WO2022210525A1 - 排水処理システム - Google Patents

排水処理システム Download PDF

Info

Publication number
WO2022210525A1
WO2022210525A1 PCT/JP2022/014967 JP2022014967W WO2022210525A1 WO 2022210525 A1 WO2022210525 A1 WO 2022210525A1 JP 2022014967 W JP2022014967 W JP 2022014967W WO 2022210525 A1 WO2022210525 A1 WO 2022210525A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
membrane
chamber
aqueous solution
cation exchange
Prior art date
Application number
PCT/JP2022/014967
Other languages
English (en)
French (fr)
Inventor
嘉晃 伊藤
俊大 福田
薫 江川
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to US18/551,859 priority Critical patent/US20240173673A1/en
Publication of WO2022210525A1 publication Critical patent/WO2022210525A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/464Apparatus therefor comprising the membrane sequence CC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/466Apparatus therefor comprising the membrane sequence BC or CB
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present disclosure relates to wastewater treatment systems.
  • This application claims priority based on Japanese Patent Application No. 2021-063530 filed with the Japan Patent Office on April 2, 2021, the content of which is incorporated herein.
  • Patent Document 1 describes a device that recovers ammonia from condensate in a plant such as a thermal power plant, and reuses the wastewater after the ammonia recovery within the plant.
  • This unit removes ammonia from the condensate by passing the condensate through a demineralizer comprising an anion exchanger and a cation exchanger.
  • the desalination equipment needs to be regenerated periodically, but the regenerated wastewater is generated by the regeneration process. For example, when an aqueous solution of sodium hydroxide is used to regenerate an anion exchanger and an aqueous solution of sulfuric acid is used to regenerate a cation exchanger, the regeneration wastewater contains anion exchanger regeneration wastewater containing various anions and sodium hydroxide, and ammonia.
  • Cation exchanger regeneration wastewater is generated.
  • ammonia gas is recovered by distilling the ammonia-concentrated water obtained by concentrating the cation-exchanger-regenerated wastewater.
  • the transfer of ammonia from the ammonia-concentrated water to the gas phase can be promoted.
  • an object of at least one embodiment of the present disclosure is to provide a wastewater treatment system that can reduce the cost of regenerating desalination equipment.
  • a wastewater treatment system for treating reclaimed wastewater generated by regenerating a desalting device that desalinates ammonia-containing water using an acidic aqueous solution.
  • a system wherein the recycled wastewater containing an ammonium salt produced by the reaction between the ammonia trapped in the desalting device and the acidic aqueous solution, or a liquid derived from the recycled wastewater, contains the same acidic solute as the acidic aqueous solution.
  • a bipolar membrane electrodialyzer is provided for separating an aqueous solution as a regenerated acidic aqueous solution, wherein the regenerated acidic aqueous solution is configured to be used as at least a portion of the acidic aqueous solution for regeneration of the desalination device.
  • the regenerated acidic aqueous solution is separated from the regenerated wastewater generated by regenerating the desalting device using the acidic aqueous solution or the liquid derived from the regenerated wastewater, and the regenerated acidic aqueous solution is acidified.
  • FIG. 1 is a configuration diagram of a waste water treatment system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a configuration schematic diagram of a bipolar membrane electrodialyzer provided in a wastewater treatment system according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic configuration diagram of a modification of the bipolar membrane electrodialyzer provided in the wastewater treatment system according to Embodiment 1 of the present disclosure
  • Fig. 2 is a configuration diagram of a waste water treatment system according to Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic diagram of the configuration of a bipolar membrane electrodialyzer provided in the wastewater treatment system according to Embodiment 2 of the present disclosure.
  • FIG. 1 is a configuration diagram of a waste water treatment system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a configuration schematic diagram of a bipolar membrane electrodialyzer provided in a wastewater treatment system according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic configuration diagram
  • FIG. 4 is a schematic configuration diagram of a modification of the bipolar membrane electrodialyzer provided in the wastewater treatment system according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a configuration diagram of a modification of the wastewater treatment system according to Embodiment 1 of the present disclosure
  • FIG. 3 is a configuration schematic diagram of a bipolar membrane electrodialyzer provided in a modification of the waste water treatment system according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic configuration diagram of a modified example of a bipolar membrane electrodialyzer provided in a modified example of the waste water treatment system according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a configuration diagram of a modification of the wastewater treatment system according to Embodiment 1 of the present disclosure
  • FIG. 3 is a configuration schematic diagram of a bipolar membrane electrodialyzer provided in a modification of the waste water treatment system according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a configuration schematic diagram of a bipolar membrane electrodialyzer provided in another modified example of the waste water treatment system according to Embodiment 1 of the present disclosure
  • FIG. 4 is a configuration schematic diagram of a modified example of a bipolar membrane electrodialyzer provided in another modified example of the waste water treatment system according to Embodiment 1 of the present disclosure
  • FIG. 12 is a configuration diagram of a modification of the waste water treatment system according to Embodiment 1 when the bipolar membrane electrodialyzer of FIG. 10 or 11 is used.
  • a wastewater treatment system 1 according to Embodiment 1 of the present disclosure removes ammonia from water containing ammonia, for example, condensate of a boiler in a thermal power plant, that is, desalination of condensate. It is for treating reclaimed wastewater generated by reclaiming the salt plant 2 .
  • the desalting device 2 is described as having a cation exchange resin 2a.
  • any desalting device can be used as long as it has a configuration capable of temporarily trapping ammonia and removing ammonia from the medium trapping ammonia by regeneration treatment.
  • the desalting device 2 includes a condensate inflow line 3 for supplying water containing ammonia (hereinafter referred to as "condensate”) into the desalting device 2, and condensate desalted in the desalting device 2. is connected to the condensate outflow line 4 through which the is discharged from the desalting device 2 .
  • condensate water containing ammonia
  • the desalting device 2 communicates with an acidic aqueous solution tank 5 that stores an acidic aqueous solution used for regeneration processing of the desalting device 2 via an acidic aqueous solution supply line 6 .
  • the acidic aqueous solution is an aqueous sulfuric acid solution that uses sulfuric acid as an acidic solute, but it is not limited to an aqueous sulfuric acid solution, and any acidic aqueous solution such as hydrochloric acid, nitric acid aqueous solution, etc. can be used.
  • the pH of the acidic aqueous solution is preferably 2 or less.
  • a regenerated waste water outflow line 7 through which regenerated waste water generated by regenerating the desalted device 2 flows out is connected to the desalting device 2, and the other end of the regenerated waste water outflow line 7 is a two-chamber system. It is connected to a bipolar membrane electrodialyser 8 .
  • the specific configuration and operation of the bipolar membrane electrodialyzer 8 will be described later, but when the regenerated wastewater is electrodialyzed in the bipolar membrane electrodialyzer 8, the regenerated wastewater contains the same acidic solute (sulfuric acid) as the acidic aqueous solution.
  • the bipolar membrane electrodialyzer 8 communicates with the acidic aqueous solution tank 5 via a regenerated acidic aqueous solution supply line 11 so as to supply the regenerated sulfuric acid aqueous solution to the acidic aqueous solution tank 5, and supplies ammonia water to the ammonia water storage tank 12. As possible, it communicates with the ammonia water storage tank 12 via the ammonia water supply line 13 .
  • the regenerated wastewater outflow line 7 contains an ammonium salt (A concentrator 14 can also be provided for concentration of ammonium sulfate).
  • a concentrator 14 can also be provided for concentration of ammonium sulfate.
  • the configuration of the concentrator 14 is not particularly limited, for example, a device equipped with a reverse osmosis membrane or a nanofiltration membrane can be used.
  • the regenerated wastewater outflow line 7 is provided upstream of the concentrator 14 with a device 15 equipped with a filter for removing suspended solids and a chelate resin for removing iron, calcium, magnesium, etc.
  • a device 16 may be provided.
  • the bipolar membrane electrodialyzer 8 comprises an anode 21, a cathode 29, and a cell 30 provided between the anode 21 and the cathode 29.
  • the cell 30 comprises a first bipolar membrane 24 comprising a first anion exchange membrane 22 facing the anode 21 and a first cation exchange membrane 23 located on the opposite side of the first anion exchange membrane 22 from the anode 21.
  • the second cation exchange membrane 25 facing the first cation exchange membrane 23, the second anion exchange membrane 26 facing the second cation exchange membrane 25, and the second anion exchange membrane 26 facing A second bipolar membrane 28 comprising a third cation exchange membrane 27 located opposite the two cation exchange membranes 25 .
  • a first chamber 31 is formed between the first bipolar membrane 24 and the second cation exchange membrane 25, and a second chamber 32 is formed between the second cation exchange membrane 25 and the second bipolar membrane 28.
  • the second chamber 32 is initially filled with aqueous ammonia.
  • a chamber 33 formed between the anode 21 and the first bipolar membrane 24 and a chamber 34 formed between the second bipolar membrane 28 and the cathode 29 are each filled with an arbitrary electrode liquid.
  • the first anion exchange membrane 22 or the first cation exchange membrane 22 or the first cation exchange membrane 22 may be used instead of the first bipolar membrane 24 and the second bipolar membrane 28, respectively.
  • Either ion exchange membrane 23 and either second anion exchange membrane 26 or third cation exchange membrane 27 can be used.
  • the first chamber 31 communicates with the regeneration wastewater outflow line 7 and the regeneration acidic aqueous solution supply line 11, respectively. That is, the first chamber 31 is arranged such that the regenerated wastewater is supplied to the first chamber 31 through the regenerated wastewater outflow line 7 and the regenerated acidic aqueous solution flows out from the first chamber 31 through the regenerated acidic aqueous solution supply line 11 . It is configured.
  • the second chamber 32 communicates with the ammonia water supply line 13 . That is, the second chamber 32 is configured such that ammonia water flows out from the second chamber 32 via the ammonia water supply line 13 .
  • a recycle line is provided so that part of the liquid flows out from the first chamber 31 and the second chamber 32 and returns to the first chamber 31 and the second chamber 32, respectively, and each recycle line is provided with a regenerated acidic aqueous solution supply line.
  • 11 and the ammonia water supply line 13 may be connected.
  • An ammonia water return line 17 branches from the ammonia water supply line 13 and is connected to the second chamber 32 . That is, it is configured such that part of the ammonia water flowing through the ammonia water supply line 13 is supplied to the second chamber 32 via the ammonia water return line 17 .
  • the cell 30 includes a fourth cation exchange membrane 201 facing the third cation exchange membrane 27 and a fourth cation exchange membrane 201 between the second bipolar membrane 28 and the cathode 29.
  • a repeating unit 200 comprising a third bipolar membrane 204 comprising a third anion exchange membrane 202 and a fifth cation exchange membrane 203 opposite 201 may be provided.
  • FIG. 3 shows a configuration in which the cell 30 includes two repeating units 200, it is not limited to this configuration.
  • the cell 30 may comprise one repeating unit 200, or may comprise any number of repeating units 200 of three or more.
  • the first chamber 31 is formed by the second bipolar membrane 28 and the fourth cation exchange membrane 201, and the fourth cation exchange membrane 201 and the third bipolar membrane 204 are formed.
  • a second chamber 32 is formed by When the cell 30 comprises two or more repeating units 200, the third bipolar membrane 204 of one of the two adjacent repeating units 200,200 and the fourth cation exchange of the other of the two adjacent repeating units 200,200
  • the first chamber 31 is also formed by the membrane 201
  • the second chamber 32 is formed by the fourth cation exchange membrane 201 and the third bipolar membrane 204 in each repeating unit 200 .
  • an aqueous sulfuric acid solution is supplied from the acidic aqueous solution tank 5 to the desalting device 2 through the acidic aqueous solution supply line 6 .
  • the aqueous sulfuric acid solution is supplied to the desalting device 2
  • the ammonium ions and hydrogen ions captured by the cation exchange resin are exchanged. This produces ammonium sulfate (actually sulfate ions and ammonium ions).
  • the regenerated waste water discharged from the desalting device 2 through the regenerated waste water outflow line 7 contains sulfuric acid and ammonium sulfate. Regenerated waste water flowing through regenerated waste water outflow line 7 is supplied to bipolar membrane electrodialyzer 8 .
  • the regenerated wastewater flows into the first chamber 31 of the bipolar membrane electrodialyzer 8.
  • the reclaimed waste water is electrodialyzed.
  • Ammonium ions in the regenerated wastewater that have flowed into the first chamber 31 permeate the second cation exchange membrane 25 so as to be attracted to the cathode 29 and flow into the second chamber 32 .
  • water is absorbed into the membrane by an absorption action and dissociated into hydrogen ions and hydroxide ions at the interface between the first anion exchange membrane 22 and the first cation exchange membrane 23 .
  • the hydrogen ions thus produced flow through the first cation exchange membrane 23 into the first chamber 31 , and the hydroxide ions flow through the first anion exchange membrane 22 into the chamber 33 .
  • hydrogen ions and hydroxide ions are dissociated at the interface between the second anion exchange membrane 26 and the third cation exchange membrane 27, and the hydroxide ions generated are The hydrogen ions flow through the second anion exchange membrane 26 into the second chamber 32 and the hydrogen ions flow through the third cation exchange membrane 27 into the chamber 34 .
  • Ammonium ions in the first chamber 31 move to the second chamber 32, and hydrogen ions flow into the first chamber 31 from the first bipolar membrane 24. Therefore, the concentration of ammonium sulfate in the regeneration wastewater flowing into the first chamber 31 is decreases and the concentration of sulfuric acid increases. As a result, a regenerated sulfuric acid aqueous solution having a higher concentration of sulfuric acid than the regenerated waste water flowing into the first chamber 31 flows out from the first chamber 31 . In the second chamber 32 , as the ammonium ions move from the first chamber 31 , the concentration of ammonium ions in the water in the second chamber 32 increases. As a result, aqueous ammonia flows out from the second chamber 32 .
  • a part of the ammonia water flowing out of the second chamber 32 continues to be supplied to the second chamber 32 via the ammonia water return line 17, so that the second chamber 32 is filled with an ionic aqueous solution (specifically, ammonium ions and water). Since the second chamber 32 continues to be filled with an aqueous solution containing oxide ions, current continues to flow in the second chamber 32 when electricity is applied between the anode 21 and the cathode 29, and the above operation continues.
  • an ionic aqueous solution specifically, ammonium ions and water
  • the regenerated sulfuric acid aqueous solution flowing out of the first chamber 31 is supplied to the acidic aqueous solution tank 5 via the regenerated acidic aqueous solution supply line 11, and is used as at least a part of the acidic aqueous solution in the desalination device 2. Reused for regeneration processing.
  • the ammonia water flowing out from the second chamber 32 is supplied to the ammonia water storage tank 12 through the ammonia water supply line 13, and is used in a boiler, a denitrification device, and the like (not shown).
  • the regenerated acidic aqueous solution is separated from the regenerated wastewater generated by regenerating the desalting device 2 using the acidic aqueous solution, and the desalting device 2 is regenerated using the regenerated acidic aqueous solution as at least a part of the acidic aqueous solution. Since the consumption of the acidic aqueous solution can be suppressed by reusing it, the cost of regenerating the desalting device 2 can be reduced.
  • Embodiment 1 when the concentrator 14 is provided in the regenerated waste water outflow line 7 , the ammonium sulfate is concentrated in the concentrator 14 before the regenerated waste water flows into the bipolar membrane electrodialyzer 8 .
  • Ammonium sulfate-enriched regenerated wastewater flows into the bipolar membrane electrodialyzer 8, and components, mainly water, separated from the regenerated wastewater in the concentrator 14 are reused in the plant where the wastewater treatment system 1 is provided. . This component may be recycled as an acidic aqueous solution if the pH is low.
  • the separation efficiency of the regenerated acidic aqueous solution by electrodialysis will decrease.
  • the concentrator 14 in the regenerated waste water outflow line 7 the regenerated waste water with an increased ammonium salt concentration can be electrodialyzed, so that the separation efficiency of the regenerated acidic aqueous solution by electrodialysis can be improved. .
  • the concentration of suspended solids and the concentration of polyvalent cations such as iron ions, calcium ions and magnesium ions in the regenerated wastewater can be reduced.
  • the concentration of components other than ammonium sulfate can be further reduced in the regenerated wastewater flowing into the bipolar membrane electrodialyzer 8, so that the separation efficiency of the regenerated acidic aqueous solution by electrodialysis can be further increased.
  • Embodiment 2 Next, a waste water treatment system according to Embodiment 2 will be described.
  • a wastewater treatment system according to Embodiment 2 is the same as that of Embodiment 1, except that an ammonia stripper for removing ammonia from reclaimed wastewater is added.
  • the same reference numerals are given to the same components as those of the first embodiment, and detailed description thereof will be omitted.
  • the wastewater treatment system 1 according to Embodiment 1 of the present disclosure includes a supply device 40 for supplying a sodium hydroxide aqueous solution as an alkaline aqueous solution to the reclaimed wastewater flowing through the reclaimed wastewater outflow line 7. , and an ammonia stripper 50 for separating ammonia from the regenerated wastewater to which the aqueous sodium hydroxide solution is supplied.
  • a three-chamber bipolar membrane electrodialyser 18 is connected to the downstream end of the regenerated wastewater outflow line 7, unlike the first embodiment.
  • the sodium hydroxide aqueous solution is used as the alkaline aqueous solution in Embodiment 2, the aqueous solution is not limited to the sodium hydroxide aqueous solution, and an aqueous solution having any alkali metal hydroxide as a solute can be used.
  • the pH of the alkaline aqueous solution is preferably 11 or higher.
  • the supply device 40 includes an alkaline aqueous solution tank 41 that stores an aqueous sodium hydroxide solution, and an alkaline aqueous solution tank 41 whose one end is connected to the alkaline aqueous solution tank 41 and whose other end is connected to the regeneration wastewater outflow line 7 on the upstream side of the ammonia stripper 50 . and an aqueous solution supply line 42 .
  • the ammonia stripper 50 has a housing 51 extending vertically. Inside the housing 51 , the regenerated waste water outflow line 7 is provided with a discharge portion 52 that discharges the regenerated waste water downward in the vertical direction. Further, one end of a high-temperature gas supply line 53 for supplying high-temperature gas containing steam into the housing 51 is connected to the housing 51 at a position below the discharge section 52 . The operation of the ammonia stripper 50 will be described later, but in the housing 51, regenerated waste water dropping downward from the discharge part 52 and high temperature gas supplied into the housing 51 through the high temperature gas supply line 53 and rising are generated. Contact.
  • the regenerated wastewater outflow line 7 is composed of an upstream regenerated wastewater outflow line 7a extending from the demineralizer 2 to the discharge section 52, and a downstream regenerated wastewater outflow line 7b extending from the bottom of the housing 51 to the bipolar membrane electrodialyzer 18.
  • a downstream regeneration wastewater outflow line 7b is connected to the bottom of the housing 51 .
  • a filling 65 such as a Rahisil ring, may be accommodated at the location where the reclaimed waste water and the hot air come into contact, and one or more plates may be provided.
  • the regenerated waste water outflow line 7 is provided with a heat exchanger 66 for exchanging heat between the regenerated waste water flowing through the upstream regenerated waste water outflow line 7a and the waste liquid of the ammonia stripper 50 flowing through the downstream regenerated waste water outflow line 7b. can be done.
  • the concentrator 14 and devices 15 and 16 can be provided in the downstream regeneration wastewater outflow line 7b.
  • the other end of the outflow line 63 is connected to a catalyst tower 54 filled with a catalyst that burns ammonia in a reducing atmosphere. , a heat exchanger 56 and a heater 57 are provided. Connected to the top of the catalyst tower 54 is a reaction gas outflow line 58 through which a reaction gas containing nitrogen and water produced by burning ammonia in a reducing atmosphere flows out.
  • the heat exchanger 56 is configured to exchange heat between the hot gas flowing through the outflow line 63 and the reactant gas flowing through the reactant gas outflow line 58 .
  • the other end of the hot gas supply line 53 is connected to the reaction gas outflow line 58 downstream of the heat exchanger 56 .
  • the hot gas supply line 53 includes an air supply line 59 that supplies air to the reaction gas flowing through the high temperature gas supply line 53 and a steam supply line 60 that supplies steam to the reaction gas flowing through the high temperature gas supply line 53 . It is connected.
  • the specific configuration and operation of the bipolar membrane electrodialyzer 18 will be described later.
  • a regenerated sulfuric acid aqueous solution a regenerated alkaline aqueous solution containing sodium hydroxide as a solute, and a diluent.
  • the bipolar membrane electrodialyzer 18 communicates with the acidic aqueous solution tank 5 via the regenerated acidic aqueous solution supply line 11 so that the regenerated sulfuric acid aqueous solution can be supplied to the acidic aqueous solution tank 5, and supplies the regenerated alkaline aqueous solution to the alkaline aqueous solution tank 41.
  • the bipolar membrane electrodialyzer 18 includes an anode 71, a cathode 80, and a cell 90 provided between the anode 71 and the cathode 80.
  • the cell 90 comprises a first bipolar membrane 74 comprising a first anion exchange membrane 72 facing the anode 71 and a first cation exchange membrane 73 located on the opposite side of the first anion exchange membrane 72 from the anode 71.
  • a first chamber 81 is formed between the second anion exchange membrane 75 and the second cation exchange membrane 76, and a second chamber 82 is formed between the first bipolar membrane 74 and the second anion exchange membrane 75.
  • a third chamber 83 is formed between the second cation exchange membrane 76 and the second bipolar membrane 79 .
  • the second chamber 82 is initially filled with an aqueous sulfuric acid solution and the third chamber 83 is initially filled with an aqueous sodium hydroxide solution.
  • a chamber 84 formed between the anode 71 and the first bipolar membrane 74 and a chamber 85 formed between the second bipolar membrane 79 and the cathode 80 are each filled with an arbitrary electrode solution.
  • the first anion exchange membrane 72 or the first cation exchange membrane 72 may be used instead of the first bipolar membrane 74 and the second bipolar membrane 79, respectively.
  • Either ion exchange membrane 73 and either third anion exchange membrane 77 or third cation exchange membrane 78 can be used.
  • the first chamber 81 communicates with the downstream regeneration wastewater outflow line 7b and the diluent return line 62, respectively. That is, the first chamber 81 is supplied with the waste liquid of the ammonia stripper 50 (see FIG. 4) through the downstream regeneration waste water outflow line 7b, and the first chamber 81 is supplied with the waste liquid through the diluted liquid return line 62.
  • the diluent is configured to flow out from 81 .
  • the second chamber 82 communicates with the regenerated acidic aqueous solution supply line 11 . That is, the second chamber 82 is configured such that the regenerated acidic aqueous solution flows out from the second chamber 82 through the regenerated acidic aqueous solution supply line 11 .
  • the third chamber 83 communicates with the regenerated alkaline aqueous solution supply line 61 . That is, the third chamber 83 is configured such that the regenerated alkaline aqueous solution flows out from the third chamber 83 through the regenerated alkaline aqueous solution supply line 61 .
  • a regenerated acidic aqueous solution return line 19 branches off from the regenerated acidic aqueous solution supply line 11 , and the regenerated acidic aqueous solution return line 19 is connected to the second chamber 82 .
  • a regenerated alkaline aqueous solution return line 20 branches off from the regenerated alkaline aqueous solution supply line 61 , and the regenerated alkaline aqueous solution return line 20 is connected to the third chamber 83 . That is, a part of the regenerated alkaline aqueous solution flowing through the regenerated alkaline aqueous solution supply line 61 is supplied to the third chamber 83 through the regenerated alkaline aqueous solution return line 20 .
  • the cell 90 has a fourth anion exchange membrane 301 facing the third cation exchange membrane 78 and a fourth anion exchange membrane 301 between the second bipolar membrane 79 and the cathode 80 .
  • a repeating unit including a fourth cation exchange membrane 302 facing 301 and a third bipolar membrane 305 including a fifth anion exchange membrane 303 and a fifth cation exchange membrane 304 facing the fourth cation exchange membrane 302 300 may be provided.
  • FIG. 6 shows a configuration in which the cell 90 includes two repeating units 300, the configuration is not limited to this configuration.
  • the cell 90 may comprise one repeating unit 300 or any number of repeating units 300 of three or more.
  • the first chamber 81 is formed by the fourth anion exchange membrane 301 and the fourth cation exchange membrane 302, and the second bipolar membrane 79 and the fourth anion exchange membrane are formed. 301 form the second chamber 82 , and the fourth cation exchange membrane 302 and the third bipolar membrane 305 form the third chamber 83 .
  • the first chamber 81 is formed by the fourth anion exchange membrane 301 and the fourth cation exchange membrane 302 in each repeating unit 300, and two adjacent A second chamber 82 is also formed by the third bipolar membrane 305 of one of the two repeating units 300 and 300 and the fourth anion exchange membrane 301 of the other of the two adjacent repeating units 300 and 300.
  • a third chamber 83 is formed by the fourth cation exchange membrane 302 and the third bipolar membrane 305 in each.
  • ⁇ Operation of wastewater treatment system according to Embodiment 2 of the present disclosure operation of the waste water treatment system 1 according to Embodiment 2 of the present disclosure will be described. Since the operation of the second embodiment differs from that of the first embodiment in the operation of treating the reclaimed waste water of the desalinator 2, only the operation of treating the reclaimed waste water of the desalinator 2 will be described below.
  • a sodium hydroxide aqueous solution is supplied from an alkaline aqueous solution tank 41 to the reclaimed waste water discharged from the desalting device 2 through an alkaline aqueous solution supply line 42 .
  • the regenerated waste water to which the aqueous sodium hydroxide solution is supplied is heated by exchanging heat with waste water from the ammonia stripper 50, which will be described later, in the heat exchanger 66, and then discharged into the housing 51 from the discharge part 52. It falls inside the housing 51 .
  • Hot gas is also supplied to the housing 51 via a hot gas supply line 53 , and the hot gas rises inside the housing 51 .
  • the falling reclaimed waste water and the rising high-temperature gas are brought into contact with each other to heat the reclaimed waste water, and mainly release ammonia from the reclaimed waste water.
  • Ammonia released from the reclaimed waste water is mixed with high-temperature gas as ammonia gas, flows out from the top of the housing 51 , and flows through the outflow line 63 .
  • the hot gas flowing through the outflow line 63 is blown by the blower 55 and heated by sequentially passing through the heat exchanger 56 and the heater 57 before flowing into the catalyst tower 54 .
  • ammonia is combusted in a reducing atmosphere to produce a reaction gas containing mainly nitrogen and water.
  • the reaction gas flowing out of the catalyst tower 54 flows through the reaction gas outflow line 58 and is cooled by exchanging heat with the high temperature gas in the heat exchanger 56 .
  • a portion of the cooled reaction gas flows into the hot gas supply line 53 and the rest is exhausted to the atmosphere.
  • Air and steam are supplied to the reaction gas flowing into the high-temperature gas supply line 53 through an air supply line 59 and a steam supply line 60 , respectively, and the high-temperature gas is supplied into the housing 51 .
  • Ammonia is diffused from the regenerated waste water falling inside the housing 51 by the above-described operation, so the regenerated waste water accumulated at the bottom of the housing 51 has a higher concentration of ammonia than the regenerated waste water discharged from the discharge unit 52. is low, and it is an aqueous solution in which sodium sulfate is mainly dissolved.
  • This aqueous solution is discharged from the bottom of the housing 51 as a waste liquid of the ammonia stripper 50 and circulated through the downstream regeneration waste water outflow line 7b.
  • This waste liquid is cooled by exchanging heat with the regenerated waste water in the heat exchanger 66 when flowing through the downstream regenerated waste water outflow line 7b, and is supplied to the bipolar membrane electrodialyzer 18.
  • the effluent flows into the first chamber 81 of the bipolar membrane electrodialyzer 18.
  • the effluent is electrodialyzed.
  • Sulfate ions in the waste liquid that flowed into the first chamber 81 permeate the second anion exchange membrane 75 so as to be attracted to the anode 71 and flow into the second chamber 82 .
  • water is absorbed into the membrane by an absorption action and dissociated into hydrogen ions and hydroxide ions at the interface between the first anion exchange membrane 72 and the first cation exchange membrane 73 .
  • the hydrogen ions thus produced flow through the first cation exchange membrane 73 into the second chamber 82 , and the hydroxide ions flow through the first anion exchange membrane 72 into the chamber 84 .
  • Sodium ions in the waste liquid that flowed into the first chamber 81 permeate the second cation exchange membrane 76 so as to be attracted to the cathode 80 and flow into the third chamber 83 .
  • water is absorbed into the membrane by absorption action and dissociated into hydrogen ions and hydroxide ions at the interface between the third anion exchange membrane 77 and the third cation exchange membrane 78 . Hydroxide ions thus produced flow through the third anion exchange membrane 77 into the third chamber 83 , and hydrogen ions flow through the third cation exchange membrane 78 into the chamber 85 .
  • the concentration of sodium sulfate in the waste liquid flowing into the first chamber 81 decreases. Therefore, the diluent having a lower sodium sulfate concentration than the waste liquid flowing into the first chamber 81 flows out from the first chamber 81, and the diluent flows through the diluent return line 62 to the downstream regeneration wastewater. It is returned to the outflow line 7b.
  • the sulfate ions that have moved from the first chamber 81 to the second chamber 82 react with the hydrogen ions that have moved from the first bipolar membrane 74 to the second chamber 82 to form sulfuric acid.
  • the sulfuric acid aqueous solution flows out from the second chamber 82 as the regenerated acidic aqueous solution, and the regenerated acidic aqueous solution is supplied to the acidic aqueous solution tank 5 through the regenerated acidic aqueous solution supply line 11 and reused for the regeneration treatment of the desalination device 2. be.
  • a portion of the regenerated acidic aqueous solution that has flowed out of the second chamber 82 continues to be supplied to the second chamber 82 via the regenerated acidic aqueous solution return line 19, so that the second chamber 82 is filled with an ionic aqueous solution (specifically, sulfate ion and an aqueous solution containing hydrogen ions), current continues to flow in the second chamber 82 when electricity is applied between the anode 71 and the cathode 80, and the above operation continues.
  • an ionic aqueous solution specifically, sulfate ion and an aqueous solution containing hydrogen ions
  • the sodium hydroxide aqueous solution flows out as a regenerated alkaline aqueous solution, and the regenerated alkaline aqueous solution is supplied to the alkaline aqueous solution tank 41 through a regenerated alkaline aqueous solution supply line 61. Recycled wastewater is reused for treatment.
  • a portion of the regenerated alkaline aqueous solution that has flowed out of the third chamber 83 continues to be supplied to the third chamber 83 via the regenerated alkaline aqueous solution return line 20, so that the third chamber 83 is filled with an ionic aqueous solution (specifically, sodium ion and an aqueous solution containing hydroxide ions), current continues to flow through the third chamber 83 when the current is applied between the anode 71 and the cathode 80, and the above operation continues.
  • an ionic aqueous solution specifically, sodium ion and an aqueous solution containing hydroxide ions
  • the operation and effects obtained therefrom are basically the same as those of the first embodiment.
  • the concentrator 14 if the concentrator 14 is not provided, and the diluted liquid separated by the bipolar membrane electrodialyzer 18 is returned to the downstream regeneration waste water outflow line 7b, it will flow into the bipolar membrane electrodialyzer 18. Since the effluent is diluted and the efficiency of electrodialysis is lowered, the diluted liquid must be treated as effluent.
  • the concentrator 14 it is possible to condense the diluent together with the waste liquid and electrodialyze it again. Separation volume can be increased.
  • the wastewater of the ammonia stripper 50 is regenerated acid.
  • Embodiment 1 ⁇ Modified example of the wastewater treatment system of the present disclosure>
  • the two-chamber bipolar membrane electrodialyzer 8 was used, but the three-chamber bipolar membrane electrodialyzer 18 used in the wastewater treatment system 1 according to Embodiment 2 can also be used.
  • a modification using the three-chamber bipolar membrane electrodialyzer 18 in Embodiment 1 will be described below.
  • the bipolar membrane electrodialyzer 18 communicates with the acidic aqueous solution tank 5 and the ammonia water storage tank 12 via the regenerated acidic aqueous solution supply line 11 and the ammonia water supply line 13, respectively.
  • the bipolar membrane electrodialyzer 18 also provides a regenerated wastewater flow between the device 16 and the concentrator 14 via a diluent return line 62 so that the diluent can be supplied to the regenerated wastewater before entering the concentrator 14 . It communicates with the outflow line 7 .
  • the first chamber 81 communicates with the regeneration wastewater outflow line 7 and the diluent return line 62, respectively. That is, the first chamber 81 is configured such that the regenerated waste water is supplied to the first chamber 81 through the regenerated waste water outflow line 7 and the diluent flows out from the first chamber 81 through the diluent return line 62 . ing.
  • the second chamber 82 communicates with the regenerated acidic aqueous solution supply line 11 . That is, the second chamber 82 is configured such that the regenerated acidic aqueous solution flows out from the second chamber 82 through the regenerated acidic aqueous solution supply line 11 .
  • the third chamber 83 communicates with the ammonia water supply line 13 . That is, the third chamber 83 is configured such that ammonia water flows out from the third chamber 83 via the ammonia water supply line 13 .
  • the second chamber 82 is initially filled with an aqueous sulfuric acid solution, and the third chamber 83 is initially filled with aqueous ammonia.
  • a regenerated acidic aqueous solution return line 19 branches off from the regenerated acidic aqueous solution supply line 11 , and the regenerated acidic aqueous solution return line 19 is connected to the second chamber 82 .
  • An ammonia water return line 17 branches off from the ammonia water supply line 13 and is connected to the third chamber 83 . That is, it is configured such that part of the ammonia water flowing through the ammonia water supply line 13 is supplied to the third chamber 83 via the ammonia water return line 17 .
  • the regenerated wastewater flows into the first chamber 81 of the bipolar membrane electrodialyzer 18.
  • the reclaimed waste water is electrodialyzed.
  • Sulfate ions in the regenerated wastewater that flowed into the first chamber 81 are attracted to the anode 71 and pass through the second anion exchange membrane 75 to flow into the second chamber 82 .
  • water is absorbed into the membrane by an absorption action and dissociated into hydrogen ions and hydroxide ions at the interface between the first anion exchange membrane 72 and the first cation exchange membrane 73 .
  • the hydrogen ions thus produced flow through the first cation exchange membrane 73 into the second chamber 82 , and the hydroxide ions flow through the first anion exchange membrane 72 into the chamber 84 .
  • Ammonium ions in the regenerated wastewater that have flowed into the first chamber 81 are attracted to the cathode 80 and pass through the second cation exchange membrane 76 to flow into the third chamber 83 .
  • water is absorbed into the membrane by absorption action and dissociated into hydrogen ions and hydroxide ions at the interface between the third anion exchange membrane 77 and the third cation exchange membrane 78 . Hydroxide ions thus produced flow through the third anion exchange membrane 77 into the third chamber 83 , and hydrogen ions flow through the third cation exchange membrane 78 into the chamber 85 .
  • the concentration of ammonium sulfate in the regeneration wastewater flowing into the first chamber 81 decreases. Therefore, the diluent having a lower concentration of ammonium sulfate than the recycled waste water flowing into the first chamber 81 flows out from the first chamber 81, and the diluted solution flows through the diluted liquid return line 62 to the recycled waste water outflow line 7. returned to
  • the operation of generating the regenerated acidic aqueous solution in the second chamber 82 is the same as in the second embodiment.
  • the concentration of ammonium ions in the water in the third chamber 83 increases as the ammonium ions move from the first chamber 81 .
  • aqueous ammonia flows out from the third chamber 83 .
  • Part of the ammonia water flowing out of the third chamber 83 and flowing through the ammonia water supply line 13 is supplied to the third chamber 83 via the ammonia water return line 17 .
  • the regenerated acidic aqueous solution is separated from the reclaimed waste water of the desalination device 2, and the regenerated acidic aqueous solution is reused for regeneration of the desalination device 2 as at least part of the acidic aqueous solution.
  • the consumption of the acidic aqueous solution can be suppressed, so the cost of the regeneration treatment of the desalination device 2 can be reduced.
  • the diluent can be concentrated together with the regenerated waste water and electrodialyzed again, the separated amounts of the regenerated acidic aqueous solution and the aqueous ammonia can be increased.
  • the cell 90 may comprise at least one repeating unit 300 between the second bipolar membrane 79 and the cathode 80, as shown in FIG.
  • the configuration of the repeating unit 300 and the positions where the first chamber 81, the second chamber 82, and the third chamber 83 are respectively formed when the cell 90 includes the repeating unit 300 are the same as the configuration shown in FIG. is.
  • Embodiment 1 instead of the bipolar membrane electrodialyzer 8 in the configuration of the waste water treatment system 1 shown in FIG.
  • this another type of two-chamber bipolar membrane electrodialyzer 100 comprises an anode 101, a cathode 113, and a cell 110 provided between the anode 101 and the cathode 109.
  • the cell 110 comprises a first bipolar membrane 104 including a first anion exchange membrane 102 and a first cation exchange membrane 103 facing the anode 101 and a second anion exchange membrane 105 facing the first cation exchange membrane 103. and a second bipolar membrane 108 including a third anion exchange membrane 106 and a second cation exchange membrane 107 facing the second anion exchange membrane 105 .
  • a first chamber 120 is formed by the second anion exchange membrane 105 and the third anion exchange membrane 106
  • a second chamber 122 is formed by the first cation exchange membrane 103 and the second anion exchange membrane 105.
  • the second chamber 122 is initially filled with an aqueous sulfuric acid solution.
  • a chamber 124 formed between the anode 101 and the first bipolar membrane 104 and a chamber 125 formed between the second bipolar membrane 108 and the cathode 109 are each filled with an arbitrary electrode liquid.
  • the first anion exchange membrane 102 or the first cation exchange membrane 102 or the first cation exchange membrane 102 may be used instead of the first bipolar membrane 104 and the second bipolar membrane 108, respectively.
  • Either the ion exchange membrane 103 and either the third anion exchange membrane 106 or the second cation exchange membrane 107 can be used.
  • the first chamber 120 communicates with both the regeneration wastewater outflow line 7 and the ammonia water supply line 13 . That is, the first chamber 120 is configured such that the regenerated waste water is supplied to the first chamber 120 through the regenerated waste water outflow line 7 and the ammonia water flows out from the first chamber 120 through the ammonia water supply line 13. ing.
  • the second chamber 122 communicates with the regenerated acidic aqueous solution supply line 11 . That is, the second chamber 122 is configured such that the regenerated acidic aqueous solution flows out from the second chamber 122 through the regenerated acidic aqueous solution supply line 11 .
  • a regenerated acidic aqueous solution return line 19 branches off from the regenerated acidic aqueous solution supply line 11 , and the regenerated acidic aqueous solution return line 19 is connected to the second chamber 122 . That is, part of the acidic regenerated aqueous solution flowing through the regenerated acidic aqueous solution supply line 11 is supplied to the second chamber 122 via the regenerated acidic aqueous solution return line 19 .
  • the cell 110 includes a fourth anion exchange membrane 401 facing the second cation exchange membrane 107 and a fourth anion exchange membrane 401 between the second bipolar membrane 108 and the cathode 109.
  • a repeating unit 400 comprising a fifth anion exchange membrane 402 opposite 401 and a third bipolar membrane 404 comprising a third cation exchange membrane 403 may be provided.
  • FIG. 11 shows a configuration in which the cell 110 includes two repeating units 400, it is not limited to this configuration.
  • the cell 110 may comprise one repeating unit 400, or any number of repeating units 400 of three or more.
  • the first chamber 120 is formed by the fourth anion exchange membrane 401 and the third bipolar membrane 404, and the second bipolar membrane 108 and the fourth anion exchange membrane 401 are formed.
  • a second chamber 122 is formed by.
  • the first chamber 120 is formed by the fourth anion exchange membrane 401 and the third bipolar membrane 404, and two adjacent repeating units
  • a second chamber 122 is also formed by the third bipolar membrane 404 of one of 400 and 400 and the fourth anion exchange membrane 401 of the other two adjacent repeating units 400 and 400 .
  • the regenerated wastewater flows into the first chamber 120 of the bipolar membrane electrodialyzer 100.
  • the regenerated waste water is electrodialyzed by passing electricity between the anode 101 and the cathode 109 .
  • Sulfate ions in the regenerated wastewater that have flowed into the first chamber 120 are attracted to the anode 101 and permeate the second anion exchange membrane 105 to flow into the second chamber 122 .
  • first bipolar membrane 104 and the second bipolar membrane 108 water is absorbed into the membrane by absorption action, and the interface between the first anion exchange membrane 102 and the first cation exchange membrane 103, the third anion At each interface between the exchange membrane 106 and the second cation exchange membrane 107, they are dissociated into hydrogen ions and hydroxide ions.
  • the hydrogen ions thus produced pass through the first cation exchange membrane 103 and the second cation exchange membrane 107, respectively, and flow into the second chamber 122 and the chamber 125, respectively. It flows through the ion exchange membrane 102 and the third anion exchange membrane 106 respectively into the chamber 124 and the first chamber 120 respectively.
  • the sulfate ions in the regenerated wastewater that have flowed into the first chamber 120 permeate the second anion exchange membrane 105 so as to be attracted to the anode 101 and flow into the second chamber 122 .
  • Sulfuric acid ions in the first chamber 120 move to the second chamber 122, and hydrogen ions flow into the second chamber 122 from the first bipolar membrane 104, so the concentration of sulfuric acid in the second chamber 122 increases.
  • the ammonium ions in the regenerated wastewater that flowed into the first chamber 120 remain in the first chamber 120, and the hydroxide ions flow into the first chamber 120 from the second bipolar membrane 108. Ammonia concentration increases.
  • an aqueous solution having a lower ammonium sulfate concentration and an increased ammonia concentration than the regenerated wastewater flowing into the first chamber 120 that is, aqueous ammonia that can contain ammonium sulfate flows out of the first chamber 120 .
  • the sulfuric acid aqueous solution that is, the regenerated acidic aqueous solution flows out.
  • a portion of the regenerated acidic aqueous solution that has flowed out of the second chamber 122 is supplied to the second chamber 122 via the regenerated acidic aqueous solution return line 19 .
  • the ammonia water flowing out of the first chamber 120 may have a lower purity as ammonia water due to residual ammonium sulfate in the regeneration waste water.
  • the same ammonia stripper 50 (see FIG. 3) provided in the waste water treatment system 1 of Embodiment 2 is provided.
  • a configured ammonia stripper may be connected to the ammonia water supply line 13 to remove ammonia from the low purity ammonia water.
  • an alkaline aqueous solution was supplied to the regeneration wastewater for the purpose of adjusting the pH so that the ammonia can be removed by the ammonia stripper 50.
  • the ammonia water flowing out from the first chamber 120 is at least 11 or higher, there is no need to supply an alkaline aqueous solution to the aqueous ammonia flowing out from the first chamber 120 for the purpose of adjusting the pH.
  • a wastewater treatment system includes: A wastewater treatment system (1) for treating regenerated wastewater generated by regenerating a desalting device (2) for desalting water containing ammonia using an acidic aqueous solution, An aqueous solution containing the same acidic solute as that of the acidic aqueous solution is extracted from the recycled wastewater containing an ammonium salt produced by the reaction between the ammonia trapped in the desalting device (2) and the acidic aqueous solution or a liquid derived from the recycled wastewater.
  • the regenerated acidic aqueous solution is configured to be used as at least part of the acidic aqueous solution for regenerating the desalting device (2).
  • the regenerated acidic aqueous solution is separated from the regenerated wastewater generated by regenerating the desalting device using the acidic aqueous solution or the liquid derived from the regenerated wastewater, and the regenerated acidic aqueous solution is acidified.
  • a wastewater treatment system is the wastewater treatment system of [1],
  • Said cell (30) comprises: a first bipolar membrane (24) comprising a first anion exchange membrane (22) and a first cation exchange membrane (23); a second cation exchange membrane (25) facing the first cation exchange membrane (23);
  • a second bipolar membrane (28) comprising a second anion exchange membrane (26) and a third cation exchange membrane (27) facing the second cation exchange membrane (25),
  • the regenerated waste water is supplied to the first chamber (31) defined by the first bipolar membrane (24) and the second cation exchange membrane (25), and the regenerated acidic aqueous solution is supplied to the first chamber (31). ).
  • the regenerated acidic aqueous solution is separated from the regenerated wastewater generated by regenerating the desalting device using the acidic aqueous solution, and the regenerated acidic aqueous solution is used as at least a part of the desalting device. Since the consumption of the acidic aqueous solution can be suppressed by reusing it for regeneration of the demineralizer, the cost of the regeneration treatment of the desalination apparatus can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [2], said cell (30) comprises a fourth cation exchange membrane (201) facing said third cation exchange membrane (27) between said second bipolar membrane (28) and said cathode (29); a repeating unit (200) comprising a third bipolar membrane (204) comprising a third anion exchange membrane (202) facing the fourth cation exchange membrane (201) and a fifth cation exchange membrane (203); have at least one The first chamber (31) is defined by the second bipolar membrane (28) and the fourth cation exchange membrane (201).
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [3], At least two of the repeating units (200) are provided, and the third bipolar film (204) of one of the two adjacent repeating units (200, 200) and the other of the two adjacent repeating units (200, 200)
  • the first chamber (31) is defined by the fourth cation exchange membrane (201).
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [1],
  • Said cell (110) comprises: a first bipolar membrane (104) comprising a first anion exchange membrane (102) and a first cation exchange membrane (103); a second anion exchange membrane (105) facing the first cation exchange membrane (103);
  • a second bipolar membrane (108) comprising a third anion exchange membrane (106) and a second cation exchange membrane (107) facing the second anion exchange membrane (105),
  • the regenerated wastewater is supplied to a first chamber (120) defined by the second anion exchange membrane (105) and the third anion exchange membrane (106), and the first cation exchange membrane (103) and the second anion exchange membrane (105) so that the regenerated acidic aqueous solution flows out from the second chamber (122).
  • the regenerated acidic aqueous solution is separated from the regenerated wastewater generated by regenerating the desalting device using the acidic aqueous solution, and the regenerated acidic aqueous solution is used as at least a part of the desalting device. Since the consumption of the acidic aqueous solution can be suppressed by reusing it for regeneration of the demineralizer, the cost of the regeneration treatment of the desalination apparatus can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [5], said cell (110) comprises a fourth anion exchange membrane (401) facing said second cation exchange membrane (107) between said second bipolar membrane (108) and said cathode (109); a repeating unit (400) comprising a third bipolar membrane (404) comprising a fifth anion exchange membrane (402) facing the fourth anion exchange membrane (401) and a third cation exchange membrane (403); have at least one
  • the first chamber (120) is defined by the fourth anion exchange membrane (401) and the third bipolar membrane (404), and the second bipolar membrane (108) and the fourth anion exchange membrane (401) are defined. ) define the second chamber (122).
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [6], At least two repeating units (400) are provided, and the first chamber (120) is defined by the fourth anion exchange membrane (401) and the third bipolar membrane (404) in each of the repeating units (400).
  • the third bipolar membrane (404) of one of the two adjacent repeating units (400, 400) and the fourth anion exchange membrane (401) of the other of the two adjacent repeating units (400, 400) are defined.
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system according to any one of [5] to [7],
  • the bipolar membrane electrodialyzer (100) is configured so that ammonia water flows out from the first chamber (120),
  • the waste water treatment system (1) further comprises an ammonia stripper (50) that separates ammonia from the ammonia water that has flowed out of the first chamber (120).
  • the waste liquid can be treated without being used in a boiler, a denitrification device, or the like.
  • a wastewater treatment system is the wastewater treatment system of [1],
  • the bipolar membrane electrodialyzer (18) comprises: an anode (71); a cathode (80); a cell (90) provided between the anode (71) and the cathode (80); Said cell (90) comprises: a first bipolar membrane (74) comprising a first anion exchange membrane (72) and a first cation exchange membrane (73); a second anion exchange membrane (75) facing the first cation exchange membrane (73); a second cation exchange membrane (76) facing the second anion exchange membrane (75); a second bipolar membrane (79) comprising a third anion exchange membrane (77) facing the second cation exchange membrane (76) and a third cation exchange membrane (78);
  • the regenerated waste water is supplied to a first chamber (81) defined by the second anion exchange membrane (75) and the second cation exchange membrane (76), and the first bipolar membrane (74) and the The regenerated acidic aqueous solution
  • the regenerated acidic aqueous solution is separated from the regenerated wastewater generated by regenerating the desalting device using the acidic aqueous solution, and the regenerated acidic aqueous solution is used as at least a part of the desalting device. Since the consumption of the acidic aqueous solution can be suppressed by reusing it for regeneration of the demineralizer, the cost of the regeneration treatment of the desalination apparatus can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [9], said cell (90) comprises a fourth anion exchange membrane (301) facing said third cation exchange membrane (78) between said second bipolar membrane (79) and said cathode (80); A fourth cation exchange membrane (302) facing the fourth anion exchange membrane (301), a fifth anion exchange membrane (303) facing the fourth cation exchange membrane (302), and a fifth cation at least one repeating unit (300) comprising a third bipolar membrane (305) comprising an ion exchange membrane (304);
  • the first chamber (81) is defined by the fourth anion exchange membrane (301) and the fourth cation exchange membrane (302), and the second bipolar membrane (79) and the fourth anion exchange membrane (301) defines the second chamber (82).
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [10], At least two of the repeating units (300) are provided, and the first chamber (81) is ) is defined, and the third bipolar membrane (305) of one of the two adjacent repeating units (300, 300) and the fourth anion exchange membrane of the other of the two adjacent repeating units (300, 300) (301) defines the second chamber (82).
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system according to any one of [1] to [8], It further comprises a concentrator (14) for concentrating the ammonium salt in the regenerated wastewater before flowing into the bipolar membrane electrodialyzer (8).
  • the separation efficiency of the regenerated acidic aqueous solution by electrodialysis decreases. can be performed, the separation efficiency of the regenerated acidic aqueous solution by electrodialysis can be enhanced.
  • a wastewater treatment system is the wastewater treatment system according to any one of [9] to [11],
  • the bipolar membrane electrodialyzer (18) is configured such that aqueous ammonia flows out of a third chamber (83) defined by the second cation exchange membrane (76) and the second bipolar membrane (79).
  • the wastewater treatment system (1) includes a concentrator (14) for concentrating the ammonium salt in the regenerated wastewater before flowing into the bipolar membrane electrodialyzer (18);
  • a diluent return line (62) is further provided for supplying the diluent flowing out of the first chamber (81) to the regenerated waste water before flowing into the concentrator (14).
  • the diluent can be concentrated together with the regenerated waste water and then electrodialyzed again. And the separation amount of the regenerated alkaline aqueous solution can be increased.
  • a wastewater treatment system is the wastewater treatment system of [1], a supply device (40) for supplying an alkaline aqueous solution containing an alkali metal hydroxide to the regenerated wastewater; an ammonia stripper (50) for separating ammonia from the regeneration wastewater to which the alkaline aqueous solution is supplied; the liquid derived from the reclaimed wastewater is the ammonia stripper effluent,
  • the bipolar membrane electrodialyzer (18) separately separates the regenerated acidic aqueous solution and the regenerated alkaline aqueous solution as an aqueous solution containing the same solute as the alkaline aqueous solution from the waste liquid, and the regenerated alkaline aqueous solution is the alkaline solution. It is configured to be supplied to the reclaimed waste water as at least part of the aqueous solution.
  • the wastewater of the ammonia stripper is regenerated.
  • a wastewater treatment system is the wastewater treatment system of [14],
  • the bipolar membrane electrodialyzer (18) comprises: an anode (71); a cathode (80); a cell (90) provided between the anode (71) and the cathode (80); Said cell (90) comprises: a first bipolar membrane (74) comprising a first anion exchange membrane (72) and a first cation exchange membrane (73); a second anion exchange membrane (75) facing the first cation exchange membrane (73); a second cation exchange membrane (76) facing the second anion exchange membrane (75); a second bipolar membrane (79) comprising a third anion exchange membrane (77) facing the second cation exchange membrane (76) and a third cation exchange membrane (78);
  • the waste liquid is supplied to a first chamber (81) defined by the second anion exchange membrane (75) and the second cation exchange membrane (76), and the first bipolar membrane (74) and the The regenerated acidic aqueous solution flows out from
  • the wastewater of the ammonia stripper is regenerated.
  • a wastewater treatment system is the wastewater treatment system of [15], said cell (90) comprises a fourth anion exchange membrane (301) facing said third cation exchange membrane (78) between said second bipolar membrane (79) and said cathode (80); A fourth cation exchange membrane (302) facing the fourth anion exchange membrane (301), a fifth anion exchange membrane (303) facing the fourth cation exchange membrane (302), and a fifth cation at least one repeating unit (300) comprising a third bipolar membrane (305) comprising an ion exchange membrane (304);
  • the first chamber (81) is defined by the fourth anion exchange membrane (301) and the fourth cation exchange membrane (302), and the second bipolar membrane (79) and the fourth anion exchange membrane (301) define the second chamber (82), and the fourth cation exchange membrane (302) and the third bipolar membrane (305) define the third chamber (83).
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system of [16], At least two of the repeating units (300) are provided, and the first chamber (81) is ) is defined, and the third bipolar membrane (305) of one of the two adjacent repeating units (300, 300) and the fourth anion exchange membrane of the other of the two adjacent repeating units (300, 300) (301) define the second chamber (82), and the fourth cation exchange membrane (302) and the third bipolar membrane (305) in each of the repeating units (300) define the third chamber. (83) is defined.
  • the efficiency of electrodialysis is increased by increasing the capacity of the cells of the bipolar membrane electrodialyzer, so the cost of regenerating the desalting device can be reduced.
  • a wastewater treatment system is the wastewater treatment system according to any one of [14] to [17], generated by the reaction between the ammonium salt contained in the regenerated wastewater and the alkali metal hydroxide contained in the alkaline aqueous solution with respect to the wastewater before flowing into the bipolar membrane electrodialyzer (18) It further comprises a concentrator (14) for concentrating the alkali metal salt.
  • the separation efficiency of the regenerated acidic aqueous solution and the regenerated alkaline aqueous solution by electrodialysis decreases. Since electrodialysis can be performed on the waste liquid with an increased concentration, the separation efficiency of the regenerated acidic aqueous solution and the alkaline aqueous solution by electrodialysis can be enhanced.
  • a wastewater treatment system is the wastewater treatment system of [18]
  • a diluent return line (62) is further provided for supplying a diluent, which is a remaining component after the acidic aqueous solution and the alkaline aqueous solution are separated from the waste liquid, to the waste liquid before flowing into the concentrator (14).
  • the diluent can be concentrated together with the waste liquid and then electrodialyzed again. And the separation amount of the regenerated alkaline aqueous solution can be increased.
  • a wastewater treatment system is the wastewater treatment system according to any one of [1] to [19], Said water containing ammonia is boiler condensate.
  • the desalination equipment that desalinates boiler condensate containing ammonia is regenerated using an acidic aqueous solution to regenerate reclaimed wastewater or a liquid derived from the reclaimed wastewater.
  • an acidic aqueous solution to regenerate reclaimed wastewater or a liquid derived from the reclaimed wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

アンモニアを含む水を脱塩する脱塩装置を酸性水溶液を使用して再生処理することによって発生した再生排水を処理するための排水処理システムは、脱塩装置に捕捉されたアンモニアと酸性水溶液との反応で生成したアンモニウム塩を含む再生排水又は再生排水に由来する液体から、酸性水溶液と同じ酸性溶質を含む水溶液を再生酸性水溶液として分離するバイポーラ膜電気透析器を備え、再生酸性水溶液は酸性水溶液の少なくとも一部として脱塩装置の再生に使用されるように構成されている。

Description

排水処理システム
 本開示は、排水処理システムに関する。
 本願は、2021年4月2日に日本国特許庁に出願された特願2021-063530号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、火力発電所等のプラントにおける復水からアンモニアを回収し、アンモニアを回収した後の排水をプラント内で再利用する装置が記載されている。この装置は、アニオン交換体及びカチオン交換体を備えた脱塩装置に復水を通すことによって、アンモニアを復水から除去している。脱塩装置は定期的に再生処理を行う必要があるが、再生処理によって再生排水が発生する。例えば、アニオン交換体の再生に水酸化ナトリウム水溶液を使用し、カチオン交換体の再生に硫酸水溶液を使用すると、再生排水として、各種アニオン及び水酸化ナトリウムを含むアニオン交換体再生排水と、アンモニアを含むカチオン交換体再生排水とが発生する。この装置では、カチオン交換体再生排水を濃縮したアンモニア濃縮水を蒸留することによってアンモニアガスを回収するが、アニオン交換体再生排水を電気透析することによってアルカリ成分を分離したアルカリ水を蒸留の際に供給することで、アンモニア濃縮水から気相へのアンモニアの移行を促進することができる。
特開2019-98205号公報
 しかしながら、脱塩装置の再生処理で使用される硫酸水溶液や水酸化ナトリウム水溶液等の薬品の費用が嵩み、脱塩装置の再生処理のコストが問題となる場合が増えつつある。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、脱塩装置の再生処理のコストを低減できる排水処理システムを提供することを目的とする。
 上記目的を達成するため、本開示に係る排水処理システムは、アンモニアを含む水を脱塩する脱塩装置を酸性水溶液を使用して再生処理することによって発生した再生排水を処理するための排水処理システムであって、前記脱塩装置に捕捉されたアンモニアと前記酸性水溶液との反応で生成したアンモニウム塩を含む前記再生排水又は該再生排水に由来する液体から、前記酸性水溶液と同じ酸性溶質を含む水溶液を再生酸性水溶液として分離するバイポーラ膜電気透析器を備え、前記再生酸性水溶液は前記酸性水溶液の少なくとも一部として前記脱塩装置の再生に使用されるように構成されている。
 本開示の排水処理システムによれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水又は再生排水に由来する液体から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
本開示の実施形態1に係る排水処理システムの構成図である。 本開示の実施形態1に係る排水処理システムに設けられたバイポーラ膜電気透析器の構成模式図である。 本開示の実施形態1に係る排水処理システムに設けられたバイポーラ膜電気透析器の変形例の構成模式図である。 本開示の実施形態2に係る排水処理システムの構成図である。 本開示の実施形態2に係る排水処理システムに設けられたバイポーラ膜電気透析器の構成模式図である。 本開示の実施形態2に係る排水処理システムに設けられたバイポーラ膜電気透析器の変形例の構成模式図である。 本開示の実施形態1に係る排水処理システムの変形例の構成図である。 本開示の実施形態1に係る排水処理システムの変形例に設けられたバイポーラ膜電気透析器の構成模式図である。 本開示の実施形態1に係る排水処理システムの変形例に設けられたバイポーラ膜電気透析器の変形例の構成模式図である。 本開示の実施形態1に係る排水処理システムの別の変形例に設けられたバイポーラ膜電気透析器の構成模式図である。 本開示の実施形態1に係る排水処理システムの別の変形例に設けられたバイポーラ膜電気透析器の変形例の構成模式図である。 図10又は図11のバイポーラ膜電気透析器を用いた場合の実施形態1に係る排水処理システムの変形例の構成図である。
 以下、本開示の実施の形態による排水処理システムについて、図面に基づいて説明する。かかる実施の形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<本開示の実施形態1に係る排水処理システムの構成>
 図1に示されるように、本開示の実施形態1に係る排水処理システム1は、アンモニアを含む水、例えば火力発電プラントにおけるボイラの復水からアンモニアを除去する、すなわち復水を脱塩する脱塩装置2を再生処理することによって発生した再生排水を処理するためのものである。実施形態1において、脱塩装置2は陽イオン交換樹脂2aを備える構成のもので説明するが、この形態に限定するものではなく、アンモニアを吸着可能な吸着材のような媒体を使用したもののように、アンモニアを一時的に捕捉し、アンモニアを捕捉している媒体から再生処理によってアンモニアを除去可能な構成を有するものであれば、任意の脱塩装置を使用することができる。
 脱塩装置2には、脱塩装置2内にアンモニアを含む水(以下、「復水」とする)を供給するために復水流入ライン3と、脱塩装置2において脱塩された復水が脱塩装置2から流出する復水流出ライン4とが接続されている。
 脱塩装置2は、脱塩装置2の再生処理に使用する酸性水溶液を貯留する酸性水溶液タンク5と酸性水溶液供給ライン6を介して連通している。実施形態1では酸性水溶液として、硫酸を酸性溶質とする硫酸水溶液としているが、硫酸水溶液に限定するものではなく、塩酸、硝酸水溶液等、任意の酸性水溶液を使用することができる。酸性水溶液のpHは2以下であることが好ましい。
 また、脱塩装置2には、脱塩装置2を再生処理することによって発生した再生排水が流出する再生排水流出ライン7の一端が接続され、再生排水流出ライン7の他端は2室式のバイポーラ膜電気透析器8に接続されている。バイポーラ膜電気透析器8の具体的構成及び動作については後述するが、バイポーラ膜電気透析器8において再生排水が電気透析されると、再生排水は、酸性水溶液と同じ酸性溶質(硫酸)を含む再生酸性水溶液(再生硫酸水溶液)と、アンモニア水溶液とに分離される。バイポーラ膜電気透析器8は、再生硫酸水溶液を酸性水溶液タンク5に供給可能なように、再生酸性水溶液供給ライン11を介して酸性水溶液タンク5と連通し、アンモニア水をアンモニア水貯留タンク12に供給可能なように、アンモニア水供給ライン13を介してアンモニア水貯留タンク12と連通している。
 排水処理システム1に必須な構成ではないが、再生排水流出ライン7には、バイポーラ膜電気透析器8に流入する前の再生排水に対して、硫酸とアンモニアとが反応して生成したアンモニウム塩(硫酸アンモニウム)の濃縮を行う濃縮器14を設けることもできる。濃縮器14の構成は特に限定するものではないが、例えば逆浸透膜やナノ濾過膜を備える装置を使用することができる。また、再生排水流出ライン7には、濃縮器14よりも上流側に、懸濁物質を除去するためのフィルターを備えた装置15や鉄、カルシウム、マグネシウム等を除去するためのキレート樹脂を備えた装置16を設けてもよい。
 図2に示されるように、バイポーラ膜電気透析器8は、陽極21と、陰極29と、陽極21及び陰極29間に設けられたセル30とを備えている。セル30は、陽極21に対向する第1陰イオン交換膜22及び第1陰イオン交換膜22に対して陽極21とは反対側に位置する第1陽イオン交換膜23を含む第1バイポーラ膜24と、第1陽イオン交換膜23に対向する第2陽イオン交換膜25と、第2陽イオン交換膜25に対向する第2陰イオン交換膜26及び第2陰イオン交換膜26に対して第2陽イオン交換膜25とは反対側に位置する第3陽イオン交換膜27を含む第2バイポーラ膜28とを備えている。第1バイポーラ膜24と第2陽イオン交換膜25との間に第1室31が形成され、第2陽イオン交換膜25と第2バイポーラ膜28との間に第2室32が形成されている。第2室32は当初はアンモニア水で充填されている。陽極21と第1バイポーラ膜24との間に形成された室33及び第2バイポーラ膜28と陰極29との間に形成された室34のそれぞれは、任意の電極液で充填されている。陽極21及び陰極29のそれぞれに対向する膜に限っては、電極液の種類により、第1バイポーラ膜24及び第2バイポーラ膜28のそれぞれの代わりに、第1陰イオン交換膜22又は第1陽イオン交換膜23のいずれか、及び、第2陰イオン交換膜26又は第3陽イオン交換膜27のいずれかを使用することができる。
 第1室31は、再生排水流出ライン7及び再生酸性水溶液供給ライン11のそれぞれと連通している。すなわち、第1室31は、再生排水流出ライン7を介して第1室31に再生排水が供給されるとともに再生酸性水溶液供給ライン11を介して第1室31から再生酸性水溶液が流出するように構成されている。第2室32は、アンモニア水供給ライン13と連通している。すなわち、第2室32は、アンモニア水供給ライン13を介して第2室32からアンモニア水が流出するように構成されている。図2では、再生酸性水溶液及びアンモニア水のそれぞれが第1室31及び第2室32のそれぞれから直接流出しているように描かれているが、この形態に限定するものではない。第1室31及び第2室32のそれぞれから液の一部を流出させて再び第1室31及び第2室32のそれぞれに戻すようなリサイクルラインを設け、各リサイクルラインに再生酸性水溶液供給ライン11及びアンモニア水供給ライン13を接続させるように構成してもよい。また、アンモニア水供給ライン13からアンモニア水戻りライン17が分岐し、アンモニア水戻りライン17は第2室32に接続されている。すなわち、アンモニア水供給ライン13を流れるアンモニア水の一部がアンモニア水戻りライン17を介して第2室32に供給されるように構成されている。
 図3に示されるように、セル30は、第2バイポーラ膜28と陰極29との間に、第3陽イオン交換膜27に対向する第4陽イオン交換膜201と、第4陽イオン交換膜201に対向する第3陰イオン交換膜202及び第5陽イオン交換膜203を含む第3バイポーラ膜204とを含む繰り返し単位200を備えてもよい。ただし図3には、セル30が2つの繰り返し単位200を備える構成が示されているが、この形態に限定するものではない。セル30は1つの繰り返し単位200を備えてもよいし、3つ以上の任意の個数の繰り返し単位200を備えてもよい。
 セル30が1つの繰り返し単位200を備える場合は、第2バイポーラ膜28と第4陽イオン交換膜201とによって第1室31が形成され、第4陽イオン交換膜201と第3バイポーラ膜204とによって第2室32が形成される。セル30が2つ以上の繰り返し単位200を備える場合は、隣り合う2つの繰り返し単位200,200の一方の第3バイポーラ膜204と隣り合う2つの繰り返し単位200,200の他方の第4陽イオン交換膜201とによっても第1室31が形成され、各繰り返し単位200において、第4陽イオン交換膜201と第3バイポーラ膜204とによって第2室32が形成される。
<本開示の実施形態1に係る排水処理システムの動作>
 次に、本開示の実施形態1に係る排水処理システム1の動作について説明する。図1に示されるように、復水流入ライン3を流通する復水が脱塩装置2内に流入すると、陽イオン交換樹脂2aの陽イオンとアンモニウムイオンとが交換されて、復水中のアンモニアが脱塩装置2に捕捉される。このようにして復水からアンモニアが除去されることにより、アンモニア濃度が低下した復水が復水流出ライン4を介して脱塩装置2から流出する。
 脱塩装置2による復水の脱塩が継続すると、脱塩装置2によるアンモニアの捕捉量が上昇するので、脱塩装置2を再生処理する必要性が生じる。脱塩装置2を再生処理するためには、酸性水溶液供給ライン6を介して酸性水溶液タンク5から脱塩装置2に硫酸水溶液を供給する。硫酸水溶液が脱塩装置2に供給されると、陽イオン交換樹脂に捕捉されたアンモニウムイオンと水素イオンとが交換される。これにより、硫酸アンモニウム(実際には、硫酸イオン及びアンモニウムイオン)が生成する。再生排水流出ライン7を介して脱塩装置2から流出した再生排水には、硫酸及び硫酸アンモニウムが含まれている。再生排水流出ライン7を流通する再生排水は、バイポーラ膜電気透析器8に供給される。
 図2に示されるように、再生排水は、バイポーラ膜電気透析器8の第1室31に流入する。陽極21及び陰極29間に通電することにより、再生排水は電気透析される。第1室31に流入した再生排水中のアンモニウムイオンは、陰極29に引き寄せられるようにして第2陽イオン交換膜25を透過して第2室32に流入する。第1バイポーラ膜24において、水が吸収作用によって膜中に吸収され、第1陰イオン交換膜22と第1陽イオン交換膜23との境界面において水素イオンと水酸化物イオンとに解離する。このようにして生成した水素イオンは第1陽イオン交換膜23を通って第1室31に流入し、水酸化物イオンは第1陰イオン交換膜22を通って室33に流入する。第2バイポーラ膜28においても同様に、第2陰イオン交換膜26と第3陽イオン交換膜27との境界面において水素イオンと水酸化物イオンとに解離し、生成した水酸化物イオンは第2陰イオン交換膜26を通って第2室32に流入し、水素イオンは第3陽イオン交換膜27を通って室34に流入する。
 第1室31内のアンモニウムイオンは第2室32に移動し、第1バイポーラ膜24からは水素イオンが第1室31に流入するので、第1室31に流入した再生排水中の硫酸アンモニウムの濃度は低下し、硫酸の濃度が上昇する。これにより、第1室31に流入する再生排水に比べて硫酸の濃度が高い再生硫酸水溶液が第1室31から流出する。第2室32では、第1室31からアンモニウムイオンが移動することにより、第2室32内の水にアンモニウムイオンの濃度が上昇する。これにより、アンモニア水が第2室32から流出する。第2室32から流出したアンモニア水の一部がアンモニア水戻りライン17を介して第2室32に供給され続けることにより、第2室32は、イオン水溶液(具体的には、アンモニウムイオン及び水酸化物イオンを含む水溶液)で充填され続けるので、陽極21及び陰極29間に通電したときに第2室32に電流が流れ続けるようになり、上記動作が継続することになる。
 図1に示されるように、第1室31から流出した再生硫酸水溶液は、再生酸性水溶液供給ライン11を介して酸性水溶液タンク5に供給され、酸性水溶液の少なくとも一部として、脱塩装置2の再生処理に再使用される。第2室32から流出したアンモニア水は、アンモニア水供給ライン13を介してアンモニア水貯留タンク12に供給され、図示しないボイラや脱硝装置等に使用される。
 このように、酸性水溶液を使用して脱塩装置2を再生処理することによって発生した再生排水から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置2の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置2の再生処理のコストを低減することができる。
 実施形態1において、再生排水流出ライン7に濃縮器14が設けられている場合には、再生排水はバイポーラ膜電気透析器8に流入する前に、濃縮器14において硫酸アンモニウムの濃縮が行われる。硫酸アンモニウムが濃縮された再生排水がバイポーラ膜電気透析器8に流入し、濃縮器14において再生排水から分離された成分、主に水は、排水処理システム1が設けられているプラントで再使用される。この成分は、pHが低い場合には、酸性水溶液として再利用してもよい。
 再生排水中のアンモニウム塩の濃度が低いと、電気透析による再生酸性水溶液の分離効率が低下する。これに対し、再生排水流出ライン7に濃縮器14を設けることにより、アンモニウム塩の濃度を高めた再生排水に対して電気透析を行えるので、電気透析による再生酸性水溶液の分離効率を高めることができる。
 再生排水流出ライン7にさらに装置15,16を設けることにより、再生排水中の懸濁物質の濃度及び鉄イオン、カルシウムイオン、マグネシウムイオン等の多価の陽イオンの濃度を低減することができる。これにより、バイポーラ膜電気透析器8に流入する再生排水において、硫酸アンモニウム以外の成分の濃度をさらに低減することができるので、電気透析による再生酸性水溶液の分離効率をさらに高めることができる。
(実施形態2)
 次に、実施形態2に係る排水処理システムについて説明する。実施形態2に係る排水処理システムは、実施形態1に対して、再生排水からアンモニアを除去するアンモニアストリッパーを付加したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態2に係る排水処理システムの構成>
 図4に示されるように、本開示の実施形態1に係る排水処理システム1は、再生排水流出ライン7を流通する再生排水にアルカリ性水溶液としての水酸化ナトリウム水溶液を供給するための供給装置40と、水酸化ナトリウム水溶液が供給された再生排水からアンモニアを分離するアンモニアストリッパー50とを備えている。再生排水流出ライン7の下流端には、実施形態1とは異なり、3室式のバイポーラ膜電気透析器18が接続されている。実施形態2ではアルカリ性水溶液として水酸化ナトリウム水溶液を使用しているが、水酸化ナトリウム水溶液に限定するものではなく、任意のアルカリ金属の水酸化物を溶質とする水溶液を使用することができる。アルカリ性水溶液のpHは11以上であることが好ましい。
 供給装置40は、水酸化ナトリウム水溶液を貯留するアルカリ性水溶液タンク41と、一端がアルカリ性水溶液タンク41に接続されるとともに他端がアンモニアストリッパー50よりも上流側で再生排水流出ライン7に接続されるアルカリ性水溶液供給ライン42とを備えている。
 アンモニアストリッパー50は、鉛直方向に延びる筐体51を有している。筐体51内において、鉛直方向下方に向かって再生排水を放出する放出部52が再生排水流出ライン7に設けられている。また、筐体51には、放出部52よりも下方の位置で筐体51内に蒸気を含んだ高温ガスを供給する高温ガス供給ライン53の一端が接続されている。アンモニアストリッパー50の動作については後述するが、筐体51内では、放出部52から下方に落下する再生排水と高温ガス供給ライン53を介して筐体51内に供給されて上昇する高温ガスとが接触する。筐体51の塔頂には、筐体51内を上昇した高温ガスが筐体51から流出するための流出ライン63の一端が接続されている。再生排水流出ライン7は、脱塩装置2から放出部52まで延びる上流側再生排水流出ライン7aと、筐体51の底部からバイポーラ膜電気透析器18まで延びる下流側再生排水流出ライン7bとから構成され、筐体51の塔底に下流側再生排水流出ライン7bが接続されている。筐体51内には、再生排水と高温空気とが接触する位置においてラヒシリング等の充填物65を収容してもよいし、1つ以上のプレートを設けてもよい。
 再生排水流出ライン7には、上流側再生排水流出ライン7aを流通する再生排水と、下流側再生排水流出ライン7bを流通するアンモニアストリッパー50の排液とを熱交換する熱交換器66を設けることができる。実施形態2でも実施形態1と同様に、下流側再生排水流出ライン7bに、濃縮器14と装置15,16とを設けることができる。
 流出ライン63の他端には、アンモニアを還元性雰囲気にて燃焼する触媒が充填された触媒塔54が接続され、筐体51と触媒塔54との間において流出ライン63には、送風機55と、熱交換器56と、加熱器57とが設けられている。触媒塔54の塔頂には、アンモニアを還元性雰囲気にて燃焼することで生成された窒素及び水を含む反応ガスが流出する反応ガス流出ライン58が接続されている。熱交換器56は、流出ライン63を流通する高温ガスと反応ガス流出ライン58を流通する反応ガスとが熱交換するように構成されている。反応ガス流出ライン58には、熱交換器56よりも下流側で高温ガス供給ライン53の他端が接続されている。この構成により、熱交換器56を通過した反応ガスの一部は高温ガス供給ライン53に流入することができる。高温ガス供給ライン53には、高温ガス供給ライン53を流通する反応ガスに空気を供給する空気供給ライン59と、高温ガス供給ライン53を流通する反応ガスに蒸気を供給する蒸気供給ライン60とが接続されている。
 バイポーラ膜電気透析器18の具体的構成及び動作については後述するが、バイポーラ膜電気透析器18において、再生排水に由来する液体であるアンモニアストリッパー50の排液が電気透析されると、排液は、再生硫酸水溶液と、水酸化ナトリウムを溶質とする再生アルカリ性水溶液と、希釈液とに分離される。バイポーラ膜電気透析器18は、再生硫酸水溶液を酸性水溶液タンク5に供給可能なように、再生酸性水溶液供給ライン11を介して酸性水溶液タンク5と連通し、再生アルカリ性水溶液をアルカリ性水溶液タンク41に供給可能なように、再生アルカリ性水溶液供給ライン61を介してアルカリ性水溶液タンク41と連通し、濃縮器14に流入する前の排液に希釈液を供給可能なように、希釈液戻りライン62を介して装置16と濃縮器14との間で下流側再生排水流出ライン7bと連通している。その他の構成は、次に説明するバイポーラ膜電気透析器18の構成を除いて、実施形態1と同じである。
 図5に示されるように、バイポーラ膜電気透析器18は、陽極71と、陰極80と、陽極71及び陰極80間に設けられたセル90とを備えている。セル90は、陽極71に対向する第1陰イオン交換膜72及び第1陰イオン交換膜72に対して陽極71とは反対側に位置する第1陽イオン交換膜73を含む第1バイポーラ膜74と、第1陽イオン交換膜73に対向する第2陰イオン交換膜75と、第2陰イオン交換膜75に対向する第2陽イオン交換膜76と、第2陽イオン交換膜76に対向する第3陰イオン交換膜77及び第3陰イオン交換膜77に対して第2陽イオン交換膜76とは反対側に位置する第3陽イオン交換膜78を含む第2バイポーラ膜79とを備えている。第2陰イオン交換膜75と第2陽イオン交換膜76との間に第1室81が形成され、第1バイポーラ膜74と第2陰イオン交換膜75との間に第2室82が形成され、第2陽イオン交換膜76と第2バイポーラ膜79との間に第3室83が形成されている。第2室82は当初は硫酸水溶液で充填され、第3室83は当初は水酸化ナトリウム水溶液で充填されている。陽極71と第1バイポーラ膜74との間に形成された室84及び第2バイポーラ膜79と陰極80との間に形成された室85のそれぞれは、任意の電極液で充填されている。陽極71及び陰極80のそれぞれに対向する膜に限っては、電極液の種類により、第1バイポーラ膜74及び第2バイポーラ膜79のそれぞれの代わりに、第1陰イオン交換膜72又は第1陽イオン交換膜73のいずれか、及び、第3陰イオン交換膜77又は第3陽イオン交換膜78のいずれかを使用することができる。
 第1室81は、下流側再生排水流出ライン7b及び希釈液戻りライン62のそれぞれと連通している。すなわち、第1室81は、下流側再生排水流出ライン7bを介して第1室81にアンモニアストリッパー50(図4参照)の排液が供給されるとともに希釈液戻りライン62を介して第1室81から希釈液が流出するように構成されている。第2室82は、再生酸性水溶液供給ライン11と連通している。すなわち、第2室82は、再生酸性水溶液供給ライン11を介して第2室82から再生酸性水溶液が流出するように構成されている。第3室83は、再生アルカリ性水溶液供給ライン61と連通している。すなわち、第3室83は、再生アルカリ性水溶液供給ライン61を介して第3室83から再生アルカリ性水溶液が流出するように構成されている。また、再生酸性水溶液供給ライン11から再生酸性水溶液戻りライン19が分岐し、再生酸性水溶液戻りライン19は第2室82に接続されている。すなわち、再生酸性水溶液供給ライン11を流れる再生酸性水溶液の一部が再生酸性水溶液戻りライン19を介して第2室82に供給されるように構成されている。再生アルカリ性水溶液供給ライン61から再生アルカリ性水溶液戻りライン20が分岐し、再生アルカリ性水溶液戻りライン20は第3室83に接続されている。すなわち、再生アルカリ性水溶液供給ライン61を流れる再生アルカリ性水溶液の一部が再生アルカリ性水溶液戻りライン20を介して第3室83に供給されるように構成されている。
 図6に示されるように、セル90は、第2バイポーラ膜79と陰極80との間に、第3陽イオン交換膜78に対向する第4陰イオン交換膜301と、第4陰イオン交換膜301に対向する第4陽イオン交換膜302と、第4陽イオン交換膜302に対向する第5陰イオン交換膜303及び第5陽イオン交換膜304を含む第3バイポーラ膜305とを含む繰り返し単位300を備えてもよい。ただし図6には、セル90が2つの繰り返し単位300を備える構成が示されているが、この形態に限定するものではない。セル90は1つの繰り返し単位300を備えてもよいし、3つ以上の任意の個数の繰り返し単位300を備えてもよい。
 セル90が1つの繰り返し単位300を備える場合は、第4陰イオン交換膜301と第4陽イオン交換膜302とによって第1室81が形成され、第2バイポーラ膜79と第4陰イオン交換膜301とによって第2室82が形成され、第4陽イオン交換膜302と第3バイポーラ膜305とによって第3室83が形成される。セル90が2つ以上の繰り返し単位300を備える場合は、各繰り返し単位300のそれぞれにおける第4陰イオン交換膜301と第4陽イオン交換膜302とによって第1室81が形成され、隣り合う2つの繰り返し単位300,300の一方の第3バイポーラ膜305と隣り合う2つの繰り返し単位300,300の他方の第4陰イオン交換膜301とによっても第2室82が形成され、各繰り返し単位300のそれぞれにおける第4陽イオン交換膜302と第3バイポーラ膜305とによって第3室83が形成される。
<本開示の実施形態2に係る排水処理システムの動作>
 次に、本開示の実施形態2に係る排水処理システム1の動作について説明する。実施形態2の動作は実施形態1に対して、脱塩装置2の再生排水の処理動作について異なるので、以下では脱塩装置2の再生排水の処理動作についてのみ説明する。図4に示されるように、脱塩装置2から流出した再生排水に、アルカリ性水溶液供給ライン42を介してアルカリ性水溶液タンク41から水酸化ナトリウム水溶液が供給される。再生排水に水酸化ナトリウム水溶液が供給されると再生排水のpHが上昇するが、pHが上昇するほど、再生排水中のアンモニアは、アンモニウムイオンの形態ではなく遊離アンモニアの形態で存在する割合が高まる。これは、以下の反応式として記述できる。
  (NHSO+2NaOH→NaSO+2HO+2NH
アンモニウムイオンに比べて遊離アンモニアの方が、水溶液を加熱したときに水から放散しやすい傾向がある。
 水酸化ナトリウム水溶液が供給された再生排水は、熱交換器66において、後述するアンモニアストリッパー50の排液と熱交換することで加熱された後、放出部52から筐体51内に放出されて、筐体51内を落下する。筐体51には、高温ガス供給ライン53を介して高温ガスも供給され、高温ガスは筐体51内を上昇する。筐体51内において、落下する再生排水と上昇する高温ガスとが接触することで再生排水が加熱され、再生排水からは主に遊離アンモニアが放散される。再生排水から放散されたアンモニアは、アンモニアガスとして高温ガスと混合されて筐体51の塔頂から流出し、流出ライン63を流通する。
 流出ライン63を流通する高温ガスは、送風機55によって送風されて、熱交換器56及び加熱器57を順次通過することで加熱された後、触媒塔54に流入する。触媒塔54内では、アンモニアが還元性雰囲気にて燃焼されて、主に窒素及び水を含む反応ガスが生成する。触媒塔54から流出した反応ガスは反応ガス流出ライン58を流通し、熱交換器56において高温ガスと熱交換することで冷却される。冷却された反応ガスは、一部は高温ガス供給ライン53に流入し、残りは大気中へ排気される。高温ガス供給ライン53に流入した反応ガスには、空気供給ライン59及び蒸気供給ライン60のそれぞれを介して空気及び蒸気が供給され、高温ガスとなって筐体51内に供給される。
 筐体51内を落下する再生排水からは上述した動作でアンモニアが放散するので、筐体51内の底部に溜まっている再生排水は、放出部52から放出される再生排水に比べてアンモニアの濃度が低く、主に硫酸ナトリウムが溶解した水溶液となっている。この水溶液をアンモニアストリッパー50の排液として筐体51の底部から流出させて、下流側再生排水流出ライン7bを流通させる。この排液は、下流側再生排水流出ライン7bを流通する際に熱交換器66において再生排水と熱交換することで冷却され、バイポーラ膜電気透析器18に供給される。
 図5に示されるように、排液は、バイポーラ膜電気透析器18の第1室81に流入する。陽極71及び陰極80間に通電することにより、排液は電気透析される。第1室81に流入した排液中の硫酸イオンは、陽極71に引き寄せられるようにして第2陰イオン交換膜75を透過して第2室82に流入する。第1バイポーラ膜74において、水が吸収作用によって膜中に吸収され、第1陰イオン交換膜72と第1陽イオン交換膜73との境界面において水素イオンと水酸化物イオンとに解離する。このようにして生成した水素イオンは第1陽イオン交換膜73を通って第2室82に流入し、水酸化物イオンは第1陰イオン交換膜72を通って室84に流入する。第1室81に流入した排液中のナトリウムイオンは、陰極80に引き寄せられるようにして第2陽イオン交換膜76を透過して第3室83に流入する。第2バイポーラ膜79において、水が吸収作用によって膜中に吸収され、第3陰イオン交換膜77と第3陽イオン交換膜78との境界面において水素イオンと水酸化物イオンとに解離する。このようにして生成した水酸化物イオンは第3陰イオン交換膜77を通って第3室83に流入し、水素イオンは第3陽イオン交換膜78を通って室85に流入する。
 第1室81内の硫酸イオンは第2室82に移動するとともにナトリウムイオンは第3室83に移動するので、第1室81に流入した排液中の硫酸ナトリウムの濃度は低下する。このため、第1室81からは、第1室81に流入する排液に比べて硫酸ナトリウムの濃度が低下した希釈液が流出し、希釈液は希釈液戻りライン62を介して下流側再生排水流出ライン7bに戻される。
 第1室81から第2室82へ移動した硫酸イオンは、第1バイポーラ膜74から第2室82へ移動した水素イオンと反応して硫酸となることにより、第2室82内の水溶液は硫酸水溶液となる。第2室82からは、この硫酸水溶液が再生酸性水溶液として流出し、再生酸性水溶液は再生酸性水溶液供給ライン11を介して酸性水溶液タンク5に供給され、脱塩装置2の再生処理に再使用される。第2室82から流出した再生酸性水溶液の一部が再生酸性水溶液戻りライン19を介して第2室82に供給され続けることにより、第2室82は、イオン水溶液(具体的には、硫酸イオン及び水素イオンを含む水溶液)で充填され続けるので、陽極71及び陰極80間に通電したときに第2室82に電流が流れ続けるようになり、上記動作が継続することになる。
 第1室81から第3室83へ移動したナトリウムイオンは、第2バイポーラ膜79から第3室83へ移動した水酸化物イオンと反応して水酸化ナトリウムとなることにより、第3室83内の水溶液は水酸化ナトリウム水溶液となる。第3室83からは、この水酸化ナトリウム水溶液が再生アルカリ性水溶液として流出し、再生アルカリ性水溶液は再生アルカリ性水溶液供給ライン61を介してアルカリ性水溶液タンク41に供給され、脱塩装置2の再生処理によって発生する再生排水の処理に再使用される。第3室83から流出した再生アルカリ性水溶液の一部が再生アルカリ性水溶液戻りライン20を介して第3室83に供給され続けることにより、第3室83は、イオン水溶液(具体的には、ナトリウムイオン及び水酸化物イオンを含む水溶液)で充填され続けるので、陽極71及び陰極80間に通電したときに第3室83に電流が流れ続けるようになり、上記動作が継続することになる。
 尚、下流側再生排水流出ライン7bに濃縮器14を設けた場合、さらに装置15,16を設けた場合の動作及びそれから得られる作用効果は、実施形態1と基本的には同様である。ただし、実施形態2では、濃縮器14を設けない場合、バイポーラ膜電気透析器18で分離された希釈液を下流側再生排水流出ライン7bに戻してしまうと、バイポーラ膜電気透析器18に流入する排液を希釈してしまい、電気透析の効率を低下してしまうので、希釈液は排水処理せざるを得ない。これに対し、濃縮器14を設けることで、希釈液を排液と共に濃縮した上で再び電気透析することができるので、濃縮器14を設けない場合に比べて、再生酸性水溶液及び再生アルカリ性水溶液の分離量を増加することができる。
 このように、酸性水溶液を使用して脱塩装置2を再生処理することによって発生した再生排水にアルカリ性水溶液を供給してアンモニアストリッパー50でアンモニアを分離した後、アンモニアストリッパー50の排液から再生酸性水溶液及び再生アルカリ水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置2の再生に再使用するとともに再生アルカリ性水溶液をアルカリ性水溶液の少なくとも一部として再生排水に供給することにより、酸性水溶液及びアルカリ性水溶液の消費量を抑制できるので、脱塩装置2の再生処理のコストを低減することができる。
<本開示の排水処理システムの変形例>
 実施形態1では、2室式のバイポーラ膜電気透析器8を用いていたが、実施形態2に係る排水処理システム1で使用されている3室式のバイポーラ膜電気透析器18を用いることもできる。以下では、実施形態1において3室式のバイポーラ膜電気透析器18を用いる変形例を説明する。
 図7に示されるように、バイポーラ膜電気透析器18は、再生酸性水溶液供給ライン11及びアンモニア水供給ライン13のそれぞれを介して酸性水溶液タンク5及びアンモニア水貯留タンク12と連通している。また、バイポーラ膜電気透析器18は、濃縮器14に流入する前の再生排水に希釈液を供給可能なように、希釈液戻りライン62を介して装置16と濃縮器14との間で再生排水流出ライン7と連通している。
 図8に示されるように、第1室81は、再生排水流出ライン7及び希釈液戻りライン62のそれぞれと連通している。すなわち、第1室81は、再生排水流出ライン7を介して第1室81に再生排水が供給されるとともに希釈液戻りライン62を介して第1室81から希釈液が流出するように構成されている。第2室82は、再生酸性水溶液供給ライン11と連通している。すなわち、第2室82は、再生酸性水溶液供給ライン11を介して第2室82から再生酸性水溶液が流出するように構成されている。第3室83は、アンモニア水供給ライン13と連通している。すなわち、第3室83は、アンモニア水供給ライン13を介して第3室83からアンモニア水が流出するように構成されている。第2室82は当初は硫酸水溶液で充填され、第3室83は当初はアンモニア水で充填されている。また、再生酸性水溶液供給ライン11から再生酸性水溶液戻りライン19が分岐し、再生酸性水溶液戻りライン19は第2室82に接続されている。すなわち、再生酸性水溶液供給ライン11を流れる再生酸性水溶液の一部が再生酸性水溶液戻りライン19を介して第2室82に供給されるように構成されている。アンモニア水供給ライン13からアンモニア水戻りライン17が分岐し、アンモニア水戻りライン17は第3室83に接続されている。すなわち、アンモニア水供給ライン13を流れるアンモニア水の一部がアンモニア水戻りライン17を介して第3室83に供給されるように構成されている。
 再生排水は、バイポーラ膜電気透析器18の第1室81に流入する。陽極71及び陰極80間に通電することにより、再生排水は電気透析される。第1室81に流入した再生排水中の硫酸イオンは、陽極71に引き寄せられるようにして第2陰イオン交換膜75を透過して第2室82に流入する。第1バイポーラ膜74において、水が吸収作用によって膜中に吸収され、第1陰イオン交換膜72と第1陽イオン交換膜73との境界面において水素イオンと水酸化物イオンとに解離する。このようにして生成した水素イオンは第1陽イオン交換膜73を通って第2室82に流入し、水酸化物イオンは第1陰イオン交換膜72を通って室84に流入する。第1室81に流入した再生排水中のアンモニウムイオンは、陰極80に引き寄せられるようにして第2陽イオン交換膜76を透過して第3室83に流入する。第2バイポーラ膜79において、水が吸収作用によって膜中に吸収され、第3陰イオン交換膜77と第3陽イオン交換膜78との境界面において水素イオンと水酸化物イオンとに解離する。このようにして生成した水酸化物イオンは第3陰イオン交換膜77を通って第3室83に流入し、水素イオンは第3陽イオン交換膜78を通って室85に流入する。
 第1室81内の硫酸イオンは第2室82に移動するとともにアンモニウムイオンは第3室83に移動するので、第1室81に流入した再生排水中の硫酸アンモニウムの濃度は低下する。このため、第1室81からは、第1室81に流入する再生排水に比べて硫酸アンモニウムの濃度が低下した希釈液が流出し、希釈液は希釈液戻りライン62を介して再生排水流出ライン7に戻される。
 第2室82において再生酸性水溶液が生成される動作は実施形態2と同じである。第3室83では、第1室81からアンモニウムイオンが移動することにより、第3室83内の水にアンモニウムイオンの濃度が上昇する。これにより、アンモニア水が第3室83から流出する。第3室83から流出してアンモニア水供給ライン13を流れるアンモニア水の一部は、アンモニア水戻りライン17を介して第3室83に供給される。
 この変形例においても、実施形態1と同じように、脱塩装置2の再生排水から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置2の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置2の再生処理のコストを低減することができる。また、希釈液を再生排水と共に濃縮した上で再び電気透析することができるので、再生酸性水溶液及びアンモニア水の分離量を増加することができる。
 この変形例に対しても、図9に示されるように、セル90は、第2バイポーラ膜79と陰極80との間に、少なくとも1つの繰り返し単位300を備えてもよい。繰り返し単位300の構成と、セル90が繰り返し単位300を備える場合の第1室81、第2室82、及び第3室83のそれぞれが形成される位置とは、図6に示される構成と同じである。
 実施形態1ではさらに、図1に示される排水処理システム1の構成においてバイポーラ膜電気透析器8に代えて、以下で説明する別形式の2室式のバイポーラ膜電気透析器を設けることもできる。
 図10に示されるように、この別形式の2室式のバイポーラ膜電気透析器100は、陽極101と、陰極113と、陽極101及び陰極109間に設けられたセル110とを備えている。セル110は、陽極101に対向する第1陰イオン交換膜102及び第1陽イオン交換膜103を含む第1バイポーラ膜104と、第1陽イオン交換膜103に対向する第2陰イオン交換膜105と、第2陰イオン交換膜105に対向する第3陰イオン交換膜106及び第2陽イオン交換膜107を含む第2バイポーラ膜108とを備えている。第2陰イオン交換膜105と第3陰イオン交換膜106とによって第1室120が形成され、第1陽イオン交換膜103と第2陰イオン交換膜105とによって第2室122が形成されている。第2室122は当初は硫酸水溶液で充填されている。陽極101と第1バイポーラ膜104との間に形成された室124及び第2バイポーラ膜108と陰極109との間に形成された室125のそれぞれは、任意の電極液で充填されている。陽極101及び陰極109のそれぞれに対向する膜に限っては、電極液の種類により、第1バイポーラ膜104及び第2バイポーラ膜108のそれぞれの代わりに、第1陰イオン交換膜102又は第1陽イオン交換膜103のいずれか、及び、第3陰イオン交換膜106又は第2陽イオン交換膜107のいずれかを使用することができる。
 第1室120は、再生排水流出ライン7及びアンモニア水供給ライン13の両方と連通している。すなわち、第1室120は、再生排水流出ライン7を介して第1室120に再生排水が供給されるとともにアンモニア水供給ライン13を介して第1室120からアンモニア水が流出するように構成されている。第2室122は、再生酸性水溶液供給ライン11と連通している。すなわち、第2室122は、再生酸性水溶液供給ライン11を介して第2室122から再生酸性水溶液が流出するように構成されている。また、再生酸性水溶液供給ライン11から再生酸性水溶液戻りライン19が分岐し、再生酸性水溶液戻りライン19は第2室122に接続されている。すなわち、再生酸性水溶液供給ライン11を流れる再生酸性水溶液の一部が再生酸性水溶液戻りライン19を介して第2室122に供給されるように構成されている。
 図11に示されるように、セル110は、第2バイポーラ膜108と陰極109との間に、第2陽イオン交換膜107に対向する第4陰イオン交換膜401と、第4陰イオン交換膜401に対向する第5陰イオン交換膜402及び第3陽イオン交換膜403を含む第3バイポーラ膜404とを含む繰り返し単位400を備えてもよい。ただし図11には、セル110が2つの繰り返し単位400を備える構成が示されているが、この形態に限定するものではない。セル110は1つの繰り返し単位400を備えてもよいし、3つ以上の任意の個数の繰り返し単位400を備えてもよい。
 セル110が1つの繰り返し単位400を備える場合は、第4陰イオン交換膜401と第3バイポーラ膜404とによって第1室120が形成され、第2バイポーラ膜108と第4陰イオン交換膜401とによって第2室122が形成される。セル110が2つ以上の繰り返し単位400を備える場合は、各繰り返し単位400において、第4陰イオン交換膜401と第3バイポーラ膜404とによって第1室120が形成され、隣り合う2つの繰り返し単位400,400の一方の第3バイポーラ膜404と隣り合う2つの繰り返し単位400,400の他方の第4陰イオン交換膜401とによっても第2室122が形成される。
 図10に示されるように、再生排水は、バイポーラ膜電気透析器100の第1室120に流入する。陽極101及び陰極109間に通電することにより、再生排水は電気透析される。第1室120に流入した再生排水中の硫酸イオンは、陽極101に引き寄せられるようにして第2陰イオン交換膜105を透過して第2室122に流入する。第1バイポーラ膜104と第2バイポーラ膜108とのそれぞれにおいて水が吸収作用によって膜中に吸収され、第1陰イオン交換膜102と第1陽イオン交換膜103との境界面、第3陰イオン交換膜106と第2陽イオン交換膜107との境界面のそれぞれにおいて水素イオンと水酸化物イオンとに解離する。このようにして生成した水素イオンは第1陽イオン交換膜103及び第2陽イオン交換膜107のそれぞれを通って第2室122及び室125のそれぞれに流入し、水酸化物イオンは第1陰イオン交換膜102及び第3陰イオン交換膜106のそれぞれを通って室124及び第1室120のそれぞれに流入する。
 第1室120に流入した再生排水中の硫酸イオンは、陽極101に引き寄せられるようにして第2陰イオン交換膜105を透過して第2室122に流入する。第1室120内の硫酸イオンは第2室122に移動し、第1バイポーラ膜104からは水素イオンが第2室122に流入するので、第2室122内の硫酸の濃度が上昇する。一方、第1室120に流入した再生排水中のアンモニウムイオンは第1室120に留まり、第2バイポーラ膜108からは水酸化物イオンが第1室120に流入するので、第1室120内のアンモニアの濃度が上昇する。これにより、第1室120に流入する再生排水に比べて硫酸アンモニウムの濃度が低下するとともにアンモニア濃度が上昇した水溶液、すなわち硫酸アンモニウムを含み得るアンモニア水が第1室120から流出する。第2室122からは、硫酸水溶液、すなわち再生酸性水溶液が流出する。第2室122から流出した再生酸性水溶液の一部は、再生酸性水溶液戻りライン19を介して第2室122に供給される。
 ただし、この変形例では、第1室120から流出するアンモニア水は、再生排水中の硫酸アンモニウムの残留によって、アンモニア水としての純度が低くなる可能性がある。このため、図12に示されるように、アンモニア水供給ライン13に接続するアンモニア水貯留タンク12に代えて、実施形態2の排水処理システム1に設けられたアンモニアストリッパー50(図3参照)と同じ構成のアンモニアストリッパーをアンモニア水供給ライン13に接続して、純度の低いアンモニア水からアンモニアを除去するようにしてもよい。実施形態2では、アンモニアストリッパー50でアンモニアを除去可能にするために、pHを調整する目的で再生排水にアルカリ性水溶液を供給していたが、この変形例において、第1室120から流出するアンモニア水のpHは少なくとも11以上になるので、pHを調整する目的として第1室120から流出するアンモニア水にアルカリ性水溶液を供給する必要はない。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
[1]一の態様に係る排水処理システムは、
 アンモニアを含む水を脱塩する脱塩装置(2)を酸性水溶液を使用して再生処理することによって発生した再生排水を処理するための排水処理システム(1)であって、
 前記脱塩装置(2)に捕捉されたアンモニアと前記酸性水溶液との反応で生成したアンモニウム塩を含む前記再生排水又は該再生排水に由来する液体から、前記酸性水溶液と同じ酸性溶質を含む水溶液を再生酸性水溶液として分離するバイポーラ膜電気透析器(8/18)を備え、
 前記再生酸性水溶液は前記酸性水溶液の少なくとも一部として前記脱塩装置(2)の再生に使用されるように構成されている。
 本開示の排水処理システムによれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水又は再生排水に由来する液体から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
[2]別の態様に係る排水処理システムは、[1]の排水処理システムであって、
 前記バイポーラ膜電気透析器(8)は、
 陽極(21)と、
 陰極(29)と、
 前記陽極(21)及び前記陰極(29)間に設けられたセル(30)と
を備え、
 前記セル(30)は、
 第1陰イオン交換膜(22)及び第1陽イオン交換膜(23)を含む第1バイポーラ膜(24)と、
 前記第1陽イオン交換膜(23)に対向する第2陽イオン交換膜(25)と、
 前記第2陽イオン交換膜(25)に対向する第2陰イオン交換膜(26)及び第3陽イオン交換膜(27)を含む第2バイポーラ膜(28)と
を備え、
 前記第1バイポーラ膜(24)と前記第2陽イオン交換膜(25)とによって画定された第1室(31)に前記再生排水が供給されるとともに前記再生酸性水溶液は前記第1室(31)から流出するように構成されている。
 このような構成によれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
[3]さらに別の態様に係る排水処理システムは、[2]の排水処理システムであって、
 前記セル(30)は、前記第2バイポーラ膜(28)と前記陰極(29)との間に、前記第3陽イオン交換膜(27)に対向する第4陽イオン交換膜(201)と、前記第4陽イオン交換膜(201)に対向する第3陰イオン交換膜(202)及び第5陽イオン交換膜(203)を含む第3バイポーラ膜(204)とを含む繰り返し単位(200)を少なくとも1つ備え、
 前記第2バイポーラ膜(28)と前記第4陽イオン交換膜(201)とによって前記第1室(31)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[4]さらに別の態様に係る排水処理システムは、[3]の排水処理システムであって、
 前記繰り返し単位(200)を少なくとも2つ備え、隣り合う2つの繰り返し単位(200,200)の一方の前記第3バイポーラ膜(204)と前記隣り合う2つの繰り返し単位(200,200)の他方の前記第4陽イオン交換膜(201)とによって前記第1室(31)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[5]さらに別の態様に係る排水処理システムは、[1]の排水処理システムであって、
 前記バイポーラ膜電気透析器(100)は、
 陽極(101)と、
 陰極(109)と、
 前記陽極(101)及び前記陰極(109)間に設けられたセル(110)と
を備え、
 前記セル(110)は、
 第1陰イオン交換膜(102)及び第1陽イオン交換膜(103)を含む第1バイポーラ膜(104)と、
 前記第1陽イオン交換膜(103)に対向する第2陰イオン交換膜(105)と、
 前記第2陰イオン交換膜(105)に対向する第3陰イオン交換膜(106)及び第2陽イオン交換膜(107)を含む第2バイポーラ膜(108)と
を備え、
 前記第2陰イオン交換膜(105)と前記第3陰イオン交換膜(106)とによって画定された第1室(120)に前記再生排水が供給され、前記第1陽イオン交換膜(103)と前記第2陰イオン交換膜(105)とによって画定された第2室(122)から前記再生酸性水溶液が流出するように構成されている。
 このような構成によれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
[6]さらに別の態様に係る排水処理システムは、[5]の排水処理システムであって、
 前記セル(110)は、前記第2バイポーラ膜(108)と前記陰極(109)との間に、前記第2陽イオン交換膜(107)に対向する第4陰イオン交換膜(401)と、前記第4陰イオン交換膜(401)に対向する第5陰イオン交換膜(402)及び第3陽イオン交換膜(403)を含む第3バイポーラ膜(404)とを含む繰り返し単位(400)を少なくとも1つ備え、
 前記第4陰イオン交換膜(401)と前記第3バイポーラ膜(404)とによって前記第1室(120)が画定され、前記第2バイポーラ膜(108)と前記第4陰イオン交換膜(401)とによって前記第2室(122)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[7]さらに別の態様に係る排水処理システムは、[6]の排水処理システムであって、
 前記繰り返し単位(400)を少なくとも2つ備え、前記繰り返し単位(400)のそれぞれにおける前記第4陰イオン交換膜(401)と前記第3バイポーラ膜(404)とによって前記第1室(120)が画定され、隣り合う2つの繰り返し単位(400,400)の一方の前記第3バイポーラ膜(404)と前記隣り合う2つの繰り返し単位(400,400)の他方の前記第4陰イオン交換膜(401)とによって前記第2室(122)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[8]さらに別の態様に係る排水処理システムは、[5]~[7]のいずれかの排水処理システムであって、
 前記バイポーラ膜電気透析器(100)は、前記第1室(120)からアンモニア水が流出するように構成され、
 前記排水処理システム(1)は、前記第1室(120)から流出したアンモニア水からアンモニアを分離するアンモニアストリッパー(50)をさらに備える。
 このような構成によれば、第1室及び第2室のそれぞれから流出するアンモニア水の純度が低い場合に、ボイラや脱硝装置等で使用せずに廃液処理することができる。
[9]さらに別の態様に係る排水処理システムは、[1]の排水処理システムであって、
 前記バイポーラ膜電気透析器(18)は、
 陽極(71)と、
 陰極(80)と、
 前記陽極(71)及び前記陰極(80)間に設けられたセル(90)と
を備え、
 前記セル(90)は、
 第1陰イオン交換膜(72)及び第1陽イオン交換膜(73)を含む第1バイポーラ膜(74)と、
 前記第1陽イオン交換膜(73)に対向する第2陰イオン交換膜(75)と、
 前記第2陰イオン交換膜(75)に対向する第2陽イオン交換膜(76)と、
 前記第2陽イオン交換膜(76)に対向する第3陰イオン交換膜(77)及び第3陽イオン交換膜(78)を含む第2バイポーラ膜(79)と
を備え、
 前記第2陰イオン交換膜(75)と前記第2陽イオン交換膜(76)とによって画定された第1室(81)に前記再生排水が供給され、前記第1バイポーラ膜(74)と前記第2陰イオン交換膜(75)とによって画定された第2室(82)から前記再生酸性水溶液が流出するように構成されている。
 このような構成によれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
[10]さらに別の態様に係る排水処理システムは、[9]の排水処理システムであって、
 前記セル(90)は、前記第2バイポーラ膜(79)と前記陰極(80)との間に、前記第3陽イオン交換膜(78)に対向する第4陰イオン交換膜(301)と、前記第4陰イオン交換膜(301)に対向する第4陽イオン交換膜(302)と、前記第4陽イオン交換膜(302)に対向する第5陰イオン交換膜(303)及び第5陽イオン交換膜(304)を含む第3バイポーラ膜(305)とを含む繰り返し単位(300)を少なくとも1つ備え、
 前記第4陰イオン交換膜(301)と前記第4陽イオン交換膜(302)とによって前記第1室(81)が画定され、前記第2バイポーラ膜(79)と前記第4陰イオン交換膜(301)とによって前記第2室(82)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[11]さらに別の態様に係る排水処理システムは、[10]の排水処理システムであって、
 前記繰り返し単位(300)を少なくとも2つ備え、前記繰り返し単位(300)のそれぞれにおける前記第4陰イオン交換膜(301)と前記第4陽イオン交換膜(302)とによって前記第1室(81)が画定され、隣り合う2つの繰り返し単位(300,300)の一方の前記第3バイポーラ膜(305)と前記隣り合う2つの繰り返し単位(300,300)の他方の前記第4陰イオン交換膜(301)とによって前記第2室(82)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[12]さらに別の態様に係る排水処理システムは、[1]~[8]のいずれかの排水処理システムであって、
 前記バイポーラ膜電気透析器(8)に流入する前の前記再生排水に対して前記アンモニウム塩の濃縮を行う濃縮器(14)をさらに備える。
 再生排水中のアンモニウム塩の濃度が低いと、電気透析による再生酸性水溶液の分離効率が低下するが、上記[6]の構成によれば、アンモニウム塩の濃度を高めた再生排水に対して電気透析を行えるので、電気透析による再生酸性水溶液の分離効率を高めることができる。
[13]さらに別の態様に係る排水処理システムは、[9]~[11]のいずれかの排水処理システムであって、
 前記バイポーラ膜電気透析器(18)は、前記第2陽イオン交換膜(76)と前記第2バイポーラ膜(79)とによって画定された第3室(83)からアンモニア水が流出するように構成されるとともに、前記再生排水から前記再生酸性水溶液及び前記アンモニア水が分離された残りの成分である希釈液が前記第1室(81)から流出するように構成され、
 前記排水処理システム(1)は、
 前記バイポーラ膜電気透析器(18)に流入する前の前記再生排水に対して前記アンモニウム塩の濃縮を行う濃縮器(14)と、
 前記第1室(81)から流出する前記希釈液を、前記濃縮器(14)に流入する前の前記再生排水に供給する希釈液戻りライン(62)と
をさらに備える。
 このような構成によれば、希釈液を再生排水と共に濃縮した上で再び電気透析することができるので、濃縮器に流入する前の再生排水に希釈液を供給しない場合に比べて、再生酸性水溶液及び再生アルカリ性水溶液の分離量を増加することができる。
[14]さらに別の態様に係る排水処理システムは、[1]の排水処理システムであって、
 アルカリ金属の水酸化物を含むアルカリ性水溶液を前記再生排水に供給する供給装置(40)と、
 前記アルカリ性水溶液が供給された前記再生排水からアンモニアを分離するアンモニアストリッパー(50)と
を備え、
 前記再生排水に由来する前記液体は前記アンモニアストリッパーの排液であり、
 前記バイポーラ膜電気透析器(18)は、前記排液から、前記再生酸性水溶液と、前記アルカリ性水溶液と同じ溶質を含む水溶液としての再生アルカリ性水溶液とを別々に分離し、前記再生アルカリ性水溶液は前記アルカリ性水溶液の少なくとも一部として前記再生排水に供給されるように構成されている。
 このような構成によれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水にアルカリ性水溶液を供給してアンモニアストリッパーでアンモニアを分離した後、アンモニアストリッパーの排液から再生酸性水溶液及び再生アルカリ水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用するとともに再生アルカリ性水溶液をアルカリ性水溶液の少なくとも一部として再生排水に供給することにより、酸性水溶液及びアルカリ性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
[15]さらに別の態様に係る排水処理システムは、[14]の排水処理システムであって、
 前記バイポーラ膜電気透析器(18)は、
 陽極(71)と、
 陰極(80)と、
 前記陽極(71)及び前記陰極(80)間に設けられたセル(90)と
を備え、
 前記セル(90)は、
 第1陰イオン交換膜(72)及び第1陽イオン交換膜(73)を含む第1バイポーラ膜(74)と、
 前記第1陽イオン交換膜(73)に対向する第2陰イオン交換膜(75)と、
 前記第2陰イオン交換膜(75)に対向する第2陽イオン交換膜(76)と、
 前記第2陽イオン交換膜(76)に対向する第3陰イオン交換膜(77)及び第3陽イオン交換膜(78)を含む第2バイポーラ膜(79)と
を備え、
 前記第2陰イオン交換膜(75)と前記第2陽イオン交換膜(76)とによって画定された第1室(81)に前記排液が供給され、前記第1バイポーラ膜(74)と前記第2陰イオン交換膜(75)とによって画定された第2室(82)から前記再生酸性水溶液が流出し、前記第2陽イオン交換膜(76)と前記第2バイポーラ膜(79)とによって画定された第3室(83)から前記再生アルカリ性水溶液が流出するように構成されている。
 このような構成によれば、酸性水溶液を使用して脱塩装置を再生処理することによって発生した再生排水にアルカリ性水溶液を供給してアンモニアストリッパーでアンモニアを分離した後、アンモニアストリッパーの排液から再生酸性水溶液及び再生アルカリ水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用するとともに再生アルカリ性水溶液をアルカリ性水溶液の少なくとも一部として再生排水に供給することにより、酸性水溶液及びアルカリ性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
[16]さらに別の態様に係る排水処理システムは、[15]の排水処理システムであって、
 前記セル(90)は、前記第2バイポーラ膜(79)と前記陰極(80)との間に、前記第3陽イオン交換膜(78)に対向する第4陰イオン交換膜(301)と、前記第4陰イオン交換膜(301)に対向する第4陽イオン交換膜(302)と、前記第4陽イオン交換膜(302)に対向する第5陰イオン交換膜(303)及び第5陽イオン交換膜(304)を含む第3バイポーラ膜(305)とを含む繰り返し単位(300)を少なくとも1つ備え、
 前記第4陰イオン交換膜(301)と前記第4陽イオン交換膜(302)とによって前記第1室(81)が画定され、前記第2バイポーラ膜(79)と前記第4陰イオン交換膜(301)とによって前記第2室(82)が画定され、前記第4陽イオン交換膜(302)と前記第3バイポーラ膜(305)とによって前記第3室(83)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[17]さらに別の態様に係る排水処理システムは、[16]の排水処理システムであって、
 前記繰り返し単位(300)を少なくとも2つ備え、前記繰り返し単位(300)のそれぞれにおける前記第4陰イオン交換膜(301)と前記第4陽イオン交換膜(302)とによって前記第1室(81)が画定され、隣り合う2つの繰り返し単位(300,300)の一方の前記第3バイポーラ膜(305)と前記隣り合う2つの繰り返し単位(300,300)の他方の前記第4陰イオン交換膜(301)とによって前記第2室(82)が画定され、前記繰り返し単位(300)のそれぞれにおける前記第4陽イオン交換膜(302)と前記第3バイポーラ膜(305)とによって前記第3室(83)が画定される。
 このような構成によれば、バイポーラ膜電気透析器のセルの容量が大きくなることにより、電気透析の効率が大きくなるので、脱塩装置の再生処理のコストを低減することができる。
[18]さらに別の態様に係る排水処理システムは、[14]~[17]のいずれかの排水処理システムであって、
 前記バイポーラ膜電気透析器(18)に流入する前の前記排液に対して、前記再生排水に含まれる前記アンモニウム塩と前記アルカリ性水溶液に含まれる前記アルカリ金属の水酸化物との反応によって生成した前記アルカリ金属の塩の濃縮を行う濃縮器(14)をさらに備える。
 アンモニアストリッパーの排液中のアルカリ金属の塩の濃度が低いと、電気透析による再生酸性水溶液及び再生アルカリ性水溶液の分離効率が低下するが、上記[18]の構成によれば、アルカリ金属の塩の濃度を高めた排液に対して電気透析を行えるので、電気透析による再生酸性水溶液及びアルカリ性水溶液の分離効率を高めることができる。
[19]さらに別の態様に係る排水処理システムは、[18]の排水処理システムであって、
 前記排液から前記酸性水溶液及び前記アルカリ性水溶液が分離された残りの成分である希釈液を、前記濃縮器(14)に流入する前の前記排液に供給する希釈液戻りライン(62)をさらに備える。
 このような構成によれば、希釈液を排液と共に濃縮した上で再び電気透析することができるので、濃縮器に流入する前の排液に希釈液を供給しない場合に比べて、再生酸性水溶液及び再生アルカリ性水溶液の分離量を増加することができる。
[20]さらに別の態様に係る排水処理システムは、[1]~[19]のいずれかの排水処理システムであって、
 アンモニアを含む前記水はボイラの復水である。
 本開示の排水処理システムによれば、アンモニアを含んだボイラの復水を脱塩する脱塩装置を酸性水溶液を使用して再生処理することによって発生した再生排水又は再生排水に由来する液体から再生酸性水溶液を分離して、再生酸性水溶液を酸性水溶液の少なくとも一部として脱塩装置の再生に再使用することにより、酸性水溶液の消費量を抑制できるので、脱塩装置の再生処理のコストを低減することができる。
1 排水処理システム
2 脱塩装置
8 バイポーラ膜電気透析器
14 濃縮器
18 バイポーラ膜電気透析器
21 陽極
22 第1陰イオン交換膜
23 第1陽イオン交換膜
24 第1バイポーラ膜
25 第2陽イオン交換膜
26 第2陰イオン交換膜
27 第3陽イオン交換膜
28 第2バイポーラ膜
29 陰極
30 セル
31 第1室
40 供給装置
50 アンモニアストリッパー
62 希釈液戻りライン
71 陽極
72 第1陰イオン交換膜
73 第1陽イオン交換膜
74 第1バイポーラ膜
75 第2陰イオン交換膜
76 第2陽イオン交換膜
77 第3陰イオン交換膜
78 第3陽イオン交換膜
79 第2バイポーラ膜
80 陰極
81 第1室
82 第2室
83 第3室
90 セル
100 バイポーラ膜電気透析器
101 陽極
102 第1陰イオン交換膜
103 第1陽イオン交換膜
104 第1バイポーラ膜
105 第2陰イオン交換膜
106 第3陰イオン交換膜
107 第2陽イオン交換膜
108 第2バイポーラ膜
109 陰極
110 セル
120 第1室
122 第2室
200 繰り返し単位
201 第4陽イオン交換膜
202 第3陰イオン交換膜
203 第5陽イオン交換膜
204 第3バイポーラ膜
300 繰り返し単位
301 第4陰イオン交換膜
302 第4陽イオン交換膜
303 第5陰イオン交換膜
304 第5陽イオン交換膜
305 第3バイポーラ膜
400 繰り返し単位
401 第4陰イオン交換膜
402 第5陰イオン交換膜
403 第3陽イオン交換膜
404 第3バイポーラ膜

Claims (20)

  1.  アンモニアを含む水を脱塩する脱塩装置を酸性水溶液を使用して再生処理することによって発生した再生排水を処理するための排水処理システムであって、
     前記脱塩装置に捕捉されたアンモニアと前記酸性水溶液との反応で生成したアンモニウム塩を含む前記再生排水又は該再生排水に由来する液体から、前記酸性水溶液と同じ酸性溶質を含む水溶液を再生酸性水溶液として分離するバイポーラ膜電気透析器を備え、
     前記再生酸性水溶液は前記酸性水溶液の少なくとも一部として前記脱塩装置の再生に使用されるように構成されている排水処理システム。
  2.  前記バイポーラ膜電気透析器は、
     陽極と、
     陰極と、
     前記陽極及び前記陰極間に設けられたセルと
    を備え、
     前記セルは、
     第1陰イオン交換膜及び第1陽イオン交換膜を含む第1バイポーラ膜と、
     前記第1陽イオン交換膜に対向する第2陽イオン交換膜と、
     前記第2陽イオン交換膜に対向する第2陰イオン交換膜及び第3陽イオン交換膜を含む第2バイポーラ膜と
    を備え、
     前記第1バイポーラ膜と前記第2陽イオン交換膜とによって画定された第1室に前記再生排水が供給されるとともに前記再生酸性水溶液は前記第1室から流出するように構成されている、請求項1に記載の排水処理システム。
  3.  前記セルは、前記第2バイポーラ膜と前記陰極との間に、前記第3陽イオン交換膜に対向する第4陽イオン交換膜と、前記第4陽イオン交換膜に対向する第3陰イオン交換膜及び第5陽イオン交換膜を含む第3バイポーラ膜とを含む繰り返し単位を少なくとも1つ備え、
     前記第2バイポーラ膜と前記第4陽イオン交換膜とによって前記第1室が画定される、請求項2に記載の排水処理システム。
  4.  前記繰り返し単位を少なくとも2つ備え、隣り合う2つの繰り返し単位の一方の前記第3バイポーラ膜と前記隣り合う2つの繰り返し単位の他方の前記第4陽イオン交換膜とによって前記第1室が画定される、請求項3に記載の排水処理システム。
  5.  前記バイポーラ膜電気透析器は、
     陽極と、
     陰極と、
     前記陽極及び前記陰極間に設けられたセルと
    を備え、
     前記セルは、
     第1陰イオン交換膜及び第1陽イオン交換膜を含む第1バイポーラ膜と、
     前記第1陽イオン交換膜に対向する第2陰イオン交換膜と、
     前記第2陰イオン交換膜に対向する第3陰イオン交換膜及び第2陽イオン交換膜を含む第2バイポーラ膜と
    を備え、
     前記第2陰イオン交換膜と前記第3陰イオン交換膜とによって画定された第1室に前記再生排水が供給され、前記第1陽イオン交換膜と前記第2陰イオン交換膜とによって画定された第2室から前記再生酸性水溶液が流出するように構成されている、請求項1に記載の排水処理システム。
  6.  前記セルは、前記第2バイポーラ膜と前記陰極との間に、前記第2陽イオン交換膜に対向する第4陰イオン交換膜と、前記第4陰イオン交換膜に対向する第5陰イオン交換膜及び第3陽イオン交換膜を含む第3バイポーラ膜とを含む繰り返し単位を少なくとも1つ備え、
     前記第4陰イオン交換膜と前記第3バイポーラ膜とによって前記第1室が画定され、前記第2バイポーラ膜と前記第4陰イオン交換膜とによって前記第2室が画定される、請求項5に記載の排水処理システム。
  7.  前記繰り返し単位を少なくとも2つ備え、前記繰り返し単位のそれぞれにおける前記第4陰イオン交換膜と前記第3バイポーラ膜とによって前記第1室が画定され、隣り合う2つの繰り返し単位の一方の前記第3バイポーラ膜と前記隣り合う2つの繰り返し単位の他方の前記第4陰イオン交換膜とによって前記第2室が画定される、請求項6に記載の排水処理システム。
  8.  前記バイポーラ膜電気透析器は、前記第1室からアンモニア水が流出するように構成され、
     前記排水処理システムは、前記第1室から流出したアンモニア水からアンモニアを分離するアンモニアストリッパーをさらに備える、請求項5~7のいずれか一項に記載の排水処理システム。
  9.  前記バイポーラ膜電気透析器は、
     陽極と、
     陰極と、
     前記陽極及び前記陰極間に設けられたセルと
    を備え、
     前記セルは、
     第1陰イオン交換膜及び第1陽イオン交換膜を含む第1バイポーラ膜と、
     前記第1陽イオン交換膜に対向する第2陰イオン交換膜と、
     前記第2陰イオン交換膜に対向する第2陽イオン交換膜と、
     前記第2陽イオン交換膜に対向する第3陰イオン交換膜及び第3陽イオン交換膜を含む第2バイポーラ膜と
    を備え、
     前記第2陰イオン交換膜と前記第2陽イオン交換膜とによって画定された第1室に前記再生排水が供給され、前記第1バイポーラ膜と前記第2陰イオン交換膜とによって画定された第2室から前記再生酸性水溶液が流出するように構成されている、請求項1に記載の排水処理システム。
  10.  前記セルは、前記第2バイポーラ膜と前記陰極との間に、前記第3陽イオン交換膜に対向する第4陰イオン交換膜と、前記第4陰イオン交換膜に対向する第4陽イオン交換膜と、前記第4陽イオン交換膜に対向する第5陰イオン交換膜及び第5陽イオン交換膜を含む第3バイポーラ膜とを含む繰り返し単位を少なくとも1つ備え、
     前記第4陰イオン交換膜と前記第4陽イオン交換膜とによって前記第1室が画定され、前記第2バイポーラ膜と前記第4陰イオン交換膜とによって前記第2室が画定される、請求項9に記載の排水処理システム。
  11.  前記繰り返し単位を少なくとも2つ備え、前記繰り返し単位のそれぞれにおける前記第4陰イオン交換膜と前記第4陽イオン交換膜とによって前記第1室が画定され、隣り合う2つの繰り返し単位の一方の前記第3バイポーラ膜と前記隣り合う2つの繰り返し単位の他方の前記第4陰イオン交換膜とによって前記第2室が画定される、請求項10に記載の排水処理システム。
  12.  前記バイポーラ膜電気透析器に流入する前の前記再生排水に対して前記アンモニウム塩の濃縮を行う濃縮器をさらに備える、請求項1~8のいずれか一項に記載の排水処理システム。
  13.  前記バイポーラ膜電気透析器は、前記第2陽イオン交換膜と前記第2バイポーラ膜とによって画定された第3室からアンモニア水が流出するように構成されるとともに、前記再生排水から前記再生酸性水溶液及び前記アンモニア水が分離された残りの成分である希釈液が前記第1室から流出するように構成され、
     前記排水処理システムは、
     前記バイポーラ膜電気透析器に流入する前の前記再生排水に対して前記アンモニウム塩の濃縮を行う濃縮器と、
     前記第1室から流出する前記希釈液を、前記濃縮器に流入する前の前記再生排水に供給する希釈液戻りラインと
    をさらに備える、請求項9~11のいずれか一項に記載の排水処理システム。
  14.  アルカリ金属の水酸化物を含むアルカリ性水溶液を前記再生排水に供給する供給装置と、
     前記アルカリ性水溶液が供給された前記再生排水からアンモニアを分離するアンモニアストリッパーと
    を備え、
     前記再生排水に由来する前記液体は前記アンモニアストリッパーの排液であり、
     前記バイポーラ膜電気透析器は、前記排液から、前記再生酸性水溶液と、前記アルカリ性水溶液と同じ溶質を含む水溶液としての再生アルカリ性水溶液とを別々に分離し、前記再生アルカリ性水溶液は前記アルカリ性水溶液の少なくとも一部として前記再生排水に供給されるように構成されている、請求項1に記載の排水処理システム。
  15.  前記バイポーラ膜電気透析器は、
     陽極と、
     陰極と、
     前記陽極及び前記陰極間に設けられたセルと
    を備え、
     前記セルは、
     第1陰イオン交換膜及び第1陽イオン交換膜を含む第1バイポーラ膜と、
     前記第1陽イオン交換膜に対向する第2陰イオン交換膜と、
     前記第2陰イオン交換膜に対向する第2陽イオン交換膜と、
     前記第2陽イオン交換膜に対向する第3陰イオン交換膜及び第3陽イオン交換膜を含む第2バイポーラ膜と
    を備え、
     前記第2陰イオン交換膜と前記第2陽イオン交換膜とによって画定された第1室に前記排液が供給され、前記第1バイポーラ膜と前記第2陰イオン交換膜とによって画定された第2室から前記再生酸性水溶液が流出し、前記第2陽イオン交換膜と前記第2バイポーラ膜とによって画定された第3室から前記再生アルカリ性水溶液が流出するように構成されている、請求項14に記載の排水処理システム。
  16.  前記セルは、前記第2バイポーラ膜と前記陰極との間に、前記第3陽イオン交換膜に対向する第4陰イオン交換膜と、前記第4陰イオン交換膜に対向する第4陽イオン交換膜と、前記第4陽イオン交換膜に対向する第5陰イオン交換膜及び第5陽イオン交換膜を含む第3バイポーラ膜とを含む繰り返し単位を少なくとも1つ備え、
     前記第4陰イオン交換膜と前記第4陽イオン交換膜とによって前記第1室が画定され、前記第2バイポーラ膜と前記第4陰イオン交換膜とによって前記第2室が画定され、前記第4陽イオン交換膜と前記第3バイポーラ膜とによって前記第3室が画定される、請求項15に記載の排水処理システム。
  17.  前記繰り返し単位を少なくとも2つ備え、前記繰り返し単位のそれぞれにおける前記第4陰イオン交換膜と前記第4陽イオン交換膜とによって前記第1室が画定され、隣り合う2つの繰り返し単位の一方の前記第3バイポーラ膜と前記隣り合う2つの繰り返し単位の他方の前記第4陰イオン交換膜とによって前記第2室が画定され、前記繰り返し単位のそれぞれにおける前記第4陽イオン交換膜と前記第3バイポーラ膜とによって前記第3室が画定される、請求項16に記載の排水処理システム。
  18.  前記バイポーラ膜電気透析器に流入する前の前記排液に対して、前記再生排水に含まれる前記アンモニウム塩と前記アルカリ性水溶液に含まれる前記アルカリ金属の水酸化物との反応によって生成した前記アルカリ金属の塩の濃縮を行う濃縮器をさらに備える、請求項14~17のいずれか一項に記載の排水処理システム。
  19.  前記排液から前記酸性水溶液及び前記アルカリ性水溶液が分離された残りの成分である希釈液を、前記濃縮器に流入する前の前記排液に供給する希釈液戻りラインをさらに備える、請求項18に記載の排水処理システム。
  20.  アンモニアを含む前記水はボイラの復水である、請求項1~19のいずれか一項に記載の排水処理システム。
PCT/JP2022/014967 2021-04-02 2022-03-28 排水処理システム WO2022210525A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/551,859 US20240173673A1 (en) 2021-04-02 2022-03-28 Wastewater treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063530A JP2022158548A (ja) 2021-04-02 2021-04-02 排水処理システム
JP2021-063530 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022210525A1 true WO2022210525A1 (ja) 2022-10-06

Family

ID=83456352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014967 WO2022210525A1 (ja) 2021-04-02 2022-03-28 排水処理システム

Country Status (3)

Country Link
US (1) US20240173673A1 (ja)
JP (1) JP2022158548A (ja)
WO (1) WO2022210525A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271781A (ja) * 1996-04-08 1997-10-21 Toshiba Corp 廃水からの窒素分除去方法
JPH10272371A (ja) * 1997-03-31 1998-10-13 Miura Co Ltd 軟水化処理システム
JPH11128691A (ja) * 1997-10-24 1999-05-18 Japan Organo Co Ltd フォトレジスト現像液再生回収装置
JP2000354772A (ja) * 1999-06-14 2000-12-26 Japan Organo Co Ltd 復水脱塩装置の再生廃液の処理方法
JP2013202604A (ja) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd チオ尿素含有水の処理方法および装置
JP2017217596A (ja) * 2016-06-06 2017-12-14 栗田工業株式会社 酸性イオン交換体の再生廃液からの酸性溶液の回収装置及びこれを用いた回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271781A (ja) * 1996-04-08 1997-10-21 Toshiba Corp 廃水からの窒素分除去方法
JPH10272371A (ja) * 1997-03-31 1998-10-13 Miura Co Ltd 軟水化処理システム
JPH11128691A (ja) * 1997-10-24 1999-05-18 Japan Organo Co Ltd フォトレジスト現像液再生回収装置
JP2000354772A (ja) * 1999-06-14 2000-12-26 Japan Organo Co Ltd 復水脱塩装置の再生廃液の処理方法
JP2013202604A (ja) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd チオ尿素含有水の処理方法および装置
JP2017217596A (ja) * 2016-06-06 2017-12-14 栗田工業株式会社 酸性イオン交換体の再生廃液からの酸性溶液の回収装置及びこれを用いた回収方法

Also Published As

Publication number Publication date
JP2022158548A (ja) 2022-10-17
US20240173673A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US10662085B2 (en) Low energy system and method of desalinating seawater
US6149788A (en) Method and apparatus for preventing scaling in electrodeionization units
JP3518112B2 (ja) 燃料電池の水処理装置
US6780328B1 (en) Fluid purification devices and methods employing deionization followed by ionization followed by deionization
JP7112196B2 (ja) アンモニア回収方法及び装置
EP2374761A2 (en) Zero liquid discharge water treatment system and method
AU2013227295A1 (en) Method of treatment of amine waste water and a system for accomplishing the same
WO2015066811A1 (en) Removal of ammonia from ammonia-containing water using an electrodialysis process
CA3090320A1 (en) Gas recovery from wastewater
JP2011131210A (ja) 窒素化合物含有酸性液の処理装置および処理方法
JP6011238B2 (ja) アミン液の再生方法および装置
WO1998058727A1 (en) Fluid purification devices and methods employing deionization followed by ionization followed by deionization
JP2019098204A (ja) アンモニア処理方法及び装置
US11577202B2 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
CN104812705A (zh) 含氨废水的处理装置及含氨废水的处理方法
WO2022210525A1 (ja) 排水処理システム
JP6653626B2 (ja) 水処理方法および装置、水処理装置の改造方法、並びに水処理装置改造用キット
JP3270244B2 (ja) 廃液処理方法及び廃液処理装置
JP2005066544A (ja) モノエタノールアミンの回収方法
JP4931107B2 (ja) 電気脱イオン装置およびそれを用いた加圧水型原子力発電所の2次系ライン水処理装置
JPH09294974A (ja) 水処理システム
JPH07163845A (ja) 硝酸アンモニウム含有廃液の処理装置
KR102442716B1 (ko) 분리막과 전기화학적 방법을 이용한 하·폐수 방류수 재이용 및 발생 고농도 이온 농축수 처리 시스템
JP2012196630A (ja) 酸性液の処理装置及び処理方法
JP2005095741A (ja) 水処理方法および水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18551859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780736

Country of ref document: EP

Kind code of ref document: A1