JP2013170205A - Phosphor for methane gas sensor, light source for methane gas sensor and methane gas sensor - Google Patents

Phosphor for methane gas sensor, light source for methane gas sensor and methane gas sensor Download PDF

Info

Publication number
JP2013170205A
JP2013170205A JP2012034699A JP2012034699A JP2013170205A JP 2013170205 A JP2013170205 A JP 2013170205A JP 2012034699 A JP2012034699 A JP 2012034699A JP 2012034699 A JP2012034699 A JP 2012034699A JP 2013170205 A JP2013170205 A JP 2013170205A
Authority
JP
Japan
Prior art keywords
methane gas
mol
sample
phosphor
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034699A
Other languages
Japanese (ja)
Other versions
JP5893429B2 (en
Inventor
Yasuyuki Miyake
康之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012034699A priority Critical patent/JP5893429B2/en
Publication of JP2013170205A publication Critical patent/JP2013170205A/en
Application granted granted Critical
Publication of JP5893429B2 publication Critical patent/JP5893429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

PROBLEM TO BE SOLVED: To solve a problem that since in conventional methane gas sensors, the light-emitting peak of light emission spectrum in a 1.6 to 1.7 μm band of YAG: Ce, Er phosphor does not coincide with the absorption wavelength of the methane gas, which is 1,654 nm, the light emission intensity of absorption wavelength of the methane gas is small.SOLUTION: By changing YAG: Ce, Er phosphor to Y(Al, Ga)O: Ce, Erphosphor (YAGaG: Ce, Er phosphor) obtained by substituting the part of the Al in its parent material with Ga, the light emission peak of its light emission spectrum is shifted to the side of 1,654 nm which is the absorption wavelength of the methane gas.

Description

本発明はメタンガスセンサ用蛍光体、メタンガスセンサ用光源及びメタンガスセンサに関する。   The present invention relates to a phosphor for methane gas sensor, a light source for methane gas sensor, and a methane gas sensor.

メタンガス濃度を測定する第1の従来のメタンガスセンサは、金属線、セラミックの抵抗加熱を用いたフィラメントあるいはヒータよりなる光源よりなる。この光源はメタンガスの吸収波長1654nmを含む黒体輻射に従った広帯域の発光スペクトルを有するので、この光源を所定の光透過フィルタと組み合わせることによりメタンガス濃度を測定できる。すなわち、メタンガスが吸収する吸収波長1654nmを含む赤外線を被測定のメタンガスに照射し、このメタンガスによる吸収波長1654nm の光吸収量からランベルトーベール法則を用いてメタンガス濃度を算出する。   The first conventional methane gas sensor for measuring the methane gas concentration comprises a light source comprising a metal wire, a filament using ceramic resistance heating, or a heater. Since this light source has a broadband emission spectrum according to black body radiation including the absorption wavelength of 1654 nm of methane gas, the methane gas concentration can be measured by combining this light source with a predetermined light transmission filter. That is, infrared light including an absorption wavelength of 1654 nm absorbed by methane gas is irradiated to the methane gas to be measured, and the methane gas concentration is calculated from the amount of light absorbed by the methane gas at an absorption wavelength of 1654 nm using the Lambert-Beer law.

しかしながら、上述の第1の従来のメタンガスセンサにおいては、大部分の光を熱として捨ててしまうので、エネルギー利用効率が低く、従って、消費電力が高かった。また、断線が起こり易く、従って、信頼性が低かった。このように消費電力が高くかつ信頼性が低いので、リアルタイム性でメンテナンスフリーのセンサシステムを構築できなかった。   However, in the first conventional methane gas sensor, most of the light is thrown away as heat, so the energy utilization efficiency is low, and thus the power consumption is high. Also, disconnection is likely to occur, and therefore the reliability is low. Thus, since the power consumption is high and the reliability is low, a real-time, maintenance-free sensor system could not be constructed.

メタンガス濃度を測定する第2の従来のメタンガスセンサは光源としてメタンガスが吸収する吸収波長1654nmを有するInGaAsP半導体レーザを用いる(参照:特許文献1)。この場合、メタンガスの吸収波長1654nmを発光波長とするので、メタンガスの幅広い濃度を精度よく測定できる。   The second conventional methane gas sensor for measuring the methane gas concentration uses an InGaAsP semiconductor laser having an absorption wavelength of 1654 nm absorbed by methane gas as a light source (see Patent Document 1). In this case, since the absorption wavelength 1654 nm of methane gas is the emission wavelength, a wide range of methane gas concentrations can be measured with high accuracy.

しかしながら、上述の第2の従来のメタンガスセンサは、周囲温度の影響を受けて半導体レーザの発光波長、発光強度が変化するので、半導体レーザをペルチェ素子で一定に制御する必要があり、この結果、製造コストが高くなると共に、消費電力が大きかった。従って、やはり、リアルタイム性でメンテナンスフリーのセンサシステムを構築できなかった。   However, since the above-described second conventional methane gas sensor changes the emission wavelength and emission intensity of the semiconductor laser under the influence of the ambient temperature, it is necessary to control the semiconductor laser constantly with a Peltier element. The manufacturing cost was high and the power consumption was large. Therefore, it was impossible to construct a sensor system that is real-time and maintenance-free.

メタンガス濃度を測定する第3の従来のメタンガスセンサは、1.4〜1.7μm帯の発光波長を有する発光ダイオード(LED)たとえばGaN系化合物半導体青色LEDよりなる光源と、メタンガスの吸収波長1654nmを含む赤外線発光を示すY3Al5O12:Ce3+、Er3+蛍光体(YAG:Ce、Er蛍光体)とを組み合わせることにより構成されていた(参照:特許文献2)。従って、LEDの蛍光体と共に温度特性が比較的良好であり、温度を一定に制御する必要がない。 A third conventional methane gas sensor for measuring the methane gas concentration has a light emitting diode (LED) having an emission wavelength in the 1.4 to 1.7 μm band, for example, a light source composed of a GaN compound semiconductor blue LED, and an absorption wavelength of methane gas of 1654 nm. Ce 3+, Er 3+ phosphor: Y 3 Al 5 O 12 showing the infrared emission comprising (YAG: Ce, Er phosphor) was composed by combining a (see Patent Document 2). Therefore, the temperature characteristics are relatively good together with the LED phosphor, and it is not necessary to control the temperature constant.

特開2008−211245号公報JP 2008-2111245 A 特開2011−233586号公報JP 2011-233586 A

しかしながら、上述の第3の従来のメタンガスセンサにおいては、YAG:Ce,Er蛍光体の1.6〜1.7μm帯の発光スペクトルの発光ピークが、図8に示すごとく、メタンガスの吸収波長1654nmに一致していないので、メタンガスの吸収波長の発光強度は依然として小さい。従って、低消費電力化は不充分であり、かつメタンガス濃度測定の精度も不充分であり、この結果、リアルタイム性でメンテナンスフリーのセンサシステムの構築が不充分であるという課題があった。   However, in the third conventional methane gas sensor described above, the emission peak of the emission spectrum of the YAG: Ce, Er phosphor in the 1.6 to 1.7 μm band coincides with the absorption wavelength of 1654 nm of methane gas as shown in FIG. Therefore, the emission intensity at the absorption wavelength of methane gas is still small. Therefore, low power consumption is insufficient and the accuracy of methane gas concentration measurement is insufficient, and as a result, there is a problem that the construction of a real-time, maintenance-free sensor system is insufficient.

従って、本発明の目的は、蛍光体の発光スペクトルの発光ピークがメタンガスの吸収波長1654nm側にシフトした蛍光体を提供することである。また、この蛍光体を具備したメタンガスセンサ用光源及びメタンガスセンサを提供することを本発明の目的とする。   Accordingly, an object of the present invention is to provide a phosphor in which the emission peak of the emission spectrum of the phosphor is shifted to the absorption wavelength 1654 nm side of methane gas. Another object of the present invention is to provide a methane gas sensor light source and a methane gas sensor provided with the phosphor.

上述の課題を解決するために、本発明に係るメタンガスセンサ用蛍光体は、Y3(Al,Ga)5O12:Ce3+,Er3+よりなる。この蛍光体の発光スペクトルの発光ピークはメタンガスの吸収波長1654nm側にシフトする。好ましくは、Alに対するGaの置換比は20 mol%以上60 mol%以下であり、Y、Erに対するCeイオン濃度は0.1mol%以上5mol%以下であり、Y、Ceに対するErイオン濃度は2mol%以上4mol%以下である。 In order to solve the above-described problems, the phosphor for a methane gas sensor according to the present invention is made of Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ . The emission peak of the emission spectrum of this phosphor shifts to the absorption wavelength 1654 nm side of methane gas. Preferably, the substitution ratio of Ga to Al is 20 mol% or more and 60 mol% or less, the Ce ion concentration for Y and Er is 0.1 mol% or more and 5 mol% or less, and the Er ion concentration for Y and Ce is 2 mol% or more. 4 mol% or less.

また、本発明に係るメタンガスセンサ用光源は、紫外光及び/または可視光を発する発光素子と、発光素子上に設けられ、Y3(Al,Ga)5O12:Ce3+,Er3+よりなる蛍光体を含む蛍光体層とを具備するものである。 A light source for a methane gas sensor according to the present invention is provided on a light emitting element that emits ultraviolet light and / or visible light, and Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ And a phosphor layer containing the phosphor.

さらに、本発明に係るメタンガスセンサは、上述のメタンガスセンサ用光源と、メタンガスセンサ用光源が一端に設けられたメタンガスを導入、排出するセルと、セルの他端に設けられた受光素子とを具備するものである。   Furthermore, a methane gas sensor according to the present invention includes the above-described light source for methane gas sensor, a cell for introducing and discharging methane gas having a light source for methane gas sensor provided at one end, and a light receiving element provided at the other end of the cell. To do.

本発明によれば、蛍光体の発光ピークがメタンガスの吸収波長側にシフトするので、低消費電力化を図ることができ、かつメタンガス濃度測定の精度も向上でき、この結果、リアルタイム性でメンテナンスフリーのセンサシステムの構築が可能となる。   According to the present invention, the emission peak of the phosphor shifts to the absorption wavelength side of methane gas, so that it is possible to reduce power consumption and improve the accuracy of methane gas concentration measurement. As a result, it is real-time and maintenance-free. It is possible to construct a sensor system.

本発明に係るYAGaG:Ce,Er蛍光体の最適組成比Al,Gaを説明するための表である。It is a table | surface for demonstrating the optimal composition ratio Al and Ga of the YAGaG: Ce, Er fluorescent substance which concerns on this invention. 図1の従来試料、試料1、試料2、試料3、試料4の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the conventional sample of FIG. 1, Sample 1, Sample 2, Sample 3, and Sample 4. 本発明に係るYAGaG:Ce,Er蛍光体のY、Erに対する最適組成Ceを説明するための表である。It is a table | surface for demonstrating the optimal composition Ce with respect to Y and Er of the YAGaG: Ce, Er fluorescent substance which concerns on this invention. 本発明に係るYAGaG:Ce,Er蛍光体のY、Ceに対する最適組成Erを説明するための表である。It is a table | surface for demonstrating the optimal composition Er with respect to Y and Ce of the YAGaG: Ce, Er fluorescent substance which concerns on this invention. 図1、図3、図4のYAGaG:Ce,Er蛍光体の製造方法を説明するためのフローチャートである。5 is a flowchart for explaining a method of manufacturing the YAGaG: Ce, Er phosphor shown in FIGS. 1, 3, and 4. 本発明に係るYAGaG:Ce,Er蛍光体を用いたメタンガスセンサ用光源を示す図である。It is a figure which shows the light source for methane gas sensors using the YAGaG: Ce, Er fluorescent substance which concerns on this invention. 図6の光源を用いたメタンガスセンサを示す図である。It is a figure which shows the methane gas sensor using the light source of FIG. 第3の従来のメタンガスセンサのYAG:Ce,Er蛍光体の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the YAG: Ce, Er fluorescent substance of the 3rd conventional methane gas sensor.

本願発明者は、YAG:Ce,Er蛍光体をその母体のAlの一部をGaに置換したY3(Al,Ga)5O12:Ce3+,Er3+蛍光体(YAGaG:Ce,Er蛍光体)とすることにより発光スペクトルの発光ピークをメタンガスの吸収波長1654nm側にシフトさせることに成功したものである。 The inventor of the present application uses a Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor (YAGaG: Ce,) in which YAG: Ce, Er phosphor is partially replaced with Ga. By using an Er phosphor, the emission peak of the emission spectrum was successfully shifted to the absorption wavelength 1654 nm side of methane gas.

すなわち、YAG:Ce,Er蛍光体においては、発光中心イオンのうちCeイオンが光源から青色光を吸収して得たエネルギーがErイオンに移動してErイオンを励起する。この結果、Erイオンが励起状態から基底状態へエネルギー緩和する際に赤外領域の発光スペクトルの発光を示す。   That is, in the YAG: Ce, Er phosphor, the energy obtained by the Ce ions absorbing blue light from the light source among the emission center ions moves to the Er ions to excite the Er ions. As a result, when the Er ions relax their energy from the excited state to the ground state, they emit light of the emission spectrum in the infrared region.

上述の発光スペクトルをシフトさせるには、Erイオンの励起エネルギー準位を変化させる必要があるが、このErイオンは励起された際には4f軌道のエネルギー準位にある電子が同一の4f軌道内の高いエネルギー準位に励起された後に赤外光を発して再度4f軌道の低いエネルギー準位に遷移するという4f-4f遷移と呼ばれる過程を得る。尚、ランタノイドイオンでは、4f軌道は最外殻ではないので、結晶内で隣接する原子、イオンの影響を受けず、従って、エネルギー準位は一定であり、この結果、その発光スペクトルは変化しないものと考えられていた。また、仮に、エネルギー準位が変化した場合には、CeイオンからErイオンへのエネルギー移動の確率も変化する可能性があり、その発光スペクトルの発光強度を予想することは不可能であった。   In order to shift the emission spectrum described above, it is necessary to change the excitation energy level of the Er ion. When this Er ion is excited, electrons in the energy level of the 4f orbit are in the same 4f orbit. After being excited to a high energy level, infrared light is emitted, and a process called a 4f-4f transition is obtained in which the transition to the low energy level of the 4f orbit is made again. In lanthanoid ions, the 4f orbit is not the outermost shell, so it is not affected by adjacent atoms or ions in the crystal, and therefore the energy level is constant, and as a result, its emission spectrum does not change. It was thought. Also, if the energy level changes, the probability of energy transfer from Ce ions to Er ions may also change, and it has been impossible to predict the emission intensity of the emission spectrum.

次に、Y3(Al,Ga)5O12:Ce3+,Er3+蛍光体のAl、Ga組成比の最適mol%について説明する。 Next, the optimum mol% of the Al, Ga composition ratio of the Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor will be described.

初期条件としてY, Ce, Erを94 mol%、3 mol%、3 mol%として、図1の(A)に示すごとく、Alに対するGaの置換範囲を0 mol%〜100 mol%の範囲で調整し、従来試料、試料1、試料2、試料3、試料4、試料5を作成した。尚、図1の(B)は、従来試料、試料1、試料2、試料3、試料4、試料5の実際の酸化物、フラックスの仕込み量を示す。   As initial conditions, Y, Ce, Er are set to 94 mol%, 3 mol%, and 3 mol%, and the Ga substitution range for Al is adjusted in the range of 0 mol% to 100 mol% as shown in Fig. 1 (A). The conventional sample, sample 1, sample 2, sample 3, sample 4, and sample 5 were prepared. FIG. 1B shows the actual amounts of oxide and flux charged in the conventional sample, sample 1, sample 2, sample 3, sample 4, and sample 5.

従来試料、試料1、試料2、試料3、試料4を蛍光体層として図7のメタンガスセンサに用いた場合、従来試料のメタンガス吸収波長1654nmでの発光強度を100とすれば、試料1、試料2、試料3、試料4のメタンガス吸収波長1654nmでの発光強度は137、145、128、87であった。尚、試料5の発光強度は検出できなかった。分光放射計を用いて測定した従来試料、試料1、試料2、試料3、試料4の発光スペクトルを図2に示す。このように、Alに対するGaの置換範囲は20mol%以上60mol%以下が好ましく、最適値は40mol%である。つまり、Gaの置換が20mol%未満では、発光ピークが十分シフトしないからであり、他方、Gaの置換が80mol%を超えると、結晶構造が変化してCeイオンが青色光を吸収できず、従って、メタンガス吸収波長1654nmの発光強度を上げることができないからである。   When the conventional sample, sample 1, sample 2, sample 3, and sample 4 are used as the phosphor layer in the methane gas sensor of FIG. 7, assuming that the emission intensity at the methane gas absorption wavelength of 1654 nm of the conventional sample is 100, sample 1 and sample The emission intensities of Sample 2, Sample 3 and Sample 4 at the methane gas absorption wavelength of 1654 nm were 137, 145, 128 and 87, respectively. Note that the emission intensity of sample 5 could not be detected. The emission spectra of the conventional sample, Sample 1, Sample 2, Sample 3, and Sample 4 measured using a spectroradiometer are shown in FIG. Thus, the substitution range of Ga for Al is preferably 20 mol% or more and 60 mol% or less, and the optimum value is 40 mol%. In other words, if the Ga substitution is less than 20 mol%, the emission peak does not shift sufficiently, whereas if the Ga substitution exceeds 80 mol%, the crystal structure changes and the Ce ions cannot absorb blue light. This is because the emission intensity at a methane gas absorption wavelength of 1654 nm cannot be increased.

次に、Y3(Al,Ga)5O12:Ce3+,Er3+蛍光体のY、Erに対する組成Ceの最適mol%について説明する。 Next, the optimum mol% of the composition Ce with respect to Y and Er of Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor will be described.

初期条件としてErを3 mol%とし、既に決定したAl、Gaの最適mol%を60 mol%、40 mol%として、図3の(A)に示すごとく、Yに対するCeの濃度を0.1 mol%〜5 mol%の範囲で調整して、試料6、試料7、試料8、試料9、試料10、試料11、試料12を作成した。尚、図3の(B)は、試料6、試料7、試料8、試料9、試料10、試料11、試料12の実際の酸化物、フラックスの仕込み量を示す。   As the initial condition, Er is set to 3 mol%, and the optimum mol% of Al and Ga already determined are set to 60 mol% and 40 mol%, and the concentration of Ce with respect to Y is 0.1 mol% to as shown in FIG. Sample 6, Sample 7, Sample 8, Sample 9, Sample 10, Sample 11, and Sample 12 were prepared by adjusting within the range of 5 mol%. FIG. 3B shows the actual amounts of oxide and flux charged in Sample 6, Sample 7, Sample 8, Sample 9, Sample 10, Sample 11, and Sample 12.

試料6、試料7、試料8、試料9、試料10、試料11、試料12を蛍光体層として図7のメタンガスセンサに用いた場合、従来試料のメタンガス吸収波長1654nmでの発光強度を100とすれば、試料6、試料7、試料8、試料9、試料10、試料11、試料12のメタンガス吸収波長1654nmでの発光強度は104、129、137、146、145、137、126であった。このように、Yに対するCeの濃度は0.1mol%以上5mol%以下が好ましく、最適値は2mol%である。つまり、Ceの濃度が0.1mol%未満では、Ceイオンの数が少なく、Ceイオンが青色光を吸収できず、従って、メタンガス吸収波長1654nmの発光強度を上げることができないからであり、他方、Ceの濃度が5mol%を超えると、濃度消光により発光効率が低下するので、やはり、メタンガス吸収波長1654nmの発光強度を上げることができないからである。   When Sample 6, Sample 7, Sample 8, Sample 9, Sample 10, Sample 11, and Sample 12 are used as the phosphor layers in the methane gas sensor of FIG. 7, the emission intensity at the methane gas absorption wavelength of 1654 nm of the conventional sample is 100. For example, the emission intensity of Sample 6, Sample 7, Sample 8, Sample 9, Sample 10, Sample 11, and Sample 12 at a methane gas absorption wavelength of 1654 nm was 104, 129, 137, 146, 145, 137, and 126. Thus, the concentration of Ce with respect to Y is preferably 0.1 mol% or more and 5 mol% or less, and the optimum value is 2 mol%. That is, when the concentration of Ce is less than 0.1 mol%, the number of Ce ions is small, and Ce ions cannot absorb blue light, and therefore, the emission intensity at a methane gas absorption wavelength of 1654 nm cannot be increased. This is because if the concentration exceeds 5 mol%, the light emission efficiency decreases due to concentration quenching, so that the emission intensity at the methane gas absorption wavelength of 1654 nm cannot be increased.

次に、Y3(Al,Ga)5O12:Ce3+,Er3+蛍光体のY、Ceに対する組成Erの最適mol%について説明する。 Next, the optimum mol% of the composition Er with respect to Y and Ce of the Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor will be described.

既に決定したAl、Ga、Ceの最適mol%を60 mol%、40 mol%、2 mol%として、図4の(A)に示すごとく、Yに対するErの濃度を0.1 mol%〜5 mol%の範囲で調整して、試料13、試料14、試料15、試料16、試料17を作成した。尚、図4の(B)は、試料13、試料14、試料15、試料16、試料17の実際の酸化物、フラックスの仕込み量を示す。   As shown in FIG. 4 (A), the optimum mol% of Al, Ga, and Ce already determined is 60 mol%, 40 mol%, and 2 mol%, and the Er concentration relative to Y is 0.1 mol% to 5 mol%. The sample 13, the sample 14, the sample 15, the sample 16, and the sample 17 were prepared by adjusting the range. FIG. 4B shows the actual amounts of oxide and flux charged in Sample 13, Sample 14, Sample 15, Sample 16, and Sample 17.

試料13、試料14、試料15、試料16、試料17を蛍光体層として図7のメタンガスセンサに用いた場合、従来試料のメタンガス吸収波長1654nmでの発光強度を100とすれば、試料13、試料14、試料15、試料16、試料17のメタンガス吸収波長1654nmでの発光強度は95、112、140、146、128であった。このように、Yに対するErの濃度は2mol%以上4mol%以下が好ましく、最適値は3mol%である。つまり、Erの濃度が0.1mol%未満では、Erイオンの数が少なく、Ceイオンが青色光を吸収できず、従って、メタンガス吸収波長1654nmの発光強度を上げることができないからであり、他方、Erの濃度が5mol%を超えると、濃度消光により発光効率が低下するので、やはり、メタンガス吸収波長1654nmの発光強度を上げることができないからである。   When Sample 13, Sample 14, Sample 15, Sample 16, and Sample 17 are used as the phosphor layers in the methane gas sensor of FIG. 7, assuming that the emission intensity at the methane gas absorption wavelength of 1654 nm of the conventional sample is 100, Sample 13 and Sample 14, 15 and 16, the emission intensity at the methane gas absorption wavelength of 1654 nm was 95, 112, 140, 146, 128. Thus, the Er concentration relative to Y is preferably 2 mol% or more and 4 mol% or less, and the optimum value is 3 mol%. In other words, when the Er concentration is less than 0.1 mol%, the number of Er ions is small, and Ce ions cannot absorb blue light, and therefore, the emission intensity at the methane gas absorption wavelength of 1654 nm cannot be increased. This is because if the concentration exceeds 5 mol%, the light emission efficiency decreases due to concentration quenching, so that the emission intensity at the methane gas absorption wavelength of 1654 nm cannot be increased.

このように、YAG:Ce,Er蛍光体をその母体のAlの一部をGaに置換したY3(Al,Ga)5O12:Ce3+,Er3+蛍光体によれば、メタンガスの吸収波長1654nmでの発光強度は増加する。特に、Alに対するGaの置換範囲は20 mol%以上60 mol%以下が好ましく、最適値は40mol%であり、また、Yに対するCeイオンの濃度は0.1mol%以上5mol%以下が好ましく、最適値は2mol%であり、さらに、Yに対するErイオンの濃度は2mol%以上4mol%以下が好ましく、最適値は3mol%である。 Thus, according to the Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor in which YAG: Ce, Er phosphor is substituted with Ga for a part of its matrix Al, The emission intensity at an absorption wavelength of 1654 nm increases. In particular, the substitution range of Ga for Al is preferably 20 mol% or more and 60 mol% or less, and the optimum value is 40 mol%, and the concentration of Ce ion for Y is preferably 0.1 mol% or more and 5 mol% or less, and the optimum value is Further, the Er ion concentration with respect to Y is preferably 2 mol% or more and 4 mol% or less, and the optimum value is 3 mol%.

次に、Y3(Al,Ga)5O12:Ce3+,Er3+蛍光体の製造方法について図5を参照して説明する。 Next, a method for producing Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor will be described with reference to FIG.

始めに、秤量ステップ501を参照すると、YAGaG:Ce,Er蛍光体の構成元素Y, Ce, Er, Al, Gaの酸化物Y2O3, CeO2, Er2O3, Al2O3, Ga2O3とフラックスとしてのBaF2とを用い、たとえば図4の試料16のmol比となるように秤量する。たとえば、酸化イットリウムY2O3は純度99.99%の信越化学工業製を用い、酸化アルミナAl2O3は純度99.9%の関東化学製を用い、酸化ガリウムGa2O3は純度99.99%のフルウチ化学製を用い、酸化セリウムCeO2は純度99.99%の信越化学工業製を用い、酸化エルビウムEr2O3は純度99.99%の信越化学工業製を用い、フッ化バリウムBaF2は純度99%の関東化学製を用いる。尚、酸化物の代りに、加熱によって酸化物となる炭酸塩、水酸化物、硝酸塩、塩化物、フッ化物等でもよい。 First, referring to the weighing step 501, oxides Y 2 O 3 , CeO 2 , Er 2 O 3 , Al 2 O 3 , YAGaG: Ce, Er phosphor constituent elements Y, Ce, Er, Al, Ga Ga 2 O 3 and BaF 2 as a flux are used and weighed, for example, so as to have a mol ratio of the sample 16 in FIG. For example, yttrium oxide Y 2 O 3 uses 99.99% pure Shin-Etsu Chemical, alumina oxide Al 2 O 3 uses 99.9% pure Kanto Chemical, and gallium oxide Ga 2 O 3 uses 99.99% pure Furuuchi Chemical. Cerium oxide CeO 2 is manufactured by Shin-Etsu Chemical Co., Ltd. with a purity of 99.99%, erbium oxide Er 2 O 3 is manufactured by Shin-Etsu Chemical Co., Ltd. with a purity of 99.99%, and barium fluoride BaF 2 is manufactured by Kanto Chemical Co., Ltd. with a purity of 99%. Use the product. Instead of oxides, carbonates, hydroxides, nitrates, chlorides, fluorides, etc. that become oxides upon heating may be used.

次に、混合ステップ502を参照すると、秤量ステップ501での材料を十分に混合する。混合方法は特に限定されず、乾式混合でも、エタノールで代表されるアルコール類、アセトン等の有機溶媒を加えた湿式混合でもよい。混合時は、乳鉢を用いた手作業でもよく、ボールミル、V型ブレンダ等の装置を用いてもよい。たとえば、アルミナボールと一緒に5時間のボールミル混合を行う。湿式混合を行った場合には、吸引ろ過して乾燥工程を実施する。また、乾燥後はたとえば#100メッシュのふるいにかけて粒度を整えた粉末をルツボに移す。また、この場合、ルツボは材質が酸化物、特にアルミナ製のものを用いるのが一般的であるが、グラファイト製、窒化ホウ素製、モリブデン等の金属製のものを用いることも可能である。   Next, referring to the mixing step 502, the materials from the weighing step 501 are thoroughly mixed. The mixing method is not particularly limited, and may be dry mixing or wet mixing with an organic solvent such as alcohols typified by ethanol and acetone. At the time of mixing, manual operation using a mortar may be used, and a device such as a ball mill or a V-type blender may be used. For example, ball mill mixing is performed for 5 hours together with alumina balls. When the wet mixing is performed, the drying process is performed by suction filtration. Also, after drying, for example, a # 100 mesh sieve is used to transfer the powder whose particle size has been adjusted to a crucible. In this case, the crucible is generally made of an oxide, particularly alumina, but it is also possible to use a metal such as graphite, boron nitride, or molybdenum.

次に、焼成ステップ503を参照すると、焼成を非酸化雰囲気下たとえば96%窒素4%水素の還元雰囲気下で行う。通常はこのような窒素と水素の混合ガス雰囲気であるが、簡便には窒素や活性炭を使った還元雰囲気でもよい。焼成温度は1400〜1800℃、焼成時間は2〜6時間で焼成可能である。   Next, referring to the firing step 503, the firing is performed in a non-oxidizing atmosphere, for example, in a reducing atmosphere of 96% nitrogen and 4% hydrogen. Usually, such a mixed gas atmosphere of nitrogen and hydrogen is used, but a reducing atmosphere using nitrogen or activated carbon may be simply used. The firing temperature is 1400-1800 ° C., and the firing time is 2-6 hours.

次に、洗浄ステップ504を参照すると、焼成後にはフラックス成分が残っているので、硝酸を用いて洗浄を実施する。さらに、イオン交換水で洗浄後に乾燥する。   Next, referring to the cleaning step 504, since the flux component remains after firing, cleaning is performed using nitric acid. Furthermore, it is dried after washing with ion exchange water.

最後に、粒度均一化ステップ505を参照すると、#200メッシュのふるいにかけ粒度をそろえて目的の蛍光体を得る。   Finally, referring to the particle size homogenization step 505, the desired phosphor is obtained by sifting through a # 200 mesh screen.

このようにして製造されたY3(Al,Ga)5O12:Ce3+,Er3+蛍光体をX線回折装置で結晶相を観察して同定した結果、YAGaGの単一相であることが確認できた。また、上述の仕込み量からの組成ずれもないことが確認できた。 The Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ phosphor produced in this way was identified by observing the crystal phase with an X-ray diffractometer. I was able to confirm. Further, it was confirmed that there was no composition deviation from the above-mentioned charged amount.

図6は本発明に係るYAGaG:Ce,Er蛍光体を用いたメタンガスセンサ用光源10を示す図である。   FIG. 6 is a view showing a light source 10 for a methane gas sensor using a YAGaG: Ce, Er phosphor according to the present invention.

図6において、基板1上の枠基体2の凹部3の底面に発光ダイオード(LED)素子4が設けられている。LED素子4の電極はボンディングワイヤ5によって基板1の配線パターン(リードフレーム)1aに電気的に接続されている。また、凹部3内には、本発明に係るYAGaG:Ce,Er蛍光体を含む蛍光体層6が形成されている。さらに、凹部3の開口にはフィルタ7が蛍光体層6を覆うように形成されている。   In FIG. 6, a light emitting diode (LED) element 4 is provided on the bottom surface of the recess 3 of the frame base 2 on the substrate 1. The electrodes of the LED element 4 are electrically connected to the wiring pattern (lead frame) 1 a of the substrate 1 by bonding wires 5. In addition, a phosphor layer 6 containing a YAGaG: Ce, Er phosphor according to the present invention is formed in the recess 3. Further, a filter 7 is formed in the opening of the recess 3 so as to cover the phosphor layer 6.

LED素子4からのたとえば青色光は蛍光体層6のYAGaG:Ce,Er蛍光体を励起する。この結果、蛍光体層6はメタンガス吸収波長1654nmの発光ピークを含む赤外光を発し、この赤外光はフィルタ9を介して外部へ放出される。他方、LED素子4からの青色光のうち蛍光体層6のYAGaG:Ce,Er蛍光体を励起せずに透過した青色光及び蛍光体層6が発した可視光領域の蛍光はフィルタ9によって吸収もしくは枠基体2の凹部3内で反射されて外部へ放出されることはない。   For example, blue light from the LED element 4 excites the YAGaG: Ce, Er phosphor of the phosphor layer 6. As a result, the phosphor layer 6 emits infrared light including an emission peak with a methane gas absorption wavelength of 1654 nm, and this infrared light is emitted to the outside through the filter 9. On the other hand, the blue light transmitted from the LED element 4 without exciting the YAGaG: Ce, Er phosphor in the phosphor layer 6 and the fluorescence in the visible light region emitted by the phosphor layer 6 are absorbed by the filter 9. Alternatively, it is not reflected inside the recess 3 of the frame base 2 and released to the outside.

また、蛍光体層6のYAGaG:Ce,Er蛍光体における励起−蛍光放出の過程において、ストークスシフトによって蛍光体自身による発熱が生じる。このような熱は蛍光体層6が接しているフィルタ9を通じて外部へ放出される。尚、LED素子4及び蛍光体層6において発熱した熱は、上述のフィルタ9に加えて、放熱性の基板1及び枠基体2を介して放熱されると共に、図示しないヒートシンク等の放熱体によっても放熱させることができる。   Further, in the process of excitation-fluorescence emission in the YAGaG: Ce, Er phosphor of the phosphor layer 6, heat is generated by the phosphor itself due to Stokes shift. Such heat is released to the outside through the filter 9 in contact with the phosphor layer 6. The heat generated in the LED element 4 and the phosphor layer 6 is radiated through the heat radiating substrate 1 and the frame base 2 in addition to the filter 9 described above, and also by a heat radiating body such as a heat sink (not shown). Heat can be dissipated.

基板1はパッケージ部材としての樹脂、セラミックあるいは金属よりなる。特に、熱伝導性、放熱性の点から、シリコンあるいは金属が好ましい。尚、基板1と枠基体2とを一体的に構成してもよい。   The substrate 1 is made of resin, ceramic or metal as a package member. In particular, silicon or metal is preferable from the viewpoint of thermal conductivity and heat dissipation. In addition, you may comprise the board | substrate 1 and the frame base | substrate 2 integrally.

枠基体2の材料によっては、LED素子4及び蛍光体層6からの紫外線及びまたは可視光が枠基体2を介して外部へグレアとして放出される場合がある。このグレア光を防止するために、枠基体2の凹部3の内面あるいは外面に紫外線及び/または可視光を遮敵するための黒色塗層、金属層等を形成してもよい。特に、凹部3の内面に金属層を形成すると、赤外線を効率的に反射してフィルタ9の方向に導くと共に、可視光等を外部へ漏れることを防止でき、高出力の点で好ましい。   Depending on the material of the frame base 2, ultraviolet rays and / or visible light from the LED element 4 and the phosphor layer 6 may be emitted as glare to the outside through the frame base 2. In order to prevent this glare light, a black coating layer, a metal layer, or the like for blocking ultraviolet rays and / or visible light may be formed on the inner surface or outer surface of the recess 3 of the frame base 2. In particular, when a metal layer is formed on the inner surface of the recess 3, infrared rays are efficiently reflected and guided in the direction of the filter 9, and leakage of visible light or the like to the outside is prevented, which is preferable in terms of high output.

LED素子4はたとえば直接遷移型化合物半導体によるp型層、n型層及びこれらの層によって挟まれた発光層よりなり、また、p型層、n型層に電流を供給するための2つの電極を有する。これらの電極はボンディングワイヤ5によって基板1上の配線パターン1aに接続され、電流を供給することによって発光層のバンドギャップに相当する光を発する。尚、上述の直接遷移型化合物半導体は好ましくは紫外線から緑色領域の光を発する発光ピーク波長450nmの窒素ガリウム(GaN)系化合物半導体であり、このGaN系化合物半導体は温度変換に対する出力変動あるいは波長の変動が比較的少なく、温度特性が良い。   The LED element 4 includes, for example, a p-type layer, an n-type layer made of a direct transition type compound semiconductor, and a light emitting layer sandwiched between these layers, and two electrodes for supplying current to the p-type layer and the n-type layer. Have These electrodes are connected to the wiring pattern 1a on the substrate 1 by bonding wires 5, and emit light corresponding to the band gap of the light emitting layer by supplying a current. The direct transition type compound semiconductor described above is preferably a nitrogen gallium (GaN) compound semiconductor having an emission peak wavelength of 450 nm that emits light in the ultraviolet to green region. Fluctuation is relatively small and temperature characteristics are good.

また、蛍光体層6は図5の製造方法によって製造されたYAGaG:Ce、Er蛍光体をシリコーン樹脂のバインダ樹脂に混合して凹部6に充填して樹脂硬化させることによって形成される。たとえば、樹脂硬化条件は、80℃、1時間の加熱を行い、その後、150℃、4時間の加熱を行う。この結果、蛍光体層6と基板1とが密着し、基板1と枠基体2とが固定される。しかし、蛍光体層6はフィルタ9の内面に薄膜状に形成し、凹部6内に空洞を含んでも良い。   The phosphor layer 6 is formed by mixing the YAGaG: Ce, Er phosphor manufactured by the manufacturing method of FIG. 5 with a silicone resin binder resin, filling the recess 6 and curing the resin. For example, the resin curing conditions are heating at 80 ° C. for 1 hour, and then heating at 150 ° C. for 4 hours. As a result, the phosphor layer 6 and the substrate 1 are in close contact with each other, and the substrate 1 and the frame base 2 are fixed. However, the phosphor layer 6 may be formed as a thin film on the inner surface of the filter 9 and may include a cavity in the recess 6.

フィルタ9はメタンガスの吸収波長1654nmを含む所望の赤外線以外のグレアの原因となる上述のLED素子4及び蛍光層6からの紫外線及びまたは可視光を遮敵する作用を有する。フィルタ9はこの作用に加えてストークシフトによって蛍光体層6自身が発した熱を外部へ放出する作用をも有する。これにより蛍光体層6の温度消光による出力低下を抑止する。フィルタ9の材料としては、赤外線に対して透明である上、ある程度熱伝導性を有するシリコンを用いる。   The filter 9 has an action of blocking ultraviolet rays and / or visible light from the LED element 4 and the fluorescent layer 6 that cause glare other than desired infrared rays including an absorption wavelength of 1654 nm of methane gas. In addition to this function, the filter 9 also has the function of releasing heat generated by the phosphor layer 6 itself due to the Stoke shift. Thereby, the output fall by the temperature quenching of the fluorescent substance layer 6 is suppressed. As a material for the filter 9, silicon that is transparent to infrared rays and has some thermal conductivity is used.

図7は図6の光源を用いたメタルガスセンサを示す図である。   FIG. 7 is a view showing a metal gas sensor using the light source of FIG.

図7において、メタルガスのガス導入口21a、ガス排出口21bを有するセル21の上流側、下流側に、図6の光源10及び受光素子22たとえばフォトトランジスタを設ける。また、23はメタンガスの吸収波長1654nmの近傍の光のみを通過させるフィルタ、24は光源10から受光素子22への光Lをオン、オフするチョッパ、25は光源10、受光素子22及びチョッパ24を制御する制御回路たとえばCPU,ROM,RAM,I/O等よりなるマイクロコンピュータである。 In FIG. 7, the light source 10 and the light receiving element 22 such as a phototransistor of FIG. 6 are provided on the upstream side and the downstream side of a cell 21 having a gas inlet 21a and a gas outlet 21b for metal gas. Reference numeral 23 denotes a filter that allows only light in the vicinity of an absorption wavelength of 1654 nm of methane gas to pass, 24 denotes a chopper that turns on and off the light L from the light source 10 to the light receiving element 22, and 25 denotes the light source 10, the light receiving element 22, and the chopper 24. It is a microcomputer comprising a control circuit for controlling, for example, a CPU, ROM, RAM, I / O and the like.

図7において制御回路25は光源10をオン、オフすると共に、チョッパ24をオープンにして受光素子22から出力Ioを受信する。この結果、制御回路25はランベルト−バール法則を用いてセル21内のメタンガス濃度を算出する。必要に応じて制御回路25は測定されたメタンガス濃度をリアルタイムでセンタへ送信する。   In FIG. 7, the control circuit 25 turns on and off the light source 10 and opens the chopper 24 to receive the output Io from the light receiving element 22. As a result, the control circuit 25 calculates the methane gas concentration in the cell 21 using the Lambert-Barre law. As necessary, the control circuit 25 transmits the measured methane gas concentration to the center in real time.

1:基板
1a:配線パターン(リードフレーム)
2:枠基体
3:凹部
4:LED素子
5:ボンディングワイヤ
6:蛍光体層
10:光源
20:メタンガスセンサ
21:セル
21a:ガス導入口
21b:ガス排出口
22:変光素子
23:フィルタ
24:チョッパ
25:制御回路
1: Substrate
1a: Wiring pattern (lead frame)
2: Frame base
3: Recess 4: LED element 5: Bonding wire 6: Phosphor layer 10: Light source 20: Methane gas sensor 21: Cell 21a: Gas inlet 21b: Gas outlet 22: Light changing element 23: Filter 24: Chopper 25: Control circuit

Claims (6)

Y3(Al,Ga)5O12:Ce3+,Er3+よりなるメタンガスセンサ用蛍光体。 A phosphor for methane gas sensor comprising Y 3 (Al, Ga) 5 O 12 : Ce 3+ and Er 3+ . Alに対するGaの置換比は20 mol%以上60 mol%以下であり、
Y、Erに対するCeイオン濃度は0.1mol%以上5mol%以下であり、
Y、Ceに対するErイオン濃度は2mol%以上4mol%以下である請求項1に記載のメタンガスセンサ用蛍光体。
The substitution ratio of Ga to Al is 20 mol% or more and 60 mol% or less,
Ce ion concentration with respect to Y and Er is 0.1 mol% or more and 5 mol% or less,
The phosphor for a methane gas sensor according to claim 1, wherein the Er ion concentration with respect to Y and Ce is 2 mol% or more and 4 mol% or less.
紫外光及び/または可視光を発する発光素子と、
該発光素子上に設けられ、Y3(Al,Ga)5O12:Ce3+,Er3+よりなる蛍光体を含む蛍光体層と
を具備するメタンガスセンサ用光源。
A light emitting element that emits ultraviolet light and / or visible light;
A light source for a methane gas sensor, comprising: a phosphor layer provided on the light-emitting element and including a phosphor composed of Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Er 3+ .
Alに対するGaの置換比は20 mol%以上60 mol%以下であり、
Y、Erに対するCeイオン濃度は0.1mol%以上5mol%以下であり、
Y、Ceに対するErイオン濃度は2mol%以上4mol%以下である請求項3に記載のメタンガスセンサ用光源。
The substitution ratio of Ga to Al is 20 mol% or more and 60 mol% or less,
Ce ion concentration with respect to Y and Er is 0.1 mol% or more and 5 mol% or less,
The light source for a methane gas sensor according to claim 3, wherein the Er ion concentration with respect to Y and Ce is 2 mol% or more and 4 mol% or less.
さらに、前記蛍光体層上に形成され、前記発光素子及び前記蛍光体層からの紫外光及び可視光を透過せず、前記蛍光体層からの赤外光のみを透過するフィルタを具備する請求項3に記載のメタンガスセンサ用光源。   The filter further comprises a filter that is formed on the phosphor layer and does not transmit ultraviolet light and visible light from the light emitting element and the phosphor layer, but transmits only infrared light from the phosphor layer. 4. A light source for the methane gas sensor according to 3. 請求項3〜5のいずれかに記載のメタンガスセンサ用光源と、
該メタンガスセンサ用光源が一端に設けられたメタンガスを導入、排出するセルと、
該セルの他端に設けられた受光素子と
を具備するメタンガスセンサ。
A light source for a methane gas sensor according to any one of claims 3 to 5,
A cell for introducing and discharging methane gas, wherein the light source for the methane gas sensor is provided at one end;
A methane gas sensor comprising: a light receiving element provided at the other end of the cell.
JP2012034699A 2012-02-21 2012-02-21 Phosphor for methane gas sensor, light source for methane gas sensor, and methane gas sensor Active JP5893429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034699A JP5893429B2 (en) 2012-02-21 2012-02-21 Phosphor for methane gas sensor, light source for methane gas sensor, and methane gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034699A JP5893429B2 (en) 2012-02-21 2012-02-21 Phosphor for methane gas sensor, light source for methane gas sensor, and methane gas sensor

Publications (2)

Publication Number Publication Date
JP2013170205A true JP2013170205A (en) 2013-09-02
JP5893429B2 JP5893429B2 (en) 2016-03-23

Family

ID=49264368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034699A Active JP5893429B2 (en) 2012-02-21 2012-02-21 Phosphor for methane gas sensor, light source for methane gas sensor, and methane gas sensor

Country Status (1)

Country Link
JP (1) JP5893429B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400515A (en) * 2015-12-02 2016-03-16 钇铕(上海)新材料有限公司 Light emitting material and preparation method thereof
JP2020072145A (en) * 2018-10-30 2020-05-07 日亜化学工業株式会社 Manufacturing method of light-emitting device
CN111624236A (en) * 2020-01-14 2020-09-04 黄辉 Semiconductor film gas sensor and preparation method thereof
WO2022210009A1 (en) * 2021-04-01 2022-10-06 日本電気硝子株式会社 Wavelength conversion member and light emission device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998925A (en) * 1996-07-29 1999-12-07 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material
JP2000206035A (en) * 1999-01-19 2000-07-28 Anritsu Corp Gas detecting apparatus
JP2011233586A (en) * 2010-04-23 2011-11-17 Stanley Electric Co Ltd Light emitting device with combination of infrared phosphor and light emitting diode element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998925A (en) * 1996-07-29 1999-12-07 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material
JP2002198573A (en) * 1996-07-29 2002-07-12 Nichia Chem Ind Ltd Light emitting diode
JP2000206035A (en) * 1999-01-19 2000-07-28 Anritsu Corp Gas detecting apparatus
JP2011233586A (en) * 2010-04-23 2011-11-17 Stanley Electric Co Ltd Light emitting device with combination of infrared phosphor and light emitting diode element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400515A (en) * 2015-12-02 2016-03-16 钇铕(上海)新材料有限公司 Light emitting material and preparation method thereof
JP2020072145A (en) * 2018-10-30 2020-05-07 日亜化学工業株式会社 Manufacturing method of light-emitting device
CN111624236A (en) * 2020-01-14 2020-09-04 黄辉 Semiconductor film gas sensor and preparation method thereof
CN111624236B (en) * 2020-01-14 2023-12-26 黄辉 Semiconductor film gas sensor and preparation method thereof
WO2022210009A1 (en) * 2021-04-01 2022-10-06 日本電気硝子株式会社 Wavelength conversion member and light emission device
KR20230161940A (en) 2021-04-01 2023-11-28 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and light emitting device

Also Published As

Publication number Publication date
JP5893429B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP6570653B2 (en) Beam radiation type optoelectronic device
JP5628394B2 (en) Phosphor conversion semiconductor light emitting device
JP5748028B2 (en) Composite wavelength conversion powder, composite wavelength conversion powder-containing resin composition, and light emitting device
JP5432435B2 (en) Phosphor conversion light emitting device
JP2012531043A (en) Phosphor conversion infrared LED related applications
TW201024393A (en) Doped garnet phosphors having a red shift for pcleds
Miao et al. Blue LED‐pumped broadband short‐wave infrared emitter based on LiMgPO4: Cr3+, Ni2+ phosphor
TW201237146A (en) Phosphor and light emitting device
Dai et al. High quality LED lamps using color-tunable Ce 3+-activated yellow-green oxyfluoride solid-solution and Eu 3+-doped red borate phosphors
JP5893429B2 (en) Phosphor for methane gas sensor, light source for methane gas sensor, and methane gas sensor
Dai et al. 2D photonic crystal layer assisted thiosilicate ceramic plate with red‐emitting film for high quality w‐LED s
JP2010097829A (en) Lighting system and vehicular lighting fixture
JP5675248B2 (en) Light source device and lighting device
JP2004300247A (en) Phosphor, light emitter using the same and lighting apparatus
TW201412944A (en) Fluorescent substance, light-emitting device and method for producing fluorescent substance
US8535564B2 (en) Light emitting device employing luminescent substances with oxyorthosilicate luminophores
JP6010638B2 (en) Light emitting device
Wu et al. Self‐activated tungstate phosphor for near‐infrared light‐emitting diodes
JP2017535971A (en) Light emitting device
Shi et al. Blue-light-excitable pure and efficient short-wave infrared luminescence via Cr 3+→ Yb 3+ energy transfer in a KYbP 2 O 7: Cr 3+ phosphor
Si et al. Lead-free perovskite variant Rb2SnCl6: Te based phosphor-sapphire composite for high-power laser-driven lighting
Dhanalakshmi et al. Photo-and thermoluminescence properties of single-phase white light-emitting Y 2− x SiO 5: x Dy 3+ nanophosphor: a concentration-dependent structural and optical study
In et al. Up‐conversion phosphor plate for white lighting device using NIR excitation source
JP6597058B2 (en) Luminescent material
JP6853140B2 (en) Wavelength conversion member and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250