WO2022210335A1 - 電圧制御システム - Google Patents

電圧制御システム Download PDF

Info

Publication number
WO2022210335A1
WO2022210335A1 PCT/JP2022/014310 JP2022014310W WO2022210335A1 WO 2022210335 A1 WO2022210335 A1 WO 2022210335A1 JP 2022014310 W JP2022014310 W JP 2022014310W WO 2022210335 A1 WO2022210335 A1 WO 2022210335A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
voltage
multiplication
array section
unit
Prior art date
Application number
PCT/JP2022/014310
Other languages
English (en)
French (fr)
Inventor
征人 竹本
翔太 山田
信三 香山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023511164A priority Critical patent/JPWO2022210335A1/ja
Priority to CN202280018261.9A priority patent/CN116998164A/zh
Publication of WO2022210335A1 publication Critical patent/WO2022210335A1/ja
Priority to US18/461,314 priority patent/US20230408331A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/448Array [CCD]

Definitions

  • the present disclosure relates to a voltage control system that controls bias voltage applied to light receiving elements.
  • Patent Document 1 in a photodetector using an APD (avalanche photodiode), the ambient temperature of the APD is monitored by a temperature sensor, and a bias voltage set value that compensates for changes in the bias voltage with respect to the ambient temperature is stored as a storage means. A technique for reading from and setting is shown.
  • APD active photodiode
  • Patent Document 2 a conversion coefficient of a multiplied image is calculated using a luminance average value and a luminance variance average value, and an electron multiplication factor of a multiplied image is calculated using this conversion coefficient and a conversion coefficient in a reference electron multiplication factor.
  • Patent Document 1 has a problem that it cannot cope with aging.
  • Patent Document 2 requires the amount of incident light to be known in advance, and has a problem that it cannot be used for applications in which the amount of incident light is not known in advance.
  • an appropriate bias voltage for the light receiving element according to the ambient temperature can be obtained without using illumination for calibration. for the purpose of supplying
  • the array section includes a light receiving array section that receives incident light, and a light blocking mechanism that blocks the incident light to the light receiving element.
  • a voltage application unit that applies a bias voltage to the anode terminal; and a multiplication state of the light shielding array unit is determined based on an output signal from the cathode of the light receiving element of the light shielding array unit. and a voltage setting unit configured to set the bias voltage output from the voltage application unit based on the determination result of the multiplication state determination unit.
  • the light-receiving element can be appropriately adjusted according to the ambient temperature without using illumination for calibration.
  • a bias voltage can be supplied.
  • FIG. 1 is a diagram showing a configuration example of a voltage control system according to a first embodiment
  • FIG. A plan view showing an example of an effective pixel area and a light shielding area.
  • Flowchart showing an operation example of the voltage control system according to the first embodiment A diagram for explaining an example of multiplication determination (linear mode) by a multiplication state determination unit.
  • FIG. 4 is a diagram for explaining another example of multiplication determination by the multiplication state determination unit;
  • FIG. 4 is a diagram for explaining another example of multiplication determination by the multiplication state determination unit;
  • FIG. 4 is a diagram for explaining another example of multiplication determination by the multiplication state determination unit;
  • FIG. 4 is a diagram for explaining another example of multiplication determination by the multiplication state determination unit;
  • FIG. 4 is a diagram for explaining another example of multiplication determination by the multiplication state determination unit;
  • Diagram showing an example of placement of temperature sensors Diagram showing other arrangement examples of temperature sensors
  • Diagram showing other arrangement examples of temperature sensors Flowchart showing an operation example of the voltage control system according to the second embodiment
  • Functional configuration diagram showing an example of introducing a voltage control system into an actual system
  • FIG. 1 shows a configuration example of a voltage control system according to the first embodiment.
  • a voltage control system 1 includes an array section 2 in which light receiving elements 30 are arranged in an array, a voltage application section 3 , a multiplication state determination section 4 , and a voltage setting section 5 .
  • the array section 2 includes a light receiving array section 21 having a plurality of light receiving elements 30 arranged in an array in the effective pixel area AR1 and a light shielding area AR2 provided on the same plane as the effective pixel area AR1. and a light shielding array section 22 having a plurality of light receiving elements 30 .
  • FIG. 2 shows an example in which a rectangular effective pixel area AR1 is provided in the center of a rectangular pixel area AR, and a light shielding area AR2 is provided so as to surround the effective pixel area AR1.
  • the light shielding area AR2 is hatched upward to the right.
  • the light shielding area includes areas AR21, AR22, and AR23, which will be described later.
  • the light receiving element 30 arranged in the effective pixel area AR1 is called the first light receiving element 31, and the light receiving element 30 arranged in the light shielding area AR2 is called the second light receiving element 32.
  • the configuration of the first light receiving element 31 and the configuration of the second light receiving element 32 are the same. However, the configuration of the first light receiving element 31 and the configuration of the second light receiving element 32 may be different from each other.
  • the effective pixel area AR1 refers to an area configured so that incident light from the outside can be received by the first light receiving elements 31 arranged in the area.
  • the light shielding area AR2 refers to an area in which the second light receiving element 32 arranged in the area is shielded from light by the light shielding mechanism.
  • the configuration of the light shielding mechanism is not particularly limited as long as the second light receiving element 32 arranged in the light shielding area is shielded from light.
  • Specific examples of the light shielding mechanism include a light shielding film formed to cover the surface of the light receiving element and a light shielding plate configured to cover the surface of the second light receiving element 32 .
  • the shape of the light shielding area AR2 is not limited to that shown in FIG.
  • an area AR21 adjacent to the effective pixel area AR1 in at least one of the vertical and horizontal directions may be set as the light shielding area AR2.
  • the effective pixel area and the area AR21 with diagonal lines in FIG. 2 may be set as the effective pixel area AR1, and the four corner areas AR22 of the dot hatched pixel area AR may be set as the light shielding area AR2. good. Note that, as shown in the lower part of FIG.
  • light is diffracted from the boundary of the light blocking mechanism in a region AR23 (for example, a region with a width of about several pixels) on the boundary with the effective pixel region AR1 in the light blocking region AR2. Since it may be entered, it may not be used for multiplication determination, which will be described later.
  • a region AR23 for example, a region with a width of about several pixels
  • Each first light receiving element 31 has a first photoelectric conversion portion that photoelectrically converts incident light received from the outside, and a PN junction that multiplies the signal of photoelectrons photoelectrically converted by the first photoelectric conversion portion.
  • Each second light-receiving element 32 has a second photoelectric conversion section shielded by the above-described light shielding mechanism, and a PN junction for signal multiplication of noise electrons generated in the second photoelectric conversion section.
  • the anodes of the plurality of first light receiving elements 31 forming the light receiving array section 21 and the anodes of the plurality of second light receiving elements 32 forming the light shielding array section 22 are both connected to a common anode terminal 26 . That is, the anodes of the plurality of first light receiving elements 31 are connected to a common signal line, and the common signal line is connected to the anode terminal 26 . Similarly, the anodes of the plurality of second light receiving elements 32 are connected to a common signal line, and the common signal line is connected to the anode terminal 26 .
  • the cathodes of the plurality of first light receiving elements 31 are each connected to the readout circuit 8 via the first cathode terminals 27 .
  • Cathodes of the plurality of second light receiving elements 32 are each connected to the input of the multiplication state determination section 4 via the second cathode terminal 28 .
  • an APD (avalanche photodiode) can be suitably used for the first light receiving element 31 and the second light receiving element 32 .
  • the first light receiving element 31 and the second light receiving element 32 are APDs.
  • the voltage applying section 3 applies a bias voltage Vsub to the anode terminal 26 of the array section 2 .
  • a conventionally known voltage application circuit can be applied to the configuration of the voltage application unit 3, and the specific configuration is not particularly limited.
  • FIG. 12 shows an example of the voltage applying section 3. As shown in FIG. The voltage application section 3 shown in FIG. 12 is mounted on a bias board 35 and includes a bias voltage generation circuit 37 , a fine digital potentiometer 38 and a fixed resistor 39 .
  • a bias voltage generation circuit 37 outputs a bias voltage Vsub that is output from the voltage application section 3 to the anode terminal 26 of the array section 2 (APD).
  • the bias voltage generation circuit 37 is configured to output a bias voltage Vsub based on the resistance value of the resistor to be referenced. More specifically, the bias voltage generation circuit 37 is configured, for example, to output a predetermined voltage (eg, -25 [V]) corresponding to the resistance value R2 of the fixed resistor 39 in the initial state.
  • the fine digital potentiometer 38 has a function of adjusting the bias voltage Vsub output from the bias voltage generation circuit 37. Specifically, for example, the fine digital potentiometer 38 sets the adjustment resistance value R1 based on the setting information from the voltage setting section 5 . As a result, the bias voltage generation circuit 37 outputs a bias voltage that takes into account the resistance value R2 of the fixed resistor 39 and the adjustment resistance value R1.
  • the multiplication state determination section 4 determines the multiplication state of the light shielding array section 22 based on the output signal from the second cathode terminal 28 of the array section 2, that is, the output signal from the light shielding array section 22. judge. A method of determining the multiplication state in the multiplication state determination unit 4 will be described with a specific example in the following "Operation of the voltage control system".
  • the voltage setting unit 5 sets the bias voltage output from the voltage applying unit 3 based on the determination result of the multiplication state determination unit 4 .
  • the APD can multiply the electrons obtained by photoelectrically converting a single photon to a saturation value.
  • the Geiger mode is suitable for detecting the presence or absence of light because the photodiode is easily saturated and noise is amplified. That is, when the array unit 2 is used as the APD sensor 20 (see FIG. 12), it is preferable to operate the array unit 2 in "Geiger mode". Therefore, the voltage setting section 5 sets the bias voltage Vsub output from the voltage applying section 3 so that the light receiving element 30 (particularly, the first light receiving element 31) of the array section 2 operates in the Geiger mode.
  • the voltage setting unit 5 selects the voltage from the voltage application unit 3 based on the determination result of the multiplication state determination unit 4 .
  • the bias voltage Vsub to be output is set so that its absolute value is larger than the previously set voltage. That is, a bias (a bias with a large absolute value) higher than the set voltage up to that point is applied.
  • step S ⁇ b>11 the voltage setting unit 5 sets the initial value of the bias voltage Vsub output from the voltage applying unit 3 .
  • the initial voltage value Vs1 of the bias voltage Vsub for example, a voltage that operates in the Geiger mode is set during inspection in the manufacturing process of the APD sensor 20 (see FIG. 12) on which the array section 2 is mounted.
  • the voltage application unit 3 outputs the initial voltage value Vs1 to the anode terminal 26 as the bias voltage Vsub.
  • the initial voltage value Vs1 is written into the non-volatile memory 25 (see FIG. 12) mounted on the APD sensor 20, for example, during inspection in the manufacturing process.
  • the configuration of the nonvolatile memory 25 is not particularly limited.
  • an e-fuse is used as the nonvolatile memory 25 .
  • step S ⁇ b>12 the multiplication state determination section 4 determines the multiplication state of the light shielding array section 22 based on the output signal from the second cathode terminal 28 . That is, by measuring the multiplication noise output from the second light receiving element 32 in the light shielding area AR2, it is possible to determine whether signal multiplication has occurred in the noise electrons output from the second light receiving element 32 (whether the signal is in the multiplication state). ) is determined.
  • FIGS. 4 to 7 (7A and 7B) show examples of the multiplication state determination of the light shielding array section 22 by the multiplication state determination section 4.
  • FIG. 1 First, the flow of a series of operations when the determination method of FIG. 4 (4A, 4B) is used will be described with reference to FIG.
  • FIGS. 4A and 4B show examples of histograms in which the horizontal axis represents the pixel output value of the light shielding array section 22 and the vertical axis represents the number of pixels corresponding to each pixel output value.
  • the vertical axis is logarithmic.
  • the histogram is such that the number of pixels concentrates on low pixel output values.
  • the multiplication state determination unit 4 determines that the Geiger mode is set when the number of pixels whose pixel output values are equal to or greater than the predetermined threshold value Vth1 is equal to or greater than the predetermined threshold value Nth1. As a result, a YES determination is made in step S13 of FIG. 3, and the voltage setting unit 5 maintains the previous set value.
  • the multiplication state determination unit 4 determines that the mode is the linear mode when the number of pixels whose pixel output values are equal to or greater than the predetermined threshold value Vth1 is less than the predetermined threshold value Nth1. As a result, a NO determination is made in step S13 of FIG. 3, and the flow proceeds to the next step S14.
  • step S14 the voltage setting unit 5 changes the voltage setting to be output to the voltage applying unit 3 based on the determination result of the multiplication state determination unit 4.
  • the voltage setting unit 5 outputs a voltage Vs2 obtained by adding a predetermined voltage to the value of the bias voltage Vsub at that time (the initial voltage value Vs1 in the initial state) as the set value of the bias voltage Vsub. That is, the voltage is set so that the absolute value is larger than the previously set voltage.
  • step S12 the flow returns to step S12, and the processing from step S12 to step S14 is repeated until it is determined that the light shielding array section 22 is operating in the Geiger mode. That is, the process of increasing the bias voltage Vsub (increasing the absolute value) is performed until the number of pixels whose pixel output values are equal to or greater than the predetermined threshold value Vth1 becomes equal to or greater than the predetermined threshold value Nth1. If it is determined that the light shielding array section 22 is operating in the Geiger mode and YES is determined in step S13, the bias voltage Vsub at the time of determination is applied and the process ends.
  • the series of processes shown in FIG. 3 are executed at predetermined time intervals (for example, at intervals of several seconds). It should be noted that when the process is restarted after the lapse of the predetermined time, the process after step S12 is executed using the set voltage set in the previous process. That is, in the post-restart processing, the processing from step S12 onwards is executed using the set voltage determined immediately before that multiplication will occur.
  • step S12 the multiplication state determination unit 4 determines whether the multiplication state of the light shielding array unit 22 is such that the number of pixels whose pixel output values are equal to or greater than a predetermined threshold value Vth1 is equal to or greater than a predetermined threshold value Nth1 and is equal to or greater than a predetermined threshold value Nth2. (Nth1 ⁇ Nth2) When it is within the following predetermined range, YES determination may be made in step S13. In this case, when the number of pixels whose pixel output values are equal to or greater than the predetermined threshold value Vth1 exceeds the threshold value Nth2, the multiplication state determination unit 4 determines that the bias voltage is too large in the "overbias mode", and NO in step S13. be judged.
  • the voltage setting section 5 changes the voltage setting based on the determination result of the multiplication state determination section 4 . Specifically, the voltage setting unit 5 outputs a voltage Vs3 obtained by subtracting a predetermined voltage from the bias voltage Vsub at that time as the set value of the bias voltage Vsub. That is, the voltage is set so that the absolute value is smaller than the previously set voltage.
  • FIG. 5 Another example of determination of the multiplication state of the light shielding array section 22 by the multiplication state determination section 4 will be described below with reference to FIGS. 5 to 7.
  • FIG. 5 Another example of determination of the multiplication state of the light shielding array section 22 by the multiplication state determination section 4 will be described below with reference to FIGS. 5 to 7.
  • FIG. 5 shows an example of a histogram in which the horizontal axis represents the integrated pixel output value of the light shielding array section 22 and the vertical axis represents the number of pixels having each pixel output value.
  • the vertical axis is logarithmic.
  • the histogram is such that the number of pixels (number of occurrences) concentrates on low pixel output values.
  • the multiplication state determination unit 4 determines the multiplication state of the light shielding array unit 22 by determining the number of pixels (the number of occurrences) of which the pixel output value is equal to or greater than a predetermined threshold value Vth2. If it is equal to or greater than Ith, a YES determination is made. On the other hand, if the number of pixels (number of occurrences) of pixel output values equal to or greater than the predetermined threshold value Vth2 is less than the predetermined threshold value Ith, a No determination is made. Other processes are the same as those described with reference to FIGS. 3 and 4A and 4B, and similar effects can be obtained.
  • the place where the integration is performed is not particularly limited, and the integration may be performed inside the APD sensor 20 (see FIG. 12), or the multiplication state determination unit 4 may perform the integration. may
  • step S12 of FIG. 3 for example, when either of the following patterns (1) and (2) occurs, the multiplication state determination section 4 determines that the light shielding array section 22 is in the multiplication state. Determine that there is. That is, (1) a multiplied pixel occurs in a cluster of several pixels, and/or (2) a multiplied pixel also occurs in peripheral pixels spaced apart by several pixels from a given multiplied pixel. If so, the multiplication state determination section 4 determines that the light shielding array section 22 is in the multiplication state, and the determination in step S13 of FIG. 3 is YES. Other processes are the same as those described with reference to FIGS. 3 and 4A and 4B, and similar effects can be obtained.
  • the voltage control system 1 of the present embodiment includes a first photoelectric conversion unit that photoelectrically converts received incident light and a PN junction that multiplies the signal of photoelectrons photoelectrically converted by the first photoelectric conversion unit.
  • the light-receiving array portion 21 is arranged in an array, the second photoelectric conversion portion is shielded by the light-shielding mechanism, and the PN that multiplies the signal of noise electrons generated in the second photoelectric conversion portion.
  • the anode of the first light receiving element 31 of the light receiving array section 21 and the anode of the second light receiving element 32 of the light blocking array section 22 are both arranged in an array.
  • a voltage application unit 3 that applies a bias voltage Vsub to the connected anode terminal 26 , and a multiplication state determination unit 4 that determines the multiplication state based on the output signal from the cathode of the second light receiving element 32 of the light shielding array unit 22 . and a voltage setting unit 5 for setting the bias voltage Vsub output from the voltage applying unit 3 based on the determination result of the multiplication state determination unit 4 .
  • the light shielding array section 22 is provided, and the voltage setting of the bias voltage Vsub is performed based on the multiplication state of the noise electrons generated in the second photoelectric conversion section of the second light receiving element 32 of the light shielding array section 22.
  • the exposure time may be adjusted according to the frequency of noise electrons generated in the second photoelectric conversion units of the second light receiving elements 32 of the light shielding array unit 22 .
  • the exposure time is set such that one noise electron is generated for each pixel of the photoelectric conversion section stochastically, the ratio of the multiplied pixels in the histogram of FIG. 4B is the multiplication probability of the photoelectric conversion section.
  • the light shielding area AR2 used in each of the multiplication determination methods described above may be changed. For example, if multiplication occurs in a predetermined number or more of pixels in a specific area within the effective pixel area AR1, it becomes difficult to perform multiplication in neighboring pixels because the bias conditions fluctuate. Sometimes. Therefore, when multiplication occurs in a predetermined number or more of pixels in a specific area within the effective pixel area AR1, the light-shielding area AR2 located at a distance of a predetermined distance or more from that area is used for multiplication determination. use. For example, in an area 64 in FIG. 7A and an area 65 in FIG.
  • a light-shielding area AR2 (a hatched area AR24 in FIG. 7A, a hatched area AR24 in FIG. 7B) on the opposite side area AR25) is used for multiplication determination.
  • each of the multiplication determination methods described above may be executed independently, or a plurality of multiplication determination methods may be used together to comprehensively determine the multiplication state. may have been
  • FIG. 8 shows a configuration example of the voltage control system 1 according to the second embodiment.
  • the voltage control system 1 includes an array section 2 in which light receiving elements 30 are arranged in an array, a voltage application section 3, a multiplication state determination section 4, a voltage setting section 5, and a temperature sensor 6. , and a temperature-voltage table 7 .
  • an array section 2 in which light receiving elements 30 are arranged in an array
  • a voltage application section 3 in which light receiving elements 30 are arranged in an array
  • a multiplication state determination section 4 a voltage setting section 5
  • a temperature sensor 6. a temperature sensor 6.
  • a temperature-voltage table 7 a temperature-voltage table 7 .
  • This embodiment differs from the first embodiment in that the voltage control system 1 includes a temperature sensor 6 and a temperature-voltage table 7 .
  • the temperature sensor 6 measures the ambient temperature of the light receiving array section 21 and the light shielding array section 22 .
  • FIG. 9 and 10 (10A, 10B) show examples of the arrangement of the temperature sensor 6.
  • the light receiving array section 21 and the light blocking array section 22 are housed in the sensor package 29 of the APD sensor 20 (see FIG. 12).
  • the temperature sensor 6 is provided close to the side wall of the sensor package 29 in either direction.
  • the direction in which the temperature sensor 6 is provided in the sensor package 29 is not particularly limited.
  • the environment in which the APD sensor 20 is placed causes the air to flow in the horizontal direction (horizontal direction in the drawing), it is desirable to have it close to the horizontal side wall of the sensor package 29 .
  • the temperature sensor 6 when the sensor package 29 is mounted on the printed circuit board 35, the temperature sensor 6 may be arranged on the back surface of the printed circuit board 35 opposite to the sensor package 29 (see FIGS. 10A and 10B). See Figure 10A). Alternatively, the temperature sensor 6 may be embedded in the printed circuit board 35 so that the temperature sensor 6 is arranged on the back surface of the sensor package 29 (see FIG. 10B).
  • the temperature sensor 6 used in FIGS. 9 and 10 (10A, 10B) is not particularly limited, and for example, a conventionally known thermistor or the like can be suitably used. By arranging the temperature sensor 6 close to the sensor package 29 in this way, it can be easily attached. Moreover, it is not necessary to consider the influence of the temperature sensor 6 when designing the array section 2 .
  • the temperature sensor 6 may be embedded in the sensor package 29. That is, the temperature sensor 6 may be provided inside the sensor package 29 .
  • the provision of the temperature sensor 6 in the sensor package 29 means (1) the case in which the temperature sensor 6 is provided in a sensor chip (not shown) on which the APD sensor 20 is mounted in the sensor package 29, and (2) This concept includes both the case where the temperature sensor 6 is provided inside the sensor package 29 and outside the sensor chip.
  • a circuit for temperature measurement is designed and incorporated in accordance with the sensor chip, similarly to other semiconductor circuits.
  • the temperature sensor 6 can be provided at a position closer to the array section 2, so that a measured value close to the actual temperature of the array section 2 can be obtained.
  • the temperature-voltage table 7 stores a set value of a predetermined bias voltage Vsub associated with each measured temperature.
  • the temperature-voltage table 7 receives the temperature measured by the temperature sensor 6 , reads the set value information of the bias voltage Vsub corresponding to the measured temperature, and outputs it to the voltage setting section 5 .
  • the APD sensor 20 is equipped with a nonvolatile memory 25 (see FIG. 12).
  • the non-volatile memory 25 the voltage that operates in the Geiger mode at each measurement temperature is written as initial setting information for the temperature-voltage table 7 during inspection in the manufacturing process.
  • the configuration of the nonvolatile memory 25 is not particularly limited.
  • an e-fuse is used as the nonvolatile memory 25 .
  • the multiplication state determination section 4 multiplies the light shielding array section 22 based on the output signal from the second cathode terminal 28 of the array section 2, that is, the output signal from the light shielding array section 22. Determine double status.
  • the method of determining the multiplication state in the multiplication state determination unit 4 is the same as that of the above-described first embodiment.
  • the multiplication state determination section 4 updates the temperature-voltage table 7 based on the determination result of the multiplication state of the light shielding array section 22 . A specific example is described below in "Operation of the Voltage Control System".
  • the voltage setting unit 5 sets the bias voltage Vsub output from the voltage applying unit 3 based on the set value information output from the temperature-voltage table 7 .
  • a specific voltage setting example will be described below in "Operation of Voltage Control System".
  • step S21 the voltage setting unit 5 sets the bias voltage Vsub output from the voltage applying unit 3 based on the set value information output from the temperature-voltage table 7.
  • the above-mentioned initial setting information is read in advance from the non-volatile memory 25 to the temperature-voltage table 7, for example.
  • an initial voltage value Vs4 based on the initial setting information is output from the voltage application unit 3 to the anode terminal 26 as the bias voltage Vsub.
  • step S ⁇ b>22 the multiplication state determination section 4 determines the multiplication state of the light shielding array section 22 based on the output signal from the second cathode terminal 28 . More specifically, the multiplication state determination unit 4 measures the multiplication noise output from the second light receiving element 32 in the light shielding area AR2 to determine whether the noise electrons output from the second light receiving element 32 are signal multiplied. Determine whether it is happening (multiplication state or not), ie whether it is operating in Geiger mode. A method for determining the multiplication state is the same as in the first embodiment, and detailed description thereof is omitted here.
  • the multiplication state determination unit 4 determines that the light shielding array unit 22 is operating in the Geiger mode (YES in step S23), the bias voltage Vsub at the time of determination is applied and the process ends. .
  • step S24 the flow proceeds to the next step S24.
  • step S24 the multiplication state determination unit 4 updates the voltage setting information in the temperature-voltage table 7 based on the multiplication state determination result. Specifically, for example, the set value information of the bias voltage Vsub corresponding to the measured temperature from the temperature sensor 6 is updated so that the absolute value of the set voltage becomes larger than the previous value. That is, the set value is updated so that a higher bias (bias with a larger absolute value) than the previous set voltage is applied. After the setting value information is updated, the flow returns to step S21.
  • step S21 the voltage setting unit 5 sets the bias voltage Vsub output from the voltage applying unit 3 based on the set value information output from the temperature-voltage table 7.
  • the voltage Vs5 (Vs5>Vs4) based on the updated set value information is output. If the temperature measured by the temperature sensor 6 has changed, the bias voltage Vsub based on the new measured temperature is set and output.
  • step S21 to step S24 the processing from step S21 to step S24 is repeated until it is determined that the light shielding array section 22 is operating in the Geiger mode. Then, it is determined that the light shielding array section 22 is operating in the Geiger mode, a YES determination is made in step S23, the bias voltage Vsub at the time of the determination is applied, and the process ends.
  • the series of processes in FIG. 11 are executed at predetermined time intervals (for example, at intervals of several seconds).
  • the operation may be performed when the multiplication state determination unit 4 determines that the "overbias mode" is set. For example, in the present embodiment, if it is determined to be in the "overbias mode", in step S24, the multiplication state determination unit 4 determines the set value information of the bias voltage Vsub corresponding to the measured temperature from the temperature sensor 6. , the voltage is set so that the absolute value is smaller than the previously set voltage. That is, the set value is updated so that a bias lower than the set voltage up to that point (a bias with a small absolute value) is applied.
  • the voltage control system 1 of the present embodiment has a first photoelectric conversion unit that photoelectrically converts received light and a PN junction that multiplies the signal of photoelectrons photoelectrically converted by the first photoelectric conversion unit.
  • a light-receiving array section 21 in which the first light-receiving elements 31 are arranged in an array, a second photoelectric conversion section shielded by a light-shielding mechanism, and a PN junction that multiplies the signal of noise electrons generated in the second photoelectric conversion section. are arranged in an array, and the anode of the first light receiving element 31 of the light receiving array section 21 and the anode of the second light receiving element 32 of the light blocking array section 22 are connected together.
  • a voltage application unit 3 that applies a bias voltage to the anode terminal 26, a temperature sensor 6 that measures the ambient temperature of the light receiving array unit 21 and the light shielding array unit 22, and a set value of a predetermined bias voltage Vsub corresponding to each measured temperature.
  • a temperature-voltage table 7 for outputting set value information of the bias voltage Vsub in accordance with the temperature measured by the temperature sensor 6, and an output signal from the cathode of the second light receiving element 32 of the light shielding array section 22.
  • Multiplication state determination unit 4 for determining the multiplication state based on the determination result and updating the temperature-voltage table 7 based on the determination result, and voltage application based on the set value information output from the temperature-voltage table 7 and a voltage setting unit 5 for setting the bias voltage Vsub output from the unit 3 .
  • the temperature-voltage table 7 is updated based on the determination result of the multiplication state of the light shielding array section 22 by the multiplication state determination section 4, and the bias voltage Vsub is set based on the updated information. I have to.
  • the bias voltage Vsub corresponding to the change over time can be applied to the anode terminal 26. can be done.
  • FIG. 12 shows an example of introduction to a real system.
  • the voltage control system 1 includes an APD sensor 20 equipped with the array unit 2 described above, a nonvolatile memory 25 (e-fuse), and a temperature sensor 6, an FPGA 82, a computer 70, and the voltage application unit described above. and a bias board on which the part 3 is mounted.
  • FIG. 12 shows an example in which the temperature-voltage table 7 is stored in the computer 70 and the functions of the multiplication state determining section 4 and the voltage setting section 5 are implemented by the CPU 71 of the computer 70 .
  • the FPGA 82 functions as an interface device between the APD sensor 20, the computer 70 and the bias board (voltage applying section 3).
  • the voltage control system according to the present invention can supply an appropriate bias voltage to the light receiving element according to the ambient temperature without using illumination for calibration even if the light receiving element changes over time. It is extremely useful as a voltage control system for controlling the bias voltage applied to the

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

電圧制御システムは、入射光を受光する受光アレイ部(21)と、遮光機構により受光素子への入射光が遮光された遮光アレイ部(22)とを有する。また、電圧制御システムは、アノード端子(26)にバイアス電圧(Vsub)を印加する電圧印加部(3)と、遮光アレイ部(22)の受光素子のカソードからの出力信号に基づいて遮光アレイ部(22)の増倍状態を判定する増倍状態判定部(4)と、増倍状態判定部(4)の判定結果に基づいて電圧印加部(3)から出力されるバイアス電圧(Vsub)の電圧設定を行う電圧設定部(5)とを備える。

Description

電圧制御システム
 本開示は、受光素子に印加するバイアス電圧を制御する電圧制御システムに関する。
 アバランシェ型の半導体光センサにおいて、検出した光信号のビット誤り率に影響がないように、バイアス電圧の温度補償をする技術が知られている。
 例えば、特許文献1には、APD(アバランシェフォトダイオード)を用いた光検出器において、APDの周囲温度を温度センサでモニタし、周囲温度に対するバイアス電圧の変化を補償するバイアス電圧設定値を記憶手段から読み出して設定する技術が示されている。
 また、特許文献2には、輝度平均値及び輝度分散平均値を用いて増倍画像の変換係数を算出し、この変換係数と基準電子増倍率における変換係数とを用いて増倍画像の電子増倍率を求める技術が示されている。
特開2000-171295号公報 特開2011-244076号公報
 しかしながら、特許文献1の技術は、経年変化に対応することができないという問題がある。特許文献2の技術は、あらかじめ入射光量がわかっている必要があり、入射光量があらかじめわかっていない用途には使用できないという問題がある。
 本開示では、受光素子がガイガーモードに移行するためのブレークダウン電圧が経年変化した場合においても、キャリブレーション用の照明を使用せずに、受光素子に対して周辺温度に応じた適切なバイアス電圧を供給することを目的とする。
 上記課題を解決するために、本開示の一実施形態に係る電圧制御システムは、前記アレイ部は、入射光を受光する受光アレイ部と、遮光機構により前記受光素子への前記入射光が遮光された遮光アレイ部と、を有し、前記アノード端子にバイアス電圧を印加する電圧印加部と、前記遮光アレイ部の受光素子のカソードからの出力信号に基づいて前記遮光アレイ部の増倍状態を判定する増倍状態判定部と、前記増倍状態判定部の判定結果に基づいて前記電圧印加部から出力される前記バイアス電圧の電圧設定を行う電圧設定部と、を備える。
 本開示によれば、受光素子がガイガーモードに移行するためのブレークダウン電圧が経年変化した場合においても、キャリブレーション用の照明を使用せずに、受光素子に対して周辺温度に応じた適切なバイアス電圧を供給することができる。
第1実施形態に係る電圧制御システムの構成例を示す図 有効画素領域と遮光領域の一例を示す平面図 第1実施形態に係る電圧制御システムの動作例を示すフローチャート 増倍状態判定部による増倍判定(リニアモード)の一例を説明するための図 増倍状態判定部による増倍判定(ガイガーモード)の一例を説明するための図 増倍状態判定部による増倍判定(リニアモード)の他の例を説明するための図 増倍状態判定部による増倍判定(ガイガーモード)の他の例を説明するための図 増倍状態判定部による増倍判定の他の例を説明するための図 増倍状態判定部による増倍判定の他の例を説明するための図 増倍状態判定部による増倍判定の他の例を説明するための図 第2実施形態に係る電圧制御システムの構成例を示す図 温度センサの配置例を示す図 温度センサの他の配置例を示す図 温度センサの他の配置例を示す図 第2実施形態に係る電圧制御システムの動作例を示すフローチャート 電圧制御システムの実システムへの導入例を示す機能構成図
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の実施形態の説明は、本質的に例示に過ぎず、本願発明、その適用物或いはその用途を制限することを意図するものではない。
 <第1実施形態>
 図1は、第1実施形態に係る電圧制御システムの構成例を示している。
 本実施形態に係る電圧制御システム1は、受光素子30がアレイ状に配置されたアレイ部2と、電圧印加部3と、増倍状態判定部4と、電圧設定部5とを備える。
 -アレイ部-
 アレイ部2は、有効画素領域AR1にアレイ状に配置された複数の受光素子30を備える受光アレイ部21と、有効画素領域AR1と同じ平面上に設けられた遮光領域AR2にアレイ状に配置された複数の受光素子30を備える遮光アレイ部22とを備える。図2には、矩形状の画素領域ARの中央に矩形状の有効画素領域AR1を設け、その有効画素領域AR1の周囲を囲むように遮光領域AR2を設けた例を示している。図2上段では、遮光領域AR2に右上がりのハッチングを付している。図2の例では、遮光領域は、後述する領域AR21,AR22,AR23を含む。
 本開示では、説明の便宜上、有効画素領域AR1に配置された受光素子30を第1受光素子31と称し、遮光領域AR2に配置された受光素子30を第2受光素子32と称する。第1受光素子31の構成と第2受光素子32の構成とは、同じである。ただし、第1受光素子31の構成と第2受光素子32の構成とが、互いに異なってもよい。
 ここで、有効画素領域AR1とは、その領域内に配置された第1受光素子31に外部からの入射光が受光可能に構成された領域を指す。また、遮光領域AR2とは、その領域内に配置された第2受光素子32が遮光機構により遮光された領域を指す。
 なお、遮光機構の構成は特に限定されず、遮光領域に配置された第2受光素子32が遮光されていればよい。遮光機構の具体例として、例えば、受光素子の表面を覆うように形成された遮光膜や、第2受光素子32の表面を覆うように構成された遮光板が例示される。
 また、遮光領域AR2の形状は、図2に限定されない。例えば、図2の右下がり斜線のハッチングで示すように、有効画素領域AR1の上下左右の少なくともいずれかの1つの方向に隣接する領域AR21を遮光領域AR2に設定してもよい。また、図2の有効画素領域と右上がり斜線の領域AR21を有効画素領域AR1として設定し、ドットハッチングで示した画素領域ARの4隅のコーナー部分の領域AR22を遮光領域AR2に設定してもよい。なお、図2下段に示すように、遮光領域AR2のうち、有効画素領域AR1との境界の領域AR23(例えば、数画素程度の幅の領域)については、遮光機構の境界からの回折により光が入る場合があるので、後述する増倍判定に使用しないようにしてもよい。
 それぞれの第1受光素子31は、外部から受光した入射光を光電変換する第1光電変換部と、その第1光電変換部で光電変換された光電子を信号増倍するPN接合とを有する。
 それぞれの第2受光素子32は、前述の遮光機構により遮光された第2光電変換部と、その第2光電変換部で発生するノイズ電子を信号増倍するPN接合とを有する。
 受光アレイ部21を構成する複数の第1受光素子31のアノード及び遮光アレイ部22を構成する複数の第2受光素子32のアノードは、ともに共通のアノード端子26に接続される。すなわち、複数の第1受光素子31のアノード同士は、共通の信号線に接続され、その共通の信号線がアノード端子26に接続される。同様に、複数の第2受光素子32のアノード同士は、共通の信号線に接続され、その共通の信号線がアノード端子26に接続される。
 複数の第1受光素子31のカソードは、それぞれ、第1カソード端子27を介して読出回路8に接続される。複数の第2受光素子32のカソードは、それぞれ、第2カソード端子28を介して、増倍状態判定部4の入力に接続される。
 第1受光素子31及び第2受光素子32には、例えば、APD(アバランシェフォトダイオード)を好適に使用することができる。以下の説明では、第1受光素子31及び第2受光素子32は、APDであるものとして説明する。
 -電圧印加部-
 電圧印加部3は、アレイ部2のアノード端子26にバイアス電圧Vsubを印加する。なお、電圧印加部3の構成は、従来から知られている電圧印加回路を適用することができ、具体的な構成は、特に限定されない。図12には、電圧印加部3の一例を示している。図12に示す電圧印加部3は、バイアスボード35に実装されており、バイアス電圧生成回路37と、ファイン・デジタルポテンショメータ38と、固定抵抗39とを備える。
 バイアス電圧生成回路37は、電圧印加部3からアレイ部2(APD)のアノード端子26に出力されるバイアス電圧Vsubを出力する。バイアス電圧生成回路37は、参照する抵抗の抵抗値に基づいたバイアス電圧Vsubを出力するように構成される。より詳しくは、バイアス電圧生成回路37は、例えば、初期状態において、固定抵抗39の抵抗値R2に応じた所定の電圧(例えば、-25[V])が出力されるように構成される。
 ファイン・デジタルポテンショメータ38は、バイアス電圧生成回路37から出力されるバイアス電圧Vsubを調整する機能を有する。具体的には、例えば、ファイン・デジタルポテンショメータ38は、電圧設定部5からの設定情報に基づいて調整抵抗値R1を設定する。これにより、バイアス電圧生成回路37から、固定抵抗39の抵抗値R2及び調整抵抗値R1を加味したバイアス電圧が出力される。
 -増倍状態判定部-
 図1に戻り、増倍状態判定部4は、アレイ部2の第2カソード端子28からの出力信号、すなわち、遮光アレイ部22からの出力信号に基づいて、遮光アレイ部22の増倍状態を判定する。増倍状態判定部4での増倍状態の判定方法については、以下の「電圧制御システムの動作」において具体例を示して説明する。
 -電圧設定部-
 電圧設定部5は、増倍状態判定部4の判定結果に基づいて電圧印加部3から出力されるバイアス電圧の電圧設定を行う。
 ところで、APDは、ブレークダウン電圧以上の電圧をかけた状態である「ガイガーモード」では、単一のフォトンが光電変換して得られた電子を飽和値まで増倍することが可能である。ガイガーモードは、フォトダイオードが飽和しやすく、またノイズも増幅されるため、光の有無を検出する用途に向いている。すなわち、APDセンサ20(図12参照)としてアレイ部2を使用する場合、アレイ部2を「ガイガーモード」で動作させることが好ましい。そこで、電圧設定部5では、電圧印加部3から出力されるバイアス電圧Vsubとして、アレイ部2の受光素子30(特に、第1受光素子31)をガイガーモードで動作させるように電圧設定をする。
 例えば、増倍状態判定部4において遮光アレイ部22において増倍が起こっていないと判定された場合、電圧設定部5は、増倍状態判定部4の判定結果に基づいて、電圧印加部3から出力されるバイアス電圧Vsubをそれまでの設定電圧よりも絶対値が大きくなるように電圧設定をする。すなわち、それまでの設定電圧よりも高いバイアス(絶対値の大きいバイアス)が印加されるようにする。なお、より具体的な例について、以下の「電圧制御システムの動作」において説明する。
 -電圧制御システムの動作-
 次に、図3のフローチャートを参照しつつ、本実施形態に係る電圧制御システム1の動作例について説明する。なお、以下の説明では、アレイ部2の受光素子30であるAPDに、ブレークダウン電圧以上の電圧をかけた状態を「ガイガーモード」と呼び、ブレークダウン電圧未満の電圧をかけた状態を「リニアモード」と呼ぶ。
 ステップS11において、電圧設定部5は、電圧印加部3から出力されるバイアス電圧Vsubの初期値を設定する。バイアス電圧Vsubの初期電圧値Vs1として、例えば、アレイ部2が搭載されたAPDセンサ20(図12参照)の製造工程における検査時において、ガイガーモードで動作する電圧が設定される。これにより、電圧印加部3からアノード端子26に、バイアス電圧Vsubとして初期電圧値Vs1が出力される。
 初期電圧値Vs1は、例えば、製造工程における検査時に、APDセンサ20に搭載された不揮発メモリ25(図12参照)に書きこまれる。不揮発メモリ25の構成は、特に限定されない。例えば、不揮発メモリ25としてeヒューズが用いられる。
 ステップS12において、増倍状態判定部4は、第2カソード端子28からの出力信号に基づいて、遮光アレイ部22の増倍状態を判定する。すなわち、遮光領域AR2の第2受光素子32から出力された増倍ノイズを測定することで、第2受光素子32から出力されるノイズ電子に信号増倍が起こっているかどうか(増倍状態かどうか)を判定する。
 図4~図7(7A,7B)には、増倍状態判定部4による遮光アレイ部22の増倍状態の判定例を示している。まずは、図4(4A,4B)の判定方法を用いた場合の一連の動作の流れについて図3も参照しつつ説明する。
 図4A,4Bには、遮光アレイ部22の画素出力値を横軸に取り、それぞれの画素出力値となる画素数を縦軸に取ったヒストグラムの一例を示す。図4A,4Bにおいて、縦軸は、対数表示となっている。
 リニアモードでは、遮光アレイ部22の第2受光素子32で発生した暗電流(ノイズ電子)は増倍されない。そのため、図4Aに示すように、低い画素出力値に画素数が集中するようなヒストグラムとなる。
 これに対して、ガイガーモードでは、遮光アレイ部22の第2受光素子32で発生した電荷(ノイズ電子)は増倍されるため、この信号増倍に応じた暗電流が発生する。これにより、図4Bに示すように、第2受光素子32のうち、増倍されて画素出力値が大きい画素と、暗電流が発生せずに(増倍されずに)画素出力値が小さい画素とが二極化されたヒストグラムとなる。
 そこで、増倍状態判定部4は、画素出力値が所定の閾値Vth1以上の画素数が所定の閾値Nth1以上であった場合、ガイガーモードであると判定する。その結果、図3のステップS13においてYES判定となり、電圧設定部5は、従前の設定値を維持する。
 一方で、増倍状態判定部4は、画素出力値が所定の閾値Vth1以上の画素数が所定の閾値Nth1未満であった場合、リニアモードであると判定する。その結果、図3のステップS13においてNO判定となり、フローは次のステップS14に進む。
 ステップS14において、電圧設定部5は、増倍状態判定部4の判定結果に基づいて、電圧印加部3に出力する電圧設定を変更する。ここでは、電圧設定部5は、バイアス電圧Vsubの設定値として、その時のバイアス電圧Vsubの値(初期状態の場合、初期電圧値Vs1)に所定の電圧を加えた電圧Vs2を出力する。すなわち、それまでの設定電圧よりも絶対値が大きくなるように電圧設定をする。
 その後、フローは、ステップS12に戻り、遮光アレイ部22がガイガーモードで動作していることが判定されるまで、ステップS12からステップS14の処理が繰り返される。すなわち、画素出力値が所定の閾値Vth1以上の画素数が所定の閾値Nth1以上となるまで、バイアス電圧Vsubを増加させる(絶対値を大きくする)処理が行われる。そして、遮光アレイ部22がガイガーモードで動作していると判定され、ステップS13においてYES判定となると、その判定時のバイアス電圧Vsubが適用されて処理が終了となる。
 そして、電圧制御システムでは、上記の図3の一連の処理が、所定の時間間隔(例えば、数秒間隔)で実行される。なお、所定の時間が経過して処理が再開される場合には、その前の処理で設定された設定電圧を用いて、ステップS12以降の処理が実行される。すなわち、再開後の処理では、直前に増倍が発生すると判断された設定電圧を用いて、ステップS12以降の処理が実行される。
 なお、ステップS12において、増倍状態判定部4は、遮光アレイ部22の増倍状態の判定として、画素出力値が所定の閾値Vth1以上の画素数が、所定の閾値Nth1以上かつ所定の閾値Nth2(Nth1<Nth2)以下の所定範囲内であった場合に、ステップS13でYES判定となるようにしてもよい。この場合、増倍状態判定部4は、画素出力値が所定の閾値Vth1以上の画素数が閾値Nth2を超える場合、バイアス電圧が大きすぎる「過バイアスモード」であると判定し、ステップS13においてNO判定となる。そして、次のステップS14において、電圧設定部5は、増倍状態判定部4の判定結果に基づいて、電圧設定を変更する。具体的には、電圧設定部5は、バイアス電圧Vsubの設定値として、その時のバイアス電圧Vsubから所定の電圧を減じた電圧Vs3を出力する。すなわち、それまでの設定電圧よりも絶対値が小さくなるように電圧設定をする。
 以下において、図5~図7を参照しつつ、増倍状態判定部4による遮光アレイ部22の増倍状態の他の判定例について説明する。
 -その他の判定例(1)-
 ここでは、増倍状態の判定として、所定回数(例えば、N回)の露光を実行し、その画素ごとに所定回数分の画素出力値を積算し、その積算値に基づいて増倍状態を判定する例を示す。
 図5(5A,5B)は、遮光アレイ部22の積算した画素出力値を横軸に取り、それぞれの画素出力値となった画素数を縦軸に取ったヒストグラムの一例を示す。図5A,5Bにおいて、縦軸は、対数表示となっている。
 前述のとおり、リニアモードでは、遮光アレイ部22の第2受光素子32で発生した暗電流(ノイズ電子)は増倍されないので、発生電荷が少ない。そのため、図5Aに示すように、低い画素出力値に画素数(発生回数)が集中するようなヒストグラムとなる。
 一方で、ガイガーモードでは、露光ごとに一定の確率pでダークカウントが発生する。例えば、N回露光した場合に、画素ごとにn回ダークカウントを検出する確率Pnは、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 その結果、ガイガーモードでは、図5Bに示すようなカウントごとのばらつきによる分布があり、各カウントの分布のピークの外挿線が破線で示したようになるヒストグラムが得られる。
 そこで、図3のステップS12において、増倍状態判定部4は、遮光アレイ部22の増倍状態の判定として、画素出力値が所定の閾値Vth2以上の画素数(発生回数)が、所定の閾値Ith以上であった場合に、YES判定とする。一方で、画素出力値が所定の閾値Vth2以上の画素数(発生回数)が、所定の閾値Ith未満であった場合に、No判定とする。それ以外の処理については、前述の図3及び図4A,4Bを用いた説明と同様であり、同様の効果が得られる。
 なお、積算を実行する場所は特に限定されず、APDセンサ20(図12参照)の内部で積算が実行されるようにしてもよいし、増倍状態判定部4で積算が実行されるようにしてもよい。
 -その他の判定例(2)-
 ここでは、増倍状態の判定として、増倍が発生している受光素子が含まれる画素(以下、増倍画素という)のパターンに基づいて判定する例を示す。
 図6上段に示すように、ある画素611においてダークカウント及び増倍が発生した場合、増倍中の電子が受光素子30の深さ方向に斜めに進んで裏面反射し、画素611に隣接する隣接画素612または数画素離れた画素において増倍が発生する。
 そこで、図3のステップS12において、例えば、次の(1),(2)のいずれかのパターンが発生していた場合に、増倍状態判定部4は、遮光アレイ部22が増倍状態であると判定する。すなわち、(1)数画素の塊で増倍画素が発生している場合、及び/または、(2)ある増倍画素に対して、数画素間隔をあけた周辺画素においても増倍画素が発生している場合に、増倍状態判定部4は、遮光アレイ部22が増倍状態であると判定し、図3のステップS13においてYES判定となる。それ以外の処理については、前述の図3及び図4A,4Bを用いた説明と同様であり、同様の効果が得られる。
 以上のように、本実施形態の電圧制御システム1は、受光された入射光を光電変換する第1光電変換部とその第1光電変換部で光電変換された光電子を信号増倍するPN接合とを有する第1受光素子31が、アレイ状に配置された受光アレイ部21と、遮光機構により遮光された第2光電変換部とその第2光電変換部で発生するノイズ電子を信号増倍するPN接合とを有する第2受光素子32が、アレイ状に配置された遮光アレイ部22と、受光アレイ部21の第1受光素子31のアノード及び遮光アレイ部22の第2受光素子32のアノードがともに接続されたアノード端子26にバイアス電圧Vsubを印加する電圧印加部3と、遮光アレイ部22の第2受光素子32のカソードからの出力信号に基づいて増倍状態を判定する増倍状態判定部4と、増倍状態判定部4の判定結果に基づいて電圧印加部3から出力されるバイアス電圧Vsubの電圧設定を行う電圧設定部5とを備える構成とした。
 このように遮光アレイ部22を設け、その遮光アレイ部22の第2受光素子32の第2光電変換部で発生するノイズ電子の増倍状態に基づいてバイアス電圧Vsubの電圧設定を行うようにしている。これにより、受光素子がガイガーモードに移行するためのブレークダウン電圧が経年変化した場合においても、その経年変化に応じたバイアス電圧Vsubをアノード端子26に印加することができる。また、その経年変化に応じたバイアス電圧Vsubの設定において、キャリブレーション用の照明を使用する必要もない。
 ここで、遮光アレイ部22の第2受光素子32の第2光電変換部で発生するノイズ電子の発生頻度に応じて露光時間を調整してもよい。例えば、確率的に光電変換部の1画素あたり1つのノイズ電子が発生するような露光時間に設定すると、図4Bのヒストグラムにおける増倍した画素の割合が、光電変換部の増倍確率となる。
 なお、有効画素領域AR1の増倍状態に基づいて、上記の各増倍判定方法で使用する遮光領域AR2を変更するようにしてもよい。例えば、有効画素領域AR1内の特定の領域において、あらかじめ定めた所定数以上の画素で増倍が発生している場合、その近傍の画素では、バイアス条件が変動するために、増倍しにくくなる場合がある。そこで、有効画素領域AR1内の特定の領域において、所定数以上の画素で増倍が発生している場合には、その領域から所定の距離以上離れた場所にある遮光領域AR2を増倍判定に使用する。例えば、図7Aの領域64、図7Bの領域65において、所定数以上の画素で増倍が発生している場合、その反対側にある遮光領域AR2(図7Aのハッチング領域AR24、図7Bのハッチング領域AR25参照)を増倍判定に使用する。
 なお、上記において説明した増倍判定方法は、それぞれの増倍判定方法が単独で実行されてもよいし、複数の増倍判定方法を併用し、総合的に増倍状態を判定するように構成されていてもよい。
 <第2実施形態>
 図8は、第2実施形態に係る電圧制御システム1の構成例を示している。
 本実施形態に係る電圧制御システム1は、受光素子30がアレイ状に配置されたアレイ部2と、電圧印加部3と、増倍状態判定部4と、電圧設定部5と、温度センサ6と、温度-電圧テーブル7とを備える。以下電圧制御システム1の説明では、第1実施形態との相違点を中心に説明する。
 本実施形態では、電圧制御システム1が、温度センサ6と、温度-電圧テーブル7とを備える点で第1実施形態と異なる。
 -温度センサ-
 温度センサ6は、受光アレイ部21及び遮光アレイ部22の周辺温度を測定する。
 図9及び図10(10A,10B)は、温度センサ6の配置例を示す。ここでは、受光アレイ部21及び遮光アレイ部22は、APDセンサ20(図12参照)のセンサパッケージ29に格納されいる。
 図9において、温度センサ6は、センサパッケージ29のいずれかの方向の側壁に近接するように設けられる。なお、温度センサ6をセンサパッケージ29のどの方向に設けるかは特に限定されない。例えば、周辺空気からAPDセンサ20の熱伝導の際に周辺空気の対流も影響するため、温度センサ6はセンサパッケージ29の鉛直方向(図面上下方向)の側壁に近接させることが望ましい。一方で、APDセンサ20の置かれた環境によって空気の流れが水平方向(図面横方向)である場合、センサパッケージ29の水平方向の側壁に近接させることが望ましい。
 また、図10A,10Bに示すように、センサパッケージ29がプリント基板35に実装されている場合に、温度センサ6は、プリント基板35のセンサパッケージ29と反対側の裏面に配置してもよい(図10A参照)。あるいは、温度センサ6をプリント基板35内に埋め込んで、温度センサ6がセンサパッケージ29の裏面に配置されるようにしてもよい(図10B参照)。
 図9および図10(10A,10B)に用いる温度センサ6は、特に限定されず、例えば、従来から知られているサーミスタ等を好適に用いることができる。このように、温度センサ6をセンサパッケージ29に近接するように設けることにより、簡易に取り付けることができる。また、アレイ部2を設計する際に、温度センサ6の影響を考慮する必要がない。
 図12に示すように、温度センサ6をセンサパッケージ29に内蔵させて組み込んでもよい。すなわち、温度センサ6をセンサパッケージ29内に設けてもよい。なお、温度センサ6をセンサパッケージ29内に設けるとは、(1)センサパッケージ29内においてAPDセンサ20が実装されたセンサチップ(図示省略)内に温度センサ6が設られる場合と、(2)センサパッケージ29の内側でかつ上記センサチップの外側に温度センサ6が設られる場合、の両方を含む概念である。例えば、センサチップ内に温度センサ6を設ける場合、他の半導体回路と同様に、センサチップに応じた温度測定用の回路を設計して組み込むことになる。
 このように温度センサ6をセンサパッケージ29に内蔵することにより、アレイ部2により近い位置に温度センサ6を設けることができるので、実際のアレイ部2の温度に近い測定値を得ることができる。
 -温度-電圧テーブル-
 温度-電圧テーブル7には、測定温度ごとに所定のバイアス電圧Vsubの設定値が対応付けされて記憶されている。そして、温度-電圧テーブル7は、温度センサ6での測定温度を受信し、その測定温度に応じたバイアス電圧Vsubの設定値情報を読み出して、電圧設定部5に出力する。
 例えば、APDセンサ20には不揮発メモリ25(図12参照)が搭載されている。不揮発メモリ25には、製造工程における検査時に、温度-電圧テーブル7の初期設定情報として、それぞれの測定温度においてガイガーモードで動作する電圧が書き込まれている。不揮発メモリ25の構成は、特に限定されない。例えば、不揮発メモリ25としてeヒューズが用いられる。
 -増倍状態判定部-
 増倍状態判定部4は、第1実施形態と同様に、アレイ部2の第2カソード端子28からの出力信号、すなわち、遮光アレイ部22からの出力信号に基づいて、遮光アレイ部22の増倍状態を判定する。増倍状態判定部4での増倍状態の判定方法については、前述の第1実施形態と同様である。さらに、本実施形態において、増倍状態判定部4は、遮光アレイ部22の増倍状態の判定結果に基づいて、温度-電圧テーブル7を更新する。具体的な例については、以下の「電圧制御システムの動作」において説明する。
 -電圧設定部-
 本実施形態において、電圧設定部5は、温度-電圧テーブル7から出力された設定値情報に基づいて、電圧印加部3から出力されるバイアス電圧Vsubの電圧設定を行う。具体的な電圧の設定例について、以下の「電圧制御システムの動作」において説明する。
 -電圧制御システムの動作-
 次に、図面を参照しつつ、電圧制御システム1の動作例について説明する。なお、ここでは第1実施形態との相違点を中心に説明する。
 ステップS21において、電圧設定部5は、温度-電圧テーブル7から出力される設定値情報に基づいて電圧印加部3から出力されるバイアス電圧Vsubを設定する。温度-電圧テーブル7には、例えば、不揮発メモリ25から前述の初期設定情報があらかじめ読み出されている。これにより、電圧印加部3からアノード端子26に、バイアス電圧Vsubとして初期設定情報に基づく初期電圧値Vs4が出力される。
 ステップS22において、増倍状態判定部4は、第2カソード端子28からの出力信号に基づいて、遮光アレイ部22の増倍状態を判定する。より詳しくは、増倍状態判定部4は、遮光領域AR2の第2受光素子32から出力された増倍ノイズを測定することで、第2受光素子32から出力されるノイズ電子に信号増倍が起こっているかどうか(増倍状態かどうか)、すなわちガイガーモードで動作しているかどうかを判定する。増倍状態の判定方法は、第1実施形態と同様であり、ここでは詳細説明を省略する。
 そして、増倍状態判定部4において、遮光アレイ部22がガイガーモードで動作していると判定されると(ステップS23でYES)、その判定時のバイアス電圧Vsubが適用されて処理が終了となる。
 一方で、増倍状態判定部4において、遮光アレイ部22がガイガーモードではなくリニアモードで動作していると判定されると(ステップS23でNO)、フローは次のステップS24に進む。
 ステップS24において、増倍状態判定部4は、増倍状態の判定結果に基づいて、温度-電圧テーブル7の電圧設定情報を更新する。具体的には、例えば、温度センサ6からの測定温度に対応するバイアス電圧Vsubの設定値情報について、それまでの値よりも設定電圧の絶対値が大きくなるように設定値を更新する。すなわち、それまでの設定電圧よりも高いバイアス(絶対値の大きいバイアス)が印加されるように設定値を更新する。設定値情報の更新がされると、フローは、ステップS21に戻る。
 ステップS21において、電圧設定部5は、温度-電圧テーブル7から出力される設定値情報に基づいて電圧印加部3から出力されるバイアス電圧Vsubを設定する。ここでは、更新された設定値情報が出力されるので、測定温度が一定であれば、その更新後の設定値情報に基づいた電圧Vs5(Vs5>Vs4)が出力される。温度センサ6の測定温度が変わっている場合には、新しい測定温度に基づいたバイアス電圧Vsubを設定されて出力される。
 このようにして、遮光アレイ部22がガイガーモードで動作していることが判定されるまで、ステップS21からステップS24の処理が繰り返される。そして、遮光アレイ部22がガイガーモードで動作していると判定され、ステップS23においてYES判定となり、その判定時のバイアス電圧Vsubが適用されて処理が終了となる。
 そして、電圧制御システム1では、上記の図11の一連の処理が、所定の時間間隔(例えば、数秒間隔)で実行される。
 なお、本実施形態においても、第1実施形態と同様に、増倍状態判定部4において「過バイアスモード」であると判定された場合の動作が実行されるようにしてもよい。例えば、本実施形態において、「過バイアスモード」であると判定された場合、ステップS24において、増倍状態判定部4は、温度センサ6からの測定温度に対応するバイアス電圧Vsubの設定値情報について、それまでの設定電圧よりも絶対値が小さくなるように電圧設定をする。すなわち、それまでの設定電圧よりも低いバイアス(絶対値の小さいバイアス)が印加されるように設定値を更新する。
 以上のように、本実施形態の電圧制御システム1は、受光した光を光電変換する第1光電変換部とその第1光電変換部で光電変換された光電子を信号増倍するPN接合とを有する第1受光素子31が、アレイ状に配置された受光アレイ部21と、遮光機構により遮光された第2光電変換部とその第2光電変換部で発生するノイズ電子を信号増倍するPN接合とを有する第2受光素子32が、アレイ状に配置された遮光アレイ部22と、受光アレイ部21の第1受光素子31のアノード及び遮光アレイ部22の第2受光素子32のアノードがともに接続されたアノード端子26にバイアス電圧を印加する電圧印加部3と、受光アレイ部21及び遮光アレイ部22の周辺温度を測定する温度センサ6と、測定温度ごとに所定のバイアス電圧Vsubの設定値が対応付けされており、温度センサ6での測定温度に応じたバイアス電圧Vsub圧の設定値情報を出力する温度-電圧テーブル7と、遮光アレイ部22の第2受光素子32のカソードからの出力信号に基づいて増倍状態を判定し、その判定結果に基づいて、温度-電圧テーブル7を更新する増倍状態判定部4と、温度-電圧テーブル7から出力された設定値情報に基づいて、電圧印加部3から出力されるバイアス電圧Vsubの電圧設定を行う電圧設定部5とを備える。
 本実施形態では、増倍状態判定部4による遮光アレイ部22の増倍状態の判定結果に基づいて温度-電圧テーブル7を更新し、その更新情報に基づいてバイアス電圧Vsubの電圧設定を行うようにしている。これにより、第1実施形態と同様に、受光素子30がガイガーモードに移行するためのブレークダウン電圧が経年変化した場合においても、その経年変化に応じたバイアス電圧Vsubをアノード端子26に印加することができる。また、その経年変化に応じたバイアス電圧Vsubの設定において、キャリブレーション用の照明を使用する必要もない。
 <実システムへの導入例>
 図12は、実システムへの導入例を示す。
 図12に示すように、電圧制御システム1は、前述のアレイ部2、不揮発メモリ25(eヒューズ)及び温度センサ6が搭載されたAPDセンサ20と、FPGA82と、コンピュータ70と、前述の電圧印加部3が搭載されたバイアスボードとを備える。
 前述の増倍状態判定部4及び電圧設定部5の機能は、FPGA82で実現されてもよいし、コンピュータ70で実現されてもよい。図12では、コンピュータ70に温度-電圧テーブル7が格納され、コンピュータ70のCPU71により、増倍状態判定部4及び電圧設定部5の機能が実現されている例を示している。この場合、FPGA82は、APDセンサ20、コンピュータ70及びバイアスボード(電圧印加部3)の間のインターフェース装置として機能する。
 本発明による電圧制御システムは、経年変化した場合においても、キャリブレーション用の照明を使用せずに、受光素子に対して周辺温度に応じた適切なバイアス電圧を供給することができるので、受光素子に印加するバイアス電圧を制御する電圧制御システムとして極めて有用である。
 1 電圧制御システム
 3 電圧印加部
 4 増倍状態判定部
 5 電圧設定部
 6 温度センサ
 7 温度-電圧テーブル
 21 受光アレイ部
 22 遮光アレイ部
 26 アノード端子
 30 受光素子
 Vsub バイアス電圧
 

Claims (9)

  1.  受光素子が複数配置され、かつ、共通のアノード端子に接続されたアレイ部を備える電圧制御システムであって、
     前記アレイ部は、入射光を受光する受光アレイ部と、遮光機構により前記受光素子への前記入射光が遮光された遮光アレイ部と、を有し、
     前記アノード端子にバイアス電圧を印加する電圧印加部と、
     前記遮光アレイ部の受光素子のカソードからの出力信号に基づいて前記遮光アレイ部の増倍状態を判定する増倍状態判定部と、
     前記増倍状態判定部の判定結果に基づいて前記電圧印加部から出力される前記バイアス電圧の電圧設定を行う電圧設定部と、を備える、
    電圧制御システム。
  2.  前記増倍状態判定部は、所定の第1閾値以上の出力信号を出力する前記遮光アレイ部の受光素子の素子数が所定の第2閾値以上であった場合、前記遮光アレイ部が増倍状態であると判定し、
     前記電圧設定部は、前記増倍状態判定部において、前記遮光アレイ部が増倍状態であると判定されなかった場合に、前記バイアス電圧の設定値をそれまでの設定電圧よりも電圧の絶対値が大きくなるように設定する、
    請求項1に記載の電圧制御システム。
  3.  前記増倍状態判定部は、所定回数の露光が行われた場合において、前記受光素子ごとに前記所定回数分の出力信号を積算した信号が所定の第1閾値以上である前記受光素子の素子数が所定の第2閾値以上であった場合、前記遮光アレイ部が増倍状態であると判定し、
     前記電圧設定部は、前記増倍状態判定部において、前記遮光アレイ部が増倍状態であると判定されされなかった場合に、前記バイアス電圧の設定値をそれまでの設定電圧よりも電圧の絶対値が大きくなるように設定する、
    請求項1に記載の電圧制御システム。
  4.  前記増倍状態判定部は、複数の前記遮光アレイ部の受光素子の塊で増倍が発生している場合、及び/または、増倍された前記遮光アレイ部の受光素子に対して、所定の間隔をあけた周辺の前記受光素子においても増倍が発生している場合に、前記遮光アレイ部が増倍状態であると判定し、
     前記電圧設定部は、前記増倍状態判定部において、前記遮光アレイ部が増倍状態であると判定されされなかった場合に、前記バイアス電圧の設定値をそれまでの設定電圧よりも電圧の絶対値が大きくなるように設定する、
    請求項1に記載の電圧制御システム。
  5.  前記受光アレイ部のうちの特定の領域において、所定数以上の前記受光素子で増倍が発生している場合に、当該特定の領域から所定の距離以上離れた場所にある前記遮光アレイ部の受光素子を前記増倍状態判定部の増倍判定に使用する、
    請求項1から4のいずれかに記載の電圧制御システム。
  6.  受光素子が複数配置され、かつ、共通のアノード端子に接続されたアレイ部を備える電圧制御システムであって、
     前記アレイ部は、入射光を受光する受光アレイ部と、遮光機構により前記受光素子への前記入射光が遮光された遮光アレイ部と、を有し、
     前記アノード端子にバイアス電圧を印加する電圧印加部と、
     前記受光アレイ部及び前記遮光アレイ部の周辺温度を測定する温度センサと、
     測定温度ごとに所定の前記バイアス電圧の設定値が対応付けされており、前記温度センサでの測定温度に応じた前記バイアス電圧の設定値情報を出力する温度-電圧テーブルと、
     前記遮光アレイ部の受光素子のカソードからの出力信号に基づいて増倍状態を判定し、その判定結果に基づいて、前記温度-電圧テーブルを更新する増倍状態判定部と、
     前記温度-電圧テーブルから出力された前記設定値情報に基づいて、前記電圧印加部から出力される前記バイアス電圧の電圧設定を行う電圧設定部とを備える、
    電圧制御システム。
  7.  前記受光アレイ部及び前記遮光アレイ部は、センサパッケージ内に格納されており、
     前記温度センサは、前記センサパッケージ内に設けられる、
    請求項6に記載の電圧制御システム。
  8.  前記受光アレイ部及び前記遮光アレイ部は、センサパッケージ内に格納されており、
     前記温度センサは、前記センサパッケージに近接するように設けられる、
    請求項6に記載の電圧制御システム。
  9.  前記受光アレイ部及び前記遮光アレイ部は、不揮発性メモリが内蔵されたセンサパッケージ内に格納されており、
     前記温度-電圧テーブルは、前記センサパッケージ内の不揮発性メモリから、前記測定温度ごとの前記バイアス電圧の初期設定値情報を取得する、
    請求項6に記載の電圧制御システム。
     
PCT/JP2022/014310 2021-03-31 2022-03-25 電圧制御システム WO2022210335A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511164A JPWO2022210335A1 (ja) 2021-03-31 2022-03-25
CN202280018261.9A CN116998164A (zh) 2021-03-31 2022-03-25 电压控制系统
US18/461,314 US20230408331A1 (en) 2021-03-31 2023-09-05 Voltage control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061118 2021-03-31
JP2021-061118 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/461,314 Continuation US20230408331A1 (en) 2021-03-31 2023-09-05 Voltage control system

Publications (1)

Publication Number Publication Date
WO2022210335A1 true WO2022210335A1 (ja) 2022-10-06

Family

ID=83458894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014310 WO2022210335A1 (ja) 2021-03-31 2022-03-25 電圧制御システム

Country Status (4)

Country Link
US (1) US20230408331A1 (ja)
JP (1) JPWO2022210335A1 (ja)
CN (1) CN116998164A (ja)
WO (1) WO2022210335A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016638A (ja) * 2011-07-04 2013-01-24 Hamamatsu Photonics Kk フォトダイオードアレイモジュール
JP2019075394A (ja) * 2017-10-12 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および、電子装置
JP2021039066A (ja) * 2019-09-05 2021-03-11 株式会社東芝 光検出装置及び電子装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11221253B2 (en) * 2020-01-21 2022-01-11 Semiconductor Components Industries, Llc System with a SPAD-based semiconductor device having dark pixels for monitoring sensor parameters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016638A (ja) * 2011-07-04 2013-01-24 Hamamatsu Photonics Kk フォトダイオードアレイモジュール
JP2019075394A (ja) * 2017-10-12 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および、電子装置
JP2021039066A (ja) * 2019-09-05 2021-03-11 株式会社東芝 光検出装置及び電子装置

Also Published As

Publication number Publication date
JPWO2022210335A1 (ja) 2022-10-06
US20230408331A1 (en) 2023-12-21
CN116998164A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US20060038900A1 (en) Image sensor that uses a temperature sensor to compensate for dark current
KR100777382B1 (ko) 이미지 장치에서 다크 전류 및 결함 픽셀의 영향을감소시키는 방법 및 장치
US7602438B2 (en) Method and apparatus for capturing high quality long exposure images with a digital camera
US9560294B2 (en) Systems and methods for pixel-level dark current compensation in image sensors
GB2514576A (en) Methods and apparatus
GB2328338A (en) Temperature dependent dark current correction in imaging apparatus
US8130294B2 (en) Imaging array with non-linear light response
US20060125945A1 (en) Solid-state imaging device and electronic camera and shading compensaton method
CN102281401A (zh) 热图像摄像机
JPH08331463A (ja) アクティブ画素を用いたccd撮像装置のスミア修正
US5150216A (en) Solid-state image sensing device having an optimum overflow drain voltage generation circuit
KR101092216B1 (ko) 에너지 선택적 x―선 단일 광자 계수형 독출 칩 및 파일―업 보정 방법
WO2022210335A1 (ja) 電圧制御システム
US7880780B2 (en) Sensor apparatus and method for noise reduction
KR101103956B1 (ko) 이미지 센서 및 카메라
US20220210398A1 (en) Image sensor, image sensor test system and method
US20220337768A1 (en) Signal processing apparatus, photoelectric conversion apparatus, image capturing system, and control method of signal processing apparatus
JP2011151461A (ja) 固体撮像素子
US20200120256A1 (en) Saturation avoidance in digital imaging
KR20080061052A (ko) 선형 광센서의 보정 시스템 및 보정방법
JP2007318503A (ja) 撮像装置
JP2018107730A (ja) 撮像装置及びその制御方法
JP2005509319A (ja) イメージ信号のfpn補正方法及びそのための装置
JP4784397B2 (ja) 撮像装置
KR20220095093A (ko) 이미지 센싱 시스템 및 그의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280018261.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023511164

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780549

Country of ref document: EP

Kind code of ref document: A1