WO2022210359A1 - スパー型洋上風力発電設備の施工方法 - Google Patents

スパー型洋上風力発電設備の施工方法 Download PDF

Info

Publication number
WO2022210359A1
WO2022210359A1 PCT/JP2022/014409 JP2022014409W WO2022210359A1 WO 2022210359 A1 WO2022210359 A1 WO 2022210359A1 JP 2022014409 W JP2022014409 W JP 2022014409W WO 2022210359 A1 WO2022210359 A1 WO 2022210359A1
Authority
WO
WIPO (PCT)
Prior art keywords
spar
power generation
wind power
offshore wind
type offshore
Prior art date
Application number
PCT/JP2022/014409
Other languages
English (en)
French (fr)
Inventor
智昭 宇都宮
郁 佐藤
康二 田中
泰弘 新川
賢太 酒井
Original Assignee
戸田建設株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田建設株式会社, 国立大学法人九州大学 filed Critical 戸田建設株式会社
Priority to JP2023511170A priority Critical patent/JPWO2022210359A1/ja
Publication of WO2022210359A1 publication Critical patent/WO2022210359A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • B63B22/20Ballast means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B75/00Building or assembling floating offshore structures, e.g. semi-submersible platforms, SPAR platforms or wind turbine platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention provides a construction method for a spur-type offshore wind power generation facility installed in relatively deep water, specifically for constructing a spur-type offshore wind power generation facility in a collective construction state including at least a tower and a nacelle. concerning the method of
  • Patent Document 1 discloses an offshore wind power generation facility comprising a floating body, a mooring rope, a tower, a nacelle installed at the top of the tower, and a plurality of blades, wherein the floating body is a concrete precast cylinder.
  • a lower concrete floating body structure is formed by stacking multiple tiers in the height direction, and each precast cylindrical body is tightly bound with PC steel to be integrated.
  • An offshore wind power generation facility has been proposed that has a spar-type floating structure including an upper steel floating structure.
  • the spar type refers to an elongated cylindrical floating body structure like a rod-shaped fishing float.
  • the floating body is erected in an upright position, then solid ballast is added to secure the draft, and then the tower, nacelle, and multiple blades are connected to the floating body at once by a crane installed on a large crane ship.
  • the tower, nacelle, and blades are installed in that order by a crane mounted on a large crane ship.
  • the reason why the floating body is raised up while assisting with the wire drawn out from the winch is that as the ballast water is injected, the floating body suddenly stands upright at a certain point, and the inertial force of the floating body makes it stand upright. This is because there is a risk of generating rocking (vibration) when the floating body or its ancillary equipment is damaged. Therefore, erecting a floating body on the sea is dangerous work that requires extreme caution and caution.
  • the first issue of the present invention is to improve the efficiency of construction and shorten the construction period when constructing a spar-type offshore wind power generation facility.
  • the second objective is to provide a method for safely and efficiently erecting a spar-type offshore wind power generation facility by injecting ballast water.
  • the present invention includes a spar type floating body, a tower erected on the floating body, a nacelle attached to the top of the tower, and a nacelle attached to the nacelle.
  • a construction method for a spar-type offshore wind power generation facility comprising a plurality of blades, A predetermined amount of solid ballast is put into the bottom of the floating body, and a tower, a nacelle, and, if necessary, a predetermined number of blades are attached to the upper part of the floating body to complete construction.
  • a first procedure of loading and transporting to the installation sea of the spar-type offshore wind power generation facility On the sea where the spar-type offshore wind power generation equipment is installed, water is injected into the semi-submersible barge to make it a semi-submersible state, the spar-type offshore wind power generation equipment is floated in seawater, and the semi-submersible barge is evacuated.
  • a second step a third step of erecting the spar-type offshore wind power generation facility by injecting ballast water into the floating body;
  • a method for constructing a spar-type offshore wind power generation facility characterized by comprising a fourth step of attaching unattached blades using a large crane ship, and finally adjusting the ballast water to achieve a predetermined draught state. is provided.
  • the tower, the nacelle, and, if necessary, a predetermined number of blades are attached to the floating body to make it a collective construction state, and the semi-submersible barge is loaded at the quay to construct the spar-type offshore wind power generation facility.
  • the nacelle is heavy, weighing several tens to hundreds of tons, and the blades are also heavy. You have to keep your center of gravity very low.
  • a predetermined amount of solid ballast is put into the bottom of the floating body in advance. Pre-injection of the solid ballast contributes to lowering the center of gravity of the spar-type offshore wind power generation facility, and can create an oblique semi-submerged state so that the nacelle and blades are not submerged during float-off.
  • the spar-type offshore wind power generation equipment is erected (third procedure). After that, if there are unattached blades, they are attached using a large crane ship, and finally, the ballast water is adjusted to obtain a predetermined draught state (fourth procedure).
  • the floating body not only the floating body, but also the tower, the nacelle, and, if necessary, a predetermined number of blades are attached to the floating body, which is put into a collective construction state.
  • the nacelle and, if necessary, a predetermined number of blades are attached to the floating body, which is put into a collective construction state.
  • a drainage pump is arranged in the area where the solid ballast is injected, and a ballast water drainage facility is provided in which the periphery is surrounded by a perforated pipe having a predetermined height.
  • a drainage pump is arranged in advance in the injection area of the solid ballast, and a ballast water drainage facility is provided in which the periphery is surrounded by a perforated pipe having a predetermined height. It is.
  • a tower, a nacelle, and, if necessary, a predetermined number of blades are attached to make a collective construction state. It is necessary to take measures like this. For this reason, solid ballast is added in advance, but since the nacelle, blades, and blades are quite heavy, it is assumed that the amount of solid ballast will need to be increased. Even in such a case, it is possible to reduce the minimum amount of ballast water by making it possible to remove the water in the solid ballast area as well.
  • the center of gravity position is eccentrically set by the center of gravity eccentricity means in advance, and the ballast water is continuously injected to stand up the spar-type offshore wind power generation facility upright.
  • the center of gravity position of the floating body or the tower of the spar-type offshore wind power generation facility is eccentrically shifted in advance by the center-of-gravity eccentricity means. It is. If the position of the center of gravity is eccentric, as will be described later in [Example], when the ballast water is injected and the state of floating sideways shifts to the rising motion, the rising motion slows down and the body stands upright. It will be possible to suppress the upset after getting close to the state.
  • eccentricity of the center of gravity position does not mean eccentricity only in the direction along the longitudinal central axis of the floating body, but includes the eccentricity in the plane direction orthogonal to the longitudinal central axis of the floating body. means the movement of
  • the invention described in claim 4 above is a second inventive method for erecting a spar-type offshore wind power generation facility.
  • the center of gravity position is eccentrically placed in advance with respect to the floating body or tower of the spar-type offshore wind power generation equipment by the center-of-gravity eccentricity means. If the position of the center of gravity is eccentric, when the ballast water is injected, the rising motion can be slowed down when shifting from the state of floating sideways to the motion of standing up.
  • ballast water is injected, and after the floating body for the spar-type offshore wind power generation facility starts to stand up, the injection of ballast water is stopped at a predetermined amount to stand up the spar-type offshore wind power generation facility. Make it stop at the previous diagonal state. By eccentrically moving the center of gravity of the floating body, the rising motion can be slowed down. By stopping the ballast water injection at a predetermined amount, it is possible to easily stop the floating body in an oblique state before standing upright. become.
  • the spar-type offshore wind power generation facility is erected upright.
  • the spar-type offshore wind power generation facility is erected from an obliquely stopped state, only a small amount of inertial force acts, so it is possible to substantially eliminate the shaking immediately after the erection.
  • the spar-type offshore wind turbine according to any one of claims 3 and 4, wherein the gravity center eccentric means is a weight detachably attached to the outer surface of the floating body for the spur-type offshore wind power generation facility.
  • a method for constructing a power generation facility is provided.
  • the invention described in claim 5 above shows a first embodiment of the center-of-gravity decentering means. Specifically, a weight detachably attached to the outer surface of the floating body for the spar-type offshore wind power generation facility is used as the gravity center eccentric means.
  • a method for erecting a floating body for a spar-type offshore wind power generation facility according to claim 5, wherein the weight is attached at a position above the sea surface when erected.
  • the weight is attached to a position above the sea surface when the boat is erected. After the floating body is erected, the unnecessary weight can be easily removed.
  • the invention described in claim 5 above shows a second embodiment of the center-of-gravity decentering means.
  • the solid ballast put into the floating body for the spar-type offshore wind power generation facility is used as the center-of-gravity eccentric means.
  • Solid ballast is usually thrown into the floating body after it is erected, but unlike water, solid ballast can be tilted up to the angle of repose (slope angle that can maintain stability without collapsing). can be a means of eccentrically locating the center of gravity to maintain the maldistributed state without moving.
  • the moving speed of the solid ballast is slower than that of water, and the eccentric state is maintained while the eccentric amount gradually decreases until just before the solid ballast stands upright. .
  • FIG. 1 is an overall side view of a spar-type offshore wind power generation facility 1;
  • FIG. 4 is a longitudinal sectional view of the floating body 4;
  • FIG. FIG. 2 shows a precast cylindrical body 15, (A) being a longitudinal cross-sectional view, (B) being a plan view (view taken along the line B-B), and (C) being a bottom view (view taken along the line CC).
  • Fig. 10(A) and (B) are diagrams of the binding procedure for precast cylindrical bodies 15; It is a longitudinal cross-sectional view showing a boundary portion between a lower concrete floating body structure 4A and an upper steel floating body structure 4B.
  • FIG. 3(A) is a vertical cross-sectional view of the bottom of the floating body, and (B) is a cross-sectional view thereof, showing a state of solid ballast being put into the inside of the floating body and an installation state of the drainage system 29.
  • FIG. It is a construction procedure (part 1) of the spar-type offshore wind power generation facility 1. It is a construction procedure (part 2) of the spar-type offshore wind power generation facility 1.
  • FIG. It is a construction procedure (part 3) of the spar-type offshore wind power generation facility 1.
  • FIG. Fig. 2 shows a procedure (part 1) for raising the floating body 4 showing the second embodiment of the center-of-gravity eccentric means. This is the raising procedure (Part 2). This is the raising procedure (Part 3). This is the raising procedure (Part 4). This is the raising procedure (No. 5). 4 is a side view of the floating body model 40.
  • FIG. It is a graph which shows the comparison of an experimental value and an analysis result. 7 is a graph showing the influence of eccentricity of the position of the center of gravity of the float on the response (raising action).
  • the spar-type offshore wind power generation facility 1 includes a tubular spar-type floating body 4, a mooring cable 5 connected to the floating body 4, a tower 6, and a top portion of the tower 6. It is composed of a nacelle 8 installed in the air duct and a wind turbine 7 having a plurality of blades 9, 9, . . .
  • the floating body 4 is constructed by stacking a plurality of precast tubular bodies 15, 15, made of concrete in the height direction, and binding the precast tubular bodies 15, 15, and so on with PC steel materials 19 to form an integral body. It consists of a lower concrete floating body structure 4A and an upper steel floating body structure 4B connected to the upper side of the lower concrete floating body structure 4A.
  • the precast tubular body 15 constituting the lower concrete floating body structure 4A is a circular tubular precast member having the same cross section in the axial direction. Hollow precast parts are used which are either produced using molds or produced by centrifugal molding.
  • sheaths 21, 21... for inserting the PC steel rods 19 are embedded in the wall surface at appropriate intervals in the circumferential direction.
  • a box cut-out portion 22 for mounting is formed.
  • a plurality of hanging metal fittings 23 are provided on the upper surface.
  • the precast tubular bodies 15 are tightly bound together by inserting the PC steel rods 19, 19, .
  • an anchor plate 24 is fitted in the box-out portion 22, and tension is introduced to the PC steel rod 19 by the nut member 25 to integrate them.
  • a grout material is injected into the sheath 21 through the grout injection hole 27 (see FIG. 4(B)).
  • the hole 24a formed in the anchor plate 24 is a grouting confirmation hole, and filling of the grouting material is completed when the grouting material is discharged from the confirmation hole.
  • the coupler 26 is screwed to the protruding portion of the PC steel rod 19, and the upper PC steel rods 19, 19 . . .
  • the PC steel rods 19, 19, . . . are stacked while being inserted into the sheaths 21, 21, .
  • an epoxy resin-based adhesive 28 or a sealing material is applied to the joint surfaces of the lower precast tubular body 15 and the upper precast tubular body 15 to ensure water resistance and to join the mating surfaces. .
  • the upper steel floating body structure 4B is composed of a steel cylindrical body 17 positioned relatively on the lower side and a steel cylindrical body 18 positioned relatively on the upper side. It is configured.
  • the steel tubular body 17 on the lower side has the same outer diameter as the precast tubular body 15 at its lower part, and is connected to the precast tubular body 15 .
  • the upper portion of the steel tubular body 17 has a truncated cone shape with a gradually narrowing diameter.
  • the steel cylindrical body 18 on the upper side is a cylindrical body whose outer diameter is continuous with the upper outer diameter of the steel cylindrical body 17 on the lower side. It is connected by bolts, welding, or the like (bolt fastening in the illustrated example).
  • the tower 6 is made of steel, concrete, or PRC (Prestressed Reinforced Concrete), but it is preferable to use steel so as to reduce the total weight.
  • the outer diameter of the tower 6 and the outer diameter of the upper steel tubular body 18 are substantially the same, and the outer shape is continuous in the vertical direction without steps.
  • a ladder 13 is provided above the upper steel tubular body 18
  • a corridor scaffolding 14 is provided in the circumferential direction substantially at the boundary between the tower 6 and the upper steel tubular body 18 .
  • the mooring point K of the mooring cable 5 to the floating body 4 is set at a position below the sea surface and higher than the center of gravity G of the floating body 4, as shown in FIG. Therefore, it becomes possible to prevent the ship from coming into contact with the mooring line 5 .
  • a resistance moment centering on the center of gravity G of the floating body 4 is generated at the mooring point so as to prevent the floating body 4 from falling too much, the tilting posture of the tower 6 can be properly maintained.
  • the other end of this mooring line 5 is tethered to an anchor submerged on the seabed.
  • the nacelle 8 is a device equipped with a generator that converts the rotation of the windmill 7 into electricity and a controller that can automatically change the angle of the blades 9 .
  • the nacelle 8 is a fairly heavy object, weighing several tens of tons to several hundred tons. Incidentally, the nacelle weight of a 5 MW wind turbine will exceed 200 tons.
  • the blade 9 is mainly made of a highly rigid carbon fiber composite material.
  • the number of blades is about 3 to 5, but the most common one is the one with a three-blade structure.
  • the present invention comprises a spar type floating body 4, a tower 6 erected on the floating body 4, a nacelle 8 attached to the top of the tower 6, and a plurality of blades 9 attached to the nacelle 8.
  • a construction method for a spar-type offshore wind power generation facility 1 comprising A predetermined amount of solid ballast 32 is thrown into the bottom of the floating body 4, and a tower 6, a nacelle 8, and, if necessary, a predetermined number of blades 9 are attached to the upper part of the floating body 4 to make a collective construction state.
  • a predetermined amount of solid ballast 32 is thrown into the bottom of the floating body 4 as shown in FIG.
  • a drainage pump 30 for discharging ballast water is installed in the injection area of the solid ballast 32, and a ballast water drainage facility 29 is provided, which is surrounded by a perforated pipe 31 of a predetermined height.
  • the perforated pipe 31 surrounds the drainage pump 30 in order to prevent the solid ballast 32 from entering. It is preferable to cover the periphery of the perforated pipe 31 with a water-permeable sheet such as a perforated or non-perforated nonwoven fabric or a fibrous sheet.
  • the height of the perforated pipe 31 should be at least higher than the height of the solid ballast 32 .
  • the upper surface of the solid ballast 32 is covered with a perforated plate 33, and the solid ballast 32 is restrained so as not to move.
  • At least the tower 6, the nacelle 8, and, if necessary, a predetermined number of blades 9 are attached to make a collective construction state. Therefore, it is necessary to take measures to prevent the nacelle 8 and the blades 9 from being submerged when floating on the sea. Therefore, in order to move the center of gravity to the lower end side, a solid ballast 32 is introduced in advance. I try to keep However, since the tower 6, the nacelle 8 and the blades 9 are considerably heavy, it may be necessary to increase the amount of the solid ballast 32. Even in such a case, it is possible to reduce the minimum amount of ballast water by making it possible to remove the water in the area of the solid ballast 32 as well.
  • the solid ballast 32 a powdery substance having a higher specific gravity than water is used. Specifically, it contains sand, gravel, minerals including barite, metal powder such as iron and lead, and metal grains. It is preferable to use one kind of metal or a combination of two or more kinds of metals. By adjusting the material of the solid ballast 32, a ballast material having an appropriate specific gravity can be thrown.
  • a tower 6 is connected to the upper part of the floating body 4, a nacelle 8 is attached, and a predetermined number of blades 9 are attached as necessary to make a collective construction state (this state is also a spar-type offshore wind power generation facility). 1).
  • This embodiment shows an example in which the blade 9 is not attached in the collective construction state, but is separately attached later.
  • a semi-submersible barge 33 is used to transport the spar-type offshore wind power generation facility 1, as shown in FIG.
  • the semi-submersible barge 33 is loaded while the ballast water of the semi-submersible barge 33 is adjusted.
  • a weight 2 is detachably attached to the floating body 4 or the tower 6 for eccentrically moving the center of gravity.
  • the weight 2 constitutes the "center-of-gravity eccentric means" of the present invention.
  • the weight 2 is desirably attached to the outer surface of the floating body 4 or tower 6 at a position above the sea surface when the floating body 4 or tower 6 is raised. The advantage of attaching the weight 2 will be described later.
  • the eccentricity of the center of gravity position does not mean the eccentricity only in the direction (Z-axis) along the longitudinal central axis of the spar-type offshore wind power generation facility 1, but rather in the longitudinal direction of the spar-type offshore wind power generation facility 1. It means movement of the center of gravity position including eccentricity in plane directions (X, Y-axis planes) perpendicular to the central axis. Therefore, the weight 2 may be provided at one location on the outer surface of the spar-type offshore wind power generation facility 1, and even-numbered locations (for example, 180° orientation position or 90° orientation position, etc.).
  • Float-off (surfacing/launching) of the spar-type offshore wind power generation facility 1 is performed by injecting water into the semi-submersible barge 33 to bring it into a semi-submerged state, as shown in FIG. is floated on the seawater, and the semi-submersible barge 33 is evacuated.
  • the center of gravity of the spar-type offshore wind power generation facility 1 is moved to the lower end side by the prior injection of the solid ballast 32 into the floating body 4.
  • the spar-type offshore wind power generation facility 1 floats in a tilted state, and the nacelle 8 is separated upward from the sea surface.
  • a ballast barge 35 equipped with a ballast pump facility is brought close to the spar-type offshore wind power generation facility 1 that has been floated off so that water can be injected, and a ballast hose 36 is inserted inside the floating body 4 to enable the supply of ballast water.
  • the pitch angle of the floating body (the center of the longitudinal direction of the floating body 4) gradually increases at first.
  • the angle of inclination ⁇ between the axis and the water surface increases.
  • the floating body 4 suddenly starts to stand up.
  • the spar-type offshore wind power generation facility 1 stands substantially vertically.
  • the waist 2 is attached to the floating body 4 or the tower 6 so that the position of the center of gravity is eccentric, as shown in [Embodiment] described later, the ballast water is poured into the body, causing it to rise from a sideways floating state. At the time of transition, this rising action slows down, and the swaying after approaching the upright state can be kept small. Therefore, it is possible to safely and efficiently erect the spar-type offshore wind turbine generator 1 by injecting ballast water.
  • a ladder 13 is attached to the top of the floating body 4, and a corridor scaffolding 14 is provided. Furthermore, one end of the mooring cable 5 is tethered to the floating body 4 and the other end is tethered to an anchor sunk on the seabed to stabilize the floating body 4 .
  • ballast water is adjusted to the prescribed draught state, and the construction is completed.
  • ballast water in the solid ballast 32 can be drained even during removal, it is easy to secure an inclination that allows the float-on.
  • the weight 2 is attached in advance, but by changing the method of injecting ballast water, it becomes possible to perform the injection more safely and efficiently.
  • ballast water is injected, and after the spur-type offshore wind power generation equipment 1 starts to stand up, the spar-type offshore wind power generation equipment 1 is started by stopping the ballast water injection at a predetermined amount. After temporarily stopping in an oblique state before standing upright, the spar-type offshore wind power generation equipment 1 is made to stand upright by gradually injecting ballast water.
  • the spur-type offshore wind power generation equipment 1 stops the injection of ballast water in the middle of the sudden start of the upright operation. It is different in that it is stopped in an oblique state before standing upright.
  • the upright movement becomes slow, so it becomes possible to stop the spar-type offshore wind power generation equipment 1 in an oblique state before it stands upright.
  • the spur-type offshore wind power generation equipment 1 is made to stand upright by gradually injecting water, so that the spur-type offshore wind power generation equipment 1 stands upright. Since only a small amount of shaking is caused by the inertial force that occurs when moving, the operation can be performed more safely and efficiently.
  • the inclination angle ⁇ at which the spar-type offshore wind turbine generator 1 is stopped in an oblique state before standing upright is less than or equal to the angle of repose of the solid ballast 32. An angle is desirable.
  • the weight 2 is used as the center-of-gravity eccentric means, but an example using the solid ballast 32 as the center-of-gravity eccentric means will be described in detail with reference to FIGS. 15 to 19.
  • FIG. Note that the ballast water drainage system 29 is omitted in these figures.
  • the spar-type offshore wind power generation equipment 1 is manufactured in a predetermined wharf area, it is loaded onto the semi-submersible barge 33 while adjusting the ballast.
  • a solid ballast 32 is thrown into the floating body 4 with the spar-type offshore wind power generation equipment 1 loaded.
  • the solid ballast 32 can also be thrown in before being loaded onto the semi-submersible barge 33 .
  • the solid ballast 32 is allowed to flow without being constrained by any means. Therefore, since the spar-type offshore wind power generation facility 1 is loaded on the semi-submersible barge 33 in a lateral direction, the solid ballast 32 is spread laterally. That is, when the spar-type offshore wind power generation facility 1 is oriented sideways, the center of gravity of the floating body 4 is eccentric due to the solid ballast 32 .
  • the spar-type offshore wind power generation facility 1 is floated on the sea. Float-off (surfacing/launching) of the spar-type offshore wind power generation facility 1, as shown in FIG. After floating 1 in seawater, the semi-submersible barge 33 is separated from the spar-type offshore wind power generation facility 1 .
  • ballast barge 35 equipped with ballast water pump equipment is brought close to the floating body 4 that has been floated off so that water can be injected, and the ballast hose 33 is sprung. It is possible to supply ballast water by inserting it inside the type offshore wind power generation facility 1.
  • the center of gravity of the floating body 4 is eccentric due to the solid ballast 32 thrown inside. ⁇ gradually increases. Even if the spar-type offshore wind power generation facility 1 tilts, the solid ballast 32 maintains an unevenly distributed state without moving up to the tilt angle ⁇ of the angle of repose (the tilt angle at which stability can be maintained without collapsing). After the tilt angle ⁇ of the spar-type offshore wind power generation facility 1 exceeds the angle of repose, the solid ballast 32 starts to move. will flow and eventually fill the bottom of the floating body 4, thereby eliminating the eccentricity of the center of gravity position, but until just before it stands upright, the eccentricity is gradually reduced but the eccentricity is maintained. , the start-up operation of the spar-type offshore wind power generation equipment 1 slows down, and the swaying after reaching a nearly upright state can be kept small. Therefore, it is possible to safely and efficiently raise the floating body 4 by injecting ballast water.
  • the spar-type offshore wind power generation facility 1 in the collectively constructed state is composed of the floating body 4, the tower 6, and the nacelle 8.
  • the spar-type offshore wind power generation facility 1 is composed of the floating body 4, the tower 6, and the nacelle 8.
  • FIG. It is also possible to make the spar-type offshore wind power generation facility 1 into a floating body 4, a tower 6, a nacelle 8 and three blades 9, 9, and so on.
  • the number of blades 9 to be attached may be all, but it is also possible to attach one or a plurality of the total number of blades.
  • FIG. 20 shows the outline and dimensions of the floating model 40.
  • the scale is 1/36.11 of the assumed actual machine (2MW machine).
  • the weight and the height of the center of gravity were adjusted by attaching steel plates to the upper and lower parts of the floating body, which is mainly made of vinyl chloride pipes. Further, as shown in FIG. 20, markers 41 and 42 used for motion measurement are attached at two positions of 65 mm and 418 mm from the upper end of the floating body.
  • the floating model 40 was moored in the center of the water tank.
  • the upper part of the floating body is moored from the water tank auxiliary truck, and the lower part of the floating body is moored from the water tank shore.
  • a motion capture system that captures the movements of the markers 41 and 42 in real time was used to measure the attitude of the floating model 40.
  • the two markers 41 and 42 attached to the floating model 40 were captured by a total of four cameras (Qualysis 5+; 4 MP, 2048x2048 pixels, 180 fps) installed on the side of the water tank. ) are output as spatial coordinate values. Based on the converted coordinate values, the angle of inclination between the central axis of the floating body and the water surface was calculated and used as the pitch angle.
  • Ballast water was injected through a hose from the upper part of the floating body.
  • the pump used was a Takumina Smoothflow pump (maximum discharge rate: 1.08 L/min, maximum discharge pressure: 1 MPa).
  • the flow rate during the experiment was set at 0.73 L/min (5.7 m3/min in terms of actual equipment).
  • FIG. 21 shows the experimental results when standing up in comparison with the simulation analysis results by ADAMS.
  • the floating body fixed coordinate system has the origin at the bottom surface of the floating body, the Z axis upward along the central axis of the floating body, and the X and Y axes in the direction orthogonal to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wind Motors (AREA)

Abstract

【課題】スパー型洋上風力発電設備の施工に当たって、現状より更なる施工の効率化を図り、施工期間の短縮を図る。 【解決手段】前記浮体4の底部に所定量の固形バラスト32を投入した状態とし、この浮体上部にタワー6とナセル8とを取り付けて一括施工状態とし、岸壁にて半潜水型台船7に積み込み、スパー型洋上風力発電設備1を設置する海上まで運搬する第1手順と、スパー型洋上風力発電設備1を設置する海上において、前記半潜水型台船33に注水を行って半潜水状態とし、前記スパー型洋上風力発電設備1を海水に浮かばせるとともに、前記半潜水型台船33を待避させる第2手順と、前記浮体4内にバラスト水を注水することにより、スパー型洋上風力発電設備1の立て起こしを行う第3手順とを有する。立て起こしに際して、事前に浮体4又はタワー6に対して、ウエイト2を取り付けることによって重心位置を偏心させた状態としておくのが望ましい。

Description

スパー型洋上風力発電設備の施工方法
 本発明は、比較的水深の深い海上に設置されるスパー型洋上風力発電設備の施工方法、具体的には少なくともタワーとナセルとを含めた一括施工状態でスパー型洋上風力発電設備を施工するための方法に関する。
 例えば、下記特許文献1では、浮体と、係留索と、タワーと、タワーの頂部に設備されるナセル及び複数のブレードとからなる洋上風力発電設備であって、前記浮体は、コンクリート製のプレキャスト筒状体を高さ方向に複数段積み上げ、各プレキャスト筒状体をPC鋼材により緊結し一体化を図った下側コンクリート製浮体構造部と、この下側コンクリート浮体構造部の上側に連設された上側鋼製浮体構造部とからなるスパー型の浮体構造とした洋上風力発電設備が提案されている。なお、スパー型とは、棒状の釣り浮きのように細長い円筒形状の浮体構造を言う。
 前記スパー型洋上風力発電設備を海上に設置する場合、波の穏やかな湾内で施工を行うのが望ましいが、浮体の吃水(水面下の部分)が概ね70m以上と深いのに対して、湾内の水深は一般的にこれよりも浅いため、湾内での施工は困難であった。このため、スパー型洋上風力発電設備の設置に当たっては、下記特許文献2に示されるように、製作ヤードに隣接した海上で、浮体を横向きに浮かべて曳航船により設置場所まで運搬するか、浮体を台船に搭載して曳航して設置場所まで運搬するかした後、浮体の立て起こしに当たっては、バラスト水を注水するとともに、浮体の底部に結んだウインチからのワイヤーを徐々に繰り出すことによりゆっくりと浮体を直立状態に立て起こし、次に固形バラストを投入して吃水を確保した後、タワーと、ナセルと、複数のブレードと組んだ状態で大型起重機船に設備されたクレーンによって一気に浮体に連結するようにするか、タワー、ナセル、ブレードの順で大型起重機船に設備されたクレーンによって取り付けるようにしている。
特許第5274329号公報 特開2012-201219号公報
 従来の洋上風力発電設備の施工では、浮体のみの状態で海上の設置場所まで運搬したならば、設置場所の海上にて、浮体の立て起こしのためにバラスト水の大量投入が必要である。そして、浮体の立て起こし完了後に固形バラストを投入すると同時にバラスト水の排出を行い、更に変電設備の据え付けを行った後、タワー、ナセル、ブレードを取り付ける際には、この重量に見合うようにバラスト水の調整を行うようにしていた。しかし、従来のこのような施工方法の場合は設置場所の海上にて種々の作業を行う必要があり、作業に多くの時間と手間とを要し、設置する洋上風力発電設備の基数が多くなると工程が長期化する原因になっていた。そこで、現状よりも更なる施工の効率化が強く望まれていた。
 一方で、ウインチからの繰出したワイヤーで補助しながら浮体の立て起こしを行うのは、バラスト水を注水していくとある時点で急激に浮体が直立に起立し、その浮体の慣性力によって直立状態になった際に揺動(振動)を発生させ、それによって浮体或いはその付帯設備に損傷が発生するおそれがあるからである。従って、洋上における浮体の立て起こし作業は細心の注意と慎重さを要する危険作業となっていた。
 そこで本発明の第1の課題は、スパー型洋上風力発電設備の施工に当たって、現状より更なる施工の効率化を図り、施工期間の短縮を図ることにある。
 第2に、バラスト水の注水によるスパー型洋上風力発電設備の立て起こしを安全かつ効率的に行う方法を提供することにある。
 上記第1課題を解決するために請求項1に係る本発明として、スパー型の浮体と、該浮体の上に立設されるタワーと、該タワーの頂部に取り付けられるナセルと、該ナセルに取り付けられる複数枚のブレードとを備えるスパー型洋上風力発電設備の施工方法であって、
 前記浮体の底部に所定量の固形バラストを投入した状態とし、この浮体上部にタワーとナセルと必要に応じて所定枚数のブレードとを取り付けて一括施工状態とし、岸壁にて半潜水型台船に積み込み、スパー型洋上風力発電設備の設置海上まで運搬する第1手順と、
 スパー型洋上風力発電設備の設置海上において、前記半潜水型台船に注水を行って半潜水状態とし、前記スパー型洋上風力発電設備を海水に浮かばせるとともに、前記半潜水型台船を待避させる第2手順と、
 前記浮体内にバラスト水を注水することにより、スパー型洋上風力発電設備の立て起こしを行う第3手順と、
 未取付け分のブレードがある場合は大型起重機船を用いて取り付け、最後にバラスト水の調整によって所定の吃水状態とする第4手順とからなることを特徴とするスパー型洋上風力発電設備の施工方法が提供される。
 上記請求項1記載の発明では、浮体にタワーとナセルと必要に応じて所定枚数のブレードとを取り付けて一括施工状態とし、岸壁にて半潜水型台船に積み込み、スパー型洋上風力発電設備の設置海上まで運搬する。この際に、ナセルは数十トン~数百トンの重量物であるとともに、ブレードも重量物であるため、現地海上でのフロートオフ時にナセルやブレードが水没しないようにスパー型洋上風力発電設備の重心をかなり下げておく必要がある。また、タワーを取り付けた後は固形バラストの投入は難しいため、予め浮体の内部には、前記浮体の底部に所定量の固形バラストを投入した状態とする。前記固形バラストの事前投入は、スパー型洋上風力発電設備の重心を下げるのに寄与し、フロートオフ時にナセルやブレードが水没しないように斜めの半水没状態とすることができる。
 スパー型洋上風力発電設備を設置する海上まで運搬した後は、半潜水型台船に注水を行って半潜水状態とし、前記スパー型洋上風力発電設備を海水に浮かばせるとともに、前記半潜水型台船を待避させる(第2手順)。
 そして、前記浮体内にバラスト水を注水することにより、スパー型洋上風力発電設備の立て起こしを行う(第3手順)。その後に、未取付け分のブレードがある場合、大型起重機船を用いて取り付けるとともに、最後にバラスト水の調整によって所定の吃水状態とする(第4手順)。
 本発明では、浮体のみではなく、これにタワーと、ナセルと、必要に応じて所定枚数のブレードとを取り付けて一括施工状態として、運搬から立て起こし、未取付け分のブレードの取付け作業を行うようにしたため、現状よりも更なる施工の効率化を図ることができ、施工期間の短縮を図ることが可能になる。
 また、予め浮体内に固形バラストを投入するため、設置海上ではバラスト水の注入及び排出だけで済むようになるため、この点でも施工の効率化が図れることになり、施工期間の短縮化に資するようになる。
 請求項2に係る発明として、前記固形バラストの投入領域内に、排水ポンプを配置するとともに、その周囲を所定高さの有孔管によって囲んだバラスト水の排水設備を設けるようにする請求項1記載のスパー型洋上風力発電設備の施工方法が提供される。
 上記請求項2記載の発明は、予め、前記固形バラストの投入領域内に、排水ポンプを配置するとともに、その周囲を所定高さの有孔管によって囲んだバラスト水の排水設備を設けるようにするものである。本発明では、少なくともタワーと、ナセルと、必要に応じて所定枚数のブレードとを取り付けて一括施工状態とするものであり、海上に浮かべた状態で浮体の下端側が沈み、ナセルやブレードは水没しないように対策する必要がある。そのため、固形バラストを事前に投入しておくようにしているが、ナセル、ブレードやブレードはかなりの重量物となるため、固形バラストの増量が必要になる場合が想定される。そのような場合でも、固形バラスト領域内の水をも排除可能とすることで、最小バラスト水量の低減を図ることが可能になる。
 第2の課題を解決するために請求項3に係る本発明として、前記第3手順のスパー型洋上風力発電設備の立て起こしに際して、
 事前にスパー型洋上風力発電設備の浮体又はタワーに対して、重心偏心化手段によって重心位置を偏心させた状態とし、バラスト水の注水を継続的に行い、スパー型洋上風力発電設備を直立に起立させる請求項1、2いずれかに記載のスパー型洋上風力発電設備の施工方法が提供される。
 上記請求項3記載の発明では、スパー型洋上風力発電設備の立て起こしに当たって、事前にスパー型洋上風力発電設備の浮体又はタワーに対して、重心偏心化手段によって重心位置を偏心させた状態とするものである。重心位置を偏心させておくと、後述の〔実施例〕に示されるように、バラスト水の注水によって横向きで浮かんだ状態から立上り動作に移行した際に、この立上り動作が緩慢になるとともに、直立状態に近くなってからの動揺を小さく押さえられるようになる。
 ここで、「重心位置の偏心」とは、浮体の長手方向中心軸に沿った方向のみの偏心を意味するものではなく、浮体の長手方向中心軸に直交する面方向への偏心を含む重心位置の移動を意味するものである。
 従って、バラスト水の注水によるスパー型洋上風力発電設備の立て起こしを安全かつ効率的に行うことが可能になる。
 第2の課題を解決するために請求項4に係る本発明として、前記第3手順のスパー型洋上風力発電設備の立て起こしに際して、
 事前にスパー型洋上風力発電設備の浮体又はタワーに対して、重心偏心化手段によって重心位置を偏心させた状態とし、バラスト水の注水を行い、スパー型洋上風力発電設備が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによってスパー型洋上風力発電設備を直立に起立する以前の斜め状態で一旦停止させた後、更にバラスト水を徐々に注水することによりスパー型洋上風力発電設備を直立に起立させる請求項1、2いずれかに記載のスパー型洋上風力発電設備の施工方法が提供される。
 上記請求項4記載の発明は、スパー型洋上風力発電設備の立て起こしの第2発明方法である。具体的には、スパー型洋上風力発電設備の立て起こしに当たって、事前にスパー型洋上風力発電設備の浮体又はタワーに対して、重心偏心化手段によって重心位置を偏心させた状態とする。重心位置を偏心させておくと、バラスト水の注水によって横向きで浮かんだ状態から起立する動作に移行した際に、この立上り動作を緩慢化できるようになる。
 次いで、バラスト水の注水を行い、前記スパー型洋上風力発電設備用浮体が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによって前記スパー型洋上風力発電設備を直立に起立する以前の斜め状態で停止させるようにする。浮体の重心位置を偏心させることにより立上り動作を緩慢化できたことにより、バラスト水を所定の注水量で停止することで、浮体を直立に起立する以前の斜め状態で停止させることが容易に可能になる。
 最後に、更にバラスト水を徐々に注水することによりスパー型洋上風力発電設備を直立に起立させる。スパー型洋上風力発電設備が斜めに停止した状態から直立させる場合は、慣性力は僅かしか作用しないため直立直後の動揺をほぼ無くすことが可能になる。
 従って、バラスト水の注水によるスパー型洋上風力発電設備の立て起こしを安全かつ効率的に行うことが可能になる。
 請求項5に係る本発明として、前記重心偏心化手段は、前記スパー型洋上風力発電設備用浮体の外面に着脱自在に取り付けたウエイトとする請求項3、4いずれかに記載のスパー型洋上風力発電設備の施工方法が提供される。
 上記請求項5記載の発明は、前記重心偏心化手段の第1形態例を示したものである。具体的には、前記重心偏心化手段として、前記スパー型洋上風力発電設備用浮体の外面に着脱自在に取り付けたウエイトとするものである。
 請求項6に係る本発明として、前記ウエイトは、立て起こしした際に、海面上の位置に取り付けてある請求項5記載のスパー型洋上風力発電設備用浮体の立て起こし方法が提供される。
 上記請求項6記載の発明は、前記ウエイトは、立て起こしした際に、海面上の位置に取り付けるようにしたものである。浮体を立て起こした後、不要になったウエイトの撤去が容易に行えるようになる。
 請求項7に係る本発明として、前記重心偏心化手段は、前記浮体の内部に投入した固形バラストとする請求項3、4いずれかに記載のスパー型洋上風力発電設備の施工方法が提供される。
 上記請求項5記載の発明は、前記重心偏心化手段の第2形態例を示したものである。具体的には、前記重心偏心化手段として、前記スパー型洋上風力発電設備用浮体の内部に投入した固形バラストを利用するものである。固形バラストは、通常、浮体を立て起こしした後に浮体内に投入されるものであるが、水とは異なり固形バラストならば、安息角(崩れないで安定を保持し得る斜面角度)の傾斜角度までは移動することなく偏在状態を保持するため重心位置を偏心させる手段となり得る。また、安息角を越えてから固形バラストの移動速度は水と比べて遅く直立する直前までは偏心量は漸減しながらも偏心状態を維持するため、重心偏心化手段として採用することが可能である。
 以上詳説のとおり本発明によれば、スパー型洋上風力発電設備の施工に当たって、現状より更なる施工の効率化を図り、施工期間の短縮を図ることが可能になる。
 また、バラスト水の注水によるスパー型洋上風力発電設備の立て起こしを安全かつ効率的に行うことが可能になる。
スパー型洋上風力発電設備1の全体側面図である。 浮体4の縦断面図である。 プレキャスト筒状体15を示す、(A)は縦断面図、(B)は平面図(B-B線矢視図)、(C)は底面図(C-C線矢視図)である。 プレキャスト筒状体15同士の緊結要領図(A)(B)である。 下側コンクリート製浮体構造部4Aと上側鋼製浮体構造部4Bとの境界部を示す縦断面図である。 浮体内部への固形バラスト投入状態及び排水設備29の設置状態を示す、(A)は浮体底部縦断面図、(B)はその横断面図である。 スパー型洋上風力発電設備1の施工手順(その1)である。 スパー型洋上風力発電設備1の施工手順(その2)である。 スパー型洋上風力発電設備1の施工手順(その3)である。 スパー型洋上風力発電設備1の施工手順(その4)である。 スパー型洋上風力発電設備1の施工手順(その5)である。 スパー型洋上風力発電設備1の施工手順(その6)である。 スパー型洋上風力発電設備1の施工手順(その7)である。 スパー型洋上風力発電設備1の施工変形例を示す図である。 重心偏心化手段の第2形態例を示す浮体4の立て起こし手順(その1)である。 その立て起こし手順(その2)である。 その立て起こし手順(その3)である。 その立て起こし手順(その4)である。 その立て起こし手順(その5)である。 浮体模型40の側面図である。 実験値と解析結果の比較を示すグラフである。 浮体重心位置の偏心による応答(立て起こし動作)への影響を示すグラフである。
 以下、本発明の実施の形態について図面を参照しながら詳述する。
〔スパー型洋上風力発電設備1〕
 本発明の係る「スパー型洋上風力発電設備の施工方法」を説明する前に、スパー型洋上風力発電設備1の構造例について、図1~図5に基づいて詳述する。
 前記スパー型洋上風力発電設備1は、図1に示されるように、筒状形状を成すスパー型の浮体4と、この浮体4に繋がれた係留索5と、タワー6と、タワー6の頂部に設備されるナセル8及び複数のブレード9,9…からなる風車7とから構成されるものである。
 前記浮体4は、図2に示されるように、コンクリート製のプレキャスト筒状体15、15…を高さ方向に複数段積み上げ、各プレキャスト筒状体15、15…をPC鋼材19により緊結し一体化を図った下側コンクリート製浮体構造部4Aと、この下側コンクリート浮体構造部4Aの上側に連設された上側鋼製浮体構造部4Bとからなる。
 前記下側コンクリート浮体構造部4Aを構成している前記プレキャスト筒状体15は、図3に示されるように、軸方向に同一断面とされる円形筒状のプレキャスト部材であり、それぞれが同一の型枠を用いて製作されるか、遠心成形により製造された中空プレキャスト部材が用いられる。
 壁面内には鉄筋20の他、周方向に適宜の間隔でPC鋼棒19を挿通するためのシース21、21…が埋設されている。このシース21、21…の下端部にはPC鋼棒19同士を連結するためのカップラーを挿入可能とするためにシース拡径部21aが形成されているとともに、上部には定着用アンカープレートを嵌設するための箱抜き部22が形成されている。また、上面には吊り金具23が複数設けられている。
 プレキャスト筒状体15同士の緊結は、図4(A)に示されるように、下段側プレキャスト筒状体15から上方に延長されたPC鋼棒19、19…をシース21、21…に挿通させながらプレキャスト筒状体15,15を積み重ねたならば、アンカープレート24を箱抜き部22に嵌設し、ナット部材25によりPC鋼棒19に張力を導入し一体化を図る。また、グラウト注入孔27からグラウト材をシース21内に注入する(図4(B)参照)。なお、前記アンカープレート24に形成された孔24aはグラウト注入確認孔であり、該確認孔からグラウト材が吐出されたことをもってグラウト材の充填を終了する。
 次に、図4(B)に示されるように、PC鋼棒19の突出部に対してカップラー26を螺合し、上段側のPC鋼棒19、19…を連結したならば、上段となるプレキャスト筒状体15のシース21、21…に前記PC鋼棒19、19…を挿通させながら積み重ね、前記要領によりPC鋼棒19の定着を図る手順を順次繰り返すことにより高さ方向に積み上げられる。この際、下段側プレキャスト筒状体15と上段側プレキャスト筒状体15との接合面には止水性確保及び合わせ面の接合のためにエポキシ樹脂系などの接着剤28やシール材が塗布される。
 前記上側鋼製浮体構造部4Bは、図2に示されるように、相対的に下段側に位置する鋼製筒状体17と、相対的に上段側に位置する鋼製筒状体18とで構成されている。下段側の鋼製筒状体17は、下側部分がプレキャスト筒状体15と同一の外径寸法とされ、プレキャスト筒状体15に対して連結されている。前記鋼製筒状体17の上側部分は漸次直径を窄めた截頭円錐台形状を成している。
 上段側の鋼製筒状体18は、前記下段側の鋼製筒状体17の上部外径に連続する外径寸法とされる筒状体とされ、下段側の鋼製筒状体17に対してボルト又は溶接等(図示例はボルト締結)によって連結される。
 一方、前記タワー6は、鋼材、コンクリート又はPRC(プレストレスト鉄筋コンクリート)から構成されるものが使用されるが、好ましいのは総重量が小さくなるように鋼材によって製作されたものを用いるのが望ましい。タワー6の外径と前記上段側鋼製筒状体18の外径とはほぼ一致しており、外形状は段差等が無く上下方向に連続している。図示例では、上段側鋼製筒状体18の上部に梯子13が設けられ、タワー6と上段側鋼製筒状体18とのほぼ境界部に周方向に歩廊足場14が設けられている。
 前記係留索5の浮体4への係留点Kは、図1に示されるように、海面下であってかつ浮体4の重心Gよりも高い位置に設定してある。従って、船舶が係留索5に接触するのを防止できるようになる。また、浮体4の倒れ過ぎを抑えるように係留点に浮体4の重心Gを中心とする抵抗モーメントを発生させるため、タワー6の傾動姿勢状態を適性に保持し得るようになる。この係留索5の他端は海底に沈めたアンカーに対して繋いである。
 一方、前記ナセル8は、風車7の回転を電気に変換する発電機やブレード9の角度を自動的に変えることができる制御器などが搭載された装置である。このナセル8は、かなりの重量物となり、数十トンから数百トンの重さを有する。因みに、5MWの風車のナセル重量は200tを超えるようになる。
 前記ブレード9は、近年は剛性の高い炭素繊維複合材料によって作られたものが主流となっている。羽根枚数は3~5枚程度であるが、最も多いのが3枚構造のものである。
〔スパー型洋上風力発電設備の施工方法〕
 次に、前述したスパー型洋上風力発電設備1の施工方法について詳述する。
 本発明は、スパー型の浮体4と、該浮体4に上に立設されるタワー6と、該タワー6の頂部に取り付けられるナセル8と、該ナセル8に取り付けられる複数枚のブレード9とを備えるスパー型洋上風力発電設備1の施工方法であって、
 前記浮体4の底部に所定量の固形バラスト32を投入した状態とし、この浮体4の上部にタワー6とナセル8と必要に応じて所定枚数のブレード9とを取り付けて一括施工状態とし、岸壁にて半潜水型台船33に積み込み、スパー型洋上風力発電設備1を設置する海上まで運搬する第1手順と、
 洋上風力発電設備1を設置する海上において、前記半潜水型台船33に注水を行って半潜水状態とし、前記スパー型洋上風力発電設備1を海水に浮かばせるとともに、前記半潜水型台船33を待避させる第2手順と、
 前記浮体4内にバラスト水を注水することにより、スパー型洋上風力発電設備1の立て起こしを行う第3手順と、
 未取付け分のブレード9がある場合、大型起重機船を用いて取り付けるとともに、バラスト水の調整によって所定の吃水状態とする第4手順とからなるものである。以下、図6~図14に基づいて具体的に詳述する。
<第1手順>
 所定の岸壁エリアにおいて、浮体4の製作を行ったならば、図6に示されるように、前記浮体4の底部に所定量の固形バラスト32を投入した状態とする。また、前記固形バラスト32の投入領域内に、バラスト水を排水するための排水ポンプ30を設置するとともに、その周囲を所定高さの有孔管31に囲むようにしたバラスト水排水設備29を設けるようにする。
 前記排水ポンプ30の周囲を有孔管31で囲むのは、固形バラスト32が入って来ないようにするためであり、有孔管31の孔径が固形バラストの粒径よりも大きい場合には、有孔又は無孔の不織布、繊維状シートなどの透水性シートによって前記有孔管31の周囲を覆うようにするのがよい。前記有孔管31の高さは、少なくとも固形バラスト32の高さよりも高くするようにする。図6に示す形態例では、前記固形バラスト32の上面は通孔板33によって蓋がされており、固形バラスト32は移動できないように拘束されている。
 本発明では、少なくともタワー6と、ナセル8と、必要に応じて所定枚数のブレード9とを取り付けて一括施工状態とするものである。そのため、海上に浮かべた際に、前記ナセル8やブレード9が水没しないようにするための水没対策が必要であるため、重心位置を下端側に移動させるために、固形バラスト32を事前に投入しておくようにしている。しかし、前記タワー6、ナセル8やブレード9はかなりの重量物となるため、固形バラスト32の増量が必要になる場合が想定される。そのような場合でも、固形バラスト32領域内の水をも排除可能とすることで、最小バラスト水量の低減を図ることが可能になる。
 前記固形バラスト32としては、水より高比重である粉粒状のものが使用され、具体的には、砂、砂利、重晶石を含む鉱物類及び鉄、鉛等の金属粉、金属粒を含む金属類のうち一種または複数種の組み合わせからなるものとすることが好ましい。固形バラスト32の材質を調整することで、適切な比重のバラスト材が投入できるようになる。
 次に、前記浮体4の上部にタワー6を連結するとともに、ナセル8を取付け、更に必要に応じて所定枚数のブレード9とを取り付けて一括施工状態とする(この状態もスパー型洋上風力発電設備1とする)。この形態例では、ブレード9については、一括施工状態では取り付けずに、後で別途取付けを行うようにする例を示している。
 スパー型洋上風力発電設備1の運搬は、図7に示されるように、半潜水型台船33を用いるようにする。半潜水型台船33のバラスト水調整しながら半潜水型台船33に積み込みを行う。この際、浮体4又はタワー6に対して重心位置を偏心させるためのウエイト2を着脱自在に取り付けておくようにする。前記ウエイト2が本発明の「重心偏心化手段」を構成するものである。前記ウエイト2については、取り外しの便宜から、前記浮体4又はタワー6の外面であって、立て起こしした際に、海面上となる位置に取り付けておくことが望ましい。前記ウエイト2を取り付けておくことの利点については後述することとする。
 ここで、重心位置の偏心とは、スパー型洋上風力発電設備1の長手方向中心軸に沿った方向(Z軸)のみの偏心を意味するものではなく、スパー型洋上風力発電設備1の長手方向中心軸に直交する面方向(X,Y軸面)への偏心を含む重心位置の移動を意味するものである。従って、前記ウエイト2は、スパー型洋上風力発電設備1の外面の1箇所に設けるようにすればよく、スパー型洋上風力発電設備1の外面に対称位置となるように偶数箇所(例えば、180°方向位置又は90°方向位置等)に設けるのは望ましくない。
 そして、同図7に示されるように、曳航船34によって設置場所の海上まで運搬する。
<第2手順>
 スパー型洋上風力発電設備1のフロートオフ(浮上・進水)は、図8に示されるように、前記半潜水型台船33に注水を行って半潜水状態とし、スパー型洋上風力発電設備1を海水に浮かばせるとともに、前記半潜水型台船33は待避させるようにする。スパー型洋上風力発電設備1を海水に浮かばせた状態では、事前の浮体4内部への固形バラスト32の投入によって、スパー型洋上風力発電設備1の重心位置が下端側に移動されているため、図9に示されるように、スパー型洋上風力発電設備1は傾いた状態で浮かび、ナセル8は海面から上方側に離れた状態となっている。
<第3手順>
 次に、図9に示されるように、フロートオフされたスパー型洋上風力発電設備1に対して、注水が可能なように、バラストポンプ設備を搭載したバラスト台船35を近接させるとともに、バラストホース36を浮体4の内部に挿入してバラスト水の供給を可能とする。
 バラスト水の注水を行い、スパー型洋上風力発電設備1の内部に所定量のバラスト水が継続的に一定水量ずつ注水されると、最初は少しづつではあるが、浮体のピッチ角(浮体4の長手方向中心軸と水面との成す傾斜角度θ)が上昇する。そして、ある時点を過ぎると、図10に示されるように、急激に浮体4は起立動作を開始するようになる。そして、図11に示されるように、スパー型洋上風力発電設備1がほぼ垂直に起立する。
 前記浮体4又はタワー6にウエスト2を取り付けて、重心位置を偏心させておくようにすると、後述の〔実施例〕に示されるように、バラスト水の注水によって横向きで浮かんだ状態から立上り動作に移行した際に、この立上り動作が緩慢になるとともに、直立状態に近くなってからの動揺を小さく押さえられるようになる。従って、バラスト水の注水によるスパー型洋上風力発電設備1の立て起こしを安全かつ効率的に行うことが可能になる。
 スパー型洋上風力発電設備1を起立させたならば、図12に示されるように、前記ウエイト2を撤去する。
 また、同図12に示されるように、浮体4の上部に梯子13を取り付けるとともに、歩廊足場14を設ける。更に、前記浮体4に係留索5の一端を繋ぎ止めるとともに、他端を海底に沈設したアンカーに繋ぎ止めて浮体4の安定を図る。
<第4手順>
 次いで、未取付け分のブレード9、9…がある場合は、図13に示されるように、大型起重機船37に設備されたクレーンによって吊り下げながらナセル8に取り付けるようにする。なお、ブレード9の取付けは、一括で行っても良いし、一枚ずつ行うようにしても良い。
 すべての構成部材の取付けが完了したならば、バラスト水の調整によって所定の吃水状態とし、施工を完了する。
 ところで、前記ブレード9などの取付に際しては、その重量に見合う量のバラスト水の排出が必要になるが、固形バラスト32内に設けた前記バラスト水排水設備29によって固形バラスト32中のバラスト水を排水することが可能になっているため最小バラスト水量の低減も容易である。また、撤去時においても、固形バラスト32中のバラスト水を排水することが可能であるため、フロートオンが可能な傾斜の確保が容易になる。
〔スパー型洋上風力発電設備1の立て起こし方法の他例〕
 次に、スパー型洋上風力発電設備1の立て起こし方法の第2形態例について詳述する。
 本第2形態例では、ウエイト2を予め取り付けておく点は同じであるが、バラスト水の注水方法を変えることによって、より安全にかつ効率的に行うことが可能になる。
 本第2形態例では、バラスト水の注水を行い、スパー型洋上風力発電設備1が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによってスパー型洋上風力発電設備1を直立に起立する以前の斜め状態で一旦停止させた後、更にバラスト水を徐々に注水することによりスパー型洋上風力発電設備1を直立に起立させるようにするものである。
 継続的に注水を行う第1形態例と対比すると、スパー型洋上風力発電設備1が急激な直立動作を開始したその途中で、バラスト水の注水を停止することによって、スパー型洋上風力発電設備1を直立に起立する以前の斜め状態で停止させるようにした点で異なるものとなっている。
 重心位置を偏心させるウエイト2を取り付けることで、直立動作が緩慢になるため、スパー型洋上風力発電設備1が直立する以前の斜め状態で停止させることが可能になる。スパー型洋上風力発電設備1を一旦傾斜状態で停止させた後、徐々に注水することによりスパー型洋上風力発電設備1を直立に起立させるようにすることで、スパー型洋上風力発電設備1が直立した際に生じる慣性力による動揺は僅かしか作用しないために、より安全にかつ効率的に行うことが可能になる。
 ところで、前記重心偏心化手段として、後述の固形バラスト34を用いる場合、スパー型洋上風力発電設備1を直立に起立する以前の斜め状態で停止させる傾斜角度θは、固形バラスト32の安息角以下の角度とするのが望ましい。
〔重心偏心化手段の第2形態例〕
 上記形態例では、重心偏心化手段としてウエイト2を用いた例を示したが、前記重心偏心化手段として、固形バラスト32を用いた例について、図15~図19に基づいて詳述する。なお、これらの図では前記バラスト水排水設備29については省略されている。
 図15に示されるように、所定の岸壁エリアにおいて、スパー型洋上風力発電設備1の製作を行ったならば、バラスト調整しながら半潜水型台船33に積み込みを行う。スパー型洋上風力発電設備1を積込んだ状態で浮体4の内部に固形バラスト32を投入する。なお、固形バラスト32の投入は半潜水型台船33への積込み前に行うことも可能である。前記固形バラスト32は何らかの手段で拘束することなく流動可能な状態とする。従って、前記スパー型洋上風力発電設備1は横向きの状態で半潜水型台船33に積み込まれるため、前記固形バラスト32は横に広がった状態となっている。すなわち、前記スパー型洋上風力発電設備1が横向きの状態では、前記固形バラスト32によって前記浮体4の重心位置は偏心した状態となっている。
 図17に示されるように、曳航船34によって設置場所の海上まで運搬するしたならば、スパー型洋上風力発電設備1を海上に浮かばせる。前記スパー型洋上風力発電設備1のフロートオフ(浮上・進水)は、図16に示されるように、前記半潜水型台船33に注水を行って半潜水状態とし、スパー型洋上風力発電設備1を海水に浮かばせた後、前記半潜水型台船33をスパー型洋上風力発電設備1から離隔させるようにする。
 次に、図17に示されるように、フロートオフされた浮体4に対して、注水が可能なように、バラスト水のポンプ設備を搭載したバラスト台船35を近接させるとともに、バラストホース33をスパー型洋上風力発電設備1の内部に挿入してバラスト水の供給を可能とする。
 バラスト水の注水を行い、スパー型洋上風力発電設備1の内部に所定量のバラスト水が注水されると、最初は少しづつではあるが、スパー型洋上風力発電設備1のピッチ角(浮体の長手方向線と水面との成す角度θ)が上昇する。そして、ある時点を過ぎると、図18に示されるように、急激にスパー型洋上風力発電設備1は起立動作を開始するようになる。そして、図19に示されるように、スパー型洋上風力発電設備1がほぼ垂直に起立する。
 前記スパー型洋上風力発電設備1が横向きの状態では、内部に投入された固形バラスト32によって浮体4の重心位置は偏心した状態にあり、バラスト水の注水によってスパー型洋上風力発電設備1のピッチ角θは徐々に上昇する。前記スパー型洋上風力発電設備1が傾斜しても、前記固形バラスト32は安息角(崩れないで安定を保持し得る斜面角度)の傾斜角度θまでは移動することなく偏在状態を保持する。そして、スパー型洋上風力発電設備1の傾斜角θが安息角を越えてから固形バラスト32は移動を開始するが、その移動速度は水と比べて遅いため、起立まで時間を掛けながら固形バラスト32は流動し、最終的に浮体4の底部に充填する状態となることで重心位置の偏心が解消されることになるが、直立する直前までは偏心量は漸減しながらも偏心状態を維持するため、スパー型洋上風力発電設備1の立上り動作が緩慢になるとともに、直立状態に近くなってからの動揺を小さく押さえられるようになる。従って、バラスト水の注水による浮体4の立て起こしを安全かつ効率的に行うことが可能になる。
〔他の形態例〕
(1)上記形態例では、一括施工状態のスパー型洋上風力発電設備1は、浮体4、タワー6及びナセル8によって構成されるものとしたが、図14に示されるように、一括施工状態のスパー型洋上風力発電設備1を浮体4、タワー6、ナセル8及び3枚のブレード9、9…とすることも可能である。なお、ブレード9の取付け枚数は全部としてもよいが、全枚数の内の1又は複数枚とすることも可能である。
(2)前記重心偏心化手段として、スパー型洋上風力発電設備1の外面に取り付けたウエイト2を用いる場合と、浮体4の内部に固形バラスト32を投入する場合との2つの例について説明したが、これらは併用して用いることも可能である。
 次に、本願発明において、浮体4又はタワー6に対して、重心偏心化手段(ウエイト2又は固形バラスト32)によって重心位置を偏心させた状態とすることの効果を検証するために行った実験と解析について詳述する。
1.水槽実験
1.1 模型諸元
 図20および表1に、浮体模型40の概要・寸法を示す.想定実機(2MW機)の1/36.11の縮尺となっている.塩化ビニール製パイプを主体として製作し,浮体上部と下部に鉄板を装着することで重量及び重心高さを調整した。また、図20に示すように、浮体上部端より、65mmおよび418mmの2箇所に動揺計測で使用するマーカー41、42を取り付けている。
Figure JPOXMLDOC01-appb-T000001
1.2 計測方法
 水槽実験は,試験水槽(幅:24.4 m,長さ:38.8 m,実験時の水深:1.824 m)にて実施した。
 浮体模型40を水槽中央にて係留した。係留は,浮体上部を水槽副台車から,浮体下部を水槽岸から行い、係留力によって浮体模型40の挙動が妨げられることのないよう予め調整するなどした。
 浮体模型40の姿勢計測には,リアルタイムでマーカー41、42の動きを捕らえるモーションキャプチャーシステム(Qualysis)を使用した。浮体模型40に取り付けた2つのマーカー41、42は,水槽脇に設置された計4台のカメラ(Qualysis 5+;4 MP,2048x2048 pixels, 180fps)によってその動きを捕らえられ、0.02秒(50 Hz)毎に空間座標値として出力される。変換された座標値を基に、浮体中心軸と水面とのなす傾斜角を算出し、これをPitch角とした。
1.3 バラスト水の注水
 バラスト水の注水は、浮体上部よりホースを通じておこなった。使用したポンプは、タクミナ製スムーズフローポンプ(最大吐出量1.08 L/min、最大吐出圧:1 MPa)である。実験時の流量は、0.73 L/min(実機換算で5.7 m3/min)とした。
2.解析方法
 解析は、任意のバラスト水が浮体内部にある状態において、浮体自身に作用する重力、内部バラスト水に作用する重力、偏心のためのウエイトに作用する重力、浮体に作用する浮力、運動する浮体が外部の流体から受ける付加質量力および抗力の6つの力を考慮し、これらと浮体運動にともなう慣性力との動的なつり合い条件から浮体姿勢を求めることをプログラム(ADAMS:機構解析ソフト)により行った。
3.実験及び解析結果
3.1 実験値と解析結果の比較(立て起し時)
 立て起し時の実験結果を、ADAMSによるシミュレーション解析結果と比較して図21に示す。ここで、内部バラスト水がない状態での浮体自身の重心位置としては、浮体固定座標系に対して(Xg, Yg, Zg)=(0.0022m, 0.0m, 0.788m)を指定している。ただし、浮体固定座標系は浮体底面に原点を取り、浮体中心軸にそって上向きにZ軸を取り、これと直交する方向にX軸およびY軸をとっている。
 図21より,ADAMSによるシミュレーション解析結果は、実験結果(Experminent No.1)を良好に再現できていることが分かる。
3.2 浮体重心位置の偏心による応答への影響(立て起し時)
 3.1より、ADAMSによるシミュレーションにより立て起し時における浮体応答を精度よく予測できることが分かったので、次に浮体重心位置の偏心による応答への影響をシミュレーションにより調査する。Xg=0.0(偏心なし)と、ウエイトの取付けによってXg=0.0022m(実験条件と同様)とXg=0.0044m(重心位置の偏心が2倍の場合)とのXgの値を変化させた計3ケースについて、立て起し時の浮体応答のシミュレーションを実施した。その結果を図22に示す。
 図22より、偏心がない場合(Xg=0.0m)は,立ち上がりが急になるとともに直立状態になって以降大きな動揺を生じることがわかる。一方、重心の偏心をXg=0.0022mとしたケース、更に重心の偏心をその2倍大きくとったケースの場合は、立ち上がりが緩慢になるとともに、直立状態に近くなっても小さな動揺しか生じないことが分かる。重心の偏心をXg=0.0022mとしたケースと、重心の偏心をXg=0.0044mとしたケースとの比較により、偏心を大きくすると起立動作の緩慢が大きくなるとともに、直立後の動揺は小さくなることが判明した。
 以上により、注水による浮体の立て起しにおいては、重心位置の偏心させることで、立ち上がりを緩慢化でき、かつ直立後の動揺を小さく抑えることができることが判明した。
 1…スパー型洋上風力発電設備、4…浮体、4A…下側コンクリート製浮体構造部、4B…上側鋼製浮体構造部、5…係留索、6…タワー、7・(7')…風車、8…ナセル、9…ブレード、15…プレキャスト筒状体、17・18…鋼製筒状体、19…PC鋼棒、29…バラスト水排水設備、30…排水ポンプ、31…有孔管、32…固形バラスト、33…半潜水型台船、34…曳航船、35…バラスト台船、36…バラストホース、37…大型起重機船、40…浮体模型、41・42…マーカー

Claims (7)

  1.  スパー型の浮体と、該浮体の上に立設されるタワーと、該タワーの頂部に取り付けられるナセルと、該ナセルに取り付けられる複数枚のブレードとを備えるスパー型洋上風力発電設備の施工方法であって、
     前記浮体の底部に所定量の固形バラストを投入した状態とし、この浮体上部にタワーとナセルと必要に応じて所定枚数のブレードとを取り付けて一括施工状態とし、岸壁にて半潜水型台船に積み込み、スパー型洋上風力発電設備の設置海上まで運搬する第1手順と、
     スパー型洋上風力発電設備の設置海上において、前記半潜水型台船に注水を行って半潜水状態とし、前記スパー型洋上風力発電設備を海水に浮かばせるとともに、前記半潜水型台船を待避させる第2手順と、
     前記浮体内にバラスト水を注水することにより、スパー型洋上風力発電設備の立て起こしを行う第3手順と、
     未取付け分のブレードがある場合は大型起重機船を用いて取り付け、最後にバラスト水の調整によって所定の吃水状態とする第4手順とからなることを特徴とするスパー型洋上風力発電設備の施工方法。
  2.  前記固形バラストの投入領域内に、排水ポンプを配置するとともに、その周囲を所定高さの有孔管によって囲んだバラスト水の排水設備を設けるようにする請求項1記載のスパー型洋上風力発電設備の施工方法。
  3.  前記第3手順のスパー型洋上風力発電設備の立て起こしに際して、
     事前にスパー型洋上風力発電設備の浮体又はタワーに対して、重心偏心化手段によって重心位置を偏心させた状態とし、バラスト水の注水を継続的に行い、スパー型洋上風力発電設備を直立に起立させる請求項1、2いずれかに記載のスパー型洋上風力発電設備の施工方法。
  4.  前記第3手順のスパー型洋上風力発電設備の立て起こしに際して、
     事前にスパー型洋上風力発電設備の浮体又はタワーに対して、重心偏心化手段によって重心位置を偏心させた状態とし、バラスト水の注水を行い、スパー型洋上風力発電設備が立て起こし動作を開始した後、所定量でバラスト水の注水を停止することによってスパー型洋上風力発電設備を直立に起立する以前の斜め状態で一旦停止させた後、更にバラスト水を徐々に注水することによりスパー型洋上風力発電設備を直立に起立させる請求項1、2いずれかに記載のスパー型洋上風力発電設備の施工方法。
  5.  前記重心偏心化手段は、前記スパー型洋上風力発電設備用浮体の外面に着脱自在に取り付けたウエイトとする請求項3、4いずれかに記載のスパー型洋上風力発電設備の施工方法。
  6.  前記ウエイトは、立て起こしした際に、海面上の位置に取り付けてある請求項5記載のスパー型洋上風力発電設備の施工方法。
  7.  前記重心偏心化手段は、前記浮体の内部に投入した固形バラストとする請求項3、4いずれかに記載のスパー型洋上風力発電設備の施工方法。
PCT/JP2022/014409 2021-03-29 2022-03-25 スパー型洋上風力発電設備の施工方法 WO2022210359A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511170A JPWO2022210359A1 (ja) 2021-03-29 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054617 2021-03-29
JP2021-054617 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210359A1 true WO2022210359A1 (ja) 2022-10-06

Family

ID=83459026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014409 WO2022210359A1 (ja) 2021-03-29 2022-03-25 スパー型洋上風力発電設備の施工方法

Country Status (2)

Country Link
JP (1) JPWO2022210359A1 (ja)
WO (1) WO2022210359A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014187977A1 (en) * 2013-05-23 2014-11-27 Offshore Engineering Services Llc Deep-draft floating foundation for wind turbine with clustered hull and compartmented ballast section and self-erecting pivoting installation process thereof
JP2015140723A (ja) * 2014-01-29 2015-08-03 サノヤス造船株式会社 タワー型水上構造物およびその設置方法
JP6113735B2 (ja) * 2011-09-29 2017-04-12 ウィンデル アーエス 浮体式風力タービン
JP2020172872A (ja) * 2019-04-09 2020-10-22 三菱重工業株式会社 セミサブ浮体、及びセミサブ浮体を用いた風車の洋上設置方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113735B2 (ja) * 2011-09-29 2017-04-12 ウィンデル アーエス 浮体式風力タービン
WO2014187977A1 (en) * 2013-05-23 2014-11-27 Offshore Engineering Services Llc Deep-draft floating foundation for wind turbine with clustered hull and compartmented ballast section and self-erecting pivoting installation process thereof
JP2015140723A (ja) * 2014-01-29 2015-08-03 サノヤス造船株式会社 タワー型水上構造物およびその設置方法
JP2020172872A (ja) * 2019-04-09 2020-10-22 三菱重工業株式会社 セミサブ浮体、及びセミサブ浮体を用いた風車の洋上設置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IKU SATO, TOMOAKI UTSUNOMIYA, TAKASHI SHIRAISI, HIROSHI OOKUBO: "The Floating Offshore Wind Turbine Demonstration Project by Ministry of the Environment- Part 2: Construction and Installation of Half-Size Prototype -", PROCEEDINGS OF JAPAN WIND ENERGY SYMPOSIUM, vol. 34, 1 January 2012 (2012-01-01), pages 187 - 190, XP055974151, ISSN: 1884-4588, DOI: 10.11333/jweasympo.34.0_187 *

Also Published As

Publication number Publication date
JPWO2022210359A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7186406B2 (ja) 浮体式構造物及び浮体式構造物の設置方法
JP5022976B2 (ja) 洋上風力発電用のスパー型浮体構造およびその製造方法ならびにその設置方法
CN107542101B (zh) 一种海上四浮筒-浮箱组合式基础结构的施工方法
JP5738644B2 (ja) 洋上風力発電設備の施工方法
CN103786837B (zh) 用于支撑近海风力涡轮机的不对称系泊系统
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
CN107683371A (zh) 构造、组装浮动式风力涡轮机平台以及使其下水的方法
JP6270527B2 (ja) 洋上風力発電設備の施工方法
JP2017521296A5 (ja)
US20150104259A1 (en) Method of construction, installation, and deployment of an offshore wind turbine on a concrete tension leg platform
CN109629568A (zh) 海上风电导管架基础钢管桩用浮式稳桩平台的沉桩工艺
KR20200060766A (ko) 해상 풍력 터빈 용 플로트 지지 구조물 및 이와 같은 지지 구조물을 구비한 풍력 터빈을 설치하기 위한 방법
US8689721B2 (en) Vertically installed spar and construction methods
US20220002961A1 (en) Suction Anchors and Their Methods of Manufacture
KR20150131080A (ko) 부체식 해상 풍력발전 설비
JP2010223114A (ja) 洋上風力発電設備及びその施工方法
KR20150084913A (ko) 부유식 풍력 터빈의 이송 및 설치를 위한 부유 가능한 이송 및 설치 구조, 부유식 풍력 터빈과 그 이송 및 설치의 방법
JP2010223114A5 (ja)
WO2010143967A2 (en) Tripod foundation
JP5738643B2 (ja) 洋上風力発電設備の施工方法
CN105908772A (zh) 海上风机重力式基础、基础系统及重力式基础的施工方法
WO2022210359A1 (ja) スパー型洋上風力発電設備の施工方法
WO2022210358A1 (ja) スパー型洋上風力発電設備用浮体の立て起こし方法
JP5738642B2 (ja) 洋上風力発電設備の施工方法
JP6937627B2 (ja) 洋上風力発電設備及びその施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780572

Country of ref document: EP

Kind code of ref document: A1