WO2022210009A1 - Wavelength conversion member and light emission device - Google Patents

Wavelength conversion member and light emission device Download PDF

Info

Publication number
WO2022210009A1
WO2022210009A1 PCT/JP2022/012515 JP2022012515W WO2022210009A1 WO 2022210009 A1 WO2022210009 A1 WO 2022210009A1 JP 2022012515 W JP2022012515 W JP 2022012515W WO 2022210009 A1 WO2022210009 A1 WO 2022210009A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass matrix
glass
light
transmittance
Prior art date
Application number
PCT/JP2022/012515
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 上田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202280026544.8A priority Critical patent/CN117120886A/en
Priority to KR1020237026866A priority patent/KR20230161940A/en
Publication of WO2022210009A1 publication Critical patent/WO2022210009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence

Definitions

  • the present invention relates to a wavelength conversion member that converts the wavelength of light emitted by a light emitting diode (LED) or a laser diode (LD) into another wavelength, and a light emitting device using the wavelength conversion member.
  • LED light emitting diode
  • LD laser diode
  • a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is arranged on an LED that emits blue light.
  • a light emitting device is disclosed. This light-emitting device emits white light, which is synthesized light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
  • Patent Document 2 discloses a light source for a methane gas sensor that includes a light emitting element that emits ultraviolet light and/or visible light, and a phosphor layer provided on the light emitting element.
  • the excitation light leaks out together with the fluorescence, it may adversely affect the function as a sensor. Furthermore, when the wavelength of ultraviolet light is short, it tends to adversely affect the human body. Therefore, in the light-emitting device described in Patent Document 2, a filter is formed on the surface of the phosphor layer that does not transmit the excitation light but only the fluorescence. However, forming such a filter on the surface of the phosphor layer complicates the manufacturing process, leading to an increase in cost.
  • the present invention is capable of efficiently exciting phosphors even when ultraviolet light is used as excitation light, and suppresses deterioration of surrounding members and effects on the human body due to leakage of ultraviolet light. It is an object of the present invention to provide a wavelength conversion member and a light-emitting device using the wavelength conversion member.
  • a wavelength conversion member is a wavelength conversion member for converting the wavelength of excitation light emitted from a light source, and comprises a first glass matrix and fluorescent light dispersed in the first glass matrix. a first layer composed of body particles; and a second layer provided on the first layer and composed of a second glass matrix; is provided on the light source side, and the difference
  • between the transmittance difference at the excitation wavelength and the transmittance difference at the fluorescence wavelength is preferably 20% or more.
  • the transmittance T A of the first glass matrix at the excitation wavelength is 20% or more, and the transmittance T B of the second glass matrix at the excitation wavelength is 65% or less. preferable.
  • the transmittance LA of the first glass matrix at the fluorescence wavelength is 50% or more
  • the transmittance LB of the second glass matrix at the fluorescence wavelength is 50% or more. preferable.
  • the second layer does not substantially contain phosphor particles.
  • the thickness of the second layer is preferably greater than the thickness of the first layer.
  • the thickness ratio of the second layer to the first layer is preferably 1 or more and 30 or less.
  • the excitation light is preferably UV light.
  • the fluorescence is preferably visible light.
  • a light-emitting device is characterized by comprising a light source that emits excitation light and a wavelength conversion member configured according to the present invention.
  • the present invention even when UV light is used as the excitation light, it is possible to efficiently excite the phosphor, and without using an external filter, deterioration of surrounding members and damage to the human body due to leakage of UV light can be achieved. It is possible to provide a wavelength conversion member and a light-emitting device using the wavelength conversion member that can suppress the influence.
  • FIG. 1 is a schematic front cross-sectional view showing a wavelength conversion member according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of transmittance spectra of the first glass matrix and the second glass matrix.
  • FIG. 3 is a schematic front sectional view showing a light emitting device according to one embodiment of the invention.
  • FIG. 4 is a schematic front cross-sectional view showing a modification of the light emitting device according to one embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of an energy distribution spectrum of light emitted from the emission surface side of the wavelength conversion member when UVLED is irradiated.
  • FIG. 1 is a schematic front cross-sectional view showing a wavelength conversion member according to one embodiment of the present invention.
  • the wavelength conversion member 1 of this embodiment has a rectangular plate shape.
  • the wavelength conversion member 1 may have a substantially disk-like shape, and the shape is not particularly limited.
  • the wavelength conversion member 1 has a first layer 2 and a second layer 3 .
  • the first layer 2 has a first major surface 2a and a second major surface 2b.
  • a second layer 3 is provided on the first main surface 2 a of the first layer 2 .
  • the second main surface 2b of the first layer 2 is the surface on which the light source 7 is provided. Therefore, the second layer 3 is provided on the side opposite to the light source 7 side.
  • the first layer 2 is phosphor glass composed of a first glass matrix 4 and phosphor particles 5 .
  • the phosphor particles 5 are dispersed in the first glass matrix 4 .
  • the second layer 3 is composed of a second glass matrix 6 .
  • excitation light A from the light source 7 is emitted to the wavelength conversion member 1 as shown in FIG.
  • the excitation light A enters the first layer 2 from the second main surface 2b side.
  • fluorescence B is emitted. Fluorescence B passes through the second layer 3 and is emitted from the wavelength conversion member 1 .
  • FIG. 2 is a diagram showing an example of transmittance spectra of the first glass matrix 4 and the second glass matrix 6 that constitute such a wavelength conversion member 1.
  • FIG. 2 shows individual transmittance spectra of the first glass matrix 4 and the second glass matrix 6, respectively.
  • the transmittance spectra of the first glass matrix 4 and the second glass matrix 6 are each measured on a glass plate with a thickness of 1 mm. This glass plate is produced by vacuum firing a green compact of glass powder (average particle size: 2.5 ⁇ m), which is the raw material of the first glass matrix 4 or the second glass matrix 6, at the softening point of the glass powder +50° C.
  • the obtained sintered body can be produced by cutting, lapping, or polishing so as to have a thickness of 1 mm.
  • the transmittance indicated in this patent represents the total light transmittance of a polished sintered body having a thickness of 1 mm, and can be measured by a method conforming to JIS K7105. Also, the transmittance spectra of the first glass matrix 4 and the second glass matrix 6 can be measured with a spectrophotometer.
  • is greater than the absolute value
  • both the transmittance L A of the first glass matrix 4 and the transmittance L B of the second glass matrix 6 are large, and the difference between them is small.
  • the excitation wavelength means the wavelength at which the emission intensity of the excitation light source is maximized
  • the fluorescence wavelength means the wavelength at which the fluorescence intensity is maximized.
  • the transmittance of the excitation wavelength refers to the transmittance of UV light, specifically, wavelengths of 200 nm to 380 nm.
  • the transmittance of the fluorescence wavelength means the transmittance of visible light, specifically, wavelengths of 380 nm to 800 nm.
  • the first layer 2 When UV light as the excitation light A is incident on the wavelength conversion member 1 using the first glass matrix 4 and the second glass matrix 6 having such optical properties, the first layer 2 is formed. Since the first glass matrix 4 has a high transmittance at the excitation wavelength, absorption of the excitation light A by the glass can be reduced, and the wavelength can be efficiently converted into fluorescent light in the first layer 2 . On the other hand, in the second layer 3, since the second glass matrix 6 constituting the second layer 3 has a low transmittance at the excitation wavelength, the second layer 3 shields the UV light, which is the excitation light A. can do. Therefore, it is possible to suppress the deterioration of peripheral members and the influence on the human body due to the leakage of UV light.
  • the transmittance of the first glass matrix 4 and the second glass matrix 6 constituting the first layer 2 and the second layer 3 is high at the fluorescence wavelength, the fluorescence can be efficiently emitted. Therefore, according to the wavelength conversion member 1 of the present embodiment, even when UV light is used as the excitation light A, the phosphor can be efficiently excited, and furthermore, leakage of the UV light can cause deterioration of peripheral members and human body. can reduce the impact on
  • between the transmittance difference at the excitation wavelength and the transmittance difference at the fluorescence wavelength is preferably 20% or more, more preferably It is 40% or more, more preferably 60% or more, and particularly preferably 75% or more.
  • is equal to or greater than the lower limit, the phosphor can be excited more efficiently, and furthermore, the leakage of UV light can cause deterioration of surrounding members and damage to the human body. can be further suppressed.
  • is not particularly limited, but can be, for example, 95%.
  • the thickness of the second layer 3 is preferably greater than the thickness of the first layer 2. In this case, the emission efficiency of fluorescence can be further increased while blocking UV light more reliably.
  • the thickness ratio of the second layer 3 to the first layer 2 is preferably 1 or more, more preferably 1.5 or more, and still more preferably 2 or more. , preferably 30 or less, more preferably 10 or less, still more preferably 7 or less.
  • the thickness ratio (second layer 3/first layer 2) is equal to or greater than the lower limit, UV light can be shielded more reliably and fluorescence emission efficiency can be further increased.
  • the thickness ratio (second layer 3/first layer 2) is equal to or less than the upper limit, the emission intensity of the wavelength conversion member can be further increased.
  • the thickness of the entire wavelength conversion member 1 is preferably 0.1 mm or more, more preferably 0.125 mm or more, still more preferably 0.15 mm or more, particularly preferably 0.175 mm or more, and most preferably 0.2 mm or more. be.
  • the thickness of the entire wavelength conversion member 1 is preferably 1.5 mm or less, more preferably 1 mm or less, still more preferably 0.75 mm or less, particularly preferably 0.5 mm or less, most preferably 0.3 mm or less.
  • the thickness of the entire wavelength conversion member 1 is equal to or greater than the above lower limit, the emission intensity and mechanical strength of the wavelength conversion member 1 can be further enhanced.
  • the thickness of the wavelength conversion member 1 is equal to or less than the upper limit value, the scattering and absorption of light in the wavelength conversion member 1 can be further suppressed, and the fluorescence emission efficiency can be further increased.
  • the first glass matrix 4 and the second glass matrix 6 are basically produced by stacking and co-firing green sheets serving as raw materials for each layer.
  • the difference in softening point between the glass powder used for the matrix 4 and the glass powder used for the second glass matrix 6 is preferably small.
  • the difference in softening point between the glass powder used for the first glass matrix 4 and the glass powder used for the second glass matrix 6 is preferably 200°C or less, more preferably 100°C or less, and still more preferably 50°C. Below, the temperature is particularly preferably 10° C. or less, and it is most preferable that both softening points are the same.
  • the first layer 2 is composed of a first glass matrix 4 and phosphor particles 5 dispersed in the first glass matrix 4 .
  • the first glass matrix 4 is made of glass that can be used as a dispersion medium for phosphor particles 5 such as an inorganic phosphor.
  • the first glass matrix 4 is made of glass that transmits UV light and fluorescent light (UV light transmitting glass).
  • the transmittance TA of the first glass matrix 4 at the excitation wavelength is preferably 20% or more, more preferably 40% or more, even more preferably 60% or more, and particularly preferably 80% or more.
  • the transmittance T A of the first glass matrix 4 at the excitation wavelength is equal to or higher than the above lower limit, the absorption of the excitation light by the glass can be further reduced, and fluorescence can be emitted in the first layer 2 more efficiently. can be emitted.
  • the upper limit of the transmittance TA of the first glass matrix 4 at the excitation wavelength is not particularly limited, it can be set to 95%, for example.
  • the transmittance LA of the first glass matrix 4 at the fluorescence wavelength is preferably 50% or more, more preferably 75% or more, and even more preferably 80% or more.
  • the upper limit of the transmittance LA of the first glass matrix 4 at the fluorescence wavelength is not particularly limited, and can be set to 95%, for example.
  • the glass constituting the first glass matrix 4 is not particularly limited as long as it has the optical properties described above. system glass and tellurite system glass can be used.
  • the glass constituting the first glass matrix 4 include, in terms of mol %, SiO 2 40% to 60%, B 2 O 3 0.1% to 35%, and Al 2 O 3 0.1%. ⁇ 10%, Li2O 0% ⁇ 10%, Na2O 0 % ⁇ 10%, K2O 0% ⁇ 10%, Li2O + Na2O + K2O 0.1% ⁇ 10%, MgO 0% ⁇ 45%, CaO 0%-45%, SrO 0%-45%, BaO 0%-45%, MgO+CaO+SrO+BaO 0.1%-45%, ZnO 0%-15%.
  • the glass constituting the first glass matrix 4 is composed of, in mass %, SiO 2 55% to 75%, Al 2 O 3 1% to 10%, B 2 O 3 10% to 30%, CaO 0% to 5%. , BaO 0% to 5%, and Li 2 O+Na 2 O+K 2 O 1% to 15%.
  • the glass constituting the first glass matrix 4 contains, in mass %, SiO 2 +B 2 O 3 60% to 90%, Li 2 O+Na 2 O+K 2 O 0% to 20%, and MgO+CaO+SrO+BaO 0% to 20%. It may be a glass containing.
  • the transmittance of UV light tends to decrease.
  • substantially free means a raw material that is not intentionally contained, and objectively means less than 1000 ppm.
  • the softening point of the first glass matrix 4 is preferably 250°C to 1000°C, more preferably 300°C to 950°C, even more preferably 500°C to 900°C. If the softening point of the first glass matrix 4 is too low, the mechanical strength and chemical durability of the wavelength conversion member 1 may deteriorate. In addition, since the heat resistance of the first glass matrix 4 itself is low, there is a risk of softening deformation due to heat generated from the phosphor particles 5 . On the other hand, if the softening point of the first glass matrix 4 is too high, the phosphor particles 5 may deteriorate and the emission intensity of the wavelength conversion member 1 may decrease if a baking process is included in the manufacturing process.
  • the softening point of the first glass matrix 4 is preferably 500° C. or higher, more preferably 600° C. or higher, and still more preferably 600° C. or higher. 650° C. or higher.
  • the softening point of the first glass matrix 4 increases, the firing temperature also increases, which tends to increase the manufacturing cost.
  • the softening point of the first glass matrix 4 is preferably 550° C. or less, more preferably 530° C. C. or lower, more preferably 500.degree. C. or lower, particularly preferably 480.degree. C. or lower, and most preferably 460.degree.
  • the phosphor particles 5 are not particularly limited as long as they emit fluorescence upon incidence of excitation light.
  • Examples of phosphor particles 5 include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halide phosphors.
  • One type of these phosphors may be used alone, or a plurality of types may be used in combination.
  • the average particle size of the phosphor particles 5 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more. If the average particle size of the phosphor particles 5 is too small, the quantum efficiency tends to be poor and the emission intensity tends to decrease. On the other hand, if the average particle diameter of the phosphor particles 5 is too large, the dispersion state in the first glass matrix 4 deteriorates, and the emission color tends to be non-uniform. Therefore, the average particle size of the phosphor particles 5 is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the average particle size means the average particle size D50 measured by a laser diffraction particle size distribution analyzer.
  • the content of the phosphor particles 5 in the first layer 2 is preferably 1% by volume or more, more preferably 3% by volume or more, and even more preferably 5% by volume or more.
  • the content of the phosphor particles 5 in the first layer 2 is preferably 70% by volume or less, more preferably 65% by volume or less, and even more preferably 50% by volume or less. If the content of the phosphor particles 5 is too small, it is necessary to increase the thickness of the first layer 2 in order to obtain the desired fluorescence intensity, and as a result, the internal scattering of the wavelength conversion member 1 and the absorption by the matrix increase. As a result, the light extraction efficiency may decrease. On the other hand, if the content of the phosphor particles 5 is too large, the ratio of the glass is relatively decreased, and the strength of the glass to support the phosphor is weakened, which may reduce the mechanical strength of the wavelength conversion member 1. be.
  • the second glass matrix 6 is made of a powder sintered body of only glass powder, but is not limited to this.
  • the second glass matrix 6 may contain other inorganic powder such as filler powder for the purpose of adjusting the coefficient of thermal expansion and obtaining a light scattering effect.
  • filler powder for the purpose of adjusting the coefficient of thermal expansion and obtaining a light scattering effect.
  • the heat dissipation efficiency of the wavelength conversion member 1 can be further improved by containing a filler powder with a high thermal conductivity.
  • Filler powders include MgO, Al 2 O 3 , BN, AlN, and the like. Among them, MgO, Al 2 O 3 and BN are preferable because of their excellent transmittance in the visible region.
  • the thickness of the first layer 2 is not particularly limited, but is preferably 0.01 mm or more, more preferably 0.03 mm or more, preferably 0.5 mm or less, and more preferably 0.3 mm or less. be.
  • the thickness of the 1st layer 2 is more than the said lower limit, the light emission intensity and mechanical strength of the wavelength conversion member 1 can be heightened further.
  • the thickness of the first layer 2 is equal to or less than the above upper limit, the scattering and absorption of light in the first layer 2 can be further suppressed, and the emission efficiency of fluorescence can be further increased.
  • the second layer 3 is composed of a second glass matrix 6 .
  • the second glass matrix 6 is made of glass (such as UV light shielding glass) that shields excitation light (eg, UV light) and allows fluorescence to pass through.
  • the transmittance T B of the second glass matrix 6 at the excitation wavelength is preferably 65% or less, more preferably 40% or less, even more preferably 20% or less, and particularly preferably 10% or less.
  • the transmittance T B of the excitation wavelength of the second glass matrix 6 is equal to or less than the above upper limit, the excitation light can be shielded more reliably in the second layer 3.
  • the excitation light is UV light, In addition, deterioration of peripheral members and effects on the human body due to the leakage can be more reliably suppressed.
  • the lower limit of the transmittance T B of the second glass matrix 6 at the excitation wavelength is not particularly limited, it can be set to 0%, for example.
  • the transmittance L B of the second glass matrix 6 at the fluorescence wavelength is preferably 50% or more, more preferably 75% or more, still more preferably 80% or more.
  • the transmittance LB of the second glass matrix 6 at the fluorescence wavelength is equal to or higher than the above lower limit, fluorescence can be emitted more efficiently from the wavelength conversion member 1 .
  • the upper limit of the transmittance L B of the second glass matrix 6 at the fluorescence wavelength is not particularly limited, and can be set to 95%, for example.
  • the glass constituting the second glass matrix 6 is not particularly limited as long as it has the optical properties described above. system glass and tellurite system glass can be used.
  • the glass constituting the second glass matrix 6 include, in terms of mol %, SiO 2 40% to 60%, B 2 O 3 0.1% to 35%, and Al 2 O 3 0.1%. ⁇ 10%, Li2O 0% ⁇ 10%, Na2O 0 % ⁇ 10%, K2O 0% ⁇ 10%, Li2O + Na2O + K2O 0.1% ⁇ 10%, MgO 0% ⁇ 45%, CaO 0%-45%, SrO 0%-45%, BaO 0%-45%, MgO+CaO+SrO+BaO 0.1%-45%, ZnO 0 %-15%, CeO2 0.001%-10% Containing glasses can be used.
  • the glass constituting the second glass matrix 6 is SiO 2 30% to 85%, Al 2 O 3 0% to 30%, B 2 O 3 0% to 50%, and Li 2 O + Na 2 O + K 2 in mass %.
  • the glass may contain 0% to 10% O and 0% to 50% MgO+CaO+SrO+BaO.
  • the softening point of the second glass matrix 6 is preferably 250°C to 1000°C, more preferably 300°C to 950°C, even more preferably 500°C to 900°C. If the softening point of the second glass matrix 6 is too low, the mechanical strength and chemical durability of the wavelength conversion member 1 may deteriorate. On the other hand, if the softening point of the second glass matrix 6 is too high, the phosphor particles 5 may deteriorate and the emission intensity of the wavelength conversion member 1 may decrease if a baking process is included in the manufacturing process.
  • the thickness of the second layer 3 is not particularly limited, but is preferably 0.05 mm or more, more preferably 0.1 mm or more, preferably 1 mm or less, and more preferably 0.5 mm or less.
  • the excitation light can be shielded more reliably in the second layer 3.
  • the thickness of the second layer 3 is equal to or less than the upper limit value, the scattering and absorption of light in the second layer 3 can be further suppressed, and the fluorescence emission efficiency can be further increased.
  • the second layer 3 does not substantially contain phosphor particles.
  • the second layer 3 may contain phosphor particles.
  • a green sheet for forming the first layer is prepared. Specifically, a slurry containing glass particles to be the first glass matrix 4 and phosphor particles 5 is prepared. The slurry usually contains a binder resin and a solvent. Subsequently, the prepared slurry is applied onto the support base material, and a doctor blade placed at a predetermined distance from the base material is moved relative to the slurry, thereby forming the first layer-forming green sheet.
  • a resin film such as polyethylene terephthalate can be used.
  • a green sheet for forming the second layer is prepared. Specifically, a slurry containing glass particles to be the second glass matrix 6 is prepared, and a second layer-forming green sheet is obtained in the same manner as described above.
  • the materials of the glass particles that form the first glass matrix 4 and the second glass matrix 6 can be the same as the materials of the first glass matrix 4 and the second glass matrix 6 described above.
  • the average particle size of the glass particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and still more preferably 2 ⁇ m or more. If the average particle size of the glass particles is too small, the production cost tends to increase and the handleability tends to deteriorate. On the other hand, if the average particle size of the glass particles is too large, bubbles tend to remain in the glass matrix after firing in the obtained wavelength conversion member 1, and the light extraction efficiency of the wavelength conversion member 1 may decrease.
  • the average particle size of the glass particles is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less. Moreover, it is desirable that the average particle size of the phosphor particles is within the range described for the first layer 2 above.
  • the first layer-forming green sheet and the second layer-forming green sheet are laminated by thermocompression bonding or the like to obtain a laminate.
  • the laminated body is fired at about the softening point of the glass particles to the softening point of the glass particles +100° C., thereby obtaining a wavelength conversion member made of a sintered body in which the first layer 2 and the second layer 3 are laminated. 1 can be obtained.
  • the firing is preferably performed in a reduced pressure atmosphere, and more preferably in a vacuum atmosphere. In this case, it is possible to obtain the wavelength conversion member 1 which is even more excellent in denseness.
  • the flatness of the wavelength conversion member 1 (in particular, the flatness of the interface between the first layer 2 and the second layer 3) is improved, and it becomes easier to process the wavelength conversion member 1 to a desired thickness in the subsequent polishing process.
  • a binder removal treatment Before firing, it is preferable to perform a binder removal treatment at a temperature lower than the softening point of the glass particles. In this case, in the obtained wavelength conversion member 1, it is possible to reduce organic component residues that cause light absorption and scattering, and to further improve the emission intensity.
  • the first layer 2 in the obtained sintered body is preferable to grind to a desired thickness. Specifically, it is preferable to adjust the chromaticity of the wavelength conversion member 1 by polishing the first layer 2 of the sintered body to a predetermined thickness.
  • the second layer 3 in the obtained sintered body may be ground to a desired thickness.
  • the method for manufacturing the wavelength conversion member 1 is not limited to the method described above.
  • the obtained fired bodies are joined by thermocompression or an adhesive, whereby the wavelength conversion member 1 may be obtained.
  • FIG. 3 is a schematic front sectional view showing a light emitting device according to one embodiment of the invention.
  • the light emitting device 11 includes the wavelength conversion member 1 according to the embodiment described above and a light source 7 that emits excitation light A to the wavelength conversion member 1 .
  • the light source 7 is arranged so that the excitation light A directly enters the wavelength conversion member 1 from the first layer 2 side.
  • the phosphor can be efficiently excited, and furthermore, deterioration of peripheral members due to leakage of UV light and damage to the human body can be prevented. The impact can be suppressed.
  • the arrangement of the light sources 7 is not limited to the above.
  • a light guide plate 12 is arranged between the light source 7 and the wavelength conversion member 1 .
  • the light source 7 is arranged so that the excitation light A is directly incident on the light guide plate 12 .
  • the excitation light A emitted from the light source 7 passes through the light guide plate 12 and enters the wavelength conversion member 1 .
  • the excitation light A enters from the end surface of the light guide plate 12 , exits from the main surface of the light guide plate 12 , and enters the wavelength conversion member 1 .
  • the light guide plate 12 uses a material that suppresses absorption of the excitation light A as much as possible.
  • the light-emitting device 11 can be suitably used, for example, as a light-emitting device for sensing and high color rendering lighting.
  • Example 1 As the glass particles to be the first glass matrix, SiO 2 45%, Al 2 O 3 4%, B 2 O 3 18%, Li 2 O 1.5%, Na 2 O 1.5%, Glass particles A having a composition of 1.5% K 2 O, 25% BaO, and 3.5% ZnO (softening point: 690° C., coefficient of thermal expansion: 86.1 ⁇ 10 ⁇ 7 /° C., average particle diameter: 2 .5 ⁇ m) was prepared.
  • glass particles A glass particles A, phosphor particles (Lu 3 Al 5 O 12 , average particle size: 15 ⁇ m), a binder resin (Oricox manufactured by Kyoeisha Chemical Co., Ltd.), a plasticizer (dioctyl adipate), A slurry-like mixture was obtained by kneading a dispersant (Floren G-700, manufactured by Kyoeisha Chemical Co., Ltd.) and an organic solvent (methyl ethyl ketone). The resulting slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a first layer-forming green sheet. The amount of phosphor particles added was adjusted to 30% by volume in the first layer.
  • glass particles to be the second glass matrix SiO 2 45%, Al 2 O 3 4%, B 2 O 3 18%, Li 2 O 1.5%, Na 2 O 1.5% by mol %.
  • Glass particles X having a composition of 5%, K 2 O 1.5%, BaO 25%, ZnO 3%, and CeO 2 0.5% (softening point: 690° C., coefficient of thermal expansion: 86.1 ⁇ 10 ⁇ 7 /° C., average particle size: 2.5 ⁇ m).
  • glass particles X glass particles X, a binder resin (Oricox, manufactured by Kyoeisha Chemical Co., Ltd.), a plasticizer (dioctyl adipate), a dispersant (Floren G-700, manufactured by Kyoeisha Chemical Co., Ltd.), and an organic solvent ( methyl ethyl ketone) were kneaded to obtain a slurry-like mixture.
  • the resulting slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a green sheet for forming a second layer.
  • thermocompression bonded After cutting the first layer-forming green sheet and the second layer-forming green sheet into a predetermined size, they were thermocompression bonded. After degreasing the obtained laminate in an electric furnace, it is heated to 740° C. (the softening point of the glass particles that form the first glass matrix and the glass particles that form the second glass matrix) in a vacuum gas replacement furnace +50°C) and vacuum firing was carried out.
  • a wavelength conversion member in which a first layer and a second layer are laminated was obtained by polishing the obtained sintered body so that each side thereof had a desired layer thickness. The thickness of the first layer was 40 ⁇ m, and the thickness of the second layer was 160 ⁇ m.
  • Example 2 As the glass particles to be the first glass matrix, SiO 2 68%, Al 2 O 3 4%, B 2 O 3 19%, Na 2 O 7%, K 2 O 1%, F 2 1% in mass % Glass particles B (softening point: 700° C., thermal expansion coefficient: 41.9 ⁇ 10 ⁇ 7 /° C., average particle size: 2.5 ⁇ m) were prepared.
  • the glass particles to be the second glass matrix have a composition of 50% SiO 2 , 6% Al 2 O 3 , 5% B 2 O 3 , 12% CaO, 25% BaO, and 2% ZnO in mass %.
  • glass particles Y softening point: 850° C., coefficient of thermal expansion: 68.0 ⁇ 10 ⁇ 7 /° C., average particle size: 2.5 ⁇ m
  • vacuum firing was performed at 900°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
  • the thickness of the first layer was 40 ⁇ m, and the thickness of the second layer was 160 ⁇ m.
  • Example 3 As the glass particles to be the first glass matrix, in mass %, SiO 2 71%, Al 2 O 3 6%, B 2 O 3 13%, Na 2 O 7%, K 2 O 1%, CaO 1%, Glass particles C (softening point: 737° C., coefficient of thermal expansion: 66.0 ⁇ 10 ⁇ 7 /° C., average particle size: 2.5 ⁇ m) having a composition of 1% BaO were prepared.
  • Example 2 the same glass particles Y as in Example 2 were prepared as the glass particles forming the second glass matrix.
  • vacuum firing was performed at 900°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
  • the thickness of the first layer was 40 ⁇ m, and the thickness of the second layer was 160 ⁇ m.
  • the transmittances of the first glass matrix and the second glass matrix were each measured on a glass plate having a thickness of 1 mm. This glass plate was produced by the method described above. Further, the transmittance of the first glass matrix and the second glass matrix was measured with a spectrophotometer (manufactured by JASCO Corporation, product number V-670).
  • Example 1 The same glass particles X as the second glass matrix of Example 1 were prepared as the glass particles forming the first glass matrix.
  • glass particles X glass particles X, phosphor particles (Lu 3 Al 5 O 12 , average particle size: 15 ⁇ m), a binder resin (Oricox, manufactured by Kyoeisha Chemical Co., Ltd.), a plasticizer (dioctyl adipate),
  • a slurry-like mixture was obtained by kneading a dispersant (Floren G-700, manufactured by Kyoeisha Chemical Co., Ltd.) and an organic solvent (methyl ethyl ketone).
  • the resulting slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a green sheet.
  • the amount of phosphor particles added was adjusted to 6% by volume in the resulting wavelength conversion member.
  • a wavelength conversion member consisting of only the first layer was obtained by subjecting the obtained sintered body to a polishing process so as to obtain a desired layer thickness.
  • the thickness of the wavelength conversion member was 200 ⁇ m.
  • Comparative example 2 The same glass particles A as the first glass matrix of Example 1 were prepared as the glass particles to be the first glass matrix. Otherwise, in the same manner as in Comparative Example 1, a wavelength conversion member consisting of only the first layer was obtained. In addition, the thickness of the wavelength conversion member was 200 ⁇ m.
  • Example 3 The same glass particles A as the first glass matrix of Example 1 were prepared as the glass particles to be the first glass matrix.
  • the same glass particles B as the first glass matrix of Example 2 were prepared as the glass particles to form the second glass matrix.
  • vacuum firing was performed at 750°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
  • the thickness of the first layer was 40 ⁇ m, and the thickness of the second layer was 160 ⁇ m.
  • the same glass particles Y as the second glass matrix of Example 2 were prepared as the glass particles forming the second glass matrix.
  • vacuum firing was performed at 900°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
  • the thickness of the first layer was 40 ⁇ m, and the thickness of the second layer was 160 ⁇ m.
  • the wavelength conversion members of Examples 1 to 3 have a small ratio (I2/I1) and can sufficiently shield UV light. Further, the wavelength conversion members of Examples 1 to 3 have a large ratio (I3/I1), and it can be seen that the phosphor can be efficiently excited.
  • the wavelength conversion members of Comparative Examples 1 and 4 had a small ratio (I3/I1) and could not efficiently excite the phosphor. Moreover, the wavelength conversion members of Comparative Examples 2 and 3 had a large ratio (I2/I1) and could not sufficiently block UV light.
  • between the first glass matrix and the second glass matrix at the excitation wavelength is the transmittance difference

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a wavelength conversion member that can efficiently excite phosphors even when ultraviolet light is used as excitation light, and suppress the degradation of peripheral members due to ultraviolet light leakage, as well as the effect of such leakage on the human body. A wavelength conversion member 1 for converting the wavelength of excitation light emitted from a light source 7 comprises: a first layer 2 composed of a first glass matrix 4 and phosphor particles 5 distributed in the first glass matrix 4; and a second layer 3 provided on the first layer 2 and composed of a second glass matrix 6, wherein the first layer 2 is provided on the light source 7 side, the difference |TA-TB| between the transmittance TA of the first glass matrix 4 and the transmittance TB of the second glass matrix 6 at an excitation wavelength is greater than the difference |LA-LB| between the transmittance LA of the first glass matrix 4 and the transmittance LB of the second glass matrix 6 at a fluorescence wavelength, and TA>TB.

Description

波長変換部材及び発光デバイスWavelength conversion member and light emitting device
 本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及び該波長変換部材を用いた発光デバイスに関する。 The present invention relates to a wavelength conversion member that converts the wavelength of light emitted by a light emitting diode (LED) or a laser diode (LD) into another wavelength, and a light emitting device using the wavelength conversion member.
 近年、蛍光ランプや白熱灯に代わる次世代の発光デバイスとして、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた発光デバイスに対する注目が高まってきている。そのような発光デバイスの一例として、例えば、下記の特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された発光デバイスが開示されている。この発光デバイスは、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 In recent years, there has been increasing interest in light-emitting devices using LEDs and LDs as next-generation light-emitting devices to replace fluorescent lamps and incandescent lamps, from the viewpoint of low power consumption, small size and light weight, and easy light intensity adjustment. As an example of such a light-emitting device, for example, in Patent Document 1 below, a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is arranged on an LED that emits blue light. A light emitting device is disclosed. This light-emitting device emits white light, which is synthesized light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
 LEDやLDを用いた発光デバイスとして、一般照明用途だけでなく、波長変換部材やセンサーと組み合せたセンシング用の発光デバイスも提案されている。例えば、下記の特許文献2には、紫外光及び/または可視光を発する発光素子と、該発光素子上に設けられた蛍光体層とを具備するメタンガスセンサー用光源が開示されている。 As light-emitting devices using LEDs and LDs, not only general lighting applications but also light-emitting devices for sensing combined with wavelength conversion members and sensors have been proposed. For example, Patent Document 2 below discloses a light source for a methane gas sensor that includes a light emitting element that emits ultraviolet light and/or visible light, and a phosphor layer provided on the light emitting element.
特開2000-208815号公報Japanese Patent Application Laid-Open No. 2000-208815 特開2013-170205号公報JP 2013-170205 A
 蛍光とともに励起光が外部に漏洩するとセンサーとしての機能に悪影響を及ぼす場合がある。更に紫外光は、その波長が小さい場合は人体にも悪影響を及ぼしやすい。そのため、特許文献2に記載の発光デバイスでは、蛍光体層の表面に励起光を透過せず、蛍光のみを透過するフィルターを形成している。しかしながら、このようなフィルターを蛍光体層の表面に形成すると、製造工程が煩雑になりコストアップに繋がるという問題がある。 If the excitation light leaks out together with the fluorescence, it may adversely affect the function as a sensor. Furthermore, when the wavelength of ultraviolet light is short, it tends to adversely affect the human body. Therefore, in the light-emitting device described in Patent Document 2, a filter is formed on the surface of the phosphor layer that does not transmit the excitation light but only the fluorescence. However, forming such a filter on the surface of the phosphor layer complicates the manufacturing process, leading to an increase in cost.
 以上に鑑み、本発明は、励起光として紫外光を用いた場合においても、蛍光体を効率良く励起させることができ、しかも紫外光の漏洩による周辺部材の劣化や人体への影響を抑制することができる、波長変換部材及び該波長変換部材を用いた発光デバイスを提供することを目的とする。 In view of the above, the present invention is capable of efficiently exciting phosphors even when ultraviolet light is used as excitation light, and suppresses deterioration of surrounding members and effects on the human body due to leakage of ultraviolet light. It is an object of the present invention to provide a wavelength conversion member and a light-emitting device using the wavelength conversion member.
 本発明に係る波長変換部材は、光源から出射された励起光の波長を変換するための波長変換部材であって、第1のガラスマトリクスと、前記第1のガラスマトリクス中に分散している蛍光体粒子とにより構成されている、第1の層と、前記第1の層上に設けられており、第2のガラスマトリクスにより構成されている、第2の層と、を備え、前記第1の層が、前記光源側に設けられており、励起波長における前記第1のガラスマトリクスの透過率T及び前記第2のガラスマトリクスの透過率Tの差|T-T|が、蛍光波長における前記第1のガラスマトリクスの透過率L及び前記第2のガラスマトリクスの透過率Lの差|L-L|よりも大きく、かつ、T>Tであることを特徴としている。 A wavelength conversion member according to the present invention is a wavelength conversion member for converting the wavelength of excitation light emitted from a light source, and comprises a first glass matrix and fluorescent light dispersed in the first glass matrix. a first layer composed of body particles; and a second layer provided on the first layer and composed of a second glass matrix; is provided on the light source side, and the difference |T A −T B | between the transmittance T A of the first glass matrix and the transmittance T B of the second glass matrix at the excitation wavelength is greater than the difference |L A −L B | between the transmittance L A of the first glass matrix and the transmittance L B of the second glass matrix at the fluorescence wavelength, and T A >T B ; Characterized by
 本発明においては、前記励起波長における透過率差と、前記蛍光波長における透過率差との差|T-T|-|L-L|が、20%以上であることが好ましい。 In the present invention, the difference |T A −T B |−|L A −L B | between the transmittance difference at the excitation wavelength and the transmittance difference at the fluorescence wavelength is preferably 20% or more.
 本発明においては、前記第1のガラスマトリクスの励起波長における透過率Tが、20%以上であり、前記第2のガラスマトリクスの励起波長における透過率Tが、65%以下であることが好ましい。 In the present invention, the transmittance T A of the first glass matrix at the excitation wavelength is 20% or more, and the transmittance T B of the second glass matrix at the excitation wavelength is 65% or less. preferable.
 本発明においては、前記第1のガラスマトリクスの蛍光波長における透過率Lが、50%以上であり、前記第2のガラスマトリクスの蛍光波長における透過率Lが、50%以上であることが好ましい。 In the present invention, the transmittance LA of the first glass matrix at the fluorescence wavelength is 50% or more, and the transmittance LB of the second glass matrix at the fluorescence wavelength is 50% or more. preferable.
 本発明においては、前記第2の層が、蛍光体粒子を実質的に含有しないことが好ましい。 In the present invention, it is preferable that the second layer does not substantially contain phosphor particles.
 本発明においては、前記第2の層の厚みが、前記第1の層の厚みよりも大きいことが好ましい。 In the present invention, the thickness of the second layer is preferably greater than the thickness of the first layer.
 本発明においては、前記第2の層の前記第1の層に対する厚みの比(第2の層/第1の層)が、1以上、30以下であることが好ましい。 In the present invention, the thickness ratio of the second layer to the first layer (second layer/first layer) is preferably 1 or more and 30 or less.
 本発明においては、前記励起光が、UV光であることが好ましい。 In the present invention, the excitation light is preferably UV light.
 本発明においては、前記蛍光が、可視光であることが好ましい。 In the present invention, the fluorescence is preferably visible light.
 本発明に係る発光デバイスは、励起光を出射する光源と、本発明に従って構成される波長変換部材と、を備えることを特徴としている。 A light-emitting device according to the present invention is characterized by comprising a light source that emits excitation light and a wavelength conversion member configured according to the present invention.
 本発明によれば、励起光としてUV光を用いた場合においても、蛍光体を効率良く励起させることができ、しかも外付けフィルターを用いることなくUV光の漏洩による周辺部材の劣化や人体への影響を抑制することができる、波長変換部材及び該波長変換部材を用いた発光デバイスを提供することができる。 According to the present invention, even when UV light is used as the excitation light, it is possible to efficiently excite the phosphor, and without using an external filter, deterioration of surrounding members and damage to the human body due to leakage of UV light can be achieved. It is possible to provide a wavelength conversion member and a light-emitting device using the wavelength conversion member that can suppress the influence.
図1は、本発明の一実施形態に係る波長変換部材を示す模式的正面断面図である。FIG. 1 is a schematic front cross-sectional view showing a wavelength conversion member according to one embodiment of the present invention. 図2は、第1のガラスマトリクス及び第2のガラスマトリクスの透過率スペクトルの一例を示す図である。FIG. 2 is a diagram showing an example of transmittance spectra of the first glass matrix and the second glass matrix. 図3は、本発明の一実施形態に係る発光デバイスを示す模式的正面断面図である。FIG. 3 is a schematic front sectional view showing a light emitting device according to one embodiment of the invention. 図4は、本発明の一実施形態に係る発光デバイスの変形例を示す模式的正面断面図である。FIG. 4 is a schematic front cross-sectional view showing a modification of the light emitting device according to one embodiment of the present invention. 図5は、UVLEDを照射したときに、波長変換部材の出射面側から発せられる光のエネルギー分布スペクトルの一例を示す図である。FIG. 5 is a diagram showing an example of an energy distribution spectrum of light emitted from the emission surface side of the wavelength conversion member when UVLED is irradiated.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 A preferred embodiment will be described below. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Also, in each drawing, members having substantially the same function may be referred to by the same reference numerals.
 [波長変換部材]
 図1は、本発明の一実施形態に係る波長変換部材を示す模式的正面断面図である。図1に示すように、本実施形態の波長変換部材1は、矩形板状の形状を有している。もっとも、波長変換部材1は、略円板状の形状を有していてもよく、その形状は特に限定されない。
[Wavelength conversion member]
FIG. 1 is a schematic front cross-sectional view showing a wavelength conversion member according to one embodiment of the present invention. As shown in FIG. 1, the wavelength conversion member 1 of this embodiment has a rectangular plate shape. However, the wavelength conversion member 1 may have a substantially disk-like shape, and the shape is not particularly limited.
 波長変換部材1は、第1の層2及び第2の層3を備える。第1の層2は、第1の主面2a及び第2の主面2bを有する。第1の層2の第1の主面2a上に、第2の層3が設けられている。また、第1の層2の第2の主面2bは、光源7が設けられる側の面である。従って、第2の層3は、光源7側とは反対側に設けられている。 The wavelength conversion member 1 has a first layer 2 and a second layer 3 . The first layer 2 has a first major surface 2a and a second major surface 2b. A second layer 3 is provided on the first main surface 2 a of the first layer 2 . The second main surface 2b of the first layer 2 is the surface on which the light source 7 is provided. Therefore, the second layer 3 is provided on the side opposite to the light source 7 side.
 第1の層2は、第1のガラスマトリクス4と、蛍光体粒子5とにより構成されている、蛍光体ガラスである。本実施形態において、蛍光体粒子5は、第1のガラスマトリクス4中に分散されている。また、第2の層3は、第2のガラスマトリクス6により構成されている。 The first layer 2 is phosphor glass composed of a first glass matrix 4 and phosphor particles 5 . In this embodiment the phosphor particles 5 are dispersed in the first glass matrix 4 . Also, the second layer 3 is composed of a second glass matrix 6 .
 本実施形態においては、図1に示すように、光源7からの励起光Aが波長変換部材1に出射される。励起光Aは、第2の主面2b側から第1の層2に入射する。励起光Aが、蛍光体が配置された第1の層2に照射されると、蛍光Bが出射する。蛍光Bは、第2の層3を通り、波長変換部材1から出射される。 In this embodiment, excitation light A from the light source 7 is emitted to the wavelength conversion member 1 as shown in FIG. The excitation light A enters the first layer 2 from the second main surface 2b side. When the first layer 2 on which the phosphor is arranged is irradiated with the excitation light A, fluorescence B is emitted. Fluorescence B passes through the second layer 3 and is emitted from the wavelength conversion member 1 .
 図2は、このような波長変換部材1を構成する第1のガラスマトリクス4及び第2のガラスマトリクス6の透過率スペクトルの一例を示す図である。なお、図2では、第1のガラスマトリクス4及び第2のガラスマトリクス6におけるそれぞれ単独の透過率スペクトルを示している。第1のガラスマトリクス4及び第2のガラスマトリクス6の透過率スペクトルは、それぞれ、厚み1mmのガラス板について測定するものとする。このガラス板は、第1のガラスマトリクス4または第2のガラスマトリクス6の原料であるガラス粉末(平均粒子径2.5μm)の圧粉体を、ガラス粉末の軟化点+50℃で真空焼成して焼結体を得た後、得られた焼結体を厚み1mmとなるように切削加工やラップ研磨、ポリッシュ研磨加工することにより作製することができる。本特許が示す透過率とは、ポリッシュ研磨加工した厚み1mmの焼結体における全光線透過率のことを表し、JIS K7105に準拠した方法で測定することができる。また、第1のガラスマトリクス4及び第2のガラスマトリクス6の透過率スペクトルは、分光光度計により測定することができる。 FIG. 2 is a diagram showing an example of transmittance spectra of the first glass matrix 4 and the second glass matrix 6 that constitute such a wavelength conversion member 1. FIG. Note that FIG. 2 shows individual transmittance spectra of the first glass matrix 4 and the second glass matrix 6, respectively. The transmittance spectra of the first glass matrix 4 and the second glass matrix 6 are each measured on a glass plate with a thickness of 1 mm. This glass plate is produced by vacuum firing a green compact of glass powder (average particle size: 2.5 μm), which is the raw material of the first glass matrix 4 or the second glass matrix 6, at the softening point of the glass powder +50° C. After obtaining the sintered body, the obtained sintered body can be produced by cutting, lapping, or polishing so as to have a thickness of 1 mm. The transmittance indicated in this patent represents the total light transmittance of a polished sintered body having a thickness of 1 mm, and can be measured by a method conforming to JIS K7105. Also, the transmittance spectra of the first glass matrix 4 and the second glass matrix 6 can be measured with a spectrophotometer.
 図2に示すように、本実施形態では、励起波長における第1のガラスマトリクス4の透過率T及び第2のガラスマトリクス6の透過率Tの差の絶対値|T-T|が、蛍光波長における第1のガラスマトリクス4の透過率L及び第2のガラスマトリクス6の透過率Lの差の絶対値|L-L|よりも大きい。より具体的には、励起波長において、第1のガラスマトリクス4の透過率Tが、第2のガラスマトリクス6の透過率Tよりも大きい。他方、蛍光波長においては、第1のガラスマトリクス4の透過率L及び第2のガラスマトリクス6の透過率Lがともに大きく、その差が小さい。本発明において、励起波長とは励起光源の発光強度が最大となる波長、蛍光波長とは蛍光強度が最大となる波長を意味する。なお、本実施形態において、励起波長の透過率は、UV光、具体的に波長200nm~380nmにおける透過率のことをいうものとする。また、蛍光波長の透過率は、可視光、具体的には波長380nm~800nmにおける透過率のことをいうものとする。 As shown in FIG. 2, in this embodiment, the absolute value of the difference between the transmittance T A of the first glass matrix 4 and the transmittance T B of the second glass matrix 6 at the excitation wavelength |T A −T B | is greater than the absolute value |L A −L B | of the difference between the transmittance L A of the first glass matrix 4 and the transmittance L B of the second glass matrix 6 at the fluorescence wavelength. More specifically, the transmittance T A of the first glass matrix 4 is greater than the transmittance T B of the second glass matrix 6 at the excitation wavelength. On the other hand, at the fluorescence wavelength, both the transmittance L A of the first glass matrix 4 and the transmittance L B of the second glass matrix 6 are large, and the difference between them is small. In the present invention, the excitation wavelength means the wavelength at which the emission intensity of the excitation light source is maximized, and the fluorescence wavelength means the wavelength at which the fluorescence intensity is maximized. In this embodiment, the transmittance of the excitation wavelength refers to the transmittance of UV light, specifically, wavelengths of 200 nm to 380 nm. Further, the transmittance of the fluorescence wavelength means the transmittance of visible light, specifically, wavelengths of 380 nm to 800 nm.
 このような光学的性質を有する第1のガラスマトリクス4及び第2のガラスマトリクス6を用いた波長変換部材1に、励起光AとしてのUV光を入射させると、第1の層2を構成する第1のガラスマトリクス4の励起波長における透過率が高いことから、ガラスによる励起光Aの吸収を小さくすることができ、第1の層2において効率よく蛍光に波長変換することができる。一方、第2の層3においては、第2の層3を構成する第2のガラスマトリクス6の励起波長における透過率が低いことから、第2の層3において励起光AであるUV光を遮蔽することができる。そのため、UV光の漏洩による周辺部材の劣化や人体への影響を抑制することができる。また、第1の層2及び第2の層3を構成する第1のガラスマトリクス4及び第2のガラスマトリクス6の蛍光波長における透過率が高いことから、蛍光を効率よく出射させることができる。よって、本実施形態の波長変換部材1によれば、励起光AとしてUV光を用いた場合においても、蛍光体を効率良く励起させることができ、しかもUV光の漏洩による周辺部材の劣化や人体への影響を抑制することができる。 When UV light as the excitation light A is incident on the wavelength conversion member 1 using the first glass matrix 4 and the second glass matrix 6 having such optical properties, the first layer 2 is formed. Since the first glass matrix 4 has a high transmittance at the excitation wavelength, absorption of the excitation light A by the glass can be reduced, and the wavelength can be efficiently converted into fluorescent light in the first layer 2 . On the other hand, in the second layer 3, since the second glass matrix 6 constituting the second layer 3 has a low transmittance at the excitation wavelength, the second layer 3 shields the UV light, which is the excitation light A. can do. Therefore, it is possible to suppress the deterioration of peripheral members and the influence on the human body due to the leakage of UV light. Moreover, since the transmittance of the first glass matrix 4 and the second glass matrix 6 constituting the first layer 2 and the second layer 3 is high at the fluorescence wavelength, the fluorescence can be efficiently emitted. Therefore, according to the wavelength conversion member 1 of the present embodiment, even when UV light is used as the excitation light A, the phosphor can be efficiently excited, and furthermore, leakage of the UV light can cause deterioration of peripheral members and human body. can reduce the impact on
 本発明においては、上記励起波長における透過率差と、上記蛍光波長における透過率差との差|T-T|-|L-L|が、好ましくは20%以上、より好ましくは40%以上、さらに好ましくは60%以上、特に好ましくは75%以上である。上記差|T-T|-|L-L|が上記下限値以上である場合、蛍光体をより一層効率良く励起させつつ、しかもUV光の漏洩による周辺部材の劣化や人体への影響をより一層抑制することができる。なお、上記差|T-T|-|L-L|の上限値は、特に限定されないが、例えば、95%とすることができる。 In the present invention, the difference |T A −T B |−|L A −L B | between the transmittance difference at the excitation wavelength and the transmittance difference at the fluorescence wavelength is preferably 20% or more, more preferably It is 40% or more, more preferably 60% or more, and particularly preferably 75% or more. When the difference |T A −T B |−|L A −L B | is equal to or greater than the lower limit, the phosphor can be excited more efficiently, and furthermore, the leakage of UV light can cause deterioration of surrounding members and damage to the human body. can be further suppressed. The upper limit of the difference |T A −T B |−|L A −L B | is not particularly limited, but can be, for example, 95%.
 本発明において、第2の層3の厚みは、第1の層2の厚みよりも大きいことが好ましい。この場合、UV光をより一層確実に遮蔽しつつ、蛍光の出射効率をより一層高めることができる。 In the present invention, the thickness of the second layer 3 is preferably greater than the thickness of the first layer 2. In this case, the emission efficiency of fluorescence can be further increased while blocking UV light more reliably.
 特に、第2の層3の第1の層2に対する厚みの比(第2の層3/第1の層2)が、好ましくは1以上、より好ましくは1.5以上、さらに好ましくは2以上、好ましくは30以下、より好ましくは10以下、さらに好ましくは7以下である。上記厚みの比(第2の層3/第1の層2)が上記下限値以上である場合、UV光をより一層確実に遮蔽しつつ、蛍光の出射効率をより一層高めることができる。他方、上記厚みの比(第2の層3/第1の層2)が上記上限値以下である場合、波長変換部材の発光強度をより一層高めることができる。 In particular, the thickness ratio of the second layer 3 to the first layer 2 (second layer 3/first layer 2) is preferably 1 or more, more preferably 1.5 or more, and still more preferably 2 or more. , preferably 30 or less, more preferably 10 or less, still more preferably 7 or less. When the thickness ratio (second layer 3/first layer 2) is equal to or greater than the lower limit, UV light can be shielded more reliably and fluorescence emission efficiency can be further increased. On the other hand, when the thickness ratio (second layer 3/first layer 2) is equal to or less than the upper limit, the emission intensity of the wavelength conversion member can be further increased.
 なお、波長変換部材1全体の厚みは、好ましくは0.1mm以上、より好ましくは0.125mm以上、さらに好ましくは0.15mm以上、特に好ましくは0.175mm以上、最も好ましくは0.2mm以上である。波長変換部材1全体の厚みは、好ましくは1.5mm以下、より好ましくは1mm以下、さらに好ましくは0.75mm以下、特に好ましくは0.5mm以下、最も好ましくは0.3mm以下である。波長変換部材1全体の厚みが上記下限値以上である場合、波長変換部材1の発光強度や機械的強度をより一層高めることができる。また、波長変換部材1の厚みが上記上限値以下である場合、波長変換部材1における光の散乱や吸収をより一層抑制することができ、蛍光の出射効率をより一層高めることができる。 The thickness of the entire wavelength conversion member 1 is preferably 0.1 mm or more, more preferably 0.125 mm or more, still more preferably 0.15 mm or more, particularly preferably 0.175 mm or more, and most preferably 0.2 mm or more. be. The thickness of the entire wavelength conversion member 1 is preferably 1.5 mm or less, more preferably 1 mm or less, still more preferably 0.75 mm or less, particularly preferably 0.5 mm or less, most preferably 0.3 mm or less. When the thickness of the entire wavelength conversion member 1 is equal to or greater than the above lower limit, the emission intensity and mechanical strength of the wavelength conversion member 1 can be further enhanced. Moreover, when the thickness of the wavelength conversion member 1 is equal to or less than the upper limit value, the scattering and absorption of light in the wavelength conversion member 1 can be further suppressed, and the fluorescence emission efficiency can be further increased.
 また、後述するように、第1のガラスマトリクス4と第2のガラスマトリクス6は、基本的に各層の原料となるグリーンシートを積層して同時焼成することにより作製されるため、第1のガラスマトリクス4に使用されるガラス粉末と第2のガラスマトリクス6に使用されるガラス粉末の軟化点の差は小さいことが好ましい。第1のガラスマトリクス4に使用されるガラス粉末と第2のガラスマトリクス6に使用されるガラス粉末の軟化点の差は、好ましくは200℃以下、より好ましくは100℃以下、さらに好ましくは50℃以下、特に好ましくは10℃以下であり、両者の軟化点が同じであることが最も好ましい。 In addition, as will be described later, the first glass matrix 4 and the second glass matrix 6 are basically produced by stacking and co-firing green sheets serving as raw materials for each layer. The difference in softening point between the glass powder used for the matrix 4 and the glass powder used for the second glass matrix 6 is preferably small. The difference in softening point between the glass powder used for the first glass matrix 4 and the glass powder used for the second glass matrix 6 is preferably 200°C or less, more preferably 100°C or less, and still more preferably 50°C. Below, the temperature is particularly preferably 10° C. or less, and it is most preferable that both softening points are the same.
 (第1の層)
 第1の層2は、第1のガラスマトリクス4と、第1のガラスマトリクス4中に分散している蛍光体粒子5とにより構成されている。
(first layer)
The first layer 2 is composed of a first glass matrix 4 and phosphor particles 5 dispersed in the first glass matrix 4 .
 第1のガラスマトリクス;
 第1のガラスマトリクス4は、無機蛍光体等の蛍光体粒子5の分散媒として用いることができるガラスにより構成されている。また、第1のガラスマトリクス4は、UV光及び蛍光を透過させるガラス(UV光透過ガラス)により構成されている。
a first glass matrix;
The first glass matrix 4 is made of glass that can be used as a dispersion medium for phosphor particles 5 such as an inorganic phosphor. The first glass matrix 4 is made of glass that transmits UV light and fluorescent light (UV light transmitting glass).
 第1のガラスマトリクス4の励起波長における透過率Tは、好ましくは20%以上であり、より好ましくは40%以上、さらに好ましくは60%以上、特に好ましくは80%以上である。第1のガラスマトリクス4の励起波長における透過率Tが上記下限値以上である場合、ガラスによる励起光の吸収をより一層小さくすることができ、第1の層2においてより一層効率よく蛍光を出射させることができる。第1のガラスマトリクス4の励起波長における透過率Tの上限値は、特に限定されないが、例えば、95%とすることができる。 The transmittance TA of the first glass matrix 4 at the excitation wavelength is preferably 20% or more, more preferably 40% or more, even more preferably 60% or more, and particularly preferably 80% or more. When the transmittance T A of the first glass matrix 4 at the excitation wavelength is equal to or higher than the above lower limit, the absorption of the excitation light by the glass can be further reduced, and fluorescence can be emitted in the first layer 2 more efficiently. can be emitted. Although the upper limit of the transmittance TA of the first glass matrix 4 at the excitation wavelength is not particularly limited, it can be set to 95%, for example.
 第1のガラスマトリクス4の蛍光波長における透過率Lは、好ましくは50%以上であり、より好ましくは75%以上、さらに好ましくは80%以上である。第1のガラスマトリクス4の蛍光波長における透過率Lが上記下限値以上である場合、第1の層2においてより一層効率よく蛍光を効率よく出射させることができる。第1のガラスマトリクス4の蛍光波長における透過率Lの上限値は、特に限定されず、例えば、95%とすることができる。 The transmittance LA of the first glass matrix 4 at the fluorescence wavelength is preferably 50% or more, more preferably 75% or more, and even more preferably 80% or more. When the transmittance LA of the first glass matrix 4 at the fluorescence wavelength is equal to or higher than the above lower limit value, the fluorescence can be more efficiently emitted from the first layer 2 . The upper limit of the transmittance LA of the first glass matrix 4 at the fluorescence wavelength is not particularly limited, and can be set to 95%, for example.
 第1のガラスマトリクス4を構成するガラスとしては、上述の光学的性質を有する限りにおいて特に限定されず、例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラス、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスを用いることができる。 The glass constituting the first glass matrix 4 is not particularly limited as long as it has the optical properties described above. system glass and tellurite system glass can be used.
 第1のガラスマトリクス4を構成するガラスの具体例としては、例えば、モル%で、SiO 40%~60%、B 0.1%~35%、Al 0.1%~10%、LiO 0%~10%、NaO 0%~10%、KO 0%~10%、LiO+NaO+KO 0.1%~10%、MgO 0%~45%、CaO 0%~45%、SrO 0%~45%、BaO 0%~45%、MgO+CaO+SrO+BaO 0.1%~45%、ZnO 0%~15%を含有するガラスを用いることができる。 Specific examples of the glass constituting the first glass matrix 4 include, in terms of mol %, SiO 2 40% to 60%, B 2 O 3 0.1% to 35%, and Al 2 O 3 0.1%. ~10%, Li2O 0%~10%, Na2O 0 %~10%, K2O 0%~10%, Li2O + Na2O + K2O 0.1%~10%, MgO 0%~ 45%, CaO 0%-45%, SrO 0%-45%, BaO 0%-45%, MgO+CaO+SrO+BaO 0.1%-45%, ZnO 0%-15%.
 第1のガラスマトリクス4を構成するガラスは、質量%で、SiO 55%~75%、Al 1%~10%、B 10%~30%、CaO 0%~5%、BaO 0%~5%、LiO+NaO+KO 1%~15%を含有するガラスであってもよい。 The glass constituting the first glass matrix 4 is composed of, in mass %, SiO 2 55% to 75%, Al 2 O 3 1% to 10%, B 2 O 3 10% to 30%, CaO 0% to 5%. , BaO 0% to 5%, and Li 2 O+Na 2 O+K 2 O 1% to 15%.
 また、第1のガラスマトリクス4を構成するガラスは、質量%で、SiO+B 60%~90%、LiO+NaO+KO 0%~20%、MgO+CaO+SrO+BaO 0%~20%を含有するガラスであってもよい。 The glass constituting the first glass matrix 4 contains, in mass %, SiO 2 +B 2 O 3 60% to 90%, Li 2 O+Na 2 O+K 2 O 0% to 20%, and MgO+CaO+SrO+BaO 0% to 20%. It may be a glass containing.
 第1のガラスマトリクス4を構成するガラスがFeやTiOを含有すると、UV光の透過率が低下する傾向があるため、これらの含有量は少ないほうが好ましく、実質的に含有しないことが好ましい。ここで「実質的に含有しない」とは、意図して含有していない原料のことを意味し、客観的には1000ppm未満であることを指す。 If the glass constituting the first glass matrix 4 contains Fe 2 O 3 or TiO 2 , the transmittance of UV light tends to decrease. is preferred. Here, "substantially free" means a raw material that is not intentionally contained, and objectively means less than 1000 ppm.
 なお、本明細書において、「x+y+・・・」は各成分の含有量の合量を意味する。 In this specification, "x + y + ..." means the total content of each component.
 第1のガラスマトリクス4の軟化点は、250℃~1000℃であることが好ましく、300℃~950℃であることがより好ましく、500℃~900℃であることがさらに好ましい。第1のガラスマトリクス4の軟化点が低すぎると、波長変換部材1の機械的強度や化学的耐久性が低下する場合がある。また、第1のガラスマトリクス4自体の耐熱性が低いため、蛍光体粒子5から発生する熱により軟化変形するおそれがある。一方、第1のガラスマトリクス4の軟化点が高すぎると、製造時に焼成工程が含まれる場合、蛍光体粒子5が劣化して、波長変換部材1の発光強度が低下する場合がある。なお、波長変換部材1の化学的安定性及び機械的強度をより一層高める観点からは、第1のガラスマトリクス4の軟化点が、好ましくは500℃以上、より好ましくは600℃以上、さらに好ましくは650℃以上である。ただし、第1のガラスマトリクス4の軟化点が高くなると、焼成温度も高くなり、結果として製造コストが高くなる傾向がある。また、蛍光体粒子5の耐熱性が低い場合、焼成により劣化するおそれがある。よって、波長変換部材1をより一層安価に製造する場合や、蛍光体粒子5の耐熱性のより低い場合は、第1のガラスマトリクス4の軟化点が、好ましくは550℃以下、より好ましくは530℃以下、さらに好ましくは500℃以下、特に好ましくは480℃以下、最も好ましくは460℃以下である。 The softening point of the first glass matrix 4 is preferably 250°C to 1000°C, more preferably 300°C to 950°C, even more preferably 500°C to 900°C. If the softening point of the first glass matrix 4 is too low, the mechanical strength and chemical durability of the wavelength conversion member 1 may deteriorate. In addition, since the heat resistance of the first glass matrix 4 itself is low, there is a risk of softening deformation due to heat generated from the phosphor particles 5 . On the other hand, if the softening point of the first glass matrix 4 is too high, the phosphor particles 5 may deteriorate and the emission intensity of the wavelength conversion member 1 may decrease if a baking process is included in the manufacturing process. From the viewpoint of further enhancing the chemical stability and mechanical strength of the wavelength conversion member 1, the softening point of the first glass matrix 4 is preferably 500° C. or higher, more preferably 600° C. or higher, and still more preferably 600° C. or higher. 650° C. or higher. However, when the softening point of the first glass matrix 4 increases, the firing temperature also increases, which tends to increase the manufacturing cost. Moreover, if the heat resistance of the phosphor particles 5 is low, there is a risk of deterioration due to firing. Therefore, when the wavelength conversion member 1 is manufactured at a lower cost, or when the heat resistance of the phosphor particles 5 is lower, the softening point of the first glass matrix 4 is preferably 550° C. or less, more preferably 530° C. C. or lower, more preferably 500.degree. C. or lower, particularly preferably 480.degree. C. or lower, and most preferably 460.degree.
 蛍光体粒子;
 蛍光体粒子5は、励起光の入射により蛍光を出射するものであれば、特に限定されない。蛍光体粒子5としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、又はガーネット系化合物蛍光体等が挙げられる。これらの蛍光体は、1種を単独で用いてもよく、複数種を併用してもよい。UV光を吸収して可視光を出射する蛍光体としては、例えば、LuAl12(蛍光波長550nm)、Si6-zAl8-z:Eu(0<z<4.2)(=β-SiAlON:Eu)(蛍光波長545nm)、LaSi11:Ce(蛍光波長535nm)等が挙げられる。
phosphor particles;
The phosphor particles 5 are not particularly limited as long as they emit fluorescence upon incidence of excitation light. Examples of phosphor particles 5 include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halide phosphors. phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, garnet-based compound phosphors, and the like. One type of these phosphors may be used alone, or a plurality of types may be used in combination. Phosphors that absorb UV light and emit visible light include, for example, Lu 3 Al 5 O 12 (fluorescence wavelength: 550 nm), Si 6-z Al z O z N 8-z : Eu (0<z<4 .2) (=β-SiAlON:Eu) (fluorescence wavelength: 545 nm), La 3 Si 6 N 11 :Ce (fluorescence wavelength: 535 nm), and the like.
 蛍光体粒子5の平均粒子径は、好ましくは1μm以上、より好ましくは5μm以上である。蛍光体粒子5の平均粒子径が小さすぎると、量子効率が悪く発光強度が低下する傾向がある。一方、蛍光体粒子5の平均粒子径が大きすぎると、第1のガラスマトリクス4内での分散状態が悪くなり発光色が不均一になる傾向がある。よって、蛍光体粒子5の平均粒子径は、好ましくは50μm以下、より好ましくは25μm以下である。 The average particle size of the phosphor particles 5 is preferably 1 μm or more, more preferably 5 μm or more. If the average particle size of the phosphor particles 5 is too small, the quantum efficiency tends to be poor and the emission intensity tends to decrease. On the other hand, if the average particle diameter of the phosphor particles 5 is too large, the dispersion state in the first glass matrix 4 deteriorates, and the emission color tends to be non-uniform. Therefore, the average particle size of the phosphor particles 5 is preferably 50 μm or less, more preferably 25 μm or less.
 なお、本明細書において、平均粒子径は、レーザー回折式粒度分布測定装置により測定した平均粒子径D50のことをいうものとする。 In this specification, the average particle size means the average particle size D50 measured by a laser diffraction particle size distribution analyzer.
 第1の層2中における蛍光体粒子5の含有量は、好ましくは1体積%以上、より好ましくは3体積%以上、さらに好ましくは5体積%以上である。第1の層2中における蛍光体粒子5の含有量は、好ましくは70体積%以下、より好ましくは65体積%以下、さらに好ましくは50体積%以下である。蛍光体粒子5の含有量が少なすぎると、所望の蛍光強度を得るために第1の層2の厚みを厚くする必要があり、その結果、波長変換部材1の内部散乱やマトリクスによる吸収が増加することで、光取り出し効率が低下する場合がある。一方、蛍光体粒子5の含有量が多すぎると、相対的にガラスの割合が減少し、ガラスが蛍光体を支持する力が弱くなるため、波長変換部材1の機械的強度が低下する場合がある。 The content of the phosphor particles 5 in the first layer 2 is preferably 1% by volume or more, more preferably 3% by volume or more, and even more preferably 5% by volume or more. The content of the phosphor particles 5 in the first layer 2 is preferably 70% by volume or less, more preferably 65% by volume or less, and even more preferably 50% by volume or less. If the content of the phosphor particles 5 is too small, it is necessary to increase the thickness of the first layer 2 in order to obtain the desired fluorescence intensity, and as a result, the internal scattering of the wavelength conversion member 1 and the absorption by the matrix increase. As a result, the light extraction efficiency may decrease. On the other hand, if the content of the phosphor particles 5 is too large, the ratio of the glass is relatively decreased, and the strength of the glass to support the phosphor is weakened, which may reduce the mechanical strength of the wavelength conversion member 1. be.
 本実施形態において、第2のガラスマトリクス6は、ガラス粉末のみの粉末焼結体からなるが、これに限定されない。例えば、第2のガラスマトリクス6には、熱膨張係数調整や光散乱効果を得ることを目的としてフィラー粉末等の他の無機粉末を含有させてもよい。このようにすれば、第1の層2と第2の層3の熱膨張係数を容易に整合させることができ、熱膨張係数差に起因する波長変換部材1の反りやクラック等の発生をより一層抑制することができる。また、フィラー粉末の光散乱効果により、波長変換部材1の発光強度をより一層向上させることができる。さらに、高熱伝導率のフィラー粉末を含有させることで、波長変換部材1の放熱効率をより一層向上させることができる。フィラー粉末としては、MgO、Al、BN、AlN等が挙げられる。なかでも、MgO、Al、BNは可視域における透過率に優れるため好ましい。 In this embodiment, the second glass matrix 6 is made of a powder sintered body of only glass powder, but is not limited to this. For example, the second glass matrix 6 may contain other inorganic powder such as filler powder for the purpose of adjusting the coefficient of thermal expansion and obtaining a light scattering effect. By doing so, the thermal expansion coefficients of the first layer 2 and the second layer 3 can be easily matched, and the occurrence of warpage, cracks, etc. of the wavelength conversion member 1 due to the difference in thermal expansion coefficients can be reduced. can be further suppressed. Moreover, the light scattering effect of the filler powder can further improve the emission intensity of the wavelength conversion member 1 . Furthermore, the heat dissipation efficiency of the wavelength conversion member 1 can be further improved by containing a filler powder with a high thermal conductivity. Filler powders include MgO, Al 2 O 3 , BN, AlN, and the like. Among them, MgO, Al 2 O 3 and BN are preferable because of their excellent transmittance in the visible region.
 第1の層;
 第1の層2の厚みは、特に限定されないが、好ましくは0.01mm以上であり、より好ましくは0.03mm以上であり、好ましくは0.5mm以下であり、より好ましくは0.3mm以下である。第1の層2の厚みが上記下限値以上である場合、波長変換部材1の発光強度や機械的強度をより一層高めることができる。また、第1の層2の厚みが上記上限値以下である場合、第1の層2における光の散乱や吸収をより一層抑制することができ、蛍光の出射効率をより一層高めることができる。
a first layer;
The thickness of the first layer 2 is not particularly limited, but is preferably 0.01 mm or more, more preferably 0.03 mm or more, preferably 0.5 mm or less, and more preferably 0.3 mm or less. be. When the thickness of the 1st layer 2 is more than the said lower limit, the light emission intensity and mechanical strength of the wavelength conversion member 1 can be heightened further. Moreover, when the thickness of the first layer 2 is equal to or less than the above upper limit, the scattering and absorption of light in the first layer 2 can be further suppressed, and the emission efficiency of fluorescence can be further increased.
 (第2の層)
 第2の層3は、第2のガラスマトリクス6により構成されている。第2のガラスマトリクス6は、励起光(例えばUV光)を遮蔽し、蛍光を透過させるガラス(UV光遮蔽ガラス等)により構成されている。
(second layer)
The second layer 3 is composed of a second glass matrix 6 . The second glass matrix 6 is made of glass (such as UV light shielding glass) that shields excitation light (eg, UV light) and allows fluorescence to pass through.
 第2のガラスマトリクス6の励起波長における透過率Tは、好ましくは65%以下であり、より好ましくは40%以下であり、さらに好ましくは20%以下であり、特に好ましくは10%以下である。第2のガラスマトリクス6の励起波長における透過率Tが上記上限値以下である場合、第2の層3において励起光を一層確実に遮蔽することができ、例えば励起光がUV光である場合にその漏洩による周辺部材の劣化や人体への影響をより一層確実に抑制することができる。第2のガラスマトリクス6の励起波長における透過率Tの下限値は、特に限定されないが、例えば、0%とすることができる。 The transmittance T B of the second glass matrix 6 at the excitation wavelength is preferably 65% or less, more preferably 40% or less, even more preferably 20% or less, and particularly preferably 10% or less. . When the transmittance T B of the excitation wavelength of the second glass matrix 6 is equal to or less than the above upper limit, the excitation light can be shielded more reliably in the second layer 3. For example, when the excitation light is UV light, In addition, deterioration of peripheral members and effects on the human body due to the leakage can be more reliably suppressed. Although the lower limit of the transmittance T B of the second glass matrix 6 at the excitation wavelength is not particularly limited, it can be set to 0%, for example.
 第2のガラスマトリクス6の蛍光波長における透過率Lは、好ましくは50%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上である。第2のガラスマトリクス6の蛍光波長における透過率Lが上記下限値以上である場合、波長変換部材1においてより一層効率よく蛍光を効率よく出射させることができる。第2のガラスマトリクス6の蛍光波長における透過率Lの上限値は、特に限定されず、例えば、95%とすることができる。 The transmittance L B of the second glass matrix 6 at the fluorescence wavelength is preferably 50% or more, more preferably 75% or more, still more preferably 80% or more. When the transmittance LB of the second glass matrix 6 at the fluorescence wavelength is equal to or higher than the above lower limit, fluorescence can be emitted more efficiently from the wavelength conversion member 1 . The upper limit of the transmittance L B of the second glass matrix 6 at the fluorescence wavelength is not particularly limited, and can be set to 95%, for example.
 第2のガラスマトリクス6を構成するガラスとしては、上述の光学的性質を有する限りにおいて特に限定されず、例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラス、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスを用いることができる。 The glass constituting the second glass matrix 6 is not particularly limited as long as it has the optical properties described above. system glass and tellurite system glass can be used.
 第2のガラスマトリクス6を構成するガラスの具体例としては、例えば、モル%で、SiO 40%~60%、B 0.1%~35%、Al 0.1%~10%、LiO 0%~10%、NaO 0%~10%、KO 0%~10%、LiO+NaO+KO 0.1%~10%、MgO 0%~45%、CaO 0%~45%、SrO 0%~45%、BaO 0%~45%、MgO+CaO+SrO+BaO 0.1%~45%、ZnO 0%~15%、CeO 0.001%~10%を含有するガラスを用いることができる。 Specific examples of the glass constituting the second glass matrix 6 include, in terms of mol %, SiO 2 40% to 60%, B 2 O 3 0.1% to 35%, and Al 2 O 3 0.1%. ~10%, Li2O 0%~10%, Na2O 0 %~10%, K2O 0%~10%, Li2O + Na2O + K2O 0.1%~10%, MgO 0%~ 45%, CaO 0%-45%, SrO 0%-45%, BaO 0%-45%, MgO+CaO+SrO+BaO 0.1%-45%, ZnO 0 %-15%, CeO2 0.001%-10% Containing glasses can be used.
 第2のガラスマトリクス6を構成するガラスは、質量%で、SiO 30%~85%、Al 0%~30%、B 0%~50%、LiO+NaO+KO 0%~10%、MgO+CaO+SrO+BaO 0%~50%を含有するガラスであってもよい。 The glass constituting the second glass matrix 6 is SiO 2 30% to 85%, Al 2 O 3 0% to 30%, B 2 O 3 0% to 50%, and Li 2 O + Na 2 O + K 2 in mass %. The glass may contain 0% to 10% O and 0% to 50% MgO+CaO+SrO+BaO.
 第2のガラスマトリクス6の軟化点は、250℃~1000℃であることが好ましく、300℃~950℃であることがより好ましく、500℃~900℃であることがさらに好ましい。第2のガラスマトリクス6の軟化点が低すぎると、波長変換部材1の機械的強度や化学的耐久性が低下する場合がある。一方、第2のガラスマトリクス6の軟化点が高すぎると、製造時に焼成工程が含まれる場合、蛍光体粒子5が劣化して、波長変換部材1の発光強度が低下する場合がある。 The softening point of the second glass matrix 6 is preferably 250°C to 1000°C, more preferably 300°C to 950°C, even more preferably 500°C to 900°C. If the softening point of the second glass matrix 6 is too low, the mechanical strength and chemical durability of the wavelength conversion member 1 may deteriorate. On the other hand, if the softening point of the second glass matrix 6 is too high, the phosphor particles 5 may deteriorate and the emission intensity of the wavelength conversion member 1 may decrease if a baking process is included in the manufacturing process.
 第2の層;
 第2の層3の厚みは、特に限定されないが、好ましくは0.05mm以上であり、より好ましくは0.1mm以上であり、好ましくは1mm以下であり、より好ましくは0.5mm以下である。第2の層3の厚みが上記下限値以上である場合、第2の層3において励起光をより一層確実に遮蔽することができ、例えば励起光がUV光である場合にその漏洩による周辺部材の劣化や人体への影響をより一層確実に抑制することができる。また、第2の層3の厚みが上記上限値以下である場合、第2の層3における光の散乱や吸収をより一層抑制することができ、蛍光の出射効率をより一層高めることができる。
a second layer;
The thickness of the second layer 3 is not particularly limited, but is preferably 0.05 mm or more, more preferably 0.1 mm or more, preferably 1 mm or less, and more preferably 0.5 mm or less. When the thickness of the second layer 3 is at least the above lower limit, the excitation light can be shielded more reliably in the second layer 3. For example, when the excitation light is UV light, the leakage of the surrounding members deterioration and the effects on the human body can be suppressed more reliably. Moreover, when the thickness of the second layer 3 is equal to or less than the upper limit value, the scattering and absorption of light in the second layer 3 can be further suppressed, and the fluorescence emission efficiency can be further increased.
 第2の層3は、蛍光体粒子を実質的に含有していないことが望ましい。もっとも、第2の層3は、蛍光体粒子を含有していてもよい。 It is desirable that the second layer 3 does not substantially contain phosphor particles. However, the second layer 3 may contain phosphor particles.
 (波長変換部材の製造方法)
 以下、波長変換部材の製造方法の一例について説明する。
(Manufacturing method of wavelength conversion member)
An example of the method for manufacturing the wavelength conversion member will be described below.
 まず、第1の層形成用グリーンシートを準備する。具体的には、第1のガラスマトリクス4となるガラス粒子と蛍光体粒子5とを含むスラリーを用意する。上記スラリーには、通常、バインダー樹脂や溶剤が含まれている。続いて、用意したスラリーを支持基材上に塗布し、基材と所定間隔を空けて設置されたドクターブレードをスラリーに対して相対的に移動させることにより、第1の層形成用グリーンシートを形成する。上記支持基材としては、例えば、ポリエチレンテレフタレート等の樹脂フィルムを用いることができる。 First, a green sheet for forming the first layer is prepared. Specifically, a slurry containing glass particles to be the first glass matrix 4 and phosphor particles 5 is prepared. The slurry usually contains a binder resin and a solvent. Subsequently, the prepared slurry is applied onto the support base material, and a doctor blade placed at a predetermined distance from the base material is moved relative to the slurry, thereby forming the first layer-forming green sheet. Form. As the supporting substrate, for example, a resin film such as polyethylene terephthalate can be used.
 次に、第2の層形成用グリーンシートを準備する。具体的には、第2のガラスマトリクス6となるガラス粒子を含むスラリーを用意し、上記と同様にして第2の層形成用グリーンシートを得る。 Next, a green sheet for forming the second layer is prepared. Specifically, a slurry containing glass particles to be the second glass matrix 6 is prepared, and a second layer-forming green sheet is obtained in the same manner as described above.
 なお、第1のガラスマトリクス4及び第2のガラスマトリクス6となるガラス粒子の材料は、上述した第1のガラスマトリクス4及び第2のガラスマトリクス6の材料と同じものを用いることができる。また、ガラス粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上である。ガラス粒子の平均粒子径が小さすぎると、生産コストが高くなったり、取扱い性が低下したりする傾向がある。一方、ガラス粒子の平均粒子径が大きすぎると、得られる波長変換部材1において、焼成後のガラスマトリクス中に気泡が残存しやすくなり、波長変換部材1の光取出し効率が低下するおそれがある。よって、ガラス粒子の平均粒子径は、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下、特に好ましくは10μm以下である。また、蛍光体粒子の平均粒子径は、上述の第1の層2で説明した範囲とすることが望ましい。 The materials of the glass particles that form the first glass matrix 4 and the second glass matrix 6 can be the same as the materials of the first glass matrix 4 and the second glass matrix 6 described above. Also, the average particle size of the glass particles is preferably 0.1 μm or more, more preferably 1 μm or more, and still more preferably 2 μm or more. If the average particle size of the glass particles is too small, the production cost tends to increase and the handleability tends to deteriorate. On the other hand, if the average particle size of the glass particles is too large, bubbles tend to remain in the glass matrix after firing in the obtained wavelength conversion member 1, and the light extraction efficiency of the wavelength conversion member 1 may decrease. Therefore, the average particle size of the glass particles is preferably 100 µm or less, more preferably 50 µm or less, still more preferably 20 µm or less, and particularly preferably 10 µm or less. Moreover, it is desirable that the average particle size of the phosphor particles is within the range described for the first layer 2 above.
 次に、第1の層形成用グリーンシートと第2の層形成用グリーンシートを熱圧着等により積層し、積層体を得る。続いて、積層体を、ガラス粒子の軟化点~ガラス粒子の軟化点+100℃程度で焼成することにより、第1の層2及び第2の層3が積層された焼結体からなる波長変換部材1を得ることができる。上記焼成は、減圧雰囲気で行うことが好ましく、特に真空雰囲気で行うことがより好ましい。この場合、より一層緻密性に優れた波長変換部材1を得ることができる。また、積層体を一対の拘束部材で挟持した状態で焼成することが好ましい。この場合、波長変換部材1の平坦度(特に、第1の層2及び第2の層3の界面の平坦度)が向上し、その後の研磨工程で所望の厚みに加工しやすくなる。なお、焼成の前に、ガラス粒子の軟化点より低い温度で脱バインダー処理を行うことが好ましい。この場合、得られる波長変換部材1において、光の吸収や散乱の原因となる有機成分残渣を低減することができ、発光強度をより一層向上させることができる。 Next, the first layer-forming green sheet and the second layer-forming green sheet are laminated by thermocompression bonding or the like to obtain a laminate. Subsequently, the laminated body is fired at about the softening point of the glass particles to the softening point of the glass particles +100° C., thereby obtaining a wavelength conversion member made of a sintered body in which the first layer 2 and the second layer 3 are laminated. 1 can be obtained. The firing is preferably performed in a reduced pressure atmosphere, and more preferably in a vacuum atmosphere. In this case, it is possible to obtain the wavelength conversion member 1 which is even more excellent in denseness. Moreover, it is preferable to bake the laminate while sandwiching it between a pair of restraining members. In this case, the flatness of the wavelength conversion member 1 (in particular, the flatness of the interface between the first layer 2 and the second layer 3) is improved, and it becomes easier to process the wavelength conversion member 1 to a desired thickness in the subsequent polishing process. Before firing, it is preferable to perform a binder removal treatment at a temperature lower than the softening point of the glass particles. In this case, in the obtained wavelength conversion member 1, it is possible to reduce organic component residues that cause light absorption and scattering, and to further improve the emission intensity.
 また、得られた焼結体における第1の層2を所望の厚みになるように研磨することが好ましい。具体的には、焼結体における第1の層2を所定厚みになるように研磨して波長変換部材1の色度調整を行うことが好ましい。得られた焼結体における第2の層3を所望の厚みになるように研磨してもよい。 Further, it is preferable to grind the first layer 2 in the obtained sintered body to a desired thickness. Specifically, it is preferable to adjust the chromaticity of the wavelength conversion member 1 by polishing the first layer 2 of the sintered body to a predetermined thickness. The second layer 3 in the obtained sintered body may be ground to a desired thickness.
 なお、波長変換部材1の製造方法は、上記の方法には限定されない。例えば、第1の層形成用グリーンシートと第2の層形成用グリーンシートとをそれぞれ別々に焼成した後、得られた各焼成体を熱圧着あるいは接着剤により接合することにより、波長変換部材1を得てもよい。 The method for manufacturing the wavelength conversion member 1 is not limited to the method described above. For example, after separately firing the first layer-forming green sheet and the second layer-forming green sheet, the obtained fired bodies are joined by thermocompression or an adhesive, whereby the wavelength conversion member 1 may be obtained.
 [発光デバイス]
 図3は、本発明の一実施形態に係る発光デバイスを示す模式的正面断面図である。図3に示すように、発光デバイス11は、上述した一実施形態に係る波長変換部材1と、波長変換部材1に励起光Aを出射する光源7とを備える。発光デバイス11において、光源7は、励起光Aが第1の層2側から波長変換部材1に直接的に入射するように配置されている。
[Light emitting device]
FIG. 3 is a schematic front sectional view showing a light emitting device according to one embodiment of the invention. As shown in FIG. 3 , the light emitting device 11 includes the wavelength conversion member 1 according to the embodiment described above and a light source 7 that emits excitation light A to the wavelength conversion member 1 . In the light emitting device 11 , the light source 7 is arranged so that the excitation light A directly enters the wavelength conversion member 1 from the first layer 2 side.
 発光デバイス11の波長変換部材1においても、第1の層2及び第2の層3を設けることにより、蛍光体を効率良く励起させつつ、しかもUV光の漏洩による周辺部材の劣化や人体への影響を抑制することができる。 Also in the wavelength conversion member 1 of the light emitting device 11, by providing the first layer 2 and the second layer 3, the phosphor can be efficiently excited, and furthermore, deterioration of peripheral members due to leakage of UV light and damage to the human body can be prevented. The impact can be suppressed.
 なお、光源7の配置は上記に限定されない。例えば、図4に示す変形例では、光源7と波長変換部材1との間に導光板12が配置されている。光源7は、励起光Aが導光板12に直接的に入射するように配置されている。光源7から出射された励起光Aは、導光板12を通り、波長変換部材1に入射する。具体的には、励起光Aは導光板12の端面から入射し、導光板12の主面から出射し、波長変換部材1に入射する。ここで、導光板12は励起光Aに対し、なるべく吸収を抑えた材料を使用する。 Note that the arrangement of the light sources 7 is not limited to the above. For example, in the modified example shown in FIG. 4, a light guide plate 12 is arranged between the light source 7 and the wavelength conversion member 1 . The light source 7 is arranged so that the excitation light A is directly incident on the light guide plate 12 . The excitation light A emitted from the light source 7 passes through the light guide plate 12 and enters the wavelength conversion member 1 . Specifically, the excitation light A enters from the end surface of the light guide plate 12 , exits from the main surface of the light guide plate 12 , and enters the wavelength conversion member 1 . Here, the light guide plate 12 uses a material that suppresses absorption of the excitation light A as much as possible.
 発光デバイス11は、例えば、センシング用の発光デバイス、高演色性照明に好適に用いることができる。 The light-emitting device 11 can be suitably used, for example, as a light-emitting device for sensing and high color rendering lighting.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is by no means limited to the following examples, and can be modified as appropriate without changing the gist of the invention.
 (実施例1)
 第1のガラスマトリクスとなるガラス粒子として、モル%で、SiO 45%、Al 4%、B 18%、LiO 1.5%、NaO 1.5%、KO 1.5%、BaO 25%、ZnO 3.5%の組成を有するガラス粒子A(軟化点:690℃、熱膨張係数:86.1×10-7/℃、平均粒子径:2.5μm)を準備した。
(Example 1)
As the glass particles to be the first glass matrix, SiO 2 45%, Al 2 O 3 4%, B 2 O 3 18%, Li 2 O 1.5%, Na 2 O 1.5%, Glass particles A having a composition of 1.5% K 2 O, 25% BaO, and 3.5% ZnO (softening point: 690° C., coefficient of thermal expansion: 86.1×10 −7 /° C., average particle diameter: 2 .5 μm) was prepared.
 次に、ガラス粒子Aと、蛍光体粒子(LuAl12、平均粒子径:15μm)と、バインダー樹脂(共栄社化学株式会社製、オリコックス)と、可塑剤(アジピン酸ジオクチル)と、分散剤(共栄社化学株式会社製、フローレンG-700)と、有機溶剤(メチルエチルケトン)とを混練することによりスラリー状の混合物を得た。得られたスラリー状混合物をドクターブレード法によりシート状に成形し、室温で乾燥させることにより第1の層形成用グリーンシートを得た。なお、蛍光体粒子の添加量は、第1の層中において30体積%となるように調整した。 Next, glass particles A, phosphor particles (Lu 3 Al 5 O 12 , average particle size: 15 μm), a binder resin (Oricox manufactured by Kyoeisha Chemical Co., Ltd.), a plasticizer (dioctyl adipate), A slurry-like mixture was obtained by kneading a dispersant (Floren G-700, manufactured by Kyoeisha Chemical Co., Ltd.) and an organic solvent (methyl ethyl ketone). The resulting slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a first layer-forming green sheet. The amount of phosphor particles added was adjusted to 30% by volume in the first layer.
 次に、第2のガラスマトリクスとなるガラス粒子として、モル%で、SiO 45%、Al 4%、B 18%、LiO 1.5%、NaO 1.5%、KO 1.5%、BaO 25%、ZnO 3%、CeO 0.5%の組成を有するガラス粒子X(軟化点:690℃、熱膨張係数:86.1×10-7/℃、平均粒子径:2.5μm)を準備した。 Next, as the glass particles to be the second glass matrix, SiO 2 45%, Al 2 O 3 4%, B 2 O 3 18%, Li 2 O 1.5%, Na 2 O 1.5% by mol %. Glass particles X having a composition of 5%, K 2 O 1.5%, BaO 25%, ZnO 3%, and CeO 2 0.5% (softening point: 690° C., coefficient of thermal expansion: 86.1×10 −7 /° C., average particle size: 2.5 μm).
 次に、ガラス粒子Xと、バインダー樹脂(共栄社化学株式会社製、オリコックス)と、可塑剤(アジピン酸ジオクチル)と、分散剤(共栄社化学株式会社製、フローレンG-700)と、有機溶剤(メチルエチルケトン)とを混練することによりスラリー状の混合物を得た。得られたスラリー状混合物をドクターブレード法によりシート状に成形し、室温で乾燥させることにより第2の層形成用グリーンシートを得た。 Next, glass particles X, a binder resin (Oricox, manufactured by Kyoeisha Chemical Co., Ltd.), a plasticizer (dioctyl adipate), a dispersant (Floren G-700, manufactured by Kyoeisha Chemical Co., Ltd.), and an organic solvent ( methyl ethyl ketone) were kneaded to obtain a slurry-like mixture. The resulting slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a green sheet for forming a second layer.
 次に、第1の層形成用グリーンシートと第2の層形成用グリーンシートを所定のサイズに切断した後、両者を熱圧着した。得られた積層体を電気炉中にて脱脂処理を施した後、真空ガス置換炉にて、740℃(第1のガラスマトリクスとなるガラス粒子及び第2のガラスマトリクスとなるガラス粒子の軟化点+50℃)で真空焼成を実施した。得られた焼成体に対して、片面ずつ所望の層厚みになるように研磨加工を施すことにより、第1の層及び第2の層が積層されてなる波長変換部材を得た。なお、第1の層の厚みは40μmであり、第2の層の厚みは160μmであった。 Next, after cutting the first layer-forming green sheet and the second layer-forming green sheet into a predetermined size, they were thermocompression bonded. After degreasing the obtained laminate in an electric furnace, it is heated to 740° C. (the softening point of the glass particles that form the first glass matrix and the glass particles that form the second glass matrix) in a vacuum gas replacement furnace +50°C) and vacuum firing was carried out. A wavelength conversion member in which a first layer and a second layer are laminated was obtained by polishing the obtained sintered body so that each side thereof had a desired layer thickness. The thickness of the first layer was 40 μm, and the thickness of the second layer was 160 μm.
 (実施例2)
 第1のガラスマトリクスとなるガラス粒子として、質量%で、SiO 68%、Al 4%、B 19%、NaO 7%、KO 1%、F 1%の組成を有するガラス粒子B(軟化点700℃、熱膨張係数:41.9×10-7/℃、平均粒子径:2.5μm)を準備した。
(Example 2)
As the glass particles to be the first glass matrix, SiO 2 68%, Al 2 O 3 4%, B 2 O 3 19%, Na 2 O 7%, K 2 O 1%, F 2 1% in mass % Glass particles B (softening point: 700° C., thermal expansion coefficient: 41.9×10 −7 /° C., average particle size: 2.5 μm) were prepared.
 また、第2のガラスマトリクスとなるガラス粒子として、質量%で、SiO 50%、Al 6%、B 5%、CaO 12%、BaO 25%、ZnO 2%の組成を有するガラス粒子Y(軟化点:850℃、熱膨張係数:68.0×10-7/℃、平均粒子径:2.5μm)を準備した。 Further, the glass particles to be the second glass matrix have a composition of 50% SiO 2 , 6% Al 2 O 3 , 5% B 2 O 3 , 12% CaO, 25% BaO, and 2% ZnO in mass %. glass particles Y (softening point: 850° C., coefficient of thermal expansion: 68.0×10 −7 /° C., average particle size: 2.5 μm) were prepared.
 また、真空焼成を900℃(第1のガラスマトリクスとなるガラス粒子及び第2のガラスマトリクスとなるガラス粒子のうち高い方の軟化点+50℃)で実施した。 In addition, vacuum firing was performed at 900°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
 その他の点は、実施例1と同様にして、波長変換部材を得た。なお、第1の層の厚みは40μmであり、第2の層の厚みは160μmであった。 Other points were the same as in Example 1 to obtain a wavelength conversion member. The thickness of the first layer was 40 μm, and the thickness of the second layer was 160 μm.
 (実施例3)
 第1のガラスマトリクスとなるガラス粒子として、質量%で、SiO 71%、Al 6%、B 13%、NaO 7%、KO 1%、CaO 1%、BaO 1%の組成を有するガラス粒子C(軟化点:737℃、熱膨張係数:66.0×10-7/℃、平均粒子径:2.5μm)を準備した。
(Example 3)
As the glass particles to be the first glass matrix, in mass %, SiO 2 71%, Al 2 O 3 6%, B 2 O 3 13%, Na 2 O 7%, K 2 O 1%, CaO 1%, Glass particles C (softening point: 737° C., coefficient of thermal expansion: 66.0×10 −7 /° C., average particle size: 2.5 μm) having a composition of 1% BaO were prepared.
 また、第2のガラスマトリクスとなるガラス粒子として、実施例2と同じガラス粒子Yを準備した。 In addition, the same glass particles Y as in Example 2 were prepared as the glass particles forming the second glass matrix.
 また、真空焼成を900℃(第1のガラスマトリクスとなるガラス粒子及び第2のガラスマトリクスとなるガラス粒子のうち高い方の軟化点+50℃)で実施した。 In addition, vacuum firing was performed at 900°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
 その他の点は、実施例1と同様にして、波長変換部材を得た。なお、第1の層の厚みは40μmであり、第2の層の厚みは160μmであった。 Other points were the same as in Example 1 to obtain a wavelength conversion member. The thickness of the first layer was 40 μm, and the thickness of the second layer was 160 μm.
 なお、実施例1~3で用いた第1のガラスマトリクス及び第2のガラスマトリクスそれぞれの波長250nmにおける透過率(UV-C透過率)、波長280nmにおける透過率(励起波長での透過率)、波長300nmにおける透過率(UV-B透過率)、波長350nmにおける透過率(UV-A透過率)、及び波長550nmにおける透過率(VIS透過率=蛍光波長での透過率)を測定した結果を下記の表1に示す。なお、第1のガラスマトリクス及び第2のガラスマトリクスの透過率は、それぞれ厚み1mmのガラス板について測定した。このガラス板は、上述した方法により作製した。また、第1のガラスマトリクス及び第2のガラスマトリクスの透過率は、分光光度計(日本分光社製、品番V-670)により測定した。 The transmittance at a wavelength of 250 nm (UV-C transmittance), the transmittance at a wavelength of 280 nm (transmittance at the excitation wavelength), and The results of measuring the transmittance at a wavelength of 300 nm (UV-B transmittance), the transmittance at a wavelength of 350 nm (UV-A transmittance), and the transmittance at a wavelength of 550 nm (VIS transmittance = transmittance at fluorescence wavelength) are shown below. shown in Table 1. The transmittances of the first glass matrix and the second glass matrix were each measured on a glass plate having a thickness of 1 mm. This glass plate was produced by the method described above. Further, the transmittance of the first glass matrix and the second glass matrix was measured with a spectrophotometer (manufactured by JASCO Corporation, product number V-670).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 第1のガラスマトリクスとなるガラス粒子として、実施例1の第2のガラスマトリクスと同じガラス粒子Xを準備した。
(Comparative example 1)
The same glass particles X as the second glass matrix of Example 1 were prepared as the glass particles forming the first glass matrix.
 次に、ガラス粒子Xと、蛍光体粒子(LuAl12、平均粒子径:15μm)と、バインダー樹脂(共栄社化学株式会社製、オリコックス)と、可塑剤(アジピン酸ジオクチル)と、分散剤(共栄社化学株式会社製、フローレンG-700)と、有機溶剤(メチルエチルケトン)とを混練することによりスラリー状の混合物を得た。得られたスラリー状混合物をドクターブレード法によりシート状に成形し、室温で乾燥させることによりグリーンシートを得た。なお、蛍光体粒子の添加量は、得られる波長変換部材中において6体積%となるように調整した。 Next, glass particles X, phosphor particles (Lu 3 Al 5 O 12 , average particle size: 15 μm), a binder resin (Oricox, manufactured by Kyoeisha Chemical Co., Ltd.), a plasticizer (dioctyl adipate), A slurry-like mixture was obtained by kneading a dispersant (Floren G-700, manufactured by Kyoeisha Chemical Co., Ltd.) and an organic solvent (methyl ethyl ketone). The resulting slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a green sheet. The amount of phosphor particles added was adjusted to 6% by volume in the resulting wavelength conversion member.
 次に、得られたグリーンシートを電気炉中にて脱脂処理を施した後、真空ガス置換炉にて、740℃で真空焼成を実施した。得られた焼成体に対して、所望の層厚みになるように研磨加工を施すことにより、第1の層のみからなる波長変換部材を得た。なお、波長変換部材の厚みは200μmであった。 Next, after degreasing the obtained green sheet in an electric furnace, it was vacuum fired at 740°C in a vacuum gas replacement furnace. A wavelength conversion member consisting of only the first layer was obtained by subjecting the obtained sintered body to a polishing process so as to obtain a desired layer thickness. In addition, the thickness of the wavelength conversion member was 200 μm.
 (比較例2)
 第1のガラスマトリクスとなるガラス粒子として、実施例1の第1のガラスマトリクスと同じガラス粒子Aを準備した。その他の点は、比較例1と同様にして、第1の層のみからなる波長変換部材を得た。なお、波長変換部材の厚みは200μmであった。
(Comparative example 2)
The same glass particles A as the first glass matrix of Example 1 were prepared as the glass particles to be the first glass matrix. Otherwise, in the same manner as in Comparative Example 1, a wavelength conversion member consisting of only the first layer was obtained. In addition, the thickness of the wavelength conversion member was 200 μm.
 (比較例3)
 第1のガラスマトリクスとなるガラス粒子として、実施例1の第1のガラスマトリクスと同じガラス粒子Aを準備した。
(Comparative Example 3)
The same glass particles A as the first glass matrix of Example 1 were prepared as the glass particles to be the first glass matrix.
 また、第2のガラスマトリクスとなるガラス粒子として、実施例2の第1のガラスマトリクスと同じガラス粒子Bを準備した。 In addition, the same glass particles B as the first glass matrix of Example 2 were prepared as the glass particles to form the second glass matrix.
 また、真空焼成を750℃(第1のガラスマトリクスとなるガラス粒子及び第2のガラスマトリクスとなるガラス粒子のうち高い方の軟化点+50℃)で実施した。 In addition, vacuum firing was performed at 750°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
 その他の点は、実施例1と同様にして、波長変換部材を得た。なお、第1の層の厚みは40μmであり、第2の層の厚みは160μmであった。 Other points were the same as in Example 1 to obtain a wavelength conversion member. The thickness of the first layer was 40 μm, and the thickness of the second layer was 160 μm.
 (比較例4)
 第1のガラスマトリクスとなるガラス粒子として、実施例1の第2のガラスマトリクスと同じガラス粒子Xを準備した。
(Comparative Example 4)
The same glass particles X as the second glass matrix of Example 1 were prepared as the glass particles forming the first glass matrix.
 また、第2のガラスマトリクスとなるガラス粒子として、実施例2の第2のガラスマトリクスと同じガラス粒子Yを準備した。 Also, the same glass particles Y as the second glass matrix of Example 2 were prepared as the glass particles forming the second glass matrix.
 また、真空焼成を900℃(第1のガラスマトリクスとなるガラス粒子及び第2のガラスマトリクスとなるガラス粒子のうち高い方の軟化点+50℃)で実施した。 In addition, vacuum firing was performed at 900°C (the softening point of the higher one of the glass particles forming the first glass matrix and the glass particles forming the second glass matrix + 50°C).
 その他の点は、実施例1と同様にして、波長変換部材を得た。なお、第1の層の厚みは40μmであり、第2の層の厚みは160μmであった。 Other points were the same as in Example 1 to obtain a wavelength conversion member. The thickness of the first layer was 40 μm, and the thickness of the second layer was 160 μm.
 (評価)
 まず、励起光源としてのUVLED(λp=280nm)のエネルギー分布スペクトルを、発光スペクトル測定装置(オーシャンフォトニクス社製)を用いて測定した。このときのピーク強度をI1とした。
(evaluation)
First, the energy distribution spectrum of a UVLED (λp=280 nm) as an excitation light source was measured using an emission spectrum measurement device (manufactured by Ocean Photonics). The peak intensity at this time was defined as I1.
 次に、実施例1~3及び比較例1~4で作製した波長変換部材それぞれに対して、UVLED(λp=280nm)を照射し、波長変換部材の出射面側から発せられる光のエネルギー分布スペクトルを、同じ発光スペクトル測定装置(オーシャンフォトニクス社製)を用いて測定した。図5にその一例を示すように、得られたエネルギー分布スペクトルから、励起光源の透過光のピーク強度をI2とし、蛍光ピーク強度をI3として測定した。測定したI2とI1の比(I2/I1)及びI3とI1の比(I3/I1)を下記の表2に示した。 Next, the wavelength conversion members produced in Examples 1 to 3 and Comparative Examples 1 to 4 were irradiated with a UVLED (λp=280 nm), and the energy distribution spectrum of the light emitted from the emission surface side of the wavelength conversion member was obtained. was measured using the same emission spectrometer (manufactured by Ocean Photonics). As an example is shown in FIG. 5, from the obtained energy distribution spectrum, the peak intensity of the transmitted light of the excitation light source was defined as I2, and the fluorescence peak intensity was measured as I3. The measured ratios of I2 to I1 (I2/I1) and I3 to I1 (I3/I1) are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~3の波長変換部材では、比(I2/I1)が小さく、UV光を十分に遮蔽できていることがわかる。また、実施例1~3の波長変換部材では、比(I3/I1)が大きく、蛍光体を効率良く励起することができていることがわかる。 From Table 2, it can be seen that the wavelength conversion members of Examples 1 to 3 have a small ratio (I2/I1) and can sufficiently shield UV light. Further, the wavelength conversion members of Examples 1 to 3 have a large ratio (I3/I1), and it can be seen that the phosphor can be efficiently excited.
 一方、比較例1,4の波長変換部材では、比(I3/I1)が小さく、蛍光体を効率良く励起することができなかった。また、比較例2,3の波長変換部材では、比(I2/I1)が大きく、UV光を十分に遮蔽することができなかった。 On the other hand, the wavelength conversion members of Comparative Examples 1 and 4 had a small ratio (I3/I1) and could not efficiently excite the phosphor. Moreover, the wavelength conversion members of Comparative Examples 2 and 3 had a large ratio (I2/I1) and could not sufficiently block UV light.
 以上より、励起波長における第1のガラスマトリクス及び第2のガラスマトリクスの透過率差|T-T|が、蛍光波長における第1のガラスマトリクス及び第2のガラスマトリクスの透過率差|L-L|よりも大きく、かつ、T>Tである実施例1~3の波長変換部材では、励起光としてUV光を用いた場合においても、蛍光体を効率良く励起させることができ、しかも外付けフィルターを用いることなくUV光の漏洩による周辺部材の劣化や人体への影響を抑制できることが確認できた。 From the above, the transmittance difference |T A −T B | between the first glass matrix and the second glass matrix at the excitation wavelength is the transmittance difference |L In the wavelength conversion members of Examples 1 to 3, where A −L B | Moreover, it was confirmed that the deterioration of surrounding members and the influence on the human body due to the leakage of UV light can be suppressed without using an external filter.
1…波長変換部材
2…第1の層
2a…第1の主面
2b…第2の主面
3…第2の層
4…第1のガラスマトリクス
5…蛍光体粒子
6…第2のガラスマトリクス
7…光源
11…発光デバイス
12…導光板
DESCRIPTION OF SYMBOLS 1... Wavelength conversion member 2... First layer 2a... First main surface 2b... Second main surface 3... Second layer 4... First glass matrix 5... Phosphor particles 6... Second glass matrix 7 Light source 11 Light emitting device 12 Light guide plate

Claims (10)

  1.  光源から出射された励起光の波長を変換するための波長変換部材であって、
     第1のガラスマトリクスと、前記第1のガラスマトリクス中に分散している蛍光体粒子とにより構成されている、第1の層と、
     前記第1の層上に設けられており、第2のガラスマトリクスにより構成されている、第2の層と、
    を備え、
     前記第1の層が、前記光源側に設けられており、
     励起波長における前記第1のガラスマトリクスの透過率T及び前記第2のガラスマトリクスの透過率Tの差|T-T|が、蛍光波長における前記第1のガラスマトリクスの透過率L及び前記第2のガラスマトリクスの透過率Lの差|L-L|よりも大きく、かつ、T>Tである、波長変換部材。
    A wavelength conversion member for converting the wavelength of excitation light emitted from a light source,
    a first layer composed of a first glass matrix and phosphor particles dispersed in the first glass matrix;
    a second layer provided on the first layer and composed of a second glass matrix;
    with
    The first layer is provided on the light source side,
    The difference |T A −T B | between the transmittance T A of the first glass matrix and the transmittance T B of the second glass matrix at the excitation wavelength is the transmittance L of the first glass matrix at the fluorescence wavelength. A and the second glass matrix transmittance L B difference is larger than |L A −L B |, and T A >T B.
  2.  前記励起波長における透過率差と、前記蛍光波長における透過率差との差|T-T|-|L-L|が、20%以上である、請求項1に記載の波長変換部材。 The wavelength conversion according to claim 1, wherein a difference |T A −T B |−|L A −L B | between the transmittance difference at the excitation wavelength and the transmittance difference at the fluorescence wavelength is 20% or more. Element.
  3.  前記第1のガラスマトリクスの励起波長における透過率Tが、20%以上であり、前記第2のガラスマトリクスの励起波長における透過率Tが、65%以下である、請求項1又は2に記載の波長変換部材。 3. The method according to claim 1 or 2, wherein the first glass matrix has a transmittance TA at an excitation wavelength of 20% or more, and the second glass matrix has a transmittance TB at an excitation wavelength of 65% or less. A wavelength conversion member as described.
  4.  前記第1のガラスマトリクスの蛍光波長における透過率Lが、50%以上であり、前記第2のガラスマトリクスの蛍光波長における透過率Lが、50%以上である、請求項1~3のいずれか1項に記載の波長変換部材。 4. The method according to any one of claims 1 to 3, wherein the transmittance L A of the first glass matrix at the fluorescence wavelength is 50% or more, and the transmittance L B of the second glass matrix at the fluorescence wavelength is 50% or more. The wavelength conversion member according to any one of items 1 and 2.
  5.  前記第2の層が、蛍光体粒子を実質的に含有しない、請求項1~4のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4, wherein the second layer does not substantially contain phosphor particles.
  6.  前記第2の層の厚みが、前記第1の層の厚みよりも大きい、請求項1~5のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 5, wherein the thickness of the second layer is greater than the thickness of the first layer.
  7.  前記第2の層の前記第1の層に対する厚みの比(第2の層/第1の層)が、1以上、30以下である、請求項1~6のいずれか1項に記載の波長変換部材。 The wavelength according to any one of claims 1 to 6, wherein the thickness ratio of the second layer to the first layer (second layer/first layer) is 1 or more and 30 or less. conversion material.
  8.  前記励起光が、UV光である、請求項1~7のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 7, wherein the excitation light is UV light.
  9.  前記蛍光が、可視光である、請求項1~8のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 8, wherein the fluorescence is visible light.
  10.  励起光を出射する光源と、
     請求項1~9のいずれか1項に記載の波長変換部材と、
    を備える、発光デバイス。
    a light source that emits excitation light;
    A wavelength conversion member according to any one of claims 1 to 9;
    A light emitting device comprising:
PCT/JP2022/012515 2021-04-01 2022-03-18 Wavelength conversion member and light emission device WO2022210009A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280026544.8A CN117120886A (en) 2021-04-01 2022-03-18 Wavelength conversion member and light emitting device
KR1020237026866A KR20230161940A (en) 2021-04-01 2022-03-18 Wavelength conversion member and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062789A JP2022158107A (en) 2021-04-01 2021-04-01 Wavelength conversion member and light emitting device
JP2021-062789 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022210009A1 true WO2022210009A1 (en) 2022-10-06

Family

ID=83456070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012515 WO2022210009A1 (en) 2021-04-01 2022-03-18 Wavelength conversion member and light emission device

Country Status (5)

Country Link
JP (1) JP2022158107A (en)
KR (1) KR20230161940A (en)
CN (1) CN117120886A (en)
TW (1) TW202239940A (en)
WO (1) WO2022210009A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170205A (en) * 2012-02-21 2013-09-02 Stanley Electric Co Ltd Phosphor for methane gas sensor, light source for methane gas sensor and methane gas sensor
WO2015099084A1 (en) * 2013-12-26 2015-07-02 信越石英株式会社 Silica glass member for wavelength conversion, and production method therefor
JP2016191959A (en) * 2012-07-10 2016-11-10 日本電気硝子株式会社 Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
WO2020184216A1 (en) * 2019-03-08 2020-09-17 日本電気硝子株式会社 Wavelength-conversion member and light-emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170205A (en) * 2012-02-21 2013-09-02 Stanley Electric Co Ltd Phosphor for methane gas sensor, light source for methane gas sensor and methane gas sensor
JP2016191959A (en) * 2012-07-10 2016-11-10 日本電気硝子株式会社 Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
WO2015099084A1 (en) * 2013-12-26 2015-07-02 信越石英株式会社 Silica glass member for wavelength conversion, and production method therefor
WO2020184216A1 (en) * 2019-03-08 2020-09-17 日本電気硝子株式会社 Wavelength-conversion member and light-emitting device

Also Published As

Publication number Publication date
CN117120886A (en) 2023-11-24
JP2022158107A (en) 2022-10-17
KR20230161940A (en) 2023-11-28
TW202239940A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
TWI491061B (en) Electroluminescence device
EP3477187B1 (en) Wavelength conversion member, and light emitting device using same
CN108026442B (en) Wavelength conversion member and light emitting apparatus
JP7212319B2 (en) Wavelength conversion member and light emitting device
EP2894211B1 (en) Ceramic phosphor plate and lighting device including the same
US9202995B2 (en) Light-emitting element, method for producing same and light-emitting device
WO2014106923A1 (en) Glass used in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
CN109564308B (en) Wavelength conversion member and method for manufacturing same
JP5854367B2 (en) Method for manufacturing phosphor composite member
JP2012036367A (en) Phosphor composite member
WO2018079421A1 (en) Optical wavelength conversion member and light-emitting device
CN107586127B (en) Ceramic composite, and phosphor for projector and light-emitting device containing same
JP2018077324A (en) Wavelength conversion member and light emitting device
JP2012052061A (en) Phosphor composite member
WO2012008306A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
WO2018012273A1 (en) Method for manufacturing wavelength conversion member and wavelength conversion member group
WO2022210009A1 (en) Wavelength conversion member and light emission device
TWI757521B (en) Wavelength conversion member and light-emitting device
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
CN110494776B (en) Wavelength conversion member and light emitting device
CN109642967B (en) Wavelength conversion member and method for manufacturing same
JP7480472B2 (en) Wavelength conversion member, manufacturing method thereof, and light emitting device
JP2018013681A (en) Wavelength conversion member and light emitting device
KR102576253B1 (en) Wavelength conversion member and light emitting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780225

Country of ref document: EP

Kind code of ref document: A1