JP2018076985A - 火力発電プラント、ボイラ及びボイラの改造方法 - Google Patents

火力発電プラント、ボイラ及びボイラの改造方法 Download PDF

Info

Publication number
JP2018076985A
JP2018076985A JP2016217652A JP2016217652A JP2018076985A JP 2018076985 A JP2018076985 A JP 2018076985A JP 2016217652 A JP2016217652 A JP 2016217652A JP 2016217652 A JP2016217652 A JP 2016217652A JP 2018076985 A JP2018076985 A JP 2018076985A
Authority
JP
Japan
Prior art keywords
ammonia
fuel
furnace
boiler
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016217652A
Other languages
English (en)
Other versions
JP7109158B2 (ja
Inventor
山内 康弘
Yasuhiro Yamauchi
康弘 山内
相木 英鋭
Hidetoshi Aiki
英鋭 相木
繁光 国領
Shigemitsu Kokuryo
繁光 国領
恒輔 北風
Kosuke Kitakaze
恒輔 北風
横濱 克彦
Katsuhiko Yokohama
克彦 横濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2016217652A priority Critical patent/JP7109158B2/ja
Publication of JP2018076985A publication Critical patent/JP2018076985A/ja
Application granted granted Critical
Publication of JP7109158B2 publication Critical patent/JP7109158B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

【課題】アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制やNOx濃度を低減することができる火力発電プラント、ボイラ又はボイラの改造方法を提供する。【解決手段】ボイラは、火炉と、少なくとも化石燃料を火炉内で燃焼させるためのバーナと、火炉内における燃焼ガスの流れ方向Aにおいてバーナに対して下流側に設けられ、化石燃料を燃焼させるための追加空気を火炉に供給するように構成された追加空気供給部と、追加空気供給部に対して上記流れ方向Aの上流側のアンモニア供給位置において、少なくともアンモニアを含むアンモニア燃料を火炉に供給するためのアンモニア燃料供給部と、を備えている。【選択図】図1

Description

本発明は、火力発電プラント、ボイラ及びボイラの改造方法の分野に関する。
従来、火力発電プラントにおいては、地球環境への影響を考慮して、二酸化炭素排出量を削減することが課題となっており、化石燃料の消費量削減や化石燃料に代わるエネルギー資源への転換が図られている。このような低炭素社会に向けた環境に優しい新たなエネルギー資源として、炭素を含有しないため燃焼時に二酸化炭素を生じることがないアンモニア及び水素が注目されている。この中でもアンモニアは、貯蔵や輸送技術が確立されているため、将来のエネルギーのキャリア媒体として有望とされており、将来産ガス国で天然ガスからアンモニアを製造して発生する二酸化炭素を、例えば、石油増進回収技術(EOR)や二酸化炭素回収貯留技術(CCS)で地中に貯留することができれば二酸化炭素を排出しないエネルギーとして注目される。
かかるアンモニアを用いた技術として、特許文献1には尿素を燃料とするカーボンフリーの水素リッチアンモニアの製造方法や次世代カーボンフリーボイラに関する技術が開示されている。具体的に、特許文献1に記載のボイラは、尿素水を供給する尿素水供給源、尿素水を加水分解してアンモニアを生成するとともにアンモニアの一部を水素と窒素とに転化して水素リッチガスを生成する水素リッチアンモニア生成リアクター、燃焼用空気と高温の水素リッチアンモニアとを燃焼させてボイラ本体で高圧蒸気を発生させる水素リッチアンモニア燃焼バーナ、及び、アンモニアの残部と水素リッチガスとの混合ガスを水素リッチアンモニア燃焼バーナに供給する水素リッチアンモニア供給ライン、等を用いて燃焼用空気と水素リッチアンモニアとを燃焼させる。そして、上記ボイラは、この燃焼で発生した熱により生成した高圧蒸気によって蒸気タービンを作動させて発電機を駆動する。
また、ボイラではないが、アンモニアを燃料とし、内燃機関の燃焼排ガスの熱エネルギーを回収して燃焼性を改善する技術が特許文献2に開示されている。また、特許文献3には、アンモニアや硫化水素を含むガスの処理方法として第1段燃焼部で高温燃焼させた際に発生するNOxを後流に設置した窒素酸化物還元部にアンモニア含有ガスを一部導入して還元処理し、さらに第2段燃焼部で完全に燃焼処理する方法が開示されている。
特許第5315492号公報 特開平5−332152号公報 特許第3924150号公報
しかし、アンモニアは難燃性で燃焼速度が遅く、ボイラの燃料として使用する場合は未燃アンモニアが排出されたり排ガス中のNOx濃度が増加したりすることが知られている。
この点、特許文献1に記載のボイラは、火炉内に水素リッチアンモニアを供給するように構成されているが、水素リッチアンモニアが未転化分のアンモニアを含む可能性があり、その程度によっては必ずしも火炉出口における実際の未燃アンモニアやNOx排出量を好適に低減し切れないという問題がある。このため、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制やNOx濃度の低減を図ることができる火力発電プラント又はボイラの開発が望まれていた。
上記事情に鑑み、本発明における幾つかの実施形態では、上述した課題を解決することを目的とし、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制やNOx濃度の低減を図ることができる火力発電プラント、ボイラ又はボイラの改造方法を提供することを目的とする。
(1)本発明の少なくとも幾つかの実施形態に係るボイラは、
火炉と、
少なくとも化石燃料を前記火炉内で燃焼させるためのバーナと、
前記火炉内における燃焼ガスの流れ方向において前記バーナに対して下流側に設けられ、前記化石燃料を燃焼させるための追加空気を前記火炉に供給するように構成された追加空気供給部と、
前記追加空気供給部に対して前記流れ方向の上流側のアンモニア供給位置において、少なくともアンモニアを含むアンモニア燃料を前記火炉に供給するためのアンモニア燃料供給部と、を備える。
本発明者らの知見によれば、追加空気供給部を備えた2段燃焼ボイラにおいて、追加空気供給部よりも上流側の位置にアンモニア燃料を投入すれば、火炉内の還元雰囲気においてアンモニア燃料の窒素分がNに還元され、アンモニア燃料の燃焼に伴う未燃アンモニアの排出を抑制しつつ、NOx濃度の増加を抑制できることが明らかになった。
上記(1)の構成は本発明者らの上記知見を利用したものであり、追加空気供給部の上流側にアンモニア燃料を供給するようにしたので、炉内の還元雰囲気を利用してアンモニア燃料の窒素分をNに分解して、アンモニア燃料の燃焼に伴う未燃アンモニアの排出を抑制しつつNOx濃度の増加を抑制できる。これにより、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出を抑制しつつNOx濃度の低減を図ることができる。
なお、本明細書において、「アンモニア燃料」とは、アンモニアを含有する燃料をいい、アンモニアとともに他の成分(例えば水素、水分、窒素等)を含有していてもよい。
(2)幾つかの実施形態では、上記(1)の構成において、
前記火炉のうち前記アンモニア供給位置と前記追加空気供給部の設置位置との間の部位の容積V[m]とし、前記火炉内の前記燃焼ガスの体積流量をF[m/sec]としたとき、前記アンモニア供給位置はV/F≧1[sec]を満たすように設定されてもよい。
本発明者らの鋭意検討の結果、2段燃焼ボイラの炉内還元領域におけるアンモニア燃料の滞留時間を1sec以上確保することで、アンモニア燃料の窒素分の殆どをNに還元可能であることが明らかになった。
上記(2)の構成は、本発明者らの上記知見に基づき、追加空気供給部に対して十分に上流側(V/F≧1[sec]を満たす位置)にアンモニア供給位置を設定したので、炉内還元領域におけるアンモニア燃料の滞留時間を1sec以上確保可能となり、NOx濃度をより効果的に低減することができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
前記アンモニア燃料供給部は、前記アンモニア燃料を前記化石燃料とともに前記炉内に供給する前記バーナを含んでもよい。
上記(3)の構成によれば、アンモニア燃料供給部をバーナとは別に設ける必要がないため、簡素な構成にて、化石燃料とアンモニア燃料との混焼ボイラを実現することができる。
(4)幾つかの実施形態では、上記(3)の何れかの構成において、
前記ボイラは、
前記バーナに前記化石燃料を供給するための第1燃料供給ラインと、
前記第1燃料供給ラインに接続され、前記第1燃料供給ライン内の前記化石燃料に前記アンモニア燃料を混入させるための第2燃料供給ラインと、をさらに備えてもよい。
上記(4)の構成によれば、既存の化石燃料焚きボイラに対して第2燃料供給ラインを追加設置することで、上記(3)において上述した化石燃料とアンモニア燃料との混焼ボイラを容易に実現することができる。
(5)幾つかの実施形態では、上記(3)又は(4)の構成において、
複数段の前記バーナが、それぞれ、前記流れ方向における異なる位置に設けられ、
前記アンモニア燃料供給部は、少なくとも、前記複数段の前記バーナのうち最上流側の前記バーナを含んでもよい。
上記(5)の構成によれば、追加空気供給部に対して十分に上流側にアンモニア供給位置を設定されることになり、炉内還元領域におけるアンモニア燃料の滞留時間を十分に確保可能となり、NOx濃度をより効果的に低減することができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、
全燃料に対する前記アンモニア燃料のカロリー比が、10%以上30%以下であってもよい。
上記(6)の構成によれば、未燃アンモニアの排出の抑制とNOx濃度の低減とを両立することができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
前記ボイラは、
前記アンモニア燃料供給位置への前記アンモニア燃料の到達前、前記アンモニア燃料の一部をHとNとに分解するためのアンモニア分解装置をさらに備えていてもよい。
上記(7)の構成によれば、2段燃焼ボイラの炉内還元領域におけるアンモニア燃料の滞留時間を十分に確保することが難しい場合であっても、アンモニア分解装置によりアンモニア燃料の一部を予めHとNとに分解することで、未燃アンモニアの排出の抑制とNOx濃度の低減を図ることができる。
(8)幾つかの実施形態では、上記(7)の構成において、
前記アンモニア分解装置は、
前記アンモニア燃料の一部を部分酸化条件下で燃焼させるための燃焼部と、
前記燃焼部において生成した燃焼熱を用いて、前記アンモニア燃料の一部をHとNとに分解するように構成された分解部と、を含んでもよい。
上記(8)の構成によれば、アンモニア燃料の分解に必要な熱源をボイラから得るのではなく、アンモニア燃料の燃焼により得ることができるので、既存のボイラに対してアンモニア分解装置を小規模な工事で追加設置することができる。また、アンモニア分解装置の燃焼部では、アンモニア燃料を部分酸化条件下で燃焼させるため、燃焼部におけるNOxの発生を抑制できる。
(9)本発明の少なくとも幾つかの実施形態に係る火力発電プラントは、
上記(1)乃至(8)の何れかに記載のボイラと、前記ボイラで生成された蒸気により駆動される蒸気タービンと、を備える。
上記(9)の構成によれば、化石燃料とアンモニア燃料を用いたボイラを備えた火力発電プラントを実現することができる。また、上記(1)で述べたように、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制とNOx濃度の低減を図ることができる。
(10)本発明の少なくとも幾つかの実施形態に係るボイラの改造方法は、
火炉と、化石燃料を前記火炉内で燃焼させるためのバーナと、前記化石燃料を燃焼させるための追加空気を前記火炉に供給するように構成された追加空気供給部と、を備えるボイラの改造方法であって、
前記ボイラの前記追加空気供給部に対して前記流れ方向の上流側において、前記アンモニア燃料を前記火炉に供給するためのアンモニア燃料供給系統を設置するステップ
を備えることを特徴とする。
上記(10)の方法によれば、ボイラの追加空気供給部の上流側にアンモニア燃料を供給するためのアンモニア燃料供給系統を設置する改造工事により、炉内の還元雰囲気を利用してアンモニア燃料の窒素分をNに分解して、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制とNOx濃度の増加を抑制可能となる。これにより、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制とNOx濃度の低減を図ることができる。
(11)幾つかの実施形態では、上記(10)に記載の方法において、前記バーナに前記化石燃料を供給するための第1燃料供給ラインをさらに備え、
前記アンモニア燃料供給系統を設置するステップでは、
前記第1燃料供給ライン内の前記化石燃料に前記アンモニア燃料を混入させるための第2燃料供給ラインを前記第1燃料供給ラインに接続してもよい。
上記(11)の方法によれば、既存のボイラの構成要素を有効活用して改造工事を小規模にとどめることができ、未燃アンモニアの排出の抑制とNOx濃度の低減とをさらに確実に実現することができる。
本発明の幾つかの実施形態によれば、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制とNOx濃度の低減を図ることができる。
幾つかの実施形態に係る火力発電プラントの構成例を示す概略図である。 幾つかの実施形態に係るボイラの構成例を示す概略図である。 アンモニアの炉内滞留時間を説明するための概略図である。 アンモニア及び化石燃料を含む全燃料に対するアンモニアの混焼率と火炉出口におけるNOx増加量との関係を示す図である。 アンモニア及び空気比に対するアンモニアリーク率及びNOx転換率の関係を示す図である。 幾つかの実施形態におけるボイラの構成例を示す概略図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、本発明の幾つかの実施形態に係る火力発電プラントの構成例を示す概略図であり、図2は、本発明の幾つかの実施形態に係るボイラの構成例を示す概略図である。
図1に示すように、火力発電プラント1は、ボイラ2と、ボイラ2で発生した熱により加熱されて生成された蒸気によって駆動される蒸気タービン3と、蒸気タービン3により駆動されて発電する発電機4と、発電に寄与し仕事を終えた蒸気を液相に戻す復水器5と、復水器5で液化された水を循環させるポンプ6と、ボイラ2からの排気を排出する煙突8と、を備えている。
幾つかの実施形態において、火力発電プラント1は、ボイラ2にアンモニア燃料を供給するためのアンモニア燃料供給系統24を備えている。なお、火力発電プラント1は、少なくとも化石燃料を燃焼させて発生した熱により蒸気タービン3を駆動して発電する構成と、ボイラ2にアンモニア燃料を供給するためのアンモニア燃料供給系統24とを備えていればよく、上記構成以外にも必要に応じて種々の構成を備え得る。
蒸気タービン3は、ボイラ2からの高温ガスにより火炉伝熱管、節炭器及び過熱器等の熱交換器7を介して熱媒体としての水が加熱され、これにより得られた高圧蒸気(高圧ST)を利用して回転される高圧タービン3aと、高圧タービン3aを回転させた後の低圧蒸気(低圧ST)により回転されて駆動される低圧タービン3bと、を含む。
また、蒸気タービン3は、図1の例に限定されず、例えば、他のタンデムコンパウンド(くし形)やクロスコンパウンド(並列型)の構成を備えていてもよい。また、蒸気タービン3は、高圧、中圧、低圧の種々のタービンの組み合わせてなるユニットにより構成されていてもよい。この場合、高圧タービンを駆動した後の蒸気は、例えば、再熱器等の熱交換器によりボイラ2内で再度加熱された後に中圧タービンに供給されてもよい。
次に、幾つかの実施形態におけるボイラ2について詳しく説明する。
幾つかの実施形態において、ボイラ2は、化石燃料として図示しないミルにより石炭を粉砕して生成した微粉炭(石炭の微粉)を燃焼させるように構成された微粉炭焚きボイラであってもよい。幾つかの実施形態において、ボイラ2は、燃料として化石燃料に加えてアンモニア燃料を用い、該化石燃料とアンモニア燃料との混焼を行う混焼ボイラとして構成され得る。なお、化石燃料は微粉炭に限定されず、例えば、重油、軽油、液化天然ガス(LNG)等、他の種類や他の形態の化石燃料であってもよい。
かかるボイラ2は、火炉20と、少なくとも化石燃料を火炉20内で燃焼させるためのバーナ21と、化石燃料を燃焼させるための追加空気(2次空気)を火炉20に供給するように構成された追加空気供給部23と、を備える。ここで、追加空気供給部23は、火炉20内における燃焼ガスの流れ方向A(図1参照)においてバーナ21に対して下流側(図1及び図2においてバーナ21の上方側)に設けられる。
また、ボイラ2は、少なくともアンモニアを含むアンモニア燃料を火炉20内で燃焼させるためのバーナ21に供給するためのアンモニア燃料供給部25と、燃焼用の1次空気を供給する1次空気供給部22とを含む。
火炉20は、燃料と燃焼用空気とを反応させて燃焼させる筒状の中空体であり、例えば、円筒形状や四角柱状等、種々の形態をとり得る。幾つかの実施形態において、火炉20は、炉壁部20a及び炉底部20bを含み、燃焼ガスの流れ方向Aの下流側、即ち、当該火炉20の上方側において煙道38に連通している。
バーナ21は、火炉20外から火炉20内に化石燃料(本実施形態では微粉炭、即ち、固体粉末燃料)と搬送用ガスとの混合気体及び燃焼用の1次空気を供給可能に構成されている。搬送用ガスは例えば空気である。
幾つかの実施形態において、ボイラ2は、バーナ21に化石燃料を供給するための第1燃料供給ライン28を備えている。即ち、図1に示す化石燃料供給部33から第1燃料供給ライン28を介してバーナ21に微粉炭と搬送用ガスとの混合気体が供給され、バーナ21にて1次空気と混合燃焼し、燃焼ガスが火炉20内に噴出される。
この1次空気供給部22は、火炉20内に供給する空気量を任意に調節可能に構成される。こうして、1次空気供給部22から供給される空気量を調節することにより、火炉20内の下部領域、即ち、火炉20内におけるバーナ21の近傍に形成される燃焼領域35に供給される酸素量(Oの供給量)を規定範囲内に調節することができるようになっている。
幾つかの実施形態では、1次空気供給部22から火炉20内に供給される1次空気の量が、第1燃料供給ライン28を介して供給される化石燃料を完全燃焼させるために必要な空気量(酸素量)未満となるように設定される。つまり、火炉20内に形成される燃焼領域35は低酸素燃焼領域となるため、この燃焼領域35で燃焼した化石燃料は不完全燃焼の状態で下流側(図1における上方側)に移動する。このため、該燃焼領域35の下流側に還元領域(還元雰囲気)36が形成されるようになっている。
図2に例示するように、幾つかの実施形態では、複数段のバーナ21が、それぞれ、火炉20内における燃焼ガスの流れ方向Aにおける異なる位置に設けられる。即ち、バーナ21は、火炉20の上下方向において下部(下方)から中部或いは上部(上方)にかけて複数段に亘って設けられていてもよい。この場合、複数段に亘って設けられたバーナ21のうち、上下方向において最下部に位置するバーナ21が、燃焼ガスの流れ方向Aにおける最上流側バーナ(最下段バーナ)21aとなる。
追加空気供給部23は、多段に設けられた複数のバーナ21に対して、燃焼ガスの流れ方向Aにおける下流側、即ち、火炉20において上記複数のバーナ21よりも上方に配設される。
この追加空気供給部23から供給される2次空気は、アフターエアー(AA)又はオーバーファイヤーエア(OFA)とも呼ばれ、1次空気供給部22により供給される1次空気で燃焼しきれずに燃え残った化石燃料を完全燃焼させるために、追加的に酸素を供給するために供給される。
このように、ボイラ2は、1次空気を供給する1次空気供給部22と、2次空気を供給する追加空気供給部23とで段階的に火炉20内に空気(酸素)を供給し、化石燃料を段階的(2段階)に燃焼させて完全燃焼させる構成となっている。このように、本実施形態のボイラ2は所謂2段燃焼ボイラとして構成される。
各空気供給部22,23は、送風機として各々が個別のブロワ(図示省略)等によって空気を供給してもよいし、同一のブロワ(図示省略)から分岐させて空気を供給する構成であってもよい。各々の空気供給流路には流量調整弁(図示省略)が設けられ、各流量調整弁は、個別に全閉から全開の状態までとり得るように開度制御可能となっている。なお、図2では1つの火炉20にそれぞれ1次空気供給部22、追加空気供給部23、化石燃料供給部33及びアンモニア燃料供給部25が1つずつ設けられた様子を示しているが、これらの構成要素(22,23,33,25)の少なくとも何れか1つが火炉20の周方向において何れの方向に設けられていてもよく、1つの火炉20に対して複数或いは2方向以上に配置されていてもよい。
ここで、アンモニア燃料供給部25によるアンモニア燃料の供給位置(アンモニア供給位置27)について説明する。
幾つかの実施形態では、図2に示すように、アンモニア燃料供給部25からのアンモニア燃料は、追加空気供給部23に対して上記燃焼ガスの流れ方向Aの上流側に配設されたバーナ21を介して火炉20内に供給される。
図2に示す例示的な実施形態では、アンモニア燃料供給部25は、火炉20の上下方向において複数段に設けられたバーナ21のうち最上流側、即ち、最下段のバーナ21(最下段バーナ21a)を介して、化石燃料とともにアンモニア燃料を火炉20内に噴射するように構成される。このようにすれば、追加空気供給部23に対して十分に上流側にアンモニア供給位置27が設定されることになり、火炉20内の還元領域36におけるアンモニア燃料の滞留時間を十分に確保可能となり、未燃アンモニアの排出を抑制すると共にNOx濃度をより効果的に低減することができる。
他の実施形態では、複数段のバーナ21のうち最上流側バーナ21aに加えて、最上流側バーナ21a以外のバーナ21も用いて、アンモニア燃料供給部25からのアンモニア燃料がバーナ21を介して火炉20内に噴射されるようになっていてもよい。このようにアンモニア燃料供給部25からのアンモニア燃料を少なくとも一つのバーナ21を介して火炉20内に供給する場合、ボイラ2は、第1燃料供給ライン28に接続され、第1燃料供給ライン28内の化石燃料にアンモニア燃料を混入させるための第2燃料供給ライン29をさらに備えてもよい。この構成によれば、既存の化石燃料焚きボイラに対して第2燃料供給ライン29を追加設置することで、上述した化石燃料とアンモニア燃料との混焼ボイラを容易に実現することができる。即ち、バーナ21は、アンモニア燃料を化石燃料とともにバーナ21に供給する構成であってもよい。この構成によれば、アンモニア燃料供給部をバーナ21とは別に設ける必要がないため、簡素な構成にて、化石燃料とアンモニア燃料との混焼ボイラを実現することができる。
他の実施形態では、アンモニア燃料供給部25は、最下段バーナ21aよりも下方に位置する火炉20の炉壁部20aの下部に、或いは、火炉20の炉底部20bにアンモニア燃料とアンモニア燃焼用空気とを供給する専用のアンモニア用バーナをバーナ21とは別に設けて構成してもよい。また、火炉20の炉壁部20aの下部に、或いは、火炉20の炉底部20bにアンモニア燃料のみを供給するアンモニア用ポートを設け、このアンモニア用ポートから火炉20内にアンモニア燃料を直接供給するように構成してもよい。この場合、追加空気供給部23からの2次空気(AA)投入位置よりも上流側の還元領域36でアンモニアが水素と窒素とに分解され、分解により生成された水素が2次空気投入位置以降で燃焼するように構成される。このような構成としても、追加空気供給部23に対して十分に上流側にアンモニア供給位置27が設定されることになり、火炉20内の還元領域36におけるアンモニア燃料の滞留時間を十分に確保可能となり、未燃アンモニア及びNOxをより効果的に低減することができる。
幾つかの実施形態では、アンモニア供給位置27は、火炉20のうちアンモニア供給位置27と追加空気供給部23の設置位置との間の部位の容積V[m]とし、火炉20内の燃焼ガス34の体積流量をF[m/sec]としたとき、以下の数式(1)を満たすように設定される。
[数1]
V/F≧1[sec] ・・・(1)
具体的には、図3に示すように、アンモニア供給位置27に供給されたアンモニア燃料は、該アンモニア供給位置27から体積流量F[m/sec]で火炉20内を流れ方向Aに沿って下流側(図1,2における上方側)に移動する。
その際、上記移動の方向(燃焼ガスの流れ方向A)に直交する火炉20内部の断面積は、火力発電プラント1の定格出力やサイクル形態、発電効率等を考慮した種々の設計事情等により、火炉20の流れ方向Aにおいて一様の場合もあれば一様でない場合もあり得、流れ方向Aに沿う距離xに応じて変化することもあり得る。このため、流れ方向Aに直交する火炉20内部の断面積を、例えば、流れ方向Aに沿う距離xの関数S(x)[m]とすると、容積Vは以下の数式(2)のように表すことができる。
[数2]
V=∫S(x)dx ・・・(2)
このように、幾つかの実施形態によれば、追加空気供給部23に対して十分に上流側(V/F≧1を満たす位置)にアンモニア供給位置27を設定したので、火炉20内の還元領域36におけるアンモニア燃料の滞留時間を1sec以上確保することが可能となり、未燃アンモニアの排出を抑制すると共にNOxをより効果的に低減することができる。
好ましくは、アンモニア供給位置27は、火炉20内に供給されたアンモニアが還元領域36を通過する時間(還元領域36における滞留時間)を示すV/Fが2sec以上となるような位置とするのがよい。
図4は、本発明者らの鋭意研究により得られた図であり、全燃料に対するアンモニアの混焼率(カロリー比)と、化石燃料の専燃時を基準とした火炉20の出口におけるNOxの増加量との関係を示すグラフである。同図から明らかなように、火炉20出口におけるNOx増加量は、全燃料に対するアンモニアのカロリー比に概ね比例して直線的(線形的)に増加する。
このグラフに基づき、全燃料に対するアンモニア燃料のカロリー比は、NOxの増加を抑制しながら、アンモニア燃料の使用によるメリットを享受し得るような範囲内に任意に設定可能である。全燃料に対するアンモニア燃料のカロリー比は、例えば、1%以上80%以下としてもよいし、5%以上40%以下としてもよいし、10%以上30%以下としてもよい。幾つかの実施形態では、全燃料に対するアンモニア燃料のカロリー比を、10%以上30%以下とすることにより、未反応アンモニアの排出の抑制とNOx濃度の低減とを両立することができる。
また、図5は、本発明者らの鋭意研究により得られた図であり、1[mol]のアンモニアを燃焼させるために供給する空気量(酸素量)を理論空気量に対し0.6から1.0の間で変化させた場合において、当該供給する空気量と火炉20の出口でのアンモニア(未燃アンモニア)リーク率、及び、NOxへの転換率(NOx転換率)との関係を示したグラフである。
同図からわかるように、空気比を0.6〜1.0の間で増加させていくと、火炉20の出口におけるアンモニアリーク率は第1次空気比の増加に伴い低下し、逆に、火炉20の出口におけるNOx転換率は増加する。同図から得られる知見を踏まえ、アンモニアリーク低減とNOx低減とを両立する観点から、第1次空気比は、0.7以上0.9以下、好ましくは0.75以上0.85以下に設定することが好ましい。
このように、幾つかの実施形態によれば、化石燃料とアンモニア燃料とを用いたボイラ2を備えた火力発電プラント1を実現することができる。また、上述したように、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制やNOx濃度の低減を図ることができる。
なお、上記構成のボイラ2は、図2に一点鎖線で示すアンモニア燃料供給系統24を既存の火力発電プラントに追加的に設置する改造工事により、容易に実現することができる。
即ち、幾つかの実施形態において、火炉20と、化石燃料を火炉20内で燃焼させるためのバーナ21と、化石燃料を燃焼させるための追加空気を火炉20に供給するように構成された追加空気供給部23と、を備える既存のボイラを改造することで、上記構成のボイラ2を得てもよい。この改造工事では、ボイラ2の追加空気供給部23に対して流れ方向Aの上流側においてアンモニア燃料を火炉20に供給するためのアンモニア燃料供給系統24を設置する。こうして、既存の火力発電プラントのボイラ2を容易に改造することができる。このようなボイラの改造方法によれば、ボイラ2の追加空気供給部23の上流側にアンモニア燃料を供給するためのアンモニア燃料供給系統24を設置する改造工事により、火炉20内の還元雰囲気を利用してアンモニア燃料の窒素分をNに分解して、アンモニア燃料の燃焼に伴うNOx濃度の増加を抑制可能となる。これにより、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出の抑制とNOx濃度の低減を図ることができる。
また、ボイラの上記改造工事に際して、アンモニア燃料供給部25を設置するとともに、化石燃料を供給する第1燃料供給ライン28内の化石燃料にアンモニア燃料を混入させるための第2燃料供給ライン29を第1燃料供給ライン28に接続してもよい。このようにすれば、既存のボイラの構成要素を有効活用して改造工事を小規模にとどめることができ、未燃アンモニアの排出の抑制とNOx濃度の低減とをさらに確実に実現することができる。
他の実施形態では、ボイラの上記改造工事に際して、アンモニア燃料供給部25を設置するとともに、該アンモニア燃料供給部25から供給されるアンモニア燃料を火炉20内に直接供給するラインを設置してもよい。
以上説明したように、上記実施形態の構成は本発明者らの知見を利用したものであり、追加空気供給部23の上流側にアンモニア燃料を供給するようにしたので、火炉20内の還元雰囲気を利用してアンモニア燃料の窒素分をNに分解して、アンモニア燃料の燃焼に伴うNOx濃度の増加を抑制できる。また、典型的なボイラでは、火炉20内の燃焼温度は、例えば、1500〜1600℃程度と非常に高温であるため、触媒等を設けなくとも、アンモニアから窒素及び水素への分解反応が円滑に進むようになっている。このため、火炉20内の還元雰囲気を利用してアンモニア燃料を効果的に分解させて、高価な触媒等を用いることなく、未燃アンモニアの排出の抑制とNOx濃度の増加を抑制できる。
これにより、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、未燃アンモニア燃料の排出の抑制とNOx濃度の低減とを図ることができる。
次に、図6を参照し、幾つかの実施形態に係るボイラ2は、アンモニア燃料供給位置27へのアンモニア燃料の到達前に、アンモニア燃料におけるアンモニアの一部をHとNとに分解するためのアンモニア分解装置30をさらに備えていてもよい。
具体的に、幾つかの実施形態に係るボイラ2は、アンモニア燃料の一部を部分酸化条件下で燃焼させるための燃焼部31と、燃焼部31において生成した燃焼熱を用いて、アンモニア燃料のアンモニアの一部をHとNとに分解するように構成された分解部32と、を含む。このような構成とすることにより、アンモニア燃料供給部25から供給されるアンモニア燃料は、ボイラ2等からの排熱を用いることなく、燃焼部31で生じた自己の燃焼熱により、窒素及び水素に分解されることとなる。即ち、幾つかの実施形態では、アンモニア燃料の分解に必要な熱源をボイラ2から得るのではなく、アンモニア燃料の燃焼により得ることができるので、既存のボイラに対してアンモニア分解装置30を小規模な工事で追加設置することができる。また、アンモニア分解装置30の燃焼部31では、アンモニア燃料を部分酸化条件下で燃焼させるため、燃焼部31におけるNOxの発生を抑制できる。
分解部32は、アンモニア供給位置27へのアンモニアの到達前に、以下の化学式(3)に示すように、アンモニア燃料を窒素(N)と水素(H)とに分解し、分解された窒素と水素とを第1燃料供給ラインに供給するように構成される。
[化1]
2NH→N+3H・・・(3)
この分解部32には、例えば、アンモニア分解触媒を適用してもよい。アンモニア分解触媒としては、例えば、シリカや酸化ランタンなどの無機質担体にニッケルやコバルトを含浸担持法等により担持した触媒を使用し、加熱下でアンモニアを接触させ、水素と窒素に分解する方法を用いることができる。また、アルミナ、シリカ、酸化マグネシウムなどの無機質担体に、含浸担持法等により白金族(ルテニウム)を担持した触媒を使用し、加熱下でアンモニアを接触させ、水素と窒素に分解する方法等、種々の触媒及び方法を適用し得る。また、塩基性炭酸マグネシウムを含む酸化マグネシウム担体と該担体に担持されたルテニウムを含有するアンモニア分解触媒等を用いてもよい。
さらに、幾つかの実施形態で例示するボイラ2は、図6に一点鎖線で示すアンモニア燃料供給系統24を既存の火力発電プラントに追加的に設置する改造工事により、容易に実現することができる。
即ち、幾つかの実施形態において、火炉20と、化石燃料を火炉20内で燃焼させるためのバーナ21と、化石燃料を燃焼させるための追加空気を火炉20に供給するように構成された追加空気供給部23と、を備えるボイラ2の改造方法は、ボイラ2の追加空気供給部23に対して流れ方向Aの上流側において、アンモニア燃料を火炉20に供給するためのアンモニア燃料供給系統24を設置することにより、既存の火力発電プラントのボイラ2を容易に改造することができる。
上記アンモニア燃料供給系統24を設置するステップでは、アンモニア燃料供給部25を設置することと、アンモニア燃焼用空気供給部26を設置することと、アンモニア分解装置30を設置することと、を含んでもよい。
また、上記アンモニア分解装置30を設置するステップは、燃焼部31を設置することと、分解部32を設置することとを含んでもよい。
ここで、アンモニア燃焼用空気供給部26は、アンモニア分解装置30の燃焼部31でアンモニアを燃焼するための空気(酸素)を供給できればよく、図6に示す例に限定されない。即ち、幾つかの実施形態では、例えば、上述した1次空気供給部22からの抽気をアンモニア分解装置30の燃焼部31に供給するように構成してもよいし、追加空気供給部23からの抽気を燃焼部31に供給するように構成してもよい。また、煙道38からの排ガスを再びバーナ21に供給する排気再循環(GR)流路を設け、このGR流路からの抽気を燃焼部31に供給するように構成してもよい。
このように、図6に例示する実施形態によれば、追加空気供給部23の上流側にアンモニア燃料を供給するようにしたので、火炉20内の還元雰囲気36を利用してアンモニア燃料の窒素分をNに分解して、アンモニア燃料の燃焼に伴うNOx濃度の増加を抑制できる。これにより、燃焼時に二酸化炭素が発生せず、貯蔵や輸送技術が確立されているアンモニアの利点を享受しながら、アンモニア燃料の燃焼に伴う未燃アンモニアの排出を抑制すると共にNOx濃度の低減を図ることができる。
また、追加空気供給部23に対して十分に上流側にアンモニア供給位置27が設定されることになり、火炉20内の還元領域36におけるアンモニア燃料の滞留時間を十分に確保可能となり、未燃アンモニアの排出を抑制すると共にNOx濃度をより効果的に低減することができる。
さらに、2段燃焼ボイラにおいて火炉20内の還元領域36におけるアンモニア燃料の滞留時間を十分に確保することが難しい場合であっても、アンモニア分解装置30によりアンモニア燃料の一部を予めHとNとに分解することで、未燃アンモニアの排出の抑制とNOx濃度の低減とを図ることができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変更を加えた形態や、これらの形態を組み合わせた形態も含む。
1 火力発電プラント
2 ボイラ
3 蒸気タービン
3a 高圧タービン(蒸気タービン)
3b 低圧タービン(蒸気タービン)
4 発電機
5 復水器
6 ポンプ
7 熱交換器
8 煙突
20 火炉
20a 炉壁部
20b 炉底部
21 バーナ
21a 最上流側バーナ(最下段バーナ)
22 1次空気供給部(1次空気)
23 追加空気供給部(2次空気/AA)
24 アンモニア燃料供給系統
25 アンモニア燃料供給部
26 アンモニア燃焼用空気供給部
27 アンモニア供給位置
28 第1燃料供給ライン
29 第2燃料供給ライン
30 アンモニア分解装置
31 燃焼部
32 分解部
33 化石燃料供給部
35 燃焼領域(低酸素燃焼領域)
36 還元領域(還元雰囲気)
38 煙道
A 燃焼ガスの流れ方向

Claims (11)

  1. 火炉と、
    少なくとも化石燃料を前記火炉内で燃焼させるためのバーナと、
    前記火炉内における燃焼ガスの流れ方向において前記バーナに対して下流側に設けられ、前記化石燃料を燃焼させるための追加空気を前記火炉に供給するように構成された追加空気供給部と、
    前記追加空気供給部に対して前記流れ方向の上流側のアンモニア供給位置において、少なくともアンモニアを含むアンモニア燃料を前記火炉に供給するためのアンモニア燃料供給部と、を備える
    ことを特徴とするボイラ。
  2. 前記火炉のうち前記アンモニア供給位置と前記追加空気供給部の設置位置との間の部位の容積V[m]とし、前記火炉内の前記燃焼ガスの体積流量をF[m/sec]としたとき、前記アンモニア供給位置はV/F≧1[sec]を満たすように設定された
    ことを特徴とする請求項1に記載のボイラ。
  3. 前記アンモニア燃料供給部は、前記アンモニア燃料を前記化石燃料とともに前記炉内に供給する前記バーナを含むことを特徴とする請求項1又は2に記載のボイラ。
  4. 前記バーナに前記化石燃料を供給するための第1燃料供給ラインと、
    前記第1燃料供給ラインに接続され、前記第1燃料供給ライン内の前記化石燃料に前記アンモニア燃料を混入させるための第2燃料供給ラインと、をさらに備えることを特徴とする請求項3に記載のボイラ。
  5. 複数段の前記バーナが、それぞれ、前記流れ方向における異なる位置に設けられ、
    前記アンモニア燃料供給部は、少なくとも、前記複数段の前記バーナのうち最上流側の前記バーナを含むことを特徴とする請求項3又は4に記載のボイラ。
  6. 全燃料に対する前記アンモニア燃料のカロリー比が、10%以上30%以下であることを特徴とする請求項1乃至5の何れか一項に記載のボイラ。
  7. 前記アンモニア燃料供給部への前記アンモニア燃料の到達前、前記アンモニア燃料の窒素分の一部をNに分解するためのアンモニア分解装置をさらに備えることを特徴とする請求項1乃至6の何れか一項に記載のボイラ。
  8. 前記アンモニア分解装置は、
    前記アンモニア燃料の一部を部分酸化条件下で燃焼させるための燃焼部と、
    前記燃焼部において生成した燃焼熱を用いて、前記アンモニア燃料のアンモニアの一部をH2ととに分解するように構成された分解部と、
    を含むことを特徴とする請求項7に記載のボイラ。
  9. 請求項1乃至8の何れか一項に記載のボイラと、
    前記ボイラで生成された蒸気により駆動される蒸気タービンと、
    を備えることを特徴とする火力発電プラント。
  10. 火炉と、化石燃料を前記火炉内で燃焼させるためのバーナと、前記化石燃料を燃焼させるための追加空気を前記火炉に供給するように構成された追加空気供給部と、を備えるボイラの改造方法であって、
    前記ボイラの前記追加空気供給部に対して前記火炉内における流れ方向の上流側において、前記アンモニア燃料を前記火炉に供給するためのアンモニア燃料供給系統を設置するステップを備えることを特徴とするボイラの改造方法。
  11. 前記ボイラは、前記バーナに前記化石燃料を供給するための第1燃料供給ラインをさらに備え、
    前記アンモニア燃料供給系統を設置するステップでは、
    前記第1燃料供給ライン内の前記化石燃料に前記アンモニア燃料を混入させるための第2燃料供給ラインを前記第1燃料供給ラインに接続する
    ことを特徴とする請求項10に記載のボイラの改造方法。
JP2016217652A 2016-11-07 2016-11-07 火力発電プラント、ボイラ及びボイラの改造方法 Active JP7109158B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016217652A JP7109158B2 (ja) 2016-11-07 2016-11-07 火力発電プラント、ボイラ及びボイラの改造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016217652A JP7109158B2 (ja) 2016-11-07 2016-11-07 火力発電プラント、ボイラ及びボイラの改造方法

Publications (2)

Publication Number Publication Date
JP2018076985A true JP2018076985A (ja) 2018-05-17
JP7109158B2 JP7109158B2 (ja) 2022-07-29

Family

ID=62150224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016217652A Active JP7109158B2 (ja) 2016-11-07 2016-11-07 火力発電プラント、ボイラ及びボイラの改造方法

Country Status (1)

Country Link
JP (1) JP7109158B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200144A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 燃焼炉及びボイラ
WO2019189297A1 (ja) * 2018-03-30 2019-10-03 三菱日立パワーシステムズ株式会社 火力発電プラント、混焼ボイラ及びボイラの改造方法
JP2020112280A (ja) * 2019-01-08 2020-07-27 一般財団法人電力中央研究所 アンモニアを混焼できるボイラ装置及び火力発電設備
JP2022114244A (ja) * 2021-01-26 2022-08-05 中外炉工業株式会社 蓄熱式燃焼設備
WO2022210710A1 (ja) * 2021-03-31 2022-10-06 三菱重工業株式会社 ボイラの運転方法、及び、ボイラ用の制御装置
JP2023039683A (ja) * 2021-09-09 2023-03-22 中外炉工業株式会社 アンモニア燃料燃焼装置
WO2023120397A1 (ja) * 2021-12-24 2023-06-29 三菱重工業株式会社 アンモニア燃料ボイラシステム
JP2023148952A (ja) * 2022-03-30 2023-10-13 東京瓦斯株式会社 蒸気供給設備
JP7538706B2 (ja) 2020-12-09 2024-08-22 川崎重工業株式会社 バーナ及びその運転方法、並びに、燃焼炉及びその運転方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180098A (ja) * 2009-02-05 2010-08-19 Toyota Motor Corp 水素生成装置
JP2013104642A (ja) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd 油焚きバーナ、固体燃料焚きバーナユニット及び固体燃料焚きボイラ
JP2016183641A (ja) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 発電設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180098A (ja) * 2009-02-05 2010-08-19 Toyota Motor Corp 水素生成装置
JP2013104642A (ja) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd 油焚きバーナ、固体燃料焚きバーナユニット及び固体燃料焚きボイラ
JP2016183641A (ja) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 発電設備

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200144A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 燃焼炉及びボイラ
WO2019189297A1 (ja) * 2018-03-30 2019-10-03 三菱日立パワーシステムズ株式会社 火力発電プラント、混焼ボイラ及びボイラの改造方法
JP2020112280A (ja) * 2019-01-08 2020-07-27 一般財団法人電力中央研究所 アンモニアを混焼できるボイラ装置及び火力発電設備
JP7538706B2 (ja) 2020-12-09 2024-08-22 川崎重工業株式会社 バーナ及びその運転方法、並びに、燃焼炉及びその運転方法
JP2022114244A (ja) * 2021-01-26 2022-08-05 中外炉工業株式会社 蓄熱式燃焼設備
JP7254841B2 (ja) 2021-01-26 2023-04-10 中外炉工業株式会社 蓄熱式燃焼設備
WO2022210710A1 (ja) * 2021-03-31 2022-10-06 三菱重工業株式会社 ボイラの運転方法、及び、ボイラ用の制御装置
TWI834142B (zh) * 2021-03-31 2024-03-01 日商三菱重工業股份有限公司 鍋爐的運轉方法、以及鍋爐用的控制裝置
JP2023039683A (ja) * 2021-09-09 2023-03-22 中外炉工業株式会社 アンモニア燃料燃焼装置
WO2023120397A1 (ja) * 2021-12-24 2023-06-29 三菱重工業株式会社 アンモニア燃料ボイラシステム
JP2023148952A (ja) * 2022-03-30 2023-10-13 東京瓦斯株式会社 蒸気供給設備

Also Published As

Publication number Publication date
JP7109158B2 (ja) 2022-07-29

Similar Documents

Publication Publication Date Title
JP7109158B2 (ja) 火力発電プラント、ボイラ及びボイラの改造方法
JP6769856B2 (ja) 水素含有燃料供給システム、火力発電プラント、燃焼ユニット及び燃焼ユニットの改造方法
JP7079068B2 (ja) 火力発電プラント、ボイラ及びボイラの改造方法
WO2019189297A1 (ja) 火力発電プラント、混焼ボイラ及びボイラの改造方法
JP7403502B2 (ja) 燃焼炉及びボイラ
US20110100018A1 (en) Operational control system of gas turbine
JP2009085221A (ja) 低エミッションタービンシステム及び方法
AU2016284752B2 (en) Method and equipment for combustion of ammonia
Haque et al. Review of fuel/oxidizer-flexible combustion in gas turbines
JP2020112280A (ja) アンモニアを混焼できるボイラ装置及び火力発電設備
JP2015010607A (ja) ガスタービンシステムおよびそれを作動する方法
JP6880823B2 (ja) 燃焼器及びボイラ
Lee et al. Comprehensive technical review for fundamental characteristics and application of NH3 co-firing with coal
Zhang et al. Industrial scale testing on the combustion and NOx emission characteristics of ammonia cofiring in a 40 MWth coal-fired boiler
US9797289B2 (en) Integrated engine exhaust and heat process flexible and low emissions combined heat and power process and system
CA2692666C (en) Systems for staged combustion of air and fuel
JP2016032391A (ja) 複合エネルギーシステム
Budzianowski Role of catalytic technologies in combustion of gaseous fuels
KR20130047570A (ko) 복합 발전 시스템
JP2014134370A (ja) 燃焼装置の燃焼方法及び燃焼装置
Richards et al. Syngas utilization
KR102619958B1 (ko) 친환경 발전시스템
KR102713233B1 (ko) 가스 터빈 시스템
US20240009616A1 (en) Carbon capture system comprising a gas turbine with two burners
BG4278U1 (bg) Инсталация за намаляване на со2 емисии при изгаряне на лигнитни въглища

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210906

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211001

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220107

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220609

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220614

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220712

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R150 Certificate of patent or registration of utility model

Ref document number: 7109158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150