WO2022209778A1 - 半導体素子、半導体装置及び半導体素子の製造方法 - Google Patents
半導体素子、半導体装置及び半導体素子の製造方法 Download PDFInfo
- Publication number
- WO2022209778A1 WO2022209778A1 PCT/JP2022/011012 JP2022011012W WO2022209778A1 WO 2022209778 A1 WO2022209778 A1 WO 2022209778A1 JP 2022011012 W JP2022011012 W JP 2022011012W WO 2022209778 A1 WO2022209778 A1 WO 2022209778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diode region
- region
- diode
- semiconductor layer
- schottky barrier
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 234
- 238000000034 method Methods 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 230000004888 barrier function Effects 0.000 claims abstract description 88
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000001312 dry etching Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 11
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 1
- 230000004048 modification Effects 0.000 description 43
- 238000012986 modification Methods 0.000 description 43
- 238000010586 diagram Methods 0.000 description 28
- 239000000758 substrate Substances 0.000 description 17
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 230000005684 electric field Effects 0.000 description 7
- 238000001039 wet etching Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 1
- 102100035353 Cyclin-dependent kinase 2-associated protein 1 Human genes 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 101000911772 Homo sapiens Hsc70-interacting protein Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 102100029860 Suppressor of tumorigenicity 20 protein Human genes 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/868—PIN diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
Definitions
- the present disclosure relates to a semiconductor element, a semiconductor device, and a method for manufacturing a semiconductor element.
- Patent Document 1 describes a technique of adopting a TMBS (Trench MOS Barrier Schottky) structure in order to reduce leakage current in a GaN-based Schottky barrier diode.
- TMBS Trench MOS Barrier Schottky
- a semiconductor element is a semiconductor element having a PN diode region, a Schottky barrier diode region, and a trench region, wherein the PN diode region has the highest height when the stacking direction is the vertical direction. , an end PN diode region and a central PN diode region, wherein the end PN diode region is located in the peripheral portion of the semiconductor element, and the central PN diode region extends in one direction orthogonal to the stacking direction.
- the Schottky barrier diode regions are alternately arranged, and the trench regions are alternately arranged in a direction orthogonal to both the stacking direction and the one direction, and the Schottky barrier diode regions are arranged alternately with the stacking direction
- the trench regions are alternately arranged in a direction perpendicular to both of the one directions, and the trench regions are continuous in the one direction from the one end PN diode region to the other end PN diode region. are placed.
- a semiconductor element is a semiconductor element having a PN diode region, a Schottky barrier diode region, and a trench region, wherein the PN diode region has the highest height when the stacking direction is the vertical direction. , an end PN diode region and a central PN diode region, wherein the end PN diode region is located in the peripheral portion of the semiconductor element, and the Schottky barrier diode region is positioned perpendicular to the stacking direction.
- the central PN diode regions are alternately arranged with the trench regions in the one direction, and the stacking adjacent to the Schottky barrier diode region in a direction orthogonal to both the direction and the one direction.
- a semiconductor element is a semiconductor element having a PN diode region, a Schottky barrier diode region, and a trench region, wherein the PN diode region has the highest height when the stacking direction is the vertical direction. , an end PN diode region and a central PN diode region, wherein the end PN diode region is located in the peripheral portion of the semiconductor element, and the Schottky barrier diode region is positioned perpendicular to the stacking direction.
- the central PN diode regions are alternately arranged with the barrier diode regions, and the central PN diode regions are continuous from one of the end PN diode regions to the other of the end PN diode regions in a direction orthogonal to both the stacking direction and the one direction. are placed as follows.
- a semiconductor element is a semiconductor element having a PN diode region, a Schottky barrier diode region, and a trench region, wherein the PN diode region has the highest height when the stacking direction is the vertical direction.
- the Schottky barrier diode region is located in the central portion of the semiconductor device, the trench region is periodically arranged in the central portion of the semiconductor device, and the PN diode adjacent to at least one of the region and the Schottky barrier diode region.
- a semiconductor device includes the semiconductor element described above.
- FIG. 1 is a schematic diagram for explaining a semiconductor device according to an embodiment.
- FIG. 2 is a cross-sectional view taken along line AA of FIG. 3 is a cross-sectional view taken along line BB of FIG. 1.
- FIG. FIG. 4 is a schematic plan view for explaining the semiconductor device according to the embodiment.
- FIG. 5 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 6 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 7 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 8 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 9 is a schematic perspective view for explaining the semiconductor device according to the embodiment.
- FIG. 10 is a schematic diagram for explaining a semiconductor device according to Modification 1.
- FIG. 11 is a schematic plan view for explaining a semiconductor device according to Modification 1.
- FIG. FIG. 12 is a schematic plan view for explaining a semiconductor device according to Modification 2.
- FIG. 13 is a schematic plan view for explaining a semiconductor device according to Modification 3.
- FIG. 14 is a schematic plan view for explaining a semiconductor device according to Modification 4.
- FIG. FIG. 15 is a schematic plan view for explaining a semiconductor device according to Modification 5.
- FIG. FIG. 16 is a schematic plan view for explaining a semiconductor device according to Modification 6.
- FIG. 17A to 17D are process diagrams for explaining the method for manufacturing a semiconductor device according to the embodiment.
- 18A to 18D are process diagrams for explaining the method for manufacturing a semiconductor device according to the embodiment.
- 19A to 19D are process diagrams for explaining the method for manufacturing the semiconductor device according to the embodiment.
- FIG. 20 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 21 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 22 is a process diagram for explaining another example of the method of forming the TMBS structure of the semiconductor device according to the embodiment.
- 23A to 23C are process diagrams for explaining another example of the method for forming the TMBS structure of the semiconductor device according to the embodiment.
- Schottky barrier diodes incorporating a TMBS structure can reduce leakage current compared to normal GaN-based Schottky barrier diodes, but the problem is that surge resistance is not high. .
- Gallium oxide (Ga 2 O 3 ) Schottky barrier diodes also have similar problems.
- the semiconductor element 1 and the semiconductor device 20 according to the embodiment will be described below.
- the semiconductor device 1 is a power semiconductor used in switching circuits of power converters such as inverters and converters.
- FIG. 1 is a schematic diagram for explaining a semiconductor device according to an embodiment.
- 2 is a cross-sectional view taken along the line AA of FIG. 1.
- FIG. 3 is a cross-sectional view taken along line BB of FIG. 1.
- FIG. 4 is a schematic plan view for explaining the semiconductor device according to the embodiment.
- FIG. 1 is a diagram schematically showing part of the semiconductor device shown in FIG.
- a semiconductor device 1 according to the embodiment has a PN diode region 2, a Schottky barrier diode region 3, and a trench region 4.
- the stacking direction of the semiconductor elements 1 is defined as the vertical direction. Let the vertical direction be the z-axis direction. One direction orthogonal to the stacking direction is defined as the y-axis direction. A direction orthogonal to both the stacking direction and one direction is defined as the x-axis direction.
- a PN diode region 2 is a region in which a PN diode is formed.
- PN diode region 2 is the highest region in semiconductor element 1 .
- the PN diode region 2 has an end PN diode region 2A and a central PN diode region 2C.
- the end PN diode region 2A is located at the peripheral edge of the semiconductor element 1.
- Central PN diode region 2C is located in the central portion of semiconductor element 1 .
- the central PN diode region 2C is positioned inside the end PN diode regions 2A.
- the central PN diode regions 2C are alternately arranged with the Schottky barrier diode regions 3 in the y-axis direction.
- the central PN diode regions 2C are alternately arranged with the trench regions 4 in the x-axis direction.
- the Schottky barrier diode region 3 is a region where a Schottky barrier diode is formed.
- the Schottky barrier diode region 3 is arranged inside the end PN diode region 2A.
- the Schottky barrier diode regions 3 are alternately arranged with the central PN diode regions 2C in the y-axis direction.
- the Schottky barrier diode regions 3 are alternately arranged with the trench regions 4 in the x-axis direction.
- a trench region 4 is a region in which a trench structure is formed.
- the trench region 4 is arranged inside the end PN diode region 2A.
- Trench region 4 is arranged continuously from one end PN diode region 2A to the other end PN diode region 2A in the y-axis direction.
- the width D11 and the width D12 of the PN diode region 2 sandwiched between the Schottky barrier diode regions 3 are preferably 8 ⁇ m or more, for example.
- the width D11 and the width D12 of the Schottky barrier diode region 3 sandwiched between the trench regions 4 are preferably less than 8 ⁇ m, for example. More specifically, the width D11 of the PN diode region 2 and Schottky barrier diode region 3 in the x-axis direction is preferably 8 ⁇ m or more, for example.
- the width D11 of the Schottky barrier diode region 3 is preferably as small as possible, it is not preferable that the width D11 of the PN diode region 2 is small.
- the width D12 of the PN diode region 2 in the y-axis direction is preferably 8 ⁇ m or more, for example.
- the width D12 is preferably as large as possible.
- the width D13 of the Schottky barrier diode region 3 is preferably less than 8 ⁇ m, for example.
- the width D13 is preferably as small as possible.
- Such a semiconductor element 1 is supported by a support substrate 100.
- the support substrate 100 is a silicon substrate or the like.
- the support substrate 100 may be, for example, a sapphire substrate or a SiC substrate.
- FIGS. 17A to 17D are process diagrams for explaining the method for manufacturing a semiconductor device according to the embodiment.
- 18A to 18D are process diagrams for explaining the method for manufacturing a semiconductor device according to the embodiment.
- 19A to 19D are process diagrams for explaining the method for manufacturing the semiconductor device according to the embodiment.
- FIG. 20 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 21 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- the method of manufacturing semiconductor device 1 is performed along the steps shown in FIGS.
- the semiconductor layer may be Ga2O3 .
- GaN is epitaxially grown from the surface 11a of the substrate 11 using hydride vapor phase epitaxy (HVPE) or metal organic chemical vapor deposition (MOCVD) (step ST31).
- HVPE hydride vapor phase epitaxy
- MOCVD metal organic chemical vapor deposition
- the first semiconductor layer 12, which is an n-type semiconductor layer is epitaxially grown.
- the second semiconductor layer 13, which is a p ⁇ type semiconductor layer is epitaxially grown from the surface 11a of the first semiconductor layer 12 so as to cover the first semiconductor layer 12.
- the third semiconductor layer 14 which is a p ⁇ type semiconductor layer, is epitaxially grown so as to cover the second semiconductor layer 13 .
- the substrate 11 is self-supporting GaN.
- the thickness of the substrate 11 in the stacking direction is, for example, about 400 ⁇ m.
- the first semiconductor layer 12 is n-type GaN.
- the doping amount of the n-type impurity is controlled so that the first semiconductor layer 12 has an electron carrier concentration of less than 10 16 cm ⁇ 3 .
- the thickness of the first semiconductor layer 12 in the stacking direction is, for example, 5 ⁇ m or more.
- the second semiconductor layer 13 is p-type GaN.
- the doping amount of the p-type impurity is controlled so that the second semiconductor layer 13 has an impurity concentration of 10 18 cm ⁇ 3 or higher.
- the thickness of the second semiconductor layer 13 in the stacking direction is, for example, 450 nm or more.
- the third semiconductor layer 14 is p-type GaN.
- the doping amount of the p-type impurity is controlled so that the third semiconductor layer 14 has an impurity concentration of 2 ⁇ 10 20 cm ⁇ 3 or more.
- the thickness of the third semiconductor layer 14 in the stacking direction is, for example, 30 nm or more.
- the PN diode region 2 includes a first semiconductor layer 12 , a second semiconductor layer 13 located on the first semiconductor layer 12 , and a third semiconductor layer 14 located on the second semiconductor layer 13 .
- the Schottky barrier diode region 3 includes the first semiconductor layer 12 .
- Schottky barrier diode region 3 includes Schottky electrode 31 located on first semiconductor layer 12 .
- the trench region 4 includes the first semiconductor layer 12 .
- a back surface electrode 21 is formed on the back surface 11b of the substrate 11 opposite to the front surface 11a (step ST32). More specifically, the back surface electrode 21 is formed on the back surface 11b of the substrate 11 by vapor deposition, sputtering, or the like.
- the back electrode 21 is, for example, an Al layer plated with Ti, Ni, or Au.
- the thickness of Ti in the stacking direction is, for example, 16 nm or more.
- the thickness of Al in the stacking direction is, for example, 85 nm or more.
- the thickness of Ni in the stacking direction is, for example, 25 nm or more.
- the thickness of Au in the stacking direction is, for example, 50 nm or more.
- a part of the second semiconductor layer 13 and the third semiconductor layer 14 is dry-etched (step ST33). More specifically, the portions of the second semiconductor layer 13 and the third semiconductor layer 14 that form the PN diode region 2 are left, and the remaining portions are dry-etched. In other words, dry etching is performed on the remaining portions of the second semiconductor layer 13 and the third semiconductor layer 14, leaving the portions forming the ohmic.
- the surface 12a of the first semiconductor layer 12 is exposed where the second semiconductor layer 13 and the third semiconductor layer 14 are removed.
- the etching apparatus uses an inductively coupled type (ICP-RIE: Inductive Coupled Plasma-Reactive Ion Etching) apparatus.
- a Schottky electrode 31 which is a metal layer (barrier metal), is formed on the entire exposed surface of the semiconductor layer (step ST34).
- a Schottky electrode 31 is formed on the entire exposed surface of the semiconductor layer by, for example, vapor deposition or sputtering.
- the second semiconductor layer 13 and the third semiconductor layer 14 are removed by dry etching, and a Schottky junction 2s between the exposed first semiconductor layer 12 and the Schottky electrode 31 is provided.
- a PN junction 2p is provided in the portion where the second semiconductor layer 13 and the third semiconductor layer 14 are left.
- the Schottky electrode 31 is Ni, Al, Pd, or the like, for example.
- the thickness of the Schottky electrode 31 in the stacking direction is, for example, 50 nm or more and 500 nm or less.
- the Schottky electrode 31 is located on the opposite side of the substrate 11 in the stacking direction.
- a part of the Schottky electrode 31 is masked and wet-etched (step ST35). More specifically, the remaining portion of the Schottky electrode 31 is covered with a photoresist 41 . Specifically, the portions where the PN diode region 2 and the Schottky barrier diode region 3 are to be formed are covered with a photoresist 41 . Then, a part of the Schottky electrode 31 is wet-etched. More specifically, the Schottky electrode 31 is removed leaving the portion where the photoresist 41 is provided, in other words, the portion where the PN diode region 2 and the Schottky barrier diode region 3 are to be formed. The surface 12a of the first semiconductor layer 12 is exposed from the portion where the Schottky electrode 31 is removed. Wet etching is performed with a ratio of H 2 O of 10 to 1 of H 2 SO 4 and HNO 3 by volume.
- the exposed first semiconductor layer 12 is dry-etched (step ST36). More specifically, the exposed first semiconductor layer 12 is dry etched to the height of the surface 12c. A portion where the PN diode region 2 is formed and a portion where the trench region 4 is formed are dry-etched while leaving a step 12b.
- the etching device uses an inductive coupling type (ICP-RIE) device.
- the insulating film 32 which is an insulating layer, is formed (step ST37). More specifically, the photoresist 41 provided in step ST35 is removed. The insulating film 32 is arranged to cover the entire exposed surface of the semiconductor layer. The insulating film 32 is arranged to cover the portions forming the PN diode region 2 , the Schottky barrier diode region 3 , and the trench region 4 .
- the insulating film 32 is, for example, Al 2 O 3 .
- the thickness of Al 2 O 3 in the stacking direction is, for example, 50 nm or more and 100 nm or less.
- the insulating film 32 of Al 2 O 3 is formed by atomic layer deposition (ALD).
- the insulating film 32 is, for example, SiO2 .
- the thickness of SiO 2 in the stacking direction is, for example, 400 nm or more.
- the insulating film 32 of SiO 2 is formed by chemical vapor deposition (CVD).
- a contact hole is formed (step ST38). More specifically, wet etching or dry etching is performed to remove the insulating film 32 in the portions forming the PN diode region 2 and the Schottky barrier diode region 3 and the insulating film 32 in the portions forming the trench region 4 .
- a contact hole H1 is provided by removing a portion of the insulating film 32 where the PN diode region 2 and the Schottky barrier diode region 3 are to be formed. A portion of the insulating film 32 for forming the trench region 4 is removed to form a contact hole H2.
- the Schottky electrode 31 is exposed through the contact hole H1 and the contact hole H2.
- Wet etching uses buffered hydrofluoric acid, for example.
- FP electrodes are formed (step ST39). More specifically, the exposed Schottky electrode 31 and the insulating film 32 are entirely covered with the upper electrode metal film 33 .
- An upper electrode metal film 33 is formed on the entire surface of the exposed Schottky electrode 31 and insulating film 32 by, for example, vapor deposition or sputtering. The entire surface of the semiconductor element 1 is covered with the upper electrode metal film 33 .
- the upper electrode metal film 33 forms a so-called field plate on the insulating film 32 . The edge of the insulating film 32 on the outer peripheral side is exposed from the upper electrode metal film 33 .
- the upper electrode metal film 33 is Ti, for example.
- the thickness of Ti in the stacking direction is, for example, 200 nm.
- the upper electrode metal film 33 is, for example, Al.
- the thickness of Al in the stacking direction is, for example, 2.8 ⁇ m.
- the semiconductor device 1 is thus manufactured.
- FIG. 5 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 6 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 7 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 8 is a process diagram for explaining the method for manufacturing a semiconductor device according to the embodiment. The method of manufacturing the semiconductor device 1 is performed along the steps shown in FIGS.
- GaN is epitaxially grown from the surface 11a of the substrate 11 using hydride vapor phase epitaxy or metalorganic vapor phase epitaxy (step ST11).
- a back surface electrode 21 is formed on the back surface 11b opposite to the front surface 11a of the substrate 11 (step ST12).
- step ST12 heat treatment is performed before step ST13 is executed.
- the heat treatment is performed, for example, in a nitrogen atmosphere at 800° C. for 30 seconds.
- a part of the second semiconductor layer 13 and the third semiconductor layer 14 is dry-etched (step ST13). More specifically, the portions of the second semiconductor layer 13 and the third semiconductor layer 14 that form the PN diode region 2 are left, and the remaining portions are dry-etched. In other words, dry etching is performed on the remaining portions of the second semiconductor layer 13 and the third semiconductor layer 14, leaving the portions forming the ohmic.
- the surface 12a of the first semiconductor layer 12 is exposed where the second semiconductor layer 13 and the third semiconductor layer 14 are removed.
- the etching apparatus uses an inductively coupled type (ICP-RIE: Inductive Coupled Plasma-Reactive Ion Etching) apparatus.
- step ST13 is executed and before step ST14 is executed, damage recovery heat treatment is performed.
- the heat treatment is, for example, 400° C. for 5 minutes or 500° C. for 5 minutes.
- a Schottky electrode 31 which is a metal layer (barrier metal), is formed on the entire exposed surface of the semiconductor layer (step ST14).
- a Schottky electrode 31 is formed on the entire exposed surface of the semiconductor layer by, for example, vapor deposition or sputtering.
- the second semiconductor layer 13 and the third semiconductor layer 14 are removed by dry etching, and a Schottky junction 2s between the exposed first semiconductor layer 12 and the Schottky electrode 31 is provided.
- a PN junction 2p is provided in the portion where the second semiconductor layer 13 and the third semiconductor layer 14 are left.
- a mask is provided for wet etching and dry etching of a part of the Schottky electrode 31 (step ST15). More specifically, the remaining portion of the Schottky electrode 31 is covered with a photoresist 41 . Specifically, the portions forming the PN diode region 2 , the Schottky barrier diode region 3 , and the trench region 4 are covered with the photoresist 41 .
- a part of the Schottky electrode 31 is wet-etched (step ST16). More specifically, the Schottky electrode 31 is removed while leaving the portion where the photoresist 41 is provided, in other words, the portion where the PN diode region 2, the Schottky barrier diode region 3, and the trench region 4 are to be formed.
- the surface 12a of the first semiconductor layer 12 is exposed from the portion where the Schottky electrode 31 is removed.
- Wet etching is performed with a ratio of H 2 O of 10 to 1 of H 2 SO 4 and HNO 3 by volume.
- Step S16 may be dry etching.
- the exposed first semiconductor layer 12 is dry-etched (step ST17). More specifically, the exposed first semiconductor layer 12 is dry etched to the height of the surface 12c. A portion where the PN diode region 2 is formed and a portion where the trench region 4 is formed are dry-etched while leaving a step 12b.
- the etching device uses an inductive coupling type (ICP-RIE) device.
- the mask is removed (step ST18). More specifically, the photoresist 41 provided in step ST15 is removed.
- an insulating film 32 which is an insulating layer, is formed (step ST19).
- the insulating film 32 is arranged to cover the entire exposed surface of the semiconductor layer.
- the insulating film 32 is arranged to cover the portions forming the PN diode region 2 , the Schottky barrier diode region 3 , and the trench region 4 .
- a contact hole is formed (step ST20). More specifically, wet etching or dry etching is performed to remove the insulating film 32 in the portions forming the PN diode region 2 and the Schottky barrier diode region 3 and the insulating film 32 in the portions forming the trench region 4 .
- a contact hole H1 is provided by removing a portion of the insulating film 32 where the PN diode region 2 and the Schottky barrier diode region 3 are to be formed. A portion of the insulating film 32 for forming the trench region 4 is removed to form a contact hole H2.
- the Schottky electrode 31 is exposed through the contact hole H1 and the contact hole H2.
- Wet etching uses buffered hydrofluoric acid, for example.
- FP electrodes are formed (step ST21). More specifically, the exposed Schottky electrode 31 and the insulating film 32 are entirely covered with the upper electrode metal film 33 .
- An upper electrode metal film 33 is formed on the entire surface of the exposed Schottky electrode 31 and insulating film 32 by, for example, vapor deposition or sputtering. The entire surface of the semiconductor element 1 is covered with the upper electrode metal film 33 .
- the upper electrode metal film 33 forms a so-called field plate on the insulating film 32 . The edge of the insulating film 32 on the outer peripheral side is exposed from the upper electrode metal film 33 .
- FIG. 22 is a process diagram for explaining another example of the method for manufacturing a semiconductor device according to the embodiment.
- FIG. 23 is a process diagram for explaining another example of the method for manufacturing the semiconductor device according to the embodiment. After executing steps ST11 through ST13 shown in FIG. 5, steps ST51 through ST55 are executed.
- a mask is provided on the exposed surface of the semiconductor layer (step ST51). More specifically, the exposed surface of the semiconductor layer is covered with the photoresist 41 except for the portion where the Schottky electrode 31 is to be formed.
- a Schottky electrode 31 which is a metal layer (barrier metal), is formed on the surface of the photoresist 41 and the surface of the exposed semiconductor layer (step ST52).
- Ni is deposited as the Schottky electrode 31 .
- the Schottky electrode 31 is formed by lit-off.
- the mask is removed (step ST53).
- a mask for forming the TMBS structure is provided (step ST54). More specifically, it is covered with photoresist 42 except for the portion where the trench structure is to be formed.
- the exposed first semiconductor layer 12 is dry-etched (step ST55).
- a TMBS structure may be formed in this way.
- FIG. 9 is a schematic perspective view for explaining the semiconductor device according to the embodiment.
- the common back electrode 21 is die-bonded to one electrode pad 201 on the mounting substrate 200, and the individual top electrode metal films 33 are bonded to the other electrode pad 202 by bonding wires 52. connect to.
- the mounting board 200 By mounting the mounting board 200 in this manner, a plurality of diodes can be connected in parallel to increase the capacity and be used.
- a plurality of semiconductor elements 1 are manufactured so as to be arranged side by side in a certain direction.
- the semiconductor element 1 is elongated in a direction substantially orthogonal to the direction in which the semiconductor elements 1 are arranged when viewed in the stacking direction. By arranging the semiconductor elements 1 in such a shape, the junction area of the diode can be increased.
- the semiconductor element 1 manufactured in this way can be used as various semiconductor devices 20 according to the application.
- one semiconductor element 1 has the PN diode region 2 , the Schottky barrier diode region 3 , and the trench region 4 . According to this embodiment, it is possible to provide the semiconductor device 1 with low leakage current and high surge withstand voltage.
- the location where electric field concentration occurs shifts from the Schottky barrier diode region 3 to the PN diode region 2 .
- leakage current can be suppressed more than the normal TMBS structure.
- This embodiment can reduce heat generation during a surge by adopting a JBS (Junction Barrier Schottky)/MPS (Merged PiN Schottky) structure.
- JBS Joint Barrier Schottky
- MPS Merged PiN Schottky
- a resist film is formed thereon in step S35 and Ni etching is performed, and dry etching is performed in step ST36.
- a resist film is formed thereon in step S15, and Ni etching in step S16 and dry etching in step ST17 are successively performed.
- the electrode can be formed up to the edge of the trench, so electric field concentration at the edge of the electrode can be suppressed.
- the Schottky electrode 31 which is a metal layer, is formed on the entire exposed surface of the semiconductor layer, a mask is provided on a part of the Schottky electrode 31, and the mask is formed in the Schottky electrode 31.
- the Schottky electrode 31 is removed while leaving the exposed portion, and the semiconductor layer exposed from the removed portion of the Schottky electrode 31 is dry-etched.
- the electrode can be formed up to the edge of the trench, so that electric field concentration at the edge of the electrode can be suppressed.
- FIG. 10 is a schematic diagram for explaining a semiconductor device according to Modification 1.
- FIG. 11 is a schematic plan view for explaining a semiconductor device according to Modification 1.
- FIG. 10 is a diagram schematically showing a part of the semiconductor element shown in FIG. 11.
- the Schottky barrier diode region 3 is arranged continuously in the x-axis direction from one end PN diode region 2A to the opposite end PN diode region 2A.
- the central PN diode regions 2C are alternately arranged with the trench regions 4 in the x-axis direction.
- the central PN diode region 2C is adjacent to the Schottky barrier diode region 3 in the y-axis direction.
- the width D21, the width D22, and the width D23 are the same as the width D11, the width D12, and the width D13 of the first embodiment.
- this modification can reduce the area of the trench region 4 in the entire area of the semiconductor element 1 .
- This modification can improve the efficiency of the semiconductor device 1 .
- FIG. 12 is a schematic plan view for explaining a semiconductor device according to Modification 2.
- FIG. 12 is a schematic plan view for explaining a semiconductor device according to Modification 2.
- the Schottky barrier diode regions 3 are alternately arranged with the PN diode regions 2 in the y-axis direction, and alternately with the trench regions 4 in the x-axis direction.
- the trench regions 4 are alternately arranged with the Schottky barrier diode regions 3 in the x-axis direction.
- the central PN diode region 2C is arranged continuously from one end PN diode region 2A to the other end PN diode region 2A in the x-axis direction.
- the width D31, the width D32, and the width D33 are the same as the width D11, the width D12, and the width D13 of the first embodiment.
- this modification can reduce the area of the trench region 4 in the entire area of the semiconductor element 1 .
- This modification can improve the efficiency of the semiconductor device 1 .
- FIG. 13 is a schematic plan view for explaining a semiconductor device according to Modification 3.
- FIG. 13 and subsequent figures the PN diode region 2 is indicated by hatching, and the Schottky barrier diode region 3 is indicated by oblique lines.
- the PN diode region 2 is located at the periphery of the semiconductor element 1 . In this embodiment, the PN diode region 2 is located only in the peripheral portion of the semiconductor element 1 .
- the Schottky barrier diode region 3 is located in the central portion of the semiconductor element 1 .
- Schottky barrier diode region 3 is located inside PN diode region 2 .
- the Schottky barrier diode region 3 is located in a mesh shape in the central portion of the semiconductor element 1 .
- the width D41 of the Schottky barrier diode region 3 is the same as the width D13 of the first embodiment.
- the trench regions 4 are periodically arranged in the central portion of the semiconductor element 1 .
- Trench region 4 is adjacent to at least one of PN diode region 2 and Schottky barrier diode region 3 .
- the trench region 4 located at the periphery adjoins the PN diode region 2 .
- the centrally located trench region 4 is adjacent to the Schottky barrier diode region 3 .
- the trench region 4 has a hexagonal shape in a plan view in the stacking direction.
- the trench regions 4 are spaced apart in the x-axis direction and the y-axis direction. Trench regions 4 adjacent in the x-axis direction are arranged with a shift in the y-axis direction.
- this Modification can reduce the area of trench region 4 in the total area of semiconductor element 1 .
- This modification can improve the efficiency of the semiconductor device 1 .
- FIG. 14 is a schematic plan view for explaining a semiconductor device according to Modification 4.
- FIG. 14 is a schematic plan view for explaining a semiconductor device according to Modification 4.
- the PN diode region 2 is located at the periphery of the semiconductor element 1 .
- the PN diode region 2 has an end PN diode region 2A and a central PN diode region 2C.
- the central PN diode regions 2C are spaced apart in the y-axis direction.
- the central PN diode region 2C is arranged between trench regions 4 adjacent in the y-axis direction.
- the Schottky barrier diode region 3 is located in the central portion of the semiconductor element 1 .
- the Schottky barrier diode region 3 is located in the central portion of the semiconductor element 1 in a strip shape.
- the Schottky barrier diode region 3 is arranged continuously from one end PN diode region 2A in the y-axis direction to the other end PN diode region 2A.
- the width D42 of the Schottky barrier diode region 3 is the same as the width D13 of the first embodiment.
- the trench regions 4 are periodically arranged in the central portion of the semiconductor element 1 .
- Trench region 4 is adjacent to at least one of PN diode region 2 and Schottky barrier diode region 3 .
- the central PN diode regions 2C and the trench regions 4 are alternately arranged in the y-axis direction.
- the trench region 4 has a hexagonal shape in a plan view in the stacking direction.
- the trench regions 4 are spaced apart in the x-axis direction and the y-axis direction. Trench regions 4 adjacent in the x-axis direction are arranged with a shift in the y-axis direction.
- the area of the trench region 4 occupying the entire area of the semiconductor element 1 can be reduced as compared with the first modified example.
- This modification can improve the efficiency of the semiconductor device 1 .
- Modification 5 of the embodiment will be described with reference to FIG.
- FIG. 15 is a schematic plan view for explaining a semiconductor device according to Modification 5.
- the trench region 4 has a circular shape in plan view in the stacking direction.
- the width D43 of the Schottky barrier diode region 3 is the same as the width D13 of the first embodiment.
- the electric field concentration can be alleviated more than in the third modified example.
- FIG. 16 is a schematic plan view for explaining a semiconductor device according to Modification 6.
- FIG. Modification 6 is obtained by changing the shape of trench region 4 in modification 4 to a circular shape.
- the trench region 4 has a circular shape in plan view in the stacking direction.
- the width D44 of the Schottky barrier diode region 3 is the same as the width D13 in the first embodiment.
- step ST12 The formation of the back surface electrode 21 in step ST12 may be performed after the Schottky electrode 31 is formed. In the case where the step of raising the temperature is included, the effect on the back surface electrode 21 can be avoided by performing step ST12 last.
- the above method for manufacturing a semiconductor element can also be applied to a Schottky barrier diode in which a PN junction is not provided and a TMBS structure or MESA structure is formed.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
PNダイオード領域(2)とショットキーバリアダイオード領域(3)とトレンチ領域(4)とを有する半導体素子であって、PNダイオード領域(2)は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域(2A)と、中央PNダイオード領域(2C)とを有し、端部PNダイオード領域(2A)は、半導体素子(1)の周縁部に位置し、中央PNダイオード領域(2C)は、積層方向と直交する一方向において、ショットキーバリアダイオード領域(3)と交互に配置され、積層方向と一方向の両方と直交する方向において、トレンチ領域(4)と交互に配置され、ショットキーバリアダイオード領域(3)は、積層方向と一方向の両方に直交する方向において、トレンチ領域(4)と交互に配置され、トレンチ領域(4)は、一方向において、一方の端部PNダイオード領域(2A)から他方の端部PNダイオード領域(2A)まで連続して配置される。
Description
本開示は、半導体素子、半導体装置及び半導体素子の製造方法に関する。
特許文献1には、GaN系のショットキーバリアダイオードにおいて、リーク電流の低減させるためにTMBS(Trench MOS Barrier Schottky)構造を取り入れる技術が記載される。
1つの態様に係る半導体素子は、PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域と、中央PNダイオード領域とを有し、前記端部PNダイオード領域は、前記半導体素子の周縁部に位置し、前記中央PNダイオード領域は、前記積層方向と直交する一方向において、前記ショットキーバリアダイオード領域と交互に配置され、前記積層方向と前記一方向の両方と直交する方向において、前記トレンチ領域と交互に配置され、前記ショットキーバリアダイオード領域は、前記積層方向と前記一方向の両方に直交する方向において、前記トレンチ領域と交互に配置され、前記トレンチ領域は、前記一方向において、一方の前記端部PNダイオード領域から他方の前記端部PNダイオード領域まで連続して配置される。
1つの態様に係る半導体素子は、PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域と、中央PNダイオード領域とを有し、前記端部PNダイオード領域は、前記半導体素子の周縁部に位置し、前記ショットキーバリアダイオード領域は、前記積層方向と直交する一方向において、一方の前記端部PNダイオード領域から他方の前記端部PNダイオード領域まで連続して配置され、前記中央PNダイオード領域は、前記一方向において、前記トレンチ領域と交互に配置され、前記積層方向と前記一方向の両方に直交する方向において、前記ショットキーバリアダイオード領域と隣接する。
1つの態様に係る半導体素子は、PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域と、中央PNダイオード領域とを有し、前記端部PNダイオード領域は、前記半導体素子の周縁部に位置し、前記ショットキーバリアダイオード領域は、前記積層方向と直交する一方向において、前記PNダイオード領域と交互に配置され、前記積層方向と前記一方向の両方と直交する方向において、前記トレンチ領域と交互に配置され、前記トレンチ領域は、前一方向において、前記ショットキーバリアダイオード領域と交互に配置され、前記中央PNダイオード領域は、前記積層方向と前記一方向の両方と直交する方向において、一方の前記端部PNダイオード領域から他方の前記端部PNダイオード領域まで連続して配置される。
1つの態様に係る半導体素子は、PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、前記半導体素子の周縁部に位置し、前記ショットキーバリアダイオード領域は、前記半導体素子の中央部に位置し、前記トレンチ領域は、前記半導体素子の中央部に周期的に配置され、前記PNダイオード領域と前記ショットキーバリアダイオード領域の少なくともいずれかと隣接する。
1つの態様に係る半導体装置は、上記の半導体素子を含む。
特許文献1に記載の技術のようなTMBS構造を取り入れたショットキーバリアダイオードは、通常のGaN系のショットキーバリアダイオードに比べ、リーク電流を低減できるが、サージ耐量が高くないことが課題である。酸化ガリウム(Ga2O3)のショットキーバリアダイオードにおいても同様の課題がある。
以下に実施形態に係る半導体素子1及び半導体装置20について説明する。半導体素子1は、インバータ及びコンバータのような電力変換器のスイッチング回路に使用されるパワー半導体である。
[実施形態]
(半導体素子)
図1は、実施形態に係る半導体素子を説明するための概略図である。図2は、図2は、図1のA-A線断面図である。図3は、図1のB-B線断面図である。図4は、実施形態に係る半導体素子を説明するための模式的な平面図である。図1は、図4に示す半導体素子の一部を模式的に示した図である。図1ないし図4に示すように、実施形態に係る半導体素子1は、PNダイオード領域2とショットキーバリアダイオード領域3とトレンチ領域4とを有する。半導体素子1の積層方向を上下方向とする。上下方向をz軸方向とする。積層方向と直交する一方向をy軸方向とする。積層方向と一方向の両方と直交する方向をx軸方向とする。
(半導体素子)
図1は、実施形態に係る半導体素子を説明するための概略図である。図2は、図2は、図1のA-A線断面図である。図3は、図1のB-B線断面図である。図4は、実施形態に係る半導体素子を説明するための模式的な平面図である。図1は、図4に示す半導体素子の一部を模式的に示した図である。図1ないし図4に示すように、実施形態に係る半導体素子1は、PNダイオード領域2とショットキーバリアダイオード領域3とトレンチ領域4とを有する。半導体素子1の積層方向を上下方向とする。上下方向をz軸方向とする。積層方向と直交する一方向をy軸方向とする。積層方向と一方向の両方と直交する方向をx軸方向とする。
PNダイオード領域2は、PNダイオードが形成される領域である。PNダイオード領域2は、半導体素子1の中で高さが最も高い領域である。PNダイオード領域2は、端部PNダイオード領域2Aと、中央PNダイオード領域2Cとを有する。端部PNダイオード領域2Aは、半導体素子1の周縁部に位置する。中央PNダイオード領域2Cは、半導体素子1の中央部に位置する。中央PNダイオード領域2Cは、端部PNダイオード領域2Aの内側に位置する。中央PNダイオード領域2Cは、y軸方向において、ショットキーバリアダイオード領域3と交互に配置される。中央PNダイオード領域2Cは、x軸方向において、トレンチ領域4と交互に配置される。
ショットキーバリアダイオード領域3は、ショットキーバリアダイオードが形成される領域である。ショットキーバリアダイオード領域3は、端部PNダイオード領域2Aより内側に配置される。ショットキーバリアダイオード領域3は、y軸方向において、中央PNダイオード領域2Cと交互に配置される。ショットキーバリアダイオード領域3は、x軸方向において、トレンチ領域4と交互に配置される。
トレンチ領域4は、トレンチ構造が形成される領域である。トレンチ領域4は、端部PNダイオード領域2Aより内側に配置される。トレンチ領域4は、y軸方向において、一方の端部PNダイオード領域2Aから他方の端部PNダイオード領域2Aまで連続して配置される。
上側から半導体層を見たとき、ショットキーバリアダイオード領域3に挟まれているPNダイオード領域2の幅D11及び幅D12は、例えば8μm以上が好ましい。上側から半導体層を見たとき、トレンチ領域4に挟まれているショットキーバリアダイオード領域3の幅D11及び幅D12は、例えば8μm未満が好ましい。より詳しくは、PNダイオード領域2及びショットキーバリアダイオード領域3のx軸方向の幅D11は、例えば8μm以上が好ましい。ショットキーバリアダイオード領域3としては幅D11が小さいほど好ましいが、PNダイオード領域2としての幅D11は小さくなることが好ましくない。PNダイオード領域2のy軸方向の幅D12は、例えば8μm以上が好ましい。幅D12は、大きいほど好ましい。ショットキーバリアダイオード領域3の幅D13は、例えば8μm未満が好ましい。幅D13は、小さいほど好ましい。
このような半導体素子1は、支持基板100によって支持される。支持基板100は、シリコン基板等である。支持基板100は、例えばサファイア基板又はSiC基板でもよい。
(製造方法)
図17ないし図21を参照して、図1ないし図4に記載の半導体素子1の製造方法の一例について説明する。図17は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図18は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図19は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図20は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図21は、実施形態に係る半導体素子の製造方法を説明するための工程図である。半導体素子1の製造方法は、図17ないし図21に示す工程に沿って実行される。以下の説明では、一例として、半導体層がGaNである場合について説明するが、これに限定されない。例えば、半導体層はGa2O3でもよい。
図17ないし図21を参照して、図1ないし図4に記載の半導体素子1の製造方法の一例について説明する。図17は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図18は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図19は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図20は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図21は、実施形態に係る半導体素子の製造方法を説明するための工程図である。半導体素子1の製造方法は、図17ないし図21に示す工程に沿って実行される。以下の説明では、一例として、半導体層がGaNである場合について説明するが、これに限定されない。例えば、半導体層はGa2O3でもよい。
まず、基板11の表面11aからGaNを、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)または有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を用いてエピタキシャル成長させる(ステップST31)。まず、n-型半導体層である第1半導体層12をエピタキシャル成長させる。そして、第1半導体層12の表面11aから、第1半導体層12を覆うように、p-型半導体層である第2半導体層13をエピタキシャル成長させる。そして、第2半導体層13の表面11aから、第2半導体層13を覆うように、p-型半導体層である第3半導体層14をエピタキシャル成長させる。
基板11は、自立GaNである。基板11の積層方向の厚さは、例えば400μm程度である。
第1半導体層12は、n-型のGaNである。第1半導体層12は、1016cm-3未満の電子キャリア濃度となるよう、n型不純物のドープ量がコントロールされる。第1半導体層12の積層方向の厚さは、例えば5μm以上である。
第2半導体層13は、p-型のGaNである。第2半導体層13は、1018cm-3以上の不純物濃度となるよう、p型不純物のドープ量がコントロールされる。第2半導体層13の積層方向の厚さは、例えば450nm以上である。
第3半導体層14は、p-型のGaNである。第3半導体層14は、2×1020cm-3以上の不純物濃度となるよう、p型不純物のドープ量がコントロールされる。第3半導体層14の積層方向の厚さは、例えば30nm以上である。
PNダイオード領域2は、第1半導体層12と、第1半導体層12上に位置する第2半導体層13と、第2半導体層13上に位置する第3半導体層14とを含む。
ショットキーバリアダイオード領域3は、第1半導体層12を含む。ショットキーバリアダイオード領域3は、第1半導体層12上に位置するショットキー電極31を含む。
トレンチ領域4は、第1半導体層12を含む。
基板11の表面11aと反対側の裏面11bに裏面電極21を形成する(ステップST32)。より詳しくは、基板11の裏面11bに裏面電極21を例えば蒸着又はスパッタ等で形成する。
裏面電極21は、例えばAl層にTi、Ni、Auめっきを施したものである。Tiの積層方向の厚さは、例えば16nm以上である。Alの積層方向の厚さは、例えば85nm以上である。Niの積層方向の厚さは、例えば25nm以上である。Auの積層方向の厚さは、例えば50nm以上である。
第2半導体層13及び第3半導体層14の一部をドライエッチングする(ステップST33)。より詳しくは、第2半導体層13及び第3半導体層14のうちPNダイオード領域2を形成する部分を残し、残りの部分をドライエッチングする。言い換えると、第2半導体層13及び第3半導体層14のうちオーミックを形成する部分を残し、残りの部分をドライエッチングする。第2半導体層13及び第3半導体層14が除去された部分は、第1半導体層12の表面12aが露出する。例えば、エッチング装置は、誘導結合型(ICP-RIE:Inductive Coupled Plasma-Reactive Ion Etching)の装置を使用する。
露出している半導体層の表面の全面に金属層(バリアメタル)であるショットキー電極31を形成する(ステップST34)。露出している半導体層の表面の全面にショットキー電極31を例えば蒸着又はスパッタ等で形成する。ドライエッチングにより第2半導体層13及び第3半導体層14が除去され、露出した第1半導体層12とショットキー電極31とのショットキー接合2sが設けられる。また、第2半導体層13及び第3半導体層14が残された部分では、PN接合2pが設けられる。
ショットキー電極31は、例えばNi、Al、Pdなどである。ショットキー電極31の積層方向の厚さは、例えば50nm以上500nm以下である。ショットキー電極31は、基板11と積層方向において反対側に位置する。
ショットキー電極31の一部にマスクを設けてウェットエッチングする(ステップST35)。より詳しくは、ショットキー電極31のうち残す部分をフォトレジスト41で覆う。具体的には、PNダイオード領域2、ショットキーバリアダイオード領域3を形成する部分をフォトレジスト41で覆う。そして、ショットキー電極31の一部をウェットエッチングする。より詳しくは、フォトレジスト41が設けられた部分、言い換えると、PNダイオード領域2、ショットキーバリアダイオード領域3を形成する部分を残して、ショットキー電極31が除去される。ショットキー電極31が除去された部分から、第1半導体層12の表面12aが露出する。ウェットエッチングは、体積比でH2SO4及びHNO3を1としたとき、H2Oの比率が10として行う。
露出した第1半導体層12をドライエッチングする(ステップST36)。より詳しくは、露出した第1半導体層12は、表面12cの高さまでドライエッチングされる。PNダイオード領域2が形成される部分とトレンチ領域4が形成される部分との間は、段差12bを残してドライエッチングされる。例えば、エッチング装置は、誘導結合型(ICP-RIE)の装置を使用する。
絶縁層である絶縁膜32を形成する(ステップST37)より詳しくは、ステップST35で設けたフォトレジスト41が除去される。絶縁膜32は、露出した半導体層の表面の全面を覆って配置される。絶縁膜32は、PNダイオード領域2、ショットキーバリアダイオード領域3、及び、トレンチ領域4を形成する部分を覆って配置される。
絶縁膜32は、例えばAl2O3である。Al2O3の積層方向の厚さは、例えば50nm以上100nm以下である。Al2O3の絶縁膜32は、原子層堆積法(ALD:Atomic Layer Deposition)で形成する。絶縁膜32は、例えばSiO2である。SiO2の積層方向の厚さは、例えば400nm以上である。SiO2の絶縁膜32は、化学気相成長(CVD:Chemical Vapor Deposition)で形成する。
コンタクトホールを形成する(ステップST38)。より詳しくは、ウェットエッチングまたはドライエッチングにより、PNダイオード領域2及びショットキーバリアダイオード領域3を形成する部分の絶縁膜32と、トレンチ領域4を形成する部分の絶縁膜32とが除去される。PNダイオード領域2及びショットキーバリアダイオード領域3を形成する部分の絶縁膜32を除去して、コンタクトホールH1が設けられる。トレンチ領域4を形成する部分の絶縁膜32が除去されて、コンタクトホールH2が設けられる。コンタクトホールH1及びコンタクトホールH2から、ショットキー電極31が露出する。ウェットエッチングは、例えばバッファードフッ酸を用いる。
FP電極を形成する(ステップST39)。より詳しくは、露出したショットキー電極31及び絶縁膜32の全面を上面電極金属膜33で覆う。露出したショットキー電極31及び絶縁膜32の全面に上面電極金属膜33を例えば蒸着又はスパッタ等で形成する。半導体素子1の全面が、上面電極金属膜33で覆われる。上面電極金属膜33は、絶縁膜32上で所謂フィールドプレートを形成する。上面電極金属膜33からは、絶縁膜32の外周側の端部が露出する。
上面電極金属膜33は、例えばTiである。Tiの積層方向の厚さは、例えば200nmである。上面電極金属膜33は、例えばAlである。Alの積層方向の厚さは、例えば2.8μmである。
このようにして半導体素子1が製造される。
(製造方法の他の例)
図5ないし図8を参照して、図1ないし図4に記載の半導体素子1の製造方法の他の例について説明する。図5は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図6は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図7は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図8は、実施形態に係る半導体素子の製造方法を説明するための工程図である。半導体素子1の製造方法は、図5ないし図8に示す工程に沿って実行される。
図5ないし図8を参照して、図1ないし図4に記載の半導体素子1の製造方法の他の例について説明する。図5は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図6は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図7は、実施形態に係る半導体素子の製造方法を説明するための工程図である。図8は、実施形態に係る半導体素子の製造方法を説明するための工程図である。半導体素子1の製造方法は、図5ないし図8に示す工程に沿って実行される。
まず、図5に示すように、基板11の表面11aからGaNを、ハイドライド気相成長法または有機金属気相成長法を用いてエピタキシャル成長させる(ステップST11)。
基板11の表面11aと反対側の裏面11bに裏面電極21を形成する(ステップST12)。
ステップST12の実行後、ステップST13の実行前に、熱処理を行う。熱処理は、例えば窒素雰囲気で800℃、30secとする。
第2半導体層13及び第3半導体層14の一部をドライエッチングする(ステップST13)。より詳しくは、第2半導体層13及び第3半導体層14のうちPNダイオード領域2を形成する部分を残し、残りの部分をドライエッチングする。言い換えると、第2半導体層13及び第3半導体層14のうちオーミックを形成する部分を残し、残りの部分をドライエッチングする。第2半導体層13及び第3半導体層14が除去された部分は、第1半導体層12の表面12aが露出する。例えば、エッチング装置は、誘導結合型(ICP-RIE:Inductive Coupled Plasma-Reactive Ion Etching)の装置を使用する。
ステップST13の実行後、ステップST14の実行前に、ダメージ回復熱処理を行う。熱処理は、例えば400℃で5min、または、500℃で5minとする。
露出している半導体層の表面の全面に金属層(バリアメタル)であるショットキー電極31を形成する(ステップST14)。露出している半導体層の表面の全面にショットキー電極31を例えば蒸着又はスパッタ等で形成する。ドライエッチングにより第2半導体層13及び第3半導体層14が除去され、露出した第1半導体層12とショットキー電極31とのショットキー接合2sが設けられる。また、第2半導体層13及び第3半導体層14が残された部分では、PN接合2pが設けられる。
つづいて、図6に示すように、ショットキー電極31の一部をウェットエッチング及びドライエッチングするためのマスクを設ける(ステップST15)。より詳しくは、ショットキー電極31のうち残す部分をフォトレジスト41で覆う。具体的には、PNダイオード領域2、ショットキーバリアダイオード領域3、及び、トレンチ領域4を形成する部分をフォトレジスト41で覆う。
ショットキー電極31の一部をウェットエッチングする(ステップST16)。より詳しくは、フォトレジスト41が設けられた部分、言い換えると、PNダイオード領域2、ショットキーバリアダイオード領域3、及び、トレンチ領域4を形成する部分を残して、ショットキー電極31が除去される。ショットキー電極31が除去された部分から、第1半導体層12の表面12aが露出する。ウェットエッチングは、体積比でH2SO4及びHNO3を1としたとき、H2Oの比率が10として行う。ステップS16は、ドライエッチングでもよい。
つづいて、図7に示すように、露出した第1半導体層12をドライエッチングする(ステップST17)。より詳しくは、露出した第1半導体層12は、表面12cの高さまでドライエッチングされる。PNダイオード領域2が形成される部分とトレンチ領域4が形成される部分との間は、段差12bを残してドライエッチングされる。例えば、エッチング装置は、誘導結合型(ICP-RIE)の装置を使用する。
マスクを除去する(ステップST18)。より詳しくは、ステップST15で設けたフォトレジスト41が除去される。
つづいて、図8に示すように、絶縁層である絶縁膜32を形成する(ステップST19)。絶縁膜32は、露出した半導体層の表面の全面を覆って配置される。絶縁膜32は、PNダイオード領域2、ショットキーバリアダイオード領域3、及び、トレンチ領域4を形成する部分を覆って配置される。
コンタクトホールを形成する(ステップST20)。より詳しくは、ウェットエッチングまたはドライエッチングにより、PNダイオード領域2及びショットキーバリアダイオード領域3を形成する部分の絶縁膜32と、トレンチ領域4を形成する部分の絶縁膜32とが除去される。PNダイオード領域2及びショットキーバリアダイオード領域3を形成する部分の絶縁膜32を除去して、コンタクトホールH1が設けられる。トレンチ領域4を形成する部分の絶縁膜32が除去されて、コンタクトホールH2が設けられる。コンタクトホールH1及びコンタクトホールH2から、ショットキー電極31が露出する。ウェットエッチングは、例えばバッファードフッ酸を用いる。
FP電極を形成する(ステップST21)。より詳しくは、露出したショットキー電極31及び絶縁膜32の全面を上面電極金属膜33で覆う。露出したショットキー電極31及び絶縁膜32の全面に上面電極金属膜33を例えば蒸着又はスパッタ等で形成する。半導体素子1の全面が、上面電極金属膜33で覆われる。上面電極金属膜33は、絶縁膜32上で所謂フィールドプレートを形成する。上面電極金属膜33からは、絶縁膜32の外周側の端部が露出する。
(TMBS構造の形成方法の他の例)
図22、図23を参照して、半導体素子1の製造方法のTMBS構造の形成方法の他の例について説明する。図22は、実施形態に係る半導体素子の製造方法の他の例を説明するための工程図である。図23は、実施形態に係る半導体素子の製造方法の他の例を説明するための工程図である。図5に示すステップST11ないしステップST13を実行した後に、ステップST51ないしステップST55を実行する。
図22、図23を参照して、半導体素子1の製造方法のTMBS構造の形成方法の他の例について説明する。図22は、実施形態に係る半導体素子の製造方法の他の例を説明するための工程図である。図23は、実施形態に係る半導体素子の製造方法の他の例を説明するための工程図である。図5に示すステップST11ないしステップST13を実行した後に、ステップST51ないしステップST55を実行する。
露出している半導体層の表面にマスクを設ける(ステップST51)。より詳しくは、露出している半導体層の表面のうち、ショットキー電極31を形成する部分を除いてフォトレジスト41で覆う。
フォトレジスト41の表面及び露出している半導体層の表面に金属層(バリアメタル)であるショットキー電極31を形成する(ステップST52)。この例では、ショットキー電極31としてNiを堆積する。ショットキー電極31は、リトオフで形成される。
マスクを除去する(ステップST53)。
TMBS構造を形成するためのマスクを設ける(ステップST54)。より詳しくは、トレンチ構造を形成する部分を除いてフォトレジスト42で覆う。
露出した第1半導体層12をドライエッチングする(ステップST55)。
このようにしてTMBS構造を形成してもよい。
大容量化が必要な場合には、一例として、図9に示すように実装して半導体装置20として利用してもよい。図9は、実施形態に係る半導体素子を説明するための模式的斜視図である。具体的には、図9に示すように、共通の裏面電極21を実装基板200上の一の電極パッド201にダイボンディングし、個々の上面電極金属膜33をボンディングワイヤ52により他の電極パッド202に接続する。このように実装基板200を実装することで、複数のダイオードを並列接続して大容量化し利用することができる。このとき、複数の半導体素子1を一定方向に並べて配置するように製造する。半導体素子1は、積層方向視で、半導体素子1が並ぶ方向に対する略直交方向に長尺な形状とする。半導体素子1をこのような形状と並びとすることで、ダイオードの接合面積を大きくすることができる。このように製造された半導体素子1は、用途に合わせて様々な半導体装置20として利用可能である。
(効果)
以上により、本実施形態では、1つの半導体素子1に、PNダイオード領域2とショットキーバリアダイオード領域3とトレンチ領域4とを有する。本実施形態によれば、リーク電流が低く、かつ、サージ耐圧が高い半導体素子1を提供できる。
以上により、本実施形態では、1つの半導体素子1に、PNダイオード領域2とショットキーバリアダイオード領域3とトレンチ領域4とを有する。本実施形態によれば、リーク電流が低く、かつ、サージ耐圧が高い半導体素子1を提供できる。
本実施形態によれば、PNダイオード領域2とショットキーバリアダイオード領域3とを有することにより、電界集中が起こる箇所がショットキーバリアダイオード領域3からPNダイオード領域2に移る。本実施形態によれば、通常のTMBS構造よりもリーク電流を抑制できる。
本実施形態は、JBS(Junction Barrier Schottky)/MPS(Merged PiN Schottky)構造をとることにより、サージ時の発熱を低減できる。
本実施形態では、ステップST34においてNi膜を一様に形成した後、ステップS35においてその上にレジスト膜を形成してNiエッチングを行い、ステップST36においてライエッチングを行う。または、本実施形態では、ステップST14においてNi膜を一様に形成した後、ステップS15においてその上にレジスト膜を形成し、ステップS16におけるNiエッチングとステップST17におけるドライエッチングを続けて行う。これにより、本実施形態によれば、トレンチの際(きわ)まで電極を形成することができるので、電極端の電界集中を抑制することができる。図17ないし図21に示す方法、および、図5ないし図8に示す方法は、図22、図23に示す方法に比べて、高い効果を得ることができる。
本実施形態では、露出している半導体層の表面の全面に金属層であるショットキー電極31を形成し、ショットキー電極31の一部にマスクを設け、ショットキー電極31のうちマスクが形成された部分を残して、ショットキー電極31を除去し、ショットキー電極31を除去した部分から露出した半導体層をドライエッチングする。これにより、本実施形態によれば、トレンチの際まで電極を形成することができるので、電極端の電界集中を抑制することができる。
[変形例1]
図10、図11を参照して、実施形態の変形例1について説明する。図10は、変形例1に係る半導体素子を説明するための概略図である。図11は、変形例1に係る半導体素子を説明するための模式的な平面図である。図10は、図11に示す半導体素子の一部を模式的に示した図である。
図10、図11を参照して、実施形態の変形例1について説明する。図10は、変形例1に係る半導体素子を説明するための概略図である。図11は、変形例1に係る半導体素子を説明するための模式的な平面図である。図10は、図11に示す半導体素子の一部を模式的に示した図である。
ショットキーバリアダイオード領域3は、x軸方向において、一方の端部PNダイオード領域2Aから他方である向かい側の端部PNダイオード領域2Aまで連続して配置される。
中央PNダイオード領域2Cは、x軸方向において、トレンチ領域4と交互に配置される。中央PNダイオード領域2Cは、y軸方向において、ショットキーバリアダイオード領域3と隣接する。
幅D21、幅D22、及び幅D23は、第一実施形態の幅D11、幅D12、及び幅D13と同様である。
本変形例は、第一実施形態に比べて、半導体素子1の全体の面積に占めるトレンチ領域4の面積を少なくできる。本変形例は、半導体素子1の効率を向上できる。
[変形例2]
図12を参照して、実施形態の変形例2について説明する。図12は、変形例2に係る半導体素子を説明するための模式的な平面図である。
図12を参照して、実施形態の変形例2について説明する。図12は、変形例2に係る半導体素子を説明するための模式的な平面図である。
ショットキーバリアダイオード領域3は、y軸方向において、PNダイオード領域2と交互に配置され、x軸方向において、トレンチ領域4と交互に配置される。
トレンチ領域4は、x軸方向において、ショットキーバリアダイオード領域3と交互に配置される。
中央PNダイオード領域2Cは、x軸方向において、一方の端部PNダイオード領域2Aから他方の端部PNダイオード領域2Aまで連続して配置される。
幅D31、幅D32、及び幅D33は、第一実施形態の幅D11、幅D12、及び幅D13と同様である。
本変形例は、第一実施形態に比べて、半導体素子1の全体の面積に占めるトレンチ領域4の面積を少なくできる。本変形例は、半導体素子1の効率を向上できる。
[変形例3]
図13を参照して、実施形態の変形例3について説明する。図13は、変形例3に係る半導体素子を説明するための模式的な平面図である。図13以降の図では、PNダイオード領域2を網掛けで示し、ショットキーバリアダイオード領域3を斜線で示している。
図13を参照して、実施形態の変形例3について説明する。図13は、変形例3に係る半導体素子を説明するための模式的な平面図である。図13以降の図では、PNダイオード領域2を網掛けで示し、ショットキーバリアダイオード領域3を斜線で示している。
PNダイオード領域2は、半導体素子1の周縁部に位置する。本実施形態では、PNダイオード領域2は、半導体素子1の周縁部にのみ位置する。
ショットキーバリアダイオード領域3は、半導体素子1の中央部に位置する。ショットキーバリアダイオード領域3は、PNダイオード領域2より内側に位置する。本実施形態では、ショットキーバリアダイオード領域3は、半導体素子1の中央部に網目状に位置する。ショットキーバリアダイオード領域3の幅D41は、第一実施形態の幅D13と同様である。
トレンチ領域4は、半導体素子1の中央部に周期的に配置される。トレンチ領域4は、PNダイオード領域2とショットキーバリアダイオード領域3の少なくともいずれかと隣接する。本実施形態では、周縁部に位置するトレンチ領域4は、PNダイオード領域2と隣接する。本実施形態では、中央部に配置されたトレンチ領域4は、ショットキーバリアダイオード領域3と隣接する。本実施形態では、トレンチ領域4は、積層方向の平面視において六角形状である。トレンチ領域4は、x軸方向及びy軸方向において、間隔を空けて配置される。x軸方向において隣り合うトレンチ領域4は、y軸方向においてずれて配置される。
本変形例は、変形例1に比べて、半導体素子1の全体の面積に占めるトレンチ領域4の面積を少なくできる。本変形例は、半導体素子1の効率を向上できる。本変形例は、トレンチ領域4が六角形状であるので、電界集中を緩和できる。
[変形例4]
図14を参照して、実施形態の変形例4について説明する。図14は、変形例4に係る半導体素子を説明するための模式的な平面図である。
図14を参照して、実施形態の変形例4について説明する。図14は、変形例4に係る半導体素子を説明するための模式的な平面図である。
PNダイオード領域2は、半導体素子1の周縁部に位置する。本実施形態では、PNダイオード領域2は、端部PNダイオード領域2Aと中央PNダイオード領域2Cとを有する。中央PNダイオード領域2Cは、y軸方向において間隔を空けて配置される。中央PNダイオード領域2Cは、y軸方向において隣り合うトレンチ領域4の間に配置される。
ショットキーバリアダイオード領域3は、半導体素子1の中央部に位置する。本実施形態では、ショットキーバリアダイオード領域3は、半導体素子1の中央部に帯状に位置する。ショットキーバリアダイオード領域3は、y軸方向の一方の端部PNダイオード領域2Aから他方の端部PNダイオード領域2Aまで連続して配置される。ショットキーバリアダイオード領域3の幅D42は、第一実施形態の幅D13と同様である。
トレンチ領域4は、半導体素子1の中央部に周期的に配置される。トレンチ領域4は、PNダイオード領域2とショットキーバリアダイオード領域3の少なくともいずれかと隣接する。本実施形態では、y軸方向において、中央PNダイオード領域2Cとトレンチ領域4は、交互に配置される。本実施形態では、トレンチ領域4は、積層方向の平面視において六角形状である。トレンチ領域4は、x軸方向及びy軸方向において、間隔を空けて配置される。x軸方向において隣り合うトレンチ領域4は、y軸方向においてずれて配置される。
本変形例は、変形例1に比べて、半導体素子1の全体の面積に占めるトレンチ領域4の面積を少なくできる。本変形例は、半導体素子1の効率を向上できる。本変形例は、トレンチ領域4が六角形状であるので、電界集中を緩和できる。
[変形例5]
図15を参照して、実施形態の変形例5について説明する。図15は、変形例5に係る半導体素子を説明するための模式的な平面図である。変形例5は、変形例3において、トレンチ領域4の形状を、円形状にしたものである。
図15を参照して、実施形態の変形例5について説明する。図15は、変形例5に係る半導体素子を説明するための模式的な平面図である。変形例5は、変形例3において、トレンチ領域4の形状を、円形状にしたものである。
トレンチ領域4は、積層方向の平面視において円形状である。
ショットキーバリアダイオード領域3の幅D43は、第一実施形態の幅D13と同様である。
本変形例は、トレンチ領域4が円形状であるので、変形例3に比べて電界集中をより緩和できる。
[変形例6]
図16を参照して、実施形態の変形例6について説明する。図16は、変形例6に係る半導体素子を説明するための模式的な平面図である。変形例6は、変形例4において、トレンチ領域4の形状を、円形状にしたものである。
図16を参照して、実施形態の変形例6について説明する。図16は、変形例6に係る半導体素子を説明するための模式的な平面図である。変形例6は、変形例4において、トレンチ領域4の形状を、円形状にしたものである。
トレンチ領域4は、積層方向の平面視において円形状である。
ショットキーバリアダイオード領域3の幅D44は、第一実施形態の幅D13と同様である。
本変形例は、トレンチ領域4が円形状であるので、変形例4に比べて電界集中をより緩和できる。
本出願の開示する実施形態は、発明の要旨及び範囲を逸脱しない範囲で変更することができる。さらに、本出願の開示する実施形態及びその変形例は、適宜組み合わせることができる。
添付の請求項に係る技術を完全かつ明瞭に開示するために特徴的な実施形態に関し記載してきた。しかし、添付の請求項は、上記実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。
ステップST12の裏面電極21の形成は、ショットキー電極31が形成された後に形成されてもよい。温度を上げる工程が含まれる場合等に、ステップST12を最後に行うことで、裏面電極21への影響を避けることができる。
上記の半導体素子の製造方法は、PN接合が設けられず、TMBS構造又はMESA構造が形成されたショットキーバリアダイオードにも適用可能である。
1 半導体素子
2 PNダイオード領域
3 ショットキーバリアダイオード領域
4 トレンチ領域
11 基板
11a 表面
12 第1半導体層
13 第2半導体層
14 第3半導体層
20 半導体装置
21 裏面電極
31 ショットキー電極
32 絶縁膜
33 上面電極金属膜
200 実装基板
201 電極パッド
202 電極パッド
2 PNダイオード領域
3 ショットキーバリアダイオード領域
4 トレンチ領域
11 基板
11a 表面
12 第1半導体層
13 第2半導体層
14 第3半導体層
20 半導体装置
21 裏面電極
31 ショットキー電極
32 絶縁膜
33 上面電極金属膜
200 実装基板
201 電極パッド
202 電極パッド
Claims (16)
- PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、
前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域と、中央PNダイオード領域とを有し、
前記端部PNダイオード領域は、前記半導体素子の周縁部に位置し、
前記中央PNダイオード領域は、前記積層方向と直交する一方向において、前記ショットキーバリアダイオード領域と交互に配置され、前記積層方向と前記一方向の両方と直交する方向において、前記トレンチ領域と交互に配置され、
前記ショットキーバリアダイオード領域は、前記積層方向と前記一方向の両方に直交する方向において、前記トレンチ領域と交互に配置され、
前記トレンチ領域は、前記一方向において、一方の前記端部PNダイオード領域から他方の前記端部PNダイオード領域まで連続して配置される
半導体素子。 - PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、
前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域と、中央PNダイオード領域とを有し、
前記端部PNダイオード領域は、前記半導体素子の周縁部に位置し、
前記ショットキーバリアダイオード領域は、前記積層方向と直交する一方向において、一方の前記端部PNダイオード領域から他方の前記端部PNダイオード領域まで連続して配置され、
前記中央PNダイオード領域は、前記一方向において、前記トレンチ領域と交互に配置され、前記積層方向と前記一方向の両方に直交する方向において、前記ショットキーバリアダイオード領域と隣接する
半導体素子。 - PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、
前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、端部PNダイオード領域と、中央PNダイオード領域とを有し、
前記端部PNダイオード領域は、前記半導体素子の周縁部に位置し、
前記ショットキーバリアダイオード領域は、前記積層方向と直交する一方向において、前記PNダイオード領域と交互に配置され、前記積層方向と前記一方向の両方と直交する方向において、前記トレンチ領域と交互に配置され、
前記トレンチ領域は、前記一方向において、前記ショットキーバリアダイオード領域と交互に配置され、
前記中央PNダイオード領域は、前記積層方向と前記一方向の両方と直交する方向において、一方の前記端部PNダイオード領域から他方の前記端部PNダイオード領域まで連続して配置される
半導体素子。 - PNダイオード領域とショットキーバリアダイオード領域とトレンチ領域とを有する半導体素子であって、
前記PNダイオード領域は、積層方向を上下方向としたとき、高さが最も高く、前記半導体素子の周縁部に位置し、
前記ショットキーバリアダイオード領域は、前記半導体素子の中央部に位置し、
前記トレンチ領域は、前記半導体素子の中央部に周期的に配置され、前記PNダイオード領域と前記ショットキーバリアダイオード領域の少なくともいずれかと隣接する
半導体素子。 - 前記トレンチ領域は、六角形状である
請求項4に記載の半導体素子。 - 前記トレンチ領域は、円形状である
請求項4に記載の半導体素子。 - 前記ショットキーバリアダイオード領域は、網目状に配置される
請求項4から請求項6のいずれか一項に記載の半導体素子。 - 前記ショットキーバリアダイオード領域は、前記積層方向と直交する一方向において、一方の前記PNダイオード領域から他方の前記PNダイオード領域まで連続して配置される
請求項4から請求項6のいずれか一項に記載の半導体素子。 - 前記PNダイオード領域は、
第1半導体層と、
前記第1半導体層上に位置する第2半導体層と
前記第2半導体層上に位置する第3半導体層と
を含む請求項1から請求項8のいずれか一項に記載の半導体素子。 - 前記ショットキーバリアダイオード領域は、
第1半導体層と、
前記第1半導体層上に位置するショットキー電極
を含む請求項1から請求項9のいずれか一項に記載の半導体素子。 - 前記トレンチ領域は、
第1半導体層
を含む請求項1から請求項9のいずれか一項に記載の半導体素子。 - 前記第1半導体層、前記第2半導体層、及び前記第3半導体層に使用される半導体材料はGaN、Ga2O3のいずれかである、
請求項9に記載の半導体素子。 - 積層方向を上下方向として、上側から半導体層を見たとき、ショットキーバリアダイオード領域に挟まれているPNダイオード領域の幅は、8mm以上である
請求項1から請求項12のいずれか一項に記載の半導体素子。 - 積層方向を上下方向として、上側から半導体層を見たとき、トレンチ領域に挟まれているショットキーバリアダイオード領域の幅は、8mm未満である
請求項1から請求項13のいずれか一項に記載の半導体素子。 - 請求項1から請求項14のいずれか一項に記載の半導体素子を含む半導体装置。
- 露出している半導体層の表面の全面に金属層であるショットキー電極を形成し、
前記ショットキー電極の一部にマスクを設け、
前記ショットキー電極のうち前記マスクが形成された部分を残して、前記ショットキー電極を除去し、
前記ショットキー電極を除去した部分から露出した半導体層をドライエッチングする、
半導体素子の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-055949 | 2021-03-29 | ||
JP2021055949 | 2021-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209778A1 true WO2022209778A1 (ja) | 2022-10-06 |
Family
ID=83456220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011012 WO2022209778A1 (ja) | 2021-03-29 | 2022-03-11 | 半導体素子、半導体装置及び半導体素子の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022209778A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009218236A (ja) * | 2008-03-06 | 2009-09-24 | Toyota Central R&D Labs Inc | ダイオード |
JP2009535853A (ja) * | 2006-05-02 | 2009-10-01 | セミサウス ラボラトリーズ インコーポレイテッド | サージ電流保護を伴う半導体デバイスとその製造方法 |
WO2011105434A1 (ja) * | 2010-02-23 | 2011-09-01 | 富士電機ホールディングス株式会社 | 半導体装置 |
JP2013115394A (ja) * | 2011-12-01 | 2013-06-10 | Hitachi Ltd | ジャンクションバリアショットキーダイオード |
JP2016162785A (ja) * | 2015-02-27 | 2016-09-05 | 豊田合成株式会社 | 半導体装置およびその製造方法 |
WO2019155768A1 (ja) * | 2018-02-09 | 2019-08-15 | 三菱電機株式会社 | 電力用半導体装置 |
WO2020218294A1 (ja) * | 2019-04-25 | 2020-10-29 | 京セラ株式会社 | 半導体装置及び半導体装置の製造方法 |
-
2022
- 2022-03-11 WO PCT/JP2022/011012 patent/WO2022209778A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009535853A (ja) * | 2006-05-02 | 2009-10-01 | セミサウス ラボラトリーズ インコーポレイテッド | サージ電流保護を伴う半導体デバイスとその製造方法 |
JP2009218236A (ja) * | 2008-03-06 | 2009-09-24 | Toyota Central R&D Labs Inc | ダイオード |
WO2011105434A1 (ja) * | 2010-02-23 | 2011-09-01 | 富士電機ホールディングス株式会社 | 半導体装置 |
JP2013115394A (ja) * | 2011-12-01 | 2013-06-10 | Hitachi Ltd | ジャンクションバリアショットキーダイオード |
JP2016162785A (ja) * | 2015-02-27 | 2016-09-05 | 豊田合成株式会社 | 半導体装置およびその製造方法 |
WO2019155768A1 (ja) * | 2018-02-09 | 2019-08-15 | 三菱電機株式会社 | 電力用半導体装置 |
WO2020218294A1 (ja) * | 2019-04-25 | 2020-10-29 | 京セラ株式会社 | 半導体装置及び半導体装置の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI770134B (zh) | 半導體裝置及半導體裝置之製造方法 | |
JP5140347B2 (ja) | バイポーラトランジスタ及びその製造方法 | |
JP2007242853A (ja) | 半導体基体及びこれを使用した半導体装置 | |
JP2013080895A (ja) | 窒化物半導体素子及びその製造方法 | |
WO2012091311A2 (en) | High efficiency light emitting diode | |
JP2009117820A (ja) | 窒化物半導体素子および窒化物半導体素子の製造方法 | |
JP4210823B2 (ja) | シヨットキバリアダイオード及びその製造方法 | |
JP6428900B1 (ja) | ダイオード素子およびダイオード素子の製造方法 | |
JP6683972B2 (ja) | 半導体装置とその製造方法および半導体積層物 | |
TW201244063A (en) | Compound semiconductor device and method for manufacturing the same | |
JP4058595B2 (ja) | 半導体発光素子及びその製造方法 | |
JP4288852B2 (ja) | バイポーラトランジスタの製造方法 | |
WO2022209778A1 (ja) | 半導体素子、半導体装置及び半導体素子の製造方法 | |
JP2016171172A (ja) | ヘテロ接合バイポーラトランジスタおよびその製造方法 | |
KR20130082307A (ko) | 기판 구조체, 이로부터 제조된 반도체소자 및 그 제조방법 | |
JP2016219682A (ja) | ヘテロ接合バイポーラトランジスタ | |
JP2015029099A (ja) | 窒化ガリウム系ダイオード及びその製造方法 | |
WO2022131059A1 (ja) | 半導体素子の製造方法、半導体素子及び半導体装置 | |
JP4058592B2 (ja) | 半導体発光素子及びその製造方法 | |
WO2022190567A1 (ja) | 半導体素子及び半導体装置 | |
JP5658944B2 (ja) | ダイオード、モータ駆動回路、3相モータ、ハイブリッド車および自動車 | |
WO2022025080A1 (ja) | 半導体素子の製造方法、半導体素子及び半導体装置 | |
US20230197446A1 (en) | Manufacturing method for semiconductor element, and semiconductor device | |
WO2022091803A1 (ja) | 半導体素子の製造方法、半導体素子及び半導体装置 | |
CN215527733U (zh) | 一种纵向导通型GaN功率二极管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779999 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779999 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |