WO2022210914A1 - 通信制御方法及びユーザ装置 - Google Patents

通信制御方法及びユーザ装置 Download PDF

Info

Publication number
WO2022210914A1
WO2022210914A1 PCT/JP2022/016093 JP2022016093W WO2022210914A1 WO 2022210914 A1 WO2022210914 A1 WO 2022210914A1 JP 2022016093 W JP2022016093 W JP 2022016093W WO 2022210914 A1 WO2022210914 A1 WO 2022210914A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
mbs
base station
cell
gnb
Prior art date
Application number
PCT/JP2022/016093
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023511494A priority Critical patent/JPWO2022210914A1/ja
Publication of WO2022210914A1 publication Critical patent/WO2022210914A1/ja
Priority to US18/478,762 priority patent/US20240040662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present disclosure relates to a communication control method and user equipment used in a mobile communication system.
  • NR New Radio
  • RAT Radio Access Technology
  • LTE Long Term Evolution
  • a communication control method is a method executed by a user device in a mobile communication system in which a base station provides a user device with a multicast/broadcast service (MBS).
  • a communication control method is to receive from the base station a PDCP packet encrypted using a count value consisting of a PDCP sequence number and a hyperframe number and transmitted in an MBS session, and to estimate the hyperframe number. generating a guessed hyperframe number; attempting to decode the PDCP packet using a guessed count value comprising the PDCP sequence number and the guessed hyperframe number included in the received PDCP packet; if successful, determining the guessed hyperframe number as a valid hyperframe number.
  • a communication control method is a method executed by a user device in a mobile communication system in which a base station provides a user device with a multicast/broadcast service (MBS).
  • the communication control method includes updating a PDCP variable associated with the MBS session by the PDCP entity of the user equipment in response to reception of a PDCP packet transmitted in the MBS session, or when the MBS session is resumed after the MBS session has been suspended, or when an instruction to initialize the PDCP variables is received from the base station, the updated PDCP variables are initialized.
  • a communication control method is a method executed by the user equipment in a mobile communication system in which a base station provides a multicast/broadcast service (MBS) to the user equipment.
  • the communication control method includes updating a PDCP variable associated with the MBS session by the PDCP entity of the user equipment in response to reception of a PDCP packet transmitted in the MBS session, and reestablishing the PDCP entity. In this case, holding without initializing the PDCP variables associated with the MBS session, and the PDCP entity, based on the held PDCP variables, of PDCP packets transmitted in the MBS session. and continuing the receiving process.
  • a communication control method is a method executed by the user equipment in a mobile communication system in which a base station provides a multicast/broadcast service (MBS) to the user equipment.
  • a communication control method includes updating a PDCP variable associated with the MBS session by a PDCP entity of the user device in response to reception of a PDCP packet transmitted in the MBS session; Before performing handover from the first cell to the second cell, RRC re-establishment, or cell reselection, it is determined whether the updated PDCP variable can continue to be used in the second cell and receiving notification information from the base station to indicate.
  • a communication control method is a method executed by the user equipment in a mobile communication system in which a base station provides a multicast/broadcast service (MBS) to the user equipment.
  • the communication control method includes: the RLC entity of the user equipment receiving from the base station RLC PDUs transmitted in an MBS session and the base station dividing the RLC SDUs; determining whether to reconstruct the RLC SDU from the first received RLC PDU and RLC PDUs subsequent to the first received RLC PDU, based on an RLC sequence number included in the received RLC PDU; , have
  • a user device comprises a processor that executes the communication control method according to any one of the first to fifth aspects.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to one embodiment; FIG. It is a figure which shows the structure of UE (user apparatus) which concerns on one Embodiment.
  • FIG. 2 is a diagram showing the configuration of a gNB (base station) according to one embodiment; FIG. 2 is a diagram showing the configuration of a protocol stack of a user plane radio interface that handles data; FIG. 2 is a diagram showing the configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signals); FIG. 2 is a diagram showing a correspondence relationship between a downlink logical channel and a transport channel according to an embodiment; FIG. 3 illustrates a method of distributing MBS data according to one embodiment; FIG.
  • FIG. 4 illustrates a split MBS bearer according to one embodiment
  • Figure 4 illustrates an example operation for activating and deactivating legs according to one embodiment.
  • FIG. 3 is a diagram showing an operation example 1 of PDCP according to one embodiment
  • FIG. 10 is a diagram showing an operation example 2 of PDCP according to one embodiment
  • FIG. 11 is a diagram showing an operation example 3 of PDCP according to one embodiment
  • FIG. 11 is a diagram illustrating an operation example 4 of PDCP according to one embodiment
  • FIG. 11 is a diagram illustrating an operation example 4 of PDCP according to one embodiment
  • FIG. 11 is a diagram for explaining an operation example 6 of PDCP according to one embodiment
  • FIG. 4 is a diagram for explaining an operation example of RLC according to one embodiment
  • FIG. 4 is a diagram for explaining an operation example of RLC according to one embodiment
  • FIG. 4 is a diagram for explaining a case of reusing an existing PDCP functional view;
  • NR 5G system
  • an object of the present disclosure is to provide a communication control method and user equipment that realize improved multicast/broadcast services.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to one embodiment.
  • This mobile communication system conforms to the 5th generation system (5GS: 5th Generation System) of the 3GPP standard.
  • 5GS will be described below as an example
  • an LTE (Long Term Evolution) system may be at least partially applied to the mobile communication system.
  • a sixth generation (6G) system may be at least partially applied to the mobile communication system.
  • the mobile communication system includes a user equipment (UE: User Equipment) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, a 5G core network (5GC: 5G Core Network) 20.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5G core network 5G Core Network
  • the UE 100 is a mobile wireless communication device.
  • the UE 100 may be any device as long as it is used by the user. (including chipsets), sensors or devices installed in sensors, vehicles or devices installed in vehicles (Vehicle UE), and/or aircraft or devices installed in aircraft (Aerial UE).
  • the NG-RAN 10 includes a base station (called “gNB” in the 5G system) 200.
  • the gNBs 200 are interconnected via an Xn interface, which is an interface between base stations.
  • the gNB 200 manages one or more cells.
  • the gNB 200 performs radio communication with the UE 100 that has established connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control/scheduling, and the like.
  • RRM radio resource management
  • a “cell” is used as a term indicating the minimum unit of a wireless communication area.
  • a “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 .
  • One cell belongs to one carrier frequency.
  • the gNB can also be connected to the EPC (Evolved Packet Core), which is the LTE core network.
  • EPC Evolved Packet Core
  • LTE base stations can also connect to 5GC.
  • An LTE base station and a gNB may also be connected via an inter-base station interface.
  • 5GC20 includes AMF (Access and Mobility Management Function) and UPF (User Plane Function) 300.
  • AMF performs various mobility control etc. with respect to UE100.
  • AMF manages the mobility of UE 100 by communicating with UE 100 using NAS (Non-Access Stratum) signaling.
  • the UPF controls data transfer.
  • AMF and UPF are connected to gNB 200 via NG interface, which is a base station-core network interface.
  • FIG. 2 is a diagram showing the configuration of the UE 100 (user equipment) according to one embodiment.
  • the UE 100 includes a receiver 110, a transmitter 120, and a controller .
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiver 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal (received signal) to control section 130 .
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits the radio signal from an antenna.
  • Control unit 130 performs various controls in the UE 100.
  • Control unit 130 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modulates/demodulates and encodes/decodes the baseband signal.
  • the CPU executes programs stored in the memory to perform various processes.
  • FIG. 3 is a diagram showing the configuration of the gNB 200 (base station) according to one embodiment.
  • the gNB 200 includes a transmitter 210, a receiver 220, a controller 230, and a backhaul communicator 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • Transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits the radio signal from an antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiver 220 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal (received signal) to the control unit 230 .
  • Control unit 230 performs various controls in the gNB200.
  • Control unit 230 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor modulates/demodulates and encodes/decodes the baseband signal.
  • the CPU executes programs stored in the memory to perform various processes.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • Backhaul communication unit 240 is connected to AMF/UPF 300 via a base station-core network interface.
  • the gNB may be composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, functionally divided), and the two units may be connected via an F1 interface.
  • FIG. 4 is a diagram showing the configuration of the protocol stack of the radio interface of the user plane that handles data.
  • the radio interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, SDAP (Service Data Adaptation Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the gNB 200 via physical channels.
  • the MAC layer performs data priority control, hybrid ARQ (HARQ) retransmission processing, random access procedures, and so on. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the gNB 200 via transport channels.
  • the MAC layer of gNB 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and resource blocks to be allocated to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the gNB 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • the SDAP layer maps IP flows, which are units for QoS (Quality of Service) control by the core network, and radio bearers, which are units for QoS control by AS (Access Stratum). Note that SDAP may not be present when the RAN is connected to the EPC.
  • FIG. 5 is a diagram showing the protocol stack configuration of the radio interface of the control plane that handles signaling (control signals).
  • the radio interface protocol stack of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in FIG.
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the gNB 200.
  • the RRC layer controls logical, transport and physical channels according to establishment, re-establishment and release of radio bearers.
  • RRC connection connection between the RRC of UE 100 and the RRC of gNB 200
  • UE 100 is in the RRC connected state.
  • RRC connection no connection between RRC of UE 100 and RRC of gNB 200
  • UE 100 is in RRC idle state.
  • UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of AMF 300B.
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • MBS is a service that enables data transmission from the NG-RAN 10 to the UE 100 via broadcast or multicast, that is, point-to-multipoint (PTM).
  • MBS may be called MBMS (Multimedia Broadcast and Multicast Service).
  • Use cases (service types) of MBS include public safety communication, mission critical communication, V2X (Vehicle to Everything) communication, IPv4 or IPv6 multicast distribution, IPTV (Internet protocol television), group communication, and software distribution. .
  • FIG. 6 is a diagram showing a correspondence relationship between downlink logical channels and transport channels according to an embodiment.
  • the logical channels used for MBSFN transmission are MTCH (Multicast Traffic Channel) and MCCH (Multicast Control Channel), and the transport channel used for MBSFN transmission is MCH (Multicast Control Channel).
  • MBSFN transmission is mainly designed for multi-cell transmission, and in an MBSFN area consisting of multiple cells, each cell performs synchronous transmission of the same signal (same data) in the same MBSFN subframe.
  • SC-PTM transmission The logical channels used for SC-PTM transmission are SC-MTCH (Single Cell Multicast Traffic Channel) and SC-MCCH (Single Cell Multicast Control Channel), and the transport channel used for SC-PTM transmission is DL-SCH (Downlink Shared Channel). ).
  • SC-PTM transmission is primarily designed for single-cell transmission, with broadcast or multicast data transmission on a cell-by-cell basis.
  • Physical channels used for SC-PTM transmission are PDCCH (Physical Downlink Control Channel) and PDSCH (Physical Downlink Control Channel), enabling dynamic resource allocation.
  • MBS may be provided using a scheme similar to the SC-PTM transmission scheme.
  • MBS may be provided using the MBSFN transmission scheme.
  • MBS may be read as multicast.
  • MBS may be provided by broadcast.
  • MBS data refers to data provided by MBS
  • MBS control channel refers to MCCH or SC-MCCH
  • MBS traffic channel refers to MTCH or SC-MTCH.
  • MBS data may also be transmitted by unicast.
  • MBS data may also be referred to as MBS packets or MBS traffic.
  • the network can provide different MBS services for each MBS session.
  • An MBS session is identified by at least one of a TMGI (Temporary Mobile Group Identity) and a session identifier, and at least one of these identifiers is called an MBS session identifier.
  • TMGI Temporal Mobile Group Identity
  • MBS session identifiers may be referred to as MBS service identifiers or multicast group identifiers.
  • FIG. 7 is a diagram showing a method of distributing MBS data according to one embodiment.
  • MBS data (MBS Traffic) is distributed to multiple UEs from a single data source (application service provider).
  • a 5G CN (5GC) 20 which is a 5G core network, receives MBS data from an application service provider, creates a copy of the MBS data (Replication), and distributes it.
  • NG-RAN10 In shared MBS data delivery, a connection is established between NG-RAN10 and 5GC20, which are 5G radio access networks (5G RAN), and MBS data is delivered from 5GC20 to NG-RAN10.
  • 5G RAN 5G radio access networks
  • MBS connection In the following, such a connection (tunnel) will be referred to as an "MBS connection”.
  • An MBS connection may also be called a Shared MBS Traffic delivery connection or a shared transport.
  • the MBS connection terminates at the NG-RAN 10 (ie gNB 200).
  • An MBS connection may have a one-to-one correspondence with an MBS session.
  • gNB 200 selects either PTP (Point-to-Point: unicast) or PTM (Point-to-Multipoint: multicast or broadcast) transmission method at its own discretion, and transmits MBS data to UE 100 in the selected transmission method. to send.
  • PTP Point-to-Point: unicast
  • PTM Point-to-Multipoint: multicast or broadcast
  • a unicast session is established between NG-RAN 10 and UE 100, and MBS data is delivered individually from 5GC 20 to UE 100.
  • MBS data is delivered individually from 5GC 20 to UE 100.
  • Such a unicast may be called a PDU Session.
  • Unicast (PDU session) terminates at the UE 100 .
  • split MBS bearer Next, a split MBS bearer according to one embodiment will be described.
  • the gNB 200 can configure the UE 100 with an MBS bearer separated into a PTP communication path and a PTM communication path (hereinafter referred to as a "split MBS bearer" as appropriate). This allows the gNB 200 to dynamically switch transmission of MBS data to the UE 100 between PTP (PTP communication path) and PTM (PTM communication path). Alternatively, the gNB 200 can double transmit the same MBS data using both PTP (PTP communication path) and PTM (PTM communication path) to increase reliability.
  • the predetermined layer that terminates the split is the MAC layer (HARQ), RLC layer, PDCP layer, or SDAP layer.
  • HARQ MAC layer
  • RLC layer PDCP layer
  • SDAP layer SDAP layer.
  • FIG. 8 is a diagram illustrating a split MBS bearer according to one embodiment.
  • a PTP communication path is called a PTP leg and a PTM communication path is called a PTM leg.
  • a functional unit corresponding to each layer is called an entity.
  • each of the PDCP entity of gNB 200 and the PDCP entity of UE 100 separates MBS bearers (data radio bearers) used for MBS into PTP legs and PTM legs.
  • MBS bearers data radio bearers
  • a PDCP entity is provided for each bearer.
  • Each of gNB 200 and UE 100 has two RLC entities, one MAC entity, and one PHY entity provided for each leg.
  • a PHY entity may be provided for each leg.
  • the UE 100 may have two MAC entities.
  • the PHY entity uses a cell RNTI (C-RNTI: Cell Radio Network Temporary Identifier) assigned to UE 100 on a one-to-one basis to transmit and receive PTP leg data.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the PHY entity transmits and receives data of the PTM leg using a group RNTI (G-RNTI: Group Radio Network Temporary Identifier) assigned one-to-one with the MBS session.
  • the C-RNTI is different for each UE 100, but the G-RNTI is a common RNTI for multiple UEs 100 that receive one MBS session.
  • a split MBS bearer is set from the gNB 200 to the UE 100, and the PTM leg is activated. must have been In other words, even if a split MBS bearer is configured in the UE 100, the gNB 200 cannot perform PTM transmission of MBS data using this PTM leg when the PTM leg is in a deactivation state.
  • a split MBS bearer in order for the gNB 200 and the UE 100 to perform PTP transmission (unicast) of MBS data using the PTP leg, a split MBS bearer must be set from the gNB 200 to the UE 100 and the PTP leg must be activated. There is In other words, even if a split MBS bearer is configured in the UE 100, the gNB 200 cannot perform PTP transmission of MBS data using this PTP leg when the PTP leg is in an inactive state.
  • UE 100 monitors the PDCCH (Physical Downlink Control Channel) to which the G-RNTI associated with the MBS session is applied in a state where the PTM leg is activated (that is, performs blind deactivation of the PDCCH using the G-RNTI). coding). UE 100 may monitor the PDCCH only at scheduling opportunities for the MBS session.
  • PDCCH Physical Downlink Control Channel
  • the UE 100 does not monitor the PDCCH to which the G-RNTI associated with the MBS session is applied while the PTM leg is deactivated (that is, does not perform blind decoding of the PDCCH using the G-RNTI). .
  • the UE 100 monitors the PDCCH to which the C-RNTI is applied while the PTP leg is activated.
  • DRX Discontinuous Reception
  • UE 100 monitors PDCCH during the set On Duration.
  • UE 100 may monitor the PDCCH of the cell even if the cell is deactivated.
  • the UE 100 may monitor the PDCCH to which the C-RNTI is applied in preparation for normal unicast downlink transmission other than MBS data while the PTP leg is deactivated. However, when a cell (frequency) associated with an MBS session is designated, UE 100 may not monitor the PDCCH for the MBS session.
  • a split MBS bearer as described above is set by an RRC message (for example, an RRC Reconfiguration message) transmitted from the RRC entity of gNB200 to the RRC entity of UE100.
  • RRC message for example, an RRC Reconfiguration message
  • FIG. 9 is a diagram illustrating example operations for leg activation and deactivation in accordance with one embodiment.
  • the RRC entity of gNB 200 transmits an RRC message including the split MBS bearer (split bearer) configuration shown in FIG. 8 to UE 100.
  • the RRC message is, for example, an RRC Reconfiguration message.
  • the RRC entity of UE 100 establishes split MBS bearers based on the configuration included in the RRC message received from gNB 200 .
  • An example in which the UE 100 establishes one split MBS bearer will be mainly described below, but the UE 100 may establish multiple split MBS bearers according to the settings from the gNB 200 .
  • the gNB 200 may instruct the UE 100 on the initial state of each leg (that is, activation or deactivation of each leg) in the same message.
  • the RRC entity of the gNB 200 sends the RRC message including the bearer setup of the split MBS bearer to the UE 100, it includes the activation or deactivation indication of each leg in the RRC message along with the bearer setup.
  • Such an RRC message may include at least one of the identifier of the leg to be instructed (PTP leg, PTM leg) and the identifier indicating either activation or deactivation.
  • the RRC message may include an identifier (eg, TMGI, G-RNTI, session identifier, QoS flow identifier, bearer identifier) associated with the indicated MBS session (split MBS bearer).
  • the gNB 200 transmits to the UE 100 an instruction to individually activate or deactivate the PTP leg and the PTM leg.
  • the MAC entity of gNB200 may transmit a MAC control element (MAC CE) including the instruction to UE100.
  • the MAC entity of UE100 receives MAC CE from gNB200.
  • the PHY entity of gNB200 may transmit downlink control information (DCI) including the instruction to UE100.
  • DCI downlink control information
  • the PHY entity of UE100 receives DCI from gNB200.
  • Such a MAC CE or DCI may include at least one of the identifier of the leg to be indicated (PTP leg, PTM leg) and the identifier indicating either activation or deactivation.
  • MAC CE or DCI may include an identifier (eg, TMGI, G-RNTI, session identifier, QoS flow identifier, bearer identifier) associated with the MBS session (split MBS bearer) to be indicated.
  • the UE 100 starts data reception processing using the C-RNTI in response to receiving the instruction to activate the PTP leg. Upon receiving the instruction to activate the PTM leg, the UE 100 starts receiving MBS data using the G-RNTI. On the other hand, the UE 100 ends the data reception process using the C-RNTI in response to receiving the instruction to deactivate the PTP leg. Upon receiving the instruction to deactivate the PTM leg, the UE 100 terminates the MBS data reception process using the G-RNTI.
  • the gNB 200 may transmit (PTM transmission) an instruction to activate or deactivate the PTP leg to the UE 100 via the activated PTM leg.
  • PTM transmission an instruction to activate or deactivate the PTP leg to the UE 100 via the activated PTM leg.
  • the gNB 200 may transmit (PTM transmission) an instruction to deactivate the PTM leg to the UE 100 via the activated PTM leg.
  • PTM transmission an instruction to deactivate the PTM leg to the UE 100 via the activated PTM leg.
  • the gNB 200 may transmit (PTP transmission) an instruction to activate or deactivate the PTM leg to the UE 100 via the activated PTP leg. This allows PTM legs to be activated or deactivated individually for each UE 100 .
  • the gNB 200 may transmit (PTP transmission) an instruction to deactivate the PTP leg to the UE 100 via the activated PTP leg. This allows the PTP leg to be individually deactivated for each UE 100 .
  • the UE 100 may transmit a response to the received instruction to the gNB 200 in response to receiving the instruction to activate at least one of the PTP leg and the PTM leg from the gNB 200 in step S12.
  • This response may be sent from the MAC entity of UE 100 to gNB 200 via the PTP leg, for example.
  • the UE 100 may start data reception operation on the activated leg.
  • the gNB 200 transmits data via the activated leg in response to receiving the response from the UE 100. That is, after receiving the response, the gNB 200 starts data transmission operation in the leg.
  • the UE 100 may transmit a response to the received instruction to the gNB 200 in response to receiving the instruction to deactivate at least one of the PTP leg and the PTM leg from the gNB 200 in step S12.
  • the PDCP entity of the UE 100 may perform duplicate packet discarding of two identical MBS packets transmitted by duplication.
  • PDCP operation example 1 Next, an operation example 1 of PDCP according to one embodiment will be described.
  • the PDCP entity of UE 100 sets and updates PDCP variables according to the PDCP sequence number (PDCP SN) included in the PDCP packet received from gNB 200. Normally, the UE 100 sets the initial value of the PDCP variable to zero, and updates (increments, counts up) the PDCP variable according to packet reception from the gNB 200 .
  • PDCP SN PDCP sequence number
  • the PDCP entity of the UE 100 that has participated in an MBS session from the beginning can sequentially update the PDCP variables to bring them to the latest state.
  • the PDCP entity of the UE 100, which has joined the MBS session halfway through can receive a PDCP packet having a PDCP SN whose value is significantly different from the initial value, so that the PDCP entity operation (predetermined PDCP operation) cannot be performed normally. There is a possibility that it will not be possible.
  • the following method enables the UE 100 that has joined the MBS session midway to perform the prescribed PDCP operation normally.
  • the PDCP entity of the UE 100 sets the PDCP SN included in the PDCP packet first received from the gNB 200 as the initial value of the variable (PDCP variable) used for the predetermined PDCP operation. That is, when the PDCP entity of the UE 100 receives a PDCP packet transmitted in an MBS session (PTM), the PDCP SN included in the PDCP packet first received from the gNB 200 is set to PDCP instead of setting the PDCP variable to zero. Set as the initial value of the variable. This enables the PDCP entity of the UE 100, which has joined the MBS session from the middle, to normally perform the predetermined PDCP operation.
  • PTM MBS session
  • the predetermined PDCP operation is at least one of reception window control and packet rearrangement operation.
  • the PDCP variable used for reception window control may be at least one of RX_NEXT and RX_DELIV.
  • RX_NEXT is configured to contain the sequence number of the PDCP SDU expected to be received next.
  • RX_DELIV contains the sequence number of the oldest PDCP SDU waiting to be received and not yet provided to the upper layer. Normally, the initial values of RX_NEXT and RX_DELIV are "0".
  • the PDCP variable used for packet reordering may be RX_REORD.
  • RX_REORD is the sequence number of the PDCP SDU that started the timer indicating the maximum time to wait for packet reordering. For example, if the sequence number of the received packet is smaller than RX_REORD, UE 100 discards the packet.
  • FIG. 10 is a diagram showing an operation example 1 of PDCP according to one embodiment.
  • step S101 the gNB 200 starts MBS transmission for a given MBS session.
  • step S102 the UE 100A participating in the MBS session from the beginning starts receiving MBS for the MBS session.
  • UE 100A is in RRC connected state, RRC idle state, or RRC inactive state.
  • the UE 100A may receive and execute MBS bearer (PDCP) configuration from the gNB 200 .
  • PDCP MBS bearer
  • step S103 the gNB 200 transmits PDCP packets by PTM via the MBS bearer. Assume that the sequence number (PDCP SN) included in the PDCP header of this PDCP packet is "0".
  • step S104 when the PDCP entity of the UE 100A receives the PDCP packet from the gNB 200, it sets the PDCP SN "0" included in the received PDCP packet as the initial value of the PDCP variable, and performs a predetermined PDCP operation.
  • step S105 the UE 100B joins the MBS session from the middle and starts receiving MBS for the MBS session.
  • the UE 100B is in RRC connected state, RRC idle state or RRC inactive state.
  • the UE 100B may receive and execute MBS bearer (PDCP) configuration from the gNB 200 .
  • PDCP MBS bearer
  • step S106 the gNB 200 transmits the PDCP packet by PTM via the MBS bearer.
  • the PDCP SN included in the PDCP header of this PDCP packet is "n".
  • "n" is an integer of 1 or more.
  • step S107 when the PDCP entity of the UE 100B first receives the PDCP packet via the MBS bearer, it sets the PDCP SN "n" included in the first received PDCP packet as the initial value of the PDCP variable, and performs the predetermined PDCP operation. I do.
  • it may be (n+1) mod [SN size].
  • step S108 when the PDCP entity of the UE 100A receives the PDCP packet via the MBS bearer, it updates the PDCP variable with the PDCP SN "n" included in the received PDCP packet.
  • step S109 the gNB 200 transmits the PDCP packet by PTM via the MBS bearer. Assume that the PDCP SN included in the PDCP header of this PDCP packet is "n+1".
  • step S110 when the PDCP entity of the UE 100B receives the PDCP packet via the MBS bearer, it updates the PDCP variable with the PDCP SN "n+1" included in the received PDCP packet.
  • step S111 when the PDCP entity of the UE 100A receives the PDCP packet via the MBS bearer, it updates the PDCP variable with the PDCP SN "n+1" included in the received PDCP packet.
  • the initial value of each PDCP variable is updated from the received PDCP packet, but it is not limited to this.
  • the initial value of each PDCP variable may be set from the gNB 200 to the UE 100.
  • the UE 100B that performs MBS intermediate reception may be given the initial value of each PDCP variable from the gNB 200 when setting MBS reception with dedicated signaling.
  • PDCP operation example 2 Next, an operation example 2 of PDCP according to one embodiment will be described, mainly focusing on differences from the operation example 1 described above.
  • the PDCP SN was mainly assumed as the PDCP variable managed by the UE 100.
  • the UE 100 also manages the hyperframe number (HFN) as a PDCP variable will be described.
  • HFN is incremented when PDCP SN wraps around. That is, HFN is a value that is counted up each time the PDCP SN goes around.
  • the UE 100 manages COUNT, which is a count value consisting of PDCP SN and HFN.
  • COUNT is a count value consisting of PDCP SN and HFN.
  • the format of RX_DELIV is the same as COUNT, HFN+SN.
  • COUNT is also used to encrypt PDCP packets for security.
  • the UE 100B which joins the MBS session from the middle, calculates RX_DELIV from the PDCP SN included in the header of the PDCP packet (PDCP PDU) first received in this MBS session.
  • the PDCP PDU header contains the PDCP SN but not the HFN.
  • the initial value of RX_DELIV is 0, and in the case of unicast, both gNB 200 and UE 100 increment the HFN based on the initial value for each PDCP SN wrap around, thereby synchronizing the HFN of gNB 200 and UE 100.
  • a valid HFN that is, the gNB 200 is managing HFN
  • the PDCP entity of UE 100 receives from gNB 200 a PDCP packet that is encrypted using COUNT consisting of PDCP SN and HFN and transmitted in the MBS session.
  • the PDCP entity of UE 100 generates a guessed HFN by guessing the HFN.
  • the PDCP entity of the UE 100 attempts to decode the PDCP packet using the estimated COUNT consisting of the PDCP SN and the estimated HFN contained in the received PDCP packet.
  • the PDCP entity of UE 100 determines the guessed HFN as a valid HFN if the decoding is successful.
  • the UE 100 can derive a valid HFN using the PDCP security function even if it joins the MBS session in the middle.
  • PDCP variables such as RX_DELIV can be appropriately managed by managing COUNT using the HFN derived in this way.
  • the UE 100 may receive range information indicating the HFN range (hereinafter referred to as "HFN range information") from the gNB 200.
  • the PDCP entity of UE 100 may generate a guess HFN based on the received HFN range information. For example, an HFN included in the range indicated by the received HFN range information is generated as an estimated HFN. Since arithmetic processing is required to decrypt the encrypted PDCP packet, there are problems in power consumption and response time of the UE 100 . Therefore, by having the gNB 200 notify the UE 100 of available HFNs in advance, the number of estimated HFN candidates generated by the PDCP entity of the UE 100 can be reduced, and the power consumption and response time of the UE 100 can be reduced.
  • HFN range information range information indicating the HFN range
  • the gNB 200 notifies the UE 100 of the HFN value itself.
  • HFN is counted up according to the count up of PDCP SN. Since there may be a delay between the gNB 200 notifying the UE 100 of the current HFN and the UE 100 applying this HFN, the HFN between the gNB 200 and the UE 100 may become unsynchronized.
  • FIG. 11 is a diagram showing an operation example 2 of PDCP according to one embodiment.
  • the UE 100 is assumed to be the UE 100B of the operation example 1 described above, that is, the UE 100 that has joined the MBS session from the middle.
  • step S201 the PDCP entity of the UE 100 receives PDCP packets transmitted (for example, PTM transmission) from the gNB 200 in the MBS session.
  • PDCP packets transmitted for example, PTM transmission
  • step S202 the PDCP entity of UE 100 acquires the PDCP SN contained in the header of the PDCP packet received in step S201. It is assumed that the value of this PDCP SN is not zero because the UE 100 has joined the MBS session from the middle.
  • step S203 the UE 100 may receive HFN range information from the gNB 200.
  • the gNB 200 notifies the range of possible HFNs for a given MBS session.
  • the value range may be determined according to the amount of data transmitted by MBS. Note that step S203 may be performed before step S202.
  • the HFN range information may be information that directly indicates the HFN range (for example, "0 to 10"). Also, the HFN range information may be information indicating the number of HFN bits (for example, “3 bits”: equivalent to “0 to 7”). When the HFN range information is designated as "3 bits”, the PDCP entity of UE 100 may manage HFN so that "7" is followed by "0".
  • HFN range information For notification of HFN range information from gNB 200 to UE 100, SIB, MCCH (multicast control channel), RRC Reconfiguration message, or PDCP Control PDU may be used. These messages may include HFN range information and MBS session identifiers (eg, TMGI, G-RNTI) associated with this HFN range information. These messages may contain multiple sets of HFN range information and MBS session identifiers.
  • MBS session identifiers eg, TMGI, G-RNTI
  • step S204 the PDCP entity of UE 100 generates an estimated HFN.
  • the PDCP entity of the UE 100 generates an estimated HFN by substituting values for HFN in the order of 0, 1, 2, . . . , for example. If the HFN range information is received in step S203, the PDCP entity of the UE 100 generates an estimated HFN within the range indicated by the HFN range information.
  • the PDCP entity of the UE 100 generates an estimated COUNT consisting of the PDCP SN obtained at step S202 and the estimated HFN generated at step S204.
  • step S206 the PDCP entity of the UE 100 attempts to decrypt (decrypt) the PDCP packet received at step S201 using the estimated COUNT generated at step S205. If the decoding of the PDCP packet fails (step S207: NO), the process returns to step S204.
  • step S208 the PDCP entity of the UE 100 determines the estimated HFN generated in step S204 as a valid HFN, and stores and manages this HFN. This synchronizes the HFN between the gNB 200 and the UE 100 .
  • the UE 100 may perform handover from the first cell of the gNB 200 to the second cell, RRC re-establishment, or cell reselection. If the MBS session that the UE 100 was receiving in the first cell is also provided in the second cell, the UE 100 can continue receiving MBS even if handover, RRC re-establishment, or cell re-selection is performed. Note that the first cell and the second cell may be managed by gNBs 200 different from each other.
  • the PDCP SN is synchronized between cells, but the HFN may not be synchronized between cells. Therefore, the UE 100, based on the handover from the first cell to the second cell, RRC re-establishment, or cell reselection, may re-execute the same operation as in FIG. 11 in the second cell. .
  • UE 100 before performing handover from the first cell to the second cell, RRC re-establishment, or cell reselection, receives information indicating whether or not to re-execute the same operation as in FIG. 11 from gNB 200 good too. If the information indicates that re-execution is unnecessary, the managed HFN is retained without being discarded even after handover from the first cell to the second cell, RRC re-establishment, or cell re-selection. may Thereby, when the HFN is synchronized between the first cell and the second cell, the UE 100 does not need to re-execute the operation similar to that of FIG. 11 . Details of such an operation will be described later in Operation Example 6.
  • PDCP operation example 3 Next, an operation example 3 of PDCP according to one embodiment will be described, mainly focusing on differences from the operation examples 1 and 2 described above.
  • HFN is counted up when the PDCP SN wraps around, so there is no problem even if the PDCP SN wraps around.
  • HFN on the other hand, is not supposed to wrap around (ie, COUNT does not wrap around). Therefore, it is desirable to be able to initialize the PDCP variable (eg, COUNT) containing the HFN when the HFN is about to wrap around.
  • the PDCP entity of the UE 100 updates PDCP variables associated with the MBS session in response to receiving PDCP packets transmitted in the MBS session.
  • the PDCP entity of UE 100 initializes the updated PDCP variables (ie, returns them to zero) when the MBS session is resumed after the MBS session has been suspended.
  • the PDCP entity of the UE 100 initializes the PDCP variables with the restart of the MBS session as a trigger. This allows the PDCP variable (eg, COUNT) containing the HFN to be initialized, for example, if the HFN is about to wrap around.
  • FIG. 12 is a diagram showing an operation example 3 of PDCP according to one embodiment.
  • the UE 100 may be the UE 100 that has joined the MBS session from the beginning. Also, the UE 100 may be a UE 100 that has joined the MBS session from the middle.
  • the gNB 200 may transmit MBS data by multicast to multiple UEs 100 in the RRC connected state.
  • step S301 the PDCP entity of the UE 100 receives PDCP packets transmitted (for example, PTM transmission) from the gNB 200 in the MBS session.
  • PDCP packets transmitted for example, PTM transmission
  • step S302 the PDCP entity of UE 100 updates the PDCP variable (eg, COUNT) based on the PDCP packet received in step S301.
  • the PDCP variables that are updated may be RX_NEXT and/or RX_DELIV.
  • the gNB 200 may transmit a session suspension notification indicating suspension of the MBS session to the UE 100.
  • a session suspension notification may be sent by MAC CE.
  • the session suspension notification may be sent in SIB, MCCH (multicast control channel), RRC Reconfiguration message, or PDCP Control PDU.
  • the UE 100 detects suspension of the MBS session in response to reception of the session suspension notification.
  • UE 100 may determine that the MBS session has been interrupted when no MBS data is received in the MBS session for a certain period of time regardless of the session interruption notification.
  • a timer value that defines this certain period of time may be set from the gNB 200 to the UE 100, for example.
  • the gNB 200 may configure the UE 100 with a set of this timer value and MBS session identifier (eg, TMGI, G-RNTI).
  • MBS session identifier eg, TMGI, G-RNTI
  • the gNB 200 may transmit a session restart notification indicating restart of the MBS session to the UE 100.
  • a session restart notification may be transmitted by MAC CE.
  • the session resumption notification may be sent in SIB, MCCH (multicast control channel), RRC Reconfiguration message, or PDCP Control PDU.
  • the UE 100 detects restart of the MBS session upon receiving the session restart notification. Alternatively, UE 100 may determine that the MBS session has been resumed when receiving MBS data in the MBS session after determining that the MBS session has been suspended, regardless of the session restart notification.
  • step S305 the PDCP entity of the UE 100 initializes (that is, returns to zero) the updated PDCP variables associated with the MBS session when the MBS session is resumed after being suspended. .
  • the gNB 200 may initialize updated PDCP variables associated with that MBS session.
  • step S306 the PDCP entity of UE 100 receives PDCP packets transmitted from gNB 200 in the MBS session.
  • the PDCP entity of the UE 100 updates the PDCP variable (eg, COUNT) based on the PDCP packet received at step S306.
  • the PDCP variable eg, COUNT
  • the UE 100 may initialize the PDCP variables when detecting suspension of the MBS session in step S303.
  • step S305 when the UE 100 detects suspension of the MBS session in step S303 or detects resumption of the MBS session in step S304, in step S305, the PDCP entity may be re-established. good.
  • the RRC layer may instruct the PDCP layer to re-establish the PDCP entity.
  • PDCP variables managed by the PDCP entity are initialized.
  • PDCP operation example 4 Next, an operation example 4 of PDCP according to one embodiment will be described mainly with respect to differences from the operation examples 1 to 3 described above.
  • a plurality of UEs 100 receive MBS data from the gNB 200 via multicast for a given MBS session, and one of the plurality of UEs 100 performs handover or RRC re-establishment.
  • the PDCP entity of the UE 100 is re-established with the handover of the UE 100 or the re-establishment of RRC, so the PDCP variables managed by the PDCP entity are initialized.
  • the COUNT of the MBS session reaches the upper limit (that is, when it is about to wrap around)
  • one or more UEs receiving the MBS session must initialize the PDCP variables of
  • the PDCP entity of the UE 100 updates PDCP variables associated with the MBS session in response to receiving PDCP packets transmitted in the MBS session.
  • the PDCP entity of the UE 100 initializes the updated PDCP variables (that is, returns them to zero) when receiving the PDCP variable initialization instruction from the gNB 200 .
  • the instruction for initializing the PDCP variable is a PDCP entity re-establishment instruction. good.
  • FIG. 13 is a diagram showing an operation example 4 of PDCP according to one embodiment.
  • the UE 100 may be the UE 100 that has joined the MBS session from the beginning. Also, the UE 100 may be a UE 100 that has joined the MBS session from the middle.
  • the gNB 200 may transmit MBS data by multicast to multiple UEs 100 in the RRC connected state. The gNB 200 may transmit MBS data by multicast to multiple UEs 100 in RRC idle or inactive state.
  • step S401 the PDCP entity of the UE 100 receives PDCP packets transmitted (for example, PTM transmission) from the gNB 200 in the MBS session.
  • PDCP packets transmitted for example, PTM transmission
  • step S402 the PDCP entity of UE 100 updates the PDCP variable (eg, COUNT) based on the PDCP packet received in step S401.
  • the PDCP variables that are updated may be RX_NEXT and/or RX_DELIV.
  • the PDCP entity of gNB 200 updates a PDCP variable (eg, COUNT) based on the packet sent in step S401.
  • the gNB 200 transmits to the UE 100 an initialization instruction instructing initialization of the PDCP variables.
  • the initialization indication may be a PDCP entity re-establishment indication.
  • the gNB 200 may stop (pause) the transmission of PDCP packets before transmitting the initialization instruction.
  • the gNB 200 may send the initialization indication in response to the PDCP variables of the PDCP entity of the gNB 200 being about to wrap around (eg, reaching the COUNT upper limit).
  • the initialization instruction may be sent in an RRC Reconfiguration message, PDCP Control PDU, SIB, or MCCH (multicast control channel).
  • the initialization instruction may be sent by MAC CE (Control Element) or MTCH (Multicast Traffic Channel). Note that the initialization instruction is desirably notified to a plurality of UEs all at once. For example, the MAC CE indicating the initialization instruction may be multiplexed in the transport block containing the multicast MTCH and notified. These messages may include an initialization indication and an MBS session identifier (eg, TMGI, G-RNTI, session ID) associated with the initialization indication. In addition to this MBS session identifier, or instead of the MBS session identifier, a bearer ID (or MBS bearer ID) may be used.
  • MBS session identifier eg, TMGI, G-RNTI, session ID
  • the gNB 200 re-establishes the PDCP entity by another UE 100 that receives the same MBS session as the UE 100 by multicast, that is, the other UE 100 initializes the PDCP variable.
  • Initialization in step S403 Instructions may be sent. As a result, all of the multiple UEs 100 that receive the same MBS session will initialize the PDCP variables.
  • step S404 the PDCP entity of UE 100 initializes (that is, resets to zero) the updated PDCP variables associated with the MBS session in response to receiving the initialization instruction in step S403.
  • the gNB 200 may initialize updated PDCP variables associated with that MBS session. Initialization of the PDCP variables may be performed at re-establishment of the PDCP entity.
  • step S405 the PDCP entity of UE 100 receives PDCP packets transmitted from gNB 200 in the MBS session.
  • the gNB 200 may resume transmission of PDCP packets upon completing the initialization of the PDCP variables of all UEs that receive the multicast.
  • the PDCP entity of the UE 100 updates the PDCP variable (eg, COUNT) based on the PDCP packet received at step S406.
  • the PDCP variable eg, COUNT
  • the other UE 100 among the plurality of UE 100 may act to initialize the PDCP variables. For example, when one UE 100 among multiple UEs 100 receiving the same MBS session re-establishes the PDCP entity, the gNB 200 suspends the MBS session and then resumes the MBS session. As a result, all of the multiple UEs 100 that receive the same MBS session will initialize the PDCP variables.
  • PDCP operation example 5 Next, an operation example 5 of PDCP according to one embodiment will be described mainly with respect to differences from the operation examples 1 to 4 described above.
  • the PDCP entity of UE 100 updates PDCP variables associated with the MBS session in response to reception of PDCP packets transmitted in the MBS session.
  • the UE 100 retains the PDCP variables associated with the MBS session without initializing them.
  • the PDCP entity of the UE 100 continues reception processing (PDCP operation) of PDCP packets transmitted in the MBS session based on the held PDCP variables. This can prevent the re-establishment of the PDCP entity in one UE 100 receiving the same MBS session by multicast from adversely affecting other UEs 100 .
  • FIG. 14 is a diagram showing an operation example 4 of PDCP according to one embodiment.
  • the UE 100 may be the UE 100 that has joined the MBS session from the beginning. Also, the UE 100 may be a UE 100 that has joined the MBS session from the middle.
  • the gNB 200 may transmit MBS data by multicast to multiple UEs 100 in the RRC connected state.
  • step S501 the PDCP entity of the UE 100 receives PDCP packets transmitted (for example, PTM transmission) from the gNB 200 in the MBS session.
  • PDCP packets transmitted for example, PTM transmission
  • step S502 the PDCP entity of UE 100 updates the PDCP variable (eg, COUNT) based on the PDCP packet received in step S401.
  • the PDCP variables that are updated may be RX_NEXT and/or RX_DELIV.
  • step S503 the UE 100 re-establishes the PDCP entity following handover or RRC re-establishment. That is, the UE 100 deletes the old PDCP entity before handover or RRC re-establishment and generates a new PDCP entity. However, it is assumed that the PDCP variables updated by the old PDCP entity can be retained in a predetermined storage area. Note that the UE 100 may receive a re-establishment instruction for instructing re-establishment of the PDCP entity from the gNB 200 and re-establish the PDCP entity in response to the reception of this re-establishment instruction.
  • step S504 the UE 100 determines whether or not the PDCP entity related to re-establishment is associated with the MBS session.
  • the UE 100 may determine whether or not the PDCP entity related to re-establishment is configured to hold PDCP variables without initializing them.
  • Such settings may be made from the gNB 200 to the UE 100 by, for example, an RRC Reconfiguration message.
  • step S506 the UE 100 holds the PDCP variables updated in step S502 without initializing them. That is, the UE 100 resets the PDCP variable held in the predetermined storage area to the new PDCP entity related to re-establishment.
  • step S507 the PDCP entity of UE 100 receives PDCP packets transmitted from gNB 200 in the MBS session.
  • step S508 the PDCP entity of UE 100 updates the PDCP variable (eg, COUNT) based on the PDCP packet received in step S507.
  • the PDCP variable eg, COUNT
  • the UE 100 may re-establish the PDCP entity in response to handover from the first cell to the second cell of the gNB 200 or RRC re-establishment (step S503).
  • UE 100 is notified from gNB 200 that the PDCP variable can be used continuously in the second cell before performing handover or RRC re-establishment, PDCP variable even if handover or RRC re-establishment is performed may be retained without being initialized.
  • Such notification information may be transmitted by the gNB 200 to the UE 100 in the RRC Reconfiguration message or SIB in the first cell. Operations related to such operations will be described later in Operation Example 6.
  • FIG. 15 is a diagram for explaining PDCP operation example 6 according to an embodiment.
  • the UE 100 may perform handover from cell C1 (first cell) to cell C2 (second cell), RRC re-establishment, or cell reselection.
  • FIG. 15 shows an example in which gNB 200A managing cell C1 and gNB 200B managing cell C2 are different.
  • the UE 100 can continue receiving MBS even after handover, RRC re-establishment, or cell reselection.
  • HFN may not be synchronized between cells.
  • the UE 100 needs to synchronize with the HFN in cell C2, ie, the HFN managed by the gNB 200B, when moving from cell C1 to cell C2.
  • the PDCP entity of the UE 100 updates a PDCP variable (eg, COUNT) associated with the MBS session in response to receiving a PDCP packet transmitted in the MBS session (step S601 ).
  • the PDCP variables that are updated may be RX_NEXT and/or RX_DELIV.
  • UE 100 is handed over from cell C1 to cell C2, RRC re-establishment, or before performing cell reselection, whether the updated PDCP variables continue to be available in cell C2 is received from the gNB 200A (step S602). It is assumed that the gNB 200A knows whether or not the HFNs are synchronized between the cells C1 and C2 through inter-base station communication with the gNB 200B, for example. The gNB 200A sends notification information indicating that the updated PDCP variables can continue to be used in cell C2 when the HFN is synchronized between cells C1 and C2.
  • the gNB 200A will send a notification indicating that the updated PDCP variables are continuously disabled in cell C2.
  • the gNB 200A may transmit notification information in SIB, MCCH, RRC Reconfiguration, PDCP Control PDU.
  • the notification information may include information indicating an area consisting of one or more cells that can continue to use the updated PDCP variables.
  • the notification information may include a cell ID list consisting of cell IDs of cells that can reuse the PDCP variables used in cell C1.
  • the UE 100 performs handover from cell C1 to cell C2, RRC re-establishment, or cell reselection (step S603).
  • the PDCP entity of the UE 100 when the notification information indicates that the PDCP variables (eg, COUNT) used in the cell C1 can also be used in the cell C2, continue the PDCP variables held in the cell C2. to receive a PDCP packet from cell C2 (step S604).
  • the notification information indicates that the PDCP variables used in cell C1 cannot be used in cell C2
  • the PDCP entity of UE 100 derives the PDCP variables from the PDCP packet first received in cell C2 (described above See operation example 1).
  • the UE 100 may derive PDCP variables using the notified HFN.
  • FIGS. 16 and 17 are diagrams for explaining an operation example of RLC according to one embodiment.
  • the RLC entity of the UE 100 receives from the gNB 200 RLC PDUs (Protocol Data Units) obtained by dividing the RLC SDUs (Service Data Units) by the gNB 200, which are transmitted in the MBS session.
  • RLC PDUs Protocol Data Units
  • RLC SDUs Service Data Units
  • the RLC entity of the gNB 200 performs division processing of PDCP packets (that is, RLC SDUs) (step S701). Such division processing is sometimes called segmentation.
  • the RLC entity of gNB 200 allocates a sequence number (SN) to each segment obtained by the segmentation process to obtain RLC PDUs.
  • FIG. 16 shows an example of division into a total of six RLC PDUs (six segments) of SN#0 to #5.
  • the RLC entity of UE 100 cannot reconstruct the original PDCP packet (RLC SDU) until it receives all of these six RLC PDUs.
  • Such reconstruction processing is sometimes called Reassembly.
  • UM Unacknowledged Mode
  • the UE 100 receives from the first RLC PDU (that is, the RLC PDU of SN#0), so there is no big problem.
  • the UE 100 may join the MBS session in the middle, so it is not always possible to receive the RLC PDU of SN#0. If the UE 100 cannot receive the RLC PDU of SN#0, the reassembly to the RLC SDU cannot be completed. RLC SDUs that cannot be reassembled will be discarded when the timer (T-Reassembly) expires.
  • the RLC entity of UE 100 that has joined the MBS session halfway through the first received RLC PDU and the first received RLC PDU Reconstruct the RLC SDU from the RLC PDUs that follow the RLC PDU that was generated.
  • the RLC entity of UE 100 has received the first RLC PDU (that is, the RLC PDU of SN#0) (step S702). Therefore, the RLC entity of the UE 100 reconstructs the RLC SDU when the RLC PDUs of SN#0 to #5 are complete (step S703), and passes the RLC SDU to the upper layer (that is, PDCP).
  • the RLC entity of UE 100 receives the first received RLC PDU and the first received RLC PDU subsequent Discard the RLC PDUs. Specifically, if the RLC sequence number included in the RLC PDU first received from gNB 200 is not zero, the RLC entity of UE 100 receives the first Discard the RLC PDU and the RLC PDU that follows the first received RLC PDU.
  • the RLC entity of UE 100 that has joined the MBS session halfway confirms the sequence number of the RLC PDU first received from gNB 200 and detects that this sequence number is SN#2 (step S711). In this case, the RLC entity of UE 100 discards the RLC PDU of SN#2 and the subsequent RLC PDUs of SN#3 to #5 even if the timer (T-Reassembly) has not expired.
  • the gNB 200 it is desirable for the gNB 200 to reduce the number of RLC divisions in MBS transmission in order to minimize PDCP packet discards.
  • PDCP operation examples 1 to 6 according to the above embodiment may be applied to the RLC operation. That is, "PDCP" in the PDCP operation examples 1 to 6 according to the above embodiment may be read as "RLC".
  • Each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operational flow may be added to another operational flow. Also, some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station may be an NR base station (gNB)
  • the base station may be an LTE base station (eNB).
  • the base station may be a relay node such as an IAB (Integrated Access and Backhaul) node.
  • the base station may be a DU (Distributed Unit) of an IAB node.
  • a program that causes a computer to execute each process performed by the UE 100 or the gNB 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or gNB 200 may be integrated, and at least part of the UE 100 or gNB 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System on a chip)).
  • the PDCP SN when reusing an existing PDCP functional view, the PDCP SN is common to both the PTM leg and the PTP leg. Since PTM legs are used for multiple UEs, the PDCP SN may not be UE specific and affects both PTM and PTP legs. This means that when a UE joins a multicast session late, the initial value of each state variable is always '0' regardless of whether the first received MBS data is from the PTM leg or the PTP leg. It means that it is not necessarily the case. In other words, the PDCP SN that the UE initially receives can be any value that is not assumed in current unicast transmissions. Also, PDCP re-establishment for one UE may affect all other UEs because state variables are set to initial values. This causes unexpected behavior with receive windows. In other words, PDCP PDUs outside the reception window are discarded.
  • the first received data is received first regardless of whether it is from the PTM leg or the PTP leg.
  • the SN of the received PDCP PDU is the initial value, that is, not "0".
  • Option A The gNB notifies the UE of the initial COUNT value, or RX_NEXT and RX_DELIV.
  • This option allows the UE to receive the first transmission of MBS data with existing mechanisms by only changing the initial values related to the reception window based on information from the gNB.
  • the UE will always successfully receive the gNB's intended first transmission, e.g. due to delays in switching, bad radio conditions, or being outside the RLC reconfiguration window. It is unclear how this option would work in this case.
  • Option B The gNB notifies the UE of the first HFN, and the UE guesses the first HFN and SN from the first received PDCP PDU.
  • this option is similar to the Rel-16 V2X mechanism. That is, "For broadcast and groupcast NR sidelink communications, the initial value of the SN part of RX_NEXT is (x+1) modulo (2 [sl-PDCP-SN-Size] ), where x is the first received PDCP data is the SN of the PDU" and "For broadcast and groupcast NR sidelink communications, the initial value of the SN part of RX_DELIV is (x-0.5x2 [sl-PDCP-SN-Size-1] ) modulo ( 2 [sl-PDCP-SN-Size] ), where x is the SN of the first received PDCP data PDU'.
  • the Rel-16 V2X mechanism does not require synchronization of the transmitter and receiver.
  • HFN since HFN is not used for security, "Note: It is up to the UE implementation to select HFN for RX_NEXT so that the initial value of RX_DELIV is a positive value.”
  • SA3 wait for SA3 to finish investigating the security of MBS before replying to explain the security aspects of RAN2. Therefore, if the HFN part needs to be signaled at this point, RAN2 should be deferred.
  • Option B should serve as a baseline for further discussion.
  • RAN2 sets the initial value of state variables from the first received PDCP PDU of MBS data by the UE, considering the progress of SA3 on security of NR MBS must at least agree to do so.
  • Proposal 3 RAN2 should agree that the UE sets the initial value of the SN part of RX_NEXT and RX_DELIV from the first received MBS data regardless of PTM leg or PTP leg. Depending on the progress of SA3, further consideration is required whether the HFN part will be signaled by the gNB.
  • proposal 2 can be agreed, the UE needs to support simultaneous reception from both PTM and PTP legs. That is, two legs can be activated at the same time, similar to existing PDCP packet duplication. It is beneficial for dynamic PTM/PTP switching because PTP legs are received by multiple UEs, i.e. not UE-specific, and can easily compensate for missing packets that were not received via the PTM leg. it is conceivable that. Therefore, RAN2 needs to agree to simultaneous reception for at least a period of time during dynamic PTM/PTP switching.
  • Proposal 4 RAN2 should agree that UE supports simultaneous reception from both PTM leg and PTP leg for a period of time after dynamic PTM/PTP switching. If Proposals 3 and 4 can be agreed upon, the gNB may not actually know the PDCP SN that the UE has successfully started receiving over the PTM leg. In the case of a PTP to PTM switch, this means that the gNB may not know which PDCP PDUs need to be sent over the PTP leg and/or when the PTP leg can be deactivated. . To solve this problem, it is proposed that the UE inform the gNB of successful PTM reception. This can be sent over the PTP leg if not already deactivated. However, it is unclear if this solution is intended to include the PDCP SN in the information.
  • the gNB may not know the PDCP SN that the UE has finished receiving over the PTM leg. This means that the gNB may not be aware of the PDCP PDUs to initiate transmission over the PTP leg. Therefore, the UE can be considered to inform the gNB of the SN information via the activated PTP leg during dynamic PTM/PTP switching.
  • the UE reports SN information when dynamically switching between PTM and PTP, it is easy to reuse the PDCP control PDUs and exactly the PDCP status report is FMC (first missing PDCP SDU) and an arbitrary bitmap (indicating that the next PDCP SDU is missing or received correctly).
  • FMC first missing PDCP SDU
  • an arbitrary bitmap indicating that the next PDCP SDU is missing or received correctly.
  • reporting the first/last successful PDCP SDU reception over the PTM leg is another option. Therefore, it is necessary to further discuss what needs to be reported during dynamic switching between PTM and PTP.
  • the PDCP Control PDU contains PDCP SN information for service continuity (e.g. activation/deactivation MAC by the CE).
  • Proposal 5 RAN2 should consider whether the UE will send a PDCP control PDU containing PDCP SN information during dynamic switching for service continuity.
  • the type of PDCP control PDUs used and the exact meaning of the SN information need further study.
  • NG-RAN 5G RAN
  • 5GC 5G CN
  • UE 110 Reception unit 120: Transmission unit 130: Control unit 200: gNB 210: Transmission unit 220: Reception unit 230: Control unit 240: Backhaul communication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

第1の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する方法である。通信制御方法は、PDCPシーケンス番号及びハイパーフレーム番号からなるカウント値を用いて暗号化され、MBSセッションで伝送されるPDCPパケットを前記基地局から受信することと、前記ハイパーフレーム番号を推測することで推測ハイパーフレーム番号を生成することと、前記受信したPDCPパケットに含まれる前記PDCPシーケンス番号と前記推測ハイパーフレーム番号とからなる推測カウント値を用いて、前記PDCPパケットの復号を試みることと、前記復号に成功した場合、前記推測ハイパーフレーム番号を有効なハイパーフレーム番号として決定することと、を有する。

Description

通信制御方法及びユーザ装置
 本開示は、移動通信システムで用いる通信制御方法及びユーザ装置に関する。
 近年、第5世代(5G)の移動通信システムが注目されている。5Gシステムの無線アクセス技術(RAT:Radio Access Technology)であるNR(New Radio)は、第4世代の無線アクセス技術であるLTE(Long Term Evolution)に比べて、高速・大容量かつ高信頼・低遅延といった特徴を有する。
3GPP技術仕様書「3GPP TS 38.300 V16.3.0 (2020-09)」
 第1の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する方法である。通信制御方法は、PDCPシーケンス番号及びハイパーフレーム番号からなるカウント値を用いて暗号化され、MBSセッションで伝送されるPDCPパケットを前記基地局から受信することと、前記ハイパーフレーム番号を推測することで推測ハイパーフレーム番号を生成することと、前記受信したPDCPパケットに含まれる前記PDCPシーケンス番号と前記推測ハイパーフレーム番号とからなる推測カウント値を用いて、前記PDCPパケットの復号を試みることと、前記復号に成功した場合、前記推測ハイパーフレーム番号を有効なハイパーフレーム番号として決定することと、を有する。
 第2の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する方法である。通信制御方法は、前記ユーザ装置のPDCPエンティティが、MBSセッションで伝送されるPDCPパケットの受信に応じて、前記MBSセッションと対応付けられたPDCP変数を更新することと、前記MBSセッションが中断された場合、又は、前記MBSセッションが中断された後に前記MBSセッションが再開された場合、又は、前記基地局から前記PDCP変数を初期化するための指示を受信した場合、前記更新されたPDCP変数を初期化することと、を有する。
 第3の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する方法である。通信制御方法は、前記ユーザ装置のPDCPエンティティが、MBSセッションで伝送されるPDCPパケットの受信に応じて、前記MBSセッションと対応付けられたPDCP変数を更新することと、前記PDCPエンティティが再確立された場合、前記MBSセッションと対応付けられた前記PDCP変数を初期化せずに保持することと、前記PDCPエンティティが、前記保持されたPDCP変数に基づいて、前記MBSセッションで伝送されるPDCPパケットの受信処理を継続することと、を有する。
 第4の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する方法である。通信制御方法は、前記ユーザ装置のPDCPエンティティが、MBSセッションで伝送されるPDCPパケットの受信に応じて、前記MBSセッションと対応付けられたPDCP変数を更新することと、前記ユーザ装置が前記基地局の第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行うよりも前において、前記更新されたPDCP変数を前記第2セルにおいて継続して使用可能であるか否かを示す通知情報を前記基地局から受信することと、を有する。
 第5の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する方法である。通信制御方法は、前記ユーザ装置のRLCエンティティが、MBSセッションで伝送され、前記基地局がRLC SDUを分割して得られたRLC PDUを前記基地局から受信することと、前記基地局から最初に受信したRLC PDUに含まれるRLCシーケンス番号に基づいて、前記最初に受信したRLC PDU及び前記最初に受信したRLC PDUに後続するRLC PDUから前記RLC SDUを再構築するか否かを決定することと、を有する。
 第6の態様に係るユーザ装置は、第1乃至第5の態様のいずれかに係る通信制御方法を実行するプロセッサを備える。
一実施形態に係る移動通信システムの構成を示す図である。 一実施形態に係るUE(ユーザ装置)の構成を示す図である。 一実施形態に係るgNB(基地局)の構成を示す図である。 データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 一実施形態に係る下りリンクの論理チャネル(Logical channel)とトランスポートチャネル(Transport channel)との対応関係を示す図である。 一実施形態に係るMBSデータの配信方法を示す図である。 一実施形態に係るスプリットMBSベアラを示す図である。 一実施形態に係るレグのアクティブ化及び非アクティブ化に関する動作例を示す図である。 一実施形態に係るPDCPの動作例1を示す図である。 一実施形態に係るPDCPの動作例2を示す図である。 一実施形態に係るPDCPの動作例3を示す図である。 一実施形態に係るPDCPの動作例4を示す図である。 一実施形態に係るPDCPの動作例4を示す図である。 一実施形態に係るPDCPの動作例6を説明するための図である。 一実施形態に係るRLCの動作例を説明するための図である。 一実施形態に係るRLCの動作例を説明するための図である。 既存のPDCPファンクショナルビューを再利用するケースを説明するための図である。
 5Gシステム(NR)にマルチキャスト・ブロードキャストサービスを導入することが検討されている。NRのマルチキャスト・ブロードキャストサービスは、LTEのマルチキャスト・ブロードキャストサービスよりも改善されたサービスを提供することが望まれる。
 そこで、本開示は、改善されたマルチキャスト・ブロードキャストサービスを実現する通信制御方法及びユーザ装置を提供することを目的とする。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システムの構成)
 まず、実施形態に係る移動通信システムの構成について説明する。図1は、一実施形態に係る移動通信システムの構成を示す図である。この移動通信システムは、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、移動通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。また、移動通信システムには第6世代(6G)システムが少なくとも部分的に適用されてもよい。
 図1に示すように、移動通信システムは、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。
 UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末(スマートフォンを含む)、タブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、及び/又は飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局が5GCに接続することもできる。LTEの基地局とgNBとが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、一実施形態に係るUE100(ユーザ装置)の構成を示す図である。
 図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 図3は、一実施形態に係るgNB200(基地局)の構成を示す図である。
 図3に示すように、gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、gNBは、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間はF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図4に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図5に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。UE100のRRCとgNB200のRRCとの間の接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300BのNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (MBS)
 次に、一実施形態に係るMBSについて説明する。MBSは、NG-RAN10からUE100に対してブロードキャスト又はマルチキャスト、すなわち、1対多(PTM:Point To Multipoint)でのデータ送信を可能とするサービスである。MBSは、MBMS(Multimedia Broadcast and Multicast Service)と呼ばれてもよい。なお、MBSのユースケース(サービス種別)としては、公安通信、ミッションクリティカル通信、V2X(Vehicle to Everything)通信、IPv4又はIPv6マルチキャスト配信、IPTV(Internet protocol television)、グループ通信、及びソフトウェア配信等がある。
 LTEにおけるMBSの送信方式には、MBSFN(Multicast Broadcast Single Frequency Network)送信及びSC-PTM(Single Cell Point To Multipoint)送信の2種類がある。図6は、一実施形態に係る下りリンクの論理チャネル(Logical channel)とトランスポートチャネル(Transport channel)との対応関係を示す図である。
 図6に示すように、MBSFN送信に用いる論理チャネルはMTCH(Multicast Traffic Channel)及びMCCH(Multicast Control Channel)であり、MBSFN送信に用いるトランスポートチャネルはMCH(Multicast Control Channel)である。MBSFN送信は、主にマルチセル送信用に設計されており、複数のセルからなるMBSFNエリアにおいて各セルが同じMBSFNサブフレームで同じ信号(同じデータ)の同期送信を行う。
 SC-PTM送信に用いる論理チャネルはSC-MTCH(Single Cell Multicast Traffic Channel)及びSC-MCCH(Single Cell Multicast Control Channel)であり、SC-PTM送信に用いるトランスポートチャネルはDL-SCH(Downlink Shared Channel)である。SC-PTM送信は、主に単一セル送信用に設計されており、セル単位でブロードキャスト又はマルチキャストでのデータ送信を行う。SC-PTM送信に用いる物理チャネルはPDCCH(Physical Downlink Control Channel)及びPDSCH(Physical Downlink Control Channel)であり、動的なリソース割当が可能になっている。
 以下において、SC-PTM伝送方式と同様な方式を用いてMBSが提供される一例について主として説明するが、MBSFN伝送方式を用いてMBSが提供されてもよい。また、MBSがマルチキャストにより提供される一例について主として説明する。このため、MBSをマルチキャストと読み替えてもよい。但し、MBSがブロードキャストにより提供されてもよい。
 また、MBSデータとは、MBSにより提供されるデータをいい、MBS制御チャネルとは、MCCH又はSC-MCCHをいい、MBSトラフィックチャネルとは、MTCH又はSC-MTCHをいうものとする。但し、MBSデータは、ユニキャストで送信される場合もある。MBSデータは、MBSパケット又はMBSトラフィックと呼ばれてもよい。
 ネットワークは、MBSセッションごとに異なるMBSサービスを提供できる。MBSセッションは、TMGI(Temporary Mobile Group Identity)及びセッション識別子のうち少なくとも1つにより識別され、これらの識別子のうち少なくとも1つをMBSセッション識別子と呼ぶ。このようなMBSセッション識別子は、MBSサービス識別子又はマルチキャストグループ識別子と呼ばれてもよい。
 図7は、一実施形態に係るMBSデータの配信方法を示す図である。
 図7に示すように、MBSデータ(MBS Traffic)は、単一のデータソース(アプリケーションサービスプロバイダ)から複数のUEに配信される。5Gコアネットワークである5G CN(5GC)20は、アプリケーションサービスプロバイダからMBSデータを受信し、MBSデータのコピーの作成(Replication)を行って配信する。
 5GC20の観点からは、共有MBSデータ配信(Shared MBS Traffic delivery)及び個別MBSデータ配信(Individual MBS Traffic delivery)の2つの配信方法が可能である。
 共有MBSデータ配信では、5G無線アクセスネットワーク(5G RAN)であるNG-RAN10と5GC20との間に接続が確立され、5GC20からNG-RAN10へMBSデータを配信する。以下において、このような接続(トンネル)を「MBS接続」と呼ぶ。
 MBS接続は、Shared MBS Traffic delivery接続又は共有トランスポート(shared transport)と呼ばれてもよい。MBS接続は、NG-RAN10(すなわち、gNB200)で終端する。MBS接続は、MBSセッションと1対1で対応していてもよい。
 gNB200は、自身の判断でPTP(Point-to-Point:ユニキャスト)及びPTM(Point-to-Multipoint:マルチキャスト又はブロードキャスト)のいずれかの伝送方式を選択し、選択した伝送方式でUE100にMBSデータを送信する。
 他方、個別MBSデータ配信では、NG-RAN10とUE100との間にユニキャストのセッションが確立され、5GC20からUE100へMBSデータを個別に配信する。このようなユニキャストは、PDUセッション(PDU Session)と呼ばれてもよい。ユニキャスト(PDUセッション)は、UE100で終端する。
 (スプリットMBSベアラ)
 次に、一実施形態に係るスプリットMBSベアラについて説明する。
 gNB200は、PTP通信パス及びPTM通信パスに分離されたMBSベアラ(以下、適宜「スプリットMBSベアラ」と呼ぶ)をUE100に設定し得る。これにより、gNB200は、UE100に対するMBSデータの送信をPTP(PTP通信パス)とPTM(PTM通信パス)との間で動的に切り替えることができる。或いは、gNB200は、PTP(PTP通信パス)及びPTM(PTM通信パス)を併用して同一のMBSデータを二重送信することにより信頼性を高めることができる。
 スプリットを終端する所定レイヤは、MACレイヤ(HARQ)、RLCレイヤ、PDCPレイヤ、又はSDAPレイヤである。以下において、スプリットを終端する所定レイヤがPDCPレイヤである一例について主として説明するが、所定レイヤは、MACレイヤ(HARQ)、RLCレイヤ、又はSDAPレイヤであってもよい。
 図8は、一実施形態に係るスプリットMBSベアラを示す図である。以下において、PTP通信パスをPTPレグと呼び、PTM通信パスをPTMレグと呼ぶ。また、各レイヤに相当する機能部をエンティティと呼ぶ。
 図8に示すように、gNB200のPDCPエンティティ及びUE100のPDCPエンティティのそれぞれは、MBSに用いるベアラ(データ無線ベアラ)であるMBSベアラをPTPレグ及びPTMレグに分離する。なお、PDCPエンティティはベアラごとに設けられる。
 gNB200及びUE100のそれぞれは、レグごとに設けられる2つのRLCエンティティと、1つのMACエンティティと、1つのPHYエンティティとを有する。PHYエンティティは、レグごとに設けられてもよい。なお、UE100が2つのgNB200との通信を行う二重接続(Dual Connectivity)の場合、UE100が2つのMACエンティティを有していてもよい。
 PHYエンティティは、UE100と1対1で割り当てられるセルRNTI(C-RNTI:Cell Radio Network Temporary Identifier)を用いて、PTPレグのデータを送受信する。PHYエンティティは、MBSセッションと1対1で割り当てられるグループRNTI(G-RNTI:Group Radio Network Temporary Identifier)を用いて、PTMレグのデータを送受信する。C-RNTIはUE100ごとに異なるが、G-RNTIは1つのMBSセッションを受信する複数のUE100で共通のRNTIである。
 gNB200からUE100に対してPTMレグを用いてMBSデータのPTM送信(マルチキャスト又はブロードキャスト)を行うためには、gNB200からUE100にスプリットMBSベアラが設定されており、且つ、PTMレグがアクティブ化(activation)されている必要がある。言い換えると、gNB200は、UE100にスプリットMBSベアラが設定されていても、PTMレグが非アクティブ(deactivation)状態にある場合は、このPTMレグを用いてMBSデータのPTM送信を行うことができない。
 また、gNB200及びUE100がPTPレグを用いてMBSデータのPTP送信(ユニキャスト)を行うためには、gNB200からUE100にスプリットMBSベアラが設定されており、且つ、PTPレグがアクティブ化されている必要がある。言い換えると、gNB200は、UE100にスプリットMBSベアラが設定されていても、PTPレグが非アクティブ状態にある場合は、このPTPレグを用いてMBSデータのPTP送信を行うことができない。
 UE100は、PTMレグがアクティブ化された状態において、MBSセッションと対応付けられたG-RNTIが適用されたPDCCH(Physical Downlink Control Channel)をモニタする(すなわち、G-RNTIを用いてPDCCHのブラインドデコーディングを行う)。UE100は、当該MBSセッションのスケジューリング機会にのみ当該PDCCHをモニタしてもよい。
 UE100は、PTMレグが非アクティブ化された状態において、MBSセッションと対応付けられたG-RNTIが適用されたPDCCHをモニタしない(すなわち、G-RNTIを用いたPDCCHのブラインドデコーディングを行わない)。
 UE100は、PTPレグがアクティブ化された状態において、C-RNTIが適用されたPDCCHをモニタする。UE100は、PTPレグにおける間欠受信(DRX:Discontinuous Reception)が設定されている場合、設定されたオン期間(OnDuration)においてPDCCHをモニタする。UE100は、MBSセッションと紐づいたセル(周波数)が指定されている場合、当該セルが非アクティブ化されていても、当該セルのPDCCHをモニタしてもよい。
 UE100は、PTPレグが非アクティブ化された状態において、MBSデータ以外の通常のユニキャスト下りリンク送信に備えて、C-RNTIが適用されたPDCCHをモニタしてもよい。但し、UE100は、MBSセッションと紐づいたセル(周波数)が指定されている場合、当該MBSセッションについて当該PDCCHをモニタしなくてもよい。
 なお、gNB200のRRCエンティティがUE100のRRCエンティティに対して送信するRRCメッセージ(例えば、RRC Reconfigurationメッセージ)により、上述のようなスプリットMBSベアラが設定されるものとする。
 (レグのアクティブ化及び非アクティブ化)
 次に、一実施形態に係るレグのアクティブ化及び非アクティブ化について説明する。図9は、一実施形態に係るレグのアクティブ化及び非アクティブ化に関する動作例を示す図である。
 図9に示すように、ステップS11において、gNB200のRRCエンティティは、図8に示すスプリットMBSベアラ(スプリットベアラ)の設定を含むRRCメッセージをUE100に送信する。RRCメッセージは、例えばRRC Reconfigurationメッセージである。UE100のRRCエンティティは、gNB200から受信したRRCメッセージに含まれる設定に基づいてスプリットMBSベアラを確立する。以下において、UE100が確立するスプリットMBSベアラが1つである一例について主として説明するが、UE100は、gNB200からの設定に応じて複数のスプリットMBSベアラを確立してもよい。
 gNB200は、RRCメッセージ(RRC Reconfigurationメッセージ)でベアラ設定を行う際に、同メッセージにて各レグの初期状態(すなわち、各レグのアクティブ化又は非アクティブ化)をUE100に指示してもよい。gNB200のRRCエンティティは、スプリットMBSベアラのベアラ設定を含むRRCメッセージをUE100に送信するとき、ベアラ設定と共に、各レグのアクティブ化又は非アクティブ化の指示をRRCメッセージに含める。
 このようなRRCメッセージは、指示の対象となるレグ(PTPレグ、PTMレグ)の識別子、及び、アクティブ化及び非アクティブ化のいずれか一方を示す識別子のうち、少なくとも一方を含んでもよい。RRCメッセージは、指示の対象となるMBSセッション(スプリットMBSベアラ)と対応付けられた識別子(例えば、TMGI、G-RNTI、セッション識別子、QoSフロー識別子、ベアラ識別子)を含んでもよい。
 ステップS12において、gNB200は、PTPレグ及びPTMレグを個別にアクティブ化又は非アクティブ化するための指示をUE100に送信する。
 ここで、gNB200のMACエンティティは、当該指示を含むMAC制御要素(MAC CE)をUE100に送信してもよい。UE100のMACエンティティは、gNB200からMAC CEを受信する。或いは、gNB200のPHYエンティティは、当該指示を含む下りリンク制御情報(DCI)をUE100に送信してもよい。UE100のPHYエンティティは、gNB200からDCIを受信する。
 このようなMAC CE又はDCIは、指示の対象となるレグ(PTPレグ、PTMレグ)の識別子、及び、アクティブ化及び非アクティブ化のいずれか一方を示す識別子のうち、少なくとも一方を含んでもよい。MAC CE又はDCIは、指示の対象となるMBSセッション(スプリットMBSベアラ)と対応付けられた識別子(例えば、TMGI、G-RNTI、セッション識別子、QoSフロー識別子、ベアラ識別子)を含んでもよい。
 MAC CE又はDCIを用いて各レグのアクティブ化及び非アクティブ化を指示することにより、RRCメッセージを用いる場合に比べて動的な制御が可能である。
 UE100は、PTPレグをアクティブ化する指示の受信に応じて、C-RNTIを用いたデータの受信処理を開始する。UE100は、PTMレグをアクティブ化する指示の受信に応じて、G-RNTIを用いたMBSデータの受信処理を開始する。他方、UE100は、PTPレグを非アクティブ化する指示の受信に応じて、C-RNTIを用いたデータの受信処理を終了する。UE100は、PTMレグを非アクティブ化する指示の受信に応じて、G-RNTIを用いたMBSデータの受信処理を終了する。
 ステップS12において、gNB200は、アクティブ化された状態にあるPTMレグを介して、PTPレグをアクティブ化又は非アクティブ化する指示をUE100に送信(PTM送信)してもよい。これにより、複数のUE100のPTPレグをPTMで一括してアクティブ化又は非アクティブ化することができる。
 gNB200は、アクティブ化された状態にあるPTMレグを介して、PTMレグを非アクティブ化する指示をUE100に送信(PTM送信)してもよい。これにより、複数のUE100のPTMレグをPTMで一括して非アクティブ化することができる。
 ステップS12において、gNB200は、アクティブ化された状態にあるPTPレグを介して、PTMレグをアクティブ化又は非アクティブ化する指示をUE100に送信(PTP送信)してもよい。これにより、UE100ごとにPTMレグを個別にアクティブ化又は非アクティブ化することができる。
 gNB200は、アクティブ化された状態にあるPTPレグを介して、PTPレグを非アクティブ化する指示をUE100に送信(PTP送信)してもよい。これにより、UE100ごとにPTPレグを個別に非アクティブ化することができる。
 ステップS13において、UE100は、ステップS12でgNB200からPTPレグ及びPTMレグの少なくとも一方のレグをアクティブ化する指示を受信したことに応じて、受信した指示に対する応答をgNB200に送信してもよい。この応答は、例えば、UE100のMACエンティティからPTPレグを介してgNB200に送信されてもよい。UE100は、当該応答を送信後、アクティブ化されたレグにおけるデータ受信動作を開始してもよい。
 gNB200は、UE100からの応答の受信に応じて、アクティブ化されたレグを介してデータを送信する。すなわち、gNB200は、当該応答を受信後、当該レグにおけるデータ送信動作を開始する。
 なお、UE100は、ステップS12でgNB200からPTPレグ及びPTMレグの少なくとも一方のレグを非アクティブ化する指示を受信したことに応じて、受信した指示に対する応答をgNB200に送信してもよい。
 UE100のPDCPエンティティは、PTPレグ及びPTMレグの両方がアクティブ化された場合、二重送信(Duplication)で送信される2つの同一MBSパケットの重複破棄(duplicate packet discarding)処理を行ってもよい。
 (PDCPの動作例1)
 次に、一実施形態に係るPDCPの動作例1について説明する。
 UE100のPDCPエンティティは、gNB200から受信するPDCPパケットに含まれるPDCPシーケンス番号(PDCP SN)に応じてPDCP変数を設定及び更新する。通常、UE100は、PDCP変数の初期値をゼロに設定し、gNB200からのパケット受信に応じてPDCP変数を更新(インクリメント、カウントアップ)していく。
 あるMBSセッションに最初から参加したUE100のPDCPエンティティは、PDCP変数を順次更新し、最新の状態にすることができる。他方、MBSセッションに途中から参加したUE100のPDCPエンティティは、初期値から大きく離れた値のPDCP SNを有するPDCPパケットを受信し得るため、PDCPエンティティの動作(所定PDCP動作)を正常に行うことができない虞がある。
 動作例1において、次のような方法により、MBSセッションに途中から参加したUE100が所定PDCP動作を正常に行うことを可能とする。
 UE100のPDCPエンティティは、gNB200から最初に受信したPDCPパケットに含まれるPDCP SNを、所定PDCP動作に用いる変数(PDCP変数)の初期値として設定する。すなわち、UE100のPDCPエンティティは、MBSセッション(PTM)で送信されるPDCPパケットを受信する場合、PDCP変数をゼロに設定するのではなく、gNB200から最初に受信したPDCPパケットに含まれるPDCP SNをPDCP変数の初期値として設定する。これにより、MBSセッションに途中から参加したUE100のPDCPエンティティが所定PDCP動作を正常に行うことが可能になる。
 所定PDCP動作は、受信ウィンドウ制御及びパケット並び替え動作のうち少なくとも一方である。
 受信ウィンドウ制御に用いるPDCP変数は、RX_NEXT及びRX_DELIVの少なくとも一方であってもよい。RX_NEXTは、次に受信することが期待されるPDCP SDUのシーケンス番号を含んで構成される。RX_DELIVは、受信待ちで、未だ上位レイヤに提供していないPDCP SDUのうち最も古いもののシーケンス番号を含んで構成される。通常、RX_NEXT及びRX_DELIVの初期値は”0”である。
 パケット並び替え動作(Reordering)に用いるPDCP変数は、RX_REORDであってもよい。RX_REORDは、パケットの並び替えを待つ最大時間を示すタイマを始動したPDCP SDUのシーケンス番号である。例えば、UE100は、受信パケットのシーケンス番号がRX_REORDよりも小さい場合、当該パケットを破棄する。
 図10は、一実施形態に係るPDCPの動作例1を示す図である。
 図10に示すように、ステップS101において、gNB200は、あるMBSセッションについてMBS送信を開始する。ステップS102において、当該MBSセッションに最初から参加するUE100Aは、当該MBSセッションについてMBS受信を開始する。UE100Aは、RRCコネクティッド状態、RRCアイドル状態、又はRRCインアクティブ状態にある。UE100Aは、MBSベアラ(PDCP)の設定をgNB200から受信して実行してもよい。
 ステップS103において、gNB200は、MBSベアラを介してPDCPパケットをPTMで送信する。このPDCPパケットのPDCPヘッダに含まれるシーケンス番号(PDCP SN)は“0”であるとする。
 ステップS104において、UE100AのPDCPエンティティは、PDCPパケットをgNB200から受信すると、受信したPDCPパケットに含まれるPDCP SN“0”をPDCP変数の初期値として設定し、所定PDCP動作を行う。
 その後、ステップS105において、UE100Bは、当該MBSセッションに途中から参加し、当該MBSセッションについてMBS受信を開始する。UE100Bは、RRCコネクティッド状態、RRCアイドル状態、又はRRCインアクティブ状態にある。UE100Bは、MBSベアラ(PDCP)の設定をgNB200から受信して実行してもよい。
 ステップS106において、gNB200は、MBSベアラを介してPDCPパケットをPTMで送信する。このPDCPパケットのPDCPヘッダに含まれるPDCP SNは“n”であるとする。但し、“n”は1以上の整数である。
 ステップS107において、UE100BのPDCPエンティティは、MBSベアラを介してPDCPパケットを最初に受信すると、最初に受信したPDCPパケットに含まれるPDCP SN“n”をPDCP変数の初期値として設定し、所定PDCP動作を行う。例えば、UE100BのPDCPエンティティは、RX_DELIV=当該パケットのシーケンス番号“n”とし、RX_NEXT=当該パケットのシーケンス番号“n”とする。もしくは、(n+1) mod [SNサイズ]としてもよい。
 ステップS108において、UE100AのPDCPエンティティは、MBSベアラを介してPDCPパケットを受信すると、受信したPDCPパケットに含まれるPDCP SN“n”でPDCP変数を更新する。
 ステップS109において、gNB200は、MBSベアラを介してPDCPパケットをPTMで送信する。このPDCPパケットのPDCPヘッダに含まれるPDCP SNは“n+1”であるとする。
 ステップS110において、UE100BのPDCPエンティティは、MBSベアラを介してPDCPパケットを受信すると、受信したPDCPパケットに含まれるPDCP SN“n+1”でPDCP変数を更新する。
 ステップS111において、UE100AのPDCPエンティティは、MBSベアラを介してPDCPパケットを受信すると、受信したPDCPパケットに含まれるPDCP SN“n+1”でPDCP変数を更新する。
 本動作例では、受信したPDCPパケットから各PDCP変数の初期値を更新したが、これに限らない。各PDCP変数の初期値は、gNB200からUE100に設定されてもよい。例えば、MBS途中受信を行うUE100Bは、dedicated signallingでMBS受信設定が行われる際に、各PDCP変数の初期値がgNB200から与えられてもよい。
 (PDCPの動作例2)
 次に、一実施形態に係るPDCPの動作例2について、上述の動作例1との相違点を主として説明する。
 上述の動作例1では、UE100が管理するPDCP変数として主としてPDCP SNを想定していた。本動作例2では、UE100がハイパーフレーム番号(HFN)もPDCP変数として管理する一例について説明する。HFNは、PDCP SNが一周(wrap around)するとインクリメントされる。すなわち、HFNは、PDCP SNが一周する度にカウントアップされる値である。
 例えば、UE100は、PDCP SN及びHFNからなるカウント値であるCOUNTを管理する。RX_DELIVのフォーマットはCOUNTと同じであり、HFN+SNである。また、COUNTは、セキュリティのためのPDCPパケットの暗号化にも用いられる。
 上述の動作例1では、MBSセッションに途中から参加するUE100Bは、このMBSセッションで最初に受信したPDCPパケット(PDCP PDU)のヘッダに含まれるPDCP SNからRX_DELIVを算出していた。ここで、PDCP PDUのヘッダには、PDCP SNが含まれているが、HFNは含まれていない。
 RX_DELIVの初期値は0であり、ユニキャストの場合はgNB200及びUE100双方が初期値をベースにPDCP SNのwrap around毎にHFNをインクリメントすることで、gNB200及びUE100のHFNは同期する。他方、マルチキャストの場合、上述のように、UE100はどのRX_DELIVからPDCPパケットを受信し始めるかが不定であるため、受信したPDCPパケットだけを見ても有効なHFN(すなわち、gNB200が管理しているHFN)が分からないという問題がある。
 本動作例2において、UE100のPDCPエンティティは、PDCP SN及びHFNからなるCOUNTを用いて暗号化され、MBSセッションで伝送されるPDCPパケットをgNB200から受信する。UE100のPDCPエンティティは、HFNを推測することで推測HFNを生成する。UE100のPDCPエンティティは、受信したPDCPパケットに含まれるPDCP SNと推測HFNとからなる推測COUNTを用いて、PDCPパケットの復号を試みる。UE100のPDCPエンティティは、復号に成功した場合、推測HFNを有効なHFNとして決定する。
 これにより、UE100は、MBSセッションに途中から参加した場合であっても、PDCPのセキュリティ機能を利用して有効なHFNを導出できる。このようにして導出されたHFNを用いてCOUNTを管理することにより、RX_DELIV等のPDCP変数を適切に管理可能である。
 本動作例2において、UE100は、HFNの値域を示す値域情報(以下、「HFN値域情報」と呼ぶ)をgNB200から受信してもよい。UE100のPDCPエンティティは、受信したHFN値域情報に基づいて推測HFNを生成してもよい。例えば、受信したHFN値域情報が示す値域に含まれるHFNを推測HFNとして生成する。暗号化されたPDCPパケットの復号には演算処理が必要となるため、UE100の消費電力や応答時間に課題がある。よって、取り得るHFNを予めgNB200がUE100に通知しておくことで、UE100のPDCPエンティティが生成する推測HFNの候補数を減らし、UE100の消費電力や応答時間を低減できる。
 なお、gNB200がHFNの値そのものをUE100に通知する方法も考えられる。しかしながら、HFNは、PDCP SNのカウントアップに応じてカウントアップされる。gNB200が現在のHFNをUE100に通知してUE100がこのHFNを適用するまでには遅延が生じ得るため、gNB200及びUE100間でHFNが非同期になり得る。
 図11は、一実施形態に係るPDCPの動作例2を示す図である。UE100は、上述の動作例1のUE100B、すなわち、MBSセッションに途中から参加したUE100であるものとする。
 図11に示すように、ステップS201において、UE100のPDCPエンティティは、MBSセッションでgNB200から伝送(例えば、PTM伝送)されるPDCPパケットを受信する。
 ステップS202において、UE100のPDCPエンティティは、ステップS201で受信したPDCPパケットのヘッダに含まれるPDCP SNを取得する。UE100が途中からMBSセッションに参加しているため、このPDCP SNの値はゼロではないものとする。
 ステップS203において、UE100は、gNB200からHFN値域情報を受信してもよい。gNB200は、あるMBSセッションについて、取り得るHFNの範囲(値域)を通知する。値域は、MBSで送信するデータ量などにより決定されてもよい。なお、ステップS203は、ステップS202よりも前に行われてもよい。
 HFN値域情報は、HFNの値域(例えば、“0~10”)を直接的に示す情報であってもよい。また、HFN値域情報は、HFNのビット数(例えば、“3ビット”:“0~7”と等価)を示す情報であってもよい。HFN値域情報が“3ビット”と指定された場合、UE100のPDCPエンティティは、“7”の次は“0”になるようにHFNを管理してもよい。
 gNB200からUE100へのHFN値域情報の通知には、SIB、MCCH(マルチキャスト制御チャネル)、RRC Reconfigurationメッセージ、又はPDCP Control PDUが用いられてもよい。これらのメッセージには、HFN値域情報と、このHFN値域情報と対応付けられたMBSセッション識別子(例えば、TMGI、G-RNTI)とが含まれていてもよい。これらのメッセージには、HFN値域情報とMBSセッション識別子とのセットが複数含まれていてもよい。
 ステップS204において、UE100のPDCPエンティティは、推測HFNを生成する。UE100のPDCPエンティティは、例えば、0、1、2…といった順番でHFNに値を代入することで推測HFNを生成する。ステップS203でHFN値域情報を受信している場合、UE100のPDCPエンティティは、HFN値域情報が示す値域内において推測HFNを生成する。
 ステップS205において、UE100のPDCPエンティティは、ステップS202で取得したPDCP SNとステップS204で生成した推測HFNとからなる推測COUNTを生成する。
 ステップS206において、UE100のPDCPエンティティは、ステップS205で生成した推測COUNTを用いて、ステップS201で受信したPDCPパケットの復号(暗号化解除)を試みる。PDCPパケットの復号に失敗した場合(ステップS207:NO)、ステップS204に処理を戻す。
 PDCPパケットの復号に成功した場合(ステップS207:YES)、ステップS208において、UE100のPDCPエンティティは、ステップS204で生成した推測HFNを有効なHFNとして決定し、このHFNを記憶及び管理する。これにより、gNB200及びUE100間のHFNが同期する。
 なお、図11に示す動作の後、UE100は、gNB200の第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行う場合がある。UE100が第1セルにおいて受信していたMBSセッションが第2セルにおいても提供される場合、UE100は、ハンドオーバ、RRC再確立、又はセル再選択を行っても、MBS受信を継続できる。なお、第1セル及び第2セルは、互いに異なるgNB200により管理されていてもよい。
 ここで、第1セル及び第2セルにおいて、PDCP SNはセル間で同期しているが、HFNはセル間で同期していない可能性がある。このため、UE100は、第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行ったことに基づいて、第2セルにおいて図11と同様な動作を再実行してもよい。
 UE100は、第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行うよりも前において、図11と同様な動作の再実行の要否を示す情報をgNB200から受信してもよい。再実行が不要であることを当該情報が示す場合、第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行っても、管理しているHFNを破棄せずに保持してもよい。これにより、HFNが第1セル及び第2セル間で同期しているような場合、UE100は、図11と同様な動作を再実行しなくても済む。このような動作の詳細については、動作例6において後述する。
 (PDCPの動作例3)
 次に、一実施形態に係るPDCPの動作例3について、上述の動作例1及び2との相違点を主として説明する。
 上述のように、PDCP SNがwrap aroundした際にHFNがカウントアップされるため、PDCP SNがwrap aroundしても問題無い。他方、HFNはwrap aroundが想定されていない(すなわち、COUNTはwrap aroundしない)。このため、HFNがwrap aroundしそうになった場合、HFNを含むPDCP変数(例えば、COUNT)を初期化できることが望ましい。
 動作例3において、UE100のPDCPエンティティは、MBSセッションで伝送されるPDCPパケットの受信に応じて、当該MBSセッションと対応付けられたPDCP変数を更新する。UE100のPDCPエンティティは、当該MBSセッションが中断された後にMBSセッションが再開された場合、更新されたPDCP変数を初期化する(すなわち、ゼロに戻す)。このように、動作例3においては、UE100のPDCPエンティティは、MBSセッションの再開をトリガとしてPDCP変数を初期化する。これにより、例えばHFNがwrap aroundしそうになった場合、HFNを含むPDCP変数(例えば、COUNT)を初期化できる。
 図12は、一実施形態に係るPDCPの動作例3を示す図である。UE100は、MBSセッションに最初から参加したUE100であってもよい。また、UE100は、MBSセッションに途中から参加したUE100であってもよい。gNB200は、RRCコネクティッド状態にある複数のUE100に対してマルチキャストでMBSデータを送信してもよい。
 図12に示すように、ステップS301において、UE100のPDCPエンティティは、MBSセッションでgNB200から伝送(例えば、PTM伝送)されるPDCPパケットを受信する。
 ステップS302において、UE100のPDCPエンティティは、ステップS301で受信したPDCPパケットに基づいてPDCP変数(例えば、COUNT)を更新する。更新されるPDCP変数は、RX_NEXT及び/又はRX_DELIVであってもよい。
 ステップS303において、gNB200は、当該MBSセッションの中断を示すセッション中断通知をUE100に送信してもよい。セッション中断通知は、MAC CEで送信されてもよい。セッション中断通知は、SIB、MCCH(マルチキャスト制御チャネル)、RRC Reconfigurationメッセージ、又はPDCP Control PDUで送信されてもよい。UE100は、セッション中断通知の受信に応じてMBSセッションの中断を検知する。或いは、UE100は、セッション中断通知にかかわらず、ある一定時間にわたって当該MBSセッションでMBSデータを受信しない場合、MBSセッションが中断されたと判断してもよい。この一定期間を定めるタイマ値は、例えばgNB200からUE100に設定されてもよい。gNB200は、このタイマ値とMBSセッション識別子(例えば、TMGI、G-RNTI)とのセットをUE100に設定してもよい。
 その後、ステップS304において、gNB200は、当該MBSセッションの再開を示すセッション再開通知をUE100に送信してもよい。セッション再開通知は、MAC CEで送信されてもよい。セッション再開通知は、SIB、MCCH(マルチキャスト制御チャネル)、RRC Reconfigurationメッセージ、又はPDCP Control PDUで送信されてもよい。UE100は、セッション再開通知の受信に応じてMBSセッションの再開を検知する。或いは、UE100は、セッション再開通知にかかわらず、MBSセッションが中断されたと判断した後に、当該MBSセッションでMBSデータを受信した場合、MBSセッションが再開されたと判断してもよい。
 ステップS305において、UE100のPDCPエンティティは、MBSセッションが中断された後に当該MBSセッションが再開された場合、当該MBSセッションと対応付けられた更新されたPDCP変数を初期化する(すなわち、ゼロに戻す)。同様に、gNB200は、当該MBSセッションと対応付けられた更新されたPDCP変数を初期化してもよい。
 ステップS306において、UE100のPDCPエンティティは、当該MBSセッションでgNB200から伝送されるPDCPパケットを受信する。
 ステップS307において、UE100のPDCPエンティティは、ステップS306で受信したPDCPパケットに基づいてPDCP変数(例えば、COUNT)を更新する。
 本動作例3において、UE100は、ステップS303でMBSセッションの中断を検知した時に、PDCP変数を初期化してもよい。
 本動作例3において、UE100は、ステップS303でMBSセッションの中断を検知した時、もしくはS304でMBSセッションの再開を検知した場合、ステップS305において、PDCPエンティティを再確立(re-establishment)してもよい。UE100においてRRCレイヤがPDCPレイヤにPDCPエンティティのre-establishmentを指示してもよい。PDCPエンティティがre-establishmentされると、当該PDCPエンティティが管理するPDCP変数は初期化される。
 (PDCPの動作例4)
 次に、一実施形態に係るPDCPの動作例4について、上述の動作例1乃至3との相違点を主として説明する。
 上述の動作例3において、UE100がPDCP変数を自発的に初期化する一例について説明した。これに対し、本動作例4において、UE100は、gNB200からの指示の受信に従ってPDCP変数を初期化する。
 例えば、あるMBSセッションについて複数のUE100がマルチキャストでgNB200からMBSデータを受信している状況下で、当該複数のUE100のうち1つのUE100がハンドオーバ又はRRC再確立を行ったと仮定する。通常は、UE100のハンドオーバ又はRRC再確立に伴って当該UE100のPDCPエンティティが再確立されるため、当該PDCPエンティティが管理するPDCP変数は初期化されることになる。もしくは、上述のPDCP動作例3で説明したように、MBSセッションのCOUNTが上限に達する前に(すなわちwrap aroundしそうになった場合に)、当該MBSセッションを受信している1つ又は複数のUEのPDCP変数を初期化する必要がある。
 本動作例4において、UE100のPDCPエンティティは、MBSセッションで伝送されるPDCPパケットの受信に応じて、当該MBSセッションと対応付けられたPDCP変数を更新する。UE100のPDCPエンティティは、gNB200からPDCP変数の初期化指示を受信した場合、更新されたPDCP変数を初期化する(すなわち、ゼロに戻す)。これにより、例えばHFNがwrap aroundしそうになった場合、HFNを含むPDCP変数(例えば、COUNT)を初期化できる。なお、上述のように、PDCPエンティティが再確立(re-establishment)されるとPDCP変数が初期化されるため、PDCP変数を初期化するための指示は、PDCPエンティティの再確立指示であってもよい。
 図13は、一実施形態に係るPDCPの動作例4を示す図である。UE100は、MBSセッションに最初から参加したUE100であってもよい。また、UE100は、MBSセッションに途中から参加したUE100であってもよい。gNB200は、RRCコネクティッド状態にある複数のUE100に対してマルチキャストでMBSデータを送信してもよい。gNB200は、RRCアイドル又はインアクティブ状態にある複数のUE100に対してマルチキャストでMBSデータを送信してもよい。
 図13に示すように、ステップS401において、UE100のPDCPエンティティは、MBSセッションでgNB200から伝送(例えば、PTM伝送)されるPDCPパケットを受信する。
 ステップS402において、UE100のPDCPエンティティは、ステップS401で受信したPDCPパケットに基づいてPDCP変数(例えば、COUNT)を更新する。更新されるPDCP変数は、RX_NEXT及び/又はRX_DELIVであってもよい。同様に、gNB200のPDCPエンティティは、ステップS401で送信したパケットに基づいてPDCP変数(例えば、COUNT)を更新する。
 その後、ステップS403において、gNB200は、PDCP変数の初期化を指示する初期化指示をUE100に送信する。上述のように、初期化指示は、PDCPエンティティのre-establishment指示であってもよい。gNB200は、初期化指示を送信する前に、PDCPパケットの送信を停止(一旦停止)してもよい。gNB200は、gNB200のPDCPエンティティのPDCP変数がwrap aroundしそうになったこと(例えば、COUNT上限値に達したこと)に応じて、当該初期化指示を送信してもよい。初期化指示は、RRC Reconfigurationメッセージ、PDCP Control PDU、SIB、又はMCCH(マルチキャスト制御チャネル)で送信されてもよい。初期化指示は、MAC CE(Control Element)又はMTCH(マルチキャストトラフィックチャネル)で送信されてもよい。なお、初期化指示は、複数のUEに一斉に通知されることが望ましい。例えば、マルチキャストされるMTCHを含むトランスポートブロックに、初期化指示を示すMAC CEを多重して通知してもよい。これらのメッセージには、初期化指示と、この初期化指示と対応付けられたMBSセッション識別子(例えば、TMGI、G-RNTI、セッションID)とが含まれていてもよい。このMBSセッション識別子に加えて、又はMBSセッション識別子に代えて、ベアラID(もしくはMBSベアラID)を用いてもよい。
 なお、gNB200は、UE100と同じMBSセッションをマルチキャストで受信する他のUE100がPDCPエンティティを再確立したこと、すなわち、当該他のUE100がPDCP変数を初期化したことに応じて、ステップS403の初期化指示の送信を行ってもよい。これにより、同じMBSセッションを受信する複数のUE100がいずれもPDCP変数を初期化することになる。
 ステップS404において、UE100のPDCPエンティティは、ステップS403で初期化指示を受信したことに応じて、当該MBSセッションと対応付けられた更新されたPDCP変数を初期化する(すなわち、ゼロに戻す)。同様に、gNB200は、当該MBSセッションと対応付けられた更新されたPDCP変数を初期化してもよい。当該PDCP変数の初期化は、PDCPエンティティのre-establishmentで実行されてもよい。
 ステップS405において、UE100のPDCPエンティティは、当該MBSセッションでgNB200から伝送されるPDCPパケットを受信する。gNB200は、マルチキャストを受信する全てのUEのPDCP変数の初期化が完了したことに応じて、PDCPパケットの送信を再開してもよい。
 ステップS406において、UE100のPDCPエンティティは、ステップS406で受信したPDCPパケットに基づいてPDCP変数(例えば、COUNT)を更新する。
 なお、上述の動作例3についても、動作例4と同様に、同じMBSセッションを受信する複数のUE100のうち1つのUE100がPDCPエンティティを再確立した際に、当該複数のUE100のうち他のUE100がPDCP変数を初期化するように動作してもよい。例えば、gNB200は、同じMBSセッションを受信する複数のUE100のうち1つのUE100がPDCPエンティティを再確立した際に、当該MBSセッションを中断し、その後に当該MBSセッションを再開する。これにより、同じMBSセッションを受信する複数のUE100がいずれもPDCP変数を初期化することになる。
 (PDCPの動作例5)
 次に、一実施形態に係るPDCPの動作例5について、上述の動作例1乃至4との相違点を主として説明する。
 上述の動作例4において、UE100がPDCPエンティティを再確立した場合、当該UE100がPDCP変数を初期化する一例について説明した。この場合、上述のように、同じMBSセッションをマルチキャストで受信する他のUE100もPDCP変数を初期化する必要があり得る。つまり、同じMBSセッションをマルチキャストで受信する1つのUE100におけるPDCPエンティティの再確立が他のUE100に悪影響を与えることになり得る。
 このため、本動作例5において、MBSセッション(MBSベアラ)用のPDCPについては、PDCPエンティティを再確立しても、PDCP変数を初期化せずに、再確立前のPDCP変数を継続して使用するものとする。すなわち、UE100のPDCPエンティティは、MBSセッションで伝送されるPDCPパケットの受信に応じて、MBSセッションと対応付けられたPDCP変数を更新する。UE100は、PDCPエンティティが再確立された場合、MBSセッションと対応付けられたPDCP変数を初期化せずに保持する。UE100のPDCPエンティティは、保持されたPDCP変数に基づいて、MBSセッションで伝送されるPDCPパケットの受信処理(PDCP動作)を継続する。これにより、同じMBSセッションをマルチキャストで受信する1つのUE100におけるPDCPエンティティの再確立が他のUE100に悪影響を与えることを防止できる。
 図14は、一実施形態に係るPDCPの動作例4を示す図である。UE100は、MBSセッションに最初から参加したUE100であってもよい。また、UE100は、MBSセッションに途中から参加したUE100であってもよい。gNB200は、RRCコネクティッド状態にある複数のUE100に対してマルチキャストでMBSデータを送信してもよい。
 図14に示すように、ステップS501において、UE100のPDCPエンティティは、MBSセッションでgNB200から伝送(例えば、PTM伝送)されるPDCPパケットを受信する。
 ステップS502において、UE100のPDCPエンティティは、ステップS401で受信したPDCPパケットに基づいてPDCP変数(例えば、COUNT)を更新する。更新されるPDCP変数は、RX_NEXT及び/又はRX_DELIVであってもよい。
 ステップS503において、UE100は、ハンドオーバ又はRRC再確立に伴ってPDCPエンティティを再確立する。すなわち、UE100は、ハンドオーバ又はRRC再確立を行う前の古いPDCPエンティティを削除し、新たなPDCPエンティティを生成する。但し、古いPDCPエンティティが更新していたPDCP変数は所定の記憶領域に保持されることが可能であるものとする。なお、UE100は、PDCPエンティティの再確立を指示する再確立指示をgNB200から受信し、この再確立指示の受信に応じてPDCPエンティティを再確立してもよい。
 ステップS504において、UE100は、再確立に係るPDCPエンティティがMBSセッションと対応付けられているか否かを判定する。UE100は、再確立に係るPDCPエンティティが、PDCP変数を初期化せずに保持するように設定されているか否かを判定してもよい。このような設定は、gNB200からUE100に対して例えばRRC Reconfigurationメッセージにより行われていてもよい。UE100は、PDCPエンティティの再確立を指示する再確立指示をgNB200から受信する場合、PDCP変数を初期化せずに保持することを示す情報(例えば、“COUNT-continued=true”)が再確立指示に含まれるか否かを判定してもよい。ステップS504で「NO」である場合、ステップS505において、UE100は、ステップS502で更新されたPDCP変数を初期化する。
 ステップS504で「YES」である場合、ステップS506において、UE100は、ステップS502で更新されたPDCP変数を初期化せずに保持する。すなわち、UE100は、所定の記憶領域に保持されたPDCP変数を再確立に係る新たなPDCPエンティティに再度設定する。
 ステップS507において、UE100のPDCPエンティティは、当該MBSセッションでgNB200から伝送されるPDCPパケットを受信する。
 ステップS508において、UE100のPDCPエンティティは、ステップS507で受信したPDCPパケットに基づいてPDCP変数(例えば、COUNT)を更新する。
 なお、UE100は、gNB200の第1セルから第2セルへのハンドオーバ又はRRC再確立を行ったことに応じて、PDCPエンティティを再確立してもよい(ステップS503)。UE100は、ハンドオーバ又はRRC再確立を行うよりも前において、PDCP変数を第2セルにおいて継続して使用可能であることをgNB200から通知されている場合、ハンドオーバ又はRRC再確立を行ってもPDCP変数を初期化せずに保持してもよい。このような通知情報は、gNB200が第1セルにおいてRRC Reconfigurationメッセージ又はSIBでUE100に送信してもよい。このような動作に関連する動作について動作例6で後述する。
 (PDCPの動作例6)
 次に、一実施形態に係るPDCPの動作例6について、上述の動作例1乃至5との相違点を主として説明する。図15は、一実施形態に係るPDCPの動作例6を説明するための図である。
 図15に示すように、UE100は、セルC1(第1セル)からセルC2(第2セル)へのハンドオーバ、RRC再確立、又はセル再選択を行う場合がある。図15において、セルC1を管理するgNB200AとセルC2を管理するgNB200Bとが異なる一例を図示している。
 UE100がセルC1において受信していたMBSセッションがセルC2においても提供される場合、UE100は、ハンドオーバ、RRC再確立、又はセル再選択を行っても、MBS受信を継続できる。ここで、セルC1及びセルC2において、PDCP SNがセル間で同期していても、HFNはセル間で同期していない可能性がある。セルC1及びセルC2においてHFNが同期していない場合、UE100は、セルC1からセルC2へ移動した際に、セルC2におけるHFN、すなわち、gNB200Bが管理するHFNとの同期をとる必要がある。
 本動作例6において、第1に、UE100のPDCPエンティティは、MBSセッションで伝送されるPDCPパケットの受信に応じて、MBSセッションと対応付けられたPDCP変数(例えば、COUNT)を更新する(ステップS601)。更新されるPDCP変数は、RX_NEXT及び/又はRX_DELIVであってもよい。
 第2に、UE100は、セルC1からセルC2へのハンドオーバ、RRC再確立、又はセル再選択を行うよりも前において、更新されたPDCP変数をセルC2において継続して使用可能であるか否かを示す通知情報をgNB200Aから受信する(ステップS602)。なお、gNB200Aは、例えばgNB200Bとの基地局間通信により、セルC1及びセルC2間でHFNが同期しているか否かを把握しているものとする。gNB200Aは、セルC1及びセルC2間でHFNが同期している場合、更新されたPDCP変数をセルC2において継続して使用可能であることを示す通知情報を送信する。他方、セルC1及びセルC2間でHFNが同期していない場合、gNB200Aは、更新されたPDCP変数をセルC2において継続して使用不可であることを示す通知情報を送信する。gNB200Aは、SIB、MCCH、RRC Reconfiguration、PDCP Control PDUで通知情報を送信してもよい。
 通知情報は、更新されたPDCP変数を継続して使用可能な1つ又は複数のセルからなるエリアを示す情報を含んでもよい。例えば、通知情報は、セルC1で用いていたPDCP変数を使いまわすことが可能なセルのセルIDからなるセルIDリストを含んでもよい。
 第3に、UE100は、セルC1からセルC2へのハンドオーバ、RRC再確立、又はセル再選択を行う(ステップS603)。ここで、UE100のPDCPエンティティは、セルC1で用いていたPDCP変数(例えば、COUNT)をセルC2でも使用可能であることを通知情報が示す場合、保持しているPDCP変数をセルC2において継続して使用し、セルC2からPDCPパケットを受信する(ステップS604)。他方、セルC1で用いていたPDCP変数をセルC2で使用不可であることを通知情報が示す場合、UE100のPDCPエンティティは、セルC2において最初に受信したPDCPパケットからPDCP変数を導出する(上述の動作例1参照)。或いは、UE100は、セルC2で使用中のHFNがgNB200Bから通知される場合、通知されたHFNを用いてPDCP変数を導出してもよい。
 (RLCの動作例)
 次に、一実施形態に係るRLCの動作例について説明する。図16及び図17は、一実施形態に係るRLCの動作例を説明するための図である。本動作例において、UE100のRLCエンティティは、MBSセッションで伝送され、gNB200がRLC SDU(Service Data Unit)を分割して得られたRLC PDU(Protocol Data Unit)をgNB200から受信する。
 図16に示すように、本動作例において、gNB200のRLCエンティティがPDCPパケット(すなわち、RLC SDU)の分割処理を行うものとする(ステップS701)。このような分割処理はSegmentationと呼ばれることがある。gNB200のRLCエンティティは、分割処理により得た各セグメントにシーケンス番号(SN)を割り振ってRLC PDUを得る。図16において、SN#0乃至#5の合計6つのRLC PDU(6つのセグメント)に分割される一例を図示している。UE100のRLCエンティティは、これら6つのRLC PDUのすべてを受信しないと、元のPDCPパケット(RLC SDU)を再構築できない。このような再構築処理はReassemblyと呼ばれることがある。なお、本動作例において、RLCには、UM(Unacknowledged Mode)モードが適用されるものとする。
 ユニキャストの場合は、UE100は最初のRLC PDU(すなわち、SN#0のRLC PDU)から受信するので、大きな問題はない。これに対し、マルチキャストの場合、UE100はMBSセッションに途中から参加することもあるため、必ずしもSN#0のRLC PDUから受信できるとは限らない。SN#0のRLC PDUをUE100が受信できない場合、RLC SDUへの再構築は完了できない。再構築できないRLC SDUは、タイマ(T-Reassembly)が満了すると破棄されることになる。
 しかしながら、PDCPパケット(RLC SDU)を順序通りに上位レイヤ(すなわち、PDCP)に渡すin-order deliveryが設定されている場合、再構築用のタイマ(T-Reassembly)が満了するまで次のPDCPパケットを上位レイヤに渡せないことから、遅延が発生するという問題がある。
 本動作例において、MBSセッションに途中から参加したUE100のRLCエンティティは、gNB200から最初に受信したRLC PDUに含まれるRLCシーケンス番号がゼロである場合、当該最初に受信したRLC PDU及び当該最初に受信したRLC PDUに後続するRLC PDUからRLC SDUを再構築する。図16において、UE100のRLCエンティティは、最初のRLC PDU(すなわち、SN#0のRLC PDU)から受信できている(ステップS702)。よって、UE100のRLCエンティティは、SN#0乃至#5のRLC PDUが揃った時点でRLC SDUを再構築し(ステップS703)、RLC SDUを上位レイヤ(すなわち、PDCP)に渡す。
 他方、図17に示すように、gNB200から最初に受信したRLC PDUに含まれるRLCシーケンス番号がゼロではない場合、UE100のRLCエンティティは、当該最初に受信したRLC PDU及び最初に受信したRLC PDU後続するRLC PDUを破棄する。具体的には、gNB200から最初に受信したRLC PDUに含まれるRLCシーケンス番号がゼロではない場合、UE100のRLCエンティティは、タイマ(T-Reassembly)が満了していなくても、当該最初に受信したRLC PDU及び最初に受信したRLC PDUに後続するRLC PDUを破棄する。このように、gNB200から最初に受信したRLC PDUに含まれるRLCシーケンス番号に基づいて、当該最初に受信したRLC PDU及び当該最初に受信したRLC PDUに後続するRLC PDUからRLC SDUを再構築するか否かを決定することにより、再構築できないパケットを早期に破棄できるため、遅延の発生を抑制できる。
 図17に示す例において、MBSセッションに途中から参加したUE100のRLCエンティティは、gNB200から最初に受信したRLC PDUのシーケンス番号を確認し、このシーケンス番号がSN#2であることを検知する(ステップS711)。この場合、UE100のRLCエンティティは、タイマ(T-Reassembly)が満了していなくても、当該SN#2のRLC PDU及び後続するSN#3乃至#5の各RLC PDUを破棄する。
 なお、本動作例においては、PDCPパケット破棄を最小限にするために、gNB200は、MBS送信においてRLC分割数を小さくすることが望ましい。
 (その他の実施形態)
 上述の実施形態に係るPDCPの動作例1乃至6は、RLCの動作に応用してもよい。すなわち、上述の実施形態に係るPDCPの動作例1乃至6における「PDCP」を「RLC」と読み替えてもよい。
 上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよい。また、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、基地局がNR基地局(gNB)である一例について説明したが基地局がLTE基地局(eNB)であってもよい。また、基地局は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。基地局は、IABノードのDU(Distributed Unit)であってもよい。
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。
 また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC(System on a chip))として構成してもよい。
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、米国仮出願第63/167818号(2021年3月30日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
 (付記)
 (PDCPの動作)
・状態変数の初期値
 現在の合意ではRLC UMモードのみが規定されているが、サービスの継続性のために、MBSデータ受信の開始時及び動的なPTM/PTP切り替え中のパケット損失を最小限に抑える方法を検討する価値がある。
 図18に示すように、既存のPDCPファンクショナルビューを再利用する場合、PDCP SNは、PTMレグとPTPレグの両方に共通する。PTMレグは複数のUEに使用されるため、PDCP SNはUE固有ではない可能性があり、PTMレグとPTPレグの両方に影響する。これは、マルチキャストセッションでUEが遅れて参加する場合、最初に受信したMBSデータがPTMレグ又はPTPレグのどちらからのものであるかに関係なく、各状態変数の初期値が常に「0」になるとは限らないことを意味する。言い換えると、UEが最初に受信するPDCP SNは、現在のユニキャスト送信では想定されていない任意の値にすることができる。また、状態変数が初期値に設定されているため、1つのUEのPDCP再確立が他のすべてのUEに影響を与える可能性がある。これにより、受信ウィンドウで予期しない動作が発生する。つまり、受信ウィンドウの外にあるPDCP PDUが破棄される。
 所見2:マルチキャストセッションに遅れて参加し、2つのレグが1つのMRBに関連付けられている場合、最初に受信したデータがPTMレグ又はPTPレグからのものであるかどうかに関係なく、最初に受信したPDCP PDUのSNは初期値、つまり「0」ではない。
 この問題を解決するために、次のオプションが提案された。
 オプションA:gNBはUEに初期COUNT値、又はRX_NEXT及びRX_DELIVを通知する。
 このオプションは、gNBからの情報に基づいて受信ウィンドウに関連する初期値を変更するだけで、UEが既存のメカニズムでMBSデータの最初の送信を受信できるようにする。ただし、PDCP層の観点から、例えば、切り替えの遅延、悪い無線状態、又はRLC再設定ウィンドウの外にあるために、UEがgNBの意図した最初の送信を常に正常に受信できるかどうかは疑わしい。この場合、このオプションがどのように機能するかは不明である。
 オプションB:gNBはUEに最初のHFNを通知し、UEは最初に受信したPDCP PDUから最初のHFNとSNを推測する。
 SN部分に関しては、このオプションはRel-16のV2Xメカニズムに似ている。つまり、「ブロードキャスト及びグループキャストのNRサイドリンク通信の場合、RX_NEXTのSN部分の初期値は(x+1)モジュロ(2[sl-PDCP-SN-Size])、ここでxは最初に受信したPDCPデータPDUのSNである」及び「ブロードキャスト及びグループキャストのNRサイドリンク通信の場合、RX_DELIVのSN部分の初期値は(x-0.5×2[sl-PDCP-SN-Size-1])モジュロ(2[sl-PDCP-SN-Size])、ここでxは最初に受信したPDCPデータPDUのSNである」。
 HFN部分に関しては、Rel-16のV2Xメカニズムでは、送信機及び受信機を同期させる必要はない。つまり、HFNはセキュリティに使用されないため、「注:RX_DELIVの初期値が正の値になるように、RX_NEXTにHFNを選択するのはUEの実装次第である。」NR MBSの場合、「RAN2は、SA3がMBSのセキュリティに関する調査を終了するのを待ってから、RAN2のセキュリティの側面について説明することを返信する」。したがって、この時点でHFN部分が通知される必要がある場合は、RAN2を延期する必要がある。
 上記の所見に基づいて、オプションBはさらなる議論のベースラインとなるはずである。ブロードキャスト及びグループキャストのRel-16のサイドリンク通信によると、NR MBSのセキュリティに関するSA3の進捗状況を考慮すると、RAN2は、UEがMBSデータの最初に受信したPDCP PDUから状態変数の初期値を設定することに少なくとも同意する必要がある。
 提案3:RAN2は、UEがPTMレグ又はPTPレグに関係なく、最初に受信したMBSデータからRX_NEXT及びRX_DELIVのSN部分の初期値を設定することに同意する必要がある。SA3の進捗状況に応じて、HFN部分がgNBから通知されるかどうかは更なる検討が必要である。
 (同時受信とUE支援情報)
 提案2が同意できる場合、UEはPTMレグとPTPレグの両方からの同時受信をサポートする必要がある。つまり、既存のPDCPパケットの複製と同様に2つのレグを同時にアクティブ化できる。PTPレグは複数のUEによって受信されるため、つまりUE固有ではないため、PTMレグを介して受信されなかった欠落パケットを簡単に補うことができるため、動的なPTM/PTP切り替えにとって有益であると考えられる。したがって、RAN2は、動的なPTM/PTP切り替え時に、少なくとも一定期間の同時受信に同意する必要がある。
 提案4:RAN2は、UEが動的なPTM/PTP切り替え後の一定期間、PTMレグとPTPレグの両方からの同時受信をサポートすることに同意する必要がある。
 提案3及び提案4が合意できる場合、gNBは、UEがPTMレグを介して正常に受信を開始したPDCP SNを実際に認識していない可能性がある。PTPからPTMへの切り替えの場合、gNBは、どのPDCP PDUをPTPレグ経由で送信する必要があるか、及び/又はPTPレグをいつ非アクティブ化できるかを認識できない可能性があることを意味する。この問題を解決するために、UEがgNBにPTM受信が成功したことを通知することが提案されている。これは、まだ非アクティブ化されていない場合はPTPレグを介して送信できる。ただし、この解決策がPDCP SNを情報に含めることを意図しているかどうかは不明である。
 同様に、PTMからPTPへの切り替えの場合、gNBは、UEがPTMレグを介して受信を終了したPDCP SNを認識しない場合がある。これは、gNBがPTPレグを介して送信を開始するPDCP PDUを認識していない可能性があることを意味する。したがって、UEは、動的なPTM/PTP切り替え時に、アクティブ化されたPTPレグを介してSN情報をgNBに通知すると見なすことができる。
 UEがPTMとPTP間の動的な切り替え時にSN情報を報告する場合、PDCP制御PDUを再利用するのは簡単であり、正確に、PDCPステータスレポートはFMC(最初に欠落しているPDCP SDU)と任意のビットマップ(次のPDCP SDUが欠落しているか正しく受信されていることを示す)を含む。一方、PTMレグを介して最初/最後に成功したPDCP SDU受信を報告することは別のオプションである。したがって、PTMとPTPの間の動的な切り替え時に何を報告する必要があるかについてさらに議論する必要がある。
 上記のいずれの場合でも(つまり、PTPからPTMへ及びPTMからPTPへ)、PDCP制御PDUは、サービス継続性のためのPDCP SN情報を含む動的な切り替え(例えば、アクティブ化/非アクティブ化MAC CEによって)時にトリガされる必要がある。
 提案5:RAN2は、サービスの継続性のために、UEが動的な切り替え時にPDCP SN情報を含むPDCP制御PDUを送信するかどうかを検討する必要がある。使用されるPDCP制御PDUの種類とSN情報の正確な意味については更なる検討が必要である。
10   :NG-RAN(5G RAN)
20   :5GC(5G CN)
100  :UE
110  :受信部
120  :送信部
130  :制御部
200  :gNB
210  :送信部
220  :受信部
230  :制御部
240  :バックホール通信部

Claims (12)

  1.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する通信制御方法であって、
     PDCPシーケンス番号及びハイパーフレーム番号からなるカウント値を用いて暗号化され、MBSセッションで伝送されるPDCPパケットを前記基地局から受信することと、
     前記ハイパーフレーム番号を推測することで推測ハイパーフレーム番号を生成することと、
     前記受信したPDCPパケットに含まれる前記PDCPシーケンス番号と前記推測ハイパーフレーム番号とからなる推測カウント値を用いて、前記PDCPパケットの復号を試みることと、
     前記復号に成功した場合、前記推測ハイパーフレーム番号を有効なハイパーフレーム番号として決定することと、を有する
     通信制御方法。
  2.  前記ハイパーフレーム番号の値域を示す値域情報を前記基地局から受信することをさらに有し、
     前記生成することは、前記受信した値域情報に基づいて前記推測ハイパーフレーム番号を生成することを含む
     請求項1に記載の通信制御方法。
  3.  前記ユーザ装置が前記基地局の第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行ったことに基づいて、前記第2セルにおいて、前記受信すること、前記生成すること、前記試みること、及び前記決定することを再実行することをさらに有する
     請求項1又は2に記載の通信制御方法。
  4.  前記ハンドオーバを行うよりも前において、前記再実行の要否を示す情報を前記基地局から受信することと、
     前記再実行が不要であることを前記情報が示す場合、前記ハンドオーバを行っても、前記管理しているハイパーフレーム番号を破棄せずに保持することと、をさらに有する
     請求項3に記載の通信制御方法。
  5.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する通信制御方法であって、
     前記ユーザ装置のPDCPエンティティが、MBSセッションで伝送されるPDCPパケットの受信に応じて、前記MBSセッションと対応付けられたPDCP変数を更新することと、
     前記MBSセッションが中断された場合、又は、前記MBSセッションが中断された後に前記MBSセッションが再開された場合、又は、前記基地局から前記PDCP変数を初期化するための指示を受信した場合、前記更新されたPDCP変数を初期化することと、を有する
     通信制御方法。
  6.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する通信制御方法であって、
     前記ユーザ装置のPDCPエンティティが、MBSセッションで伝送されるPDCPパケットの受信に応じて、前記MBSセッションと対応付けられたPDCP変数を更新することと、
     前記PDCPエンティティが再確立された場合、前記MBSセッションと対応付けられた前記PDCP変数を初期化せずに保持することと、
     前記PDCPエンティティが、前記保持されたPDCP変数に基づいて、前記MBSセッションで伝送されるPDCPパケットの受信処理を継続することと、を有する
     通信制御方法。
  7.  前記ユーザ装置が前記基地局の第1セルから第2セルへのハンドオーバ又はRRC再確立を行ったことに応じて、前記PDCPエンティティを再確立することをさらに有し、
     前記保持することは、前記ハンドオーバ又は前記RRC再確立を行うよりも前において、前記PDCP変数を前記第2セルにおいて継続して使用可能であることを前記基地局から通知されている場合、前記ハンドオーバ又は前記RRC再確立を行っても前記PDCP変数を初期化せずに保持することを含む
     請求項6に記載の通信制御方法。
  8.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する通信制御方法であって、
     前記ユーザ装置のPDCPエンティティが、MBSセッションで伝送されるPDCPパケットの受信に応じて、前記MBSセッションと対応付けられたPDCP変数を更新することと、
     前記ユーザ装置が前記基地局の第1セルから第2セルへのハンドオーバ、RRC再確立、又はセル再選択を行うよりも前において、前記更新されたPDCP変数を前記第2セルにおいて継続して使用可能であるか否かを示す通知情報を前記基地局から受信することと、を有する
     通信制御方法。
  9.  前記通知情報は、前記更新されたPDCP変数を継続して使用可能な1つ又は複数のセルからなるエリアを示す情報を含む
     請求項8に記載の通信制御方法。
  10.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムにおいて前記ユーザ装置が実行する通信制御方法であって、
     前記ユーザ装置のRLCエンティティが、MBSセッションで伝送され、前記基地局がRLC SDUを分割して得られたRLC PDUを前記基地局から受信することと、
     前記基地局から最初に受信したRLC PDUに含まれるRLCシーケンス番号に基づいて、前記最初に受信したRLC PDU及び前記最初に受信したRLC PDUに後続するRLC PDUから前記RLC SDUを再構築するか否かを決定することと、を有する
     通信制御方法。
  11.  前記基地局から最初に受信したRLC PDUに含まれるRLCシーケンス番号がゼロである場合、前記最初に受信したRLC PDU及び前記最初に受信したRLC PDUに後続するRLC PDUから前記RLC SDUを再構築することと、
     前記基地局から最初に受信したRLC PDUに含まれるRLCシーケンス番号がゼロではない場合、前記最初に受信したRLC PDU及び前記最初に受信したRLC PDU後続するRLC PDUを破棄することと、をさらに有する
     請求項10に記載の通信制御方法。
  12.  請求項1乃至11のいずれか1項に記載の通信制御方法を実行するプロセッサを備える
     ユーザ装置。
PCT/JP2022/016093 2021-03-30 2022-03-30 通信制御方法及びユーザ装置 WO2022210914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511494A JPWO2022210914A1 (ja) 2021-03-30 2022-03-30
US18/478,762 US20240040662A1 (en) 2021-03-30 2023-09-29 Communication control method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163167818P 2021-03-30 2021-03-30
US63/167,818 2021-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/478,762 Continuation US20240040662A1 (en) 2021-03-30 2023-09-29 Communication control method and user equipment

Publications (1)

Publication Number Publication Date
WO2022210914A1 true WO2022210914A1 (ja) 2022-10-06

Family

ID=83459572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016093 WO2022210914A1 (ja) 2021-03-30 2022-03-30 通信制御方法及びユーザ装置

Country Status (3)

Country Link
US (1) US20240040662A1 (ja)
JP (1) JPWO2022210914A1 (ja)
WO (1) WO2022210914A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742430A (zh) * 2008-11-20 2010-06-16 华为技术有限公司 数据包处理方法、装置以及基站
CN104684030A (zh) * 2013-12-02 2015-06-03 普天信息技术研究院有限公司 一种集群系统中实现安全参数同步的方法
JP2017092574A (ja) * 2015-11-04 2017-05-25 株式会社Nttドコモ 無線通信装置
WO2017119377A1 (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ 無線通信装置及び無線通信方法
JP2018526894A (ja) * 2015-08-06 2018-09-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated エンハンスドコンポーネントキャリアによるパケットデータコンバージェンスプロトコル(pdcp)リオーダリングのための方法、装置、およびコンピュータ可読媒体
US20190364421A1 (en) * 2017-01-10 2019-11-28 Hytera Communications Corporation Limited Decryption method for trunking group call, and user equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742430A (zh) * 2008-11-20 2010-06-16 华为技术有限公司 数据包处理方法、装置以及基站
CN104684030A (zh) * 2013-12-02 2015-06-03 普天信息技术研究院有限公司 一种集群系统中实现安全参数同步的方法
JP2018526894A (ja) * 2015-08-06 2018-09-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated エンハンスドコンポーネントキャリアによるパケットデータコンバージェンスプロトコル(pdcp)リオーダリングのための方法、装置、およびコンピュータ可読媒体
JP2017092574A (ja) * 2015-11-04 2017-05-25 株式会社Nttドコモ 無線通信装置
WO2017119377A1 (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ 無線通信装置及び無線通信方法
US20190364421A1 (en) * 2017-01-10 2019-11-28 Hytera Communications Corporation Limited Decryption method for trunking group call, and user equipment

Also Published As

Publication number Publication date
US20240040662A1 (en) 2024-02-01
JPWO2022210914A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7307284B2 (ja) 通信制御方法
KR20190143782A (ko) 차세대 이동 통신 시스템에서 rrc 비활성화 모드 단말의 이중 접속을 지원하는 방법 및 장치
JP7448689B2 (ja) 通信制御方法及びユーザ装置
JP6645963B2 (ja) ユーザ端末及び移動通信システム
WO2020032129A1 (ja) 中継装置
KR20220051754A (ko) 이동 통신 시스템에서 mbs 서비스를 지원하는 방법 및 장치
WO2022085717A1 (ja) 通信制御方法
CN115516880A (zh) 动态改变多播/广播业务递送
US20230354475A1 (en) Communication control method
WO2022239690A1 (ja) 通信制御方法及びユーザ装置
JP2023100957A (ja) 通信制御方法、ユーザ装置及びプロセッサ
WO2022138450A1 (ja) 通信制御方法及びユーザ装置
WO2022210914A1 (ja) 通信制御方法及びユーザ装置
JP7469571B2 (ja) 通信方法、ユーザ装置、ネットワークノード、チップセット、及びプログラム
WO2023013671A1 (ja) 通信方法
WO2022202833A1 (ja) 通信制御方法及びユーザ装置
WO2023063323A1 (ja) 通信方法、ユーザ装置、及び基地局
WO2022153990A1 (ja) 通信制御方法及びユーザ装置
WO2023063371A1 (ja) 通信方法
JP7481588B2 (ja) 通信方法、ユーザ装置、移動通信システム、チップセット、及びプログラム
WO2024034567A1 (ja) 通信方法
WO2022234847A1 (ja) 通信制御方法及びユーザ装置
JP7259136B2 (ja) 通信制御方法、基地局、ユーザ装置及びプロセッサ
US20230188950A1 (en) Communication control method
WO2023002988A1 (ja) 通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781124

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511494

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781124

Country of ref document: EP

Kind code of ref document: A1