WO2022210612A1 - アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム - Google Patents

アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム Download PDF

Info

Publication number
WO2022210612A1
WO2022210612A1 PCT/JP2022/015206 JP2022015206W WO2022210612A1 WO 2022210612 A1 WO2022210612 A1 WO 2022210612A1 JP 2022015206 W JP2022015206 W JP 2022015206W WO 2022210612 A1 WO2022210612 A1 WO 2022210612A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt finisher
dump truck
control command
speed
controller
Prior art date
Application number
PCT/JP2022/015206
Other languages
English (en)
French (fr)
Inventor
寿保 美濃
和明 萩原
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to CN202280021124.0A priority Critical patent/CN117062954A/zh
Priority to JP2023511310A priority patent/JPWO2022210612A1/ja
Priority to EP22780823.5A priority patent/EP4317583A4/en
Publication of WO2022210612A1 publication Critical patent/WO2022210612A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/02Feeding devices for pavers
    • E01C2301/04Independent shuttles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/02Feeding devices for pavers
    • E01C2301/08Pushing devices for lorries

Definitions

  • the present invention relates to an asphalt finisher and an asphalt finisher construction support system.
  • a tractor Conventionally, a tractor, a hopper installed on the front side of the tractor to receive the pavement material, a conveyor for feeding the pavement material in the hopper to the rear side of the tractor, and a pavement material fed by the conveyor on the rear side of the tractor.
  • An asphalt finisher is known which includes a spreading screw and a screed for spreading the pavement material spread by the screw behind the screw.
  • the asphalt finisher When the asphalt finisher performs construction, there is a transport vehicle (for example, a dump truck) that transports the pavement material in front of the asphalt finisher.
  • the pavement material is supplied to the asphalt finisher from the transportation vehicle.
  • the asphalt finisher must be continuously constructed. Therefore, after reaching a position where the pavement material can be supplied to the asphalt finisher, the transport vehicle must move forward together with the asphalt finisher to continue the construction of the asphalt finisher.
  • the operator of the asphalt finisher sounds the horn to notify the driver of the transportation vehicle of the timing of starting the asphalt finisher.
  • the driver of the transportation vehicle controls the starting and stopping of the transportation vehicle while listening to the horn to confirm the movement of the asphalt finisher.
  • the load of the transport vehicle on the asphalt finisher (the load applied to the asphalt finisher when pushing forward the transport vehicle in contact with the front edge of the asphalt finisher) fluctuates, the surface of the completed road will change. quality may deteriorate. Therefore, it is preferable to control the transportation vehicle so that the asphalt finisher and the transportation vehicle do not come into contact with each other.
  • An asphalt finisher includes a tractor, a hopper installed on the front side of the tractor, a conveyor that conveys the pavement material in the hopper to the rear side of the tractor, and a pavement material that is conveyed by the conveyor and scattered on the road surface.
  • the asphalt finisher synchronizes the operation of the transportation vehicle so as to correspond to the operation of the asphalt finisher, thereby suppressing deterioration of the quality of the paved surface.
  • FIG. 1A is a left side view showing an asphalt finisher and a dump truck, which are examples of road machinery according to the first embodiment.
  • FIG. 1B is a top view showing an asphalt finisher and a dump truck, which are examples of road machinery according to the first embodiment.
  • FIG. 2 is a block diagram showing configurations of an asphalt finisher and a dump truck according to the first embodiment.
  • FIG. 3 is a diagram showing a processing procedure performed by the asphalt finisher according to the first embodiment.
  • FIG. 4 is a top view of a construction site showing a first movement path and a second movement path generated by a path generator for constructing a curve in a road.
  • FIG. 5A is a diagram showing a case where the distance between the respective vehicle parts between the rear wheels of the dump truck and the rollers of the asphalt finisher is "0" according to the first embodiment.
  • FIG. 5B is a diagram showing a case where the distance between the respective vehicle parts between the rear wheels of the dump truck and the rollers of the asphalt finisher is a predetermined distance "A" according to the first embodiment; be.
  • FIG. 5C represents the case where the distance between the respective vehicle parts between the rear wheels of the dump truck and the rollers of the asphalt finisher is the reference distance "A/2" according to the first embodiment. It is a concept.
  • FIG. 1 is a diagram showing an asphalt finisher 100 and a dump truck 200, which are examples of road machinery according to the first embodiment. Specifically, FIG. 1A is a left side view and FIG. 1B is a top view. FIG. 1 shows an example in which the dump truck 200 approaches the asphalt finisher 100 while reversing.
  • the asphalt finisher 100 is mainly composed of a tractor 1, a hopper 2, and a screed device 3.
  • the screed device 3 is a mechanism for spreading pavement material evenly.
  • the screed device 3 is a floating screed device that is towed by the tractor 1 and is connected to the tractor 1 via leveling arms 3a.
  • the hopper 2 is provided on the front side of the tractor 1 as a mechanism for receiving pavement material.
  • the hopper 2 of this embodiment has a mechanism that can be opened and closed in the vehicle width direction by the hopper cylinder 2a about the movable mechanism portions 81a and 81b.
  • the asphalt finisher 100 fully opens the hopper 2 and removes the pavement material from the loading platform 201 of the dump truck 200 as a pavement material transport vehicle. (for example, asphalt mixture) is acceptable. Then, the pavement material is supplied from the loading platform 201 of the dump truck 200 to the hopper 2 while the dump truck 200 is in contact with the asphalt finisher 100 .
  • the asphalt finisher 100 continues traveling (construction) while moving in the traveling direction together with the dump truck 200.
  • a conveyor transports the paving material received in the hopper 2 to the rear side of the tractor 1 .
  • the screw spreads the pavement material conveyed by the conveyor and scattered on the road surface in the width direction of the vehicle.
  • the screed device 3 evenly spreads the pavement material spread by the screw behind the screw.
  • the operator of the asphalt finisher 100 After receiving the pavement material from the loading platform 201 of the dump truck 200, the operator of the asphalt finisher 100 gradually closes the hopper 2 so that the pavement material supplied to the hopper 2 can be placed on the conveyor. After that, when the pavement material supplied to the hopper 2 is conveyed backward and the pavement material in the hopper 2 is almost exhausted, the operator opens the hopper 2 . Then, when the hopper 2 is fully opened again, the hopper 2 can receive pavement material from the dump truck 200 . Therefore, it is preferable for the driver of the dump truck 200 to bring the dump truck 200 closer to the asphalt finisher 100 after confirming that the hopper 2 is fully opened.
  • the asphalt finisher 100 is equipped with a roller 2b.
  • the roller 2b is installed in front of the hopper 2. As shown in FIG.
  • the roller 2b is configured to contact the rear wheel 202 of the dump truck 200, and can rotate together with the rear wheel 202 when the rear wheel 202 of the dump truck 200 is in contact.
  • the tractor 1 is a mechanism for running the asphalt finisher 100.
  • the tractor 1 moves the asphalt finisher 100 by rotating the front wheels and the rear wheels using the traveling hydraulic motor.
  • the travel hydraulic motor rotates by being supplied with hydraulic oil from the hydraulic source.
  • the tractor 1 may have crawlers instead of wheels.
  • the tractor 1 is equipped with a controller 30, a wireless communication device 40, a GPS module 50, a main monitor 60, a driver's seat 61, an imaging device 62, an audio output device 63, and the like.
  • a cab including a main monitor 60 and a driver's seat 61 is installed on the upper surface of the tractor 1 .
  • An imaging device 62 and an audio output device 63 are installed on the upper surface of the tractor 1 at the center of the front end.
  • the wireless communication device 40 performs short-range wireless communication directly with devices existing around the asphalt finisher 100, such as the dump truck 200 and the like.
  • Wi-Fi registered trademark
  • the wireless communication standard of the wireless communication device 40 may be used as the wireless communication standard of the wireless communication device 40 .
  • the wireless communication of the present embodiment is not limited to the method using Wi-Fi (registered trademark), and wireless LAN, Bluetooth (registered trademark), or the like may be used.
  • the GPS module 50 is an example of a GNSS (Global Navigation Satellite System) module, and receives position information indicating the results of two-dimensional positioning by the GPS (Global Positioning System).
  • the position information includes information representing the position of the asphalt finisher 100 in latitude and longitude.
  • GPS Global Navigation Satellite System
  • the position information includes information representing the position of the asphalt finisher 100 in latitude and longitude.
  • an example using GPS as a method for acquiring position information will be described, but the method for acquiring position information is not limited, and other well-known methods may be used.
  • the main monitor 60 is a device that displays various information to the operator of the asphalt finisher 100 .
  • the main monitor 60 is a liquid crystal display and can display various information according to commands from the controller 30 .
  • the main monitor 60 also includes an input device 60 a that receives an operation input from an operator of the asphalt finisher 100 .
  • the imaging device 62 is a device that acquires an image of the space in front of the asphalt finisher 100 .
  • the imaging device 62 is a camera, and outputs the acquired image to the controller 30 .
  • the imaging device 62 may be a distance image camera, an infrared camera, a stereo camera, or the like.
  • an example using an imaging device 62 as an example of a device capable of recognizing space will be described.
  • this embodiment does not limit the space recognition device to the imaging device 62 .
  • any space recognition device that can recognize the space based on the asphalt finisher 100 may be used, and for example, a laser sensor or the like may be used.
  • An imaging device 62 (an example of a detection device) according to the present embodiment photographs a space within an imaging area RA1 (an example of a detection range) that exists in front of the asphalt finisher 100 and is indicated by a dashed line in FIGS. 1A and 1B. .
  • the imaging device 62 then outputs image information (an example of detection information) regarding the captured image to the controller 30 .
  • image information an example of detection information
  • the imaging device 62 can image the dump truck 200 existing within the imaging area RA1.
  • the audio output device 63 is a device that outputs audio to the surroundings of the asphalt finisher 100 .
  • the audio output device 63 is a speaker that outputs audio toward the front of the asphalt finisher 100 , and can output an alarm according to a command from the controller 30 .
  • the voice output device 63 may output a voice message.
  • the controller 30 is a control device that controls the asphalt finisher 100 .
  • the controller 30 is configured by a computer, for example, and has a CPU, an internal memory, a storage medium, and the like.
  • the controller 30 performs various controls by causing the CPU to execute programs stored in a storage medium.
  • the controller 30 can assist the driving operation of the asphalt finisher 100 by ADAS (advanced driver-assistance systems) based on image information received from the imaging device 62 and detection signals received from various detection sensors (not shown).
  • ADAS advanced driver-assistance systems
  • the driving operation support system used by the controller 30 according to the present embodiment is not limited to the ADAS driving operation system, and may be another driving operation support system.
  • the controller 30 may use AD (Autonomous Driving).
  • any system may be used as the controller 30 as long as it is a system capable of controlling the movement of the asphalt finisher 100 according to a previously generated movement route.
  • the dump truck 200 is composed of a loading platform 201, a hoist cylinder (not shown), a first imaging device 261, a second imaging device 262, a controller 230, and a wireless communication device 240.
  • the loading platform 201 can be loaded with pavement material to be supplied to the hopper 2 of the asphalt finisher 100 .
  • the hoist cylinder is a mechanism for tilting the loading platform 201 rearward, and by expanding and contracting according to a command from the controller 230, switches between a tilted state in which the loading platform 201 is tilted rearward and a horizontal state in which the loading platform 201 is horizontal.
  • the first imaging device 261 is, for example, a device that is provided near the emblem of the dump truck 200 and acquires an image of the space in front of the dump truck 200 .
  • the second imaging device 262 is a device that acquires an image of the space behind the dump truck 200 .
  • the first imaging device 261 and the second imaging device 262 are cameras, and output the acquired images to the controller 230 .
  • the first imaging device 261 and the second imaging device 262 may be a distance image camera, an infrared camera, a stereo camera, or the like. In this embodiment, an example using a first imaging device 261 and a second imaging device 262 as an example of a device capable of recognizing space will be described.
  • this embodiment does not limit the space recognition device to the first imaging device 261 and the second imaging device 262 .
  • any space recognition device capable of recognizing the space with the dump truck 200 as a reference may be used.
  • a laser sensor or the like may be used.
  • the first imaging device 261 captures an image of the space in the imaging region RT1 that exists in front of the dump truck 200 and is indicated by the chain double-dashed lines in FIGS. 1A and 1B.
  • the first imaging device 261 outputs image information regarding the captured image to the controller 230 .
  • the second image capturing device 262 captures an image of the space in the image capturing area RT2 indicated by the two-dot chain line in FIGS. 1A and 1B, which exists behind the dump truck 200.
  • FIG. The second imaging device 262 outputs image information regarding the captured image to the controller 230 .
  • the wireless communication device 240 performs wireless communication with devices existing around the dump truck 200, such as the wireless communication device 40 of the asphalt finisher 100, for example.
  • Wi-Fi registered trademark
  • the wireless communication standard of the wireless communication device 240 may be used as the wireless communication standard of the wireless communication device 240 .
  • the wireless communication of the present embodiment is not limited to the method using Wi-Fi (registered trademark), and wireless LAN, Bluetooth (registered trademark), or the like may be used.
  • the controller 230 is a control device that controls the dump truck 200 .
  • the controller 230 is configured by a computer, for example, and has a CPU, an internal memory, a storage medium, and the like.
  • the controller 230 performs various controls by causing the CPU to execute programs stored in a storage medium.
  • the controller 230 can assist the driving operation of the dump truck 200 .
  • the driving operation support system used by the controller 230 according to this embodiment is not limited to the ADAS driving operation system, and may be another driving operation support system.
  • controller 230 may use AD.
  • any system may be used as the controller 230 as long as it can control the movement according to the movement route and various control commands.
  • the control command of the present embodiment is information representing an instruction to control movement of a vehicle (for example, the asphalt finisher 100 or the dump truck 200).
  • the controller 230 implements control to stop the dump truck 200 near the hopper 2 of the asphalt finisher 100 by ADAS parking assistance.
  • the controller 230 of the present embodiment may receive a control command from the asphalt finisher 100 via the wireless communication device 240 and perform drive control of the dump truck 200 based on the received control command.
  • the asphalt finisher 100 is normally under construction. Therefore, after the dump truck 200 is positioned near the hopper 2 of the asphalt finisher 100, while the dump truck 200 is supplying the pavement material from the loading platform 201 to the hopper 2, the dump truck 200 is driven together with the asphalt finisher 100. need to run.
  • the controller 30 of the asphalt finisher 100 performs control to synchronize the operation of the dump truck 200 with the operation of the asphalt finisher 100 .
  • the controller 30 of the asphalt finisher 100 generates a first movement path for the asphalt finisher 100 for moving the asphalt finisher 100 so as to pave the construction target area based on the construction plan. do.
  • the controller 30 then controls the asphalt finisher 100 to follow the first movement path.
  • the construction plan that can be stored in the storage medium of the controller 30 includes information indicating the area to be constructed by the asphalt finisher 100 in the reference coordinate system.
  • the reference coordinate system used in construction plan drawings is, for example, the world geodetic system.
  • the origin is at the center of gravity of the earth
  • the X axis is latitude (X axis) passing through the intersection of the Greenwich meridian and the equator and the origin, and the intersection of the meridian of 90 degrees east longitude and the equator and the origin.
  • the construction plan includes information indicating the construction target area in a three-dimensional orthogonal XYZ coordinate system (world geodetic system).
  • the construction plan drawing may contain various information regarding the area to be constructed.
  • the construction plan drawing may include information indicating the positions of obstacles existing in the construction target area.
  • As an obstacle for example, there is step information existing on the road surface.
  • the step information is, for example, information about manholes existing on the road surface.
  • the asphalt finisher 100 acquires position information indicating the position of the asphalt finisher 100 in latitude and longitude via the GPS module 50 . Therefore, the controller 30 of the asphalt finisher 100 can specify the position indicated by the position information acquired by the GPS module 50 on the construction plan.
  • the controller 30 controls the dump truck 200 so that the dump truck 200 travels in a state in which the loading platform 201 of the dump truck 200 and the hopper 2 of the asphalt finisher 100 are maintained in an overlapping state (in other words, in a synchronized state). , a second movement path for the dump truck 200 is generated. The controller 30 then generates a control command that instructs the steering angle, speed, etc. of the dump truck 200 so that the dump truck 200 travels along the second movement path. The controller 30 then transmits the generated control command to the wireless communication device 240 of the dump truck 200 via the wireless communication device 40 . Thereby, the controller 30 synchronizes the operation of the dump truck 200 to correspond to the operation of the asphalt finisher 100 .
  • FIG. 2 is a block diagram showing the configurations of the asphalt finisher 100 and the dump truck 200 according to this embodiment.
  • the dump truck 200 includes a first imaging device 261, a second imaging device 262, an input device 263, a controller 230, a wireless communication device 240, and a drive system controller 250. ing. That is, in the present embodiment, in the asphalt finisher construction support system including the asphalt finisher 100 and the dump truck 200, the controller 30 controls the operation of the dump truck 200 and the operation of the asphalt finisher 100 to be synchronized. This is an example of performing
  • the controller 230 receives image information from a first imaging device 261 (for example, provided near the emblem on the front surface of the dump truck 200) and a second imaging device 262 (for example, provided at the rear end of the dump truck 200).
  • a control command for drive control is generated on the basis of image information from and a control signal from a detection sensor (not shown). Controller 230 then outputs the generated control command to drive system controller 250 .
  • the controller 230 realizes support for driving operation by ADAS.
  • the drive system controller 250 controls the drive system, engine, etc. of the dump truck 200 according to the control command.
  • controller 230 performs various controls by receiving operations from the driver via the input device 263 .
  • the controller 230 When receiving a control command from the asphalt finisher 100 via the wireless communication device 240 , the controller 230 outputs the received control command to the driving system controller 250 . As a result, the dump truck 200 realizes driving operation assistance by ADAS according to the request from the asphalt finisher 100 .
  • controller 230 may transmit image information captured by the first imaging device 261 and image information captured by the second imaging device 262 to the asphalt finisher 100 via the wireless communication device 240 .
  • the asphalt finisher 100 includes an imaging device 62, an input device 60a, a controller 30, a drive system controller 55, and a wireless communication device 40.
  • the drive system controller 55 controls the tractor 1 according to the control command.
  • the controller 30 assists driving operations by ADAS (advanced driver-assistance systems) based on image information received from the imaging device 62 and detection signals received from various detection sensors (not shown). make it possible. It should be noted that the controller 30 according to the present embodiment is not limited to driving operation assistance by ADAS, and may utilize other driving operation assistance. For example, the controller 30 may use AD (Autonomous Driving).
  • AD Autonomous Driving
  • the controller 30 of the present embodiment receives input of construction plan drawings via a connection I/F (not shown) or the wireless communication device 40 .
  • the controller 30 performs various controls in order to move the asphalt finisher 100 and the dump truck 200 through the construction target area based on the construction plan and the like.
  • each functional block included in the controller 30 shown in FIG. 2 is conceptual and does not necessarily have to be physically configured as shown. All or part of each functional block may be functionally or physically distributed and integrated in arbitrary units. Each processing function performed in each functional block is implemented by a program executed by the CPU, in whole or in part. Alternatively, each functional block may be implemented as hardware by wired logic. As shown in FIG. 2, the controller 30 includes a dump truck identification information storage unit 31, an acquisition unit 32, a route generation unit 33, a detection unit 34, a determination unit 35, a command generation unit 36, and a communication control unit. a portion 37;
  • the dump truck identification information storage unit 31 is provided on a storage medium within the controller 30 .
  • the dump truck identification information storage unit 31 stores information for identifying the dump truck 200 with which the asphalt finisher 100 communicates.
  • the dump truck identification information storage unit 31 stores license plate information of the dump truck 200 and identification information (for example, SSID) of the wireless communication device 240 mounted on the dump truck 200 in association with each other.
  • the controller 30 can specify the wireless communication device 240 to be communicated with based on the captured license plate when the imaging device 62 captures an image of the rear portion of the dump truck 200 .
  • the acquisition unit 32 acquires image information captured by the imaging device 62 .
  • the acquisition unit 32 also acquires operation information from the operator via the input device 60a.
  • the acquisition unit 32 acquires construction plan drawings.
  • the acquisition unit 32 may acquire the construction plan drawing from a non-volatile storage medium connected via a connection I/F (eg, USB I/F) not shown.
  • the acquisition unit 32 may acquire the construction plan drawing received by the communication control unit 37 from an external device via the wireless communication device 40 .
  • the route generation unit 33 generates the movement routes of the asphalt finisher 100 and the dump truck 200 based on the construction plans acquired by the acquisition unit 32 .
  • the movement route is generated after the construction plan drawing is obtained and before construction by the asphalt finisher 100 is started.
  • the route generation unit 33 can generate a movement route including the start position of the construction of the asphalt finisher 100 .
  • the route generation unit 33 of the present embodiment generates the first movement route of the asphalt finisher 100 so that construction can be performed on the entire construction target area shown in the construction plan. Furthermore, the route generation unit 33 generates a second movement route for the dump truck 200 when traveling in contact with the asphalt finisher 100 traveling along the first movement route.
  • the route generation unit 33 determines that the asphalt finisher 100 and the wheels of the dump truck 200 cannot pass through the stepped area. A first movement path and a second movement path are generated so as not to occur.
  • the detection unit 34 detects a transport vehicle such as a dump truck 200 existing in front of the asphalt finisher 100 based on the image information acquired from the imaging device 62 . Any technique, including known image processing techniques, may be used to detect the transportation vehicle such as the dump truck 200 from the image indicated by the image information.
  • the detection unit 34 may detect other objects when detecting a transportation vehicle or the like from the image. Other objects may include, for example, road cones, people (such as workers), and small machines (such as rammers, tampers, etc.).
  • the determination unit 35 recognizes (detects) an object existing around the asphalt finisher 100 (an example of a working machine) based on the image information (output value) of the imaging device 62, which is a type of space recognition device.
  • Objects to be recognized are, for example, the dump truck 200, topographical shapes (slopes, holes, etc.), electric wires, utility poles, people, animals, vehicles, construction machines, buildings, walls, helmets, safety vests, work clothes, or , a predetermined mark on the helmet, and the like.
  • the determination unit 35 may be configured to identify at least one of the type, position, shape, and the like of an object.
  • the determination unit 35 may be configured to distinguish between the dump truck 200 and objects other than the dump truck.
  • the determination unit 35 makes various determinations based on image information (an example of detection information) from an imaging device 62 (an example of a detection device).
  • the determination unit 35 determines the license plate information of the dump truck 200 located in front of the asphalt finisher 100 based on the image information from the imaging device 62 . Thereby, the determination unit 35 can identify the license plate information of the dump truck 200 to be controlled.
  • the determination unit 35 may determine the distance between the dump truck 200 and the asphalt finisher 100.
  • the determination unit 35 according to the present embodiment has a correspondence relationship between the size of the dump truck 200 shown in the image and the distance between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100. there is Thereby, the determination unit 35 can identify the distance between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 from the image information acquired by the acquisition unit 32 .
  • the determination unit 35 determines whether or not the loading platform 201 of the dump truck 200 can be positioned at the designated position.
  • the specified position is the position of the platform 201 suitable for transferring the pavement material on the platform 201 into the hopper 2, and the position partially overlapping the position of the hopper 2 of the asphalt finisher 100 in the vertical direction.
  • the specified position is a position that moves as the asphalt finisher 100 moves.
  • Information about the specified position is typically pre-stored in the storage medium of the controller 30 . In this embodiment, the information about the specified position is information about a rectangular area having substantially the same size (area) as the loading platform 201 when viewed from above.
  • the information about the designated position is information about a rectangular parallelepiped space having substantially the same size (volume) as the loading platform 201 . Therefore, "positioning the bed 201 of the dump truck 200 at the specified position" means, for example, matching the rectangular area corresponding to the actual bed 201 with the rectangular area corresponding to the specified position.
  • a rectangular area ZN indicated by a dotted line in FIG. 1B is an example of a rectangular area corresponding to the designated position.
  • the command generation unit 36 generates a control command for causing the asphalt finisher 100 to travel along the first movement route. Specifically, the command generation unit 36 of the present embodiment generates an acceleration command or deceleration command for the asphalt finisher 100 for continuing construction. Further, the command generation unit 36 generates a control command regarding steering for moving along the first movement path based on the first movement path, the acceleration command or deceleration command, and the position information of the asphalt finisher 100 received from the GPS module 50. Generate. Furthermore, the command generator 36 may generate a control command or the like for braking as necessary. The command generator 36 then outputs the generated control command to the driving system controller 55 .
  • the command generation unit 36 of this embodiment generates a control command for the asphalt finisher 100 so as to synchronize the operation of the dump truck 200 and the operation of the asphalt finisher 100 .
  • a control command is generated so that the vehicle travels at a constant speed along the first movement route. This facilitates synchronizing the operation of the dump truck 200 with the operation of the asphalt finisher 100 .
  • the control command generated by the command generating unit 36 of the present embodiment includes, for example, a control command for steering the dump truck 200 so that the loading platform 201 is positioned at a designated position.
  • Other control commands include, for example, a control command instructing the dump truck 200 to reverse or stop in order to stop the rear wheels 202 of the dump truck 200 in the vicinity of the rollers 2b.
  • the command generation unit 36 steers the dump truck 200 so that the loading platform 201 is positioned at the designated position, and then generates a control command for causing the transport vehicle (eg, the dump truck 200) to travel along the second movement route. .
  • the command generator 36 then outputs the generated control command to the communication controller 37 .
  • the control command for traveling along the second movement route is, for example, a rightward or leftward steering command, a command to set a predetermined speed, an acceleration command, a deceleration command, a braking command, or the like.
  • the command generation unit 36 controls the dump truck 200 to travel at a speed determined based on the speed of the asphalt finisher 100 after steering the dump truck 200 to position the loading platform 201 at the designated position. Generate directives. As the speed determined based on the speed of the asphalt finisher 100, for example, substantially the same speed as the speed of the asphalt finisher 100 can be considered. In other words, by running the dump truck 200 at substantially the same speed as the asphalt finisher 100, the hopper 2 of the asphalt finisher 100 and the loading platform 201 of the dump truck 200 can be maintained vertically overlapping each other. However, even when an instruction to travel at substantially the same speed is given, the command generation unit 36 may , may cause misalignment.
  • the command generation unit 36 of the present embodiment generates a control command for accelerating or decelerating the dump truck 200 so that the hopper 2 of the asphalt finisher 100 and the loading platform 201 of the dump truck 200 are maintained vertically overlapping each other. do.
  • the command generating unit 36 controls the relative position between the asphalt finisher 100 and the dump truck 200 in order to keep the hopper 2 of the asphalt finisher 100 and the loading platform 201 of the dump truck 200 overlapping in the vertical direction. control based on the positional relationship.
  • the command generation unit 36 generates a control command to control the hoist cylinder and dump up the loading platform 201 of the dump truck 200 .
  • the command generator 36 generates the control command for dumping up after positioning the loading platform 201 of the dump truck 200 at the specified position.
  • the determination unit 35 may determine whether or not the loading platform 201 of the dump truck 200 has been positioned at the designated position based on the image information. Then, the command generation unit 36 generates a control command for dumping up according to the determination result. Further, the command generating unit 36 may generate a control command for dumping up when receiving a dumping up operation from the operator of the asphalt finisher 100 via the input device 60a.
  • the command generation unit 36 generates a control command to control the hoist cylinder and dump down the loading platform 201 of the dump truck 200 .
  • the command generating unit 36 After the supply of the pavement material loaded on the loading platform 201 to the hopper 2 is completed, the command generating unit 36 generates the control command for dumping down.
  • the determining unit 35 determines whether the pavement material loaded on the loading platform 201 of the dump truck 200 is empty, in other words, whether the supply of the pavement material is completed, based on the image information. may be determined. Then, the command generation unit 36 generates a control command for the dump down according to the determination result.
  • the command generating unit 36 may generate a control command for dumping down when an operation for dumping down is received from the operator of the asphalt finisher 100 via the input device 60a.
  • the determination unit 35 identifies the distance between the parts of each vehicle, which is the distance between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100. Then, the command generation unit 36 of the present embodiment issues a control command for accelerating or decelerating the dump truck 200 so that the distance between the parts of each vehicle is within the range of the distance "0" to the predetermined distance "A". Generate.
  • the predetermined distance "A” is the distance between the rear wheel 202 and the roller 2b when the rear end of the loading platform 201 of the dump truck 200 and the front end of the hopper 2 overlap vertically.
  • the controller 30 can control the speed or acceleration of the dump truck 200 so that the distance specified by the determination unit 35 is within the range of the distance "0" to the predetermined distance "A", the hopper 2 and the loading platform 201 can be maintained in a vertically overlapping state. A specific control method will be described later.
  • the distance between each vehicle part is controlled to be within the range of distance "0" to a predetermined distance "A". It is not limited to the control method concerned. That is, the command generation unit 36 generates a control command for controlling the speed or acceleration of the dump truck 200 based on the distance between each vehicle part, so that the hopper 2 and the loading platform 201 of the dump truck 200 move vertically.
  • the controller 30 may use any control method as long as the overlapping state can be maintained.
  • the command generation unit 36 generates a control command regarding steering for moving along the second movement route based on the second movement route, the acceleration command or deceleration command of the dump truck 200, and the position information of the dump truck 200.
  • the positional information of the dump truck 200 is calculated by the command generator 36 from the positional information of the asphalt finisher 100 acquired from the GPS module 50 and the relative positional relationship between the asphalt finisher 100 and the dump truck 200. .
  • a relative positional relationship is obtained from image information captured by the imaging device 62 .
  • the command generator 36 may generate a control command or the like for braking the dump truck 200 as necessary. The command generator 36 then outputs the generated control command for the dump truck 200 to the wireless communication device 40 .
  • the position information of the dump truck 200 is calculated from the position information of the asphalt finisher 100 acquired from the GPS module 50 and the relative positional relationship between the asphalt finisher 100 and the dump truck 200. is configured to However, this embodiment does not limit the method of acquiring the position information of the dump truck 200 to the above method.
  • dump truck 200 may be equipped with a GPS module.
  • the controller 30 of the asphalt finisher 100 may acquire the position information acquired from the GPS module provided in the dump truck 200 through wireless communication between the asphalt finisher 100 and the dump truck 200 .
  • control commands generated by the command generation unit 36 are not limited to the commands described above, and may be various other control commands.
  • the control command generated by the command generation unit 36 is a command that can be executed by the ADAS of the asphalt finisher 100, such as turning on/off the headlights of the asphalt finisher 100 or warning the operator of the asphalt finisher 100, good.
  • the control commands generated by the command generation unit 36 include commands that can be executed by the ADAS of the dump truck 200, such as turning on/off the headlights of the dump truck 200 or warning the driver of the dump truck 200. You can stay.
  • the communication control unit 37 controls communication with a transportation vehicle such as the dump truck 200 via the wireless communication device 240 .
  • the communication control unit 37 controls communication with the wireless communication device 240 indicated by the identification information associated with the license plate information determined by the command generation unit 36 .
  • This enables the controller 30 to transmit the control command generated for the dump truck 200 to the dump truck 200 .
  • the communication control unit 37 transmits to the wireless communication device 240 a control command for moving the dump truck 200 along the second movement route generated by the command generation unit 36 .
  • the communication control unit 37 receives image information regarding the image captured by the first imaging device 261 of the dump truck 200 via the wireless communication device 240 .
  • the communication control unit 37 receives image information regarding an image of the front of the dump truck 200 captured by the first imaging device 261 of the dump truck 200 .
  • the communication control section 37 outputs the received image information to the main monitor 60 . This allows the operator of the asphalt finisher 100 to grasp the situation ahead of the dump truck 200 .
  • Obstacles to be judged may be any object.
  • the obstacle to be judged is a scoop or a pylon.
  • the audio output device 63 outputs warning information indicating the presence of the obstacle in accordance with the instruction from the determination unit 35 . This allows the operator to recognize the presence or absence of obstacles on the movement path. Furthermore, the operator can recognize the situation of the moving route by visually recognizing the image information.
  • FIG. 3 is a diagram showing a processing procedure performed by the asphalt finisher 100 according to this embodiment. S301 and S302 of the processing procedure shown in FIG. 3 are typically executed before the asphalt finisher 100 performs construction.
  • the dump truck 200 may be driven by a driver, or may be automatically steered by ADAS or the like.
  • the acquisition unit 32 acquires the construction plan drawing (S301).
  • the route generation unit 33 generates the first movement route of the asphalt finisher 100 and the second movement route of the dump truck 200 based on the construction plan acquired by the acquisition unit 32 (S302).
  • the controller 30 starts movement control of the asphalt finisher 100 according to the first movement path (S303).
  • the acquisition unit 32 acquires image information indicating the image captured by the imaging device 62 (S304).
  • the detection unit 34 determines whether or not the dump truck 200 exists in front of the asphalt finisher 100 (S305). When the detection unit 34 determines that the dump truck 200 does not exist (S305: No), the controller 30 executes the process of S305 again after a predetermined period of time.
  • the communication control unit 37 identifies the identification information of the wireless communication device 240 from the license plate information of the dump truck 200. Then, the communication control unit 37 starts communication with the dump truck 200 equipped with the wireless communication device 240 indicated by the identified identification information (S306). Thereby, the controller 30 starts automatic control of the dump truck 200 .
  • the communication control unit 37 transmits to the wireless communication device 240 of the dump truck 200 the control command generated by the command generation unit 36 for steering the dump truck 200 so as to position the loading platform 201 of the dump truck 200 at the specified position. (S307). As a result, the dump truck 200 moves to a position where the loading platform 201 of the dump truck 200 overlaps the hopper 2 of the asphalt finisher 100 in the vertical direction. After that, the dump truck 200 becomes movable together with the asphalt finisher 100 .
  • the command generator 36 generates a speed control command for the dump truck 200 based on the speed of the asphalt finisher 100 (S308).
  • the speed of the dump truck 200 for example, the same speed as the speed of the asphalt finisher 100 can be considered. That is, the controller 30 controls the dump truck 200 so that the speed of the dump truck 200 and the speed of the asphalt finisher 100 match, thereby causing a change in the distance between the dump truck 200 and the asphalt finisher 100. can run at the same speed.
  • the communication control unit 37 transmits a speed control command to the wireless communication device 240 of the dump truck 200 (S309).
  • the acquisition unit 32 acquires image information indicating the image captured by the imaging device 62 (S310).
  • the acquiring unit 32 identifies relative positional information between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 from the image information acquired in S310.
  • the acquisition unit 32 acquires position information from the GPS module 50 (S311). Thereby, the controller 30 recognizes the positional information of the asphalt finisher 100 (for example, in the world geodetic system). Furthermore, the acquisition unit 32 obtains the position information (for example, in the world geodetic system) of the asphalt finisher 100 and the relative position information between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100, and the dump Recognize the (eg, world geodetic) location information of the truck 200 .
  • the command generation unit 36 determines the overlapping state of the dump truck 200 and the asphalt finisher 100 (the state in which the loading platform 201 of the dump truck 200 overlaps the hopper 2 of the asphalt finisher 100 in the vertical direction). is generated (S312).
  • the speed-related control command is, for example, a control command for accelerating, decelerating, or maintaining the speed of the dump truck 200 .
  • a control command relating to speed in this embodiment will be described later.
  • the command generation unit 36 generates a dump truck 200 based on the position information of the dump truck 200, the second movement path of the dump truck 200, the current speed of the dump truck 200, and a control command regarding acceleration or deceleration of the dump truck 200.
  • a steering control command for moving the truck 200 along the second movement path is generated (S313).
  • the communication control unit 37 transmits a steering control command and a speed control command to the wireless communication device 240 of the dump truck 200 via the wireless communication device 40 (S314).
  • the command generation unit 36 generates a steering control command for the asphalt finisher 100 for moving the asphalt finisher 100 along the first movement route based on the first movement route and the position information of the asphalt finisher 100 . Then, the driving system controller 55 performs steering control according to the control command (S315).
  • FIG. 4 is a top view of the construction site showing the first movement route and the second movement route generated by the route generation unit 33 for construction of the curving portion (left curve portion) of the road.
  • the asphalt finisher 100 paves the area between the left boundary line LP and the right boundary line RP with asphalt mixture. Therefore, the asphalt finisher 100 widens the screed device 3 until it reaches the left boundary line LP and the right boundary line RP.
  • the path generation unit 33 generates the first movement path AFL so that the asphalt finisher 100 can lay asphalt mixture in the area between the left boundary line LP and the right boundary line RP. That is, the first movement path AFL indicates a movement path for the asphalt finisher 100 to pave the construction target area with the asphalt mixture according to the construction plan.
  • the route generation unit 33 generates the second movement route DTL based on the first movement route AFL of the asphalt finisher 100 .
  • the second travel route DTL is the travel route of the dump truck 200 .
  • the loading platform 201 of the dump truck 200 and the hopper 2 of the asphalt finisher 100 move vertically while the asphalt finisher 100 moves along the first movement path AFL.
  • the overlapping state is maintained. Therefore, the dump truck 200 can stably supply the pavement material from the dump truck 200 to the asphalt finisher 100 .
  • a portion of dump truck 200 overlaps asphalt finisher 100, so the distance between dump truck 200 and asphalt finisher 100 disappears.
  • the second movement path DTL is a movement path used for control after the loading platform 201 of the dump truck 200 is positioned at the specified position.
  • the controller 30 controls the dump truck 200 to position the loading platform 201 of the dump truck 200 at the designated position, and then automatically controls the dump truck 200 according to the second movement path DTL.
  • the controller 30 ends the control of the dump truck 200 following the second movement path DTL.
  • the dump truck 200 travels according to control on the side of the dump truck 200 (for example, operation control by the driver or control of driving support by ADAS on the side of the dump truck 200).
  • the controller 30 of the present embodiment controls the dump truck 200 along the second movement path DTL only while the loading platform 201 of the dump truck 200 is positioned at the specified position. Thereby, the controller 30 can control the plurality of dump trucks 200 according to the second movement route DTL.
  • the first movement path AFL and the second movement path DTL are expressed using a reference coordinate system.
  • the reference coordinate system is, for example, the world geodetic system. Note that the reference coordinate system is not limited to the world geodetic system. coordinate system.
  • a point AP1 indicates the position of the front end of the asphalt finisher 100 at the first point of time when construction is started.
  • a point AP2 indicates the position of the front end of the asphalt finisher 100 at a second point in time following the first movement path AFL for a predetermined period of time from the first point in time.
  • a point AP3 indicates the position of the front end of the asphalt finisher 100 at a third point in time following the first movement path AFL from the second point in time.
  • the command generator 36 determines that the actual position coordinates indicated by the position of the front end of the asphalt finisher 100 (for example, point AP1, point AP2, or point AP3) match one of the position coordinates forming the first movement path AFL. , a control command for operating the asphalt finisher 100 is generated.
  • the command generation unit 36 calculates position information indicating the position of the front end of the asphalt finisher 100 (for example, points AP1, AP2, and AP3). Then, if the calculated position information requires rightward or leftward steering to follow the first movement path AFL, the command generation unit 36 generates a control command for rightward or leftward steering. In addition, the command generator 36 calculates the steering angle for following the first movement path AFL according to the current speed, acceleration, or deceleration of the asphalt finisher 100 . The calculated steering angle is included in the control command.
  • a point DP1 indicates the position of the front end of the dump truck 200 at the first point in time when construction is started.
  • a point DP2 indicates the position of the front end of the dump truck 200 at a second point in time following the second movement path DTL from the first point in time.
  • a point DP3 indicates the position of the front end of the dump truck 200 at a third point in time following the second travel path DTL from the second point in time.
  • the command generator 36 determines that the actual position coordinates indicated by the position of the front end of the dump truck 200 (for example, the point DP1, the point DP2, or the point DP3) matches one of the position coordinates forming the second movement path DTL. , a control command for operating the dump truck 200 is generated. Further, the command generator 36 generates a control command to keep the hopper 2 of the asphalt finisher 100 and the loading platform 201 of the dump truck 200 vertically overlapping each other.
  • the command generator 36 generates a control command regarding the speed of the dump truck 200 based on the speed, acceleration, or deceleration of the asphalt finisher 100 . Furthermore, based on the position information from the GPS module 50, the command generator 36 calculates position information indicating the positions of the front end of the dump truck 200 (for example, points DP1, DP2, and DP3). Then, if the calculated position information requires rightward or leftward steering to follow the second movement route, the command generation unit 36 generates a control command for rightward or leftward steering. In addition, the command generator 36 calculates the steering angle for following the second movement path according to the current speed of the dump truck 200 and the acceleration or deceleration indicated by the speed-related control command. The calculated steering angle is included in the control command. Then, the communication control unit 37 transmits a control command for the dump truck 200 to the wireless communication device 240 of the dump truck 200 via the wireless communication device 40 .
  • the controller 30 determines whether or not the supply of pavement material from the dump truck 200 has ended (S316). Any method may be used to determine whether or not the supply of the pavement material has ended. For example, notification from the dump truck 200 may be used. When it is determined that the supply of the pavement material has not ended (S316: No), the controller 30 executes the processes after S310.
  • the communication control unit 37 issues the control command generated by the command generation unit 36 to move the dump truck 200 away from the asphalt finisher 100. It is transmitted to the wireless communication device 240 of the dump truck 200 (S316).
  • the controller 30 determines whether or not the construction along the first movement route has been completed (S317). When it is determined that the construction is not completed (S317: No), the controller 30 executes the processes after S305 again.
  • the asphalt finisher 100 of this embodiment can pave the construction target area with asphalt mixture by performing the above-described processing.
  • the controller 30 of the above-described embodiment generates the second travel route for the transport vehicle such as the dump truck 200 so that the overlapping state can be maintained when the asphalt finisher 100 travels along the first travel route. Thereby, the controller 30 can synchronize the steering of the asphalt finisher 100 and the steering of the dump truck 200 .
  • the determination unit 35 of the controller 30 determines whether the hopper 2 and the loading platform 201 are aligned based on the positional relationship between the rear wheels of the dump truck 20 and the rollers 2b of the asphalt finisher 100 (the positional relationship between the parts of the respective vehicles). It can be determined whether or not the overlap state is maintained.
  • the rear wheel of the dump truck 20 and the roller 2b of the asphalt finisher 100 do not necessarily have to be used to determine whether or not the overlap state is maintained. For example, based on the positional relationship between the front end of the hopper 2 and the rear end of the loading platform 201, it may be determined whether or not the hopper 2 maintains an overlapping state with the loading platform 201. In other words, the controller 30 according to this embodiment may perform control so as to maintain the overlapping state based on the positional relationship between the front end of the hopper 2 and the rear end of the loading platform 201 .
  • the determination unit 35 identifies the distance between each vehicle part between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 from the image information acquired by the acquisition unit 32. . Then, the command generation unit 36 of the present embodiment issues a control command for accelerating or decelerating the dump truck 200 so that the distance between the parts of each vehicle is within the range of the distance "0" to the predetermined distance "A". Generate. In this way, the speed of the dump truck 200 is controlled so that the distance between the parts forming the dump truck 200 and the parts forming the asphalt finisher 100 is within a predetermined range.
  • FIG. 5 is a conceptual diagram showing the positional relationship between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 according to this embodiment.
  • FIG. 5A is a diagram showing a case where the distance between the respective vehicle parts between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 is "0".
  • FIG. 5B is a diagram showing a case where the distance between the respective vehicle parts between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 is a predetermined distance "A".
  • the rear end portion of the loading platform 201 of the dump truck 200 and the front end portion of the hopper 2 of the asphalt finisher 100 overlap vertically.
  • the hopper 2 and the loading platform 201 of the dump truck 200 are separated. do not overlap vertically.
  • the pavement material may drop onto the road surface or the like without being supplied from the loading platform 201 to the hopper 2 .
  • the command generating unit 36 of the controller 30 of the present embodiment is configured to control the distance between the rear wheel 202 of the dump truck 200 (an example of a part of the dump truck 200) and the roller 2b of the asphalt finisher 100 (an example of a part of the asphalt finisher 100).
  • a speed-related control command is generated so that the distance between parts of the vehicle falls within a predetermined range ("0" ⁇ distance between each vehicle part ⁇ "A").
  • the control is switched depending on whether the distance between the parts of each vehicle is shorter than the reference distance.
  • the reference distance according to the present embodiment is an intermediate distance between the distance "0", which is the distance between each vehicle part in FIG. 5A, and the predetermined distance "A", which is the distance between each vehicle part in FIG. 5B.
  • This embodiment will explain an example in which the distance between the rear wheel 202, which is a component of the dump truck 200, and the roller 20b, which is a component of the asphalt finisher 100, is used as a criterion. However, this embodiment does not limit the parts used for the distance criterion to the rear wheel 202 and the roller 20b, and other parts may be used.
  • FIG. 5C is a diagram showing a case where the distance between each vehicle part between the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 is the reference distance "A/2". Then, the controller 30 switches the speed control (for example, acceleration or deceleration) of the dump truck 200 depending on whether the distance between the parts of each vehicle is shorter than the reference distance "A/2". Acceleration and deceleration of the dump truck 200 are set in advance. Also, the acceleration and deceleration of the dump truck 200 may be changed according to the distance between the parts of each vehicle. Next, specific processing of S311 in FIG. 3 in the controller 30 according to this embodiment will be described.
  • the controller 30 switches the speed control (for example, acceleration or deceleration) of the dump truck 200 depending on whether the distance between the parts of each vehicle is shorter than the reference distance "A/2". Acceleration and deceleration of the dump truck 200 are set in advance. Also, the acceleration and deceleration of the dump truck 200 may be changed according to the distance between the parts
  • the determination unit 35 determines whether the rear wheel 202 of the dump truck 200 and the roller 2b of the asphalt finisher 100 are aligned. It is determined whether the distance between each vehicle part between is shorter than the reference distance "A/2".
  • the command generation unit 36 When the determination unit 35 determines that the distance between the parts of each vehicle is shorter than the reference distance "A/2", the command generation unit 36 generates a control command to accelerate the dump truck 200.
  • the acceleration represented by the control command increases, for example, as the distance between the vehicle parts becomes shorter than the reference distance "A/2".
  • the command generation unit 36 determines that the distance between the parts of each vehicle is the reference distance "A/2". 2" or longer.
  • the command generation unit 36 generates a control command for decelerating the dump truck 200 .
  • the deceleration represented by the control command increases, for example, as the distance between the parts of each vehicle becomes longer than the reference distance "A/2".
  • the determination unit 35 determines that the distance between the parts of each vehicle is not longer than the reference distance "A/2", in other words, the distance between the parts of each vehicle and the reference distance "A/2" are equal.
  • the command generation unit 36 generates a control command to keep the dump truck 200 at the current speed. In this manner, the controller 30 controls the speed of the dump truck 200 relative to the asphalt finisher 100 to increase or decrease.
  • the command generation unit 36 of the present embodiment generates the control command for acceleration, the control command for deceleration, or the control command for maintaining the speed as a control command related to speed. After the command generation unit 36 generates these control commands, the processing from S312 onwards is performed.
  • the controller 30 of this embodiment generates a control command regarding the speed of the dump truck 200 according to the positional relationship between the dump truck 200 and the asphalt finisher 100. Thereby, the controller 30 can synchronize the speed of the asphalt finisher 100 and the speed of the dump truck 200 .
  • the controller 30 of the second embodiment calculates the difference between the speed of the control command transmitted in S309 and the actual speed of the dump truck 200, and adjusts the speed of the dump truck 200 based on the calculated deviation. Control.
  • the dump truck 200 travels at the speed indicated by the control command transmitted in S309, the hopper 2 of the asphalt finisher 100 and the loading platform 201 of the dump truck 200 can be kept vertically overlapping.
  • the controller 30 performs feedback control of the speed of the dump truck 200 .
  • the acquisition unit 32 acquires information on the actual speed of the dump truck 200 .
  • the acquisition unit 32 may acquire information on the actual speed received from the dump truck 200 via the communication control unit 37 .
  • the acquisition unit 32 may estimate the actual speed of the dump truck 200 based on the image of the dump truck 200 included in the image information captured by the imaging device 62 .
  • the determination unit 35 calculates the difference between the speed indicated by the control command transmitted to the dump truck 200 in S309 and the actual speed of the dump truck 200.
  • the command generation unit 36 Based on the difference between the speed indicated by the control command and the actual speed of the dump truck 200, the command generation unit 36 performs feedback control for causing the dump truck 200 to travel at the speed indicated by the speed control command. Generate control commands.
  • a well-known method such as PID control may be used, for example.
  • the command generator 36 uses the control command based on the feedback control as a control command related to speed.
  • the communication controller 37 transmits the control command to the dump truck 200 via the wireless communication device 40 .
  • the controller 30 executes the processes after S312 in FIG. That is, upon receiving the control command, the controller 230 of the dump truck 200 performs feedback control to reduce the difference between the speed indicated by the control command transmitted in S309 and the actual speed of the dump truck 200. conduct. This allows the controller 230 to bring the actual speed of the dump truck 200 closer to the speed represented by the speed control command.
  • command generation unit 36 of the second embodiment generates a control command for accelerating, decelerating, or maintaining the speed of the dump truck 200 based on the distance between each vehicle part, as in the first embodiment. may be generated.
  • the command generator 36 of the second embodiment determines that the distance between the vehicle parts between the roller 2b of the asphalt finisher and the rear wheel 202 of the dump truck 200 is greater than the reference distance "A/2".
  • a speed control command may be generated depending on whether it is short or not.
  • the command generation unit 36 controls the vehicle to travel at a speed higher than the current speed of the asphalt finisher. Generate directives.
  • the command generation unit 36 increases the speed of the asphalt finisher from the current speed. Generate a control command to run at a slow speed.
  • the command generation unit 36 can perform A control command that suppresses the influence may be generated.
  • the communication control unit 37 of the asphalt finisher 100 receives image information captured by the first imaging device 261 of the dump truck 200 via the wireless communication device 40, and the command generation unit 36 is represented by the image information.
  • the control command for speed may be corrected based on the current situation.
  • the command generation unit 36 provides a feed for increasing the acceleration in advance in response to the control command to be generated. Perform forward control.
  • the command generator 36 of the second embodiment may generate a control command based on a combination of the feedforward control and the feedback control described above.
  • the controller 30 synchronizes the speed of the dump truck 200 and the speed of the asphalt finisher 100 by performing the control described above. Thereby, the controller 30 of the second embodiment maintains a constant distance between the respective vehicle parts between the dump truck 200 and the asphalt finisher 100 , and the loading platform 201 of the dump truck 200 is in the hopper of the asphalt finisher 100 . 2 to maintain the state of being vertically overlapped.
  • the controller 30 of the second embodiment generates a control command based on feedback control regarding the speed of the dump truck 200 according to the difference between the speed indicated by the control command of the dump truck 200 and the actual speed. there is As a result, the controller 30 can synchronize the speed of the asphalt finisher 100 and the speed of the dump truck 200 as in the first embodiment.
  • the controller 30 of the embodiment described above synchronizes the operation of the transportation vehicle such as the dump truck 200 and the operation of the asphalt finisher 100 through the control described above.
  • the operation to be synchronized is not limited to steering and speed, and may be turning on/off the headlights or winkers, outputting warning information, or the like.
  • the controller 30 controlled the dump truck 200 .
  • this embodiment is not limited to the case where the transport vehicle to be controlled exists in front of the asphalt finisher 100 .
  • the controller 30 may control transport vehicles existing around the asphalt finisher 100 .
  • the asphalt finisher 100 further includes an imaging device capable of imaging in the horizontal direction
  • the controller 30 may control the dump truck detected by the imaging device.
  • the controller 30 of the asphalt finisher 100 transmits a control command to the detected dump truck so that it moves forward and then moves backward.
  • the detecting device such as the imaging device may be set to the detection range as long as it is around the asphalt finisher 100 .
  • the controller 30 may then control the transport vehicle detected within the detection range.
  • the imaging device 62 detects a transportation vehicle such as the dump truck 200 has been described.
  • the detection device may be a sensor or the like that can detect the position of the dump truck 200 .
  • the detection device may be a distance sensor such as LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) or millimeter wave radar.
  • the steering information for steering the dump truck 200, which the asphalt finisher 100 transmits to the dump truck 200 is not limited to a steering control command, and may be any information necessary to steer the dump truck 200. good. For example, if the dump truck 200 can steer according to the second movement route when receiving the second movement route, the asphalt finisher 100 may transmit the second movement route as the steering information.
  • the asphalt finisher 100 synchronizes the operation of the asphalt finisher 100 and the operation of the dump truck 200 with the above-described configuration, thereby reducing the burden of manual steering by the driver of the dump truck 200. can.
  • the asphalt finisher 100 synchronizes the steering of the asphalt finisher 100 and the steering of the dump truck 200, so that the positional relationship between the loading platform 201 of the dump truck 200 and the hopper 2 of the asphalt finisher 100 is shifted. can be suppressed, the supply of pavement material from the dump truck 200 to the asphalt finisher 100 can be stabilized. As a result, the asphalt finisher 100 can suppress deterioration in the quality of the paved surface of asphalt after construction.
  • the asphalt finisher 100 generates the first movement path for the asphalt finisher 100 and the second movement path for the dump truck 200
  • the above-described embodiment is not limited to the asphalt finisher 100 generating the first movement path for the asphalt finisher 100 and the second movement path for the dump truck 200 . Therefore, in the modified example, the movement route is generated by an information processing device provided outside.
  • the information processing device controls the operation of the dump truck 200 and the operation of the asphalt finisher 100.
  • a first movement path for the asphalt finisher 100 and a second movement path for the dump truck 200 are generated in order to synchronize the .
  • the information processing device provided outside generates a first movement route for the asphalt finisher 100 and a second movement route for the dump truck 200 after inputting and processing the construction plan drawing.
  • the information processing device then transmits the first movement route for the asphalt finisher 100 and the second movement route for the dump truck 200 to the wireless communication device 40 of the asphalt finisher 100 .
  • Subsequent processing is the same as in the above-described embodiment, and description thereof is omitted.
  • any device included in the asphalt finisher construction support system may perform control for synchronizing the operation of the dump truck 200 and the operation of the asphalt finisher 100 .
  • the transport vehicle and the asphalt finisher are automatically controlled so as to follow the construction target area at the road paving site, so the safety of road paving is improved. Furthermore, in the above-described embodiment and modification, the operator of the asphalt finisher can confirm the surrounding situation based on the image information taken in front of the transportation vehicle, so the safety of the operator and surrounding workers can be improved. improves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

アスファルトフィニッシャは、トラクタと、トラクタの前側に設置されたホッパと、ホッパ内の舗装材をトラクタの後側へ搬送するコンベアと、前記コンベアによって搬送されて路面上に撒かれた舗装材を車幅方向に敷き拡げるスクリュと、前記スクリュによって敷き拡げられた舗装材を前記スクリュの後側で敷き均すスクリード装置と、を備え、運搬車両の動作を、当該アスファルトフィニッシャの動作に対応するよう同期させる。

Description

アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム
 本発明は、アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システに関する。
 従来、トラクタと、トラクタの前側に設置されて舗装材を受け入れるホッパと、ホッパ内の舗装材をトラクタの後側へ給送するコンベアと、コンベアにより給送された舗装材をトラクタの後側で敷き拡げるスクリュと、スクリュにより敷き拡げられた舗装材をスクリュの後側で敷き均すスクリードとを備えたアスファルトフィニッシャが知られている。
 アスファルトフィニッシャが施工を行う際には、アスファルトフィニッシャの前方に、舗装材を運搬する運搬車両(例えば、ダンプトラック)が存在する。そして、アスファルトフィニッシャは、運搬車両から舗装材が供給される。アスファルトフィニッシャは、継続して施工を行う必要がある。このため、運搬車両は、アスファルトフィニッシャに舗装材を供給できる位置に達した後、アスファルトフィニッシャとともに前進して、アスファルトフィニッシャの施工を継続させる必要がある。
国際公開第2017/010541号
 通常、アスファルトフィニッシャの操作者は、ホーンを鳴らしてアスファルトフィニッシャの発進等のタイミングを運搬車両の運転者に知らせている。運搬車両の運転者は、ホーンを聞いてアスファルトフィニッシャの動きを確認しながら、運搬車両の発進と停止とを制御している。
 アスファルトフィニッシャが施工している間、アスファルトフィニッシャに対する運搬車両の負荷(アスファルトフィニッシャの前端に接触している運搬車両を前方に押す際にアスファルトフィニッシャに掛かる負荷)が変動すると、施工済みの道路の路面の品質が低下するおそれがある。このため、アスファルトフィニッシャと運搬車両とが接触しないように、運搬車両を制御するのが好ましい。
 上述に鑑み、アスファルトフィニッシャの状況に応じて運搬車両を適切に制御できるアスファルトフィニッシャを提供することが望まれる。
 本発明の一態様に係るアスファルトフィニッシャは、トラクタと、トラクタの前側に設置されたホッパと、ホッパ内の舗装材をトラクタの後側へ搬送するコンベアと、前記コンベアによって搬送されて路面上に撒かれた舗装材を車幅方向に敷き拡げるスクリュと、前記スクリュによって敷き拡げられた舗装材を前記スクリュの後側で敷き均すスクリード装置と、を備え、運搬車両の動作を、当該アスファルトフィニッシャの動作に対応するよう同期させる。
 本発明の一態様によれば、アスファルトフィニッシャは、運搬車両の動作を、当該アスファルトフィニッシャの動作に対応するよう同期させることで、舗装面の品質の低下を抑制できる。
図1Aは、第1の実施形態に係る道路機械の一例であるアスファルトフィニッシャ及びダンプトラックを示した左側面図である。 図1Bは、第1の実施形態に係る道路機械の一例であるアスファルトフィニッシャ及びダンプトラックを示した上面図である。 図2は、第1の実施形態に係るアスファルトフィニッシャ及びダンプトラックの構成を示したブロック図である。 図3は、第1の実施形態に係るアスファルトフィニッシャで行われる処理手順を示した図である。 図4は、道路の湾曲部を施工するための、経路生成部により生成された第1移動経路及び第2移動経路を示した、施工現場の上面図である。 図5Aは、第1の実施形態に係る、ダンプトラックの後輪と、アスファルトフィニッシャのローラと、の間のそれぞれの車両の部品間の距離が距離"0"である場合を表した図である。 図5Bは、第1の実施形態に係る、ダンプトラックの後輪と、アスファルトフィニッシャのローラと、の間のそれぞれの車両の部品間の距離が所定距離"A"である場合を表した図である。 図5Cは、第1の実施形態に係る、ダンプトラックの後輪と、アスファルトフィニッシャのローラと、の間のそれぞれの車両の部品間の距離が基準距離"A/2"である場合を表した念図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。
(第1の実施形態)
 図1は、第1の実施形態に係る道路機械の一例であるアスファルトフィニッシャ100及びダンプトラック200を示した図である。具体的には、図1Aは左側面図であり、図1Bは上面図である。図1は、ダンプトラック200が、後退しながらアスファルトフィニッシャ100に接近する例を示す。
 アスファルトフィニッシャ100は、主に、トラクタ1、ホッパ2、及びスクリード装置3で構成される。
 スクリード装置3は舗装材を敷き均すための機構である。本実施形態では、スクリード装置3はトラクタ1によって牽引される浮動スクリード装置であり、レベリングアーム3aを介してトラクタ1と連結される。
 ホッパ2は、トラクタ1の前側に、舗装材を受け入れるための機構として設けられている。本実施形態のホッパ2は、可動機構部81a、81bを軸として、ホッパシリンダ2aによって車幅方向に開閉可能な機構を有する。そして、アスファルトフィニッシャ100は、ホッパ2内の舗装材(例えばアスファルト合材である。)がなくなりそうになると、ホッパ2を全開状態にして舗装材運搬車両としてのダンプトラック200の荷台201から舗装材(例えばアスファルト合材である。)を受け入れ可能とする。そして、ダンプトラック200がアスファルトフィニッシャ100と接触した状態で、ダンプトラック200の荷台201からホッパ2に舗装材が供給される。
 また、ダンプトラック200の荷台201から舗装材を受け入れているときも、アスファルトフィニッシャ100はダンプトラック200とともに進行方向に進みながら走行(施工)を継続する。具体的には、コンベアが、ホッパ2内に受け入れられた舗装材をトラクタ1の後側へ搬送する。スクリュは、コンベアによって搬送されて路面上に撒かれた舗装材を車幅方向に敷き拡げる。スクリード装置3は、スクリュによって敷き拡げられた舗装材をスクリュの後側で敷き均す。
 ダンプトラック200の荷台201から舗装材を受け入れた後、アスファルトフィニッシャ100の操作者は、ホッパ2を徐々に閉じていくことで、ホッパ2に供給された舗装材をコンベアに乗せることができる。その後、ホッパ2に供給された舗装材が後方に搬送されてホッパ2内の舗装材がほとんど無くなると、操作者はホッパ2を開く。そして、ホッパ2が再び全開状態になった段階で、ホッパ2は、ダンプトラック200から舗装材を受け入れ可能となる。このため、ダンプトラック200の運転者は、ホッパ2が全開状態になったことを確認してから、ダンプトラック200をアスファルトフィニッシャ100に接近させるのが好ましい。
 さらに、アスファルトフィニッシャ100は、ローラ2bを備えている。ローラ2bは、ホッパ2より前方に設置されている。ローラ2bは、ダンプトラック200の後輪202に接触可能な構成であって、ダンプトラック200の後輪202が接触している場合には、後輪202とともに回転可能である。
 トラクタ1は、アスファルトフィニッシャ100を走行させるための機構である。本実施形態では、トラクタ1は走行用油圧モータを用いて前輪及び後輪を回転させてアスファルトフィニッシャ100を移動させる。走行用油圧モータは、油圧源から作動油の供給を受けて回転する。なお、トラクタ1は、車輪の代わりにクローラを備えていてもよい。
 また、トラクタ1は、コントローラ30、無線通信装置40、GPSモジュール50、メインモニタ60、運転席61、撮像装置62、及び音声出力装置63等を搭載している。具体的には、メインモニタ60及び運転席61を含むキャブがトラクタ1の上面に設置される。撮像装置62及び音声出力装置63がトラクタ1の上面の前端中央部に設置される。
 無線通信装置40は、アスファルトフィニッシャ100の周囲に存在する装置、例えばダンプトラック200等と、直接、近距離無線通信を行う。本実施形態は、無線通信装置40の無線通信規格として、例えば、Wi-Fi(登録商標)を用いることが考えられる。なお、本実施形態の無線通信は、Wi-Fi(登録商標)を用いる手法に限定されるものではなく、無線LAN又はBluetooth(登録商標)等を用いてもよい。
 GPSモジュール50は、GNSS(Global Navigation Satellite System)モジュールの一例であり、GPS(Global Positioning System)による二次元測位の結果を示した位置情報を受信する。位置情報は、アスファルトフィニッシャ100の位置を緯度及び経度で表した情報を含む。なお、本実施形態は、位置情報の取得手法として、GPSを用いる例について説明するが、位置情報の取得手法を限定するものではなく、周知の他の手法を用いてもよい。
 メインモニタ60はアスファルトフィニッシャ100の操作者に各種情報を表示する装置である。本実施形態ではメインモニタ60は液晶ディスプレイであり、コントローラ30からの指令に応じて各種情報を表示可能である。また、メインモニタ60は、アスファルトフィニッシャ100の操作者の操作入力を受ける入力装置60aを含んでいる。
 撮像装置62は、アスファルトフィニッシャ100の前方にある空間の画像を取得する装置である。本実施形態では撮像装置62はカメラであり、取得した画像をコントローラ30に対して出力する。なお、撮像装置62は、距離画像カメラ、赤外線カメラ、又はステレオカメラ等であってもよい。本実施形態は、空間を認識可能な装置の一例として撮像装置62を用いた例について説明する。しかしながら、本実施形態は、空間認識装置を、撮像装置62に制限するものではない。つまり、アスファルトフィニッシャ100を基準とした空間を認識可能な空間認識装置であればよく、例えば、レーザセンサ等を用いてもよい。
 本実施形態に係る撮像装置62(検出装置の一例)は、アスファルトフィニッシャ100の前方に存在する、図1A及び図1Bの一点鎖線で示す撮像領域RA1(検出範囲の一例)内の空間を撮影する。そして、撮像装置62は、撮影した画像に関する画像情報(検出情報の一例)をコントローラ30に出力する。図1A及び図1Bに示される例では、撮像装置62は、撮像領域RA1内に存在するダンプトラック200を撮像可能である。
 音声出力装置63はアスファルトフィニッシャ100の周囲に向けて音声を出力する装置である。本実施形態では音声出力装置63はアスファルトフィニッシャ100の前方に向けて音声を出力するスピーカであり、コントローラ30からの指令に応じて警報を出力可能である。なお、音声出力装置63は音声メッセージを出力してもよい。
 コントローラ30は、アスファルトフィニッシャ100を制御する制御装置である。コントローラ30は、例えばコンピュータで構成され、CPU、内部メモリ、及び記憶媒体等を有する。コントローラ30は、記憶媒体に記憶されたプログラムをCPUに実行させることにより、各種の制御を行う。
 コントローラ30は、撮像装置62から受信した画像情報、及び(図示しない)様々な検出センサから受信した検出信号に基づいて、ADAS(Advanced driver-assistance systems)により、アスファルトフィニッシャ100の運転操作を支援できる。なお、本実施形態に係るコントローラ30が利用する運転操作支援システムは、ADASによる運転操作システムに限定されるものではなく、他の運転操作支援システムであってもよい。例えば、コントローラ30は、AD(Autonomous Driving)を用いてもよい。さらには、コントローラ30は、予め生成されている移動経路に従ってアスファルトフィニッシャ100の移動制御が可能なシステムであれば、どのようなシステムを用いてもよい。
 ダンプトラック200は、荷台201、図示しないホイストシリンダ、第1撮像装置261、第2撮像装置262、コントローラ230、及び無線通信装置240で構成される。荷台201は、アスファルトフィニッシャ100のホッパ2に供給するための舗装材を搭載可能である。ホイストシリンダは、荷台201を後方に傾ける機構であって、コントローラ230からの指令に従って伸縮することで、荷台201を後方に傾ける傾倒状態と、荷台201を水平にする水平状態と、を切り替える。
 第1撮像装置261は、例えば、ダンプトラック200のエンブレム近傍に設けられ、ダンプトラック200の前方にある空間の画像を取得する装置である。第2撮像装置262は、ダンプトラック200の後方にある空間の画像を取得する装置である。本実施形態に係る第1撮像装置261及び第2撮像装置262はカメラであり、取得した画像をコントローラ230に対して出力する。なお、第1撮像装置261及び第2撮像装置262は、距離画像カメラ、赤外線カメラ、又はステレオカメラ等であってもよい。本実施形態は、空間を認識可能な装置の一例として第1撮像装置261及び第2撮像装置262を用いた例について説明する。しかしながら、本実施形態は、空間認識装置を、第1撮像装置261及び第2撮像装置262に制限するものではない。つまり、ダンプトラック200を基準とした空間を認識可能な空間認識装置であればよく、例えば、レーザセンサ等を用いてもよい。
 本実施形態に係る第1撮像装置261は、ダンプトラック200の前方に存在する、図1A及び図1Bの2点鎖線で示す撮像領域RT1内の空間を撮影する。第1撮像装置261は、撮影した画像に関する画像情報をコントローラ230に出力する。
 本実施形態に係る第2撮像装置262は、ダンプトラック200の後方に存在する、図1A及び図1Bの2点鎖線で示す撮像領域RT2内の空間を撮影する。第2撮像装置262は、撮影した画像に関する画像情報をコントローラ230に出力する。
 無線通信装置240は、ダンプトラック200の周囲に存在する装置、例えばアスファルトフィニッシャ100の無線通信装置40等と無線通信を行う。本実施形態は、無線通信装置240の無線通信規格として、例えば、Wi-Fi(登録商標)を用いることが考えられる。なお、本実施形態の無線通信は、Wi-Fi(登録商標)を用いる手法に限定されるものではなく、無線LAN又はBluetooth(登録商標)等を用いてもよい。
 コントローラ230は、ダンプトラック200を制御する制御装置である。コントローラ230は、例えばコンピュータで構成され、CPU、内部メモリ、及び記憶媒体等を有する。コントローラ230は、記憶媒体に記憶されたプログラムをCPUに実行させることにより、各種の制御を行う。
 本実施形態に係るコントローラ230は、第1撮像装置261から受信した画像情報、及び第2撮像装置262から受信した画像情報、及び(図示しない)様々な検出センサから受信した検出信号に基づいて、ADASにより、ダンプトラック200の運転操作を支援できる。なお、本実施形態に係るコントローラ230が利用する運転操作支援システムは、ADASによる運転操作システムに限定されるものではなく、他の運転操作支援システムであってもよい。例えば、コントローラ230は、ADを用いてもよい。さらには、コントローラ230は、移動経路や様々な制御指令に従って移動制御可能なシステムであれば、どのようなシステムを用いてもよい。本実施形態の制御指令は、車両(例えば、アスファルトフィニッシャ100、又はダンプトラック200)の移動制御を行うための指示が表された情報である。
 例えば、本実施形態に係るコントローラ230は、ADASの駐車支援によって、アスファルトフィニッシャ100のホッパ2近傍でダンプトラック200を停止させる制御を実現する。その際、本実施形態のコントローラ230は、アスファルトフィニッシャ100から無線通信装置240を介して制御指令を受信し、受信した制御指令に基づいてダンプトラック200の駆動制御を行ってもよい。
 ダンプトラック200がアスファルトフィニッシャ100のホッパ2の近傍に位置付けられた際、アスファルトフィニッシャ100は、通常、施工中である。このため、ダンプトラック200がアスファルトフィニッシャ100のホッパ2の近傍に位置付けられた後、ダンプトラック200が、荷台201から舗装材をホッパ2に供給している間、ダンプトラック200は、アスファルトフィニッシャ100とともに走行する必要がある。
 そこで、本実施形態に係るアスファルトフィニッシャ100のコントローラ30は、ダンプトラック200の動作を、アスファルトフィニッシャ100の動作に対応するよう同期させる制御を行う。
 本実施形態では、アスファルトフィニッシャ100のコントローラ30は、施工計画図に基づいて、施工対象となる領域を舗装するようにアスファルトフィニッシャ100を移動させるための、アスファルトフィニッシャ100用の第1移動経路を生成する。そして、コントローラ30は、第1移動経路に従うようにアスファルトフィニッシャ100を制御する。
 コントローラ30の記憶媒体に記憶可能な施工計画図には、基準座標系における、当該アスファルトフィニッシャ100が施工対象とする領域を示す情報が含まれている。
 施工計画図で用いられる基準座標系は、例えば世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点と原点とを通過する軸を緯度(X軸)とし、東経90度の子午線と赤道との交点と原点とを通過する軸を経度(Y軸)とし、北極点と原点とを通過する軸をZ軸とする三次元直交XYZ座標系である。換言すれば、施工計画図には、施工対象となる領域を三次元直交XYZ座標系(世界測地系)で示した情報が含まれている。
 また、施工計画図には、施工対象となる領域に関する様々な情報が含まれていてもよい。例えば、施工計画図には、施工対象となる領域に存在する障害物の位置を示す情報が含まれていてもよい。障害物としては、例えば、路面上に存在する段差情報がある。段差情報としては、例えば、路面に存在するマンホールに関する情報等である。
 アスファルトフィニッシャ100は、GPSモジュール50を介して、アスファルトフィニッシャ100の位置を緯度及び経度で表した位置情報を取得している。このため、アスファルトフィニッシャ100のコントローラ30は、GPSモジュール50が取得した位置情報で示される位置を、施工計画図上で特定できる。
 コントローラ30は、施工計画図に基づいて、ダンプトラック200の荷台201とアスファルトフィニッシャ100のホッパ2とのオーバーラップ状態を維持した状態(換言すれば、同期した状態)でダンプトラック200が走行するように、ダンプトラック200用の第2移動経路を生成する。そして、コントローラ30は、第2移動経路に従ってダンプトラック200が走行するように、ダンプトラック200の舵角及び速度等を指示する制御指令を生成する。そして、コントローラ30は、生成した制御指令を、無線通信装置40を介して、ダンプトラック200の無線通信装置240に送信する。これにより、コントローラ30は、ダンプトラック200の動作を、アスファルトフィニッシャ100の動作に対応するよう同期させる。
 図2は、本実施形態に係るアスファルトフィニッシャ100及びダンプトラック200の構成を示したブロック図である。図2に示されるように、ダンプトラック200は、第1撮像装置261と、第2撮像装置262と、入力装置263と、コントローラ230と、無線通信装置240と、駆動系コントローラ250と、を備えている。つまり、本実施形態は、アスファルトフィニッシャ100と、ダンプトラック200と、を備えたアスファルトフィニッシャの施工支援システムにおいて、コントローラ30が、ダンプトラック200の動作とアスファルトフィニッシャ100の動作とを同期させるように制御を行う例とする。
 コントローラ230は、(例えば、ダンプトラック200の前面のエンブレム近傍に設けられた)第1撮像装置261からの画像情報、(例えば、ダンプトラック200の後端部に設けられた)第2撮像装置262からの画像情報、及び(図示しない)検出センサによる制御信号等に基づいて、駆動制御に関する制御指令を生成する。そして、コントローラ230は、生成した制御指令を駆動系コントローラ250に出力する。これにより、コントローラ230は、ADASによる運転操作の支援を実現している。駆動系コントローラ250は、制御指令に従って、ダンプトラック200の駆動系及びエンジン等を制御する。
 また、コントローラ230は、入力装置263を介して運転者から操作を受け付けることで、様々な制御を行う。
 コントローラ230は、無線通信装置240を介してアスファルトフィニッシャ100から制御指令を受け付けた場合に、受け付けた制御指令を駆動系コントローラ250に出力する。これにより、ダンプトラック200は、アスファルトフィニッシャ100からの要求に応じたADASによる運転操作の支援を実現している。
 また、コントローラ230は、第1撮像装置261が撮影した画像情報、及び第2撮像装置262が撮影した画像情報を、無線通信装置240を介してアスファルトフィニッシャ100に送信してもよい。
 アスファルトフィニッシャ100は、撮像装置62と、入力装置60aと、コントローラ30と、駆動系コントローラ55と、無線通信装置40と、を備えている。駆動系コントローラ55は、制御指令に従って、トラクタ1を制御する。
 本実施形態に係るコントローラ30は、撮像装置62から受信した画像情報、及び(図示しない)様々な検出センサから受信した検出信号に基づいて、ADAS(Advanced driver-assistance systems)による運転操作の支援を可能とする。なお、本実施形態に係るコントローラ30は、ADASによる運転操作の支援に限定するものではなく、他の運転操作支援を利用してもよい。例えば、コントローラ30は、AD(Autonomous Driving)を用いてもよい。
 本実施形態のコントローラ30は、図示しない接続I/F、又は無線通信装置40を介して、施工計画図の入力を受け付ける。
 そして、コントローラ30は、施工計画図等に基づいて、アスファルトフィニッシャ100及びダンプトラック200が施工対象となる領域を移動するために、様々な制御を行う。
 図2に示されるコントローラ30が備える各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されている必要はない。各機能ブロックの全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成されていてもよい。各機能ブロックにて行われる各処理機能は、その全部又は任意の一部が、CPUにて実行されるプログラムにて実現される。または各機能ブロックをワイヤードロジックによるハードウェアとして実現してもよい。図2に示されるように、コントローラ30は、ダンプトラック識別情報記憶部31と、取得部32と、経路生成部33と、検出部34と、判定部35と、指令生成部36と、通信制御部37と、を備える。
 ダンプトラック識別情報記憶部31は、コントローラ30内の記憶媒体上に設けられている。ダンプトラック識別情報記憶部31は、アスファルトフィニッシャ100が通信対象となるダンプトラック200を識別するための情報を記憶している。例えば、ダンプトラック識別情報記憶部31は、ダンプトラック200のナンバープレート情報と、ダンプトラック200に搭載されている無線通信装置240の識別情報(例えばSSID)と、を対応付けて記憶している。これにより、コントローラ30は、撮像装置62でダンプトラック200の後部を撮影した際に、写っているナンバープレートに基づいて、通信対象となる無線通信装置240を特定できる。
 取得部32は、撮像装置62で撮像された画像情報を取得する。また、取得部32は、入力装置60aを介して、操作者からの操作情報を取得する。
 また、取得部32は、施工計画図を取得する。例えば、取得部32は、図示しない接続I/F(例えば、USB I/F)を介して接続された不揮発性記憶媒体から、施工計画図を取得してもよい。さらには、取得部32は、無線通信装置40を介して、外部装置から通信制御部37が受信した施工計画図を取得してもよい。
 経路生成部33は、取得部32が取得した施工計画図に基づいて、アスファルトフィニッシャ100及びダンプトラック200の移動経路を生成する。本実施形態では、移動経路の生成は、施工計画図を取得した後であって、アスファルトフィニッシャ100による施工が開始される前に行われる。これにより、経路生成部33は、アスファルトフィニッシャ100の施工の開始位置を含めた移動経路を生成できる。
 本実施形態の経路生成部33は、施工計画図で示された施工対象となる全領域を施工できるようにアスファルトフィニッシャ100の第1移動経路を生成する。さらに、経路生成部33は、第1移動経路に従って走行しているアスファルトフィニッシャ100に接触した状態で走行した場合のダンプトラック200の第2移動経路を生成する。
 施工計画図で示されている施工対象となる領域に、マンホール等の段差がある領域が含まれる場合、経路生成部33は、段差がある領域を、アスファルトフィニッシャ100及びダンプトラック200の車輪が通らないよう、第1移動経路及び第2移動経路を生成する。
 検出部34は、アスファルトフィニッシャ100が施工を開始した後、撮像装置62から取得した画像情報に基づいて、アスファルトフィニッシャ100の前方空間に存在するダンプトラック200等の運搬車両を検出する。画像情報で示される画像からダンプトラック200等の運搬車両等を検出する技術は、公知の画像処理技術を含め、どのような技術であってもよい。検出部34は、画像から運搬車両等を検出する際に、他の物体を検出してもよい。他の物体は、例えば、ロードコーン、人(作業者等)、及び小型機械(ランマ、タンパ等)等を含んでいてもよい。また、判定部35が、空間認識装置の一種である撮像装置62の画像情報(出力値)に基づいて、アスファルトフィニッシャ100(作業機械の一例)の周囲に存在する物体を認識(検知)するように構成してもよい。認識の対象となる物体は、例えば、ダンプトラック200、地形形状(傾斜、穴等)、電線、電柱、人、動物、車両、建設機械、建造物、壁、ヘルメット、安全ベスト、作業服、又は、ヘルメットにおける所定のマーク等である。このようにして、判定部35は、物体の種類、位置、及び形状等の少なくとも1つを識別できるように構成されていてもよい。例えば、判定部35は、ダンプトラック200とダンプトラック以外の物体とを区別できるように構成されていてもよい。
 判定部35は、撮像装置62(検出装置の一例)からの画像情報(検出情報の一例)に基づいて様々な判定を行う。
 例えば、判定部35は、撮像装置62からの画像情報に基づいて、アスファルトフィニッシャ100の前方に存在する、ダンプトラック200のナンバープレート情報を判定する。これにより、判定部35は、制御の対象となるダンプトラック200のナンバープレート情報を識別できる。
 さらには、判定部35は、ダンプトラック200とアスファルトフィニッシャ100との間の距離を判定してもよい。本実施形態に係る判定部35は、画像に写っているダンプトラック200のサイズと、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間の距離と、の対応関係を有している。これにより、判定部35は、取得部32が取得した画像情報から、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間の距離を特定できる。
 例えば、判定部35は、撮像装置62が撮影した画像からダンプトラック200を検出した後、当該ダンプトラック200の荷台201を指定位置に位置付けることが可能か否かを判定する。指定位置は、荷台201にある舗装材をホッパ2内に移すのに適した荷台201の位置であり、鉛直方向においてアスファルトフィニッシャ100のホッパ2の位置と部分的に重なる位置である。また、指定位置は、アスファルトフィニッシャ100の移動に伴って移動する位置である。指定位置に関する情報は、典型的には、コントローラ30の記憶媒体に予め記憶されている。本実施形態では、指定位置に関する情報は、上面視において荷台201と略同じ大きさ(面積)を有する矩形領域に関する情報である。換言すれば、指定位置に関する情報は、荷台201と略同じ大きさ(体積)を有する直方体状の空間に関する情報である。そのため、「ダンプトラック200の荷台201を指定位置に位置付けること」は、例えば、実際の荷台201に対応する矩形領域と指定位置に対応する矩形領域とを一致させることを意味する。図1Bの点線で示された矩形領域ZNは、指定位置に対応する矩形領域の一例である。
 指令生成部36は、第1移動経路に従ってアスファルトフィニッシャ100を走行させるための制御指令を生成する。具体的には、本実施形態の指令生成部36は、施工を継続するためのアスファルトフィニッシャ100の加速指令又は減速指令を生成する。さらに、指令生成部36は、第1移動経路、加速指令又は減速指令、及びGPSモジュール50から受信したアスファルトフィニッシャ100の位置情報に基づいて、第1移動経路に従って移動するための操舵に関する制御指令を生成する。さらに、指令生成部36は、必要に応じて制動(ブレーキング)を行う制御指令等を生成してもよい。そして、指令生成部36は、生成した制御指令を、駆動系コントローラ55に出力する。
 本実施形態の指令生成部36は、ダンプトラック200の動作とアスファルトフィニッシャ100の動作とを同期させるよう、アスファルトフィニッシャ100に対する制御指令を生成する。具体的には、第1移動経路に従って一定の速度で走行するように制御指令を生成する。これにより、アスファルトフィニッシャ100の動作に、ダンプトラック200の動作を同期させるのが容易となる。
 本実施形態の指令生成部36が生成する制御指令は、例えば、ダンプトラック200の荷台201を指定位置に位置付けるように操舵を行うための制御指令を含む。他の制御指令は、例えば、ダンプトラック200の後輪202をローラ2bの近傍で停止させるために、ダンプトラック200に対して後退又は停止を指示する制御指令を含む。
 さらに指令生成部36は、ダンプトラック200の荷台201を指定位置に位置付けるように操舵を行った後、第2移動経路に従って運搬車両(例えば、ダンプトラック200)を走行させるための制御指令を生成する。そして、指令生成部36は、生成した制御指令を通信制御部37に出力する。第2移動経路に従って走行させるための制御指令は、例えば、右方向若しくは左方向への操舵指令、所定の速度にする指令、加速指令、減速指令、又は制動(ブレーキング)指令等である。
 具体的には、指令生成部36は、ダンプトラック200の荷台201を指定位置に位置付けるように操舵を行った後、アスファルトフィニッシャ100の速度に基づいて定められた速度でダンプトラック200を走行させる制御指令を生成する。アスファルトフィニッシャ100の速度に基づいて定められた速度としては、例えば、アスファルトフィニッシャ100の速度と略同じ速度が考えられる。つまり、ダンプトラック200をアスファルトフィニッシャ100と略同じ速度で走行させることで、アスファルトフィニッシャ100のホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持できる。しかしながら、略同じ速度で走行する指示を行った場合でも、指令生成部36は、アスファルトフィニッシャ100のホッパ2が辿る経路とダンプトラック200が辿る経路との間の違い、又は、速度のずれ等によって、位置のずれを生じさせる場合がある。
 そこで、本実施形態の指令生成部36は、アスファルトフィニッシャ100のホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持するように、ダンプトラック200の加速又は減速の制御指令を生成する。
 本実施形態に係る指令生成部36は、アスファルトフィニッシャ100のホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持するために、アスファルトフィニッシャ100とダンプトラック200との間の相対的な位置関係に基づいた制御を行う。
 さらに、指令生成部36は、ホイストシリンダを制御してダンプトラック200の荷台201をダンプアップさせる制御指令を生成する。指令生成部36は、当該ダンプアップさせる制御指令を、ダンプトラック200の荷台201を指定位置に位置付けた後に生成する。本実施形態では、判定部35が、画像情報に基づいて、ダンプトラック200の荷台201が指定位置に位置付けられたか否かを判定してもよい。そして、指令生成部36は、判定結果に応じて、当該ダンプアップさせる制御指令を生成する。さらには、アスファルトフィニッシャ100の操作者から、入力装置60aを介して、ダンプアップさせる操作を受け付けた場合に、指令生成部36が、ダンプアップさせる制御指令を生成してもよい。
 さらに、指令生成部36は、ホイストシリンダを制御してダンプトラック200の荷台201をダンプダウンさせる制御指令を生成する。本実施形態では、荷台201に搭載されていた舗装材のホッパ2への供給が完了した後に、指令生成部36が、当該ダンプダウンさせる制御指令を生成する。本実施形態では、判定部35が、画像情報に基づいて、ダンプトラック200の荷台201に搭載されていた舗装材が空になったか否か、換言すれば舗装材の供給が完了したか否かを判定してもよい。そして、指令生成部36は、判定結果に応じて、当該ダンプダウンさせる制御指令を生成する。さらには、アスファルトフィニッシャ100の操作者から、入力装置60aを介して、ダンプダウンさせる操作を受け付けた場合に、指令生成部36が、ダンプダウンさせる制御指令を生成してもよい。
 判定部35は、取得部32が取得した画像情報から、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間の距離であるそれぞれの車両の部品間の距離を特定する。そして、本実施形態の指令生成部36は、それぞれの車両の部品間の距離が距離"0"から所定距離"A"の範囲内になるように、ダンプトラック200の加速又は減速の制御指令を生成する。所定距離"A"は、ダンプトラック200の荷台201の後端部とホッパ2の先端部とが鉛直方向で重なる状況における後輪202とローラ2bとの間の距離とする。
 換言すれば、コントローラ30は、判定部35によって特定された距離が、距離"0"から所定距離"A"の範囲内になるようにダンプトラック200の速度又は加速度を制御できれば、ホッパ2と荷台201とが鉛直方向で重なる状態を維持できる。なお、具体的な制御手法については、後述する。
 本実施形態は、それぞれの車両の部品間の距離が、距離"0"から所定距離"A"の範囲内になるよう制御する例について説明するが、本実施形態で利用される制御手法は、当該制御手法に限定されるものではない。つまり、指令生成部36が、それぞれの車両の部品間の距離に基づいて、ダンプトラック200の速度又は加速度を制御する制御指令を生成して、ホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持できるのであれば、コントローラ30は、どのような制御手法を用いてもよい。
 さらに、指令生成部36は、第2移動経路、ダンプトラック200の加速指令又は減速指令、及びダンプトラック200の位置情報に基づいて、第2移動経路に従って移動するための操舵に関する制御指令を生成する。なお、ダンプトラック200の位置情報は、GPSモジュール50から取得したアスファルトフィニッシャ100の位置情報と、アスファルトフィニッシャ100とダンプトラック200との間の相対的な位置関係から、指令生成部36により算出される。相対的な位置関係は、撮像装置62により撮像された画像情報から求められる。さらに、指令生成部36は、必要に応じてダンプトラック200の制動(ブレーキング)を行う制御指令等を生成してもよい。そして、指令生成部36は、生成したダンプトラック200の制御指令を、無線通信装置40に出力する。
 なお、本実施形態は、GPSモジュール50から取得したアスファルトフィニッシャ100の位置情報と、アスファルトフィニッシャ100とダンプトラック200との間の相対的な位置関係と、からダンプトラック200の位置情報を算出するように構成されている。しかしながら、本実施形態は、ダンプトラック200の位置情報の取得手法を、上記の手法に限定するものではない。例えば、ダンプトラック200がGPSモジュールを備えてもよい。そして、アスファルトフィニッシャ100のコントローラ30は、ダンプトラック200に設けられたGPSモジュールから取得した位置情報を、アスファルトフィニッシャ100とダンプトラック200との間の無線通信で取得してもよい。
 なお、指令生成部36が生成する制御指令は、上述した指令に限定されるものではなく、他の様々な制御指令であってもよい。例えば、指令生成部36が生成する制御指令は、アスファルトフィニッシャ100のヘッドライトのオン/オフ、又はアスファルトフィニッシャ100の操作者への警告等、アスファルトフィニッシャ100のADAS等で実行可能な指令であればよい。同様に、指令生成部36が生成する制御指令は、ダンプトラック200のヘッドライトのオン/オフ、又はダンプトラック200の運転者への警告等、ダンプトラック200のADAS等で実行可能な指令を含んでいてもよい。
 通信制御部37は、無線通信装置240を介して、ダンプトラック200等の運搬車両との間で通信制御を行う。例えば、通信制御部37は、指令生成部36で判定されたナンバープレート情報と対応付けられた識別情報で示された無線通信装置240との間における通信の制御を行う。これにより、コントローラ30は、ダンプトラック200に対して、ダンプトラック200用に生成した制御指令を送信することが可能となる。例えば、通信制御部37は、無線通信装置240に対して、指令生成部36で生成された第2移動経路に従ってダンプトラック200を移動させるための制御指令を送信する。
 さらに、通信制御部37は、無線通信装置240を介して、ダンプトラック200の第1撮像装置261で撮影された画像に関する画像情報を受信する。
 アスファルトフィニッシャ100の操作者は、前方にダンプトラック200が存在する場合に、進行方向を操作者が視覚にて確認するのは難しい。そこで、本実施形態に係る通信制御部37は、ダンプトラック200の第1撮像装置261で撮影された、ダンプトラック200の前方が写っている画像に関する画像情報を受信する。通信制御部37は、受信した画像情報を、メインモニタ60に出力する。これにより、アスファルトフィニッシャ100の操作者は、ダンプトラック200の前方の状況を把握できる。
 そして、判定部35は、受信した画像情報に基づいて、ダンプトラック200及びアスファルトフィニッシャ100の移動経路上に障害物が存在するか否かを判定する。判定の対象となる障害物は、どのような物体でもよい。例えば、判定の対象となる障害物は、スコップ、又はパイロン等である。
 そして、障害物が存在すると判定部35が判定した場合には、音声出力装置63が、判定部35からの指示に従って、障害物が存在する旨を示した警告情報を出力する。これにより、操作者は、移動経路における障害物の有無を認識できる。さらには、操作者は、画像情報を視認することで、移動経路の状況を認識できる。
 図3は、本実施形態に係るアスファルトフィニッシャ100で行われる処理手順を示した図である。図3に示される処理手順のうちのS301及びS302は、典型的には、アスファルトフィニッシャ100が施工を行う前に実行される。ダンプトラック200は、運転者が運転していてもよいし、ADAS等による自動操舵が行われていてもよい。
 取得部32は、施工計画図を取得する(S301)。
 経路生成部33は、取得部32が取得した施工計画図に基づいて、アスファルトフィニッシャ100の第1移動経路、及びダンプトラック200の第2移動経路を生成する(S302)。
 そして、コントローラ30はアスファルトフィニッシャ100の第1移動経路に従った移動制御を開始する(S303)。
 取得部32は、撮像装置62が撮像した画像を示す画像情報を取得する(S304)。
 そして、検出部34は、画像情報に基づいて、アスファルトフィニッシャ100の前方にダンプトラック200が存在するか否かを判定する(S305)。ダンプトラック200が存在しないと検出部34が判定した場合(S305:No)、コントローラ30は所定時間後、再びS305の処理を実行する。
 ダンプトラック200が存在すると検出部34が判定した場合(S305:Yes)、通信制御部37は、ダンプトラック200のナンバープレート情報から、無線通信装置240の識別情報を特定する。そして、通信制御部37は、特定された識別情報で示される無線通信装置240を搭載したダンプトラック200との間で通信を開始する(S306)。これにより、コントローラ30は、ダンプトラック200に対する自動制御を開始する。
 通信制御部37は、ダンプトラック200の荷台201を指定位置に位置付けるようにダンプトラック200の操舵を行うために指令生成部36により生成された制御指令を、ダンプトラック200の無線通信装置240に送信する(S307)。これにより、ダンプトラック200は、ダンプトラック200の荷台201がアスファルトフィニッシャ100のホッパ2に鉛直方向で重なる位置まで移動する。その後、ダンプトラック200は、アスファルトフィニッシャ100とともに移動可能となる。
 指令生成部36は、アスファルトフィニッシャ100の速度に基づいて、ダンプトラック200の速度の制御指令を生成する(S308)。ダンプトラック200の速度としては、例えば、アスファルトフィニッシャ100の速度と同じ速度が考えられる。つまり、コントローラ30は、ダンプトラック200の速度と、アスファルトフィニッシャ100の速度と、を一致させるようにダンプトラック200を制御することで、ダンプトラック200と、アスファルトフィニッシャ100と、を距離の変化は生じても、同一速度で走行させることができる。
 通信制御部37は、ダンプトラック200の無線通信装置240に対して、速度の制御指令を送信する(S309)。
 取得部32は、撮像装置62が撮像した画像を示す画像情報を取得する(S310)。取得部32は、S310で取得した画像情報からダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間の相対的な位置情報を特定する。
 さらに、取得部32は、GPSモジュール50から位置情報を取得する(S311)。これにより、コントローラ30は、アスファルトフィニッシャ100の(例えば世界測地系の)位置情報を認識する。さらには、取得部32は、アスファルトフィニッシャ100の(例えば世界測地系の)位置情報と、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間の相対的な位置情報と、からダンプトラック200の(例えば世界測地系の)位置情報を認識する。
 指令生成部36は、上記相対的な位置情報に基づき、ダンプトラック200とアスファルトフィニッシャ100とのオーバーラップ状態(ダンプトラック200の荷台201がアスファルトフィニッシャ100のホッパ2に鉛直方向で重なっている状態)を維持させる、ダンプトラック200の速度に関する制御指令を生成する(S312)。速度に関する制御指令は、例えば、ダンプトラック200に加速、減速、又は速度維持等を行わせるための制御指令とする。本実施形態の速度に関する制御指令については後述する。
 さらに、指令生成部36は、ダンプトラック200の位置情報、ダンプトラック200の第2移動経路、ダンプトラック200の現在の速度、及び、ダンプトラック200の加速又は減速等に関する制御指令に基づいて、ダンプトラック200が第2移動経路に沿って移動するための操舵の制御指令を生成する(S313)。
 そして、通信制御部37は、無線通信装置40を介して、ダンプトラック200の無線通信装置240に対して、操舵の制御指令、及び速度に関する制御指令を送信する(S314)。
 指令生成部36は、第1移動経路、及びアスファルトフィニッシャ100の位置情報に基づいて、第1移動経路に従ってアスファルトフィニッシャ100を移動させるためのアスファルトフィニッシャ100の操舵の制御指令を生成する。そして、駆動系コントローラ55は、当該制御指令に従って操舵制御を行う(S315)。
 次に指令生成部36により生成される制御指令について説明する。図4は、道路の湾曲部(左カーブ部)を施工するために経路生成部33により生成された第1移動経路及び第2移動経路を示した施工現場の上面図である。図4に示される例では、アスファルトフィニッシャ100は、左側境界線LPと右側境界線RPとの間の領域をアスファルト合材で舗装する。このため、アスファルトフィニッシャ100は、左側境界線LP及び右側境界線RPのそれぞれに達するまでスクリード装置3を広げている。
 経路生成部33は、第1移動経路AFLを、左側境界線LPと右側境界線RPとの間の領域にアスファルトフィニッシャ100によってアスファルト合材を敷設できるように生成する。つまり、第1移動経路AFLは、施工計画図に従って、施工対象となる領域をアスファルトフィニッシャ100がアスファルト合材で舗装するための移動経路を示している。
 本実施形態においては、経路生成部33は、アスファルトフィニッシャ100の第1移動経路AFLを基準として、第2移動経路DTLを生成している。第2移動経路DTLは、ダンプトラック200の移動経路である。ダンプトラック200が、第2移動経路DTLに従って移動することで、アスファルトフィニッシャ100が第1移動経路AFLに従って移動している間、ダンプトラック200の荷台201とアスファルトフィニッシャ100のホッパ2とが鉛直方向で重なっている状態が維持される。このため、ダンプトラック200は、ダンプトラック200からアスファルトフィニッシャ100への舗装材の安定供給を実現できる。このように、本実施の形態では、ダンプトラック200の一部とアスファルトフィニッシャ100とが重なっているため、ダンプトラック200とアスファルトフィニッシャ100との間の距離は消滅している。
 なお、第2移動経路DTLは、ダンプトラック200の荷台201が指定位置に位置付けた後の制御に用いられる移動経路である。換言すれば、コントローラ30は、ダンプトラック200に対して、ダンプトラック200の荷台201を指定位置に位置付ける制御をした後に、第2移動経路DTLに従った自動制御を行っている。
 そして、ダンプトラック200からのアスファルトフィニッシャ100に対する舗装材の供給が完了した後、コントローラ30は、第2移動経路DTLに従ったダンプトラック200の制御を終了する。その後は、ダンプトラック200は、ダンプトラック200側の制御(例えば運転者による操作制御、又はダンプトラック200側のADASによる運転支援の制御)に従って走行する。このように、本実施形態のコントローラ30は、ダンプトラック200の荷台201が指定位置に位置付けられている間だけ、第2移動経路DTLによってダンプトラック200を制御する。これにより、コントローラ30は、複数のダンプトラック200を、第2移動経路DTLに従って制御できる。
 第1移動経路AFL及び第2移動経路DTLは、基準座標系を用いて表される。基準座標系は、例えば世界測地系である。なお、基準座標系は、世界測地系に限定されるものではなく、アスファルトフィニッシャ100が受信した位置情報と施工計画図に含まれる位置情報との間の対応関係を表現できるのであれば、どのような座標系であってもよい。
 点AP1は、施工開始時である第1時点におけるアスファルトフィニッシャ100の前端の位置を示す。点AP2は、第1時点から第1移動経路AFLに従って所定時間進んだ後の第2時点におけるアスファルトフィニッシャ100の前端の位置を示す。点AP3は、第2時点から第1移動経路AFLに従って所定時間進んだ後の第3時点におけるアスファルトフィニッシャ100の前端の位置を示す。
 指令生成部36は、アスファルトフィニッシャ100の前端の位置(例えば、点AP1、点AP2、又は点AP3)で示される実際の位置座標が、第1移動経路AFLを構成する位置座標の1つと一致するように、アスファルトフィニッシャ100を動作させる制御指令を生成する。
 具体的には、指令生成部36は、GPSモジュール50からの位置情報に基づき、アスファルトフィニッシャ100の前端の位置(例えば、点AP1、点AP2、点AP3)を示す位置情報を算出する。そして、指令生成部36は、算出した位置情報において、第1移動経路AFLに従うために右方向又は左方向に操舵する必要がある場合は、右方向又は左方向に操舵させる制御指令を生成する。また、指令生成部36は、アスファルトフィニッシャ100の現在の速度、加速度、又は減速度に従って、第1移動経路AFLに従うための操舵角を算出する。算出した操舵角は、制御指令に含まれる。
 点DP1は、施工開始時である第1時点におけるダンプトラック200の前端の位置を示す。点DP2は、第1時点から第2移動経路DTLに従って所定時間進んだ後の第2時点におけるダンプトラック200の前端の位置を示す。点DP3は、第2時点から第2移動経路DTLに従って所定時間進んだ後の第3時点におけるダンプトラック200の前端の位置を示す。
 指令生成部36は、ダンプトラック200の前端の位置(例えば、点DP1、点DP2、又は点DP3)で示される実際の位置座標が、第2移動経路DTLを構成する位置座標の1つと一致するように、ダンプトラック200を動作させる制御指令を生成する。さらに、指令生成部36は、アスファルトフィニッシャ100のホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持させる制御指令を生成する。
 具体的には、指令生成部36は、アスファルトフィニッシャ100の速度、加速度、又は減速度に基づいて、ダンプトラック200の速度に関する制御指令を生成する。さらに、指令生成部36は、GPSモジュール50からの位置情報に基づき、ダンプトラック200の前端の位置(例えば、点DP1、点DP2、点DP3)を示す位置情報を算出する。そして、指令生成部36は、算出した位置情報において、第2移動経路に従うために右方向又は左方向に操舵する必要がある場合は、右方向又は左方向に操舵させる制御指令を生成する。また、指令生成部36は、ダンプトラック200の現在の速度、及び、速度に関する制御指令で示される加速度又は減速度等に従って、第2移動経路に従うための操舵角を算出する。算出した操舵角は、制御指令に含まれる。そして、通信制御部37が、無線通信装置40を介して、ダンプトラック200用の制御指令を、ダンプトラック200の無線通信装置240に送信する。
 図3に戻り、コントローラ30は、ダンプトラック200からの舗装材の供給が終了したか否かを判定する(S316)。舗装材の供給が終了したか否かの判定手法は、どのような手法でもよく、例えばダンプトラック200からの通知でもよい。舗装材の供給が終了していないと判定した場合(S316:No)、コントローラ30は、S310以降の処理を実行する。
 舗装材の供給が終了したとコントローラ30が判定した場合(S315:No)、通信制御部37は、ダンプトラック200をアスファルトフィニッシャ100から離脱させるために指令生成部36により生成された制御指令を、ダンプトラック200の無線通信装置240に送信する(S316)。
 その後、コントローラ30は、第1移動経路に従った施工が完了したか否かを判定する(S317)。施工が完了していないと判定した場合(S317:No)、コントローラ30は、再びS305以降の処理を実行する。
 一方、施工が完了したと判定した場合(S317:No)、コントローラ30は、処理を終了する。
 本実施形態のアスファルトフィニッシャ100は、上述した処理を行うことで、施工対象の領域をアスファルト合材で舗装できる。
 上述した実施形態のコントローラ30は、アスファルトフィニッシャ100が第1移動経路に従って走行した場合に、オーバーラップ状態を維持できるようにダンプトラック200等の運搬車両の第2移動経路を生成する。これにより、コントローラ30は、アスファルトフィニッシャ100の操舵と、ダンプトラック200の操舵と、を同期させることができる。本実施形態に係るコントローラ30の判定部35は、ダンプトラック20の後輪と、アスファルトフィニッシャ100のローラ2bとの位置関係(それぞれの車両の部品の位置関係)に基づき、ホッパ2が荷台201とオーバーラップ状態を維持しているか否かを判定できる。しかしながら、本実施形態は、オーバーラップ状態を維持しているか否かの判定に、必ずしもダンプトラック20の後輪やアスファルトフィニッシャ100のローラ2bを用いなくてもよい。例えば、ホッパ2の前端と荷台201の後端との位置関係に基づいて、ホッパ2が荷台201とオーバーラップ状態を維持しているか否かを判定してもよい。換言すれば、本実施形態に係るコントローラ30は、ホッパ2の前端と荷台201の後端との位置関係に基づいて、オーバーラップ状態を維持するように制御を行ってもよい。
 次に、S311における、指令生成部36における速度に関する制御指令の生成について具体的に説明する。本実施形態においては、判定部35は、取得部32が取得した画像情報から、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離を特定する。そして、本実施形態の指令生成部36は、それぞれの車両の部品間の距離が距離"0"から所定距離"A"の範囲内になるように、ダンプトラック200の加速又は減速の制御指令を生成する。このように、ダンプトラック200を構成する部品とアスファルトフィニッシャ100を構成する部品との距離が所定範囲内になるようにダンプトラック200の速度を制御する。
 図5は、本実施形態に係る、ダンプトラック200の後輪202と、アスファルトフィニッシャ100のローラ2bと、の間の位置関係を表した概念図である。図5Aは、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離が距離"0"である場合を表した図である。
 図5Bは、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離が所定距離"A"である場合を表した図である。図5Bに示される例では、ダンプトラック200の荷台201の後端部とアスファルトフィニッシャ100のホッパ2の先端部とが鉛直方向で重なっている。換言すると、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離が、所定距離"A"を上回ると、ホッパ2とダンプトラック200の荷台201とが鉛直方向で重ならなくなる。この場合、ダンプアップが行われると、舗装材は、荷台201からホッパ2に供給されずに、路面等に落下する可能性がある。
 本実施形態のコントローラ30の指令生成部36は、ダンプトラック200の後輪202(ダンプトラック200の部品の一例)とアスファルトフィニッシャ100のローラ2b(アスファルトフィニッシャ100の部品の一例)との間のそれぞれの車両の部品間の距離が、所定の範囲内("0"≦それぞれの車両の部品間の距離≦"A")になるように速度に関する制御指令を生成する。本実施形態においては、それぞれの車両の部品間の距離が、基準距離より短いか否かに応じて制御を切り替える。本実施形態に係る基準距離は、図5Aのそれぞれの車両の部品間の距離である距離"0"と、図5Bのそれぞれの車両の部品間の距離である所定距離"A"と、の中間にある距離"A/2"と定義する。本実施形態は、ダンプトラック200の部品である後輪202と、アスファルトフィニッシャ100の部品であるローラ20bと、の間の距離を判定基準として用いる例について説明する。しかしながら、本実施形態は、距離の判定基準に用いる部品を、後輪202及びローラ20bに制限するものではなく、他の部品であってもよい。
 図5Cは、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離が基準距離"A/2"である場合を表した図である。そして、コントローラ30は、それぞれの車両の部品間の距離が基準距離"A/2"より短いか否かに応じて、ダンプトラック200の速度に関する制御(例えば、加速、又は減速等)を切り替える。ダンプトラック200に対する加速度、減速度は、予め設定されている。また、ダンプトラック200に対する加速度、減速度は、それぞれの車両の部品間の距離に応じて変更してもよい。次に、本実施形態に係るコントローラ30における、図3のS311の具体的な処理について説明する。
 具体的には、S310において、アスファルトフィニッシャ100の位置情報と、ダンプトラック200の位置情報と、を認識した後、判定部35は、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離が、基準距離"A/2"より短いか否かを判定する。
 それぞれの車両の部品間の距離が基準距離"A/2"より短いと判定部35が判定した場合、指令生成部36は、ダンプトラック200の加速させる制御指令を生成する。制御指令で表される加速度は、例えば、それぞれの車両の部品間の距離が基準距離"A/2"より短くなるに従って大きくなる。
 一方、それぞれの車両の部品間の距離が基準距離"A/2"より短くないと判定部35が判定した場合、指令生成部36は、それぞれの車両の部品間の距離が基準距離"A/2"より長いか否かを判定する。長いと判定部35が判定した場合、指令生成部36は、ダンプトラック200を減速させる制御指令を生成する。制御指令で表される減速度は、例えば、それぞれの車両の部品間の距離が基準距離"A/2"より長くなるに従って大きくなる。
 一方、それぞれの車両の部品間の距離が基準距離"A/2"より長くない、換言すれば、それぞれの車両の部品間の距離と基準距離"A/2"が等しいと判定部35が判定した場合、指令生成部36は、ダンプトラック200に現在の速度を維持させる制御指令を生成する。このようにして、コントローラ30は、アスファルトフィニッシャ100に対するダンプトラック200の速度を上昇させたり、速度を低減させたりする制御を行う。
 本実施形態の指令生成部36は、上述した、加速させる制御指令、減速させる制御指令、又は速度を維持させる制御指令を、速度に関する制御指令として生成する。指令生成部36が、これらの制御指令を生成した後、S312以降の処理が行われる。
 このように、本実施形態のコントローラ30は、ダンプトラック200とアスファルトフィニッシャ100との位置関係に応じて、ダンプトラック200の速度に関する制御指令を生成している。これにより、コントローラ30は、アスファルトフィニッシャ100の速度とダンプトラック200の速度とを同期させることができる。
(第2の実施形態)
 第1の実施形態では、ダンプトラック200の速度に関する制御指令を生成する手法として、ダンプトラック200の後輪202とアスファルトフィニッシャ100のローラ2bとの間のそれぞれの車両の部品間の距離に応じて速度に関する制御を切り替える手法が採用された。しかしながら、上述した実施形態は、アスファルトフィニッシャ100のコントローラ30によるダンプトラック200の速度に関する制御指令の生成を、それぞれの車両の部品間の距離に応じて切り替える手法に限定するものではない。そこで、以下では、第1の実施形態と異なる手法で速度に関する制御指令を生成する第2の実施形態について説明する。なお、第2の実施形態のアスファルトフィニッシャ100及びダンプトラック200は、第1の実施形態と同様の構成として説明を省略する。
 第2の実施形態のコントローラ30は、S312において、S309で送信した制御指令の速度と、ダンプトラック200の実際の速度と、の差を算出し、算出した偏差に基づいてダンプトラック200の速度を制御する。ダンプトラック200が、S309で送信した制御指令で表された速度で走行した場合に、アスファルトフィニッシャ100のホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持できる。
 しかしながら、実際には、ダンプトラック200の空気抵抗、又は機械制御による損失等によって、制御指令の速度と実際の速度との間にはずれが生じる。このようなずれが生じると、アスファルトフィニッシャ100のホッパ2とダンプトラック200の荷台201とが鉛直方向で重なる状態を維持するのが難しくなる。そこで、第2の実施形態では、コントローラ30は、ダンプトラック200の速度のフィードバック制御を行う。
 具体的には、取得部32は、ダンプトラック200の実際の速度の情報を取得する。取得手法としては、例えば、取得部32は、通信制御部37を介してダンプトラック200から受信した実際の速度の情報を取得してもよい。他の例としては、取得部32は、撮像装置62が撮像している画像情報に写っているダンプトラック200の画像に基づいて、ダンプトラック200の実際の速度の推定を行ってもよい。
 そして、判定部35は、S309でダンプトラック200に送信した制御指令で表された速度と、ダンプトラック200の実際の速度と、の差を算出する。
 そして、指令生成部36が、制御指令で表された速度と、ダンプトラック200の実際の速度と、の差に基づいて、速度の制御指令で表された速度で走行させるためのフィードバック制御を行う制御指令を生成する。フィードバック制御の手法としては、例えばPID制御等の周知の手法が用いられてもよい。
 第2の実施形態では、指令生成部36は、上記のフィードバック制御に基づく制御指令を、速度に関する制御指令とする。そして、指令生成部36が、当該制御指令を生成した後、通信制御部37が、無線通信装置40を介して、ダンプトラック200に、制御指令を送信する。このようにして、コントローラ30は、図3のS312以降の処理を実行する。つまり、ダンプトラック200のコントローラ230は、当該制御指令を受信した際に、S309で送信された制御指令に表された速度と、ダンプトラック200の実際の速度と、の差を小さくするフィードバック制御を行う。これにより、コントローラ230は、ダンプトラック200の実際の速度を、速度の制御指令で表された速度に近づけることができる。
 また、第2の実施形態の指令生成部36は、第1の実施形態のように、それぞれの車両の部品間の距離に基づいた、ダンプトラック200の加速、減速、又は速度維持の制御指令を生成してもよい。
 さらには、第2の実施形態の指令生成部36は、アスファルトフィニッシャのローラ2bとダンプトラック200の後輪202との間のそれぞれの車両の部品間の距離が、基準距離"A/2"より短いか否かに応じて速度の制御指令を生成してもよい。
 例えば、それぞれの車両の部品間の距離が、基準距離"A/2"より短いと判定部35が判定した場合に、指令生成部36は、アスファルトフィニッシャの現在の速度より速い速度で走行させる制御指令を生成する。他の例としては、例えば、それぞれの車両の部品間の距離が、基準距離"A/2"より長いと判定部35が判定した場合に、指令生成部36は、アスファルトフィニッシャの現在の速度より遅い速度で走行させる制御指令を生成する。
 さらには、指令生成部36は、ダンプトラック200の前方に外乱(例えば、路面の傾斜や障害物など)が存在する場合に、当該外乱がアスファルトフィニッシャ100及びダンプトラック200に影響を与える前に、当該影響を抑止するような制御指令を生成してもよい。
 例えば、アスファルトフィニッシャ100の通信制御部37が、無線通信装置40を介して、ダンプトラック200の第1撮像装置261が撮影した画像情報を受信し、指令生成部36が、画像情報で表されている状況に基づいて、速度に関する制御指令を補正してもよい。例えば、画像情報に基づいてダンプトラック200の進行方向が上り坂になっていると判定部35が判定した場合に、指令生成部36は、生成する制御指令に対して予め加速度合いを上昇させるフィードフォーワード制御を行う。なお、第2の実施形態の指令生成部36は、当該フィードフォーワード制御と、上述したフィードバック制御とを、組み合わせた制御に基づく制御指令を生成してもよい。
 第2の実施形態においては、コントローラ30が、上述した制御を行うことで、ダンプトラック200の速度と、アスファルトフィニッシャ100の速度と、を同期させる。これにより、第2の実施形態のコントローラ30は、ダンプトラック200とアスファルトフィニッシャ100との間の一定のそれぞれの車両の部品間の距離を維持し、ダンプトラック200の荷台201がアスファルトフィニッシャ100のホッパ2に鉛直方向で重なっている状態を維持する。
 第2の実施形態のコントローラ30は、ダンプトラック200の制御指令で示された速度と、実際の速度と、の差に応じて、ダンプトラック200の速度に関するフィードバック制御に基づく制御指令を生成している。これにより、コントローラ30は、第1の実施形態と同様に、アスファルトフィニッシャ100の速度とダンプトラック200の速度とを同期させることができる。
 上述した実施形態のコントローラ30は、上述した制御によって、ダンプトラック200等の運搬車両の動作と、アスファルトフィニッシャ100の動作と、を同期させる。なお、同期させる動作は、操舵及び速度に限定されるものではなく、ヘッドライト若しくはウィンカーのオン/オフ、又は、警告情報の出力等であってもよい。
 上述の例では、撮像装置62がアスファルトフィニッシャ100の前方に存在する空間を撮影する場合が説明された。そして、アスファルトフィニッシャ100の前方にダンプトラック200を検出した場合に、コントローラ30は、当該ダンプトラック200を制御した。しかしながら、本実施形態は、制御の対象となる運搬車両が、アスファルトフィニッシャ100の前方に存在する場合に限定されない。コントローラ30は、アスファルトフィニッシャ100の周囲に存在する運搬車両を制御対象としてもよい。例えば、アスファルトフィニッシャ100が、左右方向を撮像可能な撮像装置をさらに備えている場合に、コントローラ30は、当該撮像装置で検出したダンプトラックを制御対象としてもよい。この場合、例えば、アスファルトフィニッシャ100のコントローラ30は、検出したダンプトラックに対して、前方に進んだ後、後退するように制御指令を送信する。以降の制御については、上述した実施形態と同様である。このように、撮像装置等の検出装置は、アスファルトフィニッシャ100の周囲であれば検出範囲としてよい。そして、コントローラ30は、当該検出範囲内で検出された運搬車両を制御してよい。
 また、上述の例では、撮像装置62で、ダンプトラック200等の運搬車両を検出する場合が説明された。しかしながら、本実施形態は、運搬車両を検出する検出装置を、撮像装置に限定するものでない。検出装置は、ダンプトラック200の位置を検出可能なセンサ等であればよい。例えば、検出装置は、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)又はミリ波レーダ等の距離センサ等であってもよい。
 アスファルトフィニッシャ100がダンプトラック200に送信する、ダンプトラック200を操舵させる操舵情報は、操舵(ステアリング)の制御指令に限定されるものではなく、ダンプトラック200を操舵するために必要な情報であればよい。例えばダンプトラック200が、第2移動経路を受け取った場合に当該第2移動経路に従って操舵が可能であれば、アスファルトフィニッシャ100は、操舵情報として、第2移動経路を送信してもよい。
 上述した実施形態においては、アスファルトフィニッシャ100は、上述した構成によって、アスファルトフィニッシャ100の動作と、ダンプトラック200の動作と、を同期させることで、ダンプトラック200の運転者による手動操舵に関する負担を軽減できる。
 さらには、アスファルトフィニッシャ100は、アスファルトフィニッシャ100の操舵と、ダンプトラック200の操舵と、を同期させることで、ダンプトラック200の荷台201と、アスファルトフィニッシャ100のホッパ2と、の位置関係がずれるのを抑制できるので、ダンプトラック200からアスファルトフィニッシャ100への舗装材の供給を安定させることができる。これにより、アスファルトフィニッシャ100は、施工後のアスファルトの舗装面の品質の低下を抑制できる。
(変形例)
 上述した実施形態においては、アスファルトフィニッシャ100において、アスファルトフィニッシャ100用の第1移動経路と、ダンプトラック200用の第2移動経路と、を生成する例について説明した。しかしながら、上述した実施形態は、アスファルトフィニッシャ100用の第1移動経路と、ダンプトラック200用の第2移動経路と、の生成を、アスファルトフィニッシャ100で行う場合に限定するものではない。そこで、変形例では、外部に設けられた情報処理装置で移動経路が生成される。つまり、本変形例は、アスファルトフィニッシャ100と、ダンプトラック200と、情報処理装置と、を備えたアスファルトフィニッシャの施工支援システムにおいて、情報処理装置が、ダンプトラック200の動作とアスファルトフィニッシャ100の動作とを同期させるために、アスファルトフィニッシャ100用の第1移動経路と、ダンプトラック200用の第2移動経路と、の生成をする例とする。
 外部に設けられた情報処理装置は、施工計画図を入力処理した後、アスファルトフィニッシャ100用の第1移動経路と、ダンプトラック200用の第2移動経路と、を生成する。
 そして、情報処理装置は、アスファルトフィニッシャ100の無線通信装置40に、アスファルトフィニッシャ100用の第1移動経路と、ダンプトラック200用の第2移動経路と、を送信する。以降の処理については、上述した実施形態と同様として説明を省略する。本変形例のように、アスファルトフィニッシャの施工支援システムに含まれる装置であれば、ダンプトラック200の動作とアスファルトフィニッシャ100の動作とを同期させるための制御を実行してよい。
 上述した実施形態及び変形例においては、道路舗装の現場において、施工対象の領域に従うように、運搬車両及びアスファルトフィニッシャの自動制御が行われるため、道路舗装に関する安全性が向上する。さらには、上述した実施形態及び変形例においては、アスファルトフィニッシャの操作者が、運搬車両の前方を撮影した画像情報に基づいて周囲の状況を確認できるので、操作者及び周囲の作業者の安全性が向上する。
 以上、アスファルトフィニッシャ、ダンプトラック(運搬車両の一例)、及びアスファルトフィニッシャの施工支援システムの実施形態及び変形例について説明したが、本発明は上記実施形態及び変形例等に限定されない。請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、および組み合わせが可能である。それらについても当然に本発明の技術的範囲に属する。
 本願は、2021年3月29日に出願した日本国特許出願2021-056023号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 100・・・アスファルトフィニッシャ 30・・・コントローラ 31・・・ダンプトラック識別情報記憶部 32・・・取得部 33・・・経路生成部 34・・・検出部 35・・・判定部 36・・・指令生成部 37・・・通信制御部 62・・・撮像装置

Claims (10)

  1.  トラクタと、
     前記トラクタの前側に設置されたホッパと、
     前記ホッパ内の舗装材を前記トラクタの後側へ搬送するコンベアと、
     前記コンベアによって搬送されて路面上に撒かれた舗装材を車幅方向に敷き拡げるスクリュと、
     前記スクリュによって敷き拡げられた舗装材を前記スクリュの後側で敷き均すスクリード装置と、を備え、
     運搬車両の動作を、当該アスファルトフィニッシャの動作に対応するよう同期させる、
     アスファルトフィニッシャ。
  2.  前記運搬車両の動作と当該アスファルトフィニッシャの動作とを同期させるよう、当該アスファルトフィニッシャに対する制御指令を生成する、
     請求項1に記載のアスファルトフィニッシャ。
  3.  前記運搬車両を構成する部品と当該アスファルトフィニッシャを構成する部品との間の距離を取得し、
     取得する前記距離に基づいて、前記運搬車両の加速又は減速を指示する制御指令を生成する、
     請求項1に記載のアスファルトフィニッシャ。
  4.  前記取得する前記距離に基づいて、前記運搬車両の荷台と前記ホッパとが鉛直方向において重なっている状態を維持する範囲内になるように、前記制御指令を生成する、
     請求項3に記載のアスファルトフィニッシャ。
  5.  当該アスファルトフィニッシャの速度に基づいて、前記運搬車両の速度を示した速度の制御指令を生成する、
     請求項1に記載のアスファルトフィニッシャ。
  6.  前記速度の制御指令を送信した後、前記運搬車両の実際の速度を取得し、
     前記運搬車両の前記実際の速度と、前記速度の制御指令で示された速度と、の差に基づいて、前記速度の制御指令で示された速度で前記運搬車両が走行するようにフィードバック制御させる制御指令を生成する、
     請求項5に記載のアスファルトフィニッシャ。
  7.  トラクタと、前記トラクタの前側に設置されたホッパと、前記ホッパ内の舗装材を前記トラクタの後側へ搬送するコンベアと、前記コンベアによって搬送されて路面上に撒かれた舗装材を車幅方向に敷き拡げるスクリュと、前記スクリュによって敷き拡げられた舗装材を前記スクリュの後側で敷き均すスクリード装置と、を備えるアスファルトフィニッシャに用いられるアスファルトフィニッシャの施工支援システムであって、
     前記アスファルトフィニッシャの前方の運搬車両の動作を、当該アスファルトフィニッシャの動作に対応するよう同期させるように構成されている制御装置と、を有する
     アスファルトフィニッシャの施工支援システム。
  8.  前記制御装置は、前記運搬車両の動作と当該アスファルトフィニッシャの動作とを同期させるよう、当該アスファルトフィニッシャに対する制御指令を生成するように構成されている、
     請求項7に記載のアスファルトフィニッシャの施工支援システム。
  9.  前記制御装置は、前記運搬車両を構成する部品と当該アスファルトフィニッシャを構成する部品との間の距離を取得し、取得する前記距離に基づいて、前記運搬車両の加速又は減速を指示する制御指令を生成するように構成されている、
     請求項7に記載のアスファルトフィニッシャの施工支援システム。
  10.  前記制御装置は、当該アスファルトフィニッシャの速度に基づいて、前記運搬車両の速度を示した速度の制御指令を生成するように構成されている、
     請求項7に記載のアスファルトフィニッシャの施工支援システム。
PCT/JP2022/015206 2021-03-29 2022-03-28 アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム WO2022210612A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280021124.0A CN117062954A (zh) 2021-03-29 2022-03-28 沥青滚平机及沥青滚平机的施工支援系统
JP2023511310A JPWO2022210612A1 (ja) 2021-03-29 2022-03-28
EP22780823.5A EP4317583A4 (en) 2021-03-29 2022-03-28 ASPHALT FINISHER AND CONSTRUCTION AID SYSTEM FOR ASPHALT FINISHER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056023 2021-03-29
JP2021056023 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210612A1 true WO2022210612A1 (ja) 2022-10-06

Family

ID=83459244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015206 WO2022210612A1 (ja) 2021-03-29 2022-03-28 アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム

Country Status (4)

Country Link
EP (1) EP4317583A4 (ja)
JP (1) JPWO2022210612A1 (ja)
CN (1) CN117062954A (ja)
WO (1) WO2022210612A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457110U (ja) * 1987-10-06 1989-04-10
JPH0731908U (ja) * 1993-04-09 1995-06-16 建設省東北地方建設局長 舗装工事車両におけるダンプカーの誘導装置
WO2017010541A1 (ja) 2015-07-15 2017-01-19 住友建機株式会社 道路機械
JP2018190228A (ja) * 2017-05-09 2018-11-29 鹿島道路株式会社 車両誘導システム
JP2021056023A (ja) 2019-09-27 2021-04-08 大同メタル工業株式会社 摺動部材の損傷を監視するための自己検知材料を含む内燃機関の摺動部材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009699A1 (de) * 2014-08-15 2016-02-18 Dynapac Gmbh Straßenfertiger, Beschicker und Verfahren zur Herstellung eines Straßenbelags sowie Verfahren zum Betrieb eines Beschickers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457110U (ja) * 1987-10-06 1989-04-10
JPH0731908U (ja) * 1993-04-09 1995-06-16 建設省東北地方建設局長 舗装工事車両におけるダンプカーの誘導装置
WO2017010541A1 (ja) 2015-07-15 2017-01-19 住友建機株式会社 道路機械
JP2018190228A (ja) * 2017-05-09 2018-11-29 鹿島道路株式会社 車両誘導システム
JP2021056023A (ja) 2019-09-27 2021-04-08 大同メタル工業株式会社 摺動部材の損傷を監視するための自己検知材料を含む内燃機関の摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317583A4

Also Published As

Publication number Publication date
EP4317583A1 (en) 2024-02-07
CN117062954A (zh) 2023-11-14
EP4317583A4 (en) 2024-09-18
JPWO2022210612A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
CA3007470C (en) Work machine management system, work machine control system, and work machine
AU2016400807B2 (en) Work machine management system and work machine management method
WO2017209181A1 (ja) 作業機械の管理装置、作業機械、及び作業機械の管理システム
EP3832019B1 (en) Asphalt finisher and asphalt finisher monitoring system
CN110869560B (zh) 沥青滚平机
WO2022210612A1 (ja) アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム
AU2016400806B2 (en) Work machine management system
WO2022210622A1 (ja) アスファルトフィニッシャ、及びアスファルトフィニッシャの施工支援システム
EP4317586A1 (en) Asphalt finisher, transport vehicle, and system for assisting construction of asphalt finisher
WO2022004131A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
WO2023042836A1 (ja) 無人車両、無人車両の制御システム、及び無人車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511310

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280021124.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780823

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780823

Country of ref document: EP

Effective date: 20231030