WO2022210710A1 - ボイラの運転方法、及び、ボイラ用の制御装置 - Google Patents

ボイラの運転方法、及び、ボイラ用の制御装置 Download PDF

Info

Publication number
WO2022210710A1
WO2022210710A1 PCT/JP2022/015457 JP2022015457W WO2022210710A1 WO 2022210710 A1 WO2022210710 A1 WO 2022210710A1 JP 2022015457 W JP2022015457 W JP 2022015457W WO 2022210710 A1 WO2022210710 A1 WO 2022210710A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
furnace
fuel
boiler
supply
Prior art date
Application number
PCT/JP2022/015457
Other languages
English (en)
French (fr)
Inventor
幸洋 冨永
聡彦 嶺
明正 ▲高▼山
直季 富澤
康弘 山内
康裕 竹井
猛 甘利
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2022210710A1 publication Critical patent/WO2022210710A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/10Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air liquid and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium

Definitions

  • the present disclosure relates to a method of operating a boiler and a controller for the boiler.
  • This application claims priority based on Japanese Patent Application No. 2021-059232 filed with the Japan Patent Office on March 31, 2021, the content of which is incorporated herein.
  • Patent Document 1 does not specifically disclose such a configuration.
  • the present disclosure relates to a method of operating a boiler that starts supplying ammonia fuel under conditions that can suppress the generation of NOx, and a control device for the boiler.
  • a boiler operating method comprises: burning a fuel other than the ammonia fuel in the furnace;
  • the air ratio which is the ratio of the amount of air supplied to the furnace to the theoretical amount of air required to burn the other fuel supplied to the furnace, is equal to or less than an upper limit, and the representative temperature in the furnace is a step of determining whether or not a determination condition that is equal to or greater than the lower limit is satisfied; commencing supply of the ammonia fuel to the furnace if at least the determination condition is met; with The upper limit value of the air ratio constituting the determination condition is 0.8 or less.
  • a control device for a boiler comprises: 1.
  • a controller for a boiler comprising a furnace and a feed system configured to feed ammonia fuel and other fuels into the furnace, comprising: a combustion command generator that generates another fuel combustion command for burning the other fuel in the furnace;
  • the air ratio which is the ratio of the amount of air supplied to the furnace to the theoretical amount of air required to burn the other fuel supplied to the furnace, is equal to or less than an upper limit, and the representative temperature in the furnace is a determination unit for determining whether or not a determination condition that is equal to or greater than the lower limit is satisfied;
  • An ammonia supply command configured to generate an ammonia supply start command for causing the supply system to start supplying the ammonia fuel to the furnace when the determination unit determines that at least the determination condition is satisfied.
  • a generator with The upper limit value of the air ratio constituting the determination condition is 0.8 or less.
  • FIG. 1 is a conceptual diagram of a boiler operating system according to one embodiment;
  • FIG. It is a flow chart which shows the operating method of the boiler concerning one embodiment. It is a sectional view showing composition of an ammonia burner concerning one embodiment. It is an explanatory view of a concrete composition of a burner unit concerning one embodiment. It is a specific configuration of a boiler operating system according to one embodiment. It is a flow chart which shows boiler operation control processing concerning one embodiment.
  • 4 is a graph showing the relationship between the burner section air ratio and the amount of NOx emissions according to one embodiment. 4 is a graph showing the relationship between gas temperature and required residence time of ammonia according to one embodiment. It is a graph which shows the relationship between the nose temperature and the gas temperature of a burner part which concern on one Embodiment. 4 is a graph showing the relationship between the ammonia co-firing rate in terms of heat quantity and the NOx emission amount according to one embodiment.
  • FIG. 1 is a conceptual diagram of a boiler operating system 1 according to one embodiment.
  • the boiler operation system 1 includes, for example, a boiler 2 incorporated in a thermal power plant (not shown), a supply system 15 for supplying air and fuel to the boiler 2, and a measurement system 9 for measuring parameters related to the operation of the boiler 2. and
  • the fuel supplied to the boiler 2 from the supply system 15 contains ammonia fuel.
  • the ammonia fuel can be either liquid ammonia or ammonia gas.
  • the following illustrates embodiments in which the ammonia fuel is liquid ammonia.
  • the boiler 2 is supplied with liquid ammonia in liquid form. Liquid ammonia does not contain gas such as hydrogen gas, but may contain impurities (for example, urea) that do not affect combustion in the boiler 2 .
  • Liquid ammonia is vaporized into ammonia gas within the boiler 2 .
  • the fuel supplied from the supply system 15 to the boiler 2 includes fuel other than ammonia fuel.
  • fuel other than ammonia fuel For example, after combustion using another fuel is performed in the boiler 2, mixed combustion of ammonia and another fuel or single combustion of ammonia is performed.
  • Carbon-containing fuels which are examples of fuels other than ammonia, include biomass fuels and fossil fuels.
  • Fossil fuels are liquefied natural gas, oils such as heavy or light oil, or coal such as pulverized coal. The following exemplifies embodiments in which the carbon-containing fuel is oil and pulverized coal.
  • the boiler 2 of one embodiment includes a furnace 20 including a furnace wall 19 and at least one burner unit 30 provided on the furnace wall 19 .
  • the furnace 20 is a cylindrical hollow body in which the fuel injected by the burner unit 30 reacts with the combustion air and burns, and may take various forms such as a cylindrical shape and a square prism shape.
  • the furnace 20 of one embodiment also includes a nose 11 that projects into the furnace 20 .
  • the nose 11 is configured so that gases (eg, combustion gases and unburned gases) produced in the combustion space 7 of the furnace 20 properly flow into the flow path downstream of the furnace 20 .
  • An exemplary flow path downstream of the furnace 20 is the flue 8 .
  • the at least one burner unit 30 is arranged such that fuel burns in the combustion space 7 of the furnace 20 .
  • the burner units 30 are arranged in three stages along the direction in which the gas generated in the combustion space 7 flows (arrow A in FIG. 1).
  • the burner units 30 in each stage may be referred to as a first burner unit 31, a second burner unit 32, and a third burner unit 33 in order from the downstream side in the gas flow direction, and these three stage burners are collectively referred to. may be referred to as a burner unit 30.
  • the burner units 30 may be arranged in two stages or four stages.
  • the boiler 2 of one embodiment is a swirling combustion type boiler, and the burner units 30 provided in each stage are arranged at regular intervals along the circumferential direction of the furnace 20 .
  • a boiler 2 is a facing combustion type boiler. In this case, at least one pair of burner units 30 in each stage are provided at positions facing each other.
  • Each burner unit 30 includes at least one burner.
  • the burner is an ammonia burner 50 configured to inject liquid ammonia into the furnace 20 in a liquid state.
  • Ammonia burner 50 may be configured to inject only liquid ammonia.
  • the ammonia burner 50 may be configured to inject liquid ammonia together with (or instead of) the carbon-containing fuel after injecting the carbon-containing fuel.
  • first burner unit 31 includes ammonia burner 50 .
  • the second burner unit 32 and the third burner unit 33 may or may not include the ammonia burner 50 .
  • ammonia burner 50 may be included only in second burner unit 32 or third burner unit 33 .
  • either burner unit 30 may include a fuel burner 35 (see FIG. 4) for injecting carbon-containing fuel into furnace 20 . Details will be described later.
  • supply system 15 is configured to supply primary air and fuel to burner unit 30 .
  • the fuel supplied to the burner unit 30 may be switched.
  • the burner unit 30 of either stage may be supplied with liquid ammonia after the carbon-containing fuel (eg, oil) is supplied.
  • the supply system 15 of one embodiment is configured to supply secondary air (additional air) via a supply section 4 provided on the furnace wall 19 downstream of the burner unit 30 .
  • the measurement system 9 of one embodiment includes a plurality of flowmeters for measuring the flow rate of air or fuel supplied from the supply system 15, and a furnace thermometer 6 for measuring the representative temperature inside the furnace 20.
  • the representative temperature in the furnace 20 is the temperature that correlates with the gas temperature, which is the temperature of the gas in the combustion space 7 of the furnace 20 .
  • the representative temperature in the furnace 20 is the temperature of the inner wall surface of the nose 11 (hereinafter referred to as nose temperature). Nose temperature is measured by a furnace thermometer 6 .
  • the representative temperature inside the furnace 20 may be, for example, the gas temperature.
  • the boiler operating system 1 may be operated by an operator, controlled by a controller 5 (see FIG. 5) described later, or a combination thereof.
  • a controller 5 see FIG. 5 described later, or a combination thereof.
  • the furnace 20 of one embodiment even if the supply of the ammonia fuel is started after the fuel other than the ammonia fuel (the carbon-containing fuel in this example) is burned, and the ammonia fuel and the other fuel are co-combusted. good.
  • a determination condition is used as the condition for starting the supply of ammonia fuel.
  • the determination conditions are satisfied when the air ratio is equal to or lower than the upper limit and the representative temperature in the furnace 20 is equal to or higher than the lower limit.
  • the air ratio which constitutes the determination condition, is the ratio of the amount of air supplied to the furnace 20 to the theoretical amount of air required to burn other fuel supplied to the furnace 20 .
  • the air supply to the furnace 20 described above does not include secondary air (additional air). That is, in this example, the air ratio constituting the determination condition is also a value obtained by multiplying the total air ratio by the supply ratio of air other than secondary air in the total air supplied to the furnace 20 .
  • the air ratio (hereinafter sometimes referred to as the burner section air ratio) that constitutes the determination condition is defined by the following equation (1).
  • ⁇ b ⁇ x (100-AA)/100 Equation (1)
  • ⁇ b the burner section air ratio
  • the total air ratio
  • AA the ratio of secondary air supplied to the total amount of air supplied to the boiler 2 .
  • the total air ratio ( ⁇ ) is defined by equations (2), (3), and (4).
  • Q Air /Q x Expression (2)
  • Q x Q mf ⁇ A mf Equation (3)
  • a mf (100 ⁇ X)/100 ⁇ A car +X/100 ⁇ A NH3 Formula (4)
  • Q Air is the total air supply.
  • Q mf is the supply amount of ammonia fuel and other fuel (carbon-containing fuel in this example) when the combustion in the furnace 20 is ammonia co-firing (co-firing ratio in terms of weight: X%).
  • Qx is the air flow rate for the air ratio to be 1 during co-firing.
  • a mf is the theoretical air amount of the fuel (ammonia fuel and carbon-containing fuel in this example) when the above co-firing is performed,
  • a car is the theoretical air amount of the carbon-containing fuel, and
  • a NH3 is the amount of ammonia fuel. This is the theoretical air volume. Equations (1) to (3) are also applicable to co-firing of ammonia fuel and carbon-containing fuel.
  • ⁇ b defined by Equation (1) may be referred to as the burner air ratio not only before the start of supply of ammonia fuel, but also when ammonia co-firing or ammonia mono-firing is performed.
  • the upper limit of the burner section air ratio constituting the determination condition is 0.8 or less. If the supply of ammonia fuel to the furnace 20 is started under the condition that the burner air ratio is 0.8 or less, the burner air ratio at the start of combustion of the ammonia fuel is also 0.8 or less. This effectively reduces NOx generated in the furnace 20 .
  • the upper limit value of the burner section air ratio constituting the determination condition may be 0.7 or less. In this case, combustion of the ammonia fuel is started under the condition that the air ratio is 0.7 or less, and excessive generation of NOx is suppressed.
  • the burner section air ratio constituting the determination condition is preferably 0.6 or more and 0.8 or less, more preferably 0.6 or more and 0.7 or less.
  • the representative temperature within the furnace 20 that constitutes the criterion is the nose temperature described above.
  • the lower limit of the nose temperature is 1120° C. or higher.
  • the gas temperature is 1400° C. or higher, and it has been found that ammonia is sufficiently thermally decomposed with a relatively short residence time in the furnace. Therefore, by starting the supply of ammonia fuel when the nose temperature is 1120° C. or higher, it is possible to suppress the generation of NOx.
  • the in-furnace residence time is the time from when the fuel is put into the furnace 20 until it reaches the nose 11 .
  • the residence time in the furnace can be calculated based on, for example, the air flow rate of the primary air and secondary air, the supply flow rate of the carbon-containing fuel, the cross-sectional area of the furnace 20 (constant value), and the height of the furnace 20 (constant value). is. Therefore, the in-furnace residence time can be obtained based on the measurement results of a plurality of flowmeters included in the measurement system 9 .
  • the determination condition may include that the residence time of the other fuel (carbon-containing fuel in this example) is 0.5 seconds or more.
  • the residence time of ammonia in the furnace is 0.5 seconds or longer. Since the supply of ammonia fuel is started when the residence time of other fuels in the furnace is 0.5 seconds or more, the residence time of ammonia in the furnace can also be 0.5 seconds or more, and the amount of NOx generated can be reduced. The longer the residence time in the furnace, the more favorable combustion environment is formed for thermal decomposition of the ammonia fuel.
  • the residence time of fuel (including other fuels and ammonia fuel) in the furnace is, for example, 2.0 seconds to 3.0 seconds. Therefore, the in-furnace residence time constituting the determination condition may be 0.5 seconds or more and 3.0 seconds or less, or may be 0.5 seconds or more and 2.0 seconds or less.
  • FIG. 2 is a flowchart showing a method of operating the boiler 2 according to one embodiment.
  • step may be abbreviated as "S”.
  • combustion of fuel other than ammonia fuel is started in the furnace 20 (S11).
  • the supply system 15 supplies the burner unit 30 with a fuel other than the ammonia fuel (carbon-containing fuel in this example).
  • the load of the boiler 2 is, for example, the amount of heat of steam generated by the boiler 2 .
  • the time when the load of the boiler 2 increases is a concept including the time when the heat load of the boiler (2) increases after it decreases.
  • the determination condition of S13 may include that the residence time of the other fuel in the furnace is 0.5 seconds or more. In this case, the in-reactor residence time of the other fuel is acquired based on the measurement result of the measurement system 9 . Also, it may be determined in S13 whether a condition other than the determination condition is satisfied.
  • the supply of ammonia fuel is started (S15).
  • the supply system 15 supplies ammonia fuel along with the carbon-containing fuel to the burner unit 30 , and co-firing of the ammonia fuel and the carbon-containing fuel takes place within the furnace 20 .
  • the co-firing rate of ammonia in terms of calorific value is, for example, 20% or more. According to the findings of the inventors, when the co-firing rate of ammonia and other fuels in terms of heat value is 20% or more, the amount of NOx generated in the furnace 20 tends to increase.
  • the burner section air ratio during ammonia co-firing is 0.6 or more and 0.7 or less. According to the findings of the inventors, NOx emissions can be suppressed by performing ammonia co-firing under the condition that the burner section air ratio is 0.6 or more and 0.7 or less.
  • FIG. 3 is a cross-sectional view showing the configuration of the ammonia burner 50 according to one embodiment.
  • the ammonia fuel supplied to the boiler 2 is liquid ammonia as an example.
  • the ammonia burner 50 has an ammonia supply path 52 configured to be supplied with liquid ammonia from the supply system 15 (see FIG. 1), and an ammonia supply path 52 that supplies the liquid ammonia supplied from the ammonia supply path 52 in a liquid state to the inside of the furnace 20. and an ammonia injection nozzle 54 configured to inject into.
  • the ammonia burner 50 is a one-fluid nozzle for injecting liquid ammonia without using an assist fluid.
  • the ammonia burner 50 is a swirl injection nozzle (swirl atomizer) configured so that the injected liquid ammonia forms a diverging liquid film.
  • the ammonia burner 50 may be a fan spray nozzle configured to spray liquid ammonia into a sheet-like liquid film, or a plain jet configured to spray liquid ammonia in a simple liquid jet. type atomizer.
  • the liquid ammonia injected into the furnace 20 is easily atomized, and the liquid ammonia is easily vaporized in the combustion space 7 .
  • the ammonia burner 50 further comprises a flame holding mechanism 60 configured to hold the combustion flame generated within the furnace 20 .
  • a flame holding mechanism 60 configured to hold the combustion flame generated within the furnace 20 .
  • misfires may occur in the furnace 20 .
  • the liquid ammonia must be vaporized in the furnace 20 and further thermally decomposed.
  • the mechanism 60 having the above-described flame holding effect holds the combustion flame, the liquid ammonia can obtain heat for vaporizing and thermally decomposing, so misfires in the furnace 20 can be suppressed. can.
  • the flame holding mechanism 60 is of the swirler type.
  • the mechanism 60 having a flame holding effect includes an inner cylinder 62 in which the ammonia injection nozzle 54 is arranged, an outer cylinder 64 arranged so as to surround the inner cylinder 62, and a swirler 65.
  • the outer cylinder 64 of one embodiment includes a first outer cylinder 64A surrounding the inner cylinder 62 and a second outer cylinder 64B surrounding the first outer cylinder 64A.
  • An air supply path 63A communicating with the interior of the furnace 20 is formed between the first outer cylinder 64A and the inner cylinder 62 .
  • an air supply path 63B communicating with the interior of the furnace 20 is also formed between the first outer cylinder 64A and the second outer cylinder 64B.
  • the air flowing through the air supply paths 63A, 63B is primary air supplied from the supply system 15 (see FIG. 1).
  • the swirler 65 is provided in the air supply path 63A and is configured to apply a swirling force to the air flowing through the air supply path 63A.
  • a swirling force is applied to the air supplied to the furnace 20 from the air supply path 63A by the swirler 65 (arrow B). This promotes mixing of liquid ammonia and air injected from the ammonia injection nozzle 54 .
  • the mechanism 60 having a flame holding effect may be of a diffuser type instead of a swirler type. Further, the ammonia burner 50 does not have to have the mechanism 60 having a flame holding effect.
  • FIG. 4 is an explanatory diagram of a specific configuration of the burner unit 30 according to one embodiment.
  • the burner unit 30 shown in FIG. 4 is configured to switch to ammonia mono-firing after the co-firing rate of ammonia reaches approximately 50% in terms of heat quantity.
  • the burner unit 30 is, for example, an existing burner unit. Therefore, some components of burner unit 30 may be unused. Alternatively, the component may be used only during ammonia co-firing and not used during ammonia mono-firing.
  • Each stage burner unit 30 includes five injection means 40 .
  • Each injection means 40 is arranged to supply fuel or air to the furnace 20 .
  • each injection means 40 is either an ammonia burner 50 already mentioned, a fuel burner 35 for injecting carbon-containing fuel, or an air nozzle 42 for injecting primary air.
  • the first burner unit 31, the second burner unit 32, and the third burner unit 33 of the burner unit 30 all employ the same configuration.
  • the two outermost injection means 40 are both air nozzles 42
  • the central injection means 40 is an ammonia burner 50 .
  • the injection means 40 between the ammonia burner 50 and the upper air nozzle 42 is the fuel burner 35, and the remaining one injection means 40 is not used.
  • the fuel burners 35 of the burner unit 30 are all coal burners configured to inject pulverized coal as the carbon-containing fuel.
  • the fuel injected from the ammonia burner 50 of the first burner unit 31 is only liquid ammonia
  • the fuel injected from the ammonia burner 50 of the second burner unit 32 and the third burner unit 33 is oil and liquid ammonia.
  • the burner unit 30 operates, for example, as follows. First, combustion with a carbon-containing fuel takes place. Specifically, the air nozzle 42 injects primary air, and the fuel burner 35 injects pulverized coal. At this time, the ammonia burner 50 of the first burner unit 31 does not operate, and the ammonia burners 50 of each of the second burner unit 32 and the third burner unit 33 inject oil. After that, liquid ammonia is injected from the ammonia burner 50 of the first burner unit 31, and the fuel injected from the remaining two ammonia burners 50 is switched from oil to liquid ammonia. Thereby, mixed combustion of ammonia is performed in the furnace 20 .
  • the three fuel burners 35 of the burner unit 30 stop injecting pulverized coal, and the only fuel injected into the furnace 20 is liquid ammonia from the three ammonia burners 50 .
  • the combustion in the furnace 20 is switched from mixed combustion of ammonia to exclusive combustion of ammonia.
  • FIG. 5 shows a specific configuration of the boiler operating system 1 according to one embodiment.
  • the boiler operation system 1 includes a controller 5 for controlling the operation of the boiler 2 in addition to the boiler 2 , supply system 15 and measurement system 9 already described.
  • the controller 5 of one embodiment includes a processor 91 , ROM 92 , RAM 93 and memory 94 .
  • the processor 91 is configured to read the boiler operating program stored in the ROM 92, load it into the RAM 93, and execute the instructions contained in the boiler operating program.
  • the processor 91 is a CPU, GPU, MPU, DSP, various arithmetic devices other than these, or a combination thereof.
  • Processor 91 may be implemented by an integrated circuit such as PLD, ASIC, FPGA, and MCU.
  • the memory 94 stores various data as the boiler operation program is executed.
  • the memory 94 is flash memory as an example.
  • Processor 91 is electrically connected to supply system 15 and measurement system 9 .
  • the processor 91 of one embodiment includes a different fuel combustion command for burning a fuel other than ammonia fuel in the furnace 20, an ammonia supply start command for causing the supply system 15 to start supplying the ammonia fuel, and an ammonia is configured to generate an ammonia mono-firing start command for starting mono-firing of the ammonia in the furnace 20.
  • these control commands are sent to delivery system 15 .
  • the processor 91 of one embodiment generates an ammonia supply start command when determining that the above-described determination condition is satisfied based on the measurement result of the measurement system 9 .
  • the processor 91 of one embodiment determines that the ammonia mono-firing condition for starting ammonia mono-firing is satisfied, the processor 91 initiates an ammonia mono-firing command.
  • the ammonia mono-firing conditions are, for example, that the representative temperature in the furnace 20 has reached a prescribed temperature, that a prescribed time has elapsed since the start of ammonia co-firing, and that a prescribed parameter has passed after a prescribed input operation has been performed by the operator. Such as reaching a setpoint, or a combination of these.
  • the supply system 15 includes a primary air supply system 110 for supplying primary air, a secondary air supply system 120 for supplying secondary air, an ammonia supply system 100 for supplying liquid ammonia, and an oil supply. It has an oil supply system 80 for supplying oil and a pulverized coal supply system 70 for supplying pulverized coal. Oil supply system 80 and pulverized coal supply system 70 are each an example of a system for supplying carbon-containing fuel. Primary air, liquid ammonia, pulverized coal and oil are supplied to the burner unit 30 and secondary air is supplied to the supply 4 provided in the furnace wall 19 .
  • the supply system 15 is arranged to be controlled by the controller 5 .
  • An air supply line 112 of the primary air supply system 110 is connected to all burner units 30 .
  • the air supply line 112 is provided with a flow control valve 116 for adjusting the flow rate of the primary air and a switching valve 118 for switching the communication state of the air supply line 112 .
  • An air supply line 122 of the secondary air supply system 120 is connected to the supply section 4 .
  • the air supply line 122 is provided with a flow rate adjustment valve 126 for adjusting the flow rate of the secondary air and a switching valve 128 for switching the communication state of the air supply line 122 .
  • the flow control valves 116 , 126 and switching valves 118 , 128 are configured to operate according to control commands sent from the control device 5 .
  • the ammonia supply system 100 includes the above-described ammonia burner 50, an ammonia tank 101 in which liquid ammonia is stored, an ammonia supply line 102 connecting the ammonia tank 101 and the ammonia burner 50, and a pump provided in the ammonia supply line 102. 103, a pressure regulating valve 105 for regulating the pressure of the ammonia supply line 102, a switching valve 107 provided in the ammonia supply line 102 for switching the state of communication between the ammonia tank 101 and the ammonia burner 50, and ammonia supply. and a flow control valve 108 for regulating the flow of liquid ammonia through line 102 .
  • the pressure control valve 105 , switching valve 107 and flow control valve 108 are configured to operate according to control instructions from the processor 91 .
  • the ammonia supply system 100 can change between a supply stop state in which liquid ammonia is not supplied to any ammonia burner 50 and a supply state in which liquid ammonia is supplied to all ammonia burners 50 .
  • oil is supplied from the oil supply system 80 to the ammonia burners 50 of the second burner unit 32 and the third burner unit 33 .
  • An oil supply system 80 of one embodiment includes an oil supply device 81, an oil supply line 82 connecting the oil supply device 81 and the ammonia burner 50, and an oil flow control valve 86 for adjusting the flow rate of the oil flowing through the oil supply line 82. , and a switching valve 88 for switching the communication state of the oil supply line 82 .
  • the oil supply line 82 of this example is connected to the ammonia burner 50 of each of the second burner unit 32 and the third burner unit 33 .
  • the oil supply device 81 , the oil flow control valve 86 and the switching valve 88 are configured to operate according to control commands from the control device 5 .
  • the oil supply system 80 can change between a supply state in which oil is supplied to the ammonia burner 50 connected to the oil supply line 82 and a supply stop state in which the oil supply is stopped.
  • the oil supply line 82 may be connected to the fuel burner 35 for injecting oil.
  • the oil supply line 82 may be configured to receive atomized vapor. In this case oil and atomized steam are supplied to the burner unit 30 .
  • a pulverized coal supply system 70 of one embodiment includes a pulverized coal supply device 71 for supplying pulverized coal using a carrier gas, a pulverized coal supply line 72 connecting the pulverized coal supply device 71 and the burner unit 30, and pulverized coal supply.
  • a pulverized coal flow control valve 76 for adjusting the flow rate of pulverized coal flowing through the line 72 and a switching valve 78 for switching the communication state of the pulverized coal supply line 72 are provided.
  • the pulverized coal supply line 72 of this example is connected to the fuel burners 35 of each of the first burner unit 31 , the second burner unit 32 and the third burner unit 33 .
  • the pulverized coal supply device 71 , the pulverized coal flow rate adjustment valve 76 and the switching valve 78 are configured to operate according to control commands from the control device 5 .
  • the pulverized coal supply system 70 can change between a supply stop state in which the pulverized coal supply is stopped and a supply state in which the pulverized coal is supplied to the burner unit 30 .
  • the pulverized coal supply system 70 is in the supply state, pulverized coal is supplied to the already-described fuel burner 35 (see FIG. 4) functioning as a coal burner.
  • the measurement system 9 includes an air flow meter 114 for measuring the flow rate of primary air supplied by the primary air supply system 110, and an air flow meter 114 for measuring the flow rate of secondary air supplied by the secondary air supply system 120.
  • These flow meters are configured to send measurement results to processor 91 . Thereby, the processor 91 of one embodiment can determine whether or not the determination condition is satisfied.
  • the boiler operating system 1 operates as follows, for example, according to control commands sent from the processor 91 .
  • the processor 91 sends another fuel combustion command to the supply system 15 .
  • the primary air supply system 110 and the secondary air supply system 120 each supply air.
  • the ammonia supply system 100 is in a supply stop state, and both the oil supply system 80 and the pulverized coal supply system 70 are in a supply state. Therefore, the burner unit 30 is supplied with oil and pulverized coal.
  • the ammonia burner 50 of the first burner unit 31 is stopped, and the ammonia burners 50 of the second burner unit 32 and the third burner unit 33 inject oil.
  • an ammonia supply start command is sent from the processor 91 to the supply system 15 in response to the determination condition being satisfied.
  • the oil supply system 80 changes to the supply stop state, and the ammonia supply system 100 changes to the supply state.
  • the first burner unit 31 injects liquid ammonia
  • the fuel injected from the second burner unit 32 and the third burner unit 33 is switched from oil to liquid ammonia.
  • the pulverized coal supply system 70 maintains the supply state.
  • the boiler 2 co-fires ammonia and pulverized coal.
  • the controller 5 sends an ammonia mono-burning command to the supply system 15 in response to the satisfaction of the ammonia mono-burning condition.
  • the pulverized coal supply system 70 changes to a supply stop state, and the fuel burner 35 functioning as a coal burner stops. Also, the ammonia supply system 100 increases the amount of liquid ammonia supplied. As a result, in the boiler 2, mono-firing of ammonia is performed.
  • the supply system 15 that receives the other fuel combustion command from the processor 91 may first supply oil to the burner unit 30 and then supply oil and pulverized coal to the burner unit 30. . Further, after the ammonia supply start command is sent to the supply system 15, co-firing of ammonia fuel and oil may be performed, or co-firing of ammonia fuel, pulverized coal, and oil may be performed.
  • FIG. 6 is a flowchart showing boiler operation control processing according to one embodiment.
  • the boiler operation control process is started, for example, when the operator of the boiler operation system 1 inputs a start instruction.
  • the processor 91 In the boiler operation control process, first, the processor 91 generates another fuel combustion command (S51). In one embodiment, the processor 91 executes S51 when the load of the boiler 2 is increased (eg, when the boiler 2 is started). By sending the generated other fuel combustion command to the supply system 15, combustion using carbon-containing fuel, which is an example of fuel other than ammonia fuel, is started. As a specific example, the supply system 15 and burner unit 30 are operated as previously described and combustion is initiated using oil and carbon-containing fuel.
  • the processor 91 that executes S ⁇ b>51 is an example of another fuel combustion command section that generates another fuel combustion command for burning another fuel (carbon-containing fuel in this example) in the furnace 20 .
  • the processor 91 determines whether or not the determination condition is satisfied based on the measurement result of the measurement system 9 (S53).
  • the processor 91 that executes S53 is an example of a determination unit that determines whether or not the determination condition is satisfied.
  • the determination conditions of one embodiment include the following conditions (A) to (C), and the processor 91 determines that the determination conditions are satisfied when all of (A) to (C) are satisfied.
  • the air ratio which is the ratio of the amount of air supplied to the furnace 20 to the theoretical amount of air required for burning another fuel (carbon-containing fuel in this example), is 0.8 or less.
  • the nose temperature which is the representative temperature in the furnace 20, is 1120° C. or higher.
  • the in-furnace residence time of the other fuel in the furnace 20 is 0.5 seconds or longer. Whether or not the condition (A) is satisfied is determined based on the equations (1) to (3) and the measurement results of the measurement system 9 . Whether or not the condition (B) is satisfied is determined based on the measurement result of the furnace thermometer 6 . Whether or not the condition (C) is satisfied is determined based on the measurement results of the measurement system 9 .
  • the processor 91 waits until the determination condition is satisfied (S53: NO). In one embodiment, when the boiler 2 is loaded, other combustions are fired in the furnace 20 until the criteria are met. In yet another embodiment, the upper limit of the air ratio defined by condition (A) may be 0.7.
  • the processor 91 When determining that the determination condition is satisfied (S53: YES), the processor 91 generates an ammonia supply start command (S55).
  • the generated ammonia supply start command is sent to the supply system 15 .
  • the supply system 15 and the burner unit 30 at this time operate as described above.
  • the processor 91 that executes S55 is an example of an ammonia supply command generator configured to generate an ammonia supply start command for causing the supply system 15 to start supplying ammonia fuel to the furnace 20 .
  • the co-firing ratio of ammonia (in terms of heat quantity) in the boiler 2 is 20% or more and 50% or less.
  • the burner section air ratio in the furnace 20 at this time is 0.7 or less.
  • the processor 91 determines whether or not the ammonia mono-firing condition for mono-firing ammonia in the boiler 2 is satisfied (S57).
  • the ammonia mono-firing condition of one embodiment is, for example, that a certain period of time has elapsed from the start of S53.
  • the processor 91 waits until the ammonia mono-firing condition is satisfied (S57: NO). During this time, co-firing of ammonia and other fuels is performed within the boiler 2 .
  • the processor 91 When determining that the ammonia mono-firing condition is satisfied (S57: YES), the processor 91 generates an ammonia mono-firing command.
  • the generated ammonia mono-firing command is sent to the supply system 15 .
  • the supply system 15 and the burner unit 30 operate as described above, and the mono-combustion of ammonia is performed.
  • the burner section air ratio during mono-firing of ammonia is 0.9 or less. This makes it possible to suppress the emissions of carbon dioxide and NOx during mono-firing of ammonia.
  • a method for operating a boiler (2) comprises: a step (S11, S51) of burning a fuel other than the ammonia fuel in the furnace (20);
  • the air ratio (burner section air ratio), which is the ratio of the amount of air supplied to the furnace (20) to the theoretical amount of air required to burn the other fuel supplied to the furnace (20), is equal to or less than the upper limit.
  • the upper limit value of the air ratio constituting the determination condition is 0.7 or less.
  • the burner air ratio when the burner air ratio is 0.7 or less, the proportion of oxygen in the furnace (20) decreases, and ammonia fuel is supplied into the furnace (20). It has been found that the amount of NOx produced is reduced. Further, it has been found that when the burner section air ratio is 0.7 or less, the reduction reaction between ammonia and NOx is promoted in the furnace (20), and the NOx emission amount is reduced. Therefore, according to the configuration (3) above, the amount of NOx emissions can be suppressed.
  • the lower limit value of the nose temperature of the furnace (20) as the representative temperature constituting the determination condition is 1120°C or higher.
  • the determination condition is that the residence time in the furnace from when the other fuel is put into the furnace (20) until it reaches the nose (11) of the furnace (20) is 0.5 seconds or longer.
  • the residence time of ammonia in the furnace is 0.5 seconds or longer, 80% or more of the ammonia fuel put into the furnace (20) is thermally decomposed.
  • the residence time of the other fuel in the furnace is 0.5 seconds or more, the supply of the ammonia fuel is started, so the residence time in the furnace at the start of combustion of ammonia is also 0. .5 seconds or more. As a result, NOx emissions can be suppressed.
  • the co-firing rate of the supplied ammonia fuel and the other fuel is 20% or more in terms of heat quantity.
  • the co-firing rate of ammonia and other fuels is 20% or more
  • the amount of NOx produced in the furnace (20) tends to increase. Therefore, it is of great significance to reduce the amount of NOx produced under conditions where the co-firing ratio is 20% or more.
  • the determination condition is satisfied before combustion with a co-firing rate of 20% or more is started. Therefore, even when the co-firing ratio is 20% or more, the amount of NOx produced can be reduced.
  • the co-firing ratio of ammonia is 50% or less in terms of calorific value, and the air ratio in the furnace (20) is 0.7 or less.
  • a step (S59) of performing mono-combustion of the ammonia fuel so that the air ratio in the furnace (20) is 0.9 or less after starting the supply of the ammonia fuel is provided.
  • NOx emissions are reduced when ammonia co-firing is performed under conditions where the co-firing ratio in terms of calorific value is 50% or less and the burner part air ratio is 0.7 or less. do. Further, according to the findings of the inventors, the ammonia mono-firing under the condition that the burner section air ratio is 0.9 or less can further reduce the amount of NOx emissions. According to the above configuration (7), it is possible to sequentially perform ammonia co-firing and ammonia mono-firing while reducing the amount of NOx emissions. In addition, carbon dioxide emission can be suppressed by performing ammonia mono-firing.
  • a boiler control device (5) A controller for a boiler (2) comprising a furnace (20) and a feed system configured to feed ammonia fuel and other fuels into the furnace (20), comprising: a combustion command generator (91) for generating another fuel combustion command for burning the other fuel in the furnace (20);
  • the air ratio which is the ratio of the amount of air supplied to the furnace (20) to the theoretical amount of air required for burning the other fuel supplied to the furnace (20), is equal to or less than the upper limit, and a determination unit (91) for determining whether or not a determination condition that the representative temperature in the furnace (20) is equal to or higher than the lower limit is satisfied;
  • an ammonia supply start command for causing the supply system to start supplying the ammonia fuel to the furnace (20) is generated.
  • an ammonia supply command generation unit (91) configured as; with The upper limit value of the air ratio constituting the determination condition is 0.8 or less.
  • FIG. 7 is a graph showing the relationship between the burner section air ratio and the amount of NOx emissions.
  • DTF vertically extending drop tube furnace
  • Combustion tests performed at DTF were mono-combustion of ammonia, co-combustion of ammonia and pulverized coal, and mono-combustion of pulverized coal.
  • the co-firing ratio at the time of co-firing with ammonia is 25% or 50% in terms of heat quantity.
  • the combustion test conducted in the single burner test furnace was for pulverized coal mono-firing.
  • the relationship between the burner air ratio and the amount of NOx emissions during ammonia mono-firing will be examined.
  • the NOx emissions from ammonia mono-firing with a burner air ratio of 1.0 are more than six times the NOx emissions from pulverized coal mono-firing in the DTF or single burner test furnace.
  • the amount of NOx emissions in ammonia mono-firing where the burner air ratio is 0.9 or less is lower than that in pulverized coal mono-firing.
  • the amount of NOx emissions in the ammonia-only combustion with a burner air ratio of 0.8 was the lowest in this combustion test.
  • the amount of NOx emissions in ammonia mono-firing where the burner section air ratio is less than 0.8 will be less than or equal to the emission amount when the burner section air ratio is 0.8. This is because the lower the burner air ratio, the less oxygen is used for combustion in the combustion space 7, and as a result, the thermal decomposition of ammonia gas is promoted more than the oxidation reaction of nitrogen, and the reduction reaction of NOx is also promoted. (It is thought that a similar tendency will appear when ammonia co-firing or ammonia mono-firing is performed).
  • the upper limit of the burner section air ratio is preferably 0.9 or less, more preferably 0.8 or less, and 0.8. It turns out that it is more preferable that it is 7 or less. Note that when a boiler 2 having a general size used for thermal power generation is operated, it is not realistic for the burner section air ratio to be less than 0.6. (also applies when Therefore, the lower limit of the burner section air ratio is 0.6 or more.
  • the amount of NOx emissions in ammonia co-firing (co-firing ratio: 25%) when the burner air ratio is 0.7 has not been measured. However, it can be predicted that the NOx emissions will be lower when the ammonia co-firing ratio is 25% than when the ammonia co-firing ratio is 50%. This is because the lower the ammonia co-firing rate, the smaller the amount of ammonia fuel supplied to the furnace 20, which causes NOx generation. Therefore, in order to reduce NOx emissions, the upper limit of the burner air ratio during ammonia co-firing is preferably 0.8 or less, and more preferably 0.7 or less. Also, the lower limit of the burner air ratio when co-firing with ammonia is 0.6 or more, as described above.
  • FIG. 8 is a graph showing the relationship between gas temperature and required residence time of ammonia.
  • the gas temperature is an example of a representative temperature within the furnace 20 .
  • the required residence time is the in-furnace residence time of the ammonia fuel necessary for thermally decomposing 80% of the ammonia fuel supplied into the furnace 20 in the combustion space 7 .
  • Thermal decomposition of ammonia is represented by the following (chemical formula A).
  • the required residence time is expected to be 2 seconds or more, and especially when the gas temperature is 1200°C, the required residence time is about 10 seconds. It can be seen that even if the boiler 2 is operated under such circumstances, it becomes difficult to thermally decompose 80% of the ammonia fuel. From the above, it can be seen that the gas temperature is preferably 1400° C. or higher so that 80% of the ammonia fuel supplied to the furnace 20 is thermally decomposed in the combustion space 7 . Note that the required residence time shown in FIG. 8 is a numerical value obtained by calculation. In a typical boiler 2 used in thermal power plants, the gas temperature is actually well above 1200° C. even if the boiler load is very low.
  • FIG. 9 is a graph showing the relationship between the nose temperature and the gas temperature in the burner section. It can be seen that the nose temperature is 1113°C when the gas temperature is 1400°C. Therefore, if the nose temperature is 1120° C. or higher, the gas temperature will be 1400° C. or higher, and the amount of NOx emissions will be reduced.
  • FIG. 10 is a graph showing the relationship between the ammonia co-firing ratio and NOx emissions.
  • the graph shown in FIG. 10 shows the NOx emissions when the ammonia co-firing rate is 0%, 25%, 50%, and 100% under the same combustion conditions of the boiler 2 .
  • the ammonia co-firing ratio shown in the graph of FIG. 10 is a ratio in terms of heat quantity, and an ammonia co-firing ratio of 100% is synonymous with mono-firing of ammonia.
  • the co-firing ratio of ammonia exceeds 20%, the amount of NOx emissions increases.
  • expressions such as “in a certain direction”, “along a certain direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial”, etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.

Abstract

ボイラの運転方法は、アンモニア燃料以外の他の燃料を火炉内で燃焼させるステップと、火炉に供給される他の燃料を燃焼させるために必要な理論空気量に対する火炉への空気供給量の比である空気比が上限値以下であり、且つ、火炉内の代表温度が下限値以上である判定条件が満たされるか否かを判定するステップと、判定条件が少なくとも満たされる場合に火炉へのアンモニア燃料の供給を開始するステップとを備える。また、判定条件を構成する空気比の上限値は0.8以下である。

Description

ボイラの運転方法、及び、ボイラ用の制御装置
 本開示は、ボイラの運転方法、及び、ボイラ用の制御装置に関する。
 本願は、2021年3月31日に日本国特許庁に出願された特願2021-059232号に基づき優先権を主張し、その内容をここに援用する。
 従来、アンモニアが燃料として火炉内に供給されるボイラが知られている。アンモニアが燃料として用いられる場合、窒素酸化物(NOx)が排出されるのを抑制する必要がある。例えば、特許文献1で開示されるボイラでは、複数段あるバーナのうち上段のバーナにはアンモニア燃料が供給されず、これによりNOxの排出が抑制される。
特開2020-112280号公報
 発明者らの知見によれば、NOxの排出量を抑制するためには、アンモニア燃料の供給開始前に他の燃料を用いてボイラ内の燃焼環境を適正化することが好ましい。しかし、特許文献1にはこういった構成の具体的な開示はない。
 本開示は、NOxの発生を抑制できる条件下でアンモニア燃料の供給を開始するボイラの運転方法、及び、ボイラ用の制御装置に関する。
 本発明の少なくとも一実施形態に係るボイラの運転方法は、
 アンモニア燃料以外の他の燃料を火炉内で燃焼させるステップと、
 前記火炉に供給される前記他の燃料を燃焼させるために必要な理論空気量に対する前記火炉への空気供給量の比である空気比が上限値以下であり、且つ、前記火炉内の代表温度が下限値以上である判定条件が満たされるか否かを判定するステップと、
 前記判定条件が少なくとも満たされる場合に前記火炉への前記アンモニア燃料の供給を開始するステップと、
を備え、
 前記判定条件を構成する前記空気比の前記上限値は0.8以下である。
 本発明の少なくとも一実施形態に係るボイラ用の制御装置は、
 火炉、および、アンモニア燃料および他の燃料を前記火炉内に供給するように構成された供給システムを備えるボイラ用の制御装置であって、
 前記他の燃料を火炉内で燃焼させるための他燃料燃焼指令を生成する燃焼指令生成部と、
 前記火炉に供給される前記他の燃料を燃焼させるために必要な理論空気量に対する前記火炉への空気供給量の比である空気比が上限値以下であり、且つ、前記火炉内の代表温度が下限値以上である判定条件が満たされるか否かを判定するための判定部と、
 前記判定条件が少なくとも満されると前記判定部が判定した場合、前記火炉への前記アンモニア燃料の供給を前記供給システムに開始させるためのアンモニア供給開始指令を生成するように構成されたアンモニア供給指令生成部と、
を備え、
 前記判定条件を構成する前記空気比の前記上限値は0.8以下である。
 本開示によれば、NOxの発生を抑制できる条件下でアンモニア燃料の供給を開始するボイラの運転方法、及び、ボイラ用の制御装置を提供できる。
一実施形態に係るボイラ運転システムの概念図である。 一実施形態に係るボイラの運転方法を示すフローチャートである。 一実施形態に係るアンモニアバーナの構成を示す断面図である。 一実施形態に係るバーナユニットの具体的な構成の説明図である。 一実施形態に係るボイラ運転システムの具体的な構成である。 一実施形態に係るボイラ運転制御処理を示すフローチャートである。 一実施形態に係るバーナ部空気比とNOx排出量との関係を示すグラフである。 一実施形態に係るガス温度とアンモニアの必要滞留時間との関係を示すグラフである。 一実施形態に係るノーズ温度とバーナ部のガス温度との関係を示すグラフである。 一実施形態に係る熱量換算でのアンモニア混焼率とNOx排出量との関係を示すグラフである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、一実施形態に係るボイラ運転システム1の概念図である。
 ボイラ運転システム1は、例えば図示外の火力発電プラントに組み込まれるボイラ2と、ボイラ2に空気及び燃料を供給するための供給システム15と、ボイラ2の運転に関するパラメータを計測するための計測システム9とを備える。
 供給システム15からボイラ2に供給される燃料には、アンモニア燃料が含まれる。アンモニア燃料は、液体アンモニアまたはアンモニアガスのいずれであってもよい。以下では、アンモニア燃料が液体アンモニアである実施形態を例示する。一実施形態では、ボイラ2に液体アンモニアが液状のまま供給される。液体アンモニアは水素ガスなどの気体を含まないが、ボイラ2での燃焼に影響を与えない程度の不純物(例えば尿素)を含んでいてもよい。液体アンモニアはボイラ2内でアンモニアガスに気化する。
 また、供給システム15からボイラ2に供給される燃料には、アンモニア燃料以外の他の燃料が含まれる。例えば、ボイラ2内では他の燃料を用いた燃焼が行われた後に、アンモニアと他の燃料との混焼またはアンモニアの専焼が行われる。
 アンモニア以外の他の燃料の一例である炭素含有燃料は、バイオマス燃料または化石燃料などである。化石燃料は、液化天然ガス、重油または軽油などの油、もしくは微粉炭などの石炭である。以下では、炭素含有燃料が油と微粉炭である実施形態を例示する。
 一実施形態のボイラ2は、火炉壁19を含む火炉20と、火炉壁19に設けられた少なくとも1つのバーナユニット30とを含む。
 火炉20は、バーナユニット30によって噴射された燃料が燃焼用空気と反応して燃焼するための筒状の中空体であり、例えば、円筒形状や四角柱状など種々の形態をとり得る。
 また、一実施形態の火炉20は、火炉20内に向けて突出するノーズ11を含む。ノーズ11は、火炉20の燃焼空間7で生じたガス(例えば燃焼ガス及び未燃焼ガス)が、火炉20の下流側にある流路に適正に流れるように構成される。火炉20の下流側にある流路は一例として煙道8である。
 少なくとも1つのバーナユニット30は、燃料が火炉20の燃焼空間7で燃焼するように構成される。図1で例示される実施形態では、バーナユニット30は、燃焼空間7で生じたガスが流れる方向(図1の矢印A)に沿って3段に分かれて配置される。以下では、ガスの流れ方向の下流側から順に各段のバーナユニット30を第1バーナユニット31、第2バーナユニット32、及び第3バーナユニット33という場合があり、これら3段のバーナを総称してバーナユニット30という場合がある。なお、バーナユニット30は、2段または4段などに分かれて配置されてもよい。
 一実施形態のボイラ2は旋回燃焼型ボイラであり、各段に設けられたバーナユニット30は、火炉20の周方向に沿って等間隔に複数配置される。各段のバーナユニット30の個数は一例として4個であるが、図1では各段のバーナユニット30を1つのみ図示している。なお、各段のバーナユニット30は、3個または5個以上であってもよい。
 他の実施形態に係るボイラ2は、対向燃焼型ボイラである。この場合、各段のバーナユニット30は、互いに対向する位置に少なくとも一対設けられる。
 各々のバーナユニット30は、少なくとも1つのバーナを含む。そして、少なくとも1つのバーナユニット30では、上記バーナが、液体アンモニアを液状のまま火炉20の内部に噴射するように構成されたアンモニアバーナ50である。アンモニアバーナ50は、液体アンモニアのみを噴射するように構成されてもよい。もしくはアンモニアバーナ50は、炭素含有燃料を噴射した後に、炭素含有燃料と共に(または炭素含有燃料に代えて)液体アンモニアを噴射するように構成されてもよい。
 一実施形態では、第1バーナユニット31がアンモニアバーナ50を含む。第2バーナユニット32と第3バーナユニット33は、アンモニアバーナ50を含んでもよいし、含まなくてもよい。他の実施形態では、アンモニアバーナ50は、第2バーナユニット32または第3バーナユニット33のみに含まれてもよい。
 さらに、いずれのかのバーナユニット30は、炭素含有燃料を火炉20内に噴射するための燃料バーナ35(図4参照)を含んでもよい。詳細は後述する。
 一実施形態では、供給システム15は、バーナユニット30に1次空気及び燃料を供給するように構成される。バーナユニット30へ供給される燃料(本例では液体アンモニア及び炭素含有燃料)は切り替わってもよい。例えば、いずれかの段のバーナユニット30では、炭素含有燃料(例えば油)が供給された後に液体アンモニアが供給されてもよい。
 一実施形態の供給システム15は、バーナユニット30よりも下流側で火炉壁19に設けられた供給部4を介して2次空気(アディショナルエア)を供給するように構成される。
 一実施形態の計測システム9は、供給システム15から供給される空気または燃料の流量を計測するための複数の流量計と、火炉20内の代表温度を計測するための火炉温度計6とを含む。火炉20内の代表温度は、火炉20の燃焼空間7におけるガスの温度であるガス温度と相関する温度である。一例として火炉20内の代表温度は、上述のノーズ11の内壁面の温度(以下、ノーズ温度という)である。ノーズ温度は、火炉温度計6によって計測される。なお、火炉20内の代表温度は、例えばガス温度であってもよい。
 ボイラ運転システム1は、オペレータによる操作によって運転されてもよいし、後述の制御装置5(図5参照)による制御によって運転されてもよいし、またはこれらの組み合わせによって運転されてもよい。
 一実施形態の火炉20内では、アンモニア燃料以外の他の燃料(本例では炭素含有燃料)が燃焼した後にアンモニア燃料の供給が開始され、アンモニア燃料と他の燃料との混焼が行われてもよい。
 一実施形態では、アンモニア燃料の供給を開始するための条件として判定条件が用いられる。判定条件は、空気比が上限値以下であり、且つ、火炉20内の代表温度が下限値以上であると満たされる。
 判定条件を構成する上記の空気比は、火炉20に供給される他の燃料を燃焼させるために必要な理論空気量に対する火炉20への空気供給量の比である。一実施形態では、上記した火炉20への空気供給量には2次空気(アディショナルエア)が含まれない。つまり本例では、判定条件を構成する空気比は、火炉20に供給される全空気のうち2次空気以外の空気が占める供給割合を全空気比に乗じた値でもある。具体的には、判定条件を構成する空気比(以下、バーナ部空気比という場合がある)は、以下の式(1)によって規定される。
 λ=λ×(100-AA)/100  ・・・式(1)
 式(1)において、λはバーナ部空気比であり、λは全空気比であり、AAはボイラ2への全空気供給量のうちで2次空気の供給割合である。
 また、全空気比(λ)は、式(2)、式(3)、及び式(4)によって規定される。
 λ=QAir/Q  ・・・式(2)
 Q=Qmf×Amf  ・・・式(3)
 Amf=(100-X)/100×Acar+X/100×ANH3  ・・・式(4)
 式(2)~式(4)において、QAirは全空気供給量である。また、Qmfは、火炉20内で行われる燃焼がアンモニア混焼(重量換算での混焼率:X%)であるときのアンモニア燃料と他の燃料(本例では炭素含有燃料)との供給量である。Qは、該混焼時に空気比が1となるための空気流量である。Amfは、上記混焼が行われるときの燃料(本例ではアンモニア燃料と炭素含有燃料)の理論空気量であり、Acarは、炭素含有燃料の理論空気量であり、ANH3はアンモニア燃料の理論空気量である。
 式(1)~式(3)は、アンモニア燃料と炭素含有燃料との混焼についても適用できる式である。そして、判定条件を構成する空気比(つまり、アンモニア燃料の供給開始前のバーナ部空気比)を求めるには、X及びANH3を各々0に設定し、且つQmfを炭素含有燃料のみの供給量に設定して、式(1)~式(3)を適用すればよい。なお、以下では、アンモニア燃料の供給開始前に限らず、アンモニア混焼またはアンモニア専焼が行われるときも含めて、式(1)によって規定されるλをバーナ部空気比という場合がある。
 一実施形態では、判定条件を構成するバーナ部空気比の上限値は、0.8以下である。バーナ部空気比が0.8以下の条件下で火炉20へのアンモニア燃料の供給が開始されれば、アンモニア燃料の燃焼開始時のバーナ部空気比も0.8以下となる。これにより、火炉20内で生成されるNOxが効果的に低減する。
 判定条件を構成するバーナ部空気比の上限値は、0.7以下であってもよい。この場合、空気比が0.7以下となる条件下でアンモニア燃料の燃焼が開始され、過剰なNOxの生成が抑制される。
 なお、火力発電プラントに用いられる一般的な体格を有するボイラ2では、バーナ部空気比が0.6未満になることは現実的ではない。従って、判定条件を構成するバーナ部空気比は、好ましくは0.6以上かつ0.8以下であり、より好ましくは0.6以上かつ0.7以下である。
 一実施形態では、判定条件を構成する火炉20内の代表温度は既述のノーズ温度である。ノーズ温度の下限値は1120℃以上である。発明者らの知見によれば、ノーズ温度が1120℃以上であれば、ガス温度は1400℃以上であり、比較的短い炉内滞留時間でアンモニアの熱分解が十分に行われることが判明した。従って、ノーズ温度が1120℃以上であるときにアンモニア燃料の供給が開始されることで、NOxの発生を抑制することができる。
 なお、炉内滞留時間は、燃料が火炉20に投入されてからノーズ11に到達するまでの時間である。炉内滞留時間は、例えば、1次空気及び2次空気の空気流量と炭素含有燃料の供給流量、火炉20の断面積(一定値)、及び火炉20の高さ(一定値)に基づき算出可能である。従って、炉内滞留時間は、計測システム9に含まれる複数の流量計の計測結果に基づき取得可能である。
 一実施形態の判定条件には、他燃料(本例では炭素含有燃料)の炉内滞留時間が0.5秒以上であることが含まれてもよい。発明者らの知見によれば、アンモニアの炉内滞留時間が0.5秒以上であれば、火炉20に投入されるアンモニア燃料が十分に熱分解することが判明した。他の燃料の炉内滞留時間が0.5秒以上のときにアンモニア燃料の供給が開始されるので、アンモニアの炉内滞留時間も0.5秒以上にでき、NOxの生成量を低減できる。
 炉内滞留時間が長いほど、アンモニア燃料の熱分解には有利な燃焼環境が形成される。ただし、火力プラントに用いられる一般的な体格を有するボイラ2では、燃料(他燃料とアンモニア燃料を含む)の炉内滞留時間は、長くて例えば2.0秒から3.0秒である。従って、判定条件を構成する炉内滞留時間は0.5秒以上かつ3.0秒以下であってもよいし、0.5秒以上かつ2.0秒以下であってもよい。
 図2は、一実施形態に係るボイラ2の運転方法を示すフローチャートである。以下、「ステップ」を「S」を略記する場合がある。
 一実施形態に係るボイラ2の運転方法ではまず、アンモニア燃料以外の他の燃料の燃焼が火炉20内で開始される(S11)。一実施形態では、ボイラ2の負荷上昇時(例えばボイラ2の起動時)に、供給システム15がアンモニア燃料以外の他の燃料(本例では炭素含有燃料)をバーナユニット30に供給する。なお、ボイラ2の負荷は、一例として、ボイラ2が発生させた蒸気の熱量である。
 続いて、上述の判定条件が満たされるか否かが判定される(S13)。一実施形態のS13では、バーナ部空気比が0.8以下であり、且つ、火炉20内の代表温度としてのノーズ温度が1120℃以上であるか判定される。判定条件が満たされるかは、計測システム9の計測結果に基づき判定される。
 一実施形態では、ボイラ2の負荷上昇時において、判定条件が満たされるまで(S13:NO)、他の燃料を用いた燃焼が火炉20内で行われる。これにより、火炉20内の温度は上昇する。発明者らの知見によれば、ボイラ2の熱負荷上昇時、火炉20内のガス温度は比較的低く、このときにアンモニア燃料が火炉20に供給されると過剰なNOxが生成されることが判明した。ボイラ2の負荷上昇時に判定条件が充足されるまでアンモニア燃料の供給が開始されないので、NOxの発生を抑制できる。なお、ボイラ2の負荷上昇時とは、ボイラ(2)の熱負荷が低下した後に上昇する時を含む概念である。
 他の実施形態では、S13において、バーナ部空気比が0.8以下であるか判定される代わりに、バーナ部空気比が0.7以下であるか判定されてもよい。また、S13の判定条件には、他の燃料の炉内滞留時間が0.5秒以上であることが含まれてもよい。この場合、計測システム9の計測結果に基づき他燃料の炉内滞留時間が取得される。また、判定条件とは別の条件が満たされるかがS13において併せて判定されてもよい。
 判定条件が少なくとも満たされると判定された場合(S13:YES)、アンモニア燃料の供給が開始される(S15)。
 一実施形態では、供給システム15は、炭素含有燃料と共にアンモニア燃料をバーナユニット30に供給し、アンモニア燃料と炭素含有燃料との混焼が火炉20内で行われる。このときの熱量換算でのアンモニア混焼率は、一例として20%以上である。発明者らの知見によれば、アンモニアと他の燃料との熱量換算での混焼率が20%以上である場合、火炉20内におけるNOxの生成量が増大し易い。従って、混焼率が20%以上のアンモニア混焼が行われるときのNOxの生成量を低減することの意義は大きい。
 一実施形態では、アンモニア混焼時におけるバーナ部空気比は、0.6以上かつ0.7以下である。発明者らの知見によれば、バーナ部空気比が0.6以上かつ0.7以下の条件下でアンモニア混焼が行われることで、NOx排出量を抑制できる。
 図3は、一実施形態に係るアンモニアバーナ50の構成を示す断面図である。
 上述したように、ボイラ2に供給されるアンモニア燃料は一例として液体アンモニアである。アンモニアバーナ50は、供給システム15(図1参照)からの液体アンモニアが供給されるように構成されたアンモニア供給路52と、アンモニア供給路52から供給される液体アンモニアを液状のまま火炉20の内部に噴射するように構成されたアンモニア噴射ノズル54とを備える。
 アンモニアバーナ50は、アシスト流体を用いずに液体アンモニアを液状のまま噴射するための1流体ノズルである。より具体的には、アンモニアバーナ50は、噴射される液体アンモニアが末広がり状の液膜になるように構成された渦巻噴射ノズル(スワールアトマイザ)である。あるいは、アンモニアバーナ50は、噴射される液体アンモニアがシート状の液膜になるように構成されたファンスプレーノズル、または、単純な液噴流の状態で液体アンモニアを噴射するように構成されたプレーンジェット型のアトマイザであってもよい。いずれの実施形態であっても、火炉20内に噴射される液体アンモニアは微粒化し易く、燃焼空間7において液体アンモニアは気化し易い。
 一実施形態に係るアンモニアバーナ50は、火炉20内で生じる燃焼火炎を保炎するように構成された保炎効果を有する機構60をさらに備える。
 難燃性を有する液体アンモニアが燃料として用いられる場合、火炉20内で失火が起こる可能性がある。失火を回避するためには、液体アンモニアは火炉20内で気化してさらに熱分解する必要がある。この点、上記の保炎効果を有する機構60が燃焼火炎を保炎することで、液体アンモニアは気化及び熱分解するための熱を得ることができるので、火炉20内における失火を抑制することができる。
 一実施形態に係る保炎効果を有する機構60はスワラ型である。より具体的な一例として、保炎効果を有する機構60は、アンモニア噴射ノズル54が内側に配置される内筒62と、内筒62を囲むように配置された外筒64と、スワラ65とを備える。一実施形態の外筒64は、内筒62を囲む第1外筒64Aと、第1外筒64Aを囲む第2外筒64Bとを含む。第1外筒64Aと内筒62との間には、火炉20の内部と連通する空気供給路63Aが形成される。同様に、第1外筒64Aと第2外筒64Bとの間にも、火炉20の内部と連通する空気供給路63Bが形成される。空気供給路63A、63Bを流れる空気は、供給システム15(図1参照)から供給される1次空気である。スワラ65は、空気供給路63Aに設けられ、空気供給路63Aを流れる空気に旋回力を付与するように構成される。
 空気供給路63Aから火炉20に供給される空気にはスワラ65によって旋回力が付与される(矢印B)。これにより、アンモニア噴射ノズル54から噴射される液体アンモニアと空気との混合が促進される。従って、火炉20の内部において液体アンモニアの拡散が促進され、火炉20内の液体アンモニアが熱分解し易い。
 なお、他の実施形態では、保炎効果を有する機構60は、スワラ型に代えてディフューザ型であってもよい。また、アンモニアバーナ50は保炎効果を有する機構60を備えなくてもよい。
 図4は、一実施形態に係るバーナユニット30の具体的な構成の説明図である。
 図4で示されるバーナユニット30は、アンモニアの混焼率が熱量換算で約50%となった後、アンモニア専焼に切り替わるように構成される。
 バーナユニット30は、一例として既設のバーナのユニットである。従って、バーナユニット30の一部の構成要素は不使用であってもよい。あるいは、該構成要素は、アンモニア混焼時のみに使用され、アンモニア専焼時には不使用であってもよい。
 各段のバーナユニット30は、5つの噴射手段40を含む。各々の噴射手段40は、燃料または空気を火炉20に供給するように構成される。一例として、各々の噴射手段40は、既述のアンモニアバーナ50、炭素含有燃料を噴射するための燃料バーナ35、または、1次空気を噴射するための空気ノズル42のいずれかである。
 バーナユニット30の第1バーナユニット31、第2バーナユニット32、及び第3バーナユニット33ではいずれも、同じ構成が採用される。具体的には、最も外側にある2つの噴射手段40はいずれも空気ノズル42であり、中央にある噴射手段40はアンモニアバーナ50である。そして、アンモニアバーナ50と上側の空気ノズル42との間にある噴射手段40は燃料バーナ35であり、残る1つの噴射手段40は使用されない。
 図4の例では、バーナユニット30の燃料バーナ35はいずれも、炭素含有燃料として微粉炭を噴射するように構成された石炭バーナである。
 一実施形態では、第1バーナユニット31のアンモニアバーナ50から噴射される燃料は液体アンモニアのみであり、第2バーナユニット32と第3バーナユニット33のアンモニアバーナ50から噴射される燃料は、油と液体アンモニアである。
 バーナユニット30は例えば以下のように作動する。
 はじめに、炭素含有燃料を用いた燃焼が行われる。具体的には、空気ノズル42が1次空気を噴射し、燃料バーナ35が微粉炭を噴射する。このとき、第1バーナユニット31のアンモニアバーナ50は作動せず、第2バーナユニット32と第3バーナユニット33の各々のアンモニアバーナ50は油を噴射する。
 その後、第1バーナユニット31のアンモニアバーナ50から液体アンモニアが噴射され、残る2つのアンモニアバーナ50から噴射される燃料は油から液体アンモニアに切り替わる。これにより、アンモニアの混焼が火炉20内で行われる。その後、バーナユニット30の3つの燃料バーナ35では微粉炭の噴射が停止され、火炉20に噴射される燃料は3つのアンモニアバーナ50からの液体アンモニアのみとなる。これにより、火炉20内での燃焼は、アンモニアの混焼からアンモニアの専燃に切り替わる。
 図5は、一実施形態に係るボイラ運転システム1の具体的な構成である。ボイラ運転システム1は、既述のボイラ2、供給システム15、及び計測システム9に加えて、ボイラ2の運転を制御するための制御装置5を備える。
 一実施形態の制御装置5は、プロセッサ91、ROM92、RAM93、及びメモリ94を含む。
 プロセッサ91は、ROM92に記憶されるボイラ運転プログラムを読み出してRAM93にロードし、ボイラ運転プログラムに含まれる命令を実行するように構成される。プロセッサ91は、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせである。プロセッサ91は、PLD、ASIC、FPGA、及びMCU等の集積回路により実現されてもよい。メモリ94は、ボイラ運転プログラムの実行に伴い各種データが記憶される。メモリ94は一例としてフラッシュメモリである。プロセッサ91は、供給システム15と計測システム9とに電気的に接続されている。
 一実施形態のプロセッサ91は、アンモニア燃料以外の他の燃料を火炉20内で燃焼させるための他燃料燃焼指令と、アンモニア燃料の供給を供給システム15に開始させるためのアンモニア供給開始指令と、アンモニアの専焼を火炉20内で開始させるためのアンモニア専焼開始指令とを生成するように構成される。一実施形態では、これらの制御指令は供給システム15に送られる。
 一実施形態のプロセッサ91は、計測システム9の計測結果に基づき既述の判定条件が満たされると判定した場合、アンモニア供給開始指令を生成する。また、一実施形態のプロセッサ91は、アンモニア専焼を開始するためのアンモニア専焼条件が満たされると判定した場合、アンモニア専焼指令を開始する。アンモニア専焼条件は、例えば、火炉20内の代表温度が規定の温度に到達したこと、アンモニア混焼が開始されてから規定時間が経過したこと、オペレータから規定の入力操作があったのち所定のパラメータが設定値に到達したこと、またはこれらの組み合わせなどである。
 供給システム15は、1次空気を供給するための1次空気供給システム110、2次空気を供給するための2次空気供給システム120、液体アンモニアを供給するためのアンモニア供給システム100、油を供給するための油供給システム80、及び、微粉炭を供給するための微粉炭供給システム70を備える。油供給システム80と微粉炭供給システム70は各々、炭素含有燃料を供給するためのシステムの一例である。
 1次空気、液体アンモニア、微粉炭、及び油はバーナユニット30に供給され、2次空気は火炉壁19に設けられた供給部4に供給される。上記供給システム15は、制御装置5によって制御されるように構成される。
 1次空気供給システム110の空気供給ライン112は全てのバーナユニット30に接続される。空気供給ライン112には、1次空気の流量を調整するための流量調整弁116、及び空気供給ライン112の連通状態を切り替えるための切替弁118が設けられる。
 2次空気供給システム120の空気供給ライン122は供給部4に接続される。空気供給ライン122には、2次空気の流量を調整するための流量調整弁126、及び空気供給ライン122の連通状態を切り替えるための切替弁128が設けられる。
 流量調整弁116、126と切替弁118、128は、制御装置5から送られる制御指令に応じて作動するように構成される。
 アンモニア供給システム100は、既述のアンモニアバーナ50と、液体アンモニアが貯留されるアンモニアタンク101と、アンモニアタンク101とアンモニアバーナ50とをつなぐアンモニア供給ライン102と、アンモニア供給ライン102に設けられたポンプ103と、アンモニア供給ライン102の圧力を調整するための圧力調整弁105と、アンモニア供給ライン102に設けられると共にアンモニアタンク101とアンモニアバーナ50との連通状態を切り替えるための切替弁107と、アンモニア供給ライン102を流れる液体アンモニアの流量を調整するための流量調整弁108とを備える。
 圧力調整弁105、切替弁107、及び流量調整弁108はプロセッサ91からの制御指令に応じて作動するように構成される。これにより、アンモニア供給システム100は、いずれのアンモニアバーナ50にも液体アンモニアを供給しない供給停止状態と、全てのアンモニアバーナ50に液体アンモニアを供給する供給状態との間で変化できる。後述のように、アンモニア供給システム100が供給停止状態のとき、第2バーナユニット32と第3バーナユニット33のアンモニアバーナ50には、油供給システム80から油が供給される。
 一実施形態の油供給システム80は、油供給装置81、油供給装置81とアンモニアバーナ50とをつなぐ油供給ライン82、油供給ライン82を流れる油の流量を調整するための油流量調整弁86、及び、油供給ライン82の連通状態を切り替えるための切替弁88を備える。本例の油供給ライン82は、第2バーナユニット32と第3バーナユニット33の各々のアンモニアバーナ50に接続される。
 一実施形態では、油供給装置81、油流量調整弁86、及び切替弁88は、制御装置5からの制御指令に応じて作動するように構成される。これにより、油供給システム80は、油供給ライン82に接続されたアンモニアバーナ50に油を供給する供給状態と、油の供給を停止する供給停止状態との間で変化できる。
 なお、他の実施形態では、油供給ライン82は、油を噴射するための燃料バーナ35と接続されてもよい。また、油供給ライン82は、アトマイズ蒸気が流入するように構成されてもよい。この場合、油とアトマイズ蒸気がバーナユニット30に供給される。
 一実施形態の微粉炭供給システム70は、搬送ガスを用いて微粉炭を供給するための微粉炭供給装置71、微粉炭供給装置71とバーナユニット30とをつなぐ微粉炭供給ライン72、微粉炭供給ライン72を流れる微粉炭の流量を調整するための微粉炭流量調整弁76、及び、微粉炭供給ライン72の連通状態を切り替えるための切替弁78を備える。本例の微粉炭供給ライン72は、第1バーナユニット31、第2バーナユニット32、及び第3バーナユニット33の各々の燃料バーナ35に接続される。
 微粉炭供給装置71、微粉炭流量調整弁76、及び切替弁78は、制御装置5からの制御指令に応じて作動するように構成される。これにより、微粉炭供給システム70は、微粉炭の供給を停止する供給停止状態と、微粉炭をバーナユニット30に供給する供給状態との間で変化できる。微粉炭供給システム70が供給状態のとき、石炭バーナとして機能する既述の燃料バーナ35(図4参照)に微粉炭が供給される。
 計測システム9は、1次空気供給システム110によって供給される1次空気の流量を計測するための空気流量計114、2次空気供給システム120によって供給される2次空気の流量を計測するための空気流量計124、アンモニア供給システム100によって供給されるアンモニア燃料の流用を計測するためのアンモニア流量計109、油供給システム80によって供給される油の流量を計測するための油流量計84、微粉炭供給システム70によって供給される微粉炭の流量を計測するための微粉炭流量計74、及び既述の火炉温度計6を含む。
 これらの流量計は計測結果をプロセッサ91に送るように構成される。これにより、一実施形態のプロセッサ91は、判定条件の充足の有無を判定することができる。
 ボイラ運転システム1は、プロセッサ91から送られる制御指令によって、例えば以下のように作動する。
 はじめに、プロセッサ91から供給システム15に他燃料燃焼指令が送られる。これにより、1次空気供給システム110と2次空気供給システム120が各々、空気を供給する。このとき、アンモニア供給システム100は供給停止状態であり、油供給システム80と微粉炭供給システム70はいずれも供給状態である。従って、バーナユニット30には油と微粉炭が供給される。このとき、第1バーナユニット31のアンモニアバーナ50は停止しており、第2バーナユニット32と第3バーナユニット33のアンモニアバーナ50は油を噴射する。
 その後、判定条件が満たされたことに応じて、プロセッサ91から供給システム15にアンモニア供給開始指令が送られる。油供給システム80は供給停止状態に変化し、アンモニア供給システム100は供給状態に変化する。これにより、第1バーナユニット31は液体アンモニアを噴射し、第2バーナユニット32と第3バーナユニット33から噴射される燃料は油から液体アンモニアに切り替わる。微粉炭供給システム70は供給状態を維持する。結果、ボイラ2ではアンモニアと微粉炭との混焼が行われる。
 その後、アンモニア専焼条件が満たされたことに応じて、制御装置5は供給システム15にアンモニア専焼指令を送る。微粉炭供給システム70は供給停止状態に変化し、石炭バーナとして機能していた燃料バーナ35は停止する。また、アンモニア供給システム100は液体アンモニアの供給量を増やす。結果、ボイラ2ではアンモニアの専焼が行われる。
 なお、他の実施形態では、プロセッサ91から他燃料燃焼指令を受信した供給システム15は、初めに油をバーナユニット30に供給してから、油及び微粉炭をバーナユニット30に供給してもよい。また、アンモニア供給開始指令が供給システム15に送られた後、アンモニア燃料と油との混焼が行われてもよいし、アンモニア燃料、微粉炭、及び油の混焼が行われてもよい。
 図6は、一実施形態に係るボイラ運転制御処理を示すフローチャートである。ボイラ運転制御処理は、例えば、ボイラ運転システム1のオペレータが開始指示を入力することで開始される。
 ボイラ運転制御処理ではまず、プロセッサ91が、他燃料燃焼指令を生成する(S51)。一実施形態では、ボイラ2の負荷上昇時(例えばボイラ2の起動時)に、プロセッサ91はS51を実行する。生成された他燃料燃焼指令が供給システム15に送られることで、アンモニア燃料以外の他の燃料の一例である炭素含有燃料を用いた燃焼が開始される。具体的な一例として、供給システム15とバーナユニット30は既述の通り作動し、油と炭素含有燃料を用いた燃焼が開始される。
 S51を実行するプロセッサ91は、他の燃料(本例では炭素含有燃料)を火炉20内で燃焼させるための他燃料燃焼指令を生成する他燃料燃焼指令部の一例である。
 続いて、プロセッサ91は、判定条件が満たされたか否かを計測システム9の計測結果に基づき判定する(S53)。
 S53を実行するプロセッサ91は、判定条件が満たされるか否かを判定する判定部の一例である。
 一実施形態の判定条件は、以下の条件(A)~(C)を含み、(A)~(C)が全て満たされた場合に、プロセッサ91は判定条件が満たされたと判定する。
 (A)他の燃料(本例では炭素含有燃料)を燃焼させるために必要な理論空気量に対する火炉20への空気供給量の比である空気比が0.8以下である。
 (B)火炉20内の代表温度であるノーズ温度が1120℃以上である。
 (C)火炉20内における他の燃料の炉内滞留時間が0.5秒以上である。
 条件(A)が満たされるか否かは、式(1)~式(3)と計測システム9の計測結果に基づいて判定される。条件(B)が満たされるか否かは、火炉温度計6の計測結果に基づいて判定される。条件(C)が満たされるか否かは、計測システム9の計測結果に基づいて判定される。
 判定条件が満たされるまで(S53:NO)、プロセッサ91は待機する。一実施形態では、ボイラ2の負荷上昇時において判定条件が満たされるまでの期間、他の燃焼が火炉20内で燃焼する。
 なお他の実施形態では、条件(A)で規定される空気比の上限値は0.7であってもよい。
 判定条件が満たされると判定した場合(S53:YES)、プロセッサ91は、アンモニア供給開始指令を生成する(S55)。生成されたアンモニア供給開始指令は供給システム15に送られる。このときの供給システム15とバーナユニット30は既述の通り作動する。
 S55を実行するプロセッサ91は、火炉20へのアンモニア燃料の供給を供給システム15に開始させるためのアンモニア供給開始指令を生成するように構成されたアンモニア供給指令生成部の一例である。
 一実施形態では、ボイラ2でのアンモニア混焼率(熱量換算)は20%以上かつ50%以下である。また、このときの火炉20内のバーナ部空気比が0.7以下である。
 続いて、プロセッサ91は、ボイラ2内でアンモニアの専焼が行われるためのアンモニア専焼条件が満たされたかを判定する(S57)。一実施形態のアンモニア専焼条件は、例えば、S53の開始から一定時間が経過したことである。
 プロセッサ91は、アンモニア専焼条件が満たされるまでの間(S57:NO)、待機する。この間、アンモニアと他の燃料との混焼がボイラ2内で行われる。
 アンモニア専焼条件が満たされると判定した場合(S57:YES)、プロセッサ91は、アンモニア専焼指令を生成する。生成されたアンモニア専焼指令は供給システム15に送られる。供給システム15とバーナユニット30は既述の通り作動し、アンモニアの専焼が行われる。
 一実施形態では、アンモニア専焼時におけるバーナ部空気比は0.9以下である。これにより、アンモニア専焼時において、二酸化炭素とNOxの各々の排出量を抑制することができる。
(まとめ)
 以下、幾つかの実施形態に係るボイラ2の運転方法、ボイラ用の制御装置5について概要を記載する。
(1)本発明の少なくとも一実施形態に係るボイラ(2)の運転方法は、
 アンモニア燃料以外の他の燃料を火炉(20)内で燃焼させるステップ(S11、S51)と、
 前記火炉(20)に供給される前記他の燃料を燃焼させるために必要な理論空気量に対する前記火炉(20)への空気供給量の比である空気比(バーナ部空気比)が上限値以下であり、且つ、前記火炉(20)内の代表温度が下限値以上である判定条件が満たされるか否かを判定するステップ(S13、S53)と、
 前記判定条件が少なくとも満たされる場合に前記火炉(20)への前記アンモニア燃料の供給を開始するステップ(S15、S55)と、
を備え、
 前記判定条件を構成する前記空気比の前記上限値は0.8以下である。
 発明者らの知見によれば、判定条件を構成する空気比(バーナ部空気比)が0.8以下の条件でアンモニアが火炉(20)内で燃焼すると、火炉(20)内で生成されるNOxが効果的に低減することが判明した。また、NOxの生成を抑制するには、アンモニアの火炉(20)内での熱分解が必要であり、火炉(20)内のガス温度が一定温度以上であると、この熱分解は促進されることが判明した。そして、火炉(20)内の代表温度は火炉(20)内のガス温度と相関する。上記(1)の構成によれば、NOxの発生を抑制できる条件下でアンモニア燃料の供給を開始するボイラ(2)の運転方法が実現する。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記ボイラ(2)の熱負荷の上昇時において、前記判定条件が満たされるまでの期間(S13:NO、S53:NO)、前記他の燃料を燃焼させ、前記判定条件の充足後、前記火炉(20)への前記アンモニア燃料の供給を開始する。
 発明者らの知見によれば、ボイラ(2)の熱負荷の上昇時では火炉(20)内のガス温度が比較的低く、このときにアンモニア燃料が火炉(20)内に供給されると、過剰なNOxが生成されることが判明した。この点、上記(2)の構成によれば、ボイラ(2)の負荷上昇時において、判定条件が充足されるまでアンモニア燃料の供給が開始されないので、NOx排出量を抑制することができる。
(3)幾つかの実施形態では、上記(1)または(2)の構成において、
 前記判定条件を構成する前記空気比の前記上限値は0.7以下である。
 発明者らの知見によれば、バーナ部空気比が0.7以下であると、火炉(20)内の酸素の割合が低減し、アンモニア燃料が火炉(20)内に供給されることに伴い生成されるNOxの量が低減することが判明した。また、バーナ部空気比が0.7以下であると、火炉(20)内においてアンモニアとNOxとの還元反応が促進され、NOx排出量が低減することが判明した。従って、上記(3)の構成によれば、NOx排出量を抑制できる。
(4)幾つかの実施形態では、上記(1)から(3)のいずれか構成において、
 前記判定条件を構成する前記代表温度としての前記火炉(20)のノーズ温度の前記下限値は、1120℃以上である。
 発明者らの知見によれば、火炉(20)内のガス温度が1400℃以上の場合、比較的短い炉内滞留時間でアンモニアの熱分解が十分に行われることが判明した。さらに、ノーズ温度が1120℃以上である場合、ガス温度が1400℃以上になることが判明した。上記(4)の構成によれば、ノーズ温度が1120℃以上になると、アンモニア燃料の供給が開始されるので、NOx排出量を抑制できる。
(5)幾つかの実施形態では、上記(1)から(4)のいずれかの構成において、
 前記判定条件は、前記他の燃料が前記火炉(20)に投入されてから前記火炉(20)のノーズ(11)に到達するまでの炉内滞留時間が0.5秒以上である。
 発明者らの知見によれば、アンモニアの炉内滞留時間が0.5秒以上であれば、火炉(20)に投入されるアンモニア燃料の80パーセント以上が熱分解されることが判明した。上記(5)の構成によれば、他の燃料の炉内滞留時間が0.5秒以上のときに、アンモニア燃料の供給が開始されるので、アンモニアの燃焼開始時の炉内滞留時間も0.5秒以上にできる。これにより、NOx排出量を抑制できる。
(6)幾つかの実施形態では、上記(1)から(5)のいずれかの構成において、
 前記火炉(20)において、供給された前記アンモニア燃料と前記他の燃料との混焼率が熱量換算で20%以上である。
 発明者らの知見によれば、アンモニアと他の燃料との混焼率が20%以上である場合、火炉(20)内におけるNOxの生成量が増大し易い。従って、混焼率が20%以上の条件下でNOxの生成量を低減することの意義は大きい。上記(6)の構成によれば、混焼率が20%以上の燃焼が開始される前に判定条件が充足される。従って、混焼率が20%以上である場合であっても、NOxの生成量を低減できる。
(7)幾つかの実施形態では、上記(1)から(6)のいずれかの構成において、
 前記アンモニア燃料の供給を開始するステップ(S15、S55)では、アンモニア混焼率が熱量換算で50%以下であり、かつ、前記火炉(20)内の前記空気比が0.7以下となるように、前記アンモニア燃料の供給を開始し、
 前記アンモニア燃料の供給開始後、前記火炉(20)内の前記空気比が0.9以下となるように、前記アンモニア燃料の専焼を行うステップ(S59)を備える。
 発明者らの知見によれば、熱量換算での混焼率が50%以下であり、且つバーナ部空気比が0.7以下となる条件下でアンモニア混焼が行われた場合、NOx排出量が低減する。また、発明者らの知見によれば、バーナ部空気比が0.9以下となる条件下でのアンモニア専焼はNOx排出量の排出量を更に低減できる。上記(7)の構成によれば、NOx排出量を低減しつつ、アンモニア混焼とアンモニア専焼とを順に行うことができる。また、アンモニア専焼を行うことで、二酸化炭素の排出量を抑制することができる。
 また、アンモニア混焼時のバーナ部空気比を0.7以下とすることで、未燃アンモニアの生成量の増加を抑制することよりも、NOx排出量の増加の抑制を優先することができる。従って、アンモニア混焼時においても、NOx排出量を効果的に抑制することができる。
(8)本発明の少なくとも一実施形態に係るボイラ用の制御装置(5)は、
 火炉(20)、および、アンモニア燃料および他の燃料を前記火炉(20)内に供給するように構成された供給システムを備えるボイラ(2)用の制御装置であって、
 前記他の燃料を火炉(20)内で燃焼させるための他燃料燃焼指令を生成する燃焼指令生成部(91)と、
 前記火炉(20)に供給される前記他の燃料を燃焼させるために必要な理論空気量に対する前記火炉(20)への空気供給量の比である空気比が上限値以下であり、且つ、前記火炉(20)内の代表温度が下限値以上である判定条件が満たされるか否かを判定するための判定部(91)と、
 前記判定条件が少なくとも満されると前記判定部が判定した場合(S53:YES)、前記火炉(20)への前記アンモニア燃料の供給を前記供給システムに開始させるためのアンモニア供給開始指令を生成するように構成されたアンモニア供給指令生成部(91)と、
を備え、
 前記判定条件を構成する前記空気比の前記上限値は0.8以下である。
 上記(8)の構成によれば、上記(1)と同様の理由により、NOxの発生を抑制できる条件下でアンモニア燃料の供給を開始するボイラ用の制御装置(5)が実現する。
(実施例1)
 図7を参照して、バーナ部空気比とNOxの排出量との関係を燃焼試験により特定した結果を説明する。図7は、バーナ部空気比とNOxの排出量との関係を示すグラフである。
 本燃焼試験では、鉛直方向に延びるドロップチューブ炉(DTF)と、単一バーナ試験炉とが用いられた。DTFで行われた燃焼試験は、アンモニアの専焼、アンモニアと微粉炭の混焼、及び微粉炭の専焼である。アンモニア混焼時の混焼率は熱量換算で25%または50%である。また、単一バーナ試験炉で行われた燃焼試験は、微粉炭の専焼である。
 はじめに、アンモニア専焼時におけるバーナ部空気比とNOx排出量との関係について検討する。図7で示される通り、バーナ部空気比が1.0となるアンモニア専焼のNOx排出量は、DTFまたは単一バーナ試験炉での微粉炭専焼のNOx排出量の6倍以上である。一方で、バーナ部空気比が0.9以下となるアンモニア専焼のNOx排出量は、微粉炭専焼時よりも低くなることが判った。特にバーナ部空気比が0.8のアンモニア専焼のNOx排出量は、本燃焼試験において最も低くなることが判った。さらに、バーナ部空気比が0.8未満となるアンモニア専焼のNOx排出量は、バーナ部空気比が0.8のときの排出量以下になることが予測される。なぜなら、バーナ部空気比が低くなるほど、燃焼空間7において燃焼に用いられる酸素が少なく、結果として、窒素の酸化反応よりもアンモニアガスの熱分解が促進され、またNOxの還元反応も促進されるからである(アンモニア混焼またはアンモニア専焼が行われるときも同様の傾向が現れると考えられる)。以上の検討から、アンモニア専焼のNOx排出量を低減するためには、バーナ部空気比の上限値が、0.9以下であることが好ましく、0.8以下であることはさらに好ましく、0.7以下であることはさらに好ましいことが判る。なお、火力発電に用いられる一般的な体格を有するボイラ2が稼働する場合、バーナ部空気比が0.6未満となることは現実的ではない(このことは、アンモニア混焼または微粉炭専焼が行われるときにも該当する)。従って、バーナ部空気比の下限値は0.6以上である。
 次に、アンモニア混焼におけるバーナ部空気比とNOx排出量との関係について検討する。図7で示される通り、バーナ部空気比が0.8となるアンモニア混焼(混焼率:25%及び50%)では、NOx排出量が微粉炭専焼時と比べると高くなるものの、バーナ部空気比が1.0となるアンモニア専焼時に比べて著しく低減することが判った。そして、バーナ部空気比が0.7以下となるアンモニア混焼時(混焼率:50%)では、NOx排出量が、バーナ部空気比が0.8となる微粉炭専焼時の排出量に比べて低減することが判った。バーナ部空気比が0.7のときのアンモニア混焼(混焼率:25%)のNOx排出量は測定されていない。しかし、アンモニア混焼率が25%であるときの方が50%であるときよりも、NOx排出量が低くなると予測できる。なぜなら、アンモニア混焼率が低いほど、NOxの発生要因となるアンモニア燃料の火炉20への供給量が減るからである。従って、NOx排出量を低減するためには、アンモニア混焼時のバーナ部空気比の上限値が0.8以下であることが好ましく、0.7以下であることはさらに好ましいことが判る。また、アンモニア混焼が行われるときのバーナ部空気比の下限値は上述したように、0.6以上である。
(実施例2)
 次に、図8、図9を参照して、火炉20内の代表温度、アンモニアの炉内滞留時間、及びNOx排出量の関係について説明する。
 図8は、ガス温度とアンモニアの必要滞留時間との関係を示すグラフである。ガス温度は火炉20内の代表温度の一例である。必要滞留時間は、火炉20内に供給されたアンモニア燃料の80%が燃焼空間7で熱分解するために必要なアンモニア燃料の炉内滞留時間である。アンモニアの熱分解は、以下の(化学式A)によって表される。
 2NH→N+3H2  ・・・(化学式A)
 熱分解するアンモニアの割合が増えるほど、NOxに変化するアンモニアの割合は低減するので、NOx排出量は低減する。
 図8で示されるグラフでは、ガス温度が1400℃のときの必要滞留時間が0.741秒であり、ガス温度が1500℃のときの必要滞留時間は、0.569秒であり、ガス温度が1600℃のときの必要滞留時間が0.452秒である。
 図8から判る通り、ガス温度が1400℃以上であれば、必要滞留時間が1秒未満であってもアンモニア燃料の80%が火炉20内で熱分解されることが判る。一方、ガス温度が1300℃のとき、必要滞留時間が2秒以上になると予測され、特にガス温度が1200℃のときには、必要滞留時間が約10秒になる。このような状況下でボイラ2が稼働しても、アンモニア燃料の80%を熱分解することが困難になることが判る。
 以上のことから、火炉20に供給されたアンモニア燃料の80%が燃焼空間7で熱分解するためには、ガス温度が1400℃以上であることが好ましいことが判る。
 なお、図8で示される必要滞留時間は、計算により求めた数値である。火力発電プラントに用いられる一般的な体格を有するボイラ2では実際、ボイラ負荷が極めて小さくても、ガス温度は1200℃よりも十分に大きい。
 図9は、ノーズ温度とバーナ部のガス温度との関係を示すグラフである。ガス温度が1400℃のときのノーズ温度は、1113℃であることが判る。従って、ノーズ温度が1120℃以上であれば、ガス温度が1400℃以上になり、NOx排出量が低減することが判る。
(実施例3)
 図10を参照し、アンモニア混焼率とNOx排出量との関係を説明する。図10は、アンモニア混焼率とNOx排出量との関係を示すグラフである。図10で示されるグラフは、同じボイラ2の燃焼条件下で、アンモニア混焼率が0%、25%、50%、及び100%のときのNOx排出量を示す。なお、図10のグラフで示されるアンモニア混焼率は熱量換算での割合であり、アンモニア混焼率100%はアンモニアの専焼と同義である。
 図10から判る通り、アンモニアの混焼率が20%を超えると、NOx排出量が増大することが判る。従って、混焼率が20%を超えるアンモニア混焼においてNOx排出量を低減することの意義は大きいことが判る。また、アンモニアの混焼率が50%のとき、NOx排出量が著しく増えることが判る。従って、アンモニアの混焼率が20%以上かつ50%以下のアンモニア混焼においてNOx排出量を低減することの意義は大きいことが判る。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 2   :ボイラ
 5   :制御装置
 11  :ノーズ
 15  :供給システム
 20  :火炉
 91  :プロセッサ

 

Claims (8)

  1.  アンモニア燃料以外の他の燃料を火炉内で燃焼させるステップと、
     前記火炉に供給される前記他の燃料を燃焼させるために必要な理論空気量に対する前記火炉への空気供給量の比である空気比が上限値以下であり、且つ、前記火炉内の代表温度が下限値以上である判定条件が満たされるかを判定するステップと、
     前記判定条件が少なくとも満たされる場合に前記火炉への前記アンモニア燃料の供給を開始するステップと、
    を備え、
     前記判定条件を構成する前記空気比の前記上限値は0.8以下である
    ボイラの運転方法。
  2.  前記ボイラの熱負荷の上昇時において、前記判定条件が満たされるまでの期間、前記他の燃料を燃焼させ、前記判定条件の充足後、前記火炉への前記アンモニア燃料の供給を開始する
    請求項1に記載のボイラの運転方法。
  3.  前記判定条件を構成する前記空気比の前記上限値は0.7以下である
    請求項1または2に記載のボイラの運転方法。
  4.  前記判定条件を構成する前記代表温度としての前記火炉のノーズ温度の前記下限値は、1120℃以上である
    請求項1から3のいずれかに記載のボイラの運転方法。
  5.  前記判定条件は、前記他の燃料が前記火炉に投入されてから前記火炉のノーズに到達するまでの炉内滞留時間が0.5秒以上である
    請求項1から4のいずれかに記載のボイラの運転方法。
  6.  前記火炉において、供給された前記アンモニア燃料と前記他の燃料との混焼率が熱量換算で20%以上である請求項1から5のいずれかに記載のボイラの運転方法。
  7.  前記アンモニア燃料の供給を開始するステップでは、アンモニア混焼率が熱量換算で50%以下であり、かつ、前記火炉内の前記空気比が0.7以下となるように、前記アンモニア燃料の供給を開始し、
     前記アンモニア燃料の供給開始後、前記火炉内の前記空気比が0.9以下となるように、前記アンモニア燃料の専焼を行うステップを備える請求項1から6のいずれかに記載のボイラの運転方法。
  8.  火炉、および、アンモニア燃料および他の燃料を前記火炉内に供給するように構成された供給システムを備えるボイラ用の制御装置であって、
     前記他の燃料を火炉内で燃焼させるための他燃料燃焼指令を生成する燃焼指令生成部と、
     前記火炉に供給される前記他の燃料を燃焼させるために必要な理論空気量に対する前記火炉への空気供給量の比である空気比が上限値以下であり、且つ、前記火炉内の代表温度が下限値以上である判定条件が満たされるかを判定するための判定部と、
     前記判定条件が少なくとも満されると前記判定部が判定した場合、前記火炉への前記アンモニア燃料の供給を前記供給システムに開始させるためのアンモニア供給開始指令を生成するように構成されたアンモニア供給指令生成部と、
    を備え、
     前記判定条件を構成する前記空気比の前記上限値は0.8以下である
    ボイラ用の制御装置。
PCT/JP2022/015457 2021-03-31 2022-03-29 ボイラの運転方法、及び、ボイラ用の制御装置 WO2022210710A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021059232A JP2022155820A (ja) 2021-03-31 2021-03-31 ボイラの運転方法、及び、ボイラ用の制御装置
JP2021-059232 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210710A1 true WO2022210710A1 (ja) 2022-10-06

Family

ID=83456330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015457 WO2022210710A1 (ja) 2021-03-31 2022-03-29 ボイラの運転方法、及び、ボイラ用の制御装置

Country Status (2)

Country Link
JP (1) JP2022155820A (ja)
WO (1) WO2022210710A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076985A (ja) * 2016-11-07 2018-05-17 三菱日立パワーシステムズ株式会社 火力発電プラント、ボイラ及びボイラの改造方法
JP2019066140A (ja) * 2017-10-04 2019-04-25 三菱重工エンジニアリング株式会社 ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム
JP2019086189A (ja) * 2017-11-02 2019-06-06 株式会社Ihi 燃焼装置及びボイラ
JP2019172484A (ja) * 2018-03-27 2019-10-10 住友大阪セメント株式会社 燃料燃焼装置
JP2020139638A (ja) * 2019-02-26 2020-09-03 株式会社Ihi 蒸気発生設備及びアンモニア気化システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076985A (ja) * 2016-11-07 2018-05-17 三菱日立パワーシステムズ株式会社 火力発電プラント、ボイラ及びボイラの改造方法
JP2019066140A (ja) * 2017-10-04 2019-04-25 三菱重工エンジニアリング株式会社 ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム
JP2019086189A (ja) * 2017-11-02 2019-06-06 株式会社Ihi 燃焼装置及びボイラ
JP2019172484A (ja) * 2018-03-27 2019-10-10 住友大阪セメント株式会社 燃料燃焼装置
JP2020139638A (ja) * 2019-02-26 2020-09-03 株式会社Ihi 蒸気発生設備及びアンモニア気化システム

Also Published As

Publication number Publication date
TW202246701A (zh) 2022-12-01
JP2022155820A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
US9400113B2 (en) Multifuel gas turbine combustor
RU2699297C2 (ru) Устройство последовательного сжигания с разбавляющим газом
JP2020112280A (ja) アンモニアを混焼できるボイラ装置及び火力発電設備
KR20190096378A (ko) 연소 장치 및 가스 터빈
WO2022210710A1 (ja) ボイラの運転方法、及び、ボイラ用の制御装置
JP2008309411A (ja) 多層排ガス再循環バーナ及びその制御方法
WO2023037867A1 (ja) ボイラ、ボイラ制御方法、及び、ボイラ改造方法
JP2010054087A (ja) ガスタービン燃焼器およびガスタービン燃焼器の運転方法
TWI834142B (zh) 鍋爐的運轉方法、以及鍋爐用的控制裝置
JP2014055536A (ja) ガスタービン燃焼器およびガスタービン燃焼器の燃料制御方法
JP2004053144A (ja) 円筒内旋回燃焼器
TWI838836B (zh) 鍋爐、鍋爐控制方法、及鍋爐改造方法
RU161571U1 (ru) Малоэмиссионная камера сгорания с двумя ступенями образования топливовоздушной смеси
WO2022210692A1 (ja) アンモニア燃料ボイラ、及び、アンモニア供給システム
KR101041466B1 (ko) 다수 연료혼합장치가 구비된 가스터빈 저공해 연소기
RU2753203C1 (ru) Способ сжигания топлива в малоэмиссионной камере сгорания
JP7307441B2 (ja) 燃焼器
RU147860U1 (ru) Многозонная камера сгорания газотурбинной установки
JP2023039881A (ja) ボイラ、ボイラ制御方法、及び、ボイラ改造方法
CN110582671B (zh) 预混方法、燃烧方法、预混装置、燃烧器头及燃烧器
JP2006090602A (ja) ローブミキサー及び予混合器
WO2023120397A1 (ja) アンモニア燃料ボイラシステム
JP2590216B2 (ja) 低NOx燃焼法及び低NOx燃焼器
JPH1151312A (ja) 液体燃料用低NOx燃焼装置
Abdulrahman et al. Thermal and Emissions Characteristics of Liquid Fuel Flameless Combustion in a Forward Flow Combustion Chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301006075

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780921

Country of ref document: EP

Kind code of ref document: A1