WO2022210358A1 - スパー型洋上風力発電設備用浮体の立て起こし方法 - Google Patents

スパー型洋上風力発電設備用浮体の立て起こし方法 Download PDF

Info

Publication number
WO2022210358A1
WO2022210358A1 PCT/JP2022/014408 JP2022014408W WO2022210358A1 WO 2022210358 A1 WO2022210358 A1 WO 2022210358A1 JP 2022014408 W JP2022014408 W JP 2022014408W WO 2022210358 A1 WO2022210358 A1 WO 2022210358A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
spar
power generation
wind power
offshore wind
Prior art date
Application number
PCT/JP2022/014408
Other languages
English (en)
French (fr)
Inventor
智昭 宇都宮
郁 佐藤
康二 田中
泰弘 新川
賢太 酒井
Original Assignee
戸田建設株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田建設株式会社, 国立大学法人九州大学 filed Critical 戸田建設株式会社
Priority to EP22780571.0A priority Critical patent/EP4317682A1/en
Priority to US18/283,082 priority patent/US20240166313A1/en
Priority to AU2022248613A priority patent/AU2022248613A1/en
Priority to CA3213428A priority patent/CA3213428A1/en
Priority to JP2023511169A priority patent/JPWO2022210358A1/ja
Publication of WO2022210358A1 publication Critical patent/WO2022210358A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/047Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with spherical hull or hull in the shape of a vertical ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • B63B39/03Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses by transferring liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B77/00Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms
    • B63B77/10Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms specially adapted for electric power plants, e.g. wind turbines or tidal turbine generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • F03D13/126Offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • F03D13/256Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation on a floating support, i.e. floating wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a method for erecting a spar-type offshore wind power generation facility floating body installed in relatively deep water.
  • Patent Document 1 discloses an offshore wind power generation facility comprising a floating body, a mooring rope, a tower, a nacelle installed at the top of the tower, and a plurality of blades, wherein the floating body is a concrete precast cylinder.
  • a lower concrete floating body structure is formed by stacking multiple tiers in the height direction, and each precast cylindrical body is tightly bound with PC steel to be integrated.
  • An offshore wind power generation facility has been proposed that has a spar-type floating structure including an upper steel floating structure.
  • the spar type refers to an elongated cylindrical floating body structure like a rod-shaped fishing float.
  • the main object of the present invention is to provide a method for safely and efficiently erecting a floating body for a spar-type offshore wind power generation facility by injecting ballast water on the sea.
  • a method for erecting a floating body for a spar-type offshore wind power generation facility comprising a second step of injecting ballast water and standing upright the floating body for a spar-type offshore wind power generation facility.
  • the invention described in claim 1 above is the first inventive method for erecting according to the present invention.
  • the position of the center of gravity of the floating body for the spar-type offshore wind power generation facility is shifted in advance by the center-of-gravity eccentricity means (first procedure).
  • the position of the center of gravity is eccentric, as will be described later in [Example], when the ballast water is injected and the state of floating sideways shifts to the rising motion, the rising motion slows down and the body stands upright. It will be possible to suppress the upset after getting close to the state.
  • eccentricity of the center of gravity position does not mean eccentricity only in the direction along the longitudinal central axis of the floating body, but includes the eccentricity in the plane direction orthogonal to the longitudinal central axis of the floating body. means the movement of
  • ballast water in raising a floating body for a spar-type offshore wind power generation facility that floats sideways on the sea by pouring ballast water, a first procedure in which the position of the center of gravity of the floating body for a spar-type offshore wind power generation facility is eccentrically shifted by a center-of-gravity eccentricity means; After ballast water is injected and the floating body for spar-type offshore wind power generation equipment starts to stand up, the injection of ballast water is stopped at a predetermined amount to erect the spar-type offshore floating body for offshore wind power generation equipment.
  • a method for erecting a floating body for a spar-type offshore wind power generation facility characterized by comprising a third step of erecting the floating body for a spar-type offshore wind power generation facility by gradually injecting ballast water.
  • the invention described in claim 2 above is the second inventive method of erecting according to the present invention. Specifically, when raising the floating body, the position of the center of gravity of the floating body for the spar-type offshore wind power generation facility is shifted in advance by the center-of-gravity eccentricity means (first procedure). If the position of the center of gravity is eccentric, the rising motion can be slowed down when shifting from the state of floating sideways to the motion of standing up due to the injection of ballast water during the second procedure.
  • ballast water is injected, and after the spar-type offshore floating body for offshore wind power generation equipment starts to stand up, the injection of ballast water is stopped at a predetermined amount to erect the spar-type offshore floating body for offshore wind power generation equipment. Stop in the oblique state before standing up (second procedure). In the second procedure, the rising motion can be slowed down by eccentrically positioning the center of gravity of the floating body, and by stopping the ballast water injection at a predetermined amount, the floating body is stopped in an oblique state before standing upright. becomes possible easily.
  • the floating body for the spar-type offshore wind power generation facility is erected (third procedure).
  • the floating body is erected from an obliquely stopped state, only a small inertial force acts on the floating body, so that it is possible to substantially eliminate the shaking immediately after the erection.
  • the spar-type offshore wind power generation system according to any one of claims 1 and 2, wherein the gravity center eccentric means is a weight detachably attached to the outer surface of the spur-type offshore wind power generation facility floating body.
  • a method for erecting a floating body for power generation equipment is provided.
  • the invention described in claim 3 above shows a first embodiment of the center-of-gravity decentering means. Specifically, a weight detachably attached to the outer surface of the floating body for the spar-type offshore wind power generation facility is used as the gravity center eccentric means.
  • a method for erecting a floating body for a spar-type offshore wind power generation facility according to claim 3, wherein the weight is attached to a position above the sea surface when erected.
  • the weight is attached to a position above the sea surface when the boat is erected. After the floating body is erected, the unnecessary weight can be easily removed.
  • the spar-type offshore wind power generation facility according to any one of claims 1 and 2, wherein the gravity center eccentric means is solid ballast put into the floating body for the spar-type offshore wind power generation facility.
  • a method for erecting a floating body is provided.
  • the invention described in claim 5 above shows a second embodiment of the center-of-gravity decentering means.
  • the solid ballast put into the floating body for the spar-type offshore wind power generation facility is used as the center-of-gravity eccentric means.
  • Solid ballast is usually thrown into the floating body after it is erected, but unlike water, solid ballast can be tilted up to the angle of repose (slope angle that can maintain stability without collapsing). can be a means of eccentrically locating the center of gravity to maintain the maldistributed state without moving.
  • the moving speed of the solid ballast is slower than that of water, and the eccentric state is maintained while the eccentric amount gradually decreases until just before the solid ballast stands upright. .
  • FIG. 1 is an overall side view of a spar-type floating offshore wind power generation facility 1;
  • FIG. 4 is a longitudinal sectional view of the floating body 4;
  • FIG. FIG. 2 shows a precast cylindrical body 15, (A) being a longitudinal cross-sectional view, (B) being a plan view (view taken along the line B-B), and (C) being a bottom view (view taken along the line CC).
  • Fig. 10(A) and (B) are diagrams of the binding procedure for precast cylindrical bodies 15; It is a longitudinal cross-sectional view showing a boundary portion between a lower concrete floating body structure 4A and an upper steel floating body structure 4B. 1 shows a procedure (part 1) for erecting the floating body 4 according to the first embodiment.
  • Fig. 1 shows a procedure (part 1) for erecting the floating body 4 according to the first embodiment.
  • FIG. 4 shows a procedure (part 4) for erecting the floating body 4 according to the second embodiment.
  • 4 is a side view of the floating body model 40.
  • FIG. It is a graph which shows the comparison of an experimental value and an analysis result.
  • 7 is a graph showing the influence of eccentricity of the position of the center of gravity of the float on the response (raising action).
  • the offshore wind power generation facility 1 includes a tubular floating body 4, a mooring cable 5, a tower 6, a nacelle 8 installed at the top of the tower 6, and a plurality of blades 9, 9. , and the windmill 7 consisting of .
  • the floating body 4 is constructed by stacking a plurality of precast tubular bodies 15, 15, made of concrete in the height direction, and binding the precast tubular bodies 15, 15, and so on with PC steel materials 19 to form an integral body. It consists of a lower concrete floating body structure 4A and an upper steel floating body structure 4B connected to the upper side of the lower concrete floating body structure 4A.
  • Ballast materials such as water, gravel, fine or coarse aggregates, and metal grains can be put into or discharged from the hollow portion of the floating body 4, and the buoyancy (draft) can be adjusted.
  • the ballast material can be charged/discharged by adopting the fluid transportation method previously proposed by the present applicant in Japanese Unexamined Patent Application Publication No. 2012-201217.
  • the precast tubular body 15 constituting the lower concrete floating body structure 4A is a circular tubular precast member having the same cross section in the axial direction. Hollow precast parts are used which are either produced using molds or produced by centrifugal molding.
  • sheaths 21, 21... for inserting the PC steel rods 19 are embedded in the wall surface at appropriate intervals in the circumferential direction.
  • a box cut-out portion 22 for mounting is formed.
  • a plurality of hanging metal fittings 23 are provided on the upper surface.
  • the precast tubular bodies 15 are tightly bound together by inserting the PC steel rods 19, 19, .
  • an anchor plate 24 is fitted in the box-out portion 22, and tension is introduced to the PC steel rod 19 by the nut member 25 to integrate them.
  • a grout material is injected into the sheath 21 through the grout injection hole 27 (see FIG. 4(B)).
  • the hole 24a formed in the anchor plate 24 is a grouting confirmation hole, and filling of the grouting material is completed when the grouting material is discharged from the confirmation hole.
  • the coupler 26 is screwed to the protruding portion of the PC steel rod 19, and the upper PC steel rods 19, 19 . . .
  • the PC steel rods 19, 19, . . . are stacked while being inserted into the sheaths 21, 21, .
  • an epoxy resin-based adhesive 28 or a sealing material is applied to the joint surfaces of the lower-stage precast tubular body 15 and the upper-stage precast tubular body 15 in order to ensure waterproofing and to join the mating surfaces. .
  • the upper steel floating body structure 4B is composed of a steel cylindrical body 17 positioned relatively on the lower side and a steel cylindrical body 18 positioned relatively on the upper side. It is configured.
  • the steel tubular body 17 on the lower side has the same outer diameter as the precast tubular body 15 at its lower part, and is connected to the precast tubular body 15 .
  • the upper portion of the steel tubular body 17 has a truncated cone shape with a gradually narrowing diameter.
  • the steel cylindrical body 18 on the upper side is a cylindrical body whose outer diameter is continuous with the upper outer diameter of the steel cylindrical body 17 on the lower side. It is connected by bolts, welding, or the like (bolt fastening in the illustrated example).
  • the tower 6 is made of steel, concrete, or PRC (Prestressed Reinforced Concrete), but it is preferable to use steel so as to reduce the total weight.
  • the outer diameter of the tower 6 and the outer diameter of the upper steel tubular body 18 are substantially the same, and the outer shape is continuous in the vertical direction without steps.
  • a ladder 13 is provided above the upper steel tubular body 18
  • a corridor scaffolding 14 is provided in the circumferential direction substantially at the boundary between the tower 6 and the upper steel tubular body 18 .
  • the mooring point K of the mooring cable 5 to the floating body 4 is set at a position below the sea surface and higher than the center of gravity G of the floating body 4, as shown in FIG. Therefore, it becomes possible to prevent the ship from coming into contact with the mooring line 5 .
  • a resistance moment centering on the center of gravity G of the floating body 4 is generated at the mooring point so as to prevent the floating body 4 from falling too much, the tilting posture of the tower 6 can be properly maintained.
  • the nacelle 8 is a device equipped with a generator that converts the rotation of the windmill 7 into electricity and a controller that can automatically change the angle of the blades 9 .
  • the floating body 4 is loaded onto the semi-submersible barge 30 while adjusting the ballast.
  • a weight 2 is detachably attached to the floating body 4 for eccentrically moving the center of gravity.
  • the weight 2 is desirably attached to the outer surface of the floating body 4 at a position above the sea surface when the floating body 4 is erected.
  • the eccentricity of the center of gravity position does not mean the eccentricity only in the direction (Z-axis) along the longitudinal central axis of the floating body 4, but in the plane direction (X, It means movement of the center of gravity position including eccentricity to the Y-axis plane). Therefore, the weight 2 may be provided at one location on the outer surface of the floating body 4, and even-numbered locations (for example, 180° or 90°) symmetrical to the outer surface of the floating body 4. It is not desirable to set
  • Float-off (surfacing/launching) of the floating body 4 involves injecting water into the semi-submersible barge 30 to bring it into a semi-submerged state, causing the floating body 4 to float in seawater, and moving the semi-submersible barge 30 from the floating body 4. keep them apart.
  • ballast barge 32 equipped with ballast water pump equipment is brought close to the floating body 4 that has been floated off so that water can be injected, and a ballast hose 33 is attached to the floating body 4. 4 to enable the supply of ballast water.
  • the pitch angle of the floating body 4 (inclination angle ⁇ formed by the longitudinal axis of the floating body 4 and the water surface) gradually increases. rise. Then, after a certain time, as shown in FIG. 8, the floating body 4 suddenly starts to stand up. Then, as shown in FIG. 9, the floating body 4 stands up substantially vertically.
  • solid ballast 34 is put into the floating body 4 .
  • the solid ballast 34 powdery particles having a higher specific gravity than water are used. Specifically, sand, gravel, minerals including barite, metal powders such as iron and lead, and metal grains are used. It is preferable to use one kind of metal or a combination of two or more kinds of metals.
  • a ballast material having an appropriate specific gravity can be thrown. Also, the draft of the floating body 4 is adjusted while balancing with the ballast water.
  • a ladder 13 is attached to the top of the floating body 4, and a corridor scaffolding 14 is provided. Furthermore, one end of the mooring cable 5 is tethered to the floating body 4 and the other end is tethered to an anchor sunk on the seabed to stabilize the floating body 4 .
  • the tower 6, the nacelle 8 connected to the top of the tower 6, and the wind turbine 7 consisting of a plurality of wind turbine blades 9, 9, are collectively lifted by a crane installed on a large crane ship 35. It is installed above the floating body 4 while being suspended.
  • ballast water when the floating body 4 for a spar-type offshore wind power generation facility floating sideways on the sea is erected by pouring ballast water, a first procedure in which the position of the center of gravity of the floating body 4 for spar-type offshore wind power generation equipment is eccentrically shifted by a center-of-gravity eccentricity means; After ballast water is injected and the floating body 4 for spar type offshore wind power generation facility starts to stand up, the injection of ballast water is stopped at a predetermined amount to erect the spar type floating body 4 for offshore wind power generation facility. A second procedure of stopping in an oblique state before standing up, and a third step of gradually injecting ballast water to erect the floating body 4 for spar-type offshore wind power generation equipment.
  • the weight 2 attachment and the injection of the solid ballast 34 into the floating body 4 can be adopted as the gravity center eccentric means.
  • the upright motion becomes slow, so that the floating body 4 can be stopped in an oblique state before it stands upright.
  • the ballast water is gradually injected to make the floating body 4 stand upright. The swaying due to the movement can be made to act less, which makes it possible to do so more safely and efficiently.
  • the inclination angle ⁇ at which the floating body 4 is stopped in an oblique state before standing upright is preferably an angle equal to or less than the angle of repose of the solid ballast 34.
  • the floating body 4 As shown in FIG. 12, once the floating body 4 has been manufactured in a predetermined wharf area, it is loaded onto the semi-submersible barge 30 while adjusting the ballast.
  • a solid ballast 34 is put into the inside of the floating body 4 while the floating body is loaded. It should be noted that the solid ballast 34 can be introduced before loading onto the semi-submersible barge 30 .
  • the solid ballast 34 is allowed to flow without being constrained by any means. Therefore, since the floating body 4 is loaded on the semi-submersible barge 30 in a lateral direction, the solid ballast 34 is spread laterally. That is, when the floating body 4 is oriented sideways, the center of gravity of the floating body 4 is eccentric due to the solid ballast 34 .
  • the floating body 4 is floated on the sea.
  • Float-off (surfacing/launching) of the floating body 4 is performed by injecting water into the semi-submersible barge 30 to bring it into a semi-submerged state, floating the floating body 4 in seawater, and then setting the semi-submersible barge 30 to the floating body. Keep away from 4.
  • ballast barge 32 equipped with ballast water pump equipment is brought close to the floating body 4 that has been floated off so that water can be injected, and a ballast hose 33 is attached to the floating body 4. 4 to enable the supply of ballast water.
  • the pitch angle of the floating body 4 (the angle ⁇ between the longitudinal direction of the floating body and the water surface) rises, albeit little by little. . Then, after a certain point, as shown in FIG. 14, the floating body 4 suddenly starts to stand up. Then, as shown in FIG. 15, the floating body 4 stands up substantially vertically.
  • the center of gravity of the floating body 4 is eccentric due to the solid ballast thrown inside, and the pitch angle ⁇ of the floating body 4 gradually increases due to the injection of ballast water.
  • the solid ballast 34 maintains the unevenly distributed state without moving up to the inclination angle ⁇ of the angle of repose (angle of slope capable of maintaining stability without collapsing). After the inclination angle ⁇ of the floating body 4 exceeds the angle of repose, the solid ballast 34 starts to move, but since its moving speed is slower than that of water, the solid ballast 34 flows while taking time until it stands up.
  • the eccentricity of the center of gravity position is eliminated by filling the bottom of the floating body 4, but the eccentricity is maintained while the amount of eccentricity gradually decreases until just before the floating body 4 rises up. As the movement slows down, it becomes possible to suppress the swaying after reaching a near upright position. Therefore, it is possible to safely and efficiently raise the floating body 4 by injecting ballast water.
  • the draught of the floating body 4 is adjusted by injecting ballast water, since a predetermined amount of solid ballast 34 has already been put in.
  • FIG. 16 shows the outline and dimensions of the floating model 40.
  • the scale is 1/36.11 of the assumed actual machine (2MW machine).
  • the weight and the height of the center of gravity were adjusted by attaching steel plates to the upper and lower parts of the floating body, which is mainly made of vinyl chloride pipes. Further, as shown in FIG. 16, markers 41 and 42 used for motion measurement are attached at two positions of 65 mm and 418 mm from the upper end of the floating body.
  • the floating model 40 was moored in the center of the water tank.
  • the upper part of the floating body is moored from the water tank auxiliary truck, and the lower part of the floating body is moored from the water tank shore.
  • a motion capture system that captures the movements of the markers 41 and 42 in real time was used to measure the attitude of the floating model 40.
  • the two markers 41 and 42 attached to the floating model 40 were captured by a total of four cameras (Qualysis 5+; 4 MP, 2048x2048 pixels, 180 fps) installed on the side of the water tank. ) are output as spatial coordinate values. Based on the converted coordinate values, the angle of inclination between the central axis of the floating body and the water surface was calculated and used as the pitch angle.
  • Ballast water was injected through a hose from the upper part of the floating body.
  • the pump used was a Takumina Smoothflow pump (maximum discharge rate: 1.08 L/min, maximum discharge pressure: 1 MPa).
  • the flow rate during the experiment was set at 0.73 L/min (5.7 m3/min in terms of actual equipment).
  • FIG. 17 shows the experimental results when standing up in comparison with the simulation analysis results by ADAMS.
  • the floating body fixed coordinate system has the origin at the bottom surface of the floating body, the Z axis upward along the central axis of the floating body, and the X and Y axes in the direction orthogonal to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

【課題】洋上において、バラスト水の注水によるスパー型洋上風力発電設備用浮体の立て起こしを安全かつ効率的に行う。 【解決手段】海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体4をバラスト水の注水によって立て起こしするに当たって、前記スパー型洋上風力発電設備用浮体4に対して、重心偏心化手段によって重心位置を偏心させた状態とする第1手順と、バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体4を直立に起立させる第2手順とからなる。前記重心偏心化手段としては、浮体4の外面に取り付けたウエイト2又は浮体4の内部に投入した固形バラスト34とすることができる。

Description

スパー型洋上風力発電設備用浮体の立て起こし方法
 本発明は、比較的水深の深い海上に設置されるスパー型洋上風力発電設備浮体の立て起こし方法に関する。
 例えば、下記特許文献1では、浮体と、係留索と、タワーと、タワーの頂部に設備されるナセル及び複数のブレードとからなる洋上風力発電設備であって、前記浮体は、コンクリート製のプレキャスト筒状体を高さ方向に複数段積み上げ、各プレキャスト筒状体をPC鋼材により緊結し一体化を図った下側コンクリート製浮体構造部と、この下側コンクリート浮体構造部の上側に連設された上側鋼製浮体構造部とからなるスパー型の浮体構造とした洋上風力発電設備が提案されている。なお、スパー型とは、棒状の釣り浮きのように細長い円筒形状の浮体構造を言う。
 前記スパー型洋上風力発電設備を海上に設置する場合、波の穏やかな湾内で施工を行うのが望ましいが、浮体の吃水(水面下の部分)が概ね70m以上と深いのに対して、湾内の水深は一般的にこれよりも浅いため、湾内での施工は困難であった。このため、前記スパー型洋上風力発電設備の設置に当たっては、下記特許文献2に示されるように、製作ヤードに隣接した海上で、浮体を横向きに浮かべて曳航船により設置場所まで運搬するか、浮体を台船に搭載して曳航して設置場所まで運搬するかした後、浮体の立て起こしに当たっては、バラスト水を注水するとともに、浮体の底部に結んだウインチからのワイヤーを徐々に繰り出すことによりゆっくりと浮体を直立状態に立て起こしするようにしている。
特許第5274329号公報 特開2012-201219号公報
 ウインチからの繰出したワイヤーで補助しながら浮体の立て起こしを行うのは、バラスト水を注水していくとある時点で急激に浮体が直立に起立し、その浮体の慣性力によって直立状態になった際に揺動(振動)を発生させ、それによって浮体或いはその付帯設備に損傷が発生するおそれがあるからである。従って、洋上における浮体の立て起こし作業は細心の注意と慎重さを要する危険作業となっていた。
 そこで本発明の主たる課題は、洋上において、バラスト水の注水によるスパー型洋上風力発電設備用浮体の立て起こしを安全かつ効率的に行う方法を提供することにある。
 上記課題を解決するために請求項1に係る本発明として、海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体をバラスト水の注水によって立て起こしするに当たって、
 前記スパー型洋上風力発電設備用浮体に対して、重心偏心化手段によって重心位置を偏心させた状態とする第1手順と、
 バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体を直立に起立させる第2手順とからなることを特徴とするスパー型洋上風力発電設備用浮体の立て起こし方法が提供される。
 上記請求項1記載の発明は、本発明に係る立て起こしの第1発明方法である。具体的には、浮体の立て起こしに当たって、事前にスパー型洋上風力発電設備用浮体に対して、重心偏心化手段によって重心位置を偏心させた状態とする(第1手順)。重心位置を偏心させておくと、後述の〔実施例〕に示されるように、バラスト水の注水によって横向きで浮かんだ状態から立上り動作に移行した際に、この立上り動作が緩慢になるとともに、直立状態に近くなってからの動揺を小さく押さえられるようになる。ここで、「重心位置の偏心」とは、浮体の長手方向中心軸に沿った方向のみの偏心を意味するものではなく、浮体の長手方向中心軸に直交する面方向への偏心を含む重心位置の移動を意味するものである。
 従って、本発明によれば、洋上において、バラスト水の注水によるスパー型洋上風力発電設備用浮体の立て起こしを安全かつ効率的に行うことが可能になる。
 請求項2に係る本発明として、海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体をバラスト水の注水によって立て起こしするに当たって、
 前記スパー型洋上風力発電設備用浮体に対して、重心偏心化手段によって重心位置を偏心させた状態とする第1手順と、
 バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによって前記スパー型洋上風力発電設備用浮体を直立に起立する以前の斜め状態で停止させる第2手順と、
 更にバラスト水を徐々に注水することにより前記スパー型洋上風力発電設備用浮体を直立に起立させる第3手順とからなることを特徴とするスパー型洋上風力発電設備用浮体の立て起こし方法が提供される。
 上記請求項2記載の発明は、本発明に係る立て起こしの第2発明方法である。具体的には、浮体の立て起こしに当たって、事前にスパー型洋上風力発電設備用浮体に対して、重心偏心化手段によって重心位置を偏心させた状態とする(第1手順)。重心位置を偏心させておくと、第2手順時に、バラスト水の注水によって横向きで浮かんだ状態から起立する動作に移行した際に、この立上り動作を緩慢化できるようになる。
 次いで、バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによって前記スパー型洋上風力発電設備用浮体を直立に起立する以前の斜め状態で停止させるようにする(第2手順)。第2手順では、浮体の重心位置を偏心させることにより立上り動作を緩慢化できたことにより、バラスト水を所定の注水量で停止することで、浮体を直立に起立する以前の斜め状態で停止させることが容易に可能になる。
 最後に、更にバラスト水を徐々に注水することにより前記スパー型洋上風力発電設備用浮体を直立に起立させる(第3手順)。浮体が斜めに停止した状態から直立させる場合は、浮体に慣性力は僅かしか作用しないため直立直後の動揺をほぼ無くすことが可能になる。
 従って、本発明によれば、洋上において、バラスト水の注水によるスパー型洋上風力発電設備用浮体の立て起こしを安全かつ効率的に行うことが可能になる。
 請求項3に係る本発明として、前記重心偏心化手段は、前記スパー型洋上風力発電設備用浮体の外面に着脱自在に取り付けたウエイトとする請求項1、2いずれかに記載のスパー型洋上風力発電設備用浮体の立て起こし方法が提供される。
 上記請求項3記載の発明は、前記重心偏心化手段の第1形態例を示したものである。具体的には、前記重心偏心化手段として、前記スパー型洋上風力発電設備用浮体の外面に着脱自在に取り付けたウエイトとするものである。
 請求項4に係る本発明として、前記ウエイトは、立て起こしした際に、海面上の位置に取り付けてある請求項3記載のスパー型洋上風力発電設備用浮体の立て起こし方法が提供される。
 上記請求項4記載の発明は、前記ウエイトは、立て起こしした際に、海面上の位置に取り付けるようにしたものである。浮体を立て起こした後、不要になったウエイトの撤去が容易に行えるようになる。
 請求項5に係る本発明として、前記重心偏心化手段は、前記スパー型洋上風力発電設備用浮体の内部に投入した固形バラストとする請求項1、2いずれかに記載のスパー型洋上風力発電設備用浮体の立て起こし方法が提供される。
 上記請求項5記載の発明は、前記重心偏心化手段の第2形態例を示したものである。具体的には、前記重心偏心化手段として、前記スパー型洋上風力発電設備用浮体の内部に投入した固形バラストを用いるものである。固形バラストは、通常、浮体を立て起こしした後に浮体内に投入されるものであるが、水とは異なり固形バラストならば、安息角(崩れないで安定を保持し得る斜面角度)の傾斜角度までは移動することなく偏在状態を保持するため重心位置を偏心させる手段となり得る。また、安息角を越えてから固形バラストの移動速度は水と比べて遅く直立する直前までは偏心量は漸減しながらも偏心状態を維持するため、重心偏心化手段として採用することが可能である。
 以上詳説のとおり本発明によれば、洋上において、バラスト水の注水によるスパー型洋上風力発電設備用浮体の立て起こしを安全かつ効率的に行うことが可能になる。
スパー型浮体式洋上風力発電設備1の全体側面図である。 浮体4の縦断面図である。 プレキャスト筒状体15を示す、(A)は縦断面図、(B)は平面図(B-B線矢視図)、(C)は底面図(C-C線矢視図)である。 プレキャスト筒状体15同士の緊結要領図(A)(B)である。 下側コンクリート製浮体構造部4Aと上側鋼製浮体構造部4Bとの境界部を示す縦断面図である。 第1形態例に係る浮体4の立て起こし手順(その1)である。 第1形態例に係る浮体4の立て起こし手順(その2)である。 第1形態例に係る浮体4の立て起こし手順(その3)である。 第1形態例に係る浮体4の立て起こし手順(その4)である。 立て起こし後の洋上風力発電設備1の施工手順(その1)である。 立て起こし後の洋上風力発電設備1の施工手順(その2)である。 第2形態例に係る浮体4の立て起こし手順(その1)である。 第2形態例に係る浮体4の立て起こし手順(その2)である。 第2形態例に係る浮体4の立て起こし手順(その3)である。 第2形態例に係る浮体4の立て起こし手順(その4)である。 浮体模型40の側面図である。 実験値と解析結果の比較を示すグラフである。 浮体重心位置の偏心による応答(立て起こし動作)への影響を示すグラフである。
 以下、本発明の実施の形態について図面を参照しながら詳述する。
〔スパー型浮体式洋上風力発電設備1〕
 本発明の係る「スパー型洋上風力発電設備用浮体の立て起こし方法」を説明する前に、スパー型浮体式の洋上風力発電設備1の構造例について、図1~図5に基づいて詳述する。
 前記洋上風力発電設備1は、図1に示されるように、筒状形状の浮体4と、係留索5と、タワー6と、タワー6の頂部に設備されるナセル8及び複数のブレード9,9…からなる風車7とから構成されるものである。
 前記浮体4は、図2に示されるように、コンクリート製のプレキャスト筒状体15、15…を高さ方向に複数段積み上げ、各プレキャスト筒状体15、15…をPC鋼材19により緊結し一体化を図った下側コンクリート製浮体構造部4Aと、この下側コンクリート浮体構造部4Aの上側に連設された上側鋼製浮体構造部4Bとからなる。
 前記浮体4の中空部内には、水、砂利、細骨材又は粗骨材、金属粒などのバラスト材が投入又は排出可能とされ、浮力(喫水)が調整可能とされる。バラスト材の投入/排出は、本出願人が先に、特開2012-201217号公報において提案した流体輸送方法を採用することによって可能である。
 前記下側コンクリート浮体構造部4Aを構成している前記プレキャスト筒状体15は、図3に示されるように、軸方向に同一断面とされる円形筒状のプレキャスト部材であり、それぞれが同一の型枠を用いて製作されるか、遠心成形により製造された中空プレキャスト部材が用いられる。
 壁面内には鉄筋20の他、周方向に適宜の間隔でPC鋼棒19を挿通するためのシース21、21…が埋設されている。このシース21、21…の下端部にはPC鋼棒19同士を連結するためのカップラーを挿入可能とするためにシース拡径部21aが形成されているとともに、上部には定着用アンカープレートを嵌設するための箱抜き部22が形成されている。また、上面には吊り金具23が複数設けられている。
 プレキャスト筒状体15同士の緊結は、図4(A)に示されるように、下段側プレキャスト筒状体15から上方に延長されたPC鋼棒19、19…をシース21、21…に挿通させながらプレキャスト筒状体15,15を積み重ねたならば、アンカープレート24を箱抜き部22に嵌設し、ナット部材25によりPC鋼棒19に張力を導入し一体化を図る。また、グラウト注入孔27からグラウト材をシース21内に注入する(図4(B)参照)。なお、前記アンカープレート24に形成された孔24aはグラウト注入確認孔であり、該確認孔からグラウト材が吐出されたことをもってグラウト材の充填を終了する。
 次に、図4(B)に示されるように、PC鋼棒19の突出部に対してカップラー26を螺合し、上段側のPC鋼棒19、19…を連結したならば、上段となるプレキャスト筒状体15のシース21、21…に前記PC鋼棒19、19…を挿通させながら積み重ね、前記要領によりPC鋼棒19の定着を図る手順を順次繰り返すことにより高さ方向に積み上げられる。この際、下段側プレキャスト筒状体15と上段側プレキャスト筒状体15との接合面には止水性確保及び合わせ面の接合のためにエポキシ樹脂系などの接着剤28やシール材が塗布される。
 前記上側鋼製浮体構造部4Bは、図2に示されるように、相対的に下段側に位置する鋼製筒状体17と、相対的に上段側に位置する鋼製筒状体18とで構成されている。下段側の鋼製筒状体17は、下側部分がプレキャスト筒状体15と同一の外径寸法とされ、プレキャスト筒状体15に対して連結されている。前記鋼製筒状体17の上側部分は漸次直径を窄めた截頭円錐台形状を成している。
 上段側の鋼製筒状体18は、前記下段側の鋼製筒状体17の上部外径に連続する外径寸法とされる筒状体とされ、下段側の鋼製筒状体17に対してボルト又は溶接等(図示例はボルト締結)によって連結される。
 一方、前記タワー6は、鋼材、コンクリート又はPRC(プレストレスト鉄筋コンクリート)から構成されるものが使用されるが、好ましいのは総重量が小さくなるように鋼材によって製作されたものを用いるのが望ましい。タワー6の外径と前記上段側鋼製筒状体18の外径とはほぼ一致しており、外形状は段差等が無く上下方向に連続している。図示例では、上段側鋼製筒状体18の上部に梯子13が設けられ、タワー6と上段側鋼製筒状体18とのほぼ境界部に周方向に歩廊足場14が設けられている。
 前記係留索5の浮体4への係留点Kは、図1に示されるように、海面下であってかつ浮体4の重心Gよりも高い位置に設定してある。従って、船舶が係留索5に接触するのを防止できるようになる。また、浮体4の倒れ過ぎを抑えるように係留点に浮体4の重心Gを中心とする抵抗モーメントを発生させるため、タワー6の傾動姿勢状態を適性に保持し得るようになる。
 一方、前記ナセル8は、風車7の回転を電気に変換する発電機やブレード9の角度を自動的に変えることができる制御器などが搭載された装置である。
〔スパー型洋上風力発電設備用浮体の立て起こし方法(その1)〕
 次に、前述したスパー型洋上風力発電設備用の浮体4の立て起こし方法について詳述する。
 本発明は、海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体をバラスト水の注水によって立て起こしするに当たって、
 前記スパー型洋上風力発電設備用浮体4に対して、着脱自在にウエイト2を取り付けることによって重心位置を偏心させた状態とする第1手順と、バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体4を直立に起立させる第2手順とからなるものである。前記ウエイト2が本発明の「重心偏心化手段」を構成するものである。以下、図6~図10に基づいて具体的に詳述する。
 所定の岸壁エリアにおいて、浮体4の製作を行ったならば、バラスト調整しながら半潜水型台船30に積み込みを行う。この際、浮体4に対して重心位置を偏心させるためのウエイト2を着脱自在に取り付けておくようにする。前記ウエイト2については、取り外しの便宜から、前記浮体4の外面であって、立て起こしした際に、海面上となる位置に取り付けておくことが望ましい。ここで、重心位置の偏心とは、浮体4の長手方向中心軸に沿った方向(Z軸)のみの偏心を意味するものではなく、浮体4の長手方向中心軸に直交する面方向(X,Y軸面)への偏心を含む重心位置の移動を意味するものである。従って、前記ウエイト2は、浮体4の外面の1箇所に設けるようにすればよく、浮体4の外面に対称位置となるように偶数箇所(例えば、180°方向位置又は90°方向位置等)に設けるのは望ましくない。
 次に、図6に示されるように、曳航船31によって設置場所の海上まで運搬する。浮体4のフロートオフ(浮上・進水)は、前記半潜水型台船30に注水を行って半潜水状態とし、浮体4を海水に浮かばせるとともに、前記半潜水型台船30を浮体4から離隔させるようにする。
 次に、図7に示されるように、フロートオフされた浮体4に対して、注水が可能なように、バラスト水のポンプ設備を搭載したバラスト台船32を近接させるとともに、バラストホース33を浮体4の内部に挿入してバラスト水の供給を可能とする。
 バラスト水の注水を行い、浮体4の内部に所定量のバラスト水が注水されると、最初は少しづつではあるが、浮体4のピッチ角(浮体4の長手方向軸線と水面との成す傾斜角度θ)が上昇する。そして、ある時点を過ぎると、図8に示されるように、急激に浮体4は起立動作を開始するようになる。そして、図9に示されるように、浮体4がほぼ垂直に起立する。
 本願発明では、前記ウエスト2を取り付けて、重心位置を偏心させておくことにより、後述の〔実施例〕に示されるように、バラスト水の注水によって横向きで浮かんだ状態から立上り動作に移行した際に、この立上り動作が緩慢になるとともに、直立状態に近くなってからの動揺を小さく押さえられるようになる。従って、バラスト水の注水による浮体4の立て起こしを安全かつ効率的に行うことが可能になる。
 前記浮体4を起立させたならば、図10に示されるように、前記ウエイト2を撤去する。また、浮体4内に固形バラスト34を投入する。前記固形バラスト34としては、水より高比重である粉粒状のものが使用され、具体的には、砂、砂利、重晶石を含む鉱物類及び鉄、鉛等の金属粉、金属粒を含む金属類のうち一種または複数種の組み合わせからなるものとすることが好ましい。固形バラスト34の材質を調整することで、適切な比重のバラスト材が投入できるようになる。また、バラスト水とのバランスを図りながら、浮体4の吃水を調整する。
 また、同図10に示されるように、浮体4の上部に梯子13を取り付けるとともに、歩廊足場14を設ける。更に、前記浮体4に係留索5の一端を繋ぎ止めるとともに、他端を海底に沈設したアンカーに繋ぎ止めて浮体4の安定を図る。
 次いで、図11に示されるように、タワー6と、これの頂部に連結したナセル8及び複数の風車ブレード9、9…からなる風車7とを一括として、大型起重機船35に設備されたクレーンによって吊り下げながら浮体4の上部に設置する。
〔スパー型洋上風力発電設備用浮体の立て起こし方法(その2)〕
 次に、スパー型洋上風力発電設備用の浮体4の立て起こし方法の第2形態例について詳述する。
 本第2形態例は、海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体4をバラスト水の注水によって立て起こしするに当たって、
 前記スパー型洋上風力発電設備用浮体4に対して、重心偏心化手段によって重心位置を偏心させた状態とする第1手順と、
 バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体4が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによって前記スパー型洋上風力発電設備用浮体4を直立に起立する以前の斜め状態で停止させる第2手順と、
 更にバラスト水を徐々に注水することにより前記スパー型洋上風力発電設備用浮体4を直立に起立させる第3手順とからなるものである。
 前述した「浮体の立て起こし方法(その1)」と対比すると、浮体4が急激な直立動作を開始したその途中で、バラスト水の注水を停止することによって、浮体4を直立に起立する以前の斜め状態で停止させるようにした点でのみ異なるものとなっている。
 前記重心偏心化手段としては、前述したように、ウエイト2の取り付けや浮体4の内部への固形バラスト34の投入を採用することができる。重心位置を偏心させた状態とすることにより、直立動作が緩慢になるため、浮体4が直立する以前の斜め状態で停止させることが可能になる。浮体4を一旦傾斜状態で停止させた後、第3手順では更にバラスト水を徐々に注水することにより前記浮体4を直立に起立させるようにすることで、浮体4が直立した際に生じる慣性力による動揺は僅かしか作用しないようにできるため、より安全にかつ効率的に行うことが可能になる。
 なお、重心偏心化手段として、後述の固形バラスト34を用いる場合、浮体4を直立に起立する以前の斜め状態で停止させる傾斜角度θは、固形バラスト34の安息角以下の角度とするのが望ましい。
〔重心偏心化手段の第2形態例〕
 上記形態例では、重心偏心化手段としてウエイト2を用いた例を示したが、前記重心偏心化手段として、固形バラスト34を用いた例について、図12~図15に基づいて詳述する。
 図12に示されるように、所定の岸壁エリアにおいて、浮体4の製作を行ったならば、バラスト調整しながら半潜水型台船30に積み込みを行う。浮体を積込んだ状態で浮体4の内部に固形バラスト34を投入する。なお、固形バラスト34の投入は半潜水型台船30への積込み前に行うことも可能である。前記固形バラスト34は何らかの手段で拘束されることなく流動可能な状態とする。従って、前記浮体4は横向きの状態で半潜水型台船30に積み込まれるため、前記固形バラスト34は横に広がった状態となっている。すなわち、前記浮体4が横向きの状態では、前記固形バラスト34によって前記浮体4の重心位置は偏心した状態となっている。
 同図12に示されるように、曳航船31によって設置場所の海上まで運搬するしたならば、浮体4を海上に浮かばせる。前記浮体4のフロートオフ(浮上・進水)は、前記半潜水型台船30に注水を行って半潜水状態とし、浮体4を海水に浮かばせた後、前記半潜水型台船30を浮体4から離隔させるようにする。
 次に、図14に示されるように、フロートオフされた浮体4に対して、注水が可能なように、バラスト水のポンプ設備を搭載したバラスト台船32を近接させるとともに、バラストホース33を浮体4の内部に挿入してバラスト水の供給を可能とする。
 バラスト水の注水を行い、浮体4の内部に所定量のバラスト水が注水されると、最初は少しづつではあるが、浮体4のピッチ角(浮体の長手方向線と水面との成す角度θ)が上昇する。そして、ある時点を過ぎると、図14に示されるように、急激に浮体4は起立動作を開始するようになる。そして、図15に示されるように、浮体4がほぼ垂直に起立する。
 前記浮体4が横向きの状態では、内部に投入された固形バラストによって浮体4の重心位置は偏心した状態にあり、バラスト水の注水によって浮体4のピッチ角θは徐々に上昇する。前記浮体4が傾斜しても、前記固形バラスト34は安息角(崩れないで安定を保持し得る斜面角度)の傾斜角度θまでは移動することなく偏在状態を保持する。そして、浮体4の傾斜角θが安息角を越えてから固形バラスト34は移動を開始するが、その移動速度は水と比べて遅いため、起立まで時間を掛けながら固形バラスト34は流動し、最終的に浮体4の底部に充填する状態となることで重心位置の偏心が解消されることになるが、直立する直前までは偏心量は漸減しながらも偏心状態を維持するため、浮体4の立上り動作が緩慢になるとともに、直立状態に近くなってからの動揺を小さく押さえられるようになる。従って、バラスト水の注水による浮体4の立て起こしを安全かつ効率的に行うことが可能になる。
 前記浮体4を起立させた後は、所定量の固形バラスト34は既に投入されているため、バラスト水を注水することにより浮体4の吃水を調整する。
 この後の、立て起こし後の洋上風力発電設備1の施工手順については、第1形態例で説明済みのため省略する。
〔他の形態例〕
(1)前記重心偏心化手段として、浮体4の外面に取り付けたウエイト2を用いる場合と、浮体4の内部に固形バラスト34を投入する場合との2つの例について説明したが、これらは併用して用いることも可能である。予め浮体4の内部に固形バラスト34を投入しておくことによって、洋上での固形バラスト投入作業を無くすことが可能になり、作業が効率化できるようになる。
 次に、本願発明において、浮体4に対して、重心偏心化手段(ウエイト2又は固形バラスト34)によって重心位置を偏心させた状態とすることの効果を検証するために行った実験と解析について詳述する。
1.水槽実験
1.1 模型諸元
 図16および表1に、浮体模型40の概要・寸法を示す.想定実機(2MW機)の1/36.11の縮尺となっている.塩化ビニール製パイプを主体として製作し,浮体上部と下部に鉄板を装着することで重量及び重心高さを調整した。また、図16に示すように、浮体上部端より、65mmおよび418mmの2箇所に動揺計測で使用するマーカー41、42を取り付けている。
Figure JPOXMLDOC01-appb-T000001
1.2 計測方法
 水槽実験は,試験水槽(幅:24.4 m,長さ:38.8 m,実験時の水深:1.824 m)にて実施した。
 浮体模型40を水槽中央にて係留した。係留は,浮体上部を水槽副台車から,浮体下部を水槽岸から行い、係留力によって浮体模型40の挙動が妨げられることのないよう予め調整するなどした。
 浮体模型40の姿勢計測には,リアルタイムでマーカー41、42の動きを捕らえるモーションキャプチャーシステム(Qualysis)を使用した。浮体模型40に取り付けた2つのマーカー41、42は,水槽脇に設置された計4台のカメラ(Qualysis 5+;4 MP,2048x2048 pixels, 180fps)によってその動きを捕らえられ、0.02秒(50 Hz)毎に空間座標値として出力される。変換された座標値を基に、浮体中心軸と水面とのなす傾斜角を算出し、これをPitch角とした。
1.3 バラスト水の注水
 バラスト水の注水は、浮体上部よりホースを通じておこなった。使用したポンプは、タクミナ製スムーズフローポンプ(最大吐出量1.08 L/min、最大吐出圧:1 MPa)である。実験時の流量は、0.73 L/min(実機換算で5.7 m3/min)とした。
2.解析方法
 解析は、任意のバラスト水が浮体内部にある状態において、浮体自身に作用する重力、内部バラスト水に作用する重力、偏心のためのウエイトに作用する重力、浮体に作用する浮力、運動する浮体が外部の流体から受ける付加質量力および抗力の6つの力を考慮し、これらと浮体運動にともなう慣性力との動的なつり合い条件から浮体姿勢を求めることをプログラム(ADAMS:機構解析ソフト)により行った。
3.実験及び解析結果
3.1 実験値と解析結果の比較(立て起し時)
 立て起し時の実験結果を、ADAMSによるシミュレーション解析結果と比較して図17に示す。ここで、内部バラスト水がない状態での浮体自身の重心位置としては、浮体固定座標系に対して(Xg, Yg, Zg)=(0.0022m, 0.0m, 0.788m)を指定している。ただし、浮体固定座標系は浮体底面に原点を取り、浮体中心軸にそって上向きにZ軸を取り、これと直交する方向にX軸およびY軸をとっている。
 図17より,ADAMSによるシミュレーション解析結果は、実験結果(Experminent No.1)を良好に再現できていることが分かる。
3.2 浮体重心位置の偏心による応答への影響(立て起し時)
 3.1より、ADAMSによるシミュレーションにより立て起し時における浮体応答を精度よく予測できることが分かったので、次に浮体重心位置の偏心による応答への影響をシミュレーションにより調査する。Xg=0.0(偏心なし)と、ウエイトの取付けによってXg=0.0022m(実験条件と同様)とXg=0.0044m(重心位置の偏心が2倍の場合)とのXgの値を変化させた計3ケースについて、立て起し時の浮体応答のシミュレーションを実施した。その結果を図18に示す。
 図18より、偏心がない場合(Xg=0.0m)は,立ち上がりが急になるとともに直立状態になって以降大きな動揺を生じることがわかる。一方、重心の偏心をXg=0.0022mとしたケース、更に重心の偏心をその2倍大きくとったケースの場合は、立ち上がりが緩慢になるとともに、直立状態に近くなっても小さな動揺しか生じないことが分かる。重心の偏心をXg=0.0022mとしたケースと、重心の偏心をXg=0.0044mとしたケースとの比較により、偏心を大きくすると起立動作の緩慢が大きくなるとともに、直立後の動揺は小さくなることが判明した。
 以上により、注水による浮体の立て起しにおいては、重心位置の偏心させることで、立ち上がりを緩慢化でき、かつ直立後の動揺を小さく抑えることができることが判明した。
 1…スパー型浮体式洋上風力発電設備、4…浮体、4A…下側コンクリート製浮体構造部、4B…上側鋼製浮体構造部、5…係留索、6…タワー、7・(7')…風車、8…ナセル、9…ブレード、15…プレキャスト筒状体、17・18…鋼製筒状体、19…PC鋼棒、30…半潜水型台船、31…曳航船、32…バラスト台船、33…バラストホース、34…固形バラスト、35…大型起重機船、40…浮体模型、41・42…マーカー

Claims (5)

  1.  海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体をバラスト水の注水によって立て起こしするに当たって、
     前記スパー型洋上風力発電設備用浮体に対して、重心偏心化手段によって重心位置を偏心させた状態とする第1手順と、
     バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体を直立に起立させる第2手順とからなることを特徴とするスパー型洋上風力発電設備用浮体の立て起こし方法。
  2.  海上において、横向きで浮かんだスパー型洋上風力発電設備用浮体をバラスト水の注水によって立て起こしするに当たって、
     前記スパー型洋上風力発電設備用浮体に対して、重心偏心化手段によって重心位置を偏心させた状態とする第1手順と、
     バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによって前記スパー型洋上風力発電設備用浮体を直立に起立する以前の斜め状態で停止させる第2手順と、
     更にバラスト水を徐々に注水することにより前記スパー型洋上風力発電設備用浮体を直立に起立させる第3手順とからなることを特徴とするスパー型洋上風力発電設備用浮体の立て起こし方法。
  3.  前記重心偏心化手段は、前記スパー型洋上風力発電設備用浮体の外面に着脱自在に取り付けたウエイトとする請求項1、2いずれかに記載のスパー型洋上風力発電設備用浮体の立て起こし方法。
  4.  前記ウエイトは、立て起こしした際に、海面上の位置に取り付けてある請求項3記載のスパー型洋上風力発電設備用浮体の立て起こし方法。
  5.  前記重心偏心化手段は、前記スパー型洋上風力発電設備用浮体の内部に投入した固形バラストとする請求項1、2いずれかに記載のスパー型洋上風力発電設備用浮体の立て起こし方法。
PCT/JP2022/014408 2021-03-29 2022-03-25 スパー型洋上風力発電設備用浮体の立て起こし方法 WO2022210358A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22780571.0A EP4317682A1 (en) 2021-03-29 2022-03-25 Method for raising floating body for spar-type offshore wind power generation facility
US18/283,082 US20240166313A1 (en) 2021-03-29 2022-03-25 Method for raising floating body for spar-type offshore wind power generation facility
AU2022248613A AU2022248613A1 (en) 2021-03-29 2022-03-25 Method for raising floating body for spar-type offshore wind power generation facility
CA3213428A CA3213428A1 (en) 2021-03-29 2022-03-25 Method for raising floating body for spar-type offshore wind power generation facility
JP2023511169A JPWO2022210358A1 (ja) 2021-03-29 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054613 2021-03-29
JP2021-054613 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210358A1 true WO2022210358A1 (ja) 2022-10-06

Family

ID=83459024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014408 WO2022210358A1 (ja) 2021-03-29 2022-03-25 スパー型洋上風力発電設備用浮体の立て起こし方法

Country Status (6)

Country Link
US (1) US20240166313A1 (ja)
EP (1) EP4317682A1 (ja)
JP (1) JPWO2022210358A1 (ja)
AU (1) AU2022248613A1 (ja)
CA (1) CA3213428A1 (ja)
WO (1) WO2022210358A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004869A1 (en) * 2001-07-06 2003-01-16 Vestas Wind Systems A/S Offshore wind turbine with floating foundation
JP2010223113A (ja) * 2009-03-24 2010-10-07 Toda Constr Co Ltd 洋上風力発電設備及びその施工方法
JP2011530676A (ja) * 2008-08-11 2011-12-22 スタトイル・アーエスアー 沖合の風力タービンを曳航する方法及び装置
JP2012201219A (ja) 2011-03-25 2012-10-22 Toda Constr Co Ltd 洋上風力発電設備の施工方法
JP2012201217A (ja) 2011-03-25 2012-10-22 Toda Constr Co Ltd 洋上風力発電設備の施工方法
JP5274329B2 (ja) 2009-03-24 2013-08-28 戸田建設株式会社 洋上風力発電設備及びその施工方法
JP5732150B1 (ja) * 2014-01-29 2015-06-10 サノヤス造船株式会社 タワー型水上構造物およびその設置方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004869A1 (en) * 2001-07-06 2003-01-16 Vestas Wind Systems A/S Offshore wind turbine with floating foundation
JP2011530676A (ja) * 2008-08-11 2011-12-22 スタトイル・アーエスアー 沖合の風力タービンを曳航する方法及び装置
JP2010223113A (ja) * 2009-03-24 2010-10-07 Toda Constr Co Ltd 洋上風力発電設備及びその施工方法
JP5274329B2 (ja) 2009-03-24 2013-08-28 戸田建設株式会社 洋上風力発電設備及びその施工方法
JP2012201219A (ja) 2011-03-25 2012-10-22 Toda Constr Co Ltd 洋上風力発電設備の施工方法
JP2012201217A (ja) 2011-03-25 2012-10-22 Toda Constr Co Ltd 洋上風力発電設備の施工方法
JP5732150B1 (ja) * 2014-01-29 2015-06-10 サノヤス造船株式会社 タワー型水上構造物およびその設置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOAKI UTSUNOMIYA, IKU SATO, TAKASHI SHIRAISHI: "Demonstration Project on Floating Offshore Wind Turbine at Kabashima, Goto", SYSTEMS, CONTROL AND INFORMATION, vol. 60, no. 9, 15 September 2016 (2016-09-15), pages 402 - 406, XP055974581, ISSN: 0916-1600, DOI: 10.11509/isciesci.60.9_402 *

Also Published As

Publication number Publication date
US20240166313A1 (en) 2024-05-23
JPWO2022210358A1 (ja) 2022-10-06
AU2022248613A1 (en) 2023-08-24
CA3213428A1 (en) 2022-10-06
EP4317682A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
KR102160325B1 (ko) 연안 설비에서 터빈 타워 및 서브스테이션 또는 유사한 구성요소들을 위한 수중용 능동적 지지구조물
JP5022976B2 (ja) 洋上風力発電用のスパー型浮体構造およびその製造方法ならびにその設置方法
KR101998104B1 (ko) 해상 구조물의 시공 방법
JP5738644B2 (ja) 洋上風力発電設備の施工方法
JP2021099021A (ja) 浮体式構造物及び浮体式構造物の設置方法
CN103786837B (zh) 用于支撑近海风力涡轮机的不对称系泊系统
KR102155394B1 (ko) 부체식 해상 풍력발전 설비
JP6270527B2 (ja) 洋上風力発電設備の施工方法
CN104619984A (zh) 浮式风力涡轮机平台和组装方法
US20150104259A1 (en) Method of construction, installation, and deployment of an offshore wind turbine on a concrete tension leg platform
KR20200060766A (ko) 해상 풍력 터빈 용 플로트 지지 구조물 및 이와 같은 지지 구조물을 구비한 풍력 터빈을 설치하기 위한 방법
CN107683371A (zh) 构造、组装浮动式风力涡轮机平台以及使其下水的方法
JPH09508186A (ja) 高張力脚プラットホームおよびその架設方法
JP2010234980A (ja) 固定用着底部材、緊張係留浮体システム及びその設置方法
CN107002638A (zh) 用于利用风能的浮动平台
WO2010143967A2 (en) Tripod foundation
JP5738643B2 (ja) 洋上風力発電設備の施工方法
JP5813109B2 (ja) 1以上の水中支柱又は杭を設置するための表面突出型再利用可能水中テンプレート
JP6592760B2 (ja) 洋上風車の架設のためのベース構造
WO2022210358A1 (ja) スパー型洋上風力発電設備用浮体の立て起こし方法
WO2022210359A1 (ja) スパー型洋上風力発電設備の施工方法
JP5738642B2 (ja) 洋上風力発電設備の施工方法
CN113374935A (zh) 船吊法水下安装水厂取水口头部的施工方法
KR102192138B1 (ko) 부유식 수상구조물의 수위조절시스템
CN205653811U (zh) 海上风机重力式基础及基础系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511169

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022248613

Country of ref document: AU

Date of ref document: 20220325

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3213428

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18283082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022780571

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780571

Country of ref document: EP

Effective date: 20231030