、例えば、2級アミン、3級アミンが挙げられる。 Examples of basic substances include secondary amines and tertiary amines.
 光塩基発生剤としては、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基、N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。なかでも、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。 Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzylcarbamate groups, alkoxybenzyl A compound having a substituent such as a carbamate group is included. Among them, oxime ester compounds and α-aminoacetophenone compounds are preferred. As α-aminoacetophenone compounds, those having two or more nitrogen atoms are particularly preferred.
 その他の光塩基発生剤として、WPBG-018(商品名:9-anthrylmethylN,N’-diethylcarbamate),WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine),WPBG-082(商品名:guanidinium2-(3-benzoylphenyl)propionate), WPBG-140 (商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)等(以上、フジフィルム和光純薬社製)を使用することもできる。α―アミノアセトフェノン化合物は、分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成する。 Other photobase generators include WPBG-018 (trade name: 9-anthrylmethylN,N'-diethylcarbamate), WPBG-027 (trade name: (E)-1-[3-(2-hydroxyphenyl)-2-propenoyl ]piperidine), WPBG-082 (trade name: guanidinium2-(3-benzoylphenyl)propionate), WPBG-140 (trade name: 1-(anthraquinon-2-yl)ethyl imidazolecarboxylate), etc. (Fuji Film Wako Pure Chemical Industries, Ltd. ) can also be used. The α-aminoacetophenone compound has a benzoin ether bond in its molecule, and when exposed to light, it undergoes intramolecular cleavage to produce a basic substance (amine) that acts as a curing catalyst.
 α-アミノアセトフェノン化合物の具体例としては、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン(Omnirad(オムニラッド)369、商品名、IGM Resins社製)や4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン(Omnirad(オムニラッド)907、商品名、IGM Resins社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(Omnirad(オムニラッド)379、商品名、IGM Resins社製)などの市販の化合物またはその溶液を用いることができる。 Specific examples of α-aminoacetophenone compounds include (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane (Omnirad 369, trade name, manufactured by IGM Resins) and 4-(methylthiobenzoyl)- 1-methyl-1-morpholinoethane (Omnirad 907, trade name, manufactured by IGM Resins), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4 -morpholinyl)phenyl]-1-butanone (Omnirad 379, trade name, manufactured by IGM Resins) or a commercially available compound or a solution thereof can be used.
 オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物であればいずれをも使用することができる。かかるオキシムエステル化合物としては、下記一般式(4)で表される基を有するオキシムエステル系光塩基発生剤が好ましい。 Any compound can be used as the oxime ester compound as long as it is a compound that generates a basic substance upon irradiation with light. As such an oxime ester compound, an oxime ester photobase generator having a group represented by the following general formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、水素原子、無置換または炭素数1~6のアルキル基、フェニル基もしくはハロゲン原子で置換されたフェニル基、無置換または1個以上の水酸基で置換された炭素数1~20のアルキル基、1個以上の酸素原子で中断された該アルキル基、無置換または炭素数1~6のアルキル基もしくはフェニル基で置換された炭素数5~8のシクロアルキル基、無置換または炭素数1~6のアルキル基もしくはフェニル基で置換された炭素数2~20のアルカノイル基又はベンゾイル基を表し、Rは、無置換または炭素数1~6のアルキル基、フェニル基もしくはハロゲン原子で置換されたフェニル基、無置換または1個以上の水酸基で置換された炭素数1~20のアルキル基、1個以上の酸素原子で中断された該アルキル基、無置換または炭素数1~6のアルキル基もしくはフェニル基で置換された炭素数5~8のシクロアルキル基、無置換または炭素数1~6のアルキル基もしくはフェニル基で置換された炭素数2~20のアルカノイル基又はベンゾイル基を表す。)
 オキシムエステル系光塩基発生剤の市販品として、BASFジャパン社製のIRGACURE OXE01、IRGACURE OXE02、ADEKA社製N-1919、NCI-831などが挙げられる。また、特許第4344400号公報に記載された、分子内に2個のオキシムエステル基を有する化合物も好適に用いることができる。
(In the formula, R 1 is a hydrogen atom, an unsubstituted or C 1-6 alkyl group, a phenyl group or a phenyl group substituted with a halogen atom, an unsubstituted C 1 group substituted with one or more hydroxyl groups, -20 alkyl groups, said alkyl groups interrupted by one or more oxygen atoms, unsubstituted or C5-8 cycloalkyl groups substituted with C1-6 alkyl groups or phenyl groups, unsubstituted or an alkanoyl group having 2 to 20 carbon atoms or a benzoyl group substituted with an alkyl group having 1 to 6 carbon atoms or a phenyl group, and R 2 is unsubstituted or an alkyl group having 1 to 6 carbon atoms, a phenyl group or a halogen A phenyl group substituted with an atom, an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with one or more hydroxyl groups, the alkyl group interrupted by one or more oxygen atoms, unsubstituted or having 1 to 1 carbon atoms a cycloalkyl group having 5 to 8 carbon atoms substituted with an alkyl group of 6 or a phenyl group, an alkanoyl group having 2 to 20 carbon atoms or a benzoyl group unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or a phenyl group; represents.)
Examples of commercially available oxime ester photobase generators include IRGACURE OXE01 and IRGACURE OXE02 manufactured by BASF Japan, N-1919 and NCI-831 manufactured by ADEKA. Compounds having two oxime ester groups in the molecule, which are described in Japanese Patent No. 4344400, can also be preferably used.
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。 In addition, JP 2004-359639, JP 2005-097141, JP 2005-220097, JP 2006-160634, JP 2008-094770, JP 2008-509967, Examples include carbazole oxime ester compounds described in JP-T-2009-040762 and JP-A-2011-80036.
 このような光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。本発明の硬化性樹脂組成物中の(B)光塩基発生剤の配合量は、(A)アルカリ溶解性のポリアミドイミド樹脂100質量部に対して、またはアルカリ溶解性のポリイミド樹脂が含まれる場合には、(A)アルカリ溶解性のポリアミドイミド樹脂およびアルカリ溶解性のポリイミド樹脂の合計量100質量部に対して、例えば、0.1質量部以上40質量部以下であり、好ましくは0.2質量部以上20質量部以下である。 Such photobase generators may be used singly or in combination of two or more. The amount of the photobase generator (B) in the curable resin composition of the present invention is (A) relative to 100 parts by mass of the alkali-soluble polyamideimide resin, or when the alkali-soluble polyimide resin is included In (A) the total amount of the alkali-soluble polyamideimide resin and the alkali-soluble polyimide resin is 100 parts by mass, for example, 0.1 parts by mass or more and 40 parts by mass or less, preferably 0.2 It is more than 20 parts by mass and less than 20 parts by mass.
 0.1質量部以上の場合、光照射部/未照射部の耐現像性のコントラストを良好に得ることができる。また、40質量部以下の場合、硬化物特性が向上する。 When the amount is 0.1 part by mass or more, a good contrast of development resistance between the light-irradiated area and the non-irradiated area can be obtained. Moreover, when it is 40 parts by mass or less, the properties of the cured product are improved.
[(C)熱硬化性化合物]
 本発明の第一の態様の硬化性樹脂組成物は、熱硬化後の硬化物に耐熱性、耐薬品性を付与する観点から、(C)熱硬化性化合物を含むことが好ましく、本発明の第二の態様の硬化性樹脂組成物は、(C)熱硬化性化合物を含む。
[(C) thermosetting compound]
The curable resin composition of the first aspect of the present invention preferably contains (C) a thermosetting compound from the viewpoint of imparting heat resistance and chemical resistance to the cured product after thermosetting. The curable resin composition of the second aspect contains (C) a thermosetting compound.
 (C)熱硬化性化合物は、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、水酸基、アミノ基又はカルボキシル基含有ポリウレタン、ポリエステル、ポリカーボネート類、ポリオール、フェノキシ樹脂、アクリル系共重合樹脂、ビニル樹脂、オキサジン樹脂、シアネート樹脂などの公知慣用の熱硬化性樹脂が使用できる。 (C) Thermosetting compounds include epoxy resins, urethane resins, polyester resins, hydroxyl group-, amino- or carboxyl-containing polyurethanes, polyesters, polycarbonates, polyols, phenoxy resins, acrylic copolymer resins, vinyl resins, oxazine resins, A known and commonly used thermosetting resin such as a cyanate resin can be used.
 中でも、耐熱性、耐薬品性の観点から、(C)熱硬化性化合物がエポキシ樹脂であることが好ましい。 Above all, from the viewpoint of heat resistance and chemical resistance, (C) the thermosetting compound is preferably an epoxy resin.
 エポキシ樹脂の具体例としては、三菱ケミカル社製のjER828、ダイセル社製のEHPE3150、DIC社製のEPICLON840、日鉄ケミカル&マテリアル社製のエポトートYD-011、ダウ・ケミカル社製のD.E.R.317、住友化学社製のスミエポキシESA-011等(何れも商品名)のビスフェノールA型エポキシ樹脂;三菱ケミカル社製のjERYL903、DIC社製のEPICLON152、日鉄ケミカル&マテリアル社製のエポトートYDB-400、ダウ・ケミカル社製のD.E.R.542、住友化学社製のスミエポキシESB-400等(何れも商品名)のブロム化エポキシ樹脂;三菱ケミカル社製のjER152、ダウ・ケミカル社製のD.E.N.431、DIC社製のEPICLON N-730、日鉄ケミカル&マテリアル社製のエポトートYDCN-701、日本化薬社製のEPPN-201、住友化学社製のスミエポキシESCN-195X等(何れも商品名)のノボラック型エポキシ樹脂;DIC社製のEPICLON830、三菱ケミカル社製jER807、日鉄ケミカル&マテリアル社製のエポトートYDF-170、YDF-175、YDF-2004等(何れも商品名)のビスフェノールF型エポキシ樹脂;日鉄ケミカル&マテリアル社製のエポトートST-2004(商品名)等の水添ビスフェノールA型エポキシ樹脂;三菱ケミカル社製のjER604、日鉄ケミカル&マテリアル社製のエポトートYH-434、住友化学社製のスミエポキシELM-120等(何れも商品名)のグリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;ダイセル社製のセロキサイド2021等(何れも商品名)の脂環式エポキシ樹脂;日本化薬社製のEPPN-501等(何れも商品名)のトリヒドロキシフェニルメタン型エポキシ樹脂;三菱ケミカル社製のYL-6056、YX-4000、YL-6121(何れも商品名)等のビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;日本化薬社製EBPS-200、ADEKA社製EPX-30、DIC社製のEXA-1514(商品名)等のビスフェノールS型エポキシ樹脂;三菱ケミカル社製のjER157S(商品名)等のビスフェノールAノボラック型エポキシ樹脂;日産化学社製のTEPIC等(何れも商品名)の複素環式エポキシ樹脂;ビフェニルノボラック型エポキシ樹脂;日鉄ケミカル&マテリアル社製ESN-190、DIC社製HP-4032等のナフタレン基含有エポキシ樹脂;DIC社製HP-7200等のジシクロペンタジエン骨格を有するエポキシ樹脂などが挙げられる。 Specific examples of epoxy resins include jER828 manufactured by Mitsubishi Chemical Corporation, EHPE3150 manufactured by Daicel Corporation, EPICLON840 manufactured by DIC Corporation, Epotote YD-011 manufactured by Nippon Steel Chemical & Materials, and D.I. E. R. 317, bisphenol A type epoxy resins such as Sumiepoxi ESA-011 (both trade names) manufactured by Sumitomo Chemical; , Dow Chemical Company D.I. E. R. 542, brominated epoxy resins such as Sumiepoxy ESB-400 (both trade names) manufactured by Sumitomo Chemical; jER152 manufactured by Mitsubishi Chemical; E. N. 431, DIC's EPICLON N-730, Nippon Steel Chemical & Materials' Epotato YDCN-701, Nippon Kayaku's EPPN-201, Sumitomo Chemical's Sumiepoxy ESCN-195X, etc. (all are trade names) novolak type epoxy resin; EPICLON830 manufactured by DIC Corporation, jER807 manufactured by Mitsubishi Chemical Corporation, Epotote YDF-170, YDF-175, YDF-2004 manufactured by Nippon Steel Chemical & Materials Co., Ltd. (all trade names) Bisphenol F type epoxy Resin: Hydrogenated bisphenol A type epoxy resin such as Epotato ST-2004 (trade name) manufactured by Nippon Steel Chemical &Materials; Glycidylamine type epoxy resin such as Sumiepoxy ELM-120 (both are trade names); Trihydroxyphenylmethane type epoxy resin such as EPPN-501 (all trade names) manufactured by Mitsubishi Chemical Corporation; type epoxy resins or mixtures thereof; EBPS-200 manufactured by Nippon Kayaku, EPX-30 manufactured by ADEKA, bisphenol S type epoxy resins such as EXA-1514 (trade name) manufactured by DIC; jER157S manufactured by Mitsubishi Chemical Corporation ( Bisphenol A novolac type epoxy resins such as bisphenol A novolak type epoxy resins such as TEPIC manufactured by Nissan Chemical Co., Ltd. (both are trade names); biphenyl novolak type epoxy resins; ESN-190 and DIC manufactured by Nippon Steel Chemical & Materials naphthalene group-containing epoxy resins such as HP-4032 manufactured by DIC Corporation; and epoxy resins having a dicyclopentadiene skeleton such as HP-7200 manufactured by DIC Corporation.
 (C)熱硬化性化合物は、どのような配合量であってもよいが、(A)アルカリ溶解性のポリアミドイミド樹脂および含まれる場合にはアルカリ溶解性のポリイミド樹脂との当量比(アルカリ溶解性基:エポキシ基などの熱硬化性基)が1:0.1~1:10となるような割合で配合することが好ましい。 (C) The thermosetting compound may be in any amount, but (A) the alkali-soluble polyamideimide resin and the equivalent ratio (alkali-soluble It is preferred that the ratio of 1:0.1 to 1:10 of the functional group: thermosetting group such as epoxy group) be obtained.
[(D)セルロース誘導体]
 本発明の第一の態様の硬化性樹脂組成物は、上記(C)熱硬化性化合物やアルカリ溶解性の光硬化性化合物とは相溶性が異なる高分子成分として、(D)セルロース誘導体を含むことが好ましく、本発明の第二の態様の硬化性樹脂組成物は(D)セルロース誘導体を含む。(D)セルロース誘導体が本発明の硬化性樹脂組成物に含まれる場合、(D)セルロース誘導体は、有機溶剤に可溶であり、高いガラス転移温度(Tg)を有する物が好ましい。(D)セルロース誘導体としては、後述するようなセルロースエーテル、カルボキシルメチルセルロース、セルロースエステルなどが挙げられる。
[(D) cellulose derivative]
The curable resin composition of the first aspect of the present invention contains (D) a cellulose derivative as a polymer component different in compatibility with the (C) thermosetting compound or alkali-soluble photocurable compound. Preferably, the curable resin composition of the second aspect of the present invention contains (D) a cellulose derivative. When the cellulose derivative (D) is contained in the curable resin composition of the present invention, the cellulose derivative (D) is preferably soluble in an organic solvent and has a high glass transition temperature (Tg). (D) Cellulose derivatives include cellulose ethers, carboxymethyl celluloses, cellulose esters, etc., which will be described later.
 セルロースエーテルとしてはエチルセルロース、ヒドロキシアルキルセルロースなどが挙げられ、エチルセルロースの市販品としては、エトセル(登録商標)4、エトセル7、エトセル10、エトセル14、エトセル20、エトセル45、エトセル70、エトセル100、エトセル200、エトセル300(いずれもダウ・ケミカル社製の商品名)、ヒドロキシアルキルセルロースの市販品としては、メトローズSM、メトローズ60SH、メトローズ65SH、メトローズ90SH、メトローズSEB、メトローズSNB(いずれも信越化学工業(株)製の商品名)などが挙げられる。 Cellulose ethers include ethyl cellulose, hydroxyalkyl cellulose and the like, and commercial products of ethyl cellulose include Ethocel (registered trademark) 4, Ethocel 7, Ethocel 10, Ethocel 14, Ethocel 20, Ethocel 45, Ethocel 70, Ethocel 100 and Ethocel. 200, Ethocel 300 (all trade names manufactured by Dow Chemical Company), and commercial products of hydroxyalkyl cellulose include Metolose SM, Metolose 60SH, Metolose 65SH, Metolose 90SH, Metolose SEB, and Metolose SNB (all of which are Shin-Etsu Chemical Co., Ltd. ( (trade name) manufactured by Co., Ltd.).
 また、カルボキシメチルセルロースの市販品としては、CMCAB-641-0.2(イーストマンケミカル社製の商品名)、サンローズF、サンローズA、サンローズP、サンローズS、サンローズB(いずれも日本製紙(株)製の商品名)などが挙げられる。 In addition, commercial products of carboxymethyl cellulose include CMCAB-641-0.2 (trade name manufactured by Eastman Chemical Co.), Sunrose F, Sunrose A, Sunrose P, Sunrose S, and Sunrose B (all product name of Nippon Paper Industries Co., Ltd.) and the like.
 さらに好ましいセルロース誘導体としては、セルロースの持つヒドロキシル基を有機酸によりエステル化したセルロースエステルであり、具体的には、下記式(5)
Figure JPOXMLDOC01-appb-C000005
(式(5)中、R1、R2およびR3は、それぞれ独立して、水素、アシル基、または式(6)
Figure JPOXMLDOC01-appb-C000006
(式(6)中、R4は、水素またはメチル基であり、R5は、水素、メチル基、エチル基、またはグリシジル基である。)を表し、R1、R2およびR3の少なくとも一つは水素であり、nは1以上の整数であり、その上限は後述する分子量から規制される。)で示される化合物が挙げられる。
A more preferable cellulose derivative is a cellulose ester obtained by esterifying the hydroxyl group of cellulose with an organic acid.
Figure JPOXMLDOC01-appb-C000005
(In formula (5), R 1 , R 2 and R 3 are each independently hydrogen, an acyl group, or
Figure JPOXMLDOC01-appb-C000006
(In formula (6), R4 is hydrogen or a methyl group, and R5 is hydrogen, a methyl group, an ethyl group, or a glycidyl group.), and at least one of R 1 , R 2 and R 3 is hydrogen, n is an integer of 1 or more, and its upper limit is regulated by the molecular weight described later. ) can be mentioned.
 上記式(5)で示されるセルロースエステルにおいて、セルロース樹脂に対するアシル基の含有量は0超60wt%以下の範囲であり、好ましくは5~55wt%の範囲である。 In the cellulose ester represented by the above formula (5), the acyl group content relative to the cellulose resin is in the range of more than 0 to 60 wt% or less, preferably in the range of 5 to 55 wt%.
 上記式(5)で示されるセルロースエステルにおいて、セルロース樹脂に対するヒドロキシル基含有量は0~6wt%、アシル基として、アセチル基含有量は0~40wt%、プロピオニル基又は/及びブチリル基含有量は0~55wt%、式(6)で表される基の含有量は0~20wt%の範囲が好ましい。ここでいう「wt%」とは、セルロースの重量に対する水素、アシル基または式(6)で表される基の重量%である。 In the cellulose ester represented by the above formula (5), the hydroxyl group content relative to the cellulose resin is 0 to 6 wt%, the acetyl group content as the acyl group is 0 to 40 wt%, and the propionyl group or/and butyryl group content is 0. 55 wt %, and the content of the group represented by formula (6) is preferably in the range of 0 to 20 wt %. As used herein, "wt%" is the weight percent of hydrogen, acyl groups, or groups represented by formula (6) relative to the weight of cellulose.
 このようなセルロースエステルの市販品としては、セルロースアセテートとして、CA-398-3、CA-398-6、CA-398-10、CA-398-30、CA-394-60Sなど、セルロースアセテートブチレートとして、CAB-551-0.01、CAB-551-0.2、CAB-553-0.4、CAB-531-1、CAB-500-5、CAB-381-0.1、CAB-381-0.5、CAB-381-2、CAB-381-20、CAB-381-20BP、CAB-321-0.1、CAB-171-15など、セルロースアセテートプロピオネートとして、CAP-504-0.2、CAP-482-0.5、CAP-482-20(上記セルロース誘導体はいずれもイーストマンケミカル社製の商品名)などが挙げられる。これらの中でも、溶剤への溶解性の観点からセルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましい。
 また、上記セルロースアセテートやセルロースアセテートブチレート、セルロースアセテートプロピオネートを、過酸化ベンゾイルなどの酸化剤の存在下で(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸グリシジルなどと反応させることで、式(6)で表される基を含むセルロース誘導体を得ることができる。この式(6)で表される基を含むセルロース誘導体を用いることで、貼り付き性の評価結果がより良好となる。
Commercial products of such cellulose esters include cellulose acetates such as CA-398-3, CA-398-6, CA-398-10, CA-398-30, CA-394-60S, and cellulose acetate butyrate. As, CAB-551-0.01, CAB-551-0.2, CAB-553-0.4, CAB-531-1, CAB-500-5, CAB-381-0.1, CAB-381- CAP-504-0.0.5, CAB-381-2, CAB-381-20, CAB-381-20BP, CAB-321-0.1, CAB-171-15, etc. as cellulose acetate propionates. 2, CAP-482-0.5, CAP-482-20 (all of the above cellulose derivatives are trade names manufactured by Eastman Chemical Co.), and the like. Among these, cellulose acetate butyrate and cellulose acetate propionate are preferable from the viewpoint of solubility in solvents.
In addition, the above cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are treated with (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, ( A cellulose derivative containing a group represented by the formula (6) can be obtained by reacting with glycidyl meth)acrylate or the like. By using the cellulose derivative containing the group represented by the formula (6), the evaluation result of sticking property becomes better.
 (D)セルロース誘導体の数平均分子量は特に制限は無いが、好ましくは5,000~500,000、より好ましくは10,000~100,000、さらに好ましくは10,000~30,000である。分子量が前記範囲内である場合、貼り付きが小さく、即ち、貼り付き性の評価結果が良好となり、硬化性樹脂組成物の粘度が適切な範囲となる。 Although the number average molecular weight of (D) the cellulose derivative is not particularly limited, it is preferably 5,000 to 500,000, more preferably 10,000 to 100,000, still more preferably 10,000 to 30,000. When the molecular weight is within the above range, sticking is small, that is, the evaluation result of sticking property is good, and the viscosity of the curable resin composition falls within an appropriate range.
 尚、本明細書でいうガラス転移温度Tgは、熱機械分析(DSC)によりJIS C 6481:1996の「5.17.5DSC法」に記載される方法に準じて測定したガラス転移温度をいう。 The glass transition temperature Tg referred to in this specification refers to the glass transition temperature measured by thermomechanical analysis (DSC) according to the method described in JIS C 6481:1996, "5.17.5 DSC method".
 本発明で使用するセルロース誘導体は、天然物由来であることが、化石燃料枯渇の側面から好ましい。さらに、本発明のセルロース誘導体に用いる出発原料は、再生パルプなどリサイクル品からの製造も可能であり、CO削減の環境側面からも好ましい組成物を提供できる。 The cellulose derivative used in the present invention is preferably derived from natural products from the viewpoint of fossil fuel depletion. Furthermore, the starting material used for the cellulose derivative of the present invention can be produced from recycled products such as regenerated pulp, and it is possible to provide a composition that is preferable from the environmental aspect of CO 2 reduction.
 (D)セルロース誘導体は、単独で又は2種以上を混合して用いることができる。(D)セルロース誘導体の配合量は、(A)アルカリ溶解性のポリアミドイミド樹脂(および後述する任意成分のアルカリ溶解性のポリイミド樹脂)100質量部に対して、例えば、0.5質量部以上20質量部以下であり、好ましくは1質量部以上15質量部以下であり、より好ましくは4質量部以上10質量部以下である。前記範囲である場合、乾燥塗膜の時点では、表面粗さ(算術平均粗さRa)を0.1μm未満とすることができ、貼り付きが小さく、即ち、貼り付き性の評価結果が良好となり、硬化性樹脂組成物の粘度が適切な範囲となる。
これは、熱硬化前は(A)アルカリ溶解性のポリアミドイミド樹脂と(C)熱硬化性化合物と(D)セルロース誘導体との相溶性がよく、高分子成分が乾燥塗膜中に分散して存在しているためと考えられる。
また、熱硬化後は、乾燥塗膜中に分散して存在していた高分子成分が、熱硬化反応の過程で膜表面に移行することにより、熱硬化後の硬化膜の表面粗さ(算術平均粗さRa)が熱硬化前の乾燥塗膜より大きくなると考えられ、(D)セルロース誘導体の数平均分子量、配合量を上述の範囲とすることで、硬化後の表面粗さ(算術平均粗さRa)についても0.1μm以上1μm以下とすることができる。
(D) A cellulose derivative can be used individually or in mixture of 2 or more types. (D) The amount of the cellulose derivative is, for example, 0.5 parts by mass or more and 20 parts by mass per 100 parts by mass of the (A) alkali-soluble polyamideimide resin (and an optional alkali-soluble polyimide resin described later). It is not more than 1 part by mass, preferably 1 part by mass or more and 15 parts by mass or less, more preferably 4 parts by mass or more and 10 parts by mass or less. When it is in the above range, the surface roughness (arithmetic mean roughness Ra) can be less than 0.1 μm at the time of the dry coating film, and the sticking is small, that is, the evaluation result of the sticking property is good. , the viscosity of the curable resin composition is in an appropriate range.
This is because (A) the alkali-soluble polyamideimide resin, (C) the thermosetting compound, and (D) the cellulose derivative have good compatibility before heat curing, and the polymer component is dispersed in the dried coating film. presumably because it exists.
In addition, after heat curing, the polymer components dispersed in the dry coating migrate to the film surface during the heat curing reaction, resulting in the surface roughness of the cured film after heat curing (arithmetic It is thought that the average roughness Ra) is larger than that of the dry coating film before heat curing. The thickness Ra) can also be set to 0.1 μm or more and 1 μm or less.
[(E)アルカリ溶解性のポリイミド樹脂]
 本発明の硬化性樹脂組成物は、耐熱性の観点から、(E)アルカリ溶解性のポリイミド樹脂を含むことが好ましい。
[(E) alkali-soluble polyimide resin]
From the viewpoint of heat resistance, the curable resin composition of the present invention preferably contains (E) an alkali-soluble polyimide resin.
 (E)アルカリ溶解性のポリイミド樹脂は、アルカリ溶解性の官能基(以下、アルカリ溶解性基ともいう)を有する。アルカリ溶解性の官能基とは、本発明の硬化性樹脂組成物のアルカリ溶液での現像を可能とする官能基であり、例えば、カルボキシル基、フェノール性水酸基が挙げられる。 (E) The alkali-soluble polyimide resin has an alkali-soluble functional group (hereinafter also referred to as an alkali-soluble group). The alkali-soluble functional group is a functional group that enables the curable resin composition of the present invention to be developed with an alkaline solution, and includes, for example, a carboxyl group and a phenolic hydroxyl group.
 このような(E)アルカリ溶解性のポリイミド樹脂は、例えば、カルボン酸無水物成分とアミン成分および/またはイソシアネート成分とを反応させて得られる樹脂が挙げられる。ここで、上記アルカリ溶解性基は、カルボキシル基やフェノール性水酸基を有するアミン成分を用いることにより導入される。また、イミド化は、熱イミド化で行っても、化学イミド化で行ってもよく、またこれらを併用して実施することもできる。 Such (E) alkali-soluble polyimide resins include, for example, resins obtained by reacting a carboxylic anhydride component with an amine component and/or an isocyanate component. Here, the alkali-soluble group is introduced by using an amine component having a carboxyl group or a phenolic hydroxyl group. Further, the imidization may be carried out by thermal imidization or by chemical imidization, and these may be used in combination.
 カルボン酸無水物成分としては、テトラカルボン酸無水物やトリカルボン酸無水物などが挙げられるが、これらの酸無水物に限定されるものではなく、アミノ基やイソシアネート基と反応する酸無水物基およびカルボキシル基を有する化合物であれば、その誘導体を含め用いることができる。また、これらのカルボン酸無水物成分は、単独でまたは組み合わせて使用してもよい。 Examples of the carboxylic anhydride component include tetracarboxylic anhydrides and tricarboxylic anhydrides, but are not limited to these acid anhydrides. Acid anhydride groups that react with amino groups and isocyanate groups and Any compound having a carboxyl group can be used, including its derivatives. Also, these carboxylic acid anhydride components may be used alone or in combination.
 アミン成分としては、脂肪族ジアミンや芳香族ジアミンなどのジアミン、脂肪族ポリエーテルアミンなどの多価アミン、カルボキシル基を有するジアミン、フェノール性水酸基を有するジアミンなどを用いることができる。アミン成分としては、これらのアミンに限定されるものではないが、少なくともフェノール性水酸基、カルボキシル基のうち1種の官能基を導入できるアミンを用いることが必要である。また、これらのアミン成分は、単独でまたは組み合わせて使用してもよい。 As the amine component, diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxyl group, diamines having a phenolic hydroxyl group, and the like can be used. The amine component is not limited to these amines, but it is necessary to use an amine capable of introducing at least one functional group out of phenolic hydroxyl groups and carboxyl groups. Also, these amine components may be used alone or in combination.
 イソシアネート成分としては、芳香族ジイソシアネートおよびその異性体や多量体、脂肪族ジイソシアネート類、脂環式ジイソシアネート類およびその異性体などのジイソシアネートやその他汎用のジイソシアネート類を用いることができるが、これらのイソシアネートに限定されるものではない。また、これらのイソシアネート成分は、単独でまたは組み合わせて使用してもよい。 As the isocyanate component, diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
 このような(E)アルカリ溶解性のポリイミド樹脂の合成においては、公知慣用の有機溶剤を用いることができる。かかる有機溶媒としては、原料であるカルボン酸無水物類、アミン類、イソシアネート類と反応せず、かつこれら原料が溶解する溶媒であれば問題はなく、特にその構造は限定されない。特に、原料の溶解性が高いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン性溶媒が好ましい。 In the synthesis of such (E) alkali-soluble polyimide resin, a known and commonly used organic solvent can be used. As such an organic solvent, there is no problem as long as it does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and dissolves these raw materials, and its structure is not particularly limited. In particular, aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and γ-butyrolactone are preferred because of their high solubility of raw materials.
 (E)アルカリ溶解性のポリイミド樹脂は、アルカリ溶解性基としてカルボキシル基を有することが好ましく、アルカリ溶解性基としてカルボキシル基とフェノール性水酸基の双方を有することが特に好ましい。 (E) The alkali-soluble polyimide resin preferably has a carboxyl group as an alkali-soluble group, and particularly preferably has both a carboxyl group and a phenolic hydroxyl group as an alkali-soluble group.
 (E)アルカリ溶解性のポリイミド樹脂は、ポリイミド樹脂のアルカリ溶解性(現像性)と、ポリイミド樹脂を含む硬化性樹脂組成物の硬化物の機械特性など他の特性とのバランスを良好にする観点から、その酸価(固形分酸価)が20~200mgKOH/gであることが好ましく、60~150mgKOH/gであることが特に好ましい。 (E) Alkali-soluble polyimide resin, the alkali solubility (developability) of the polyimide resin, the viewpoint of improving the balance with other properties such as mechanical properties of the cured product of the curable resin composition containing the polyimide resin Therefore, the acid value (solid content acid value) is preferably 20 to 200 mgKOH/g, particularly preferably 60 to 150 mgKOH/g.
 また、アルカリ溶解性のポリイミド樹脂の分子量は、現像性と硬化塗膜特性を考慮すると、質量平均分子量Mwが100,000以下であることが好ましく、1,000~100,000がより好ましく、2,000~50,000がさらに好ましい。 Further, the molecular weight of the alkali-soluble polyimide resin is preferably a mass average molecular weight Mw of 100,000 or less, more preferably 1,000 to 100,000, in consideration of developability and cured coating film properties. ,000 to 50,000 are more preferred.
(E)アルカリ溶解性のポリイミド樹脂が配合される場合、耐熱性および現像性向上の観点から、(A)アルカリ溶解性のポリアミドイミド樹脂と(E)アルカリ溶解性のポリイミド樹脂との配合比率としては、質量比率で98:2~50:50とすることができ、95:5~50:50とすることが好ましく、95:5~70:30とすることがさらに好ましい。 (E) When an alkali-soluble polyimide resin is blended, from the viewpoint of improving heat resistance and developability, the blending ratio of (A) an alkali-soluble polyamideimide resin and (E) an alkali-soluble polyimide resin can have a mass ratio of 98:2 to 50:50, preferably 95:5 to 50:50, more preferably 95:5 to 70:30.
 本発明の硬化性樹脂組成物には、さらに、必要に応じて以下の成分を配合することができる。 The curable resin composition of the present invention may further contain the following components as necessary.
[高分子樹脂]
 本発明の硬化性樹脂組成物は、得られる硬化物の可撓性、指触乾燥性の向上を目的に、公知慣用の高分子樹脂を配合することができる。このような高分子樹脂としては、ポリエステル系、フェノキシ樹脂系ポリマー、ポリビニルアセタール系、ポリビニルブチラール系、ポリアミド系ポリマー、エラストマー等が挙げられる。このような高分子樹脂は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
[Polymer resin]
The curable resin composition of the present invention can be blended with a known and commonly used polymer resin for the purpose of improving the flexibility and dryness to the touch of the resulting cured product. Examples of such polymer resins include polyester-based polymers, phenoxy resin-based polymers, polyvinylacetal-based polymers, polyvinyl butyral-based polymers, polyamide-based polymers, elastomers, and the like. Such polymer resins may be used singly or in combination of two or more.
[無機充填剤]
 本発明の硬化性樹脂組成物は、硬化物の硬化収縮を抑制し、密着性、硬度などの特性を向上させるために無機充填材を配合することができる。このような無機充填剤としては、例えば、硫酸バリウム、無定形シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ノイブルグシリシャスアース等が挙げられる。
[Inorganic filler]
The curable resin composition of the present invention can contain an inorganic filler in order to suppress curing shrinkage of the cured product and improve properties such as adhesion and hardness. Examples of such inorganic fillers include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg Silicious Earth.
[着色剤]
 本発明の硬化性樹脂組成物は、赤、橙、青、緑、黄、白、黒などの公知慣用の着色剤を配合することができる。このような着色剤としては、顔料、染料、色素のいずれでもよい。
[Coloring agent]
The curable resin composition of the present invention can contain known and commonly used colorants such as red, orange, blue, green, yellow, white and black. Any of pigments, dyes, and dyes may be used as such a coloring agent.
[有機溶剤]
 本発明の硬化性樹脂組成物は、樹脂組成物の調製のためや、基材やキャリアフィルムに塗布するための粘度調整のために有機溶剤を配合することができる。このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などを挙げることができる。このような有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。
[Organic solvent]
The curable resin composition of the present invention can be blended with an organic solvent for preparing the resin composition or for adjusting the viscosity for application to a substrate or carrier film. Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, and petroleum solvents. Such organic solvents may be used singly or as a mixture of two or more.
[その他成分]
 本発明の硬化性樹脂組成物は、さらに必要に応じて、メルカプト化合物、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、公知慣用のものを用いることができる。
[Other ingredients]
The curable resin composition of the present invention may further contain components such as mercapto compounds, adhesion promoters, antioxidants and ultraviolet absorbers, if necessary. Known and commonly used materials can be used as these materials.
 また、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤および/またはレベリング剤、シランカップリング剤、防錆剤などのような公知慣用の添加剤類を配合することができる。 In addition, known and commonly used thickeners such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite, antifoaming agents and/or leveling agents such as silicone-based, fluorine-based, and polymer-based agents, silane coupling agents, and rust inhibitors. Known and commonly used additives such as these can be blended.
<積層構造体>
 本発明の積層構造体は、本発明の硬化性樹脂組成物で形成された樹脂層の少なくとも片面が、フィルムで支持または保護されているものである。
<Laminated structure>
In the laminated structure of the present invention, at least one surface of the resin layer formed from the curable resin composition of the present invention is supported or protected by a film.
 樹脂層は、単層であってもよく、二つ以上の樹脂層の積層構造を有していてもよい。二つ以上の樹脂層の積層構造とする場合、例えば、本発明の硬化性樹脂組成物で形成された樹脂層を積層させてもよく、本発明の硬化性樹脂組成物で形成された樹脂層と、本発明によらない硬化性樹脂組成物で形成された樹脂層と、の積層構造であってもよい。 The resin layer may be a single layer or may have a laminated structure of two or more resin layers. In the case of a laminated structure of two or more resin layers, for example, a resin layer formed of the curable resin composition of the present invention may be laminated, or a resin layer formed of the curable resin composition of the present invention. and a resin layer formed of a curable resin composition not according to the present invention.
 後者の積層構造を取る場合、積層構造体は、例えば、フレキシブルプリント配線板などの基材上に設けられる樹脂層(A)と、樹脂層(A)上に設けられる樹脂層(B)と、の積層構造を有する樹脂層の少なくとも片面がフィルムで支持または保護されたものとなる。樹脂層(A)は、例えば、アルカリ溶解性樹脂および熱反応性化合物を含むアルカリ現像型樹脂組成物からなる。 When the latter laminated structure is adopted, the laminated structure includes, for example, a resin layer (A) provided on a substrate such as a flexible printed wiring board, a resin layer (B) provided on the resin layer (A), At least one side of the resin layer having a laminated structure of is supported or protected by the film. The resin layer (A) is made of, for example, an alkali-developable resin composition containing an alkali-soluble resin and a heat-reactive compound.
 上記積層構造体は、例えば、以下のようにして製造できる。 The laminated structure can be manufactured, for example, as follows.
 すなわち、まず、キャリアフィルム(支持フィルム)上に、樹脂層を構成する本発明の硬化性樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、常法に従い、コンマコーター等の公知の手法で塗布する。樹脂層が積層構造を有する場合、塗布される樹脂組成物を替えて、あるいは替えないで塗布操作を繰り返す。その後、通常、50~130℃の温度で1~30分間乾燥することで、キャリアフィルム上にBステージ状態(半硬化状態)の樹脂層の乾燥塗膜を形成してなる、本発明の積層構造体を作製することができる。この積層構造体の樹脂層はいわゆるドライフィルムである。このドライフィルム上には、乾燥塗膜表面に塵が付着することを防ぐ等の目的で、さらに、剥離可能なカバーフィルム(保護フィルム)を積層することができる。キャリアフィルムおよびカバーフィルムとしては、従来公知のプラスチックフィルムを適宜用いることができ、カバーフィルムについては、カバーフィルムを剥離するときに、樹脂層とキャリアフィルムとの接着力よりも小さいものであることが好ましい。キャリアフィルムおよびカバーフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。 That is, first, on a carrier film (support film), the curable resin composition of the present invention constituting the resin layer is diluted with an organic solvent to adjust the viscosity to an appropriate value. Apply by method. When the resin layer has a laminated structure, the coating operation is repeated with or without changing the resin composition to be applied. Thereafter, it is usually dried at a temperature of 50 to 130° C. for 1 to 30 minutes to form a dry coating film of a resin layer in a B-stage state (semi-cured state) on the carrier film, and the laminated structure of the present invention. You can make a body. The resin layer of this laminated structure is a so-called dry film. A peelable cover film (protective film) can be further laminated on the dry film for the purpose of preventing dust from adhering to the surface of the dry coating film. As the carrier film and the cover film, conventionally known plastic films can be appropriately used. Regarding the cover film, when the cover film is peeled off, the adhesion force between the resin layer and the carrier film should be smaller. preferable. The thickness of the carrier film and cover film is not particularly limited, but is generally selected appropriately within the range of 10 to 150 μm.
<硬化物>
 本発明の硬化物は、本発明の硬化性樹脂組成物または本発明の積層構造体の樹脂層を硬化させて得られる。
<Cured product>
The cured product of the present invention is obtained by curing the curable resin composition of the present invention or the resin layer of the laminate structure of the present invention.
<電子部品>
 本発明の硬化性樹脂組成物および本発明の積層構造体の樹脂層は、例えばフレキシブルプリント配線板などの電子部品に有効に用いることができる。具体的には、フレキシブルプリント配線基材上に本発明の硬化性樹脂組成物の層や積層構造体の樹脂層を形成し、光照射によりパターニングし、現像液にてパターンを形成してなる絶縁膜の硬化物を有するフレキシブルプリント配線板などが挙げられる。
<Electronic parts>
The curable resin composition of the present invention and the resin layer of the laminate structure of the present invention can be effectively used for electronic components such as flexible printed wiring boards. Specifically, a layer of the curable resin composition of the present invention or a resin layer of a laminated structure is formed on a flexible printed wiring base material, patterned by light irradiation, and an insulation formed by forming a pattern with a developer. Examples include flexible printed wiring boards having a cured film.
 以下、フレキシブルプリント配線板の製造方法について、具体的に説明する。 The method for manufacturing the flexible printed wiring board will be specifically described below.
<フレキシブルプリント配線板の製造方法>
 本発明の硬化性樹脂組成物または本発明の積層構造体の樹脂層を用いたフレキシブルプリント配線板の製造の一例を以下に示す。すなわち、導体回路を形成したフレキシブルプリント配線基材上に本発明の硬化性樹脂組成物を塗布し、あるいは本発明の積層構造体の樹脂層を貼付して樹脂層を形成する工程(層形成工程)、この樹脂層に活性エネルギー線をパターン状に照射する工程(露光工程)、および、露光後の樹脂層をアルカリ現像して、パターン化された樹脂層像を形成する工程(現像工程)を含む製造方法である。また、必要に応じて、アルカリ現像後、さらなる光硬化や熱硬化(ポストキュア工程)を行い、樹脂層を完全に硬化させて、硬化膜を形成し、信頼性の高いフレキシブルプリント配線板を得ることができる。
<Method for manufacturing flexible printed wiring board>
An example of manufacturing a flexible printed wiring board using the curable resin composition of the present invention or the resin layer of the laminate structure of the present invention is shown below. That is, the step of forming a resin layer by applying the curable resin composition of the present invention on a flexible printed wiring substrate on which a conductive circuit is formed, or by attaching the resin layer of the laminated structure of the present invention (layer forming step ), a step of patternwise irradiating the resin layer with active energy rays (exposure step), and a step of alkali-developing the exposed resin layer to form a patterned resin layer image (development step). It is a manufacturing method including. Further, if necessary, after alkali development, further photocuring or heat curing (post-curing step) is performed to completely cure the resin layer, form a cured film, and obtain a highly reliable flexible printed wiring board. be able to.
 また、本発明の硬化性樹脂組成物または本発明の積層構造体の樹脂層を用いたフレキシブルプリント配線板の製造は、他の手順に従い行うこともできる。すなわち、導体回路を形成したフレキシブルプリント配線基材上に本発明の硬化性樹脂組成物を塗布し、あるいは本発明の積層構造体の樹脂層を貼付して樹脂層を形成する工程(層形成工程)、この樹脂層に活性エネルギー線をパターン状に照射する工程(露光工程)、露光後の樹脂層を加熱する工程(加熱(PEB)工程)、および、加熱後の樹脂層をアルカリ現像して、パターン化された樹脂層像を形成する工程(現像工程)を含む製造方法である。また、必要に応じて、アルカリ現像後、さらなる光硬化や熱硬化(ポストキュア工程)を行い、樹脂層を完全に硬化させて、硬化膜を形成し、信頼性の高いフレキシブルプリント配線板を得ることができる。 In addition, the production of a flexible printed wiring board using the curable resin composition of the present invention or the resin layer of the laminated structure of the present invention can also be carried out according to other procedures. That is, the step of forming a resin layer by applying the curable resin composition of the present invention on a flexible printed wiring substrate on which a conductive circuit is formed, or by attaching the resin layer of the laminated structure of the present invention (layer forming step ), a step of irradiating the resin layer with an active energy ray in a pattern (exposure step), a step of heating the resin layer after exposure (heating (PEB) step), and alkali development of the resin layer after heating. and a step of forming a patterned resin layer image (developing step). Further, if necessary, after alkali development, further photocuring or heat curing (post-curing step) is performed to completely cure the resin layer, form a cured film, and obtain a highly reliable flexible printed wiring board. be able to.
 以下、実施例を示して本発明について具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、以下において特に断りのない限り、「部」は固形分の質量部を意味するものとする。 The present invention will be specifically described below with reference to examples, but the present invention is not limited only to these examples. In addition, "part" shall mean the mass part of solid content unless there is particular notice below.
 ((A)アルカリ溶解性のポリアミドイミド樹脂の合成)
 [合成例1]
 窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに、ダイマージアミン(a)としての炭素数36のダイマー酸に由来する脂肪族ジアミン(クローダジャパン社製、製品名PRIAMINE1075)28.61g(0.052mol)、カルボキシル基含有ジアミン(b)としての3,5‐ジアミノ安息香酸4.26g(0.028mol)、γ‐ブチロラクトン85.8gを室温で仕込み溶解した。
((A) Synthesis of alkali-soluble polyamideimide resin)
[Synthesis Example 1]
In a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, an aliphatic diamine derived from a dimer acid having 36 carbon atoms as a dimer diamine (a) (manufactured by Croda Japan, product name PRIAMINE 1075) 28 0.61 g (0.052 mol), 4.26 g (0.028 mol) of 3,5-diaminobenzoic acid as a carboxyl group-containing diamine (b), and 85.8 g of γ-butyrolactone were charged and dissolved at room temperature.
 次いで、シクロへキサン‐1,2,4‐トリカルボン酸無水物(c)30.12g(0.152mol)、無水トリメリット酸(d)3.07g(0.016mol)を仕込み、室温で30分保持した。さらにトルエン30gを仕込み、160℃まで昇温して、トルエンと共に生成する水を除去した後、3時間保持し、室温まで冷却することでイミド化物を含有する溶液を得た。 Next, 30.12 g (0.152 mol) of cyclohexane-1,2,4-tricarboxylic anhydride (c) and 3.07 g (0.016 mol) of trimellitic anhydride (d) were added, and the mixture was stirred at room temperature for 30 minutes. held. Further, 30 g of toluene was charged, the temperature was raised to 160° C., water generated together with toluene was removed, the mixture was held for 3 hours, and the mixture was cooled to room temperature to obtain a solution containing an imidized compound.
 得られたイミド化物を含有する溶液に、ジイソシアネート化合物としてのトリメチルヘキサメチレンジイソシアネート14.30g(0.068mol)を仕込み、160℃の温度で32時間保持して、シクロヘキサノン21.4gで希釈することで(A)アルカリ溶解性のポリアミドイミド樹脂を含有する溶液(A-1)を得た。得られたポリアミドイミド樹脂の質量平均分子量Mwは5250、固形分は41.5質量%、酸価は63mgKOH/g、ダイマージアミン(a)の含有量は40.0質量%であった。 14.30 g (0.068 mol) of trimethylhexamethylene diisocyanate as a diisocyanate compound was added to the solution containing the obtained imidized product, maintained at a temperature of 160° C. for 32 hours, and diluted with 21.4 g of cyclohexanone. (A) A solution (A-1) containing an alkali-soluble polyamideimide resin was obtained. The resulting polyamideimide resin had a mass average molecular weight Mw of 5250, a solid content of 41.5% by mass, an acid value of 63 mgKOH/g, and a dimer diamine (a) content of 40.0% by mass.
 [合成例2]
 窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに、ダイマージアミン(a)としての炭素数36のダイマー酸に由来する脂肪族ジアミン(クローダジャパン社製、製品名PRIAMINE1075)29.49g(0.054mol)、カルボキシル基含有ジアミン(b)としての3,5‐ジアミノ安息香酸4.02g(0.026mol)、γ‐ブチロラクトン73.5gを室温で仕込み溶解した。
[Synthesis Example 2]
In a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, an aliphatic diamine derived from a dimer acid having 36 carbon atoms as a dimer diamine (a) (manufactured by Croda Japan, product name PRIAMINE 1075) 29 49 g (0.054 mol), 4.02 g (0.026 mol) of 3,5-diaminobenzoic acid as a carboxyl group-containing diamine (b), and 73.5 g of γ-butyrolactone were charged and dissolved at room temperature.
 次いで、シクロへキサン‐1,2,4‐トリカルボン酸無水物(c)31.71g(0.160mol)、無水トリメリット酸(d)1.54g(0.008mol)を仕込み、室温で30分保持した。さらにトルエン30gを仕込み、160℃まで昇温して、トルエンと共に生成する水を除去した後、3時間保持し、室温まで冷却することでイミド化物を含有する溶液を得た。 Next, 31.71 g (0.160 mol) of cyclohexane-1,2,4-tricarboxylic anhydride (c) and 1.54 g (0.008 mol) of trimellitic anhydride (d) were added, and the mixture was stirred at room temperature for 30 minutes. held. Further, 30 g of toluene was charged, the temperature was raised to 160° C., water generated together with toluene was removed, the mixture was held for 3 hours, and the mixture was cooled to room temperature to obtain a solution containing an imidized compound.
 得られたイミド化物を含有する溶液に、ジイソシアネート化合物としての、トリメチルヘキサメチレンジイソシアネート6.90g(0.033mol)およびジシクロヘキシルメタンジイソシアネート8.61g(0.033mol)を仕込み、160℃の温度で32時間保持して、シクロヘキサノン36.8gで希釈することで(A)アルカリ溶解性のポリアミドイミド樹脂を含有する溶液(A-2)を得た。得られたポリアミドイミド樹脂の質量平均分子量Mwは5840、固形分は40.4質量%、酸価は62mgKOH/g、ダイマージアミン(a)の含有量は40.1質量%であった。 6.90 g (0.033 mol) of trimethylhexamethylene diisocyanate and 8.61 g (0.033 mol) of dicyclohexylmethane diisocyanate as diisocyanate compounds were added to the solution containing the obtained imidized product, and the mixture was heated at 160° C. for 32 hours. By holding and diluting with 36.8 g of cyclohexanone, a solution (A-2) containing (A) alkali-soluble polyamide-imide resin was obtained. The resulting polyamideimide resin had a mass average molecular weight Mw of 5840, a solid content of 40.4% by mass, an acid value of 62 mgKOH/g, and a dimer diamine (a) content of 40.1% by mass.
 [合成例3]
 窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに2,2’‐ビス[4‐(4‐アミノフェノキシ)フェニル]プロパン6.98g、3,5‐ジアミノ安息香酸3.80g、ポリエーテルジアミン(ハンツマン社製、製品名エラスタミンRT1000、分子量1025.64)8.21g、およびγ‐ブチロラクトン86.49gを室温で仕込み溶解した。
[Synthesis Example 3]
6.98 g of 2,2′-bis[4-(4-aminophenoxy)phenyl]propane, 3,5-diaminobenzoic acid and 3.5-diaminobenzoic acid were placed in a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer and a stirrer. 80 g, 8.21 g of polyether diamine (manufactured by Huntsman, product name Elastamine RT1000, molecular weight 1025.64), and 86.49 g of γ-butyrolactone were charged and dissolved at room temperature.
 次いで、シクロへキサン‐1,2,4‐トリカルボン酸‐1,2‐無水物17.84gおよび無水トリメリット酸2.88gを仕込み、室温で30分間保持した。さらにトルエン30gを仕込み、160℃まで昇温して、トルエンと共に生成する水を除去した後、3時間保持し、室温まで冷却することでイミド化物溶液を得た。 Next, 17.84 g of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and 2.88 g of trimellitic anhydride were charged and kept at room temperature for 30 minutes. Further, 30 g of toluene was charged, the temperature was raised to 160° C., and after removing the water generated together with the toluene, the mixture was held for 3 hours and cooled to room temperature to obtain an imidized compound solution.
 得られたイミド化物溶液に、無水トリメリット酸9.61gおよびトリメチルヘキサメチレンジイソシアネート17.45gを仕込み、160℃の温度で32時間保持した。こうして、カルボキシル基を含有する、(A)アルカリ溶解性のポリアミドイミド樹脂溶液(A-3)を得た。固形分は40.1質量%、酸価は83mgKOH/gであった。 9.61 g of trimellitic anhydride and 17.45 g of trimethylhexamethylene diisocyanate were added to the obtained imidized product solution and kept at a temperature of 160° C. for 32 hours. Thus, (A) an alkali-soluble polyamide-imide resin solution (A-3) containing carboxyl groups was obtained. The solid content was 40.1% by mass and the acid value was 83 mgKOH/g.
 ((E)アルカリ溶解性のポリイミド樹脂の合成)
 [合成例4]
 撹拌機、窒素導入管、分留環、冷却環を取り付けたセパラブル3つ口フラスコに、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン22.4g、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを8.2g、NMPを30g、γ-ブチロラクトンを30g、4,4’-オキシジフタル酸無水物を27.9g、トリメリット酸無水物を3.8g加え、窒素雰囲気下、室温、100rpmで4時間撹拌した。次いでトルエンを20g加え、シリコーン浴温度180℃、150rpmでトルエンおよび水を留去しながら4時間撹拌して、フェノール性水酸基およびカルボキシル基を有するポリイミド樹脂溶液(PI-1)を得た。
((E) Synthesis of alkali-soluble polyimide resin)
[Synthesis Example 4]
22.4 g of 3,3′-diamino-4,4′-dihydroxydiphenylsulfone, 2,2′-bis[4 8.2 g of -(4-aminophenoxy)phenyl]propane, 30 g of NMP, 30 g of γ-butyrolactone, 27.9 g of 4,4'-oxydiphthalic anhydride, and 3.8 g of trimellitic anhydride were added, Under nitrogen atmosphere, the mixture was stirred at room temperature and 100 rpm for 4 hours. Next, 20 g of toluene was added, and the mixture was stirred for 4 hours at a silicone bath temperature of 180° C. and 150 rpm while toluene and water were distilled off to obtain a polyimide resin solution (PI-1) having phenolic hydroxyl groups and carboxyl groups.
 得られた樹脂(固形分)の酸価は18mgKOH、Mwは10,000、水酸基当量は390であった。 The resulting resin (solid content) had an acid value of 18 mg KOH, an Mw of 10,000, and a hydroxyl equivalent of 390.
 ((D)セルロース誘導体の合成)
 [合成例5]
 攪拌機、温度計、還流冷却器を備えたフラスコに、メチルエチルケトン64g、及びCAB-553-0.4(セルロースアセテート誘導体、イーストマンケミカル社製)16gを仕込み、75℃で1時間攪拌した。次いで、メチルメタクリレート15g及びベンゾイルパーオキサイド1gを予め混合して得た混合物を3時間かけて滴下した。滴下終了後、75℃を保持したまま、ベンゾイルパーオキサイド0.5g及びメチルエチルケトン5gを予め混合して得た混合物を1時間かけて滴下した。さらに75℃で3時間撹拌を続けた後、冷却した。混合物にメチルエチルケトン61gを加えて攪拌し、樹脂溶液(CA―1)を得た。なお、樹脂溶液CA-1の加熱残分は20.0質量%であった。
((D) Synthesis of cellulose derivative)
[Synthesis Example 5]
A flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 64 g of methyl ethyl ketone and 16 g of CAB-553-0.4 (cellulose acetate derivative, manufactured by Eastman Chemical Co.) and stirred at 75° C. for 1 hour. Then, a mixture obtained by premixing 15 g of methyl methacrylate and 1 g of benzoyl peroxide was added dropwise over 3 hours. After the dropwise addition was completed, a mixture obtained by previously mixing 0.5 g of benzoyl peroxide and 5 g of methyl ethyl ketone was added dropwise over 1 hour while maintaining the temperature at 75°C. Stirring was further continued at 75° C. for 3 hours and then cooled. 61 g of methyl ethyl ketone was added to the mixture and stirred to obtain a resin solution (CA-1). The content of resin solution CA-1 after heating was 20.0% by mass.
 [合成例6]
 攪拌機、温度計、還流冷却器を備えたフラスコに、メチルエチルケトン64g、及びCAB-553-0.4(セルロースアセテート誘導体、イーストマンケミカル社製)16gを仕込み、75℃で1時間攪拌した。次いで、グリシジルメタクリレート15g及びベンゾイルパーオキサイド1gを予め混合して得た混合物を3時間かけて滴下した。滴下終了後、75℃を保持したまま、ベンゾイルパーオキサイド0.5g及びメチルエチルケトン5gを予め混合して得た混合物を1時間かけて滴下した。さらに75℃で3時間撹拌を続けた後、冷却した。混合物にメチルエチルケトン61gを加えて攪拌し、樹脂溶液(CA―2)を得た。なお、樹脂溶液CA-2の加熱残分は20.0質量%であった。
[Synthesis Example 6]
A flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 64 g of methyl ethyl ketone and 16 g of CAB-553-0.4 (cellulose acetate derivative, manufactured by Eastman Chemical Co.) and stirred at 75° C. for 1 hour. Then, a mixture obtained by premixing 15 g of glycidyl methacrylate and 1 g of benzoyl peroxide was added dropwise over 3 hours. After the dropwise addition was completed, a mixture obtained by previously mixing 0.5 g of benzoyl peroxide and 5 g of methyl ethyl ketone was added dropwise over 1 hour while maintaining the temperature at 75°C. Stirring was further continued at 75° C. for 3 hours and then cooled. 61 g of methyl ethyl ketone was added to the mixture and stirred to obtain a resin solution (CA-2). The content of resin solution CA-2 after heating was 20.0% by mass.
[本発明の第一の態様の硬化性樹脂組成物の実施例]
 <1-1.実施例1-1~1-12および比較例1-1~1-3の硬化性樹脂組成物の調製>
 下記表1に示す成分組成に従って、実施例1-1~1-12および比較例1-1~1-3の硬化性樹脂組成物の材料をそれぞれ配合し、これを攪拌機にて予備混合した後、3本ロールミルにて混錬し、樹脂層を形成するための各硬化性樹脂組成物を調整した。なお、表1中の値は、特に断りがない限り、固形分の質量部である。
[Example of the curable resin composition of the first aspect of the present invention]
<1-1. Preparation of curable resin compositions of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3>
According to the component composition shown in Table 1 below, the materials of the curable resin compositions of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3 were blended, respectively, and premixed with a stirrer. , and kneaded in a three-roll mill to prepare each curable resin composition for forming a resin layer. In addition, the value in Table 1 is the mass part of solid content, unless there is particular notice.
 前記各硬化性樹脂組成物について、以下に示すように、各硬化性樹脂組成物のBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)を形成し、解像性を評価した。さらに、後述するように、このBステージ状態(半硬化状態)の樹脂層を有するフレキシブル配線基板およびこの樹脂層の硬化物を有するフレキシブル配線基板について、Bステージ状態(半硬化状態)/熱硬化後のそれぞれの塗膜の表面粗さを評価した。そのうえ、樹脂層の硬化物を有するフレキシブル配線基板については、耐熱性(はんだ耐熱性)、金めっき耐性(耐薬品性)、柔軟性および貼り付き性も評価した。結果を表1に示す。 For each curable resin composition, a B-stage (semi-cured) resin layer (dry coating film) was formed for each curable resin composition, and the resolution was evaluated. Furthermore, as will be described later, the flexible wiring board having the resin layer in the B-stage state (semi-cured state) and the flexible wiring board having the cured product of the resin layer are classified into the B-stage state (semi-cured state)/after heat curing. The surface roughness of each coating film was evaluated. In addition, heat resistance (solder heat resistance), gold plating resistance (chemical resistance), flexibility and sticking properties were also evaluated for the flexible wiring board having the cured resin layer. Table 1 shows the results.
 <1-2.樹脂層の形成>
 銅厚18μmの回路が形成されているフレキシブルプリント配線基材を用意し、メック社CZ-8100を使用して、前処理を行った。その後、前処理を行ったフレキシブルプリント配線基材に、実施例1-1~1-12および比較例1-1~1-3で得られた各硬化性樹脂組成物をそれぞれ乾燥後の膜厚が表1記載の膜厚になるように塗布した。その後、熱風循環式乾燥炉にて90℃で30分間乾燥し、Bステージ状態(半硬化状態)の樹脂層(乾燥塗膜)を形成した。
<1-2. Formation of Resin Layer>
A flexible printed wiring substrate on which a circuit with a copper thickness of 18 μm is formed was prepared and pretreated using CZ-8100 manufactured by MEC. Thereafter, each curable resin composition obtained in Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3 was applied to the pretreated flexible printed wiring substrate, and the film thickness after drying was coated so as to have the film thickness shown in Table 1. Then, it was dried at 90° C. for 30 minutes in a hot air circulating drying oven to form a B-stage (semi-cured) resin layer (dry coating film).
 <1-3.評価基板の作製>
 上述のようにして樹脂層を形成した各フレキシブルプリント配線基材上の未硬化の樹脂層に対し、まずメタルハライドランプ搭載の露光装置(HMW-680-GW20:オーク製作所製)を用い、ネガマスクを介して300mJ/cmで直径200μmの開口を形成するようにパターン露光した。その後、90℃で30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液)を60秒行い、150℃×60分熱硬化することにより、硬化した樹脂層(硬化塗膜)を形成したフレキシブルプリント配線基板(評価基板)を作製した。
<1-3. Preparation of Evaluation Board>
For the uncured resin layer on each flexible printed wiring substrate on which the resin layer is formed as described above, first, an exposure device (HMW-680-GW20: manufactured by Oak Manufacturing Co., Ltd.) equipped with a metal halide lamp is used to pass through a negative mask. A pattern exposure was performed so as to form an opening with a diameter of 200 μm at 300 mJ/cm 2 . After that, a PEB process was performed at 90° C. for 30 minutes, followed by development (30° C., 0.2 MPa, 1 mass % Na 2 CO 3 aqueous solution) for 60 seconds, and curing by heat curing at 150° C. for 60 minutes. A flexible printed wiring board (evaluation board) having a resin layer (cured coating film) formed thereon was produced.
 <1-4.表面粗さの評価>
 <1-2.樹脂層の形成>に記載したとおりにフレキシブルプリント配線基材上に形成したBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)、もしくは、<1-3.評価基板の作製>に記載したとおりに作製した熱硬化後の評価基板上の樹脂層について、算術平均表面粗さRaの測定を行った。測定値は、100×100μmの観察範囲で任意の5点の平均値とした。算術平均表面粗さRaの測定には、形状測定レーザーマイクロスコープ( 株式会社キーエンス製VK-X100)を使用した。形状測定レーザーマイクロスコープ(同VK-X100) 本体(制御部) および、VK観察アプリケーション(株式会社キーエンス製VK-H1VX) を起動させた後、x-yステージ上に測定する中間層を有する支持フィルム( 中間層を有する面を上部とする)を乗せた。顕微鏡部(株式会社キーエンス製VK-X110)のレンズレボルバーを回して倍率10倍の対物レンズを選択し、VK 観察アプリケーション( 同VK-H1VX)の画像観察モードで、大まかにピント、明るさを調節した。x-yステージを操作して、試料表面の測定したい部分が、画面の中心に来るように調節した。倍率10倍の対物レンズを倍率100倍に替え、VK観察アプリケーション(同VK-H1VX)の画像観察モードのオートフォーカス機能で、試料の表面にピントを合わせた。VK観察アプリケーション(同VK-H1VX)の形状測定タブの簡単モードを選択し、測定開始ボタンを押して、試料の表面形状の測定を行い、表面画像ファイルを得た。VK解析アプリケーション(株式会社キーエンス製VK-H1XA)を起動して、得られた表面画像ファイルを表示させた後、傾き補正を行った。
<1-4. Evaluation of Surface Roughness>
<1-2. Formation of resin layer>, a B-stage (semi-cured) resin layer (dry coating film) formed on a flexible printed wiring substrate as described in <1-3. Preparation of Evaluation Substrate>, the arithmetic mean surface roughness Ra was measured for the resin layer on the evaluation substrate after thermal curing, which was prepared as described in the above. The measured value was the average value of arbitrary 5 points in the observation range of 100×100 μm. A shape measuring laser microscope (VK-X100 manufactured by Keyence Corporation) was used to measure the arithmetic mean surface roughness Ra. Shape measurement laser microscope (same VK-X100) Main body (control unit) and VK observation application (Keyence VK-H1VX) After starting, support film with an intermediate layer to be measured on the xy stage (the surface having the intermediate layer is the top) was placed. Rotate the lens revolver of the microscope (VK-X110 manufactured by KEYENCE CORPORATION) to select an objective lens with a magnification of 10x, and roughly adjust the focus and brightness in the image observation mode of the VK observation application (same VK-H1VX). did. By operating the xy stage, the part of the sample surface to be measured was adjusted to be in the center of the screen. The 10x objective lens was replaced with a 100x objective lens, and the surface of the sample was brought into focus using the autofocus function in the image observation mode of the VK observation application (same as VK-H1VX). The simple mode of the shape measurement tab of the VK observation application (same as VK-H1VX) was selected, the measurement start button was pressed, the surface shape of the sample was measured, and a surface image file was obtained. A VK analysis application (VK-H1XA manufactured by KEYENCE CORPORATION) was started to display the obtained surface image file, and then tilt correction was performed.
 なお、試料の表面形状の測定における観察測定範囲(横)は100μm×100μmとした。線粗さウインドウを表示させ、パラメータ設定領域で、JIS B 0601-1994を選択した後、測定ラインボタンから水平線を選択し、表面画像内の任意の場所に水平線を表示させ、OKボタンを押すことによって、算術平均表面粗さRaの数値を得た。更に表面画像内の異なる4か所で水平線を表示させ、それぞれの算術平均表面粗さRaの数値を得た。得られた5つの数値の平均値を算出し、各樹脂層表面の算術平均表面粗さRa値とした。 The observation measurement range (horizontal) in measuring the surface shape of the sample was 100 μm×100 μm. Display the line roughness window, select JIS B 0601-1994 in the parameter setting area, select the horizontal line from the measurement line button, display the horizontal line anywhere in the surface image, and press the OK button. obtained the numerical value of the arithmetic mean surface roughness Ra. Further, horizontal lines were displayed at four different locations in the surface image, and numerical values of the arithmetic mean surface roughness Ra were obtained. The average value of the obtained five numerical values was calculated and used as the arithmetic mean surface roughness Ra value of the surface of each resin layer.
 <1-5.解像性の評価>
 <1-2.樹脂層の形成>に記載したとおりにフレキシブルプリント配線基材上に形成したBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)について、<1-4.表面粗さの評価>に記載したとおりに、各乾燥塗膜の算術平均粗さRaの測定を行ったところ、各実施例、比較例1-1及び比較例1-3の乾燥塗膜は0.1μm未満であった。比較例1-2の乾燥塗膜の算術平均粗さRaは、0.1以上であった。これらの各乾燥塗膜に対し、まずメタルハライドランプ搭載の露光装置(HMW-680-GW20:オーク製作所製)を用い、ネガマスクを介して300mJ/cmで直径150μmおよび200μmの開口を形成するようにパターン露光した。露光後の樹脂層を有する基板を、90℃で30分間加熱処理を行った。
<1-5. Evaluation of resolution>
<1-2. Formation of Resin Layer> Regarding the B-stage state (semi-cured state) resin layer (dried coating film) formed on the flexible printed wiring substrate as described in <1-4. Evaluation of Surface Roughness>, the arithmetic average roughness Ra of each dry coating film was measured, and the dry coating films of each example, Comparative Example 1-1 and Comparative Example 1-3 were 0. was less than 0.1 μm. The dry coating film of Comparative Example 1-2 had an arithmetic mean roughness Ra of 0.1 or more. An exposure apparatus (HMW-680-GW20: manufactured by Oak Manufacturing Co., Ltd.) equipped with a metal halide lamp was first used on each of these dry coating films to form openings of 150 μm and 200 μm in diameter through a negative mask at 300 mJ/cm 2 . Pattern exposure. The substrate having the resin layer after exposure was heat-treated at 90° C. for 30 minutes.
 その後30℃の1質量%の炭酸ナトリウム水溶液中に基板を浸漬して1分間現像を行い、パターン形成の状態を観察し、解像性を評価した。評価基準は下記の通りである。 After that, the substrate was immersed in a 1% by mass sodium carbonate aqueous solution at 30° C. and developed for 1 minute, and the state of pattern formation was observed to evaluate the resolution. Evaluation criteria are as follows.
 ◎:150μmの開口パターンが形成良好。
 ○:200μmの開口パターンが形成良好だが、150μmの開口パターンにやや不良あり。
 ×:未露光部が現像性を示すが、200μmの開口パターン形成に不良あり(解像性が不十分)。
⊚: An opening pattern of 150 µm is well formed.
◯: An opening pattern of 200 μm is well formed, but an opening pattern of 150 μm is slightly defective.
x: The unexposed area exhibits developability, but there is a defect in the formation of a 200 μm opening pattern (insufficient resolution).
 <1-6.耐熱性(はんだ耐熱性)の評価>
 <1-3.評価基板の作製>に記載したとおりに作製した評価基板に対し、ロジン系フラックスを塗布し、あらかじめ260℃に設定したはんだ槽に20秒(10秒×2回)浸漬して、硬化塗膜の膨れ・剥がれを観察し、耐熱性(はんだ耐熱性)を評価した。評価基準は下記の通りである。
<1-6. Evaluation of heat resistance (solder heat resistance)>
<1-3. Preparation of evaluation substrate> A rosin-based flux is applied to the evaluation substrate prepared as described in, and immersed in a solder bath set to 260 ° C. in advance for 20 seconds (10 seconds x 2 times) to form a cured coating film. Blistering and peeling were observed, and heat resistance (solder heat resistance) was evaluated. Evaluation criteria are as follows.
 ◎:10秒×2回浸漬しても膨れ・剥がれがなかった。
 ○:10秒×1回浸漬しても膨れ・剥がれがなかったが、2回目の浸漬で剥がれが生じた。
 ×:10秒×1回浸漬すると膨れ・剥がれが生じた。
⊚: There was no swelling or peeling even after being immersed twice for 10 seconds.
◯: No swelling or peeling occurred even after immersion for 10 seconds×1 time, but peeling occurred in the second immersion.
x: Swelling and peeling occurred when immersed once for 10 seconds.
 <1-7.金めっき耐性(耐薬品性)の評価>
 <1-3.評価基板の作製>に記載したとおりに作製した評価基板を用い、以下の方法にて評価した。
<1-7. Evaluation of Gold Plating Resistance (Chemical Resistance)>
<1-3. Production of Evaluation Substrate>, evaluation was performed by the following method using an evaluation substrate manufactured as described above.
 評価基板に対し、市販品の無電解ニッケルめっき浴および無電解金めっき浴を用いて、80~90℃で、ニッケル5μm、金0.05μmのめっきを施し、基板と硬化塗膜を観察し金めっき耐性(耐薬品性)を評価した。評価基準は下記の通りである。 Using commercially available electroless nickel plating baths and electroless gold plating baths, the substrates for evaluation were plated with 5 μm of nickel and 0.05 μm of gold at 80 to 90° C. The substrate and the cured coating were observed. Plating resistance (chemical resistance) was evaluated. Evaluation criteria are as follows.
 ○:基板と硬化塗膜の間にしみ込みの無いもの。
 △:基板と硬化塗膜の間にしみ込みが確認されるもの。
 ×:硬化塗膜の一部に剥がれが生じているもの。
◯: No permeation between the substrate and the cured coating film.
Δ: Penetration is confirmed between the substrate and the cured coating film.
x: Part of the cured coating film is peeled off.
 <1-8.柔軟性(MIT試験)>
 <1-3.評価基板の作製>に記載したとおりに作製した各評価基板を試験片とし、MIT耐折疲労試験機D型(東洋精機製作所製)を用い、JIS P8115に準拠してフィルムを紙とみなしてMIT試験を行い、屈曲性を評価した。具体的には、図1に示すように、試験片1を装置に装着し、荷重F(0.5kgf)を負荷した状態で、クランプ2に試験片1を垂直に取り付けて、折り曲げ角度αが135度、速度が175cpmにて折り曲げを行い、破断するまでの往復折り曲げ回数(回)を測定した。なお、試験環境は25℃で、曲率半径はR=0.38mmとした。評価基準は以下の通りである。
<1-8. Flexibility (MIT test) >
<1-3. Preparation of Evaluation Board> Using each evaluation board prepared as described in MIT folding fatigue tester D type (manufactured by Toyo Seiki Seisakusho), the film is regarded as paper in accordance with JIS P8115. A test was performed to evaluate flexibility. Specifically, as shown in FIG. 1, the test piece 1 is attached to the device, and a load F (0.5 kgf) is applied. Bending was performed at 135 degrees and a speed of 175 cpm, and the number of reciprocating bendings (times) until breakage was measured. The test environment was 25° C., and the radius of curvature was R=0.38 mm. Evaluation criteria are as follows.
 ◎:200回以上折り曲げられ、折り曲げ箇所の硬化塗膜にクラックが入らなかった。
 〇:170~199回折り曲げられ、同様にクラックが入らなかった。
 △:150~169回折り曲げられ、同様にクラックが入らなかった。
 ×:折り曲げ回数が149回以下でクラックが入った。
A: It was bent 200 times or more, and the cured coating film at the bent portion did not crack.
◯: It was bent 170 to 199 times, and similarly no crack occurred.
Δ: It was bent 150 to 169 times, and no crack was generated.
x: Cracks occurred when the number of times of bending was 149 or less.
 <1-9.貼り付き性>
 <1-2.樹脂層の形成>に記載したとおりにして樹脂層を形成した各フレキシブルプリント配線基材上のBステージ状態(半硬化状態)の樹脂層について、<1-4.表面粗さの評価>に記載したとおりに、各乾燥塗膜の算術平均粗さRaの測定を行ったところ、各実施例、比較例1-1及び比較例1-3の乾燥塗膜は0.1μm未満であった。比較例1-2の乾燥塗膜の算術平均粗さRaは、0.1以上であった。これらの各乾燥塗膜に対し、まずメタルハライドランプ搭載の露光装置(HMW-680-GW20:オーク製作所製)を用い、ネガマスクを介して300mJ/cmでベタ露光した。その後、90℃で30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液)を60秒行い、150℃×60分熱硬化することにより、硬化塗膜を形成したフレキシブルプリント配線基板(評価基板)を作製した。各硬化塗膜についても、<1-4.表面粗さの評価>に記載したとおりに、各乾燥塗膜の算術平均粗さRaの測定を行ったところ、各実施例、比較例1-2及び比較例1-3の乾燥塗膜は0.1μm以上1μm以下であった。比較例1-1の乾燥塗膜の算術平均粗さRaは、0.1未満であった。
<1-9. Adhesion>
<1-2. Formation of Resin Layer> Regarding the resin layer in the B-stage state (semi-cured state) on each flexible printed wiring substrate on which the resin layer was formed as described in <1-4. Evaluation of Surface Roughness>, the arithmetic average roughness Ra of each dry coating film was measured, and the dry coating films of each example, Comparative Example 1-1 and Comparative Example 1-3 were 0. was less than 0.1 μm. The dry coating film of Comparative Example 1-2 had an arithmetic mean roughness Ra of 0.1 or more. Each of these dry coating films was first subjected to solid exposure at 300 mJ/cm 2 through a negative mask using an exposure apparatus equipped with a metal halide lamp (HMW-680-GW20: manufactured by ORC Manufacturing Co., Ltd.). After that, a PEB process was performed at 90° C. for 30 minutes, followed by development (30° C., 0.2 MPa, 1% by mass Na 2 CO 3 aqueous solution) for 60 seconds, and heat curing at 150° C. for 60 minutes to obtain a cured coating. A flexible printed wiring board (evaluation board) on which a film was formed was produced. For each cured coating film, <1-4. Evaluation of surface roughness>, the arithmetic average roughness Ra of each dry coating film was measured, and the dry coating films of each example, Comparative Examples 1-2 and 1-3 were 0. .1 μm or more and 1 μm or less. The dry coating film of Comparative Example 1-1 had an arithmetic mean roughness Ra of less than 0.1.
 得られた評価基板について、2cm角に裁断して10枚重ね、20、30、40、60℃の各温度で72時間放置した後、貼り付きの有無を確認した。評価基準は以下の通りである。 The obtained evaluation substrates were cut into 2 cm squares, 10 sheets were stacked, left at temperatures of 20, 30, 40, and 60°C for 72 hours, and then the presence or absence of sticking was checked. Evaluation criteria are as follows.
 ◎:60℃で貼り付きなし
 〇:40℃以下で貼り付きなしだが、60℃ではわずかに貼り付きあり
 △:30℃以下で貼り付きなしだが、40℃以上では貼り付きあり
 ×:いずれの温度でも貼り付きが見られる
◎: No sticking at 60 ° C. ○: No sticking at 40 ° C. or lower, but slight sticking at 60 ° C. △: No sticking at 30 ° C. or lower, but sticking at 40 ° C. or higher ×: Any temperature But you can see the sticking
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1中の成分の詳細は以下のとおりである。 The details of the ingredients in Table 1 are as follows.
 A-1:上述の((A)アルカリ溶解性のポリアミドイミド樹脂の合成)の[合成例1]により製造された、ポリアミドイミド樹脂含有溶液
 A-2:上述の((A)アルカリ溶解性のポリアミドイミド樹脂の合成)の[合成例2]により製造された、ポリアミドイミド樹脂含有溶液
 A-3:上述の((A)アルカリ溶解性のポリアミドイミド樹脂の合成)の[合成例3]により製造された、ポリアミドイミド樹脂含有溶液
 PI-1:上述の((E)アルカリ溶解性のポリイミド樹脂の合成)の[合成例4]により製造された、アルカリ溶解性ポリイミド樹脂溶液
 P7-532:ポリウレタンアクリレート,酸価47mgKOH/g(共栄社化学(株)製)
 IRGACURE OXE02:オキシム系光重合開始剤(BASF社製)
 CAB-553-0.4:セルロースアセテート誘導体、数平均分子量20,000、20wt%DPM溶液(イーストマンケミカル社製)(表1中の部数は、20wt%DPM溶液の固形分の質量部を示す)
 CAB-504-0.2:セルロースアセテート誘導体、数平均分子量15,000、20wt%DPM溶液(イーストマンケミカル社製)(表1中の部数は、20wt%DPM溶液の固形分の質量部を示す)
 JER828:ビスフェノールA型エポキシ樹脂、エポキシ当量190、質量平均分子量380(三菱化学(株)製)
 B-30:硫酸バリウム(堺化学工業(株)製)
A-1: Polyamideimide resin-containing solution produced by [Synthesis Example 1] of ((A) synthesis of alkali-soluble polyamideimide resin) described above A-2: The above-described ((A) alkali-soluble Polyamideimide resin-containing solution prepared by [Synthesis Example 2] in Synthesis of polyamideimide resin) A-3: Produced by [Synthesis Example 3] in ((A) Synthesis of alkali-soluble polyamideimide resin) Polyamideimide resin-containing solution PI-1: Alkali-soluble polyimide resin solution produced by [Synthesis Example 4] of ((E) Synthesis of alkali-soluble polyimide resin) described above P7-532: Polyurethane acrylate , acid value 47 mgKOH / g (manufactured by Kyoeisha Chemical Co., Ltd.)
IRGACURE OXE02: oxime photopolymerization initiator (manufactured by BASF)
CAB-553-0.4: Cellulose acetate derivative, number average molecular weight 20,000, 20 wt% DPM solution (manufactured by Eastman Chemical Co.) (parts in Table 1 indicate mass parts of solid content of 20 wt% DPM solution) )
CAB-504-0.2: Cellulose acetate derivative, number average molecular weight 15,000, 20 wt% DPM solution (manufactured by Eastman Chemical Co.) (parts in Table 1 indicate mass parts of solid content of 20 wt% DPM solution) )
JER828: bisphenol A type epoxy resin, epoxy equivalent 190, mass average molecular weight 380 (manufactured by Mitsubishi Chemical Corporation)
B-30: barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd.)
 表1に示すように、実施例と比較例の対比から、アルカリ現像可能であり、露光および加熱処理により硬化膜を形成する硬化性樹脂組成物から厚さ2~100μmの乾燥塗膜を形成した場合に、この乾燥塗膜の算術平均粗さRaが0.1μm未満であるとともに、この乾燥塗膜の熱硬化後の硬化膜の算術平均粗さRaが0.1μm以上1μm以下となる場合に、形成された樹脂層(乾燥塗膜)は解像性に優れ、熱硬化後の硬化塗膜(硬化物)は耐熱性、金めっき耐性、柔軟性に優れるだけでなく、高温保管後の貼り付きが小さいことが確認された。 As shown in Table 1, a dry coating film having a thickness of 2 to 100 μm was formed from a curable resin composition that was alkali-developable and formed a cured film by exposure and heat treatment from a comparison of Examples and Comparative Examples. In the case, when the arithmetic mean roughness Ra of the dry coating film is less than 0.1 μm and the arithmetic mean roughness Ra of the cured film after thermal curing of the dry coating film is 0.1 μm or more and 1 μm or less , The formed resin layer (dry coating film) has excellent resolution, and the cured coating film (cured product) after heat curing is not only excellent in heat resistance, gold plating resistance and flexibility, but also has excellent adhesion after high temperature storage. It was confirmed that the attachment was small.
 また、実施例1-1、1-2、1-4、1-9~1-11と実施例1-3、1-5~1-8、1-12との対比から、乾燥塗膜の膜厚を3μm以上80μm以下とし、乾燥塗膜の算術平均粗さRaを0.05μm未満とし、乾燥塗膜の算術平均粗さRaに対する熱硬化後の硬化膜の算術平均粗さRaの比(熱硬化後の硬化膜の算術平均粗さRa/乾燥塗膜の算術平均粗さRa)を6以上とした場合に、形成された樹脂層(乾燥塗膜)の解像性が大きく向上し、且つ熱硬化後の硬化塗膜(硬化物)高温保管後の貼り付きがさらに小さくなることがわかった。 Also, from the comparison between Examples 1-1, 1-2, 1-4, 1-9 to 1-11 and Examples 1-3, 1-5 to 1-8, 1-12, the dry coating film The film thickness is 3 μm or more and 80 μm or less, the arithmetic average roughness Ra of the dry coating film is less than 0.05 μm, and the ratio of the arithmetic average roughness Ra of the cured film after heat curing to the arithmetic average roughness Ra of the dry coating film ( When the arithmetic mean roughness Ra of the cured film after heat curing/the arithmetic mean roughness Ra of the dry coating film) is 6 or more, the resolution of the formed resin layer (dry coating film) is greatly improved, In addition, it was found that the cured coating film (cured product) after thermosetting is less sticky after storage at high temperatures.
[本発明の第二の態様の硬化性樹脂組成物の実施例]
 <2-1.実施例2-1~2-8および比較例2-1~2-2の硬化性樹脂組成物の調製>
 下記表2に示す成分組成に従って、実施例2-1~2-8および比較例2-1~2-2の硬化性樹脂組成物の材料をそれぞれ配合し、これを攪拌機にて予備混合した後、3本ロールミルにて混錬し、樹脂層を形成するための各硬化性樹脂組成物を調整した。なお、表2中の値は、特に断りがない限り、固形分の質量部である。
[Example of the curable resin composition of the second aspect of the present invention]
<2-1. Preparation of curable resin compositions of Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2>
According to the component composition shown in Table 2 below, the materials of the curable resin compositions of Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2 were blended, respectively, and premixed with a stirrer. , and kneaded in a three-roll mill to prepare each curable resin composition for forming a resin layer. In addition, the value in Table 2 is the mass part of solid content, unless there is particular notice.
 前記各硬化性樹脂組成物について、以下に示すように、各硬化性樹脂組成物のBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)を形成し、現像性(アルカリ溶解性)を評価した。さらに、後述するように、この樹脂層の硬化物を有するフレキシブルプリント配線基板を形成し、耐熱性(はんだ耐熱性)、金めっき耐性(耐薬品性)、柔軟性および貼り付き性を評価した。結果を表2に示す。 For each curable resin composition, as shown below, a resin layer (dry coating film) in a B-stage state (semi-cured state) of each curable resin composition is formed, and developability (alkali solubility) is evaluated. evaluated. Furthermore, as described later, a flexible printed wiring board having a cured product of this resin layer was formed, and heat resistance (solder heat resistance), gold plating resistance (chemical resistance), flexibility and adhesion were evaluated. Table 2 shows the results.
 <2-2.樹脂層の形成>
 銅厚18μmの回路が形成されているフレキシブルプリント配線基材を用意し、メック社CZ-8100を使用して、前処理を行った。その後、前処理を行ったフレキシブルプリント配線基材に、実施例2-1~2-8および比較例2-1~2-2で得られた各硬化性樹脂組成物をそれぞれ乾燥後の膜厚が30μmになるように塗布した。その後、熱風循環式乾燥炉にて90℃で30分間乾燥し、Bステージ状態(半硬化状態)の樹脂層(乾燥塗膜)を形成した。
<2-2. Formation of Resin Layer>
A flexible printed wiring substrate on which a circuit with a copper thickness of 18 μm is formed was prepared and pretreated using CZ-8100 manufactured by MEC. Thereafter, each curable resin composition obtained in Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2 was applied to the pretreated flexible printed wiring base material, and each film thickness after drying was applied so that the thickness was 30 μm. Then, it was dried at 90° C. for 30 minutes in a hot air circulating drying oven to form a B-stage (semi-cured) resin layer (dry coating film).
 <2-3.評価基板の作製>
 上述のようにして樹脂層を形成した各フレキシブルプリント配線基材上のBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)に対し、まずメタルハライドランプ搭載の露光装置(HMW-680-GW20:オーク製作所製)を用い、ネガマスクを介して300mJ/cmで直径200μmの開口を形成するようにパターン露光した。その後、90℃で30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液)を60秒行い、150℃×60分熱硬化することにより、硬化した樹脂層(硬化塗膜)を形成したフレキシブルプリント配線基板(評価基板)を作製した。
<2-3. Preparation of Evaluation Board>
First, an exposure device (HMW-680-GW20) equipped with a metal halide lamp is applied to the resin layer (dried coating film) in the B stage state (semi-cured state) on each flexible printed wiring substrate on which the resin layer is formed as described above. (manufactured by Oak Manufacturing Co., Ltd.), pattern exposure was performed through a negative mask at 300 mJ/cm 2 so as to form an opening with a diameter of 200 μm. After that, a PEB process was performed at 90° C. for 30 minutes, followed by development (30° C., 0.2 MPa, 1 mass % Na 2 CO 3 aqueous solution) for 60 seconds, and curing by heat curing at 150° C. for 60 minutes. A flexible printed wiring board (evaluation board) having a resin layer (cured coating film) formed thereon was produced.
 <2-4.現像性(アルカリ溶解性)の評価>
 <2-2.樹脂層の形成>に記載したとおりにフレキシブルプリント配線基材上に形成したBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)に対し、まずメタルハライドランプ搭載の露光装置(HMW-680-GW20:オーク製作所製)を用い、ネガマスクを介して300mJ/cmで直径200μmの開口を形成するようにパターン露光した。露光後の樹脂層を有する基板を、90℃で30分間加熱処理を行った。
<2-4. Evaluation of developability (alkali solubility)>
<2-2. Formation of Resin Layer> First, an exposure apparatus (HMW-680- GW20 (manufactured by Oak Manufacturing Co., Ltd.), pattern exposure was performed through a negative mask at 300 mJ/cm 2 so as to form an opening with a diameter of 200 μm. The substrate having the resin layer after exposure was heat-treated at 90° C. for 30 minutes.
 その後30℃の1質量%の炭酸ナトリウム水溶液中に基板を浸漬して1分間現像を行い、パターン形成の状態を観察し、現像性(アルカリ溶解性)を評価した。評価基準は下記の通りである。 After that, the substrate was immersed in a 1% by mass sodium carbonate aqueous solution at 30°C and developed for 1 minute, the state of pattern formation was observed, and developability (alkali solubility) was evaluated. Evaluation criteria are as follows.
 ○:露光部が耐現像性、未露光部が現像性を示し、パターン形成良好。
 ×:未露光部が現像性を示すが、解像性パターン形成が不良(解像性が不十分)。
◯: The exposed area exhibited developability, the unexposed area exhibited developability, and pattern formation was good.
x: The unexposed area exhibits developability, but resolution pattern formation is poor (insufficient resolution).
 <2-5.耐熱性(はんだ耐熱性)の評価>
 <2-3.評価基板の作製>に記載したとおりに作製した評価基板に対し、ロジン系フラックスを塗布し、あらかじめ260℃に設定したはんだ槽に20秒(10秒×2回)浸漬して、硬化塗膜の膨れ・剥がれを観察し、耐熱性(はんだ耐熱性)を評価した。評価基準は下記の通りである。
 ◎:10秒×2回浸漬しても膨れ・剥がれがなかった。
 ○:10秒×1回浸漬しても膨れ・剥がれがなかったが、2回目の浸漬で剥がれが生じた。
 ×:10秒×1回浸漬すると膨れ・剥がれが生じた。
<2-5. Evaluation of heat resistance (solder heat resistance)>
<2-3. Preparation of evaluation substrate> A rosin-based flux is applied to the evaluation substrate prepared as described in, and immersed in a solder bath set to 260 ° C. in advance for 20 seconds (10 seconds x 2 times) to form a cured coating film. Blistering and peeling were observed, and heat resistance (solder heat resistance) was evaluated. Evaluation criteria are as follows.
⊚: There was no swelling or peeling even after being immersed twice for 10 seconds.
◯: No swelling or peeling occurred even after immersion for 10 seconds×1 time, but peeling occurred in the second immersion.
x: Swelling and peeling occurred when immersed once for 10 seconds.
 <2-6.金めっき耐性(耐薬品性)の評価>
 <2-3.評価基板の作製>に記載したとおりに作製した評価基板を用い、以下の方法にて評価した。
<2-6. Evaluation of Gold Plating Resistance (Chemical Resistance)>
<2-3. Production of Evaluation Substrate>, evaluation was performed by the following method using an evaluation substrate manufactured as described above.
 評価基板に対し、市販品の無電解ニッケルめっき浴および無電解金めっき浴を用いて、80~90℃で、ニッケル5μm、金0.05μmのめっきを施し、基板と硬化塗膜を観察し金めっき耐性(耐薬品性)を評価した。評価基準は下記の通りである。 Using commercially available electroless nickel plating baths and electroless gold plating baths, the substrates for evaluation were plated with 5 μm of nickel and 0.05 μm of gold at 80 to 90° C. The substrate and the cured coating were observed. Plating resistance (chemical resistance) was evaluated. Evaluation criteria are as follows.
 ○:基板と硬化塗膜の間にしみ込みの無いもの。
 △:基板と硬化塗膜の間にしみ込みが確認されるもの。
 ×:硬化塗膜の一部に剥がれが生じているもの。
◯: No permeation between the substrate and the cured coating film.
Δ: Penetration is confirmed between the substrate and the cured coating film.
x: Part of the cured coating film is peeled off.
 <2-7.柔軟性(MIT試験)>
 <2-3.評価基板の作製>に記載したとおりに作製した各評価基板を試験片とし、MIT耐折疲労試験機D型(東洋精機製作所製)を用い、JIS P8115に準拠してフィルムを紙とみなしてMIT試験を行い、屈曲性を評価した。具体的には、図1に示すように、試験片1を装置に装着し、荷重F(0.5kgf)を負荷した状態で、クランプ2に試験片1を垂直に取り付けて、折り曲げ角度αが135度、速度が175cpmにて折り曲げを行い、破断するまでの往復折り曲げ回数(回)を測定した。なお、試験環境は25℃で、曲率半径はR=0.38mmとした。評価基準は以下の通りである。
<2-7. Flexibility (MIT test)>
<2-3. Preparation of Evaluation Board> Using each evaluation board prepared as described in MIT folding fatigue tester D type (manufactured by Toyo Seiki Seisakusho), the film is regarded as paper in accordance with JIS P8115. A test was performed to evaluate flexibility. Specifically, as shown in FIG. 1, the test piece 1 is attached to the device, and a load F (0.5 kgf) is applied. Bending was performed at 135 degrees and a speed of 175 cpm, and the number of reciprocating bendings (times) until breakage was measured. The test environment was 25° C., and the radius of curvature was R=0.38 mm. Evaluation criteria are as follows.
 ◎:200回以上折り曲げられ、折り曲げ箇所の硬化塗膜にクラックが入らなかった。
 〇:170~199回折り曲げられ、同様にクラックが入らなかった。
 △:150~169回折り曲げられ、同様にクラックが入らなかった。
 ×:折り曲げ回数が149回以下でクラックが入った。
A: It was bent 200 times or more, and the cured coating film at the bent portion did not crack.
◯: It was bent 170 to 199 times, and similarly no crack occurred.
Δ: It was bent 150 to 169 times, and no crack was generated.
x: Cracks occurred when the number of times of bending was 149 or less.
 <2-8.貼り付き性>
 <2-2.樹脂層の形成>に記載したとおりにして樹脂層を形成した各フレキシブルプリント配線基材上のBステージ状態(半硬化状態)の樹脂層(乾燥塗膜)に対し、まずメタルハライドランプ搭載の露光装置(HMW-680-GW20:オーク製作所製)を用い、ネガマスクを介して300mJ/cmでベタ露光した。その後、90℃で30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液)を60秒行い、150℃×60分熱硬化することにより、硬化した樹脂層(硬化塗膜)を形成したフレキシブルプリント配線基板(評価基板)を作製した。
<2-8. Adhesion>
<2-2. Formation of resin layer> First, an exposure device equipped with a metal halide lamp is applied to the resin layer (dried coating film) in the B stage state (semi-cured state) on each flexible printed wiring substrate on which the resin layer is formed as described in (HMW-680-GW20: manufactured by ORC Manufacturing Co., Ltd.), solid exposure was performed at 300 mJ/cm 2 through a negative mask. After that, a PEB process was performed at 90° C. for 30 minutes, followed by development (30° C., 0.2 MPa, 1 mass % Na 2 CO 3 aqueous solution) for 60 seconds, and curing by heat curing at 150° C. for 60 minutes. A flexible printed wiring board (evaluation board) having a resin layer (cured coating film) formed thereon was produced.
 得られた評価基板について、2cm角に裁断して10枚重ね、20、30、40、60℃の各温度で72時間放置した後、貼り付きの有無を確認した。評価基準は以下の通りである。 The obtained evaluation substrates were cut into 2 cm squares, 10 sheets were stacked, left at temperatures of 20, 30, 40, and 60°C for 72 hours, and then the presence or absence of sticking was checked. Evaluation criteria are as follows.
 ◎:60℃で貼り付きなし
 〇:40℃以下で貼り付きなしだが、60℃ではわずかに貼り付きあり
 △:30℃以下で貼り付きなしだが、40℃以上では貼り付きあり
 ×:いずれの温度でも貼り付きが見られる
◎: No sticking at 60 ° C. ○: No sticking at 40 ° C. or lower, but slight sticking at 60 ° C. △: No sticking at 30 ° C. or lower, but sticking at 40 ° C. or higher ×: Any temperature But you can see the sticking
Figure JPOXMLDOC01-appb-T000008
 表2-1中の成分の詳細は以下のとおりである。
Figure JPOXMLDOC01-appb-T000008
Details of the components in Table 2-1 are as follows.
 PI-1:上述の((E)アルカリ溶解性のポリイミド樹脂の合成)の[合成例4]により製造された、アルカリ溶解性ポリイミド樹脂溶液
 A-3:上述の((A)アルカリ溶解性のポリアミドイミド樹脂の合成)の[合成例3]により製造された、ポリアミドイミド樹脂含有溶液
 A-1:上述の((A)アルカリ溶解性のポリアミドイミド樹脂の合成)の[合成例1]により製造された、ポリアミドイミド樹脂含有溶液
 P7-532:ポリウレタンアクリレート,酸価47mgKOH/g(共栄社化学社製)
 IRGACURE OXE02:オキシム系光塩基発生剤(BASF社製)
 CAB-553-0.4:セルロースアセテート誘導体、数平均分子量20,000、20wt%DPM溶液(イーストマンケミカル社製)(表2中の部数は、20wt%DPM溶液の固形分の質量部を示す)
 CAB-504-0.2:セルロースアセテート誘導体、数平均分子量15,000、20wt%DPM溶液(イーストマンケミカル社製)(表2中の部数は、20wt%DPM溶液の固形分の質量部を示す)
 CA-1:((D)セルロース誘導体の合成)の[合成例5]により製造された、メチルメタクリレートで変性したCAB-553-0.4、数平均分子量24,000、20wt%MEK溶液(表2中の部数は、20wt%MEK溶液の固形分の質量部を示す)
 CA-2:((D)セルロース誘導体の合成)の[合成例6]により製造された、グリシジルメタクリレートで変性したCAB-553-0.4、数平均分子量25,000、20wt%MEK溶液(表2中の部数は、20wt%MEK溶液の固形分の質量部を示す)
 jER828:ビスフェノールA型エポキシ樹脂、エポキシ当量190、質量平均分子量380(三菱ケミカル社製)
PI-1: Alkali-soluble polyimide resin solution produced by [Synthesis Example 4] of ((E) Synthesis of alkali-soluble polyimide resin) described above A-3: Alkali-soluble polyimide resin solution A-3: Alkali-soluble polyimide resin solution Polyamideimide resin-containing solution A-1 produced by [Synthesis Example 3] of (Synthesis of polyamideimide resin): Manufactured by [Synthesis Example 1] of ((A) Synthesis of alkali-soluble polyamideimide resin) Polyamideimide resin-containing solution P7-532: Polyurethane acrylate, acid value 47 mgKOH/g (manufactured by Kyoeisha Chemical Co., Ltd.)
IRGACURE OXE02: oxime photobase generator (manufactured by BASF)
CAB-553-0.4: Cellulose acetate derivative, number average molecular weight 20,000, 20 wt% DPM solution (manufactured by Eastman Chemical Co.) (parts in Table 2 indicate mass parts of solid content of 20 wt% DPM solution) )
CAB-504-0.2: Cellulose acetate derivative, number average molecular weight 15,000, 20 wt% DPM solution (manufactured by Eastman Chemical Co.) (parts in Table 2 indicate mass parts of solid content of 20 wt% DPM solution) )
CA-1: CAB-553-0.4 modified with methyl methacrylate, number average molecular weight 24,000, 20 wt% MEK solution (table The number of parts in 2 indicates the mass part of the solid content of the 20 wt% MEK solution)
CA-2: CAB-553-0.4 modified with glycidyl methacrylate, number average molecular weight 25,000, 20 wt% MEK solution (table The number of parts in 2 indicates the mass part of the solid content of the 20 wt% MEK solution)
jER828: bisphenol A type epoxy resin, epoxy equivalent 190, mass average molecular weight 380 (manufactured by Mitsubishi Chemical Corporation)
 表2に示すように、実施例と比較例の対比から、硬化性樹脂組成物が(A)アルカリ溶解性のポリアミドイミド樹脂、(C)熱硬化性化合物および(B)光塩基発生剤に加えて(D)セルロース誘導体を含むことで、形成された樹脂層の現像性がよく、硬化後の樹脂層は耐熱性、金めっき耐性、柔軟性に優れるだけでなく、貼り付きが小さいことが確認された。 As shown in Table 2, from the comparison between Examples and Comparative Examples, the curable resin composition contains (A) an alkali-soluble polyamideimide resin, (C) a thermosetting compound, and (B) a photobase generator. By including (D) a cellulose derivative, the formed resin layer has good developability, and the resin layer after curing not only has excellent heat resistance, gold plating resistance, and flexibility, but also has little sticking. was done.
 また、実施例2-1~2-2と実施例2-3~2-8との対比から、(A)アルカリ溶解性のポリアミドイミド樹脂を(E)アルカリ溶解性のポリイミド樹脂より多く配合した場合に耐熱性がさらに向上することが示された。また、実施例2-3と実施例2-7~2-8との対比から、(D)セルロース誘導体として式(6)で表される基を含むものを用いることで、さらに貼り付き性が小さく、即ち、貼り付き性の評価結果がより良好となることがわかった。また、実施例2-3と実施例2-6の対比から、(A)アルカリ溶解性のポリアミドイミド樹脂として、式(1)で示される構造および式(2)で示される構造を有するポリアミドイミド樹脂を用いることで、柔軟性、貼り付き性も向上させることがわかった。 In addition, from the comparison between Examples 2-1 to 2-2 and Examples 2-3 to 2-8, (A) alkali-soluble polyamideimide resin was blended more than (E) alkali-soluble polyimide resin. It was shown that the heat resistance is further improved in the case of In addition, from the comparison between Example 2-3 and Examples 2-7 and 2-8, by using a cellulose derivative (D) containing a group represented by formula (6), the sticking property was further improved. It was found that the smaller the value, the better the evaluation result of sticking property. Further, from a comparison of Examples 2-3 and 2-6, (A) as an alkali-soluble polyamideimide resin, a polyamideimide having a structure represented by the formula (1) and a structure represented by the formula (2) It was found that the use of a resin also improves flexibility and adhesion.

Claims (14)

  1.  アルカリ現像可能であり、露光および加熱処理により硬化膜を形成する硬化性樹脂組成物であって、
     前記硬化性樹脂組成物から厚さ2~100μmの乾燥塗膜を形成した場合に、前記乾燥塗膜の算術平均粗さRaが0.1μm未満であるとともに、前記乾燥塗膜の熱硬化後の硬化塗膜の算術平均粗さRaが0.1μm以上1μm以下となることを特徴とする硬化性樹脂組成物。
    A curable resin composition that is alkali developable and forms a cured film by exposure and heat treatment,
    When a dry coating film having a thickness of 2 to 100 μm is formed from the curable resin composition, the arithmetic mean roughness Ra of the dry coating film is less than 0.1 μm, and after heat curing of the dry coating film A curable resin composition, wherein the cured coating film has an arithmetic mean roughness Ra of 0.1 μm or more and 1 μm or less.
  2.  前記硬化性樹脂組成物から厚さ2~100μmの乾燥塗膜を形成した場合に、前記乾燥塗膜の算術平均粗さRaが0.05μm未満であるとともに、前記乾燥塗膜の熱硬化後の硬化塗膜の算術平均粗さRaが0.1μm以上0.5μm以下となることを特徴とする請求項1に記載の硬化性樹脂組成物。 When a dry coating film having a thickness of 2 to 100 μm is formed from the curable resin composition, the arithmetic mean roughness Ra of the dry coating film is less than 0.05 μm, and after heat curing of the dry coating film 2. The curable resin composition according to claim 1, wherein the cured coating film has an arithmetic mean roughness Ra of 0.1 [mu]m or more and 0.5 [mu]m or less.
  3.  (A)アルカリ溶解性のポリアミドイミド樹脂と、(B)光塩基発生剤と、(C)熱硬化性化合物と、(D)セルロース誘導体と、を含有することを特徴とする請求項1または2に記載の硬化性樹脂組成物。 (A) an alkali-soluble polyamide-imide resin, (B) a photobase generator, (C) a thermosetting compound, and (D) a cellulose derivative. The curable resin composition according to .
  4.  前記(C)熱硬化性化合物が、エポキシ樹脂であることを特徴とする請求項3に記載の硬化性樹脂組成物。 The curable resin composition according to claim 3, wherein the (C) thermosetting compound is an epoxy resin.
  5.  請求項1に記載の硬化性樹脂組成物で形成された樹脂層の少なくとも片面が、フィルムで支持または保護されていることを特徴とする積層構造体。 A laminated structure, characterized in that at least one side of a resin layer formed from the curable resin composition according to claim 1 is supported or protected by a film.
  6.  請求項1に記載の硬化性樹脂組成物、または請求項5に記載の樹脂層の硬化物。 The curable resin composition according to claim 1 or the cured product of the resin layer according to claim 5.
  7.  請求項6に記載の硬化物からなる絶縁膜を有することを特徴とする電子部品。 An electronic component comprising an insulating film made of the cured product according to claim 6.
  8.  (A)アルカリ溶解性のポリアミドイミド樹脂と、
     (B)光塩基発生剤と、
     (C)熱硬化性化合物と、
     (D)セルロース誘導体と
    を含有することを特徴とする硬化性樹脂組成物。
    (A) an alkali-soluble polyamideimide resin;
    (B) a photobase generator;
    (C) a thermosetting compound;
    (D) a curable resin composition comprising a cellulose derivative;
  9.  前記(A)アルカリ溶解性のポリアミドイミド樹脂が、カルボキシル基を有することを特徴とする請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein the (A) alkali-soluble polyamide-imide resin has a carboxyl group.
  10.  前記(A)アルカリ溶解性のポリアミドイミド樹脂が、カルボキシル基とフェノール性水酸基とを有することを特徴とする請求項9に記載の硬化性樹脂組成物。 The curable resin composition according to claim 9, wherein the (A) alkali-soluble polyamide-imide resin has a carboxyl group and a phenolic hydroxyl group.
  11.  さらに(E)アルカリ溶解性のポリイミド樹脂を含むことを特徴とする請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, further comprising (E) an alkali-soluble polyimide resin.
  12.  前記(C)熱硬化性化合物がエポキシ樹脂である請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein (C) the thermosetting compound is an epoxy resin.
  13.  請求項8に記載の硬化性樹脂組成物より得られる硬化物。 A cured product obtained from the curable resin composition according to claim 8.
  14.  請求項13に記載の硬化物からなる絶縁膜を有することを特徴とする電子部品。 An electronic component comprising an insulating film made of the cured product according to claim 13.
PCT/JP2022/016206 2021-03-31 2022-03-30 Curable resin composition, laminated structure, cured product, and electronic component WO2022210945A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280025312.0A CN117136216A (en) 2021-03-31 2022-03-30 Curable resin composition, laminated structure, cured product, and electronic component
KR1020237030343A KR20230163369A (en) 2021-03-31 2022-03-30 Curable resin compositions, laminated structures, cured products, and electronic components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-059630 2021-03-31
JP2021059630 2021-03-31
JP2021059611 2021-03-31
JP2021-059611 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210945A1 true WO2022210945A1 (en) 2022-10-06

Family

ID=83459565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016206 WO2022210945A1 (en) 2021-03-31 2022-03-30 Curable resin composition, laminated structure, cured product, and electronic component

Country Status (3)

Country Link
KR (1) KR20230163369A (en)
TW (2) TWI833191B (en)
WO (1) WO2022210945A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237057A (en) * 2008-03-26 2009-10-15 Taiyo Ink Mfg Ltd Photocurable resin composition, dry film thereof, cured object, and printed wiring board using same
JP2009275114A (en) * 2008-05-14 2009-11-26 Hitachi Chem Co Ltd Resin composition and film-forming material containing the same
JP2019001967A (en) * 2017-06-20 2019-01-10 太陽インキ製造株式会社 Curable resin composition, laminate structure, cured product of the same, and electronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133665A1 (en) 2011-03-30 2012-10-04 宇部興産株式会社 Polyimide film
CN108693702A (en) * 2017-03-31 2018-10-23 太阳油墨制造株式会社 Hardening resin composition, laminate structure, its solidfied material and electronic unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237057A (en) * 2008-03-26 2009-10-15 Taiyo Ink Mfg Ltd Photocurable resin composition, dry film thereof, cured object, and printed wiring board using same
JP2009275114A (en) * 2008-05-14 2009-11-26 Hitachi Chem Co Ltd Resin composition and film-forming material containing the same
JP2019001967A (en) * 2017-06-20 2019-01-10 太陽インキ製造株式会社 Curable resin composition, laminate structure, cured product of the same, and electronic component

Also Published As

Publication number Publication date
TWI833191B (en) 2024-02-21
TW202342577A (en) 2023-11-01
TW202307056A (en) 2023-02-16
KR20230163369A (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP6578295B2 (en) Laminated structure, dry film and flexible printed wiring board
JP6568715B2 (en) Photosensitive thermosetting resin composition, dry film and printed wiring board
TWI654250B (en) Photosensitive thermosetting resin composition and flexible printed wiring board
TWI706221B (en) Laminated structure, dry film and flexible printed wiring board
JP6306296B2 (en) Photosensitive thermosetting resin composition and flexible printed wiring board
JP6869078B2 (en) Curable resin compositions, laminated structures, cured products thereof, and electronic components
CN105683837B (en) Photosensitive thermosetting resin composition and flexible printed circuit board
JP6549848B2 (en) Laminated structure
KR20210097131A (en) Photosensitive thermosetting resin composition, dry film and printed wiring board
TWI749203B (en) Curable resin composition, laminate structure, cured product thereof, and electronic component
JP5903127B2 (en) Positive photosensitive thermosetting resin composition, dry film and printed wiring board
JP6568712B2 (en) Photosensitive thermosetting resin composition, dry film and printed wiring board
JP6951132B2 (en) Curable resin composition, laminated structure, cured product thereof and electronic components
WO2022210945A1 (en) Curable resin composition, laminated structure, cured product, and electronic component
JP2022159172A (en) Curable resin composition, laminated structure, cured material and electronic component
JP2008040273A (en) Photosensitive polyimide-silicone composition, protective film and flexible printed wiring board
JP2022159177A (en) Curable resin composition, cured product, and electronic component
CN116847983A (en) Laminated structure and flexible printed circuit board
JP2018106198A (en) Photosensitive thermosetting resin composition and flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781155

Country of ref document: EP

Kind code of ref document: A1