WO2022209490A1 - 絶縁抵抗監視装置 - Google Patents

絶縁抵抗監視装置 Download PDF

Info

Publication number
WO2022209490A1
WO2022209490A1 PCT/JP2022/007957 JP2022007957W WO2022209490A1 WO 2022209490 A1 WO2022209490 A1 WO 2022209490A1 JP 2022007957 W JP2022007957 W JP 2022007957W WO 2022209490 A1 WO2022209490 A1 WO 2022209490A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation resistance
measured
humidity
under test
phase motor
Prior art date
Application number
PCT/JP2022/007957
Other languages
English (en)
French (fr)
Inventor
玲平 高谷
昌平 山口
将宏 尾崎
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP22779715.6A priority Critical patent/EP4318004A1/en
Priority to US18/284,617 priority patent/US20240159815A1/en
Priority to CN202280022606.8A priority patent/CN116997806A/zh
Publication of WO2022209490A1 publication Critical patent/WO2022209490A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present disclosure relates to an insulation resistance monitoring device.
  • Electricity Business Act to undergo legal inspections at a frequency of about once a year.
  • electric equipment such as motors connected to switchboards is subject to self-inspection at intervals of once a week to once a month, according to their own management standards.
  • the objects of self-inspection include a wide variety of electrical facilities and equipment, and the reality is that there are too many of them to handle. Therefore, an insulation resistance monitoring device has been developed for automating the self-inspection.
  • Patent Literature 1 discloses an insulation resistance monitoring device provided with a switch that opens and closes a connection path between a power wire or ground wire of an object to be measured and a voltage generator of the insulation resistance monitoring device.
  • the insulation resistance of the object to be measured may fluctuate depending on the environmental conditions surrounding the object to be measured. For this reason, a temporarily increased insulation resistance is acquired, and as a result, there is a risk of overlooking deterioration in insulation performance that should be inspected for the object to be measured. Moreover, when the insulation resistance fluctuates, it cannot be determined whether the cause of the fluctuation is the influence of the surrounding environment or the deterioration of the insulation performance. Therefore, it is required to measure the insulation resistance of the object to be measured with high accuracy in consideration of the variation of the insulation resistance caused by the surrounding environment of the object to be measured.
  • An object of the present disclosure is to provide an insulation resistance monitoring device capable of measuring the insulation resistance of an object to be measured with high accuracy, taking into account variations in insulation resistance caused by the surrounding environment of the object to be measured. .
  • An insulation resistance monitoring device includes: an insulation resistance measuring instrument that measures and outputs the insulation resistance of the object under test; an operation information receiving unit that receives information indicating that the device under test is in operation or at rest; a humidity information receiving unit that receives the humidity in the vicinity of the object to be measured; When the object to be measured is stopped and the humidity in the vicinity of the object to be measured is equal to or higher than a first threshold value, the insulation resistance of the object to be measured is measured and output. and a controller for controlling the measuring device.
  • the insulation resistance monitoring device further comprises a timer that measures the elapsed time since the object under test stopped, The controller determines that the object to be measured is stopped, a predetermined first time period has elapsed since the object to be measured has stopped, and the humidity in the vicinity of the object to be measured has reached the first is equal to or higher than the threshold value, the insulation resistance measuring instrument is controlled to measure and output the insulation resistance of the object to be measured.
  • the insulation resistance monitoring device further comprises a storage device that stores the insulation resistance of the object under test measured by the insulation resistance measuring instrument,
  • the controller is controlling the insulation resistance meter to measure the insulation resistance of the object under test over a second predetermined time period; storing in the storage device the insulation resistance of the object under test measured by the insulation resistance measuring instrument and the humidity in the vicinity of the object under test received when the insulation resistance of the object under test was measured; , By selecting the humidity corresponding to the minimum insulation resistance among the plurality of insulation resistances stored in the storage device as the first threshold, setting the first threshold;
  • the controller sets the first threshold when the period during which the humidity in the vicinity of the object under test is less than the first threshold exceeds a predetermined third time period.
  • the insulation resistance monitoring device further comprises a temperature information receiving unit that receives the temperature in the vicinity of the object under test, The controller determines that the object to be measured is stopped, the humidity in the vicinity of the object to be measured is equal to or higher than the first threshold value, and the temperature in the vicinity of the object to be measured is equal to or higher than the second threshold value.
  • the insulation resistance measuring instrument is controlled to measure and output the insulation resistance of the object to be measured.
  • the insulation resistance monitoring device further comprises a timer that measures the elapsed time since the object under test stopped, The controller determines that the object to be measured is stopped, a predetermined first time period has elapsed since the object to be measured has stopped, and the humidity in the vicinity of the object to be measured has reached the first level.
  • the insulation resistance measuring instrument is configured to measure and output the insulation resistance of the object to be measured. Control.
  • the insulation resistance monitoring device further comprises a storage device that stores the insulation resistance of the object under test measured by the insulation resistance measuring instrument,
  • the controller is controlling the insulation resistance meter to measure the insulation resistance of the object under test over a second predetermined time period; storing the insulation resistance of the object under test measured by the insulation resistance measuring instrument and the temperature in the vicinity of the object under test received when the insulation resistance of the object under test was measured in the storage device; , By selecting a temperature corresponding to a minimum insulation resistance among a plurality of insulation resistances stored in the storage device as the second threshold, setting the second threshold;
  • the controller sets the second threshold when the period during which the temperature in the vicinity of the object under test is less than the second threshold exceeds a predetermined third time period.
  • the insulation resistance monitoring device it is possible to measure the insulation resistance of the object to be measured with high accuracy, taking into consideration the variation in the insulation resistance of the object to be measured due to the surrounding environment.
  • FIG. 1 is a block diagram showing an example of a configuration of a motor system including an insulation resistance monitoring device 40 according to a first embodiment
  • FIG. FIG. 2 is a graph showing an example of characteristics of the insulation resistance value Ro of the three-phase motor device 30 of FIG. 1 with respect to humidity and temperature
  • FIG. 2 is an exemplary timing chart showing measurement of an insulation resistance value Ro of the three-phase motor device 30 by the insulation resistance monitoring device 40 of FIG. 1
  • 4 is a flowchart showing an example of insulation resistance monitoring processing executed by the controller 46 of FIG. 1
  • FIG. 11 is a block diagram showing an example of the configuration of a motor system including an insulation resistance monitoring device 40A according to a second embodiment
  • FIG. 6 is an exemplary timing chart showing measurement of the insulation resistance value Ro of the three-phase motor device 30A by the insulation resistance monitoring device 40A of FIG. 5;
  • FIG. 6 is a flow chart showing an example of insulation resistance monitoring processing executed by the controller 46A of FIG. 5;
  • FIG. FIG. 11 is a block diagram showing an example of a configuration of a motor system including an insulation resistance monitoring device 40B according to a third embodiment;
  • FIG. 9 is an exemplary timing chart showing measurement of the insulation resistance value Ro of the three-phase motor device 30 by the insulation resistance monitoring device 40B of FIG. 8;
  • FIG. 9 is a flowchart showing an example of insulation resistance monitoring processing executed by a controller 46B in FIG. 8;
  • FIG. 11 is a block diagram showing an example of a configuration of a motor system including an insulation resistance monitoring device 40C according to a fourth embodiment
  • FIG. 12 is an exemplary timing chart showing measurement of the insulation resistance value Ro of the three-phase motor device 30A by the insulation resistance monitoring device 40C of FIG. 11
  • 12 is a table showing insulation resistance values Ro of the three-phase motor device 30A measured under various humidity and temperature conditions by the insulation resistance monitoring device 40C of FIG. 11
  • FIG. 12 is a flowchart showing an example of insulation resistance monitoring processing executed by a controller 46C of FIG. 11
  • FIG. FIG. 15 is a flowchart showing a subroutine of threshold value setting processing in step S32 of FIG. 14
  • FIG. FIG. 12 is a flow chart showing a modification of the insulation resistance monitoring process executed by the controller 46C of FIG. 11;
  • FIG. 1 is a block diagram showing an example of the configuration of a motor system including an insulation resistance monitoring device 40 according to the first embodiment.
  • the motor system of FIG. 1 includes, for example, a three-phase AC power supply device 10, a circuit breaker 20, a three-phase motor device 30, and an insulation resistance monitoring device 40.
  • the three-phase AC power supply 10 supplies three-phase AC power to the three-phase motor device 30 via the circuit breaker 20 .
  • the example of FIG. 1 shows a case where the insulation resistance monitoring device 40 measures the insulation resistance value Ro of the three-phase motor device 30 as the object to be measured.
  • the insulation resistance monitoring device 40 includes a current measuring device 41, an insulation resistance calculator 42, a display device 43, an operation information receiving section 44, a humidity information receiving section 45, a controller 46, a voltage source E1, and a switch SW.
  • a voltage source E1 supplies a predetermined voltage to be applied between two nodes of the three-phase motor device 30 that are insulated from each other.
  • the switch SW opens and closes the circuit between the three-phase motor device 30 and the voltage source E1.
  • a current measuring device 41 measures a leakage current flowing between two mutually insulated nodes of the three-phase motor device 30 due to the voltage supplied by the voltage source E1.
  • the insulation resistance calculator 42 calculates the insulation resistance value Ro of the three-phase motor device 30 based on the leakage current measured by the current measuring device 41 .
  • the display device 43 outputs the insulation resistance value Ro calculated by the insulation resistance calculator 42 .
  • the current measuring device 41, the insulation resistance calculator 42, the display device 43, the voltage source E1, and the switch SW are examples of insulation resistance measuring devices that measure and output the insulation resistance value Ro of the three-phase motor device 30.
  • the operation information receiving unit 44 receives and acquires information indicating that the three-phase motor device 30 is in operation or stopped.
  • the humidity information receiving unit 45 receives and acquires the humidity in the vicinity of the three-phase motor device 30 .
  • the controller 46 controls the insulation resistance value Ro is measured and output via the display device 43, the insulation resistance calculator 42 is controlled.
  • FIG. 2 is a graph showing an example of characteristics of the insulation resistance value Ro of the three-phase motor device 30 of FIG. 1 with respect to humidity and temperature.
  • the insulation resistance of the object to be measured by the insulation resistance monitoring device 40 may fluctuate depending on the environmental conditions surrounding the object to be measured.
  • the insulation resistance of the three-phase motor device 30 may fluctuate depending on the humidity and temperature (air temperature) in the vicinity of the three-phase motor device 30 .
  • the insulation resistance of the three-phase motor device 30 is measured when the humidity and temperature are temporarily lowered, a temporarily increased insulation resistance is obtained. There is a risk of overlooking the deterioration of the insulation performance. Moreover, when the insulation resistance fluctuates, it cannot be determined whether the cause of the fluctuation is the influence of the surrounding environment (that is, humidity or temperature) or the deterioration of the insulation performance. Therefore, it is required to measure the insulation resistance of the object to be measured with high accuracy in consideration of the variation of the insulation resistance caused by the surrounding environment of the object to be measured.
  • the insulation resistance value Ro of the three-phase motor device 30 is measured and output when the humidity in the vicinity of the three-phase motor device 30 is equal to or higher than the threshold value Th1.
  • the insulation resistance value Ro when the humidity is lower than the threshold value Th1 is neither measured nor output (at least, such an insulation resistance value Ro is not output). Therefore, when a high insulation resistance value Ro is measured and output, it can be determined that the insulation performance of the three-phase motor device 30 has not deteriorated. Also, when a low insulation resistance value Ro is measured and output, it can be determined that the insulation performance of the three-phase motor device 30 has deteriorated.
  • the insulation resistance of the three-phase motor device 30 is The resistance value Ro can be measured with high accuracy and presented to the user.
  • the insulation resistance value Ro of the three-phase motor device 30 is measured and output in consideration of the humidity in the vicinity of the three-phase motor device 30 .
  • a three-phase AC power supply device 10 includes three single-phase AC power supplies 11-13.
  • Single-phase AC power sources 11 to 13 generate single-phase AC voltages having phases different from each other by 120 degrees.
  • the single-phase AC power supplies 11 to 13 are connected to each other in a delta connection.
  • Nodes N1-N3, which connect the single-phase AC power supplies 11-13, are connected to the circuit breaker 20 and the three-phase motor device 30 via U-phase, V-phase, and W-phase power supply lines.
  • the three-phase AC power supply device 10 may include a switchboard, high-voltage receiving and transforming equipment, and the like.
  • the high-voltage power receiving and transforming equipment steps down the voltage of, for example, 6600V supplied from the electric power company to a voltage of, for example, about 200V to 480V.
  • the switchboard distributes the stepped-down voltage to the three-phase motor device 30 and other load devices.
  • the circuit breaker 20 includes switches 21 to 23 inserted in the U-phase, V-phase, and W-phase power supply lines. Circuit breaker 20 further comprises an operation sensor 24 that detects the on/off of switches 21-23, thereby detecting whether three-phase motor device 30 is operating or not.
  • the motion sensor 24 may be, for example, another switch that turns on/off in conjunction with the switches 21-23.
  • the three-phase motor device 30 includes windings 31 to 33 and a housing 34.
  • the windings 31-33 are connected to each other in a delta connection.
  • Nodes N4 to N6 connecting the windings 31 to 33 to each other are connected to the U-phase, V-phase and W-phase power supply lines.
  • Housing 34 is another node electrically isolated from windings 31-33. Housing 34 may be grounded.
  • a leakage current may flow between the windings 31 to 33 and the housing 34.
  • the example of FIG. 1 shows a case where a ground insulation resistance 35 through which a leakage current corresponding to the resistance flows is generated between the node N4 and the housing 34 .
  • the ground insulation resistance 35 has an insulation resistance value Ro.
  • the three-phase motor device 30 further includes a humidity sensor 36 that detects humidity in the vicinity of the three-phase motor device 30 .
  • the “neighborhood” of the three-phase motor device 30 includes a position where humidity affecting the insulation resistance value Ro of the three-phase motor device 30 can be detected, for example, the inside of the housing 34 .
  • the voltage source E1 supplies a predetermined voltage to be applied between two mutually insulated nodes of the three-phase motor device 30, that is, between the node N4 and the housing 34 in the example of FIG.
  • a voltage source E1 supplies a DC voltage of, for example, 50V.
  • the switch SW opens and closes the circuit between the three-phase motor device 30 and the voltage source E1.
  • the switch SW may be, for example, a mechanical switch operated by a user, or a reed relay that operates according to an external control signal.
  • the resistance value when the switch SW is open is set according to the desired insulation resistance of the object to be measured. For example, when the insulation resistance value Ro of the three-phase motor device 30 is approximately 100 M ⁇ , the switch SW has a resistance value of 100 M ⁇ or more, preferably 1000 M ⁇ or more when in the open state.
  • the current measuring device 41 measures the leakage current flowing between the two nodes insulated from each other of the three-phase motor device 30 due to the voltage supplied by the voltage source E1 when the switch SW is turned on, the example of FIG. Then, the leakage current flowing through the ground insulation resistance 35 between the node N4 and the housing 34 is measured.
  • the current measuring device 41 includes an operational amplifier or the like, and is configured to measure a current on the order of several ⁇ A to several tens of ⁇ A, for example.
  • the insulation resistance calculator 42 calculates the insulation resistance value Ro of the three-phase motor device 30 based on the voltage supplied by the voltage source E1 and the leakage current measured by the current measuring device 41.
  • the insulation resistance calculator 42 may determine whether the insulation resistance value Ro satisfies legal requirements.
  • the insulation resistance calculator 42 outputs the calculation result and judgment result to the display device 43 .
  • the display device 43 displays the insulation resistance value Ro of the three-phase motor device 30. In addition to or instead of the insulation resistance value Ro, the display device 43 may display whether or not the insulation resistance value Ro satisfies legal requirements.
  • the operation information receiving unit 44 receives information indicating that the three-phase motor device 30 is operating or stopped from the operation sensor 24 and notifies the controller 46 of the information.
  • the humidity information receiving unit 45 receives the humidity in the vicinity of the three-phase motor device 30 from the humidity sensor 36 and notifies the controller 46 of it.
  • the controller 46 controls the insulation resistance value Ro is calculated and output via the display device 43, the insulation resistance calculator 42 is controlled.
  • the threshold Th1 is set to, for example, 50% so that the insulation resistance value Ro of the three-phase motor device 30 is sufficiently small.
  • the user when measuring the insulation resistance value Ro of the three-phase motor device 30 using an insulation resistance measuring instrument other than the insulation resistance monitoring device 40 for legal inspection, the user turns off the circuit breaker 20 and the switch SW. Then, the probe of the insulation resistance measuring instrument is connected to two mutually insulated nodes of the three-phase motor device 30 (for example, the node N4 and the housing 34). Thereby, the insulation resistance value Ro of the three-phase motor device 30 can be measured using the insulation resistance measuring device without removing the insulation resistance monitoring device 40 from the three-phase motor device 30 .
  • FIG. 3 is an exemplary timing chart showing measurement of the insulation resistance value Ro of the three-phase motor device 30 by the insulation resistance monitoring device 40 of FIG.
  • the three-phase motor device 30 is running during time periods t1-t2 and t3-t4 and is stopped during other time periods. Further, when the three-phase motor device 30 is stopped, the humidity in the vicinity of the three-phase motor device 30 increases beyond the threshold value Th1 at times t11 and t12.
  • the insulation resistance monitoring device 40 detects whether the three-phase motor device 30 The insulation resistance value Ro is measured and output.
  • FIG. 4 is a flowchart showing an example of insulation resistance monitoring processing executed by the controller 46 of FIG.
  • step S1 the controller 46 determines whether or not the three-phase motor device 30 is stopped based on the information from the operation information receiving section 44. If YES, the process proceeds to step S2, and if NO, the process proceeds to step S2. Repeat S1.
  • step S2 the controller 46 acquires the humidity H in the vicinity of the three-phase motor device 30 from the humidity information receiving section 45.
  • step S3 the controller 46 determines whether or not the humidity H in the vicinity of the three-phase motor device 30 is equal to or greater than the threshold value Th1. If YES, the process proceeds to step S4, and if NO, the process returns to step S1. .
  • step S4 the controller 46 controls the insulation resistance calculator 42 to measure the insulation resistance value Ro and output it via the display device 43.
  • the insulation resistance value Ro of the three-phase motor device 30 can be adjusted with high accuracy in consideration of the variation of the insulation resistance value Ro caused by the humidity variation in the vicinity of the three-phase motor device 30. It can be measured and presented to the user.
  • the insulation resistance value of the three-phase motor device 30 is Ro can be measured with high accuracy and presented to the user.
  • FIG. 5 is a block diagram showing an example of the configuration of a motor system including an insulation resistance monitoring device 40A according to the second embodiment.
  • the motor system of FIG. 5 includes a three-phase motor device 30A and an insulation resistance monitoring device 40A instead of the three-phase motor device 30 and insulation resistance monitoring device 40 of FIG.
  • the three-phase motor device 30A includes, in addition to each component of the three-phase motor device 30 of FIG. 1, a temperature sensor 37 that detects the temperature in the vicinity of the three-phase motor device 30A.
  • the “neighborhood” of the three-phase motor device 30A includes a position where the temperature affecting the insulation resistance value Ro of the three-phase motor device 30A can be detected, for example, the inside of the housing 34 .
  • the insulation resistance monitoring device 40A includes a controller 46A instead of the controller 46 of the insulation resistance monitoring device 40 of FIG.
  • the temperature information receiving unit 47 receives the temperature near the three-phase motor device 30A from the temperature sensor 37 and notifies it to the controller 46A.
  • the controller 46A determines that the three-phase motor device 30A is stopped, the humidity in the vicinity of the three-phase motor device 30A is equal to or higher than the first threshold value Th1, and the temperature in the vicinity of the three-phase motor device 30A is predetermined.
  • the insulation resistance calculator 42 is controlled so that the insulation resistance value Ro of the three-phase motor device 30A is calculated and output via the display device 43 when the value is equal to or greater than the second threshold value Th2.
  • the threshold Th2 is set to 25° C., for example, so that the insulation resistance value Ro of the three-phase motor device 30A is sufficiently small.
  • FIG. 6 is an exemplary timing chart showing measurement of the insulation resistance value Ro of the three-phase motor device 30A by the insulation resistance monitoring device 40A of FIG.
  • the humidity and temperature in the vicinity of the three-phase motor device 30A become higher than the thresholds Th1 and Th2 at times t21 and t22, respectively.
  • the insulation resistance monitoring device 40A detects that the three-phase motor device 30A is stopped, the humidity in the vicinity of the three-phase motor device 30A is equal to or higher than the threshold value Th1, and the humidity in the vicinity of the three-phase motor device 30A is is equal to or higher than the threshold value Th2, the insulation resistance value Ro of the three-phase motor device 30A is measured and output.
  • FIG. 7 is a flowchart showing an example of insulation resistance monitoring processing executed by the controller 46A of FIG.
  • Steps S11-13 are the same as steps S1-S3 in FIG.
  • step S14 the controller 46A acquires the temperature T in the vicinity of the three-phase motor device 30A from the temperature information receiving section 47.
  • step S15 the controller 46A determines whether or not the temperature T in the vicinity of the three-phase motor device 30A is equal to or higher than the threshold value Th2. If YES, the process proceeds to step S16, and if NO, the process returns to step S11. .
  • step S16 the controller 46A controls the insulation resistance calculator 42 to measure the insulation resistance value Ro and output it via the display device 43, as in step S4 of FIG.
  • the insulation resistance value Ro of the three-phase motor device 30A is increased in consideration of the fluctuation of the insulation resistance value Ro due to the humidity and temperature fluctuations in the vicinity of the three-phase motor device 30A. It can be measured with accuracy and presented to the user.
  • the insulation resistance of the three-phase motor device 30A is considered in consideration of the fluctuations in the insulation resistance value Ro due to the humidity and temperature fluctuations in the vicinity of the three-phase motor device 30A.
  • the resistance value Ro can be measured with high accuracy and presented to the user.
  • the insulation resistance value Ro of the three-phase motor device 30A can be measured with higher accuracy than in the first embodiment and presented to the user.
  • FIG. 8 is a block diagram showing an example of the configuration of a motor system including an insulation resistance monitoring device 40B according to the third embodiment.
  • the motor system of FIG. 8 includes an insulation resistance monitoring device 40B instead of the insulation resistance monitoring device 40A of FIG.
  • the insulation resistance monitoring device 40B includes a controller 46B in place of the controller 46A of the insulation resistance monitoring device 40A of FIG.
  • the timer 48 counts the elapsed time since the three-phase motor device 30A stopped.
  • the controller 46B starts or stops clocking by the timer 48 based on the information from the operation information receiving section 44.
  • the controller 46B starts the timer 48 to count time.
  • the controller 46B stops timing by the timer 48 and resets it.
  • the controller 46B determines that the three-phase motor device 30A is stopped, a predetermined time period T0 has passed since the three-phase motor device 30A stopped, and the humidity in the vicinity of the three-phase motor device 30A has reached the threshold value Th1.
  • the insulation resistance calculator 42 is controlled to measure and output the insulation resistance value Ro of the three-phase motor device 30A. do.
  • the time period T0 is set, for example, from several minutes to several hours so that the temperature in the vicinity of the three-phase motor device 30A, which rises during operation of the three-phase motor device 30A, is sufficiently lowered.
  • the three-phase motor device 30A generates heat during operation, so the temperature in the vicinity of the three-phase motor device 30A rises during operation of the three-phase motor device 30A, and as the temperature rises, the humidity drops. Therefore, if the insulation resistance value Ro is measured immediately after the three-phase motor device 30A stops, there is a risk that the insulation resistance value Ro will temporarily increase due to the decreased humidity. On the other hand, a sufficiently low insulation resistance value Ro can be obtained by measuring the insulation resistance value Ro after the time period T0 has elapsed since the three-phase motor device 30A stopped.
  • FIG. 9 is an exemplary timing chart showing measurement of the insulation resistance value Ro of the three-phase motor device 30 by the insulation resistance monitoring device 40B of FIG.
  • the insulation resistance value Ro of the three-phase motor device 30A is neither measured nor output.
  • the humidity and temperature in the vicinity of the three-phase motor device 30A become higher than the thresholds Th1 and Th2, respectively, even after the time period T0 has passed (that is, at time t2). Until t32), the insulation resistance value Ro of the three-phase motor device 30A is neither measured nor output.
  • FIG. 10 is a flowchart showing an example of insulation resistance monitoring processing executed by the controller 46B of FIG.
  • step S21 the controller 46B determines whether or not the three-phase motor device 30A is stopped based on the information from the operation information receiving section 44. If YES, the process proceeds to step S22. Proceed to S23.
  • step S22 the controller 46B uses the timer 48 to count the elapsed time Tst after stopping the three-phase motor device 30A.
  • step S23 the controller 46B resets the timer 48.
  • step S24 the controller 46B determines whether or not the elapsed time Tst after stopping the three-phase motor device 30A has reached a predetermined time period T0 or longer. When , the process returns to step S21.
  • Steps S25 to S29 are the same as steps S12 to S16 in FIG.
  • the insulation resistance value Ro of the three-phase motor device 30A is prevented from being measured and output when the humidity drops due to heat generation of the three-phase motor device 30A. , the insulation resistance value Ro of the three-phase motor device 30A can be measured with high accuracy and presented to the user.
  • FIG. 11 is a block diagram showing an example of the configuration of a motor system including an insulation resistance monitoring device 40C according to the fourth embodiment.
  • the motor system of FIG. 11 includes an insulation resistance monitoring device 40C instead of the insulation resistance monitoring device 40B of FIG.
  • the insulation resistance monitoring device 40C includes a controller 46C and a timer 48C in place of the controller 46B and timer 48 of the insulation resistance monitoring device 40B of FIG.
  • the timer 48C counts the elapsed time after starting the threshold value setting process, which will be described later with reference to FIGS.
  • the storage device 49 stores the insulation resistance value Ro of the three-phase motor device 30A measured by the insulation resistance measuring device and the vicinity of the three-phase motor device 30A obtained when the insulation resistance value Ro of the three-phase motor device 30A is measured.
  • store the humidity and temperature of Storage device 49 may store, for example, a table described with reference to FIG.
  • the controller 46C controls the insulation resistance measuring instrument to measure the insulation resistance of the object under test over a predetermined time period T1.
  • the controller 46C acquires the insulation resistance value Ro of the object under test measured by the insulation resistance measuring instrument, and the humidity and temperature in the vicinity of the object under test obtained when the insulation resistance value Ro of the object under test is measured.
  • the controller 46C selects the humidity corresponding to the minimum insulation resistance value Ro among the plurality of insulation resistance values Ro stored in the storage device 49 as the threshold value Th1.
  • the controller 46C selects the temperature corresponding to the minimum insulation resistance value Ro among the plurality of insulation resistance values Ro stored in the storage device 49 as the threshold value Th2.
  • the time period T1 is set long enough, for example, several days to several weeks, to obtain a sufficient number of combinations of insulation resistance value Ro, humidity, and temperature to set threshold values Th1 and Th2. be.
  • FIG. 12 is an exemplary timing chart showing insulation resistance measurement of the three-phase motor device 30A by the insulation resistance monitoring device 40C of FIG.
  • the insulation resistance monitoring device 40C measures the insulation resistance value Ro each time the humidity or temperature changes by a predetermined step width while the three-phase motor device 30A is stopped.
  • the humidity step width is 10% and the temperature step width is 5°C.
  • the insulation resistance monitoring device 40C measures the insulation resistance value Ro from time t41 to t46. Thereby, the insulation resistance monitoring device 40C obtains a plurality of insulation resistance values Ro measured corresponding to different combinations of humidity and temperature.
  • FIG. 13 is a table showing the insulation resistance value Ro of the three-phase motor device 30A measured under various humidity and temperature conditions by the insulation resistance monitoring device 40C of FIG.
  • the insulation resistance monitoring device 40C measures the insulation resistance value Ro every time the combination of humidity and temperature reaches a value corresponding to the unmeasured insulation resistance value Ro, and It is stored in the storage device 49 in association with the temperature. After a predetermined period of time, eg, three days, the data shown in FIG. In FIG. 13, the unit of the insulation resistance value Ro is M ⁇ , and a blank indicates that the insulation resistance value Ro is not measured.
  • the minimum value of the insulation resistance value Ro is 100 M ⁇ , correspondingly the humidity threshold Th1 is set to 50% and the temperature threshold Th2 is set to 25°C. .
  • FIG. 14 is a flowchart showing an example of insulation resistance monitoring processing executed by the controller 46C of FIG.
  • step S31 the controller 46C determines whether or not the thresholds Th1 and Th2 have not been set. If YES, the process proceeds to step S32, and if NO, the process proceeds to step S33.
  • step S32 the controller 46C executes threshold value setting processing, which will be described later with reference to FIG.
  • step S33 the controller 46C executes insulation resistance measurement processing.
  • the insulation resistance measuring process in step S33 is the same as the insulation resistance monitoring process described with reference to FIG. 4, FIG. 7, or FIG.
  • FIG. 15 is a flow chart showing the subroutine of the threshold value setting process in step S32 of FIG.
  • step S41 the controller 46C determines whether or not the three-phase motor device 30A is stopped based on the information from the operation information receiving section 44. If YES, the process proceeds to step S42. S41 is repeated.
  • step S42 the controller 46C acquires the humidity H near the three-phase motor device 30A from the humidity information receiving section 45 and the temperature T near the three-phase motor device 30A from the temperature information receiving section 47.
  • step S43 the controller 46C determines whether or not the insulation resistance value Ro corresponding to the current humidity H and temperature T has not yet been measured. return.
  • step S44 the controller 46C controls the insulation resistance calculator 42 to measure the insulation resistance value Ro.
  • step S45 the controller 46C stores the insulation resistance value Ro together with the humidity H and the temperature T in the storage device 49.
  • step S46C the controller 46C determines whether or not a predetermined measurement period T1 has elapsed since the start of the threshold value setting process. back to
  • step S47 the controller 46C sets the humidity H corresponding to the minimum insulation resistance value Ro as the threshold value Th1.
  • step S48 the controller 46C sets the temperature T corresponding to the minimum insulation resistance value Ro as the threshold value Th2.
  • Step S32 is executed, for example, when the insulation resistance monitoring device 40C is first operated after installing the motor system. After executing step S32, the insulation resistance measurement process of step S33 can be executed using the set threshold values Th1 and Th2.
  • the minimum humidity among the plurality of humidity values corresponding to these insulation resistance values may be selected as the threshold value Th1, and these insulation resistance values
  • the minimum temperature may be selected as the threshold value Th2 from among the plurality of temperatures corresponding to .
  • the humidity threshold value Th1 and the temperature threshold value are set appropriately according to the environment around the three-phase motor device 30A.
  • the value Th2 can be automatically set, and the insulation resistance value Ro of the three-phase motor device 30A can be measured with high accuracy. Further, by automatically setting the threshold values Th1 and Th2, the user's trouble can be reduced.
  • the three-phase The humidity and temperature in the vicinity of the motor device 30A may be difficult to reach the threshold values Th1 and Th2.
  • the threshold values Th1 and Th2 are reset as described with reference to FIG.
  • FIG. 16 is a flow chart showing a modification of the insulation resistance monitoring process executed by the controller 46C of FIG.
  • step S51 the controller 46C determines whether or not the period during which the insulation resistance value Ro is not measured exceeds the threshold value T2. If YES, the process proceeds to step S52, and if NO, the process proceeds to step S53.
  • the threshold T2 is set to one week, for example.
  • step S52 the controller 46C executes threshold value resetting processing.
  • the threshold resetting process in step S52 is the same as the threshold setting process in step S32.
  • step S53 the controller 46C executes insulation resistance measurement processing. 4, 7, or 10 except that the insulation resistance measurement process in step S53 proceeds to step 51 in FIG. 16 instead of returning to the first step in the insulation resistance monitoring process in FIG. , or similar to the insulation resistance monitoring process described with reference to FIG.
  • the insulation resistance value Ro of the three-phase motor device 30A can be adjusted by resetting the threshold values Th1 and Th2. It is possible to prevent the measurement from becoming impossible for a long period of time.
  • the humidity sensor 36 may be provided inside the housing 34 as shown in FIG. , may be provided outside the housing 34 .
  • the temperature sensor 37 may be provided inside the housing 34 as shown in FIG. For example, it may be provided outside the housing 34 .
  • the operation information receiving unit 44 receives information indicating that the three-phase motor devices 30, 30A are in operation or stopped from the operation sensor 24 provided in the circuit breaker 20, as shown in FIG. 1 and others. Alternatively, the information may be received from another controller (not shown) that controls the circuit breaker 20 . Also, as shown in FIG. 1 and others, the humidity information receiving unit 45 may receive the humidity in the vicinity of the three-phase motor devices 30 and 30A from the humidity sensor 36 provided in the three-phase motor devices 30 and 30A. Alternatively, the humidity may be received from another measuring device that measures the humidity in the vicinity of the three-phase motor devices 30, 30A.
  • the temperature information receiving unit 47 may receive the temperature in the vicinity of the three-phase motor device 30A from the temperature sensor 37 provided in the three-phase motor device 30A, as shown in FIG. The temperature may be received from another measuring device that measures the temperature in the vicinity of the three-phase motor device 30A.
  • the insulation resistance monitoring devices 40 and 40A to 40C monitor the three-phase motor devices.
  • the insulation resistance value Ro of 30 and 30A may be measured and output.
  • the insulation resistance monitoring devices 40A to 40C detect that the three-phase motor device 30A is stopped, the humidity in the vicinity of the three-phase motor device 30A is within a predetermined range, and the temperature in the vicinity of the three-phase motor device 30A is is within a predetermined range, the insulation resistance value Ro of the three-phase motor device 30A may be measured and output.
  • the minimum value of the insulation resistance value Ro is 100 M ⁇ , so correspondingly the humidity range is set to 50-56% and the temperature range is set to 25-29°C.
  • the humidity range is set to 50-56% and the temperature range is set to 25-29°C.
  • the appropriate humidity range and temperature range can be automatically reset according to the surrounding environment of the three-phase motor device 30A. As a result, it is possible to prevent the insulation resistance value Ro of the three-phase motor device 30A from being unable to be measured over a long period of time.
  • the insulation resistance monitoring device 40B acquires both the humidity and temperature in the vicinity of the three-phase motor device 30A has been described, but only one of the humidity and temperature may be acquired.
  • the insulation resistance monitoring device 40B detects that the three-phase motor device 30A is stopped, a predetermined time period T0 has passed since the three-phase motor device 30A stopped, and the insulation resistance monitoring device 40B When the humidity or temperature is equal to or higher than the threshold value, the insulation resistance value Ro of the three-phase motor device 30A is measured and output.
  • the insulation resistance monitoring device 40C automatically sets both the humidity threshold value Th1 and the temperature threshold value Th2. It may be set automatically.
  • the other insulation resistance monitoring devices 40, 40A to 40C in FIG. An insulation resistance calculator having the configuration of
  • the display device 43 may be provided in a remote device connected via a communication line instead of inside the insulation resistance monitoring devices 40, 40A to 40C.
  • the calculation results and judgment results of the insulation resistance calculator 42 may be audibly output using an audio output device. Also, any other output device may be used to notify the user of the calculation results and judgment results of the insulation resistance calculator 42 . Moreover, the insulation resistance monitoring devices 40, 40A to 40C may output the calculation results and judgment results of the insulation resistance calculator 42 to other devices connected via a communication line.
  • the insulation resistance monitoring devices 40, 40A to 40C are connected to the node N4 of the three-phase motor device 30, 30A and the housing 34, but the insulation resistance monitoring devices 40, 40A to 40C , may be connected between the node N5 and the housing 34, and may be connected between the node N6 and the housing 34.
  • the insulation resistance monitoring devices 40, 40A to 40C may be connected between two mutually insulated nodes of any other device under test instead of the three-phase motor devices 30, 30A.
  • DUTs include, for example, power supplies, timers, relays, common sockets, DIN rails, waterproof covers, temperature controllers, and switches.
  • the insulation resistance monitoring device 40 may be connected not only to the power supply line and the ground conductor of the device under test but also to any two mutually insulated nodes of the device under test.
  • the insulation resistance monitoring device 40 includes an insulation resistance measuring instrument, an operation information receiver 44, a humidity information receiver 45, and a controller 46.
  • the insulation resistance measuring instrument measures and outputs the insulation resistance of the object to be measured.
  • the motion information receiving section 44 receives information indicating that the device under test is in motion or stopped.
  • the humidity information receiving section 45 receives the humidity in the vicinity of the object to be measured.
  • the controller 46 measures and outputs the insulation resistance of the object to be measured when the object to be measured is stopped and the humidity in the vicinity of the object to be measured is equal to or higher than the first threshold value Th1. Control the resistance meter.
  • the insulation resistance monitoring device 40B further includes a timer that measures elapsed time after the object to be measured has stopped.
  • the controller 46B determines that the object to be measured is stopped, a predetermined first time period has elapsed since the object to be measured has stopped, and the humidity in the vicinity of the object to be measured has reached the first threshold value.
  • Th1 or more the insulation resistance measuring instrument is controlled to measure and output the insulation resistance of the object to be measured.
  • the insulation resistance monitoring device 40C further includes a storage device 49 that stores the insulation resistance of the object under test measured by the insulation resistance measuring instrument.
  • the controller 46C controls the insulation resistance measuring device to measure the insulation resistance of the object under test over a predetermined second time period, and the insulation resistance of the object under test measured by the insulation resistance measuring device storing the humidity in the vicinity of the object under test received when the insulation resistance of the object under test is measured;
  • the first threshold Th1 is set by selecting the humidity corresponding to as the first threshold Th1.
  • the controller 46C sets the third time period in which the humidity in the vicinity of the object to be measured is less than the first threshold value Th1 is predetermined. When exceeded, a first threshold Th1 is set.
  • the insulation resistance monitoring device 40A further includes a temperature information receiving section that receives the temperature in the vicinity of the object to be measured.
  • the controller 46A determines that the object to be measured is stopped, the humidity in the vicinity of the object to be measured is equal to or higher than the first threshold value Th1, and the temperature in the vicinity of the object to be measured is equal to or higher than the second threshold value Th2. , the insulation resistance measuring instrument is controlled to measure and output the insulation resistance of the object under test.
  • the insulation resistance monitoring device 40B further includes a timer that measures elapsed time after the object to be measured has stopped.
  • the controller 46B determines that the object to be measured is stopped, a predetermined first time period has elapsed since the object to be measured has stopped, and the humidity in the vicinity of the object to be measured is equal to or greater than the first threshold value Th1. and the temperature in the vicinity of the object to be measured is equal to or higher than the second threshold value Th2, the insulation resistance measuring instrument is controlled to measure and output the insulation resistance of the object to be measured.
  • the insulation resistance monitoring device 40C further includes a storage device 49 that stores the insulation resistance of the object under test measured by the insulation resistance measuring instrument.
  • the controller 46C controls the insulation resistance measuring device to measure the insulation resistance of the object under test over a predetermined second time period, and the insulation resistance of the object under test measured by the insulation resistance measuring device storing the temperature in the vicinity of the object under test received when the insulation resistance of the object under test is measured in the storage device 49;
  • the second threshold Th2 is set by selecting the temperature corresponding to as the second threshold Th2.
  • the controller 46C sets the third time period in which the temperature in the vicinity of the object to be measured is less than the second threshold value Th2 is predetermined. When exceeded, a second threshold Th2 is set.
  • the insulation resistance monitoring device it is possible to measure the insulation resistance of the object to be measured with high accuracy, taking into consideration the variation in the insulation resistance of the object to be measured due to the surrounding environment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

絶縁抵抗測定器は、被測定物の絶縁抵抗を測定して出力する。動作情報受信部(44)は、被測定物が動作中又は停止中であることを示す情報を受信する。湿度情報受信部(45)は、被測定物の近傍の湿度を受信する。コントローラ(46)は、被測定物が停止中であり、かつ、被測定物の近傍の湿度が第1のしきい値(Th1)以上であるとき、被測定物の絶縁抵抗を測定して出力するように絶縁抵抗測定器を制御する。

Description

絶縁抵抗監視装置
 本開示は、絶縁抵抗監視装置に関する。
 高圧受変電設備及び配電盤等の電気設備は、電気事業法により、年1回程度の頻度で法定点検を行うことが義務付けられている。また、配電盤に接続されたモータ等の電気機器についても、事業者は、その独自の管理基準により、週1回から月1回程度の頻度で自主点検を行っている。
 しかしながら、自主点検の対象物(被測定物)は多種多様な電気設備及び電気機器を含み、その数が多過ぎて実際には手が回らないのが実態である。そこで、自主点検を自動化するための絶縁抵抗監視装置が開発されている。
 例えば、特許文献1は、被測定物の電源線又はアース線と絶縁抵抗監視装置の電圧発生部との間の接続経路を開閉するスイッチを備えた絶縁抵抗監視装置を開示している。
特開2020-148736号公報
 被測定物の絶縁抵抗は、被測定物の周囲の環境の状態に応じて変動することがある。このため、一時的に増大した絶縁抵抗を取得してしまい、その結果、被測定物を点検すべき絶縁性能の劣化を見逃してしまうおそれがある。また、絶縁抵抗が変動した場合、変動の原因が周囲環境の影響にあるのか、絶縁性能の劣化にあるのかを判別することができない。従って、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することが求められる。
 本開示の目的は、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる絶縁抵抗監視装置を提供することにある。
 本発明の一側面に係る絶縁抵抗監視装置は、
 被測定物の絶縁抵抗を測定して出力する絶縁抵抗測定器と、
 前記被測定物が動作中又は停止中であることを示す情報を受信する動作情報受信部と、
 前記被測定物の近傍の湿度を受信する湿度情報受信部と、
 前記被測定物が停止中であり、かつ、前記被測定物の近傍の湿度が第1のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御するコントローラとを備える。
 これにより、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記絶縁抵抗監視装置は、前記被測定物が停止してからの経過時間を計時するタイマをさらに備え、
 前記コントローラは、前記被測定物が停止中であり、前記被測定物が停止してから予め決められた第1の時間期間が経過し、かつ、前記被測定物の近傍の湿度が前記第1のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御する。
 これにより、被測定物の動作に起因する湿度の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記絶縁抵抗監視装置は、前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗を格納する記憶装置をさらに備え、
 前記コントローラは、
 予め決められた第2の時間期間にわたって前記被測定物の絶縁抵抗を測定するように前記絶縁抵抗測定器を制御することと、
 前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗とともに、前記被測定物の絶縁抵抗を測定したときに受信された前記被測定物の近傍の湿度を前記記憶装置に格納することと、
 前記記憶装置に格納された複数の絶縁抵抗のうちで最小の絶縁抵抗に対応する湿度を前記第1のしきい値として選択することとにより、
前記第1のしきい値を設定する。
 これにより、被測定物の周囲の環境に応じて適切な湿度のしきい値を自動的に設定することができ、被測定物の絶縁抵抗を高精度に測定することができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記コントローラは、前記被測定物の近傍の湿度が前記第1のしきい値に満たない期間が予め決められた第3の時間期間を超えたとき、前記第1のしきい値を設定する。
 これにより、被測定物の周囲の環境が変化しても、湿度のしきい値を再設定することにより、被測定物の絶縁抵抗を長期間にわたって測定できなくなることを防ぐことができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記絶縁抵抗監視装置は、前記被測定物の近傍の温度を受信する温度情報受信部をさらに備え、
 前記コントローラは、前記被測定物が停止中であり、前記被測定物の近傍の湿度が前記第1のしきい値以上であり、かつ、前記被測定物の近傍の温度が第2のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御する。
 これにより、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記絶縁抵抗監視装置は、前記被測定物が停止してからの経過時間を計時するタイマをさらに備え、
 前記コントローラは、前記被測定物が停止中であり、前記被測定物が停止してから予め決められた第1の時間期間が経過し、前記被測定物の近傍の湿度が前記第1のしきい値以上であり、かつ、前記被測定物の近傍の温度が前記第2のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御する。
 これにより、被測定物の動作に起因する湿度の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記絶縁抵抗監視装置は、前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗を格納する記憶装置をさらに備え、
 前記コントローラは、
 予め決められた第2の時間期間にわたって前記被測定物の絶縁抵抗を測定するように前記絶縁抵抗測定器を制御することと、
 前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗とともに、前記被測定物の絶縁抵抗を測定したときに受信された前記被測定物の近傍の温度を前記記憶装置に格納することと、
 前記記憶装置に格納された複数の絶縁抵抗のうちで最小の絶縁抵抗に対応する温度を前記第2のしきい値として選択することとにより、
前記第2のしきい値を設定する。
 これにより、被測定物の周囲の環境に応じて適切な温度のしきい値を自動的に設定することができ、被測定物の絶縁抵抗を高精度に測定することができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、
 前記コントローラは、前記被測定物の近傍の温度が前記第2のしきい値に満たない期間が予め決められた第3の時間期間を超えたとき、前記第2のしきい値を設定する。
 これにより、被測定物の周囲の環境が変化しても、温度のしきい値を再設定することにより、被測定物の絶縁抵抗を長期間にわたって測定できなくなることを防ぐことができる。
 本発明の一側面に係る絶縁抵抗監視装置によれば、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる。
第1の実施形態に係る絶縁抵抗監視装置40を含むモータシステムの構成の一例を示すブロック図である。 図1の三相モータ装置30の絶縁抵抗値Roの湿度及び温度に対する特性の一例を示すグラフである。 図1の絶縁抵抗監視装置40による三相モータ装置30の絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。 図1のコントローラ46によって実行される絶縁抵抗監視処理の一例を示すフローチャートである。 第2の実施形態に係る絶縁抵抗監視装置40Aを含むモータシステムの構成の一例を示すブロック図である。 図5の絶縁抵抗監視装置40Aによる三相モータ装置30Aの絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。 図5のコントローラ46Aによって実行される絶縁抵抗監視処理の一例を示すフローチャートである。 第3の実施形態に係る絶縁抵抗監視装置40Bを含むモータシステムの構成の一例を示すブロック図である。 図8の絶縁抵抗監視装置40Bによる三相モータ装置30の絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。 図8のコントローラ46Bによって実行される絶縁抵抗監視処理の一例を示すフローチャートである。 第4の実施形態に係る絶縁抵抗監視装置40Cを含むモータシステムの構成の一例を示すブロック図である。 図11の絶縁抵抗監視装置40Cによる三相モータ装置30Aの絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。 図11の絶縁抵抗監視装置40Cによってさまざまな湿度及び温度の条件で測定された三相モータ装置30Aの絶縁抵抗値Roを示すテーブルである。 図11のコントローラ46Cによって実行される絶縁抵抗監視処理の一例を示すフローチャートである。 図14のステップS32のしきい値設定処理のサブルーチンを示すフローチャートである。 図11のコントローラ46Cによって実行される絶縁抵抗監視処理の変形例を示すフローチャートである。
 以下、本開示の一側面に係る実施形態を、図面に基づいて説明する。各図面において、同じ符号は同様の構成要素を示す。
[適用例]
 図1は、第1の実施形態に係る絶縁抵抗監視装置40を含むモータシステムの構成の一例を示すブロック図である。図1のモータシステムは、例えば、三相交流電源装置10、回路遮断器20、三相モータ装置30、及び絶縁抵抗監視装置40を備える。三相交流電源装置10は、回路遮断器20を介して三相モータ装置30に三相交流電力を供給する。図1の例では、絶縁抵抗監視装置40が、その被測定物として、三相モータ装置30の絶縁抵抗値Roを測定する場合を示す。
 絶縁抵抗監視装置40は、電流測定器41、絶縁抵抗計算器42、表示装置43、動作情報受信部44、湿度情報受信部45、コントローラ46、電圧源E1、及びスイッチSWを備える。
 電圧源E1は、三相モータ装置30の互いに絶縁された2つのノード間に印加する所定電圧を供給する。スイッチSWは、三相モータ装置30及び電圧源E1の間の回路を開閉する。電流測定器41は、電圧源E1によって供給される電圧に起因して、三相モータ装置30の互いに絶縁された2つのノード間に流れる漏電電流を測定する。絶縁抵抗計算器42は、電流測定器41によって測定された漏電電流に基づいて、三相モータ装置30の絶縁抵抗値Roを計算する。表示装置43は、絶縁抵抗計算器42によって計算された絶縁抵抗値Roを出力する。
 電流測定器41、絶縁抵抗計算器42、表示装置43、電圧源E1、及びスイッチSWは、三相モータ装置30の絶縁抵抗値Roを測定して出力する絶縁抵抗測定器の一例である。
 動作情報受信部44は、三相モータ装置30が動作中又は停止中であることを示す情報を受信して取得する。湿度情報受信部45は、三相モータ装置30の近傍の湿度を受信して取得する。コントローラ46は、三相モータ装置30が停止中であり、かつ、三相モータ装置30の近傍の湿度が予め決められたしきい値Th1以上であるとき、三相モータ装置30の絶縁抵抗値Roを測定して表示装置43を介して出力するように絶縁抵抗計算器42を制御する。
 図2は、図1の三相モータ装置30の絶縁抵抗値Roの湿度及び温度に対する特性の一例を示すグラフである。前述したように、絶縁抵抗監視装置40の被測定物(例えば、三相モータ装置30)の絶縁抵抗は、被測定物の周囲の環境の状態に応じて変動することがある。例えば、図2に示すように、三相モータ装置30の絶縁抵抗は、三相モータ装置30の近傍の湿度及び温度(気温)に応じて変動することがある。図2の例では、湿度が高くなるほど絶縁抵抗が低下し、温度が高くなるほど絶縁抵抗が低下する。従って、湿度及び温度が一時的に低下したときに三相モータ装置30の絶縁抵抗を測定すると、一時的に増大した絶縁抵抗を取得してしまい、その結果、三相モータ装置30を点検すべき絶縁性能の劣化を見逃してしまうおそれがある。また、絶縁抵抗が変動した場合、変動の原因が周囲環境(すなわち、湿度又は温度)の影響にあるのか、絶縁性能の劣化にあるのかを判別することができない。従って、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することが求められる。
 第1の実施形態に係る絶縁抵抗監視装置40によれば、三相モータ装置30の近傍の湿度がしきい値Th1以上であるときに三相モータ装置30の絶縁抵抗値Roを測定して出力する一方、湿度がしきい値Th1より低いときの絶縁抵抗値Roの測定及び出力を行わない(少なくとも、そのような絶縁抵抗値Roを出力しない)。従って、高い絶縁抵抗値Roが測定及び出力されたとき、三相モータ装置30の絶縁性能が劣化していないと判断することができる。また、低い絶縁抵抗値Roが測定及び出力されたとき、三相モータ装置30の絶縁性能が劣化したと判断することができる。このように、第1の実施形態に係る絶縁抵抗監視装置40によれば、三相モータ装置30の周囲の環境に起因する絶縁抵抗値Roの変動を考慮して、三相モータ装置30の絶縁抵抗値Roを高精度に測定してユーザに提示することができる。
 被測定物が配置される可能性が高い常温、例えば20~30℃の環境では、絶縁抵抗値Roの変動に対して、温度よりも湿度の方が支配的であると考えられる。従って、第1の実施形態では、三相モータ装置30の近傍の湿度を考慮して、三相モータ装置30の絶縁抵抗値Roを測定して出力する。
[第1の実施形態]
 以下、第1の実施形態に係る絶縁抵抗監視装置についてさらに説明する。
[第1の実施形態の構成例]
 三相交流電源装置10は、3つの単相交流電源11~13を備える。単相交流電源11~13は、120度ずつ互いに異なる位相を有する単相交流電圧を発生する。図1の例では、単相交流電源11~13はΔ結線で互いに接続される。単相交流電源11~13を互いに接続するノードN1~N3は、U相、V相、及びW相の各電源ラインを介して回路遮断器20及び三相モータ装置30に接続される。
 三相交流電源装置10は、配電盤及び高圧受変電設備などを含んでもよい。この場合、高圧受変電設備は、電力会社から供給された例えば6600Vの電圧を、例えば200V~480V程度の電圧に降圧する。配電盤は、降圧された電圧を、三相モータ装置30及び他の負荷装置に分配する。
 回路遮断器20は、U相、V相、及びW相の各電源ラインに挿入されたスイッチ21~23を含む。回路遮断器20はさらに、スイッチ21~23のオン/オフを検出し、これにより、三相モータ装置30が動作中であるかそれとも停止中であるかを検出する動作センサ24を備える。動作センサ24は、例えば、スイッチ21~23に連動してオン/オフするもう1つのスイッチであってもよい。
 三相モータ装置30は、巻線31~33及び筐体34を備える。図1の例では、巻線31~33はΔ結線で互いに接続される。巻線31~33を互いに接続するノードN4~N6は、U相、V相、及びW相の各電源ラインに接続される。筐体34は、巻線31~33から電気的に絶縁されたもう1つのノードである。筐体34は接地されてもよい。
 巻線31~33及び筐体34の間には、漏電電流が流れることがある。図1の例では、ノードN4及び筐体34の間において、抵抗分の漏電電流が流れる対地絶縁抵抗35が生じる場合を示す。対地絶縁抵抗35は絶縁抵抗値Roを有する。
 三相モータ装置30はさらに、三相モータ装置30の近傍の湿度を検出する湿度センサ36を備える。ここで、三相モータ装置30の「近傍」は、三相モータ装置30の絶縁抵抗値Roに影響する湿度を検出できる位置、例えば、筐体34の内部を含む。
 電圧源E1は、三相モータ装置30の互いに絶縁された2つのノード間、図1の例ではノードN4及び筐体34の間に印加する所定電圧を供給する。電圧源E1は、例えば50Vの直流電圧を供給する。
 スイッチSWは、三相モータ装置30及び電圧源E1の間の回路を開閉する。図1の例では、スイッチSWは、ノードN4と電圧源E1との間に挿入されているが、他の位置に挿入されてもよい。スイッチSWは、例えば、ユーザによって操作される機械式スイッチであってもよく、外部からの制御信号に応じて動作するリードリレーであってもよい。スイッチSWの開状態のときの抵抗値は、被測定物の所望の絶縁抵抗に応じて設定される。例えば、三相モータ装置30の絶縁抵抗値Roが100MΩ程度である場合、スイッチSWは、開状態のとき、100MΩ以上、好ましくは1000MΩ以上の抵抗値を有する。
 電流測定器41は、スイッチSWがオンされたとき、電圧源E1によって供給される電圧に起因して、三相モータ装置30の互いに絶縁された2つのノード間に流れる漏電電流、図1の例ではノードN4及び筐体34の間の対地絶縁抵抗35を介して流れる漏電電流を測定する。電流測定器41は、オペアンプ等を備え、例えば、数μA~数十μAのオーダーの大きさを有する電流を測定するように構成される。
 絶縁抵抗計算器42は、電圧源E1によって供給される電圧と、電流測定器41によって測定された漏電電流とに基づいて、三相モータ装置30の絶縁抵抗値Roを計算する。絶縁抵抗計算器42は、絶縁抵抗値Roが法令に規定される要件を満たすか否かを判断してもよい。絶縁抵抗計算器42は、その計算結果及び判断結果を表示装置43に出力する。
 表示装置43は、三相モータ装置30の絶縁抵抗値Roを表示する。表示装置43は、絶縁抵抗値Roに加えて、又はそれに代えて、絶縁抵抗値Roが法令に規定される要件を満たすか否かを表示してもよい。
 動作情報受信部44は、動作センサ24から、三相モータ装置30が動作中又は停止中であることを示す情報を受信してコントローラ46に通知する。
 湿度情報受信部45は、湿度センサ36から、三相モータ装置30の近傍の湿度を受信してコントローラ46に通知する。
 コントローラ46は、三相モータ装置30が停止中であり、かつ、三相モータ装置30の近傍の湿度が予め決められたしきい値Th1以上であるとき、三相モータ装置30の絶縁抵抗値Roを計算して表示装置43を介して出力するように絶縁抵抗計算器42を制御する。しきい値Th1は、三相モータ装置30の絶縁抵抗値Roが十分に小さくなるように、例えば50%に設定される。
 例えば法定点検のために、絶縁抵抗監視装置40とは別の絶縁抵抗測定器を用いて三相モータ装置30の絶縁抵抗値Roを測定する場合、ユーザは、回路遮断器20及びスイッチSWをオフし、絶縁抵抗測定器のプローブを三相モータ装置30の互いに絶縁された2つのノード(例えばノードN4及び筐体34)に接続する。これにより、絶縁抵抗監視装置40を三相モータ装置30から取り外すことなく、絶縁抵抗測定器を用いて三相モータ装置30の絶縁抵抗値Roを測定することができる。
[第1の実施形態の動作例]
 図3は、図1の絶縁抵抗監視装置40による三相モータ装置30の絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。図3の例では、三相モータ装置30は、時間期間t1~t2及びt3~t4において動作中であり、他の時間期間において停止中である。また、三相モータ装置30が停止中であるとき、時刻t11及びt12において、三相モータ装置30の近傍の湿度は、しきい値Th1を超えて増大する。前述したように、絶縁抵抗監視装置40は、三相モータ装置30が停止中であり、かつ、三相モータ装置30の近傍の湿度がしきい値Th1以上であるとき、三相モータ装置30の絶縁抵抗値Roを測定して出力する。
 図4は、図1のコントローラ46によって実行される絶縁抵抗監視処理の一例を示すフローチャートである。
ステップS1において、コントローラ46は、動作情報受信部44からの情報に基づいて三相モータ装置30が停止中であるか否かを判断し、YESのときはステップS2に進み、NOのときはステップS1を繰り返す。
 ステップS2において、コントローラ46は、湿度情報受信部45から三相モータ装置30の近傍の湿度Hを取得する。ステップS3において、コントローラ46は、三相モータ装置30の近傍の湿度Hがしきい値Th1以上であるか否かを判断し、YESのときはステップS4に進み、NOのときはステップS1に戻る。
 ステップS4において、コントローラ46は、絶縁抵抗値Roを測定して表示装置43を介して出力するように絶縁抵抗計算器42を制御する。
 図4の絶縁抵抗監視処理によれば、三相モータ装置30の近傍の湿度の変動に起因する絶縁抵抗値Roの変動を考慮して、三相モータ装置30の絶縁抵抗値Roを高精度に測定してユーザに提示することができる。
[第1の実施形態の効果]
 第1の実施形態に係る絶縁抵抗監視装置40によれば、三相モータ装置30の近傍の湿度の変動に起因する絶縁抵抗値Roの変動を考慮して、三相モータ装置30の絶縁抵抗値Roを高精度に測定してユーザに提示することができる。
[第2の実施形態]
 次に、第2の実施形態に係る絶縁抵抗監視装置について説明する。
[第2の実施形態の構成例]
 図5は、第2の実施形態に係る絶縁抵抗監視装置40Aを含むモータシステムの構成の一例を示すブロック図である。図5のモータシステムは、図1の三相モータ装置30及び絶縁抵抗監視装置40に代えて、三相モータ装置30A及び絶縁抵抗監視装置40Aを備える。
 三相モータ装置30Aは、図1の三相モータ装置30の各構成要素に加えて、三相モータ装置30Aの近傍の温度を検出する温度センサ37を備える。ここで、三相モータ装置30Aの「近傍」は、三相モータ装置30Aの絶縁抵抗値Roに影響する温度を検出できる位置、例えば、筐体34の内部を含む。
 絶縁抵抗監視装置40Aは、図1の絶縁抵抗監視装置40のコントローラ46に代えてコントローラ46Aを備え、温度情報受信部47をさらに備える。
 温度情報受信部47は、温度センサ37から、三相モータ装置30Aの近傍の温度を受信してコントローラ46Aに通知する。
 コントローラ46Aは、三相モータ装置30Aが停止中であり、三相モータ装置30Aの近傍の湿度が第1のしきい値Th1以上であり、かつ、三相モータ装置30Aの近傍の温度が予め決められた第2のしきい値Th2以上であるとき、三相モータ装置30Aの絶縁抵抗値Roを計算して表示装置43を介して出力するように絶縁抵抗計算器42を制御する。しきい値Th2は、三相モータ装置30Aの絶縁抵抗値Roが十分に小さくなるように、例えば25℃に設定される。
[第2の実施形態の動作例]
 図6は、図5の絶縁抵抗監視装置40Aによる三相モータ装置30Aの絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。図3の例では、三相モータ装置30Aが停止中であるとき、時刻t21及びt22において、三相モータ装置30Aの近傍の湿度及び温度はそれぞれしきい値Th1,Th2より高くなる。前述したように、絶縁抵抗監視装置40Aは、三相モータ装置30Aが停止中であり、三相モータ装置30Aの近傍の湿度がしきい値Th1以上であり、かつ、三相モータ装置30Aの近傍の温度がしきい値Th2以上であるとき、三相モータ装置30Aの絶縁抵抗値Roを測定して出力する。
 図7は、図5のコントローラ46Aによって実行される絶縁抵抗監視処理の一例を示すフローチャートである。
 ステップS11~13は、図4のステップS1~S3と同様である。
 ステップS14において、コントローラ46Aは、温度情報受信部47から三相モータ装置30Aの近傍の温度Tを取得する。ステップS15において、コントローラ46Aは、三相モータ装置30Aの近傍の温度Tがしきい値Th2以上であるか否かを判断し、YESのときはステップS16に進み、NOのときはステップS11に戻る。
 ステップS16において、コントローラ46Aは、図4のステップS4と同様に、絶縁抵抗値Roを測定して表示装置43を介して出力するように絶縁抵抗計算器42を制御する。
 図4の絶縁抵抗監視処理によれば、三相モータ装置30Aの近傍の湿度及び温度の変動に起因する絶縁抵抗値Roの変動を考慮して、三相モータ装置30Aの絶縁抵抗値Roを高精度に測定してユーザに提示することができる。
[第2の実施形態の効果]
 第2の実施形態に係る絶縁抵抗監視装置40Aによれば、三相モータ装置30Aの近傍の湿度及び温度の変動に起因する絶縁抵抗値Roの変動を考慮して、三相モータ装置30Aの絶縁抵抗値Roを高精度に測定してユーザに提示することができる。湿度及び温度の両方を考慮することにより、三相モータ装置30Aの絶縁抵抗値Roを第1の実施形態の場合よりも高精度に測定してユーザに提示することができる。
[第3の実施形態]
 次に、第3の実施形態に係る絶縁抵抗監視装置について説明する。
[第3の実施形態の構成例]
 図8は、第3の実施形態に係る絶縁抵抗監視装置40Bを含むモータシステムの構成の一例を示すブロック図である。図8のモータシステムは、図5の絶縁抵抗監視装置40Aに代えて、絶縁抵抗監視装置40Bを備える。
 絶縁抵抗監視装置40Bは、図5の絶縁抵抗監視装置40Aのコントローラ46Aに代えてコントローラ46Bを備え、タイマ48をさらに備える。
 タイマ48は、三相モータ装置30Aが停止してからの経過時間を計時する。
 コントローラ46Bは、動作情報受信部44からの情報に基づいて、タイマ48による計時を開始又は停止する。三相モータ装置30Aが停止状態から動作状態に遷移したとき、コントローラ46Bは、タイマ48による計時を開始する。三相モータ装置30Aが動作状態から停止状態に遷移したとき、コントローラ46Bは、タイマ48による計時を停止してリセットする。コントローラ46Bは、三相モータ装置30Aが停止中であり、三相モータ装置30Aが停止してから予め決められた時間期間T0が経過し、三相モータ装置30Aの近傍の湿度がしきい値Th1以上であり、かつ、三相モータ装置30Aの近傍の温度がしきい値Th2以上であるとき、三相モータ装置30Aの絶縁抵抗値Roを測定して出力するように絶縁抵抗計算器42を制御する。時間期間T0は、例えば、三相モータ装置30Aの動作中に上昇した三相モータ装置30Aの近傍の温度が十分に低下するように、例えば数分~数時間に設定される。
 概して、三相モータ装置30Aは動作中に発熱するので、三相モータ装置30Aの近傍の温度は三相モータ装置30Aの動作中に上昇し、温度が上昇すると湿度が低下する。従って、三相モータ装置30Aが停止した直後にその絶縁抵抗値Roを測定すると、低下した湿度に起因して一時的に増大した絶縁抵抗値Roを取得してしまうおそれがある。これに対して、三相モータ装置30Aが停止してから時間期間T0が経過した後に絶縁抵抗値Roを測定することにより、十分に低い絶縁抵抗値Roを取得することができる。
[第3の実施形態の動作例]
 図9は、図8の絶縁抵抗監視装置40Bによる三相モータ装置30の絶縁抵抗値Roの測定を示す例示的なタイミングチャートである。図9の例では、時刻t2において三相モータ装置30Aが停止した後で、三相モータ装置30Aの近傍の湿度及び温度がそれぞれしきい値Th1,Th2より高くなっても、時間期間T0が経過する(すなわち時刻t31)までは、三相モータ装置30Aの絶縁抵抗値Roの測定及び出力を行わない。また、時刻t2において三相モータ装置30Aが停止した後で、時間期間T0が経過しても、三相モータ装置30Aの近傍の湿度及び温度はそれぞれしきい値Th1,Th2より高くなる(すなわち時刻t32)までは、三相モータ装置30Aの絶縁抵抗値Roの測定及び出力を行わない。
 図10は、図8のコントローラ46Bによって実行される絶縁抵抗監視処理の一例を示すフローチャートである。
 ステップS21において、コントローラ46Bは、動作情報受信部44からの情報に基づいて三相モータ装置30Aが停止中であるか否かを判断し、YESのときはステップS22に進み、NOのときはステップS23に進む。
 ステップS22において、コントローラ46Bは、タイマ48を用いて、三相モータ装置30Aを停止してからの経過時間Tstを計時する。
 ステップS23において、コントローラ46Bは、タイマ48をリセットする。
 ステップS24において、コントローラ46Bは、三相モータ装置30Aを停止してからの経過時間Tstが予め決められた時間期間T0以上になったか否かを判断し、YESのときはステップS25に進み、NOのときはステップS21に戻る。
 ステップS25~S29は、図7のステップS12~S16と同様である。
 図10の絶縁抵抗監視処理によれば、三相モータ装置30Aの発熱に起因して湿度が低下したときに三相モータ装置30Aの絶縁抵抗値Roを測定及び出力することを回避し、これにより、三相モータ装置30Aの絶縁抵抗値Roを高精度に測定してユーザに提示することができる。
[第3の実施形態の効果]
 第3の実施形態に係る絶縁抵抗監視装置40Bによれば、三相モータ装置30Aの発熱に起因して湿度が低下したときに三相モータ装置30Aの絶縁抵抗値Roを測定及び出力することを回避し、これにより、三相モータ装置30Aの絶縁抵抗値Roを高精度に測定してユーザに提示することができる。
[第4の実施形態]
 次に、第4の実施形態に係る絶縁抵抗監視装置について説明する。
[第4の実施形態の構成例]
 図11は、第4の実施形態に係る絶縁抵抗監視装置40Cを含むモータシステムの構成の一例を示すブロック図である。図11のモータシステムは、図8の絶縁抵抗監視装置40Bに代えて、絶縁抵抗監視装置40Cを備える。
 絶縁抵抗監視装置40Cは、図8の絶縁抵抗監視装置40Bのコントローラ46B及びタイマ48に代えてコントローラ46C及びタイマ48Cを備え、記憶装置49をさらに備える。
 タイマ48Cは、図14~図16を参照して後述するしきい値設定処理を開始してからの経過時間を計時する。
 記憶装置49は、絶縁抵抗測定器によって測定された三相モータ装置30Aの絶縁抵抗値Roと、三相モータ装置30Aの絶縁抵抗値Roを測定したときに取得された三相モータ装置30Aの近傍の湿度及び温度とを格納する。記憶装置49は、例えば図13を参照して説明するテーブルを格納してもよい。
 コントローラ46Cは、予め決められた時間期間T1にわたって被測定物の絶縁抵抗を測定するように絶縁抵抗測定器を制御する。次いで、コントローラ46Cは、絶縁抵抗測定器によって測定された被測定物の絶縁抵抗値Roとともに、被測定物の絶縁抵抗値Roを測定したときに取得された被測定物の近傍の湿度及び温度を記憶装置49に格納する。次いで、コントローラ46Cは、記憶装置49に格納された複数の絶縁抵抗値Roのうちで最小の絶縁抵抗値Roに対応する湿度をしきい値Th1として選択する。また、コントローラ46Cは、記憶装置49に格納された複数の絶縁抵抗値Roのうちで最小の絶縁抵抗値Roに対応する温度をしきい値Th2として選択する。これにより、コントローラ46Cは、湿度のしきい値Th1及び温度のしきい値Th2を設定する。時間期間T1は、しきい値Th1及びTh2を設定するために十分な個数の絶縁抵抗値Ro、湿度、及び温度の組み合わせを取得するために十分な長さ、例えば数日~数週間に設定される。
[第4の実施形態の動作例]
 図12は、図11の絶縁抵抗監視装置40Cによる三相モータ装置30Aの絶縁抵抗の測定を示す例示的なタイミングチャートである。絶縁抵抗監視装置40Cは、三相モータ装置30Aが停止中であるとき、湿度又は温度が所定のステップ幅で変化するごとに絶縁抵抗値Roを測定する。図12の例では、湿度のステップ幅は10%であり、温度のステップ幅は5℃である。図12の例では、絶縁抵抗監視装置40Cは、時刻t41~t46において絶縁抵抗値Roを測定する。これにより、絶縁抵抗監視装置40Cは、湿度及び温度の異なる組み合わせに対応して測定された複数の絶縁抵抗値Roを取得する。
 図13は、図11の絶縁抵抗監視装置40Cによってさまざまな湿度及び温度の条件で測定された三相モータ装置30Aの絶縁抵抗値Roを示すテーブルである。絶縁抵抗監視装置40Cは、例えば、湿度及び温度の組み合わせが、未測定の絶縁抵抗値Roに対応する値に達するごとに、絶縁抵抗値Roを測定し、測定された絶縁抵抗値Roを湿度及び温度に関連付けて記憶装置49に格納する。予め決められた時間期間、例えば3日間が経過すると、図13に示すデータが記憶装置49に格納される。図13において、絶縁抵抗値Roの単位はMΩであり、空欄は、絶縁抵抗値Roが測定されていないことを示す。図13の例では、絶縁抵抗値Roの最小値は100MΩであり、これに対応して、湿度のしきい値Th1は50%に設定され、温度のしきい値Th2は25℃に設定される。
 図14は、図11のコントローラ46Cによって実行される絶縁抵抗監視処理の一例を示すフローチャートである。
 ステップS31において、コントローラ46Cは、しきい値Th1及びTh2が未設定であるか否かを判断し、YESのときはステップS32に進み、NOのときはステップS33に進む。
 ステップS32において、コントローラ46Cは、図15を参照して後述するしきい値設定処理を実行する。
 ステップS33において、コントローラ46Cは絶縁抵抗測定処理を実行する。ステップS33の絶縁抵抗測定処理は、図4、図7、又は図10を参照して説明した絶縁抵抗監視処理と同様である。
 図15は、図14のステップS32のしきい値設定処理のサブルーチンを示すフローチャートである。
 ステップS41において、コントローラ46Cは、動作情報受信部44からの情報に基づいて三相モータ装置30Aが停止中であるか否かを判断し、YESのときはステップS42に進み、NOのときはステップS41を繰り返す。
 ステップS42において、コントローラ46Cは、湿度情報受信部45から三相モータ装置30Aの近傍の湿度Hを取得し、温度情報受信部47から三相モータ装置30Aの近傍の温度Tを取得する。ステップS43において、コントローラ46Cは、現在の湿度H及び温度Tに対応する絶縁抵抗値Roが未測定であるか否かを判断し、YESのときはステップS44に進み、NOのときはステップS41に戻る。
 ステップS44において、コントローラ46Cは、絶縁抵抗値Roを測定するように絶縁抵抗計算器42を制御する。ステップS45において、コントローラ46Cは、絶縁抵抗値Roを湿度H及び温度Tとともに記憶装置49に格納する。
 ステップS46Cにおいて、コントローラ46Cは、しきい値設定処理を開始してから予め決められた測定期間T1が経過したか否かを判断し、YESのときはステップS47に進み、NOのときはステップS41に戻る。
 ステップS47において、コントローラ46Cは、最小の絶縁抵抗値Roに対応する湿度Hをしきい値Th1として設定する。ステップS48において、コントローラ46Cは、最小の絶縁抵抗値Roに対応する温度Tをしきい値Th2として設定する。
 ステップS32は、例えば、モータシステムを設置した後、絶縁抵抗監視装置40Cの最初の動作時に実行される。ステップS32を実行した後、設定されたしきい値Th1及びTh2を用いて、ステップS33の絶縁抵抗測定処理を実行することができる。
 同じ最小値を有する複数の絶縁抵抗値が測定された場合、これらの絶縁抵抗値に対応する複数の湿度のうちで最小の湿度をしきい値Th1として選択してもよく、これらの絶縁抵抗値に対応する複数の温度のうちで最小の温度をしきい値Th2として選択してもよい。
 図14の絶縁抵抗監視処理によれば、ステップS32のしきい値設定処理を実行することにより、三相モータ装置30Aの周囲の環境に応じて適切な湿度のしきい値Th1及び温度のしきい値Th2を自動的に設定することができ、三相モータ装置30Aの絶縁抵抗値Roを高精度に測定することができる。また、しきい値Th1及びTh2を自動的に設定することにより、ユーザの手間を軽減することができる。
 ステップS32のしきい値設定処理を実行してから、三相モータ装置30Aの周囲の環境が変化したとき、例えば、季節が変化して平均湿度及び平均温度(気温)が低下したとき、三相モータ装置30Aの近傍の湿度及び温度がしきい値Th1及びTh2に達しにくくなることがある。これにより、三相モータ装置30Aの絶縁抵抗値Roを長期間にわたって測定できなくなるおそれがある。このため、三相モータ装置30Aの絶縁抵抗値Roを長期間にわたって測定できないとき、図16を参照して説明するように、しきい値Th1及びTh2を再設定する。
 図16は、図11のコントローラ46Cによって実行される絶縁抵抗監視処理の変形例を示すフローチャートである。
 ステップS51において、コントローラ46Cは、絶縁抵抗値Roを測定しない期間がしきい値T2を超えたか否かを判断し、YESのときはステップS52に進み、NOのときはステップS53に進む。しきい値T2は、例えば、1週間に設定される。
 ステップS52において、コントローラ46Cはしきい値再設定処理を実行する。ステップS52のしきい値再設定処理は、ステップS32のしきい値設定処理と同様である。
 ステップS53において、コントローラ46Cは絶縁抵抗測定処理を実行する。ステップS53の絶縁抵抗測定処理は、図4、図7、又は図10の絶縁抵抗監視処理において最初のステップに戻ることに代えて図16のステップ51に進むことを除いて、図4、図7、又は図10を参照して説明した絶縁抵抗監視処理と同様である。
 図16の絶縁抵抗監視処理によれば、三相モータ装置30Aの周囲の環境が変化しても、しきい値Th1及びTh2を再設定することにより、三相モータ装置30Aの絶縁抵抗値Roを長期間にわたって測定できなくなることを防ぐことができる。
[第4の実施形態の効果]
 第4の実施形態に係る絶縁抵抗監視装置40Cによれば、図14の絶縁抵抗監視処理を実行することにより、三相モータ装置30Aの周囲の環境に応じて適切な湿度のしきい値Th1及び温度のしきい値Th2を自動的に設定することができ、三相モータ装置30Aの絶縁抵抗値Roを高精度に測定することができる。また、第4の実施形態に係る絶縁抵抗監視装置40Cによれば、図16の絶縁抵抗監視処理を実行することにより、三相モータ装置30Aの周囲の環境に応じて適切な湿度のしきい値Th1及び温度のしきい値Th2を自動的に再設定することができる。これにより、三相モータ装置30Aの周囲の環境が変化しても、三相モータ装置30Aの絶縁抵抗値Roを長期間にわたって測定できなくなることを防ぐことができる。
[他の変形例]
 以上、本開示の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
 湿度センサ36は、図1他に示すように筐体34の内部に設けられてもよく、それに代わって、三相モータ装置30,30Aの絶縁抵抗値Roに影響する湿度を検出できるのであれば、筐体34の外部に設けられてもよい。同様に、温度センサ37は、図5他に示すように筐体34の内部に設けられてもよく、それに代わって、三相モータ装置30Aの絶縁抵抗値Roに影響する温度を検出できるのであれば、筐体34の外部に設けられてもよい。
 動作情報受信部44は、図1他に示すように、回路遮断器20に設けられた動作センサ24から、三相モータ装置30,30Aが動作中又は停止中であることを示す情報を受信してもよく、それに代わって、回路遮断器20を制御する他の制御装置(図示せず)から当該情報を受信してもよい。また、湿度情報受信部45は、図1他に示すように、三相モータ装置30,30Aに設けられた湿度センサ36から三相モータ装置30,30Aの近傍の湿度を受信してもよく、それに代わって、三相モータ装置30,30Aの近傍の湿度を測定する他の測定装置から当該湿度を受信してもよい。また、温度情報受信部47は、図5他に示すように、三相モータ装置30Aに設けられた温度センサ37から三相モータ装置30Aの近傍の温度を受信してもよく、それに代わって、三相モータ装置30Aの近傍の温度を測定する他の測定装置から当該温度を受信してもよい。
 絶縁抵抗監視装置40,40A~40Cは、三相モータ装置30,30Aが停止中であり、かつ、三相モータ装置30,30Aの近傍の湿度が所定の範囲内にあるとき、三相モータ装置30,30Aの絶縁抵抗値Roを測定して出力してもよい。また、絶縁抵抗監視装置40A~40Cは、三相モータ装置30Aが停止中であり、三相モータ装置30Aの近傍の湿度が所定の範囲内にあり、かつ、三相モータ装置30Aの近傍の温度が所定の範囲内にあるとき、三相モータ装置30Aの絶縁抵抗値Roを測定して出力してもよい。図13の例では、絶縁抵抗値Roの最小値は100MΩであるので、これに対応して、湿度の範囲は50~56%に設定され、温度の範囲は25~29℃に設定される。三相モータ装置30Aの周囲の環境が変化して、例えば平均湿度及び平均温度(気温)が上昇したとき、三相モータ装置30Aの近傍の湿度及び温度が、予め決められた湿度の範囲及び温度の範囲を超過しやすくなる。この場合、図16の絶縁抵抗監視処理と同様に、三相モータ装置30Aの周囲の環境に応じて適切な湿度の範囲及び温度の範囲を自動的に再設定することができる。これにより、三相モータ装置30Aの絶縁抵抗値Roを長期間にわたって測定できなくなることを防ぐことができる。
 第3の実施形態では、絶縁抵抗監視装置40Bが、三相モータ装置30Aの近傍の湿度及び温度の両方を取得する場合について説明したが、湿度及び温度の一方のみを取得してもよい。この場合、絶縁抵抗監視装置40Bは、三相モータ装置30Aが停止中であり、三相モータ装置30Aが停止してから予め決められた時間期間T0が経過し、三相モータ装置30Aの近傍の湿度又は温度がしきい値以上であるとき、三相モータ装置30Aの絶縁抵抗値Roを測定して出力する。
 第4の実施形態では、絶縁抵抗監視装置40Cが、湿度のしきい値Th1及び温度しきい値Th2の両方を自動的に設定する場合について説明したが、しきい値Th1及びTh2の一方のみを自動的に設定してもよい。
 図1他の絶縁抵抗監視装置40,40A~40Cは、電流測定器41、絶縁抵抗計算器42、表示装置43、電圧源E1、及びスイッチSWを含む絶縁抵抗計算器に限らず、他の任意の構成を有する絶縁抵抗計算器を備えてもよい。
 表示装置43は、絶縁抵抗監視装置40,40A~40Cの内部に代えて、通信回線を介して接続された遠隔の装置に設けられてもよい。
 絶縁抵抗計算器42の計算結果及び判断結果は、表示装置43を用いて視覚的に出力されることに代えて、音声出力装置を用いて聴覚的に出力されてもよい。また、絶縁抵抗計算器42の計算結果及び判断結果をユーザに通知するために、他の任意の出力装置を用いてもよい。また、絶縁抵抗監視装置40,40A~40Cは、絶縁抵抗計算器42の計算結果及び判断結果を、通信回線を介して接続された他の装置に出力してもよい。
 説明した実施形態では、絶縁抵抗監視装置40,40A~40Cは三相モータ装置30,30AのノードN4及び筐体34に接続される場合について説明したが、絶縁抵抗監視装置40,40A~40Cは、ノードN5及び筐体34の間に接続されてもよく、ノードN6及び筐体34の間に接続されてもよい。
 絶縁抵抗監視装置40,40A~40Cは、三相モータ装置30,30Aに代えて、他の任意の被測定物の互いに絶縁された2つのノード間に接続されてもよい。被測定物は、例えば、電源装置、タイマ、リレー、共用ソケット、DINレール、防水カバー、温度調節器、スイッチなどを含む。また、絶縁抵抗監視装置40は、被測定物の電源ライン及び接地導体に限らず、被測定物の互いに絶縁された任意の2つのノードに接続されてもよい。
[まとめ]
 本開示の各側面に係る絶縁抵抗監視装置は、以下のように表現されてもよい。
 本開示の一側面に係る絶縁抵抗監視装置40は、絶縁抵抗測定器、動作情報受信部44、湿度情報受信部45、及びコントローラ46を備える。絶縁抵抗測定器は、被測定物の絶縁抵抗を測定して出力する。動作情報受信部44は、被測定物が動作中又は停止中であることを示す情報を受信する。湿度情報受信部45は、被測定物の近傍の湿度を受信する。コントローラ46は、被測定物が停止中であり、かつ、被測定物の近傍の湿度が第1のしきい値Th1以上であるとき、被測定物の絶縁抵抗を測定して出力するように絶縁抵抗測定器を制御する。
 本開示の一側面に係る絶縁抵抗監視装置40Bは、被測定物が停止してからの経過時間を計時するタイマをさらに備える。コントローラ46Bは、被測定物が停止中であり、被測定物が停止してから予め決められた第1の時間期間が経過し、かつ、被測定物の近傍の湿度が第1のしきい値Th1以上であるとき、被測定物の絶縁抵抗を測定して出力するように絶縁抵抗測定器を制御する。
 本開示の一側面に係る絶縁抵抗監視装置40Cは、絶縁抵抗測定器によって測定された被測定物の絶縁抵抗を格納する記憶装置49をさらに備える。コントローラ46Cは、予め決められた第2の時間期間にわたって被測定物の絶縁抵抗を測定するように絶縁抵抗測定器を制御することと、絶縁抵抗測定器によって測定された被測定物の絶縁抵抗とともに、被測定物の絶縁抵抗を測定したときに受信された被測定物の近傍の湿度を記憶装置49に格納することと、記憶装置49に格納された複数の絶縁抵抗のうちで最小の絶縁抵抗に対応する湿度を第1のしきい値Th1として選択することとにより、第1のしきい値Th1を設定する。
 本開示の一側面に係る絶縁抵抗監視装置40Cによれば、コントローラ46Cは、被測定物の近傍の湿度が第1のしきい値Th1に満たない期間が予め決められた第3の時間期間を超えたとき、第1のしきい値Th1を設定する。
 本開示の一側面に係る絶縁抵抗監視装置40Aは、被測定物の近傍の温度を受信する温度情報受信部をさらに備える。コントローラ46Aは、被測定物が停止中であり、被測定物の近傍の湿度が第1のしきい値Th1以上であり、かつ、被測定物の近傍の温度が第2のしきい値Th2以上であるとき、被測定物の絶縁抵抗を測定して出力するように絶縁抵抗測定器を制御する。
 本開示の一側面に係る絶縁抵抗監視装置40Bは、被測定物が停止してからの経過時間を計時するタイマをさらに備える。コントローラ46Bは、被測定物が停止中であり、被測定物が停止してから予め決められた第1の時間期間が経過し、被測定物の近傍の湿度が第1のしきい値Th1以上であり、かつ、被測定物の近傍の温度が第2のしきい値Th2以上であるとき、被測定物の絶縁抵抗を測定して出力するように絶縁抵抗測定器を制御する。
 本開示の一側面に係る絶縁抵抗監視装置40Cは、絶縁抵抗測定器によって測定された被測定物の絶縁抵抗を格納する記憶装置49をさらに備える。コントローラ46Cは、予め決められた第2の時間期間にわたって被測定物の絶縁抵抗を測定するように絶縁抵抗測定器を制御することと、絶縁抵抗測定器によって測定された被測定物の絶縁抵抗とともに、被測定物の絶縁抵抗を測定したときに受信された被測定物の近傍の温度を記憶装置49に格納することと、記憶装置49に格納された複数の絶縁抵抗のうちで最小の絶縁抵抗に対応する温度を第2のしきい値Th2として選択することとにより、第2のしきい値Th2を設定する。
 本開示の一側面に係る絶縁抵抗監視装置40Cによれば、コントローラ46Cは、被測定物の近傍の温度が第2のしきい値Th2に満たない期間が予め決められた第3の時間期間を超えたとき、第2のしきい値Th2を設定する。
 本発明の一側面に係る絶縁抵抗監視装置によれば、被測定物の周囲の環境に起因する絶縁抵抗の変動を考慮して、被測定物の絶縁抵抗を高精度に測定することができる。
10 三相交流電源装置
11~13 単相交流電源
20 回路遮断器
21~23 スイッチ
24 動作センサ
30,30A 三相モータ装置
31~33 巻線
34 筐体
35 対地絶縁抵抗
36 湿度センサ
37 温度センサ
40,40A~40C 絶縁抵抗監視装置
41 電流測定器
42 絶縁抵抗計算器
43 表示装置
44 動作情報受信部
45 湿度情報受信部
46,46A~46C コントローラ
47 温度情報受信部
48,48C タイマ
49 記憶装置
E1 電圧源
SW スイッチ

Claims (8)

  1.  被測定物の絶縁抵抗を測定して出力する絶縁抵抗測定器と、
     前記被測定物が動作中又は停止中であることを示す情報を受信する動作情報受信部と、
     前記被測定物の近傍の湿度を受信する湿度情報受信部と、
     前記被測定物が停止中であり、かつ、前記被測定物の近傍の湿度が第1のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御するコントローラとを備える、
    絶縁抵抗監視装置。
  2.  前記絶縁抵抗監視装置は、前記被測定物が停止してからの経過時間を計時するタイマをさらに備え、
     前記コントローラは、前記被測定物が停止中であり、前記被測定物が停止してから予め決められた第1の時間期間が経過し、かつ、前記被測定物の近傍の湿度が前記第1のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御する、
    請求項1記載の絶縁抵抗監視装置。
  3.  前記絶縁抵抗監視装置は、前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗を格納する記憶装置をさらに備え、
     前記コントローラは、
     予め決められた第2の時間期間にわたって前記被測定物の絶縁抵抗を測定するように前記絶縁抵抗測定器を制御することと、
     前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗とともに、前記被測定物の絶縁抵抗を測定したときに受信された前記被測定物の近傍の湿度を前記記憶装置に格納することと、
     前記記憶装置に格納された複数の絶縁抵抗のうちで最小の絶縁抵抗に対応する湿度を前記第1のしきい値として選択することとにより、
    前記第1のしきい値を設定する、
    請求項1又は2記載の絶縁抵抗監視装置。
  4.  前記コントローラは、前記被測定物の近傍の湿度が前記第1のしきい値に満たない期間が予め決められた第3の時間期間を超えたとき、前記第1のしきい値を設定する、
    請求項3記載の絶縁抵抗監視装置。
  5.  前記絶縁抵抗監視装置は、前記被測定物の近傍の温度を受信する温度情報受信部をさらに備え、
     前記コントローラは、前記被測定物が停止中であり、前記被測定物の近傍の湿度が前記第1のしきい値以上であり、かつ、前記被測定物の近傍の温度が第2のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御する、
    請求項1~4のうちの1つに記載の絶縁抵抗監視装置。
  6.  前記絶縁抵抗監視装置は、前記被測定物が停止してからの経過時間を計時するタイマをさらに備え、
     前記コントローラは、前記被測定物が停止中であり、前記被測定物が停止してから予め決められた第1の時間期間が経過し、前記被測定物の近傍の湿度が前記第1のしきい値以上であり、かつ、前記被測定物の近傍の温度が前記第2のしきい値以上であるとき、前記被測定物の絶縁抵抗を測定して出力するように前記絶縁抵抗測定器を制御する、
    請求項5記載の絶縁抵抗監視装置。
  7.  前記絶縁抵抗監視装置は、前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗を格納する記憶装置をさらに備え、
     前記コントローラは、
     予め決められた第2の時間期間にわたって前記被測定物の絶縁抵抗を測定するように前記絶縁抵抗測定器を制御することと、
     前記絶縁抵抗測定器によって測定された前記被測定物の絶縁抵抗とともに、前記被測定物の絶縁抵抗を測定したときに受信された前記被測定物の近傍の温度を前記記憶装置に格納することと、
     前記記憶装置に格納された複数の絶縁抵抗のうちで最小の絶縁抵抗に対応する温度を前記第2のしきい値として選択することとにより、
    前記第2のしきい値を設定する、
    請求項5又は6記載の絶縁抵抗監視装置。
  8.  前記コントローラは、前記被測定物の近傍の温度が前記第2のしきい値に満たない期間が予め決められた第3の時間期間を超えたとき、前記第2のしきい値を設定する、
    請求項7記載の絶縁抵抗監視装置。
PCT/JP2022/007957 2021-03-29 2022-02-25 絶縁抵抗監視装置 WO2022209490A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22779715.6A EP4318004A1 (en) 2021-03-29 2022-02-25 Insulation resistance monitoring device
US18/284,617 US20240159815A1 (en) 2021-03-29 2022-02-25 Insulation resistance monitoring apparatus capable of measuring insulation resistance in consideration of surrounding environment of device under measurement
CN202280022606.8A CN116997806A (zh) 2021-03-29 2022-02-25 绝缘电阻监视装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056106 2021-03-29
JP2021056106A JP2022153071A (ja) 2021-03-29 2021-03-29 絶縁抵抗監視装置

Publications (1)

Publication Number Publication Date
WO2022209490A1 true WO2022209490A1 (ja) 2022-10-06

Family

ID=83458438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007957 WO2022209490A1 (ja) 2021-03-29 2022-02-25 絶縁抵抗監視装置

Country Status (5)

Country Link
US (1) US20240159815A1 (ja)
EP (1) EP4318004A1 (ja)
JP (1) JP2022153071A (ja)
CN (1) CN116997806A (ja)
WO (1) WO2022209490A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117558545B (zh) * 2024-01-11 2024-05-03 西安胜鑫电力有限公司 一种节能型干式变压器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294571A (ja) * 1994-04-27 1995-11-10 N T T Advance Technol Kk ケーブル絶縁抵抗測定法および測定装置
JPH10257670A (ja) * 1997-03-10 1998-09-25 Toshiba Fa Syst Eng Kk 電動機制御装置及び電動機の保守管理システム
JP2007159289A (ja) * 2005-12-06 2007-06-21 Fanuc Ltd モータ駆動装置
JP2009264989A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd 制御装置
JP2020148736A (ja) 2019-03-15 2020-09-17 オムロン株式会社 絶縁抵抗監視装置
CN212364475U (zh) * 2020-03-31 2021-01-15 国网天津市电力公司电力科学研究院 一种自动高效凝露绝缘试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294571A (ja) * 1994-04-27 1995-11-10 N T T Advance Technol Kk ケーブル絶縁抵抗測定法および測定装置
JPH10257670A (ja) * 1997-03-10 1998-09-25 Toshiba Fa Syst Eng Kk 電動機制御装置及び電動機の保守管理システム
JP2007159289A (ja) * 2005-12-06 2007-06-21 Fanuc Ltd モータ駆動装置
JP2009264989A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd 制御装置
JP2020148736A (ja) 2019-03-15 2020-09-17 オムロン株式会社 絶縁抵抗監視装置
CN212364475U (zh) * 2020-03-31 2021-01-15 国网天津市电力公司电力科学研究院 一种自动高效凝露绝缘试验装置

Also Published As

Publication number Publication date
US20240159815A1 (en) 2024-05-16
CN116997806A (zh) 2023-11-03
JP2022153071A (ja) 2022-10-12
EP4318004A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP6468662B2 (ja) 電力量計内の素子抵抗の計測
CN109239435B (zh) 电信号测量
US20120179404A1 (en) System and apparatus for measuring the accuracy of a backup time source
EP3441775A2 (en) Current measurement
CN109932592B (zh) 用于电力设备的故障确定的方法与装置
US11451042B2 (en) Method for identifying a fault event in an electric power distribution grid sector
WO2022209490A1 (ja) 絶縁抵抗監視装置
JP2009081928A (ja) 漏洩電流を検出する装置
JP2017009548A (ja) 異常検知システム、及び、異常検知方法
KR20120001300A (ko) 차단기 진단 장치 및 방법
JP2022153071A5 (ja)
CN107810422B (zh) 用于检测和指示局部放电和电压的系统
JP2022524264A (ja) 直流バスと保護接地との間の絶縁を監視する方法及び装置
JP6782442B2 (ja) 計測装置、計測システム及びコンピュータシステム
Stirl et al. On-line condition monitoring and diagnosis for power transformers their bushings, tap changer and insulation system
CN109919390B (zh) 预测电力设备的接触点的温升的方法与装置
US20220187142A1 (en) Method for maintaining an electrical component
Kullkarni et al. Advanced thermal overload protection for high tension motors using digital protection relays
CN109900387B (zh) 用于确定电力设备的报警温升阈值的方法与装置
WO2022097312A1 (ja) 絶縁抵抗監視装置
JP2018096804A (ja) 直流電源供給回路の絶縁抵抗測定方法
JP2010104148A (ja) ディジタル保護制御装置とその電源リップル監視基板および監視方法
JP2002122629A (ja) 電気機器の寿命試験装置、およびそのためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2019184535A (ja) 開閉器の寿命診断装置
RU206170U1 (ru) Многоканальное устройство измерения сопротивления изоляции

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022606.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779715

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779715

Country of ref document: EP

Effective date: 20231030