WO2022209387A1 - 眼科装置及び被検眼の検査方法 - Google Patents

眼科装置及び被検眼の検査方法 Download PDF

Info

Publication number
WO2022209387A1
WO2022209387A1 PCT/JP2022/006301 JP2022006301W WO2022209387A1 WO 2022209387 A1 WO2022209387 A1 WO 2022209387A1 JP 2022006301 W JP2022006301 W JP 2022006301W WO 2022209387 A1 WO2022209387 A1 WO 2022209387A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
measurement
eye
measurement optical
left eye
Prior art date
Application number
PCT/JP2022/006301
Other languages
English (en)
French (fr)
Inventor
浩昭 岡田
陽子 多々良
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to US18/283,586 priority Critical patent/US20240156339A1/en
Priority to EP22779614.1A priority patent/EP4316351A1/en
Priority to CN202280023860.XA priority patent/CN117157006A/zh
Publication of WO2022209387A1 publication Critical patent/WO2022209387A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Definitions

  • the present invention relates to an ophthalmologic apparatus and an examination method for an eye to be examined.
  • the present invention has been made in view of the above problem, and provides an ophthalmologic apparatus and method for inspecting the eye to be inspected, which can measure the ocular characteristics of the left and right eyes under the same conditions with both eyes open. intended to provide
  • an ophthalmologic apparatus of the present invention includes a first left eye measuring optical system used for measuring dimensional information in the front-back direction of the left eye to be examined, and a first left eye measuring optical system used for measuring the corneal shape of the left eye to be examined.
  • a second right eye measurement optical system used to measure the corneal shape of the right eye to be examined, a third right eye measurement optical system used to measure the refractive characteristics of the right eye to be examined, and the respective optical systems and a control unit for processing the obtained measurement data.
  • the control unit causes measurement using the first left eye measurement optical system and measurement using the first right eye measurement optical system to be performed simultaneously, measurement using the second left eye measurement optical system, Measurement using the second right eye measurement optical system is performed simultaneously, and measurement using the third left eye measurement optical system and measurement using the third right eye measurement optical system are performed simultaneously.
  • a method for inspecting an eye to be inspected includes a first left eye measuring optical system used for measuring dimensional information in the front-back direction of the left eye to be inspected, and a second left eye measuring optical system used for measuring the corneal shape of the left eye to be inspected.
  • an eye measurement optical system a third left eye measurement optical system used to measure the refractive properties of the left eye to be examined, and a first right eye measurement optical system used to measure dimensional information of the right eye to be examined in the front-rear direction; controlling a second right eye measurement optical system used to measure the corneal shape of the right eye to be examined, a third right eye measurement optical system used to measure the refractive characteristics of the right eye to be examined, and the respective optical systems; and a control unit for processing obtained measurement data.
  • the eye characteristics of the left and right eyes to be examined can be measured under the same conditions with both eyes open.
  • FIG. 1 is a perspective view showing the appearance of an ophthalmologic apparatus of Example 1.
  • FIG. 4 is an explanatory diagram schematically showing the configuration of the measurement unit of the ophthalmologic apparatus of Example 1.
  • FIG. FIG. 2 is an explanatory view schematically showing the configuration of the measurement optical system of the ophthalmologic apparatus of Example 1, showing a state in which infinity is viewed with both eyes;
  • FIG. 2 is an explanatory view schematically showing the configuration of the measurement optical system of the ophthalmologic apparatus of Example 1, showing a state in which a predetermined position is viewed with both eyes;
  • 2 is a block diagram showing the configuration of the control system of the ophthalmologic apparatus of Example 1.
  • FIG. 4 is an explanatory diagram showing the configuration of the measurement optical system of Example 1.
  • FIG. 4 is a flow chart showing the flow of an eye characteristic measurement procedure executed in the ophthalmologic apparatus of Example 1.
  • FIG. 4 is an explanatory diagram of an eye position detection method executed in the ophthalmologic apparatus of Example 1;
  • the ophthalmologic apparatus 10 of the first embodiment is an ophthalmologic apparatus of an open-eye type that can simultaneously measure the ocular characteristics of the subject's eye with both eyes open.
  • the ophthalmologic apparatus 10 of Example 1 includes a base 11 installed on the floor, an optometry table 12, a column 13, an arm 14, and a measurement unit 20. . Further, the ophthalmologic apparatus 10 has, as input/output devices, an examiner controller 19a such as a mobile terminal, a subject controller 19b (see FIG. 6), and a display device 19c such as a liquid crystal display. . In addition, in Example 1, the display device 19c is provided in the examiner controller 19a.
  • the subject facing the eye examination table 12 measures the eye characteristics of the subject's eye while the forehead is in contact with the forehead support 15 provided in the measurement unit 20 .
  • the left-right direction is the X direction
  • the up-down direction is the Y direction
  • the direction (depth direction) orthogonal to the X and Y directions is the Z direction.
  • the optometry table 12 is supported by the base 11 and is adjustable in height.
  • the column 13 is erected in the Y direction from the rear end of the optometry table 12, and an arm 14 is provided on the top.
  • the arm 14 suspends and supports the measurement unit 20 above the optometry table 12 and extends from the support 13 along the Z direction.
  • Arm 14 is attached to column 13 so as to be vertically movable.
  • a control box 30a containing a control unit 30 is provided below the optometry table 12 .
  • the control unit 30 comprehensively controls the operation of each unit of the ophthalmologic apparatus 10, as will be described later.
  • Power is supplied to the control unit 30 from a commercial power source (not shown) via a power cable 30b.
  • the measurement unit 20 is controlled by the control unit 30, and simultaneously measures the dimensional information in the front-rear direction of the eye to be inspected, the corneal shape of the eye to be inspected, and the refraction characteristics of the eye to be inspected, which are the eye characteristics of the eye to be inspected.
  • the measurement unit 20 may perform arbitrary subjective tests and arbitrary objective measurements other than the above.
  • a subjective test a visual target or the like is presented to a subject, and a test result is acquired based on the subject's response to the presented visual target or the like.
  • Subjective tests include subjective refraction measurements such as distance tests, near vision tests, contrast tests, and glare tests, visual field tests, astigmatism axis tests, astigmatism power tests, and the like.
  • the subject's eye is irradiated with light, and information (eye characteristics) about the subject's eye is measured based on the detection result of the return light.
  • the objective measurement includes measurement for acquiring eye characteristics of the eye to be inspected and photographing for acquiring an image of the eye to be inspected.
  • objective measurements include intraocular pressure measurement, fundus photography, optical coherence tomography (hereinafter referred to as "OCT") tomography (OCT photography), measurement using OCT, and the like. .
  • the measurement unit 20 is connected to the control section 30 via a control/power cable 30c (see FIG. 2), and power is supplied via the control section 30. Transmission and reception of information between the measurement unit 20 and the control section 30 are also performed via the control/power cable 30c.
  • the measurement unit 20 includes a mounting base portion 20a, a left driving mechanism 21L and a right driving mechanism 21R provided on the mounting base portion 20a, and a left eye measurement head 22L supported by the left driving mechanism 21L. and a right eye measurement head 22R supported by the right driving mechanism 21R.
  • the left-eye measurement head 22L and the right-eye measurement head 22R are provided in pairs to individually correspond to the left and right eyes EL and ER (see FIG. 2), and are vertically positioned in the middle of both in the X direction. It has a symmetrical configuration with respect to the plane.
  • the configuration of each drive section of the left drive mechanism 21L that supports the left eye measurement head 22L and the configuration of each drive section of the right drive mechanism 21R that supports the right eye measurement head 22R are located between the two in the X direction. It has a symmetrical configuration with respect to the vertical plane on which it is located.
  • the left drive mechanism 21L has a left vertical drive section 23a, a left horizontal drive section 23b, and a left rotation drive section 23c, and is suspended from one end of the mounting base section 20a.
  • the drive units 23a, 23b, and 23c are arranged between the mounting base 20a and the left eye measurement head 22L in the order of the left vertical drive unit 23a, the left horizontal drive unit 23b, and the left rotation drive unit 23c from above.
  • the right drive mechanism 21R has a right vertical drive portion 24a, a right horizontal drive portion 24b, and a right rotation drive portion 24c, and is suspended from the other end of the mounting base portion 20a.
  • the drive units 24a, 24b, and 24c are arranged in the order of the right vertical drive unit 24a, the right horizontal drive unit 24b, and the right rotation drive unit 24c from above, between the mounting base unit 20a and the right eye measurement head 22R.
  • Each of the driving units 23a, 23b, 23c, 24a, 24b, and 24c includes an actuator such as a pulse motor that generates driving force, and a transmission mechanism that transmits driving force such as a plurality of gear sets or a rack and pinion. ,have.
  • the left vertical drive section 23a moves the left eye measurement head 22L in the Y direction (vertical direction) with respect to the mounting base section 20a
  • the right vertical drive section 24a moves the right eye measurement head 22R with respect to the mounting base section 20a.
  • the left horizontal driving section 23b moves the left eye measurement head 22L in the X direction and the Z direction (horizontal direction) with respect to the mounting base section 20a
  • the right horizontal driving section 24b moves rightward with respect to the mounting base section 20a.
  • the eye measurement head 22R is moved in the X direction and the Z direction (horizontal direction).
  • the left rotation drive unit 23c rotates the left eye measurement head 22L around the eyeball rotation axis OL (see FIG. 2) of the left eye EL to be examined, and changes the orientation of the left eye measurement head 22L with respect to the left eye EL.
  • the right rotation drive unit 24c rotates the right eye measurement head 22R around the eyeball rotation axis OR (see FIG. 2) of the right eye ER to be examined, and changes the orientation of the right eye measurement head 22R with respect to the right eye ER. .
  • the left horizontal driving section 23b and the right horizontal driving section 24b may be provided with separate combinations of actuators and transmission mechanisms for the X direction and the Z direction. You can easily control movement.
  • the left rotation driving section 23c and the right rotation driving section 24c move the transmission mechanism that receives the driving force from the actuator along an arcuate guide groove centered on the eyeball rotation axes OL and OR.
  • the left eye measurement head 22L and the right eye measurement head 22R are rotated around the eyeball rotation axis OL of the left eye EL and the eyeball rotation axis OR of the right eye ER, respectively.
  • the left rotation driving section 23c and the right rotation driving section 24c may attach the left eye measurement head 22L and the right eye measurement head 22R rotatably around their own rotation axis.
  • the left eye measurement head 22L includes a left housing 22a (left eye housing) fixed to the left rotation drive section 23c and a left eye housing 22a. It has a measurement optical system 25L, an objective lens 26L, and a left eye deflection member 27L provided on the outer surface of the left housing 22a. Furthermore, two cameras (stereo cameras) 39A and 39B are installed in the left housing 22a in the vicinity of the left eye deflection member 27L and in front and behind (in the Z direction) across the optical axis of the left eye measurement optical system 25L. is provided.
  • the emitted light emitted from the left eye measurement optical system 25L via the objective lens 26L is bent by the left eye deflection member 27L and irradiated to the left eye EL to be examined. Measure ocular characteristics.
  • the cameras 39A and 39B capture an anterior segment image of the left eye to be examined EL (more specifically, photographed from an oblique lateral direction that intersects the visual axis) that is bent and incident via the left eye deflection member 27L. An anterior segment image) is acquired.
  • the right eye measurement head 22R includes a right housing 22b (right eye housing) fixed to the right rotation drive section 24c and a right eye housing 22b. It has a measurement optical system 25R, an objective lens 26R, and a right eye deflection member 27R provided on the outer surface of the right housing 22b. Furthermore, two cameras (stereo cameras) 39A and 39B are installed in the right housing 22b in the vicinity of the right eye deflection member 27R and in front and behind (in the Z direction) across the optical axis of the right eye measurement optical system 25R. is provided.
  • each camera 39A, 39B captures an anterior segment image of the right eye ER (more specifically, photographed from an oblique lateral direction that intersects the visual axis) that is bent and incident via the right eye deflection member 27R. An anterior segment image) is acquired.
  • each of the eyes EL and ER to be examined is photographed substantially simultaneously from different directions by the cameras 39A and 39B.
  • image can be obtained.
  • the positions of the cameras 39A and 39B are not limited to the front and rear with the optical axis interposed therebetween, and may be arranged above and below with the optical axis interposed therebetween.
  • the number of cameras is not limited to two. For example, three or more cameras may be provided, such as four in the front, back, and up and down. In this case, more images of the anterior segment are acquired. be able to.
  • the cameras 39A and 39B may be provided outside the housings 22a and 22b, and can be arranged at desired positions depending on the size and design of each part.
  • substantially at the same time means allowing a difference in shooting timing to the extent that eye movement can be ignored in shooting with the plurality of cameras 39A and 39B.
  • a plurality of captured images when the eyes EL and ER to be examined are in the same position (orientation) by photographing the anterior ocular segments of the eyes EL and ER to be examined substantially simultaneously from different directions by the plurality of cameras 39A and 39B. can be obtained.
  • the ophthalmologic apparatus 10 of Example 1 adjusts the positions of the measuring heads 22L and 22R to correspond the positions of the deflecting members 27R and 27L to the left and right eyes EL and ER, respectively.
  • the ophthalmologic apparatus 10 according to the first embodiment allows the subject to open the left and right eyes EL and ER (state of binocular vision), and the upper side of the left and right eyes EL and ER (eye characteristics) is binocular. can be obtained at the same time.
  • the measurement heads 22L and 22R simultaneously change their rotational postures symmetrically about the eyeball rotation axes OL and OR of the corresponding left and right eyes EL and ER to be examined.
  • the directions of the left eye measurement axis LL of the left eye measurement optical system 25L and the right eye measurement axis LR of the right eye measurement optical system 25R are changed by divergence and convergence when the left and right eyes EL and ER are in binocular vision. It can be changed according to the changing visual axis (line-of-sight direction).
  • the left eye measurement axis LL from the left eye EL to the left eye deflection member 27L and the right eye measurement axis LR from the right eye ER to the right eye deflection member 27R are shown. It shows a state in which the rotational attitudes of the measuring heads 22L and 22R are adjusted so that they are parallel.
  • the visual axis can be the same as the state in which the subject looks at infinity with binocular vision.
  • FIG. 3B the left eye measurement axis LL from the left eye EL to the left eye deflection member 27L and the right eye measurement axis LR from the right eye ER to the right eye deflection member 27R are shown.
  • the visual axis can be the same as the state in which the subject looks at the predetermined position P with binocular vision.
  • the left eye measurement optical system 25L of Example 1 includes an anterior segment observation system 31, a Z alignment system 32, an XY alignment system 33, a keratometry system 34, a reflector measurement projection system 35, and a reflector measurement light receiving system 36. , a fixation projection system 37 , and an OCT optical system 38 .
  • the anterior segment observation system 31, the XY alignment system 33, the keratometry system 34, the ref measurement projection system 35, the ref measurement light receiving system 36, the fixation projection system 37, and the OCT optical system 38 are , has a common left eye measurement axis LL.
  • the ref measurement projection system 35 and the ref measurement light receiving system 36 constitute a ref measurement optical system.
  • the right eye measurement optical system 25R includes an anterior eye observation system 31, an XY alignment system 33, a keratometry system 34, a reflector measurement projection system 35, a reflector measurement light receiving system 36, and a fixation projection system 37.
  • the OCT optics 38 have a common right eye measurement axis LR.
  • the anterior segment observation system 31 is an optical system for capturing a moving image of the anterior segment of the left eye EL to be examined.
  • the anterior segment observation system 31 has an anterior segment illumination light source 31a for anterior segment imaging.
  • the anterior segment illumination light source 31a illuminates the anterior segment of the left eye EL to be examined with illumination light (for example, infrared light).
  • illumination light for example, infrared light.
  • the light reflected by the anterior segment of the left eye to be examined EL passes through the objective lens 26L, passes through the dichroic mirror 31b, passes through a hole formed in the diaphragm (telecentric diaphragm) 31c, and passes through the half mirror 33c.
  • the imaging device 31g (imaging plane) is positioned at a pupil conjugate position by the optical system via the anterior segment observation system 31 .
  • the imaging element 31g takes an image at a predetermined rate and outputs a video signal to the control section 30.
  • FIG. The control unit 30 causes the display screen 19d of the display device 19c to display the left anterior segment image EL' based on the video signal.
  • the left anterior segment image EL' is, for example, an infrared moving image.
  • the Z alignment system 32 is an optical system used for alignment of the left eye measurement head 22L in the optical axis direction (front-rear direction, Z direction) of the anterior segment observation system 31 .
  • the Z alignment system 32 projects light (infrared light) emitted from the Z alignment light source 32a onto the cornea Cr of the left eye EL.
  • the light from the Z alignment light source 32a is reflected by the cornea Cr of the left eye EL to be examined, and is imaged on the light receiving surface of the line sensor 32c by the imaging lens 32b.
  • the control unit 30 obtains the position of the corneal vertex of the left eye EL based on the light projection position on the sensor surface of the line sensor 32c, and based on this, controls the left horizontal driving unit 23b to perform Z alignment.
  • the XY alignment system 33 is an optical system used for alignment of the left eye measurement head 22L in directions orthogonal to the optical axis of the anterior segment observation system 31 (horizontal direction (X direction) and vertical direction (Y direction)).
  • the XY alignment system 33 projects light (infrared light) emitted from the XY alignment light source 33a onto the cornea Cr of the left eye EL.
  • Light from the XY alignment light source 33 a passes through the collimator lens 33 b , is reflected by the half mirror 33 c , and is projected through the anterior ocular segment observation system 31 .
  • the XY alignment system 33 is branched from the optical path of the anterior eye observation system 31 by a half mirror 33c, and shares the objective lens 26L, the dichroic mirror 31b, and the diaphragm 31c with the anterior eye observation system 31. Reflected light from the cornea Cr of the subject's eye E is guided through the anterior segment observation system 31 to the imaging device 31g.
  • the XY alignment system 33 forms a bright spot image Br, which is an image based on reflected light.
  • the bright spot image Br is acquired by the imaging element 31g together with the left anterior eye image EL'.
  • the control unit 30 causes the display screen 19d of the display device 19c to display the left anterior segment image EL' including the bright spot image Br and the alignment mark AL. Furthermore, the control unit 30 controls the left vertical driving unit 23a and the left horizontal driving unit 23b so as to eliminate the displacement of the bright spot image Br with respect to the alignment mark AL, and automatically performs XY alignment. Note that the examiner can manually perform the XY alignment by moving the left eye measurement head 22L so as to guide the bright spot image Br into the alignment mark AL.
  • the keratometric measurement system 34 is an optical system used for measuring the shape of the cornea Cr of the left eye EL, and constitutes a keratometer mechanism.
  • the "corneal shape" includes at least one of the corneal curvature radius, corneal refractive power, corneal astigmatic degree, and corneal astigmatic axis angle.
  • the keratometry system 34 of the left eye measurement optical system 25L corresponds to the second left eye measurement optical system
  • the keratometry system 34 of the right eye measurement optical system 25R corresponds to the second right eye measurement optical system.
  • the keratometry system 34 has a keratoplate 34a and a keratometry light source 34b.
  • the keratoplate 34a is arranged between the objective lens 26L and the left eye EL, and the keratometry light source 34b is provided between the keratoplate 34a and the objective lens 26L.
  • the keratometry system 34 projects a ring-shaped luminous flux (a corneal shape measuring luminous flux) onto the cornea Cr of the left eye EL by illuminating a keratoplate 34a with light from a keratizing light source 34b. That is, the kerato plate 34a and the kerato ring light source 34b form a kerato projection system that projects a ring-shaped light flux onto the cornea Cr of the left eye EL to be examined.
  • the reflected light (keratling image: pattern image) from the cornea Cr of the left eye EL to be examined is detected by the anterior eye observation system 31 and acquired by the imaging device 31g together with the left anterior eye EL'.
  • the control unit 30 calculates a corneal shape parameter representing the shape of the cornea Cr by performing known calculations based on the keratling image. Further, the control unit 30 obtains the corneal shape of the left eye EL based on the image obtained by the anterior eye observation system 31 .
  • the refractometer optical system composed of the refractometer projection system 35 and the refractometer light receiving system 36 is an optical system used for measuring the refractive characteristics of the left eye EL to be examined, and constitutes an autorefractometer mechanism.
  • the "refractive property" includes at least one of the refractive power value, the spherical power, the cylindrical power, and the cylindrical axis angle.
  • the ref measurement optical system (the ref measurement projection system 35 and the ref measurement light receiving system 36) of the left eye measurement optical system 25L corresponds to the third left eye measurement optical system
  • the ref measurement optical system of the right eye measurement optical system 25R correspond to the third right eye measurement optical system.
  • the reflector measurement projection system 35 has a reflector measurement light source 35a, which is an SLD (Super Luminescent Diode) light source, which is a high-brightness light source, and projects a measurement light flux (a light flux for refractive characteristic measurement) onto the fundus oculi Ef of the left eye EL to be examined. .
  • the ref measurement light source 35a is movable in the optical axis direction and arranged at a fundus conjugate position.
  • the light output from the reflector measurement light source 35a passes through the relay lens 35b, is incident on the conical surface of the conical prism 35c, is deflected, and is emitted from the bottom surface of the conical prism 35c.
  • the light from the bottom surface of the conical prism 35c passes through the ring-shaped transparent portion of the ring aperture 35d to form a ring-shaped luminous flux, which is reflected by the reflecting surfaces around the apertures of the perforated prism 35e to be reflected by the rotary It passes through prism 35f and is reflected by filter 35g.
  • the filter 35g is an optical element that separates the optical path of the OCT optical system 38 from the optical path of the ref measurement optical system by performing wavelength separation.
  • the rotary prism 35f is used for averaging the light amount distribution of the ring-shaped light flux for blood vessels and diseased areas of the fundus oculi Ef, reducing speckle noise caused by the light source, and the like.
  • the reflector measurement projection system 35 shares the dichroic mirror 31b and the objective lens 26L with the anterior eye observation system 31, and the light reflected by the filter 35g is reflected by the dichroic mirror 31b and passes through the objective lens 26L, Projection is made to the left eye EL to be examined.
  • the ref measurement projection system 35 is provided in an optical path branched by a perforated prism 35 e provided in the optical path of the ref measurement light receiving system 36 .
  • the aperture formed in the apertured prism 35e is arranged at the pupil conjugate position.
  • the refractometer light receiving system 36 receives a measurement light flux (a light flux for refractive characteristic measurement, here a ring-shaped light flux) reflected from the fundus oculi Ef of the left eye EL to be examined.
  • the reflex measurement light-receiving system 36 shares the dichroic mirror 31b and the objective lens 26L with the anterior eye observation system 31, and reflected light from the fundus oculi Ef (hereinafter referred to as "fundus return light”) passes through the objective lens 26L. , and is reflected by the dichroic mirror 31b and the filter 35g.
  • the refractometer light-receiving system 36 shares the rotary prism 35f and the perforated prism 35e with the refractometer projection system 35, and the fundus return light passes through the rotary prism 35f and the aperture of the perforated prism 35e. do. Furthermore, the fundus return light passes through a relay lens 36a, is reflected by a reflecting mirror 36b, and passes through a relay lens 36c and a focusing lens 36d.
  • the focusing lens 36 d is movable along the optical axis of the ref measurement light receiving system 36 .
  • the light passing through the focusing lens 36d is reflected by the reflecting mirror 36e, reflected by the dichroic mirror 36f, and imaged by the imaging lens 31f on the imaging surface of the imaging device 31g. That is, the ref measurement light receiving system 36 shares the image forming lens 31f and the imaging device 31g with the anterior segment observation system 31.
  • the control unit 30 calculates the refraction characteristics of the left eye EL by performing known calculations based on the output from the imaging element 31g.
  • the fixation projection system 37 is an optical system that presents a fixation target to the left eye EL and is used for fixation of the left eye EL.
  • the fixation projection system 37 of the left eye measurement optical system 25L corresponds to the left eye fixation optical system
  • the fixation projection system 37 of the right eye measurement optical system 25R corresponds to the right eye fixation optical system.
  • the fixation projection system 37 has a liquid crystal panel 37a and a relay lens 37b, and is coupled to the optical path of the OCT optical system 38 by a dichroic mirror 38f.
  • the fixation projection system 37 displays a pattern representing a fixation target on the liquid crystal panel 37a under the control of the control unit 30, transmits the light through the relay lens 37b and the dichroic mirror 38f, and enters the optical path of the OCT optical system 38. proceed.
  • At least one of the liquid crystal panel 37a and the relay lens 37b is movable in the optical axis direction.
  • the light transmitted through the dichroic mirror 38f passes through the relay lens 38g, is reflected by the reflecting mirror 38h, passes through the filter 35g, is reflected by the dichroic mirror 31b, passes through the objective lens 26L, and reaches the fundus of the left eye EL to be examined. projected onto Ef.
  • the fixation projection system 37 can change the fixation position of the left eye EL to be examined, enabling acquisition of various images.
  • the image includes, for example, an image centered on the macula of the fundus Ef, an image centered on the optic papilla, and an image centered on the center of the fundus between the macula and the optic papilla.
  • OCT optical system 38 The OCT optical system 38 performs OCT (Optical Coherence Tomography) measurement, is an optical system used for measuring the axial length (dimensional information in the front-rear direction) of the left eye EL to be examined, and constitutes an interferometric measurement mechanism.
  • the OCT optical system 38 of Example 1 is an interferometer using optical coherence interferometry.
  • the OCT optical system 38 of the left eye measurement optical system 25L corresponds to the first left eye measurement optical system
  • the OCT optical system 38 of the right eye measurement optical system 25R corresponds to the first right eye measurement optical system. .
  • the OCT optical system 38 is used to measure the axial length of the eye, which is the distance from the cornea to the retina.
  • the dimensional information in the anterior-posterior direction of the eye to be examined measured using the OCT optical system 38 is not limited to this, but includes the depth of the anterior chamber, which is the distance from the cornea to the lens, the lens thickness, which is the thickness of the lens, and the thickness of the cornea. It can be any of the corneal thicknesses.
  • the focusing lens 38c is set so that the end surface of the optical fiber f1 is conjugated to the imaging site (fundus Ef or anterior segment) and the optical system based on the result of the reflex measurement performed prior to the OCT measurement. position is adjusted.
  • the OCT optical system 38 is provided in an optical path wavelength-separated from the optical path of the ref measurement optical system by a filter 35g.
  • the optical path of the fixation projection system 37 is coupled to the optical path of the OCT optical system 38 by a dichroic mirror 38f. Thereby, the respective optical axes of the OCT optical system 38 and the fixation projection system 37 can be coaxially coupled.
  • the OCT optical system 38 includes an OCT unit 100.
  • the OCT light source 101 includes a variable wavelength light source capable of sweeping the wavelength of emitted light, like a general swept source type OCT apparatus.
  • a tunable light source includes a laser light source including a resonator.
  • the OCT light source 101 temporally changes the output wavelength in the near-infrared wavelength band invisible to the human eye.
  • the OCT unit 100 is provided with an optical system for performing swept-source OCT.
  • This optical system includes an interference optical system.
  • This interference optical system has the function of splitting the light from the wavelength tunable light source into measurement light and reference light, and superimposing the return light of the measurement light from the eye E to be inspected and the reference light that has passed through the reference light path to generate interference light. and a function of detecting this interference light.
  • a detection result (detection signal) of the interference light obtained by the interference optical system is a signal indicating the spectrum of the interference light, and is sent to the controller 30 .
  • At least one of the length of the optical path of the measurement light (measurement arm, sample arm) and the length of the optical path of the reference light (reference arm) is made variable.
  • the OCT light source 101 includes, for example, a near-infrared tunable laser that changes the wavelength of emitted light (wavelength range of 1000 nm to 1100 nm) at high speed.
  • the light L0 output from the OCT light source 101 is guided to the polarization controller 103 by the optical fiber 102, and its polarization state is adjusted.
  • the light L0 whose polarization state has been adjusted is guided by the optical fiber 104 to the fiber coupler 105 and split into the measurement light LS and the reference light LR.
  • the reference light LR is guided to the collimator 111 by the optical fiber 110, converted into a parallel beam, passed through the optical path length correction member 112 and the dispersion compensation member 113, and guided to the corner cube 114.
  • the optical path length correction member 112 acts to match the optical path length of the reference light LR and the optical path length of the measurement light LS.
  • the dispersion compensation member 113 acts to match the dispersion characteristics between the reference light LR and the measurement light LS.
  • the corner cube 114 is movable in the incident direction of the reference light LR, thereby changing the optical path length of the reference light LR.
  • the reference light LR that has passed through the corner cube 114 passes through the dispersion compensating member 113 and the optical path length correcting member 112 , is converted by the collimator 116 from a parallel light flux into a converged light flux, and enters the optical fiber 117 .
  • the reference light LR incident on the optical fiber 117 is guided to the polarization controller 118 to adjust its polarization state, guided to the attenuator 120 by the optical fiber 119 to adjust the light amount, and guided to the fiber coupler 122 by the optical fiber 121.
  • the measurement light LS generated by the fiber coupler 105 is guided by the optical fiber f1, converted into a parallel light beam by the collimator lens unit 38a, and passes through the light scanner 38b, the focusing lens 38c, the relay lens 38d, and the reflecting mirror 38e. and is reflected by the dichroic mirror 38f.
  • the light scanner 38b deflects the measurement light LS one-dimensionally or two-dimensionally.
  • the optical scanner 38b includes, for example, a first galvanomirror and a second galvanomirror.
  • the first galvanomirror deflects the measurement light LS so as to scan the imaging region (fundus oculi Ef or anterior segment) in the horizontal direction (X direction) orthogonal to the optical axis of the OCT optical system 38 .
  • the second galvanomirror deflects the measurement light LS deflected by the first galvanomirror so as to scan the imaging region in the vertical direction (Y direction) orthogonal to the optical axis of the OCT optical system 38 .
  • Examples of scan patterns of the measurement light LS by the optical scanner 38b include horizontal scan, vertical scan, cross scan, radial scan, circular scan, concentric circle scan, and spiral scan.
  • the measurement light LS reflected by the dichroic mirror 38f passes through the relay lens 38g, is reflected by the reflecting mirror 38h, passes through the filter 35g, is reflected by the dichroic mirror 31b, is refracted by the objective lens 26L, and reaches the left eye EL incident on
  • the measurement light LS is scattered and reflected at various depth positions of the left eye EL.
  • the return light of the measurement light LS from the left eye EL travels in the opposite direction along the same path as the forward path, is guided to the fiber coupler 105 , and reaches the fiber coupler 122 via the optical fiber 128 .
  • the fiber coupler 122 combines (interferences) the measurement light LS incident via the optical fiber 128 and the reference light LR incident via the optical fiber 121 to generate interference light.
  • the fiber coupler 122 generates a pair of interference lights LC by splitting the interference lights at a predetermined splitting ratio (for example, 1:1).
  • a pair of interference beams LC are guided to detector 125 through optical fibers 123 and 124, respectively.
  • the detector 125 is, for example, a balanced photodiode.
  • a balanced photodiode includes a pair of photodetectors that respectively detect a pair of interference lights LC, and outputs a difference between a pair of detection results obtained by these photodetectors. Detector 125 sends this output (detection signal) to data acquisition system (DAQ) 130 .
  • DAQ data acquisition system
  • a clock KC is supplied from the OCT light source 101 to the DAQ 130 .
  • the clock KC is generated in the OCT light source 101 in synchronization with the output timing of each wavelength swept within a predetermined wavelength range by the wavelength tunable light source.
  • the OCT light source 101 for example, optically delays one of the two branched lights obtained by branching the light L0 of each output wavelength, and then outputs the clock KC based on the result of detecting these combined lights. Generate.
  • the DAQ 130 samples the detection signal input from the detector 125 based on the clock KC.
  • the DAQ 130 sends the sampling result of the detection signal from the detector 125 to the control section 30 .
  • control unit 30 For example, for each series of wavelength sweeps (each A line), the control unit 30 forms a reflection intensity profile for each A line by applying Fourier transform or the like to the spectral distribution based on the sampling data. Furthermore, the control unit 30 may form image data by imaging the reflection intensity profile of each A line.
  • the ophthalmologic apparatus 10 of Example 1 includes an element (movable corner cube 114) that changes the reference arm length in order to change the difference between the measurement arm length and the reference arm length and move the coherence gate.
  • an element movable corner cube 114 that changes the reference arm length in order to change the difference between the measurement arm length and the reference arm length and move the coherence gate.
  • other elements may be employed.
  • a movable mirror can be provided on the reference arm, or a retroreflector, such as a movable cube corner, can be provided on the measurement arm.
  • control unit 30 calculates the refractive power value from the measurement result obtained using the reflector measurement optical system, and based on the calculated refractive power value, the fundus oculi Ef, the reflector measurement light source 35a, and the imaging element 31g
  • the ref measurement light source 35a and the focusing lens 36d are moved in the optical axis direction to conjugate positions.
  • the control unit 30 may move the focusing lens 38c of the OCT optical system 38 along its optical axis in conjunction with the movement of the focusing lens 36d. That is, the OCT optical system 38 can be finely adjusted based on the measurement data of the refraction characteristics using the reflector measurement optical system.
  • the control unit 30 includes a left eye measurement optical system 25L and a right eye measurement optical system 25R, left and right vertical drive units 23a and 24a as left and right drive mechanisms 21L and 21R, and left and right horizontal drive units 23b and 24b. , left and right rotation driving units 23c and 24c, cameras 39A and 39B, an examiner controller 19a, an examinee controller 19b, and a storage unit 30d.
  • the examiner's controller 19a is an operating mechanism used by the examiner to operate the ophthalmologic apparatus 10 .
  • the examiner controller 19a is communicably connected to the controller 30 by short-range wireless communication.
  • the examiner controller 19a of Example 1 uses a portable terminal such as a tablet terminal or a smartphone, but it may be connected to the control unit 30 via a wired or wireless communication path. is not limited to the configuration of That is, the examiner's controller 19 a may be a notebook personal computer, a desktop personal computer, or the like, and may be fixed to the ophthalmologic apparatus 10 .
  • a display device 19c is provided in the examiner controller 19a.
  • the display device 19c has a display screen 19d (see FIG. 1, etc.) on which an image or the like is displayed, and a touch panel type input section 19e superimposed thereon.
  • the examiner controller 19a causes the display screen 19d to appropriately display an anterior segment image and the like from the anterior segment observation system 31.
  • FIG. Further, the examiner controller 19a outputs to the control unit 30 operation information such as alignment instructions and measurement instructions input via the input unit 19e.
  • the subject controller 19b is used to input responses from the subject when acquiring various eye characteristics of the left and right eyes EL and ER.
  • the subject controller 19b may be an input device such as a control lever, a keyboard, a mouse, or a portable terminal.
  • the subject controller 19b is connected to the controller 30 via a wired or wireless communication path.
  • the control unit 30 develops a program stored in the connected storage unit 30d or the built-in internal memory 30e on, for example, a RAM (Random Access Memory), thereby appropriately controlling the examiner controller 19a and the examinee controller 19b.
  • the operation of the ophthalmologic apparatus 10 is centrally controlled according to the operation.
  • the storage unit 30d is configured with a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), etc.
  • the internal memory 30e is configured with a RAM or the like.
  • the storage unit 30d stores various data including reference data of various eye characteristics such as the axial length of the subject's eye, refractive characteristics, and corneal shape.
  • the "reference data” is, for example, statistical data obtained by statistically processing measurement data of a large number of eyes to be examined (e.g., average values, etc.), or 50% of humans in a predetermined comparison group. It is data used for determination by comparing with measured data, such as a data group.
  • Various measurement data may be stored in the storage unit 30d.
  • control unit 30 uses the Z alignment system 32 and the XY alignment system 33 to align the left and right measurement heads 22L, 22R with the left and right eyes EL, ER.
  • the control unit 30 also uses the OCT optical system 38 and the two cameras 39A and 39B to simultaneously measure the axial lengths of the left and right eyes EL and ER.
  • the control unit 30 also uses the keratometry system 34 to measure the corneal shapes of the left and right eyes EL and ER at the same time.
  • the control unit 30 simultaneously measures the refractive properties of the left and right eyes EL and ER using the reflector measurement optical system (the reflector measurement projection system 35 and the reflector measurement light receiving system 36).
  • control unit 30 compares the measurement data obtained by executing each measurement described above with the reference data read from the storage unit 30d, and outputs the comparison result.
  • the output of the comparison result is performed, for example, by displaying it on the display screen 19d of the display device 19c of the examiner controller 19a.
  • control unit 30 when comparing the measurement data and the reference data, the control unit 30 takes into account the subject's age, the prevalence of myopia in the reference data, and occupational profile and characteristics. good. This allows for more accurate comparisons.
  • control unit 30 may store the measurement data of the subject determined before the measurement in the storage unit 30d as the reference data. This makes it possible, for example, to compare measurement data of the same subject at different points in time and to determine potential changes in the ocular properties of the subject eye over a period of time, e.g. It is possible to easily identify the cause of
  • control unit 30 converts the measurement data of the refraction characteristics of the left and right eyes EL and ER to the measurement data of the axial length of the left and right eyes EL and ER and/or the measurement of the corneal shape of the left and right eyes EL and ER. Data may be corrected. That is, the control unit 30 checks the validity of the measurement data of the refractive characteristics of the left and right eyes EL and ER to be examined based on the axial lengths and/or the corneal curvatures of the left and right eyes EL and ER. Then, when the control unit 30 determines that the measurement data of the bending characteristic is not valid, it notifies the examiner that the measurement data is not valid. The notification to the examiner is performed by display on the display device 19c, voice output, or the like.
  • the refraction characteristics of the subject's eye are affected by many factors and environmental conditions, making it difficult to obtain objective refraction characteristics and may be affected by errors.
  • the measurement data of the axial length of the eye and the corneal shape are measurement data that are not affected by, for example, drugs or brain activity. Therefore, the validity of the refractive characteristic measurement data can be judged based on the measurement data of the axial length of the eye and the corneal shape.
  • a cycloplegic drug is administered to the left and right eyes EL and ER to be examined. may be used to perform the measurement.
  • the left and right eyes EL and ER can be measured more easily and quickly.
  • step S1 after fixing the subject's face with the forehead part 15, the control part 30 receives the operation of the examiner's controller 19a and turns on the Z alignment light source 32a and the XY alignment light source 33a.
  • the control unit 30 acquires the imaging signal of the anterior segment image formed on the imaging surface of the imaging element 31g, and displays the anterior segment image E' on the display screen 19d of the display device 19c.
  • the left eye measuring head 22L and the right eye measuring head 22R are moved to the inspection positions of the left and right eyes EL and ER.
  • the inspection position is a position where the eye characteristics of the left and right eyes EL and ER can be measured.
  • the left eye measurement head 22L and the right eye measurement head 22R are placed at the inspection position through alignment by the Z alignment system 32, the XY alignment system 33, and the anterior segment observation system 31.
  • FIG. The movement of the left eye measurement head 22L and the right eye measurement head 22R is executed by the control unit 30 according to an operation or instruction by the examiner or an instruction by the control unit 30.
  • step S2 following the alignment adjustment in step S1, the control unit 30 simultaneously measures the corneal shapes of the left and right eyes EL and ER.
  • Step S2 corresponds to a second measurement step of simultaneously performing measurement using the second left eye measurement optical system and measurement using the second right eye measurement optical system.
  • "simultaneously measuring the corneal topography of the left and right eyes EL and ER” means that the controller 30 controls the keratometry system 34 of the left eye measurement optical system 25L and the keratometry system 34 of the right eye measurement optical system 25R. are simultaneously controlled, and the corneal shape measurement data of the left eye EL to be examined and the corneal shape measurement data of the right eye ER to be examined are obtained simultaneously.
  • the control unit 30 stores the calculated measurement data of the corneal shapes of the left and right eyes EL and ER to be examined in the storage unit 30d.
  • “simultaneously” includes not only completely the same timing (that is, when there is no time difference), but also when there is an allowable time difference.
  • the permissible time difference may be, for example, either one or both of the time difference according to the characteristics of the subject's eye and the time difference according to the characteristics of the ophthalmologic apparatus 10 .
  • the former can, for example, be determined clinically, and an example thereof is a time lag that is not affected by ocular movement of the subject's eye.
  • the latter can be determined, for example, by actual measurements, examples of which include time differences in the control of the ophthalmic device 10 and time differences in the operation of the ophthalmic device 10 .
  • Specific examples of "simultaneity" are as follows.
  • both position measurements When both position measurements are performed instantaneously, and the time difference between execution of one and execution of the other is equal to or less than a predetermined threshold, both position measurements can be said to be "simultaneous".
  • both position measurements can be said to be “simultaneous”. Also, when the time difference between the execution timing of the former and the start timing or end timing of the latter position measurement is equal to or less than the predetermined threshold value, both position measurements can be said to be “simultaneous”.
  • both position measurements when both position measurements are performed non-instantaneously, and when at least part of one execution period and at least part of the other execution period overlap, both position measurements can be said to be “simultaneous”. Also, when the time difference between the end timing of one and the start timing of the other is equal to or less than the predetermined threshold value, both position measurements can be said to be “simultaneous”.
  • step S2 the control unit 30 calculates the corneal curvature radius by performing arithmetic processing on the image acquired by the image sensor 31g, and from the calculated corneal curvature radius, the corneal refractive power, the corneal astigmatic degree, and the corneal The astigmatic axis angle is calculated to determine the corneal shape.
  • step S2 the control unit 30 presents a fixation target by the fixation projection system 37 during measurement of the corneal shape, and fixes the lines of sight of the left and right eyes EL and ER.
  • the fixation target is presented at the presentation position at infinity, and the left and right eyes EL and ER to be examined are in a state of looking at infinity.
  • the control unit 30 measures the distances from the eyes EL and ER to be examined to the objective lenses 26L and 26R during the measurement of the corneal shape.
  • the control unit 30 also stores the distance measurement data during the corneal shape measurement in the storage unit 30d.
  • the distance from the left eye to be examined EL to the objective lens 26L is measured based on the images captured by the two cameras 39A and 39B built in the left housing 22a. Therefore, the two cameras 39A and 39B in the left housing 22a correspond to a left eye distance measuring unit that measures the distance from the left eye EL to the objective lens 26L (predetermined first reference position).
  • the distance from the right eye ER to the objective lens 26R is measured based on the images captured by the two cameras 39A and 39B built in the right housing 22b. Therefore, the two cameras 39A and 39B in the right housing 22b correspond to a right eye distance measuring section that measures the distance from the right eye ER to the objective lens 26R (predetermined second reference position).
  • a method of measuring the distances from the eyes EL and ER to be examined to the objective lenses 26L and 26R will be described below. Since the distance measurement method is the same for the left and right eyes EL and ER, the method for measuring the distance from the left eye EL to the objective lens 26L will be described below.
  • the two cameras 39A and 39B in the left housing 22a capture images of the anterior segment of the left eye EL substantially simultaneously from different directions.
  • the control unit 30 corrects the distortion of the photographed image, etc., and analyzes the distortion-corrected image to determine the characteristic position of the left eye EL, for example, the position corresponding to the center of the pupil of the anterior segment. identify.
  • the control unit 30 acquires three-dimensional position information of the left eye EL to be examined based on the specified characteristic position (pupil center) of the left eye EL to be examined.
  • the resolution of the image captured by the two cameras 39A and 39B is represented by the following equation.
  • ⁇ p represents pixel resolution.
  • control unit 30 controls the known positions of the two cameras 39A and 39B and the characteristic positions corresponding to the characteristic parts P in the two photographed images by using a known positional relationship in consideration of the arrangement relationship shown in FIG.
  • the three-dimensional position of the characteristic site P that is, the distance from the left eye EL to the objective lens 26L is calculated.
  • step S2 the control unit 30 detects the eye positions of the left eye EL and the right eye ER during corneal shape measurement.
  • the control unit 30 also stores eye position detection data during corneal shape measurement in the storage unit 30d.
  • the "eye position” is the rotation angle of the left and right eyes EL, ER about the eyeball rotation axes OL, OR.
  • Step S3 following the measurement of the corneal shape in step S2, the control unit 30 simultaneously measures the refraction characteristics of the left and right eyes EL and ER.
  • Step S3 corresponds to a third measurement step of simultaneously performing measurement using the third left-eye measurement optical system and measurement using the third right-eye measurement optical system.
  • the controller 30 controls the reflector measurement projection system 35 and the reflector measurement light receiving system 36 of the left eye measurement optical system 25L and the right eye measurement optical system 25R simultaneously controls the reflector measurement projection system 35 and the reflector measurement light receiving system 36, and simultaneously acquires measurement data of the refractive characteristics of the left eye EL to be examined and measurement data of the refractive characteristics of the right eye ER to be examined.
  • the control unit 30 stores measurement data of the refraction characteristics of the left and right eyes EL and ER obtained by the measurement in the storage unit 30d.
  • step S3 the control unit 30 controls the ring image (pattern image).
  • the spherical power, the cylinder power, and the cylinder axis angle (refractive property) are obtained.
  • the control unit 30 stores the calculated measurement data of the refraction characteristics in the storage unit 30d.
  • the analysis of the ring image by the control unit 30 is performed, for example, by first obtaining the barycentric position of the ring image from the brightness distribution in the image in which the obtained ring image is depicted, and then scanning along a plurality of scanning directions radially extending from this barycentric position. A luminance distribution is obtained, and a ring image is specified from this luminance distribution.
  • control unit 30 may obtain the refraction characteristics based on the deformation and displacement of the ring image with respect to the reference pattern.
  • step S3 the control unit 30 presents a fixation target by the fixation projection system 37 during measurement of the refractive characteristics, and fixes the lines of sight of the left and right eyes EL and ER.
  • the fixation target is presented at the presentation position at infinity, and the left and right eyes EL and ER to be examined are in a state of looking at infinity.
  • the control unit 30 moves the relay lens 37b to the far point of the left and right eyes EL and ER based on the result of the provisional measurement of the refraction characteristics, and then moves the relay lens 37b to a position out of focus. It may be in a cloudy state.
  • the left and right eyes EL and ER to be examined are in a resting state of accommodation (a state in which the crystalline lens is removed), and the refraction characteristics can be measured in the resting state of accommodation.
  • step S3 the control unit 30 measures the distances from the eyes EL and ER to be examined to the objective lenses 26L and 26R during the measurement of the refractive characteristics.
  • the control unit 30 also stores the distance measurement data during the refractive characteristic measurement in the storage unit 30d.
  • the "distance measurement method" is as described above.
  • step S3 the control unit 30 detects the eye positions of the left eye EL and the right eye ER during refractive characteristic measurement.
  • the control unit 30 also stores eye position detection data during refractive characteristic measurement in the storage unit 30d.
  • the "eye position" is as described above.
  • step S4 following the measurement of the refractive characteristics in step S3, the control unit 30 simultaneously measures the axial lengths of the left and right eyes EL and ER.
  • Step S4 corresponds to a first measurement step of simultaneously performing measurement using the first left eye measurement optical system and measurement using the first right eye measurement optical system.
  • "simultaneously measuring the axial lengths of the left and right eyes EL and ER” means that the control unit 30 performs imaging of the anterior segments of the left and right eyes EL and ER and measurement of the fundus oculi Ef of the left and right eyes EL and ER.
  • the OCT scan and the OCT scan are performed almost simultaneously, and the measurement data of the axial length of the left eye EL to be examined and the measurement data of the axial length of the right eye ER to be examined are obtained simultaneously. "Simultaneously" is as described above.
  • the control unit 30 stores the measurement data of the axial lengths of the left and right eyes EL and ER obtained by the measurement in the storage unit 30d.
  • the anterior segments of the left and right eyes EL and ER to be examined on which the alignment light flux is projected by the XY alignment system 33 are captured by the two cameras 39A and 39B.
  • the OCT optical system 38 performs A scan (or B scan, three-dimensional scan, or another scan mode).
  • the control unit 30 constructs OCT data from the data collected by the fundus OCT scan.
  • OCT data are, for example, reflection intensity profiles or image data.
  • the control unit 30 acquires data indicating the arm length (for example, the position of the corner cube 114) when the OCT scan was performed. Subsequently, the control unit 30 analyzes the anterior segment captured image, specifies the position of the bright point image (Br) in the anterior segment captured image, and determines the anterior segment image based on the corneal curvature radius acquired in step S3. A reference position (first reference position) in the captured image is set. Subsequently, the control unit 30 calculates the displacement (first displacement) of the position of the bright spot image with respect to the first reference position, Calculate the alignment error between Subsequently, the amount of change in the arm length with respect to the reference arm length stored in advance is calculated.
  • the control unit 30 calculates the displacement (first displacement) of the position of the bright spot image with respect to the first reference position.
  • the control unit 30 identifies the coherence gate position corresponding to the arm length, and sets the identified coherence gate position as the reference position (second reference position) in the OCT data. Subsequently, the control unit 30 identifies data positions (retinal surface positions) corresponding to the retinal surfaces of the left and right eyes EL and ER by analyzing the OCT data. Subsequently, the control unit 30 calculates the deviation (second deviation) of the retinal surface position with respect to the second reference position. Then, the control unit 30 performs calculation based on the reference axial length, the alignment error, the amount of change in the arm length, and the second deviation, which are stored in advance, to obtain the measured value of the axial length of the eye E to be examined. Ask for
  • step S4 the control unit 30 presents a fixation target by the fixation projection system 37 during the measurement of the axial length of the eye, and fixes the lines of sight of the left and right eyes EL and ER.
  • the fixation target is presented at the presentation position at infinity, and the left and right eyes EL and ER to be examined are in a state of looking at infinity.
  • step S4 the control unit 30 detects the eye positions of the left eye EL and the right eye ER during eye axial length measurement.
  • the control unit 30 also stores eye position detection data during eye axial length measurement in the storage unit 30d.
  • the "eye position" is as described above.
  • step S5 following the measurement of the eye axial length in step S4, the control unit 30 reads the reference data pre-stored in the storage unit 30d.
  • Step S5 corresponds to a reading step of reading the reference data from the storage unit 30d storing the reference data after obtaining the measurement data.
  • step S6 following the reading of the reference data in step S5, the control unit 30 reads the measurement data stored in the storage unit 30d and compares the reference data and the measurement data.
  • Step S6 corresponds to a comparison step of comparing the reference data and the measured data.
  • step S7 following the data comparison in step S6, the comparison result is output.
  • the comparison result is displayed on the display device 19c of the examiner controller 19a.
  • Step S7 corresponds to an output step of outputting the comparison result.
  • the ophthalmologic apparatus 10 of Example 1 includes the OCT optical system 38 of the left eye measurement optical system 25L used for measuring the axial length of the left eye EL to be examined, and the left eye measurement optical system 38 used for measuring the corneal shape of the left eye EL to be examined.
  • the ophthalmologic apparatus 10 of the first embodiment includes the OCT optical system 38 of the right eye measurement optical system 25R used for measuring the axial length of the right eye ER to be examined, and the OCT optical system 38 of the right eye measurement optical system 25R used for measuring the corneal shape of the right eye ER to be examined.
  • a keratometry system 34 of the eye measurement optical system 25R a reflector measurement optical system (a reflector measurement projection system 35 and a reflector measurement light receiving system 36) of the right eye measurement optical system 25R used for measuring the refractive characteristics of the right eye ER to be examined.
  • the control unit 30 controls the Z alignment system 32, the XY alignment system 33, and the anterior segment observation system 31, The left eye measurement head 22L and the right eye measurement head 22R are arranged at the inspection position (step S1 in the flow chart shown in FIG. 7).
  • steps S2, S3, and S4 in the flowchart shown in FIG. That is, by the control unit 30, the OCT optical system 38 of the left eye measurement optical system 25L, the keratometry system 34, the ref measurement optical system (ref measurement projection system 35 and ref measurement light receiving system 36), and the left housing 22a.
  • the two cameras 39A and 39B are controlled respectively.
  • the corneal shape is measured simultaneously for the left and right eyes EL and ER, the refractive characteristics are measured for the left and right eyes EL and ER simultaneously, and the axial length is measured for the left and right eyes EL and ER simultaneously. be.
  • the ophthalmologic apparatus 10 of the first embodiment detects the ocular characteristics (ocular axial length, corneal shape, refractive characteristics) of the left and right eyes EL and ER under substantially the same conditions with both eyes open. can be measured. As a result, it is possible to measure the eye characteristics of the left and right eyes EL and ER in a state close to the state of daily life in which an object is visually recognized with both the left and right eyes, making it possible to measure the appropriate eye characteristics.
  • ocular characteristics ocular axial length, corneal shape, refractive characteristics
  • the OCT optical system 38, the keratometry system 34, and the ref measurement optical system (the ref measurement projection system 35 and the ref measurement light receiving system 36) of the left eye measurement optical system 25L are used for left eye measurement. It is accommodated in the left housing 22a of the head 22L.
  • the OCT optical system 38, keratometry system 34, and ref measurement optical system (ref measurement projection system 35 and ref measurement light receiving system 36) of the right eye measurement optical system 25R are accommodated in the right housing 22b of the right eye measurement head 22R. ing.
  • control unit 30 drives the left drive mechanism 21L and the right drive mechanism 21R, respectively, so that the positions of the left eye measurement head 22L (left housing 22a) and the right eye measurement head 22R (right housing 22b) in the XYZ direction and the eyeballs are detected. Controls the orientation centered on the rotation axes OL and OR.
  • the optical systems 38, 34, 35, and 36 can move together with the left and right eyes EL and ER to be examined, and adjustments such as alignment can be easily performed.
  • the apparatus since only one drive mechanism (left drive mechanism 21L, right drive mechanism 21R) for driving the left and right measurement heads 22L and 22R housing the optical systems 38, 34, 35, and 36 is required for each of the left and right sides, the apparatus can be Compactness can be achieved.
  • the control unit 30 has a storage unit 30d in which reference data is stored in advance. Then, after acquiring each measurement data of the corneal shapes, refractive characteristics, and axial lengths of the left and right eyes EL and ER to be examined, the procedure proceeds to steps S5, S6, and S7 in the flowchart shown in FIG. That is, the control unit 30 reads the reference data stored in the storage unit 30d, and combines the read reference data with the ocular characteristics (ocular axial length) of the left and right eyes EL and ER obtained by simultaneously measuring the left and right eyes EL and ER , corneal shape, and refractive characteristics), and outputs the comparison result.
  • the control unit 30 reads the reference data stored in the storage unit 30d, and combines the read reference data with the ocular characteristics (ocular axial length) of the left and right eyes EL and ER obtained by simultaneously measuring the left and right eyes EL and ER , corneal shape, and refractive characteristics
  • the examiner can recognize the comparison result displayed on the display device 19c or the like, and can determine how much the left and right eyes EL and ER to be examined, which are measured by the ophthalmologic apparatus 10 based on the comparison result, deviate from the reference data. It is possible to easily assess whether the patient is present and whether the patient is already exhibiting known symptoms.
  • the OCT optical system 38, the keratometry system 34, and the ref measurement optical system (ref measurement projection system 35 and ref measurement light receiving system 36) of the left eye measurement optical system 25L are common left It has an eye measurement axis LL.
  • the OCT optical system 38, the keratometry system 34, and the ref measurement optical system (ref measurement The projection system 35 and the ref measurement light receiving system 36) have a common right eye measurement axis LR.
  • the OCT optical system 38, the keratometry system 34, the reflector measurement optical system (reflection measurement projection system 35 and the ref measurement receiver system 36) can be completed.
  • the optical systems 38, 34, 35, and 36 at the same time measurements using the optical systems 38, 34, 35, and 36 can be performed under the same alignment conditions, resulting in high accuracy. Measurement data can be obtained in a comparable form.
  • step S2 the control unit 30 determines the distance from the left eye EL to the objective lens 26L and the distance from the right eye ER to the objective lens 26R during measurement of the corneal shape using the keratometry system 34. Measure. Further, in step S3, the control unit 30 controls the distance from the left eye EL to the objective lens 26L, A distance from the right eye ER to the objective lens 26R is measured.
  • the control unit 30 fixes the left eye EL using the fixation projection system 37 of the left eye measurement optical system 25L, and uses the fixation projection system 37 of the right eye measurement optical system 25R.
  • the corneal shape is measured using the keratometry system 34 while the right eye ER is fixed.
  • step S3 the control unit 30 fixes the left eye EL using the fixation projection system 37 of the left eye measurement optical system 25L, and uses the fixation projection system 37 of the right eye measurement optical system 25R.
  • the control unit 30 fixes the left subject's eye EL using the fixation projection system 37 of the left eye measurement optical system 25L, and uses the fixation projection system 37 of the right eye measurement optical system 25R.
  • the eye axial length is measured using the OCT optical system 38 and the two cameras 39A and 39B while fixating the right eye ER.
  • the left and right eyes EL and ER to be examined can be focused on the fixation target, and the visual lines of the left and right eyes EL and ER to be examined can be fixed.
  • the OCT optical system 38 used for measuring the axial lengths (dimensional information in the front-rear direction) of the left and right eyes EL and ER constitutes an interferometric measurement mechanism. Therefore, it is not necessary to bring the probe into contact with the eyeball as in the case of measuring the axis of the eye using ultrasound, for example, and it is possible to prevent the occurrence of measurement errors due to pressure on the eyeball. In addition, eye drop anesthesia can also be dispensed with. As a result, the axial lengths of the left and right eyes EL and ER can be measured with high accuracy.
  • the OCT optical system 38 of Example 1 is an interferometer using optical coherence interferometry. Therefore, the axial length of the eye can be measured using light with a relatively short coherence length, and the optical path length of the OCT optical system 38 can be prevented from becoming unnecessarily long.
  • the keratometric measurement system 34 used for measuring the corneal shapes of the left and right eyes EL and ER constitutes a keratometer mechanism. Therefore, the control unit 30 captures the reflected light of the ring-shaped luminous fluxes (luminous fluxes for corneal shape measurement) projected onto the left and right eyes EL and ER to be examined, and executes corneal shape measurement based on the obtained images.
  • the control unit 30 captures the reflected light of the ring-shaped luminous fluxes (luminous fluxes for corneal shape measurement) projected onto the left and right eyes EL and ER to be examined, and executes corneal shape measurement based on the obtained images.
  • the keratometry system 34 of Example 1 has a keratoplate 34a and a keratometry light source 34b for projecting ring-shaped light beams for corneal shape measurement onto the corneas Cr of the left and right eyes EL and ER to be examined. Then, the control unit 30 obtains the corneal shape by analyzing the images obtained by photographing the anterior segments of the left and right eyes EL and ER in which the pattern image of the ring-shaped light flux is formed. Accordingly, the corneal shape can be easily obtained by so-called image processing.
  • the refractometer optical system (reflector measurement projection system 35 and refractometer light receiving system 36) used for the refractive characteristics of the left and right eyes EL and ER constitutes an autorefractometer mechanism. there is Therefore, it is possible to easily measure the refraction characteristics of the left and right eyes EL and ER.
  • the refractometer optical system of Example 1 includes a refractometer projection system 35 for projecting measurement light beams (light beams for refractive characteristic measurement) onto the fundus Ef of the left and right eyes EL and ER to be examined, and a fundus of the left and right eye EL and ER to be examined. and a ref measurement light receiving system 36 for receiving the measurement light beam reflected from Ef.
  • a light beam for refractive characteristic measurement is projected onto the fundus oculi Ef, a reflected image from the fundus oculi Ef is received, and a refractive characteristic such as a refractive power value can be calculated by arithmetic processing in the control unit 30 .
  • the control unit 30 detects the eye positions of the left and right eyes EL and ER when measuring the corneal shape using the keratometry system 34 in step S2. Further, in step S3, the control unit 30 detects the eye positions of the left and right eyes EL and ER when measuring the refraction characteristics using the reflector measurement optical system (the reflector measurement projection system 35 and the reflector measurement light receiving system 36). Further, in step S4, the control unit 30 detects eye positions of the left and right eyes EL and ER when measuring the axial length using the OCT optical system 38 and the two cameras 39A and 39B.
  • the ophthalmologic apparatus of the present invention has been described above based on the first embodiment, but the specific configuration is not limited to this embodiment, and the gist of the invention according to each claim is as follows. Design changes and additions are permitted as long as they do not deviate.
  • Example 1 when measuring the axial length, which is dimension information in the front-back direction of the left and right eyes EL and ER to be examined, the corneal position is measured using the two cameras 39A and 39B, and the OCT optical system 38 is used.
  • the present invention is not limited to this.
  • both the corneal position and the retina position may be measured using the OCT optical system 38, as described in Japanese Patent Application Laid-Open No. 2017-189669.
  • an example of measuring the distances from the left and right eyes EL and ER to the objective lenses 26L and 26R is shown in both the measurement of the corneal shape and the measurement of the refractive characteristics. is not limited to The distance from each subject's eye EL, ER to the objective lenses 26L, 26R may be detected during measurement of at least one of the corneal shape and refractive characteristics. Note that the distances from the eyes EL and ER to be examined to the objective lenses 26L and 26R may not necessarily be detected.
  • the objective lens 26L provided on the left eye measurement head 22L is used as the first reference position when detecting the distance
  • the objective lens 26L provided on the right eye measurement head 22R is used as the second reference position.
  • the center positions of the two cameras 39A and 39B can be arbitrarily set.
  • the left-eye distance measuring unit and the right-eye distance measuring unit may be configured by arbitrary distance sensors or the like, for example.
  • the present invention is not limited to this, and fixation may be performed during measurement of at least one of the axial length, corneal shape, and refractive characteristics.
  • fixation projection system 37 it is not always necessary to use the fixation projection system 37 for fixation.
  • the ophthalmologic apparatus 10 of Example 1 measures the corneal shapes of the left and right eyes EL and ER simultaneously, then measures the refractive characteristics of the left and right eyes EL and ER simultaneously, and finally measures the refractive properties of the left and right eyes EL and ER.
  • An example in which the axial lengths of the EL and ER are measured simultaneously on the left and right sides is shown. In other words, each eye characteristic is measured in turn while the left and right eye characteristics are measured simultaneously.
  • the corneal shapes of the left and right eyes EL and ER to be examined may be measured simultaneously, and the refractive characteristics of the left and right eyes EL and ER may be measured simultaneously.
  • the axial length of the eye may be measured at the same time as the corneal shape and refractive properties, or all eye properties may be measured at the same time.
  • the order of measurement of the axial length, corneal shape, and refractive characteristics is not limited to the order shown in Example 1, and can be arbitrarily determined. Fine adjustment of the alignment may be performed between measurements of the axial length, corneal shape, and refractive characteristics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

両眼を開放している状態で同じ条件下のもと、左右の被検眼の眼特性を測定することができる眼科装置を提供するため、左眼測定光学系(25L)のOCT光学系(38)を用いた左被検眼(EL)の眼軸長の測定と、右眼測定光学系(25R)のOCT光学系(38)を用いた右被検眼(ER)の眼軸長の測定とを同時に実行し、左眼測定光学系(25L)のケラト測定系(34)を用いた左被検眼(EL)の角膜形状の測定と、右眼測定光学系(25R)のケラト測定系(34)を用いた右被検眼(ER)の角膜形状の測定とを同時に実行し、左眼測定光学系(25L)のレフ測定光学系を用いた左被検眼(EL)の屈折特性の測定と、右眼測定光学系(25R)のレフ測定光学系を用いた右被検眼(ER)の屈折特性の測定とを同時に実行する。

Description

眼科装置及び被検眼の検査方法
 本発明は、眼科装置及び被検眼の検査方法に関するものである。
 従来から、被検眼の眼軸長の測定と、被検眼の角膜形状の測定と、被検眼の屈折特性の測定とを同時に実行する眼科装置が知られている(例えば、特許文献1参照)。
特開2020-121114号公報
 ところで、ヒトは日常生活において左右両眼でモノを視認する。そのため、眼軸長等の被検眼の眼特性を片眼ずつ測定した場合、被検眼の調節や輻輳の状態が両眼でモノを見ているときとは異なった状態での測定となる。また、左右の被検眼の眼特性を異なるタイミングで測定すると、測定環境等の条件が異なってしまう。そのため、適切な眼特性を測定することが難しいという問題が生じる。
 本発明は、上記問題に着目してなされたもので、両眼を開放している状態で同じ条件下のもと、左右の被検眼の眼特性を測定できる眼科装置及び被検眼の検査方法を提供することを目的とする。
 上記目的を達成するため、本発明の眼科装置は、左被検眼の前後方向の寸法情報の測定に用いられる第1左眼測定光学系と、前記左被検眼の角膜形状の測定に用いられる第2左眼測定光学系と、前記左被検眼の屈折特性の測定に用いられる第3左眼測定光学系と、右被検眼の前後方向の寸法情報の測定に用いられる第1右眼測定光学系と、前記右被検眼の角膜形状の測定に用いられる第2右眼測定光学系と、前記右被検眼の屈折特性の測定に用いられる第3右眼測定光学系と、前記各光学系を制御すると共に得られた測定データを処理する制御部と、を備えている。そして、前記制御部は、前記第1左眼測定光学系を用いる測定と、前記第1右眼測定光学系を用いる測定とを同時に実行させ、前記第2左眼測定光学系を用いる測定と、前記第2右眼測定光学系を用いる測定とを同時に実行させ、前記第3左眼測定光学系を用いる測定と、前記第3右眼測定光学系を用いる測定とを同時に実行させる。
 また、本願発明の被検眼の検査方法は、左被検眼の前後方向の寸法情報の測定に用いられる第1左眼測定光学系と、前記左被検眼の角膜形状の測定に用いられる第2左眼測定光学系と、前記左被検眼の屈折特性の測定に用いられる第3左眼測定光学系と、右被検眼の前後方向の寸法情報の測定に用いられる第1右眼測定光学系と、前記右被検眼の角膜形状の測定に用いられる第2右眼測定光学系と、前記右被検眼の屈折特性の測定に用いられる第3右眼測定光学系と、前記各光学系を制御すると共に得られた測定データを処理する制御部と、を備えた眼科装置による被検眼の検査方法である。そして、前記第1左眼測定光学系を用いる測定と、前記第1右眼測定光学系を用いる測定とを同時に実行する第1測定ステップと、前記第2左眼測定光学系を用いる測定と、前記第2右眼測定光学系を用いる測定とを同時に実行する第2測定ステップと、前記第3左眼測定光学系を用いる測定と、前記第3右眼測定光学系を用いる測定とを同時に実行する第3測定ステップと、を有している。
 このように構成された眼科装置及び被検眼の検査方法では、両眼を開放している状態で同じ条件下のもと、左右の被検眼の眼特性を測定することができる。
実施例1の眼科装置の外観を示す斜視図である。 実施例1の眼科装置の測定ユニットの構成を模式的に示す説明図である。 実施例1の眼科装置の測定光学系の構成を模式的に示す説明図であり、両眼で無限遠を見ている状態を示す。 実施例1の眼科装置の測定光学系の構成を模式的に示す説明図であり、両眼で所定位置を見ている状態を示す。 実施例1の眼科装置の制御系の構成を示すブロック図である。 実施例1の測定光学系の構成を示す説明図である。 実施例1のOCTユニットの構成を示す説明図である。 実施例1の眼科装置において実行される眼特性の測定手順の流れを示すフローチャートである。 実施例1の眼科装置において実行される眼位の検出方法の説明図である。
 以下、本発明の眼科装置及び被検眼の検査方法を実施するための形態を、図面に示す実施例1に基づいて説明する。
 実施例1の眼科装置10は、被検眼の眼特性の測定を、被検者が左右の目を開放した状態で、両眼同時に実行可能な両眼開放タイプの眼科装置である。
 実施例1の眼科装置10は、図1に示すように、床面に設置された基台11と、検眼用テーブル12と、支柱13と、アーム14と、測定ユニット20と、を備えている。また、眼科装置10は、入出力装置として、携帯端末等の検者用コントローラ19aと、被検者用コントローラ19b(図6参照)と、液晶ディスプレイ等の表示装置19cと、を有している。なお、実施例1では、表示装置19cは、検者用コントローラ19aに設けられている。
 眼科装置10では、検眼用テーブル12に正対する被検者が、測定ユニット20に設けられた額当部15に額を接触させた状態で被検眼の眼特性の測定を行う。以下では、被検者から見て、左右方向をX方向とし、上下方向(鉛直方向)をY方向とし、X方向及びY方向と直交する方向(奥行き方向)をZ方向とする。
 検眼用テーブル12は、基台11に支持され、高さ位置が調節可能になっている。支柱13は、検眼用テーブル12の後端部からY方向に起立しており、上部にアーム14が設けられている。アーム14は、測定ユニット20を検眼用テーブル12の上方で吊り下げ支持するものであり、支柱13からZ方向に沿って延在されている。アーム14は、支柱13に対して上下動可能に取り付けられている。
 検眼用テーブル12の下方には、制御部30が収納された制御ボックス30aが設けられている。制御部30は、後述するように、眼科装置10の各部の動作を統括的に制御する。なお、制御部30には、電源ケーブル30bを介して図示しない商用電源から電力供給がなされる。
 測定ユニット20は、制御部30によって制御され、被検眼の眼特性である被検眼の前後方向の寸法情報と、被検眼の角膜形状と、被検眼の屈折特性とを、それぞれ左右同時に測定する。なお、測定ユニット20によって、任意の自覚検査や上記以外の任意の他覚測定を行ってもよい。自覚検査では、被検者に視標等を提示し、提示された視標等に対する被検者の応答に基づいて検査結果を取得する。自覚検査には、遠用検査、近用検査、コントラスト検査、グレア検査等の自覚屈折測定や、視野検査、乱視軸検査、乱視度数検査等がある。また、他覚測定では、被検眼に光を照射し、戻り光の検出結果に基づいて被検眼に関する情報(眼特性)を測定する。他覚測定には、被検眼の眼特性を取得するための測定と、被検眼の画像を取得するための撮影とが含まれる。さらに、他覚測定には、眼圧測定、眼底撮影、光コヒーレンストモグラフィ(Optical Coherence Tomography:以下、「OCT」という)を用いた断層像撮影(OCT撮影)、OCTを用いた計測等がある。
 また、測定ユニット20は、制御/電源ケーブル30c(図2参照)を介して制御部30に接続されており、制御部30を経由して電力供給がなされる。測定ユニット20と制御部30との間の情報の送受信も、制御/電源ケーブル30cを介して行われる。
 測定ユニット20は、図2に示すように、取付ベース部20aと、取付ベース部20aに設けられた左駆動機構21L及び右駆動機構21Rと、左駆動機構21Lに支持された左眼測定ヘッド22Lと、右駆動機構21Rに支持された右眼測定ヘッド22Rと、を備えている。
 左眼測定ヘッド22L及び右眼測定ヘッド22Rは、左右被検眼EL、ER(図2参照)のそれぞれに個別に対応すべく対を成して設けられ、X方向で双方の中間に位置する鉛直面に関して面対称な構成とされている。また、左眼測定ヘッド22Lを支持する左駆動機構21Lの各駆動部の構成と、右眼測定ヘッド22Rを支持する右駆動機構21Rの各駆動部の構成とは、X方向で双方の中間に位置する鉛直面に関して面対称な構成とされている。
 左駆動機構21Lは、左鉛直駆動部23a、左水平駆動部23b、左回旋駆動部23cと、を有し、取付ベース部20aの一方の端部に吊下げられている。各駆動部23a、23b、23cは、取付ベース部20aと左眼測定ヘッド22Lとの間に、上方側から左鉛直駆動部23a、左水平駆動部23b、左回旋駆動部23cの順に配置されている。
 右駆動機構21Rは、右鉛直駆動部24a、右水平駆動部24b、右回旋駆動部24cと、を有し、取付ベース部20aの他方の端部に吊下げられている。各駆動部24a、24b、24cは、取付ベース部20aと右眼測定ヘッド22Rとの間に、上方側から右鉛直駆動部24a、右水平駆動部24b、右回旋駆動部24cの順に配置されている。
 各駆動部23a、23b、23c、24a、24b、24cは、いずれもパルスモータ等の駆動力を発生するアクチュエータと、複数の歯車組やラック・アンド・ピニオン等の駆動力を伝達する伝達機構と、を有している。
 左鉛直駆動部23aは、取付ベース部20aに対して左眼測定ヘッド22LをY方向(鉛直方向)に移動させ、右鉛直駆動部24aは、取付ベース部20aに対して右眼測定ヘッド22RをY方向(鉛直方向)に移動させる。また、左水平駆動部23bは、取付ベース部20aに対して左眼測定ヘッド22LをX方向及びZ方向(水平方向)に移動させ、右水平駆動部24bは、取付ベース部20aに対して右眼測定ヘッド22RをX方向及びZ方向(水平方向)に移動させる。
 左回旋駆動部23cは、左被検眼ELの眼球回旋軸OL(図2参照)を中心に左眼測定ヘッド22Lを回転させ、左被検眼ELに対する左眼測定ヘッド22Lの向きを変更する。また、右回旋駆動部24cは、右被検眼ERの眼球回旋軸OR(図2参照)を中心に右眼測定ヘッド22Rを回転させ、右被検眼ERに対する右眼測定ヘッド22Rの向きを変更する。
 なお、左水平駆動部23b及び右水平駆動部24bは、X方向とZ方向とで個別にアクチュエータ及び伝達機構の組み合わせを設けてもよく、この場合には、構成を簡易にできると共に水平方向の移動の制御を容易なものにできる。また、左回旋駆動部23c及び右回旋駆動部24cは、アクチュエータからの駆動力を受けた伝達機構を、眼球回旋軸OL、ORを中心位置とする円弧状の案内溝に沿って移動させる。これにより、左眼測定ヘッド22L、右眼測定ヘッド22Rは、左被検眼ELの眼球回旋軸OL、右被検眼ERの眼球回旋軸ORを中心にそれぞれ回転させられる。左回旋駆動部23c及び右回旋駆動部24cは、自らが有する回転軸線回りに左眼測定ヘッド22L、右眼測定ヘッド22Rを回転可能に取り付けるものでもよい。
 左眼測定ヘッド22Lは、図2及び図3A、図3Bに示すように、左回旋駆動部23cに固定された左ハウジング22a(左眼用筐体)と、左ハウジング22aに収容された左眼測定光学系25Lと、対物レンズ26Lと、左ハウジング22aの外側面に設けられた左眼用偏向部材27Lと、を有している。さらに、左眼用偏向部材27Lに近接して、左ハウジング22a内には、左眼測定光学系25Lの光軸を挟んで前後(Z方向)に、二台のカメラ(ステレオカメラ)39A、39Bが設けられている。左眼測定ヘッド22Lでは、左眼測定光学系25Lから対物レンズ26Lを介して出射された出射光を、左眼用偏向部材27Lによって屈曲して左被検眼ELに照射し、左被検眼ELの眼特性を測定する。また、各カメラ39A、39Bは、左眼用偏向部材27Lを介して屈曲して入射する左被検眼ELの前眼部像(より具体的には、視軸に交差する斜め横方向から撮影された前眼部像)を取得する。
 右眼測定ヘッド22Rは、図2及び図3A、図3Bに示すように、右回旋駆動部24cに固定された右ハウジング22b(右眼用筐体)と、右ハウジング22bに収容された右眼測定光学系25Rと、対物レンズ26Rと、右ハウジング22bの外側面に設けられた右眼用偏向部材27Rと、を有している。さらに、右眼用偏向部材27Rに近接して、右ハウジング22b内には、右眼測定光学系25Rの光軸を挟んで前後(Z方向)に、二台のカメラ(ステレオカメラ)39A、39Bが設けられている。右眼測定ヘッド22Rでは、右眼測定光学系25Rから対物レンズ26Rを介して出射された出射光を、右眼用偏向部材27Rによって屈曲して右被検眼ERに照射し、右被検眼ERの眼特性を測定する。また、各カメラ39A、39Bは、右眼用偏向部材27Rを介して屈曲して入射する右被検眼ERの前眼部像(より具体的には、視軸に交差する斜め横方向から撮影された前眼部像)を取得する。
 実施例1の眼科装置10では、各カメラ39A、39Bで異なる方向から、実質的に同時に各被検眼EL、ERを撮影することで、各被検眼EL、ERごとにそれぞれ二つの異なる前眼部像を取得することができる。なお、各カメラ39A、39Bの位置は、光軸を挟んで前後に限定されるものではなく、光軸を挟んで上下に配置してもよい。また、カメラの台数は二台に限定されるものではなく、例えば、前後及び上下に四台設けるなど、カメラを三台以上設けてもよく、この場合ではより多くの前眼部像を取得することができる。また、各カメラ39A、39Bは、各ハウジング22a、22bの外に設けてもよく、各部のサイズやデザイン等に応じて所望の位置に配置することができる。
 ここで、「実質的に同時」とは、複数のカメラ39A、39Bによる撮影において、眼球運動を無視できる程度の撮影タイミングのズレを許容することを意味する。複数のカメラ39A、39Bにより各被検眼EL、ERの前眼部を異なる方向から実質的に同時に撮影することで、各被検眼EL、ERが同じ位置(向き)にあるときの複数の撮影画像を取得することが可能になる。
 さらに、実施例1の眼科装置10は、各測定ヘッド22L、22Rの位置を調整し、各偏向部材27R、27Lの位置を、左右被検眼EL、ERにそれぞれ対応させる。これにより、実施例1の眼科装置10は、被検者が左右被検眼EL、ERを開放した状態(両眼視の状態)で、左右被検眼EL、ERの上方(眼特性)を両眼同時に取得できる。
 また、各測定ヘッド22L、22Rは、対応する左右被検眼EL、ERの眼球回旋軸OL、ORを中心に左右対称に同時に回転姿勢を変化させる。これにより、左眼測定光学系25Lの左眼測定軸LL及び右眼測定光学系25Rの右眼測定軸LRの向きは、左右被検眼EL、ERが両眼視の状態で開散や輻輳により変化する視軸(視線方向)に合わせて変化させられる。
 すなわち、図3Aは、左被検眼ELから左眼用偏向部材27Lに至るまでの左眼測定軸LLと、右被検眼ERから右眼用偏向部材27Rに至るまでの右眼測定軸LRとが平行になるように、各測定ヘッド22L、22Rの回転姿勢が調節されている状態を示す。図3Aに示す状態では、被検者が両眼視の状態で無限遠を見ている状態と同様の視軸とすることができる。
 また、図3Bは、左被検眼ELから左眼用偏向部材27Lに至るまでの左眼測定軸LLと、右被検眼ERから右眼用偏向部材27Rに至るまでの右眼測定軸LRとが、それぞれを延長させた先が所定位置Pに向かうように、各測定ヘッド22L、22Rの回転姿勢が調節されている状態を示す。図3Bに示す状態では、被検者が両眼視の状態で所定位置Pを見ている状態と同様の視軸とすることができる。
 以下、左眼測定光学系25L及び右眼測定光学系25Rの構成の一例を、図4を参照して説明する。なお、左眼測定光学系25Lの構成と右眼測定光学系25Rの構成は同一であるので、以下では左眼測定光学系25Lについてのみ説明する。
 実施例1の左眼測定光学系25Lは、前眼部観察系31と、Zアライメント系32と、XYアライメント系33と、ケラト測定系34と、レフ測定投射系35と、レフ測定受光系36と、固視投影系37と、OCT光学系38と、を備えている。ここで、前眼部観察系31と、XYアライメント系33と、ケラト測定系34と、レフ測定投射系35と、レフ測定受光系36と、固視投影系37と、OCT光学系38とは、共通の左眼測定軸LLを有している。また、レフ測定投射系35及びレフ測定受光系36により、レフ測定光学系が構成される。なお、右眼測定光学系25Rでは、前眼部観察系31と、XYアライメント系33と、ケラト測定系34と、レフ測定投射系35と、レフ測定受光系36と、固視投影系37と、OCT光学系38とが、共通の右眼測定軸LRを有している。
 (前眼部観察系31)
 前眼部観察系31は、左被検眼ELの前眼部を動画撮影する光学系である。前眼部観察系31は、前眼部撮影のための前眼部照明光源31aを有している。前眼部照明光源31aは、左被検眼ELの前眼部に照明光(例えば、赤外光)を照射する。左被検眼ELの前眼部により反射された光は、対物レンズ26Lを通過し、ダイクロイックミラー31bを透過し、絞り(テレセン絞り)31cに形成された孔部を通過し、ハーフミラー33cを透過し、リレーレンズ31d、リレーレンズ31eを順に通過し、ダイクロイックミラー36fを透過する。ダイクロイックミラー36fを透過した光は、結像レンズ31fにより撮像素子31gの撮像面に結像される。撮像素子31g(撮像面)は、前眼部観察系31を経由する上記の光学系により、瞳孔共役位置とされている。撮像素子31gは、所定のレートで撮像し、映像信号を制御部30へと出力する。制御部30は、映像信号に基づく左前眼部像EL´を表示装置19cの表示画面19dに表示させる。左前眼部像EL´は、例えば赤外動画像である。
 (Zアライメント系32)
 Zアライメント系32は、前眼部観察系31の光軸方向(前後方向、Z方向)における左眼測定ヘッド22Lのアライメントに用いられる光学系である。Zアライメント系32は、Zアライメント光源32aから出射させた光(赤外光)を左被検眼ELの角膜Crに投射する。Zアライメント光源32aからの光は、左被検眼ELの角膜Crにより反射されて、結像レンズ32bによりラインセンサ32cの受光面に結像される。Zアライメント系32では、角膜頂点の位置が前眼部観察系31の光軸方向に変化すると、その変化に応じてラインセンサ32cの受光面における光の投射位置が変化される。制御部30は、ラインセンサ32cのセンサ面における光の投射位置に基づいて左被検眼ELの角膜頂点の位置を求め、これに基づき左水平駆動部23bを制御してZアライメントを実行する。
 (XYアライメント系33)
 XYアライメント系33は、前眼部観察系31の光軸に直交する方向(左右方向(X方向)、上下方向(Y方向))における左眼測定ヘッド22Lのアライメントに用いられる光学系である。XYアライメント系33は、XYアライメント光源33aから出射させた光(赤外光)を左被検眼ELの角膜Crに投射する。XYアライメント光源33aからの光は、コリメータレンズ33bを通過し、ハーフミラー33cにより反射され、前眼部観察系31を通じて投射される。すなわち、XYアライメント系33は、ハーフミラー33cにより前眼部観察系31の光路から分岐されており、対物レンズ26Lとダイクロイックミラー31bと絞り31cとを前眼部観察系31と共用する。被検眼Eの角膜Crによる反射光は、前眼部観察系31を通じて撮像素子31gに導かれる。
 XYアライメント系33は、反射光に基づく像である輝点像Brを形成する。その輝点像Brは、左前眼部像EL´とともに撮像素子31gにより取得される。制御部30は、輝点像Brを含む左前眼部像EL´とアライメントマークALとを、表示装置19cの表示画面19dに表示させる。さらに、制御部30は、アライメントマークALに対する輝点像Brの変位をなくすように、左鉛直駆動部23a及び左水平駆動部23bを制御し、自動でXYアライメントを実行する。なお、検者は、アライメントマークAL内に輝点像Brを誘導するように左眼測定ヘッド22Lの移動操作を行うことで、手動でXYアライメントを行うことができる。
 (ケラト測定系34)
 ケラト測定系34は、左被検眼ELの角膜Crの形状の測定に用いられる光学系であり、ケラトメータ機構を構成する。なお、「角膜形状」には、角膜曲率半径、角膜屈折力、角膜乱視度、角膜乱視軸角度の少なくともいずれかが含まれる。ここでは、左眼測定光学系25Lのケラト測定系34が第2左眼測定光学系に相当し、右眼測定光学系25Rのケラト測定系34が第2右眼測定光学系に相当する。
 ケラト測定系34は、ケラト板34aと、ケラトリング光源34bとを有している。ケラト板34aは、対物レンズ26Lと左被検眼ELとの間に配置され、ケラトリング光源34bは、ケラト板34aと対物レンズ26Lの間に設けられている。ケラト測定系34は、ケラトリング光源34bからの光でケラト板34aを照明することにより、左被検眼ELの角膜Crにリング状光束(角膜形状測定用の光束)を投射する。すなわち、ケラト板34a及びケラトリング光源34bは、左被検眼ELの角膜Crにリング状光束を投射するケラト投射系となる。
 左被検眼ELの角膜Crからの反射光(ケラトリング像:パターン像)は、前眼部観察系31により検出されて、左前眼部像EL´と共に撮像素子31gにより取得される。制御部30は、ケラトリング像を基に公知の演算を行うことで、角膜Crの形状を表す角膜形状パラメータを算出する。さらに、制御部30は、前眼部観察系31により得られた画像に基づいて左被検眼ELの角膜形状を求める。
 (レフ測定光学系)
 レフ測定投射系35とレフ測定受光系36とで構成されるレフ測定光学系は、左被検眼ELの屈折特性の測定に用いられる光学系であり、オートレフラクトメータ機構を構成する。なお、「屈折特性」には、屈折力値、球面度数、乱視度数及び乱視軸角度の少なくともいずれかが含まれる。ここでは、左眼測定光学系25Lのレフ測定光学系(レフ測定投射系35及びレフ測定受光系36)が第3左眼測定光学系に相当し、右眼測定光学系25Rのレフ測定光学系(レフ測定投射系35及びレフ測定受光系36)が第3右眼測定光学系に相当する。
 レフ測定投射系35は、高輝度光源であるSLD(Super Luminescent Diode)光源であるレフ測定光源35aを有し、左被検眼ELの眼底Efに測定光束(屈折特性測定用の光束)を投射する。レフ測定光源35aは、光軸方向に移動可能とされ、眼底共役位置に配置される。レフ測定光源35aから出力された光は、リレーレンズ35bを通過し、円錐プリズム35cの円錐面に入射し、偏向されて円錐プリズム35cの底面から出射される。円錐プリズム35cの底面からの光は、リング絞り35dのリング状に形成された透光部を通過してリング状光束とされ、孔開きプリズム35eの孔部の周囲の反射面により反射され、ロータリープリズム35fを通過し、フィルタ35gにより反射される。フィルタ35gは、波長分離を行うことによりレフ測定光学系の光路からOCT光学系38の光路を分離する光学素子である。ロータリープリズム35fは、眼底Efの血管や疾患部位に対するリング状光束の光量分布の平均化や、光源に起因するスペックルノイズの低減等に用いられる。レフ測定投射系35は、ダイクロイックミラー31b及び対物レンズ26Lを前眼部観察系31と共用しており、フィルタ35gにより反射された光をダイクロイックミラー31bにより反射して、対物レンズ26Lを通過させ、左被検眼ELに投射させる。
 レフ測定投射系35は、レフ測定受光系36の光路に設けられた孔開きプリズム35eによって分岐された光路に設けられる。孔開きプリズム35eに形成されている孔部は、瞳孔共役位置に配置される。
 レフ測定受光系36は、左被検眼ELの眼底Efから反射された測定光束(屈折特性測定用の光束、ここではリング状光束)を受光する。レフ測定受光系36は、ダイクロイックミラー31b及び対物レンズ26Lを前眼部観察系31と共用しており、眼底Efからの反射光(以下、「眼底戻り光」という)が、対物レンズ26Lを通過し、ダイクロイックミラー31b及びフィルタ35gにより反射される。また、レフ測定受光系36は、ロータリープリズム35f及び孔開きプリズム35eをレフ測定投射系35と共用しており、眼底戻り光が、ロータリープリズム35fを通過し、孔開きプリズム35eの孔部を通過する。さらに、眼底戻り光は、リレーレンズ36aを通過し、反射ミラー36bにより反射され、リレーレンズ36c及び合焦レンズ36dを通過する。合焦レンズ36dは、レフ測定受光系36の光軸に沿って移動可能とされている。合焦レンズ36dを通過した光は、反射ミラー36eにより反射され、ダイクロイックミラー36fにより反射されて、結像レンズ31fにより撮像素子31gの撮像面に結像される。すなわち、レフ測定受光系36は、結像レンズ31fと撮像素子31gとを前眼部観察系31と共用する。レフ測定受光系36を経由する光学系において、撮像素子31gの撮像面は眼底共役位置に配置される。制御部30は、撮像素子31gからの出力を基に公知の演算を行うことで左被検眼ELの屈折特性を算出する。
 (固視投影系37)
 固視投影系37は、固視標を左被検眼ELに呈示し、左被検眼ELの固視に用いられる光学系である。ここでは、左眼測定光学系25Lの固視投影系37が左眼固視光学系に相当し、右眼測定光学系25Rの固視投影系37が右眼固視光学系に相当する。
 固視投影系37は、液晶パネル37aと、リレーレンズ37bと有し、ダイクロイックミラー38fによりOCT光学系38の光路に結合される。固視投影系37は、制御部30の制御下で液晶パネル37aに固視標を表すパターンを表示させ、その光をリレーレンズ37b及びダイクロイックミラー38fを透過させて、OCT光学系38の光路に進行させる。液晶パネル37aとリレーレンズ37bとは、少なくとも一方が光軸方向に移動可能とされている。ダイクロイックミラー38fを透過した光は、リレーレンズ38gを通過し、反射ミラー38hにより反射され、フィルタ35gを透過し、ダイクロイックミラー31bにより反射されて、対物レンズ26Lを通過して左被検眼ELの眼底Efに投射される。
 固視投影系37は、液晶パネル37aの画面上におけるパターンの表示位置を変更することにより、左被検眼ELの固視位置を変更でき、様々な画像の取得を可能とする。その画像は、例えば、眼底Efの黄斑部を中心とする画像、視神経乳頭を中心とする画像、黄斑部と視神経乳頭との間の眼底中心を中心とする画像等がある。
 (OCT光学系38)
 OCT光学系38は、OCT(Optical Coherence Tomography)計測を行い、左被検眼ELの眼軸長(前後方向の寸法情報)の測定に用いられる光学系であり、干渉法測定機構を構成する。特に、実施例1のOCT光学系38は、光学コヒーレンス干渉法を用いた干渉計である。また、ここでは、左眼測定光学系25LのOCT光学系38が第1左眼測定光学系に相当し、右眼測定光学系25RのOCT光学系38が第1右眼測定光学系に相当する。また、実施例1の眼科装置10では、OCT光学系38を用いて角膜から網膜までの距離である眼軸長を測定する。なお、OCT光学系38を用いて測定する被検眼の前後方向の寸法情報は、これに限らず、角膜から水晶体までの距離である前房深度、水晶体の厚みである水晶体厚、角膜の厚みである角膜厚のいずれかであってもよい。
 OCT光学系38では、OCT計測よりも前に実施されたレフ測定結果に基づいて、光ファイバーf1の端面が撮影部位(眼底Ef又は前眼部)と光学系に共役となるように合焦レンズ38cの位置が調整される。
 OCT光学系38は、フィルタ35gによりレフ測定光学系の光路から波長分離された光路に設けられる。固視投影系37の光路は、ダイクロイックミラー38fによりOCT光学系38の光路に結合される。これにより、OCT光学系38及び固視投影系37のそれぞれの光軸を同軸で結合することができる。
 OCT光学系38は、OCTユニット100を含む。図5に示すように、OCTユニット100において、OCT光源101は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を掃引可能な波長可変光源を含んで構成される。波長可変光源は、共振器を含むレーザー光源を含む。OCT光源101は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
 図5に例示するように、OCTユニット100には、スウェプトソースOCTを実行するための光学系が設けられている。この光学系は、干渉光学系を含む。この干渉光学系は、波長可変光源からの光を測定光と参照光とに分割する機能と、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを重ね合わせて干渉光を生成する機能と、この干渉光を検出する機能とを備える。干渉光学系により得られた干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、制御部30に送られる。また、測定光の光路(測定アーム、サンプルアーム)の長さ、及び、参照光の光路(参照アーム)の長さの少なくとも一方は可変とされる。
 OCT光源101は、例えば、出射光の波長(1000nm~1100nmの波長範囲)を高速で変化させる近赤外波長可変レーザーを含む。OCT光源101から出力された光L0は、光ファイバー102により偏波コントローラ103に導かれてその偏光状態が調整される。偏光状態が調整された光L0は、光ファイバー104によりファイバーカプラー105に導かれて測定光LSと参照光LRとに分割される。
 参照光LRは、光ファイバー110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、コーナーキューブ114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。コーナーキューブ114は、参照光LRの入射方向に移動可能であり、それにより参照光LRの光路長が変更される。
 コーナーキューブ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバー117に入射する。光ファイバー117に入射した参照光LRは、偏波コントローラ118に導かれてその偏光状態が調整され、光ファイバー119によりアッテネータ120に導かれて光量が調整され、光ファイバー121によりファイバーカプラー122に導かれる。
 一方、ファイバーカプラー105により生成された測定光LSは、光ファイバーf1により導かれてコリメータレンズユニット38aにより平行光束に変換され、光スキャナー38b、合焦レンズ38c、リレーレンズ38d、及び反射ミラー38eを経由し、ダイクロイックミラー38fにより反射される。
 光スキャナー38bは、測定光LSを1次元的又は2次元的に偏向する。光スキャナー38bは、例えば、第1ガルバノミラーと、第2ガルバノミラーとを含む。第1ガルバノミラーは、OCT光学系38の光軸に直交する水平方向(X方向)に撮影部位(眼底Ef又は前眼部)をスキャンするように測定光LSを偏向する。第2ガルバノミラーは、OCT光学系38の光軸に直交する上下方向(Y方向)に撮影部位をスキャンするように、第1ガルバノミラーにより偏向された測定光LSを偏向する。このような光スキャナー38bによる測定光LSのスキャンパターンとしては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
 ダイクロイックミラー38fにより反射された測定光LSは、リレーレンズ38gを通過し、反射ミラー38hにより反射され、フィルタ35gを透過し、ダイクロイックミラー31bにより反射され、対物レンズ26Lにより屈折されて左被検眼ELに入射する。測定光LSは、左被検眼ELの様々な深さ位置において散乱・反射される。左被検眼ELからの測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバーカプラー105に導かれ、光ファイバー128を経由してファイバーカプラー122に到達する。
 ファイバーカプラー122は、光ファイバー128を介して入射された測定光LSと、光ファイバー121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバーカプラー122は、所定の分岐比(例えば1:1)で干渉光を分岐することにより、一対の干渉光LCを生成する。一対の干渉光LCは、それぞれ光ファイバー123及び124を通じて検出器125に導かれる。
 検出器125は、例えばバランスドフォトダイオードである。バランスドフォトダイオードは、一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらフォトディテクタにより得られた一対の検出結果の差分を出力する。検出器125は、この出力(検出信号)をデータ収集システム(DAQ)130に送る。
 DAQ130には、OCT光源101からクロックKCが供給される。クロックKCは、OCT光源101において、波長可変光源により所定の波長範囲内で掃引される各波長の出力タイミングに同期して生成される。OCT光源101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、検出器125から入力される検出信号をクロックKCに基づきサンプリングする。DAQ130は、検出器125からの検出信号のサンプリング結果を制御部30に送る。制御部30は、例えば一連の波長掃引毎に(Aライン毎に)、サンプリングデータに基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。さらに、制御部30は、各Aラインの反射強度プロファイルを画像化することにより画像データを形成してもよい。
 なお、実施例1の眼科装置10では、測定アーム長と参照アーム長との間の差を変更してコヒーレンスゲートを移動するために参照アーム長を変更する要素(移動可能なコーナーキューブ114)が設けられているが、他の要素を採用してもよい。例えば、移動可能なミラーを参照アームに設けることや、移動可能なコーナーキューブ等のリトロリフレクタを測定アームに設けることが可能である。
 また、制御部30は、レフ測定光学系を用いて得られた測定結果から屈折力値を算出し、算出された屈折力値に基づいて、眼底Efとレフ測定光源35aと撮像素子31gとが共役となる位置に、レフ測定光源35a及び合焦レンズ36dそれぞれを光軸方向に移動させる。制御部30は、合焦レンズ36dの移動に連動して、OCT光学系38の合焦レンズ38cをその光軸方向に移動させてもよい。すなわち、レフ測定光学系を用いた屈折特性の測定データに基づいて、OCT光学系38の微調整を行うことができる。
 制御部30は、図6に示すように、左眼測定光学系25L及び右眼測定光学系25Rと、左右駆動機構21L、21Rとしての左右鉛直駆動部23a、24a、左右水平駆動部23b、24b、左右回旋駆動部23c、24cと、カメラ39A,39Bと、検者用コントローラ19aと、被検者用コントローラ19bと、記憶部30dと、が接続されている。
 ここで、検者用コントローラ19aは、検者が眼科装置10を操作するために用いられる操作機構である。検者用コントローラ19aは、制御部30と近距離無線通信によって、互いに通信可能に接続されている。なお、実施例1の検者用コントローラ19aは、タブレット端末やスマートフォン等の携帯端末を用いているが、制御部30と有線又は無線の通信路を介して接続されていればよく、実施例1の構成に限定されない。すなわち、検者用コントローラ19aは、ノート型パーソナルコンピュータ、デスクトップ型パーソナルコンピュータ等でもよく、眼科装置10に固定されて構成されていてもよい。
 また、この検者用コントローラ19aには、表示装置19cが設けられている。表示装置19cは、画像等が表示される表示画面19d(図1等参照)と、そこに重畳して配置されたタッチパネル式の入力部19eと、を有する。検者用コントローラ19aは、制御部30の制御下で、前眼部観察系31からの前眼部画像等を適宜表示画面19dに表示させる。また、検者用コントローラ19aは、入力部19eを介して入力されたアライメントの指示や測定の指示等の操作情報を制御部30に出力する。
 被検者用コントローラ19bは、左右被検眼EL、ERの各種の眼特性の取得の際に、被検者の応答を入力するために用いられる。被検者用コントローラ19bは、図示しないが、例えばコントロールレバーや、キーボード、マウス、携帯端末等の入力装置であればよい。被検者用コントローラ19bは、有線または無線の通信路を介して制御部30と接続されている。
 制御部30は、接続された記憶部30d又は内蔵する内部メモリ30eに記憶したプログラムを例えばRAM(Random Access Memory)上に展開することにより、適宜検者用コントローラ19aや被検者用コントローラ19bに対する操作に応じて、眼科装置10の動作を統括的に制御する。実施例1では、記憶部30dは、ROM(ReadOnly Memory)やEEPROM(Electrically Erasable Programmable ROM)等で構成され、内部メモリ30eは、RAM等で構成されている。
 また、記憶部30dには、被検眼の眼軸長や、屈折特性、角膜形状等の各種眼特性の基準データを含む各種データが記憶されている。ここで、「基準データ」とは、例えば、多数の被検眼の測定データを統計処理して得られた統計データ(例えば平均値等)や、所定の比較グループの人間の50%が対応し得るデータ群等、測定データと比較して判定に利用されるデータである。また、記憶部30dには、各種測定データを記憶してもよい。
 そして、制御部30は、Zアライメント系32及びXYアライメント系33を用いて、左右の各測定ヘッド22L、22Rを左右被検眼EL、ERに対してアライメントする。また、制御部30は、OCT光学系38及び二台のカメラ39A、39Bを用いて、左右被検眼EL、ERの眼軸長の測定を同時に実行する。また、制御部30は、ケラト測定系34を用いて、左右被検眼EL、ERの角膜形状の測定を同時に実行する。また、制御部30は、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)を用いて、左右被検眼EL、ERの屈折特性の測定を同時に実行する。
 さらに、制御部30は、上記各測定の実行によって得られた測定データと、記憶部30dから読み出した基準データとを比較し、比較結果を出力する。なお、比較結果の出力は、例えば、検者用コントローラ19aの表示装置19cの表示画面19dに表示することで行われる。
 また、測定データと基準データとを比較する際、制御部30は、被検者の年齢や、基準データにおける近視の有症率、また、職業プロファイル及び性質等を考慮に入れて比較してもよい。これにより、より正確な比較が可能になる。
 また、制御部30は、測定の前の時点で決定された被検者の測定データを、基準データとして記憶部30dに記憶してもよい。これにより、例えば、異なる時点における同じ被検者の測定データを比較することができ、当該被検眼の眼特性の潜在的な変化が、所定の期間にわたって求められ、例えば、悪化していく屈折特性の原因を容易に特定することが可能となる。
 また、制御部30は、左右被検眼EL、ERの屈折特性の測定データを、当該左右被検眼EL、ERの眼軸長の測定データ及び/又は当該左右被検眼EL、ERの角膜形状の測定データによって補正してもよい。すなわち、制御部30は、左右被検眼EL、ERの眼軸長及び/又は角膜の曲率に基づいて、当該左右被検眼EL、ERの屈折特性の測定データの妥当性をチェックする。そして、制御部30は、屈曲特性の測定データが妥当ではないと判断したとき、測定データが妥当ではない旨を検者に報知する。なお、検者への報知は、表示装置19cへの表示や、音声出力等によって行われる。
 ここで、被検眼の屈折特性は、多くの要因及び環境条件によって影響され、客観的屈折特性を求めることは困難であり、誤差の影響を受けることがある。しかし、眼軸長や角膜形状の測定データは、例えば薬剤や脳の活動の影響を受けない測定データである。そのため、屈折特性の測定データは、眼軸長や角膜形状の測定データによって妥当性が判断できる。
 さらに、実施例1の眼科装置10では、左右被検眼EL、ERの眼特性(眼軸長、角膜形状、屈折特性)の測定時、左右被検眼EL、ERに毛様体筋麻痺薬を投与して測定を実行してもよい。ただし、毛様体筋麻痺薬を投与しないで測定を行うことで、左右被検眼EL、ERの測定をより容易に、また速やかに実行することができる。
 以下、実施例1の眼科装置10の動作例を、図7に示すフローチャートに基づいて説明する。
 ステップS1では、被検者の顔を額当部15で固定した後、検者用コントローラ19aに対する検者の操作を受け、制御部30は、Zアライメント光源32aやXYアライメント光源33aを点灯させる。制御部30は、撮像素子31gの撮像面上に結像された前眼部像の撮像信号を取得し、表示装置19cの表示画面19dに前眼部像E’を表示させる。その後、左眼測定ヘッド22L及び右眼測定ヘッド22Rが左右被検眼EL、ERの検査位置に移動される。検査位置とは、左右被検眼EL、ERの眼特性の測定を行うことが可能な位置である。Zアライメント系32及びXYアライメント系33と、前眼部観察系31とによるアライメントを介して左眼測定ヘッド22L及び右眼測定ヘッド22Rが検査位置に配置される。左眼測定ヘッド22L及び右眼測定ヘッド22Rの移動は、検者による操作若しくは指示又は制御部30による指示にしたがって、制御部30によって実行される。
 ステップS2では、ステップS1でのアライメント調整に続き、制御部30は、左右被検眼EL、ERの角膜形状測定を同時に行う。ステップS2は、第2左眼測定光学系を用いる測定と、第2右眼測定光学系を用いる測定とを同時に実行する第2測定ステップに相当する。また、「左右被検眼EL、ERの角膜形状測定を同時に行う」とは、制御部30により、左眼測定光学系25Lのケラト測定系34と、右眼測定光学系25Rのケラト測定系34とを同時に制御し、左被検眼ELの角膜形状の測定データと、右被検眼ERの角膜形状の測定データとを同時に取得することである。制御部30は、算出された左右被検眼EL、ERの角膜形状の測定データを記憶部30dに記憶する。
 なお、「同時」は、完全に同じタイミングである場合(つまり、時間差が無い場合)だけでなく、許容可能な時間差が介在する場合も含まれる。許容可能な時間差は、例えば、被検眼の特性に応じた時間差、及び、眼科装置10の特性に応じた時間差のいずれか一方又は双方であってよい。前者は、例えば臨床的に決定することができ、その例として、被検眼の眼球運動の影響を受けない程度の時間差がある。後者は、例えば実際の計測によって決定することができ、その例として、眼科装置10の制御に介在する時間差や、眼科装置10の動作に介在する時間差がある。「同時性」の具体例は以下の通りである。
 双方の位置計測が瞬間的に行われる場合において、一方の実行と他方の実行との間の時間差が既定閾値以下である場合、双方の位置計測は「同時」といえる。
 また、一方の位置計測が瞬間的に行われ、他方の位置計測が非瞬間的に行われる場合において、後者の位置計測の実行期間内の任意のタイミングで前者が実行される場合、双方の位置計測は「同時」といえる。また、前者の実行タイミングと後者の位置計測の開始タイミング又は終了タイミングとの間の時間差が既定閾値以下である場合にも、双方の位置計測は「同時」といえる。
 さらに、双方の位置計測が非瞬間的に行われる場合において、一方の実行期間の少なくとも一部と他方の実行期間の少なくとも一部とが重なる場合、双方の位置計測は「同時」といえる。また、一方の終了タイミングと他方の開始タイミングとの間の時間差が既定閾値以下である場合にも、双方の位置計測は「同時」といえる。
 なお、以上に説明した同時性を「略同時」、「ほぼ同時」、「実質的に同時」、「実質同時」などと表現することがある。
 ステップS2では、制御部30は、撮像素子31gによって取得された像に対して演算処理を施すことにより、角膜曲率半径を算出し、算出された角膜曲率半径から角膜屈折力、角膜乱視度及び角膜乱視軸角度を算出し、角膜形状を求める。
 また、ステップS2では、制御部30は、角膜形状の測定中、固視投影系37によって固視標を呈示し、左右被検眼EL、ERの視線を固定する。このとき、無限遠の呈示位置に固視標を呈示し、左右被検眼EL、ERが無限遠を見ている状態とする。
 また、ステップS2では、制御部30は、角膜形状の測定中、各被検眼EL、ERから対物レンズ26L、26Rまでの距離を測定する。制御部30は、角膜形状測定中の距離の測定データも、記憶部30dに記憶する。ここで、左被検眼ELから対物レンズ26Lまでの距離は、左ハウジング22aに内蔵された二台のカメラ39A、39Bによって撮影された画像に基づいて測定される。そのため、左ハウジング22a内の二台のカメラ39A、39Bが、左被検眼ELから対物レンズ26L(所定の第1基準位置)までの距離を測定する左眼距離測定部に相当する。また、右被検眼ERから対物レンズ26Rまでの距離は、右ハウジング22bに内蔵された二台のカメラ39A、39Bによって撮影された画像に基づいて測定される。そのため、右ハウジング22b内の二台のカメラ39A、39Bが、右被検眼ERから対物レンズ26R(所定の第2基準位置)までの距離を測定する右眼距離測定部に相当する。
 以下、各被検眼EL、ERから各対物レンズ26L、26Rまでの距離の測定方法について説明する。なお、距離の測定方法は、左右被検眼EL、ERで同一であるので、以下では左被検眼ELから対物レンズ26Lまでの距離の測定方法を説明する。
 まず、制御部30の制御の下、左ハウジング22a内の二台のカメラ39A、39Bによって左被検眼ELの前眼部像を異なる方向から実質的に同時に撮影する。続いて、制御部30は、撮影された画像の歪み等を補正し、歪みが補正された画像を解析することで、左被検眼ELの特徴位置、例えば前眼部の瞳孔中心に相当する位置を特定する。そして、制御部30は、特定した左被検眼ELの特徴位置(瞳孔中心)に基づいて、左被検眼ELの三次元的な位置情報を取得する。
 すなわち、図8に示すように、二台のカメラ39A、39B間の距離(基線長)を「B」とする。二台のカメラ39A、39Bの基線と、左被検眼ELの特徴部位Pとの間の距離(撮影距離)を「H」とする。各カメラ39A、39Bと、その画面平面との間の距離(画面距離)を「f」とする。
 このような配置状態において、二台のカメラ39A、39Bによる撮影画像の分解能は次式で表される。ここで、Δpは画素分解能を表す。
 xy方向の分解能(平面分解能):Δxy=H×Δp/f
 z方向の分解能(奥行き分解能):Δz=H×H×Δp/(B×f)
 そして、制御部30は、既知である二台のカメラ39A、39Bの位置と、2つの撮影画像において特徴部位Pに相当する特徴位置とに対して、図8に示す配置関係を考慮した公知の三角法を適用することにより、特徴部位Pの三次元位置、つまり左被検眼ELから対物レンズ26Lまでの距離を算出する。
 さらに、ステップS2では、制御部30は、角膜形状測定中の左被検眼EL及び右被検眼ERの眼位を検出する。制御部30は、角膜形状測定中の眼位の検出データも、記憶部30dに記憶する。
 ここで、「眼位」とは、左右被検眼EL、ERの眼球回旋軸OL、ORを中心とする回転角度である。回転角度θ(眼位)は、眼球が回転角度θだけ回転したときの瞳孔中心の位置の変化量=(R-r)sinθと、眼球が回転角度θだけ回転したときの前眼部撮影画像における輝点像(Br)の位置の変化量=(R-d)sinθと、眼球が回転角度θだけ回転したときの瞳孔中心と輝点像(Br)との距離=(r-d)sinθとに基づいて算出される。なお、「R」は、角膜頂点から眼球の回転中心までの距離、「r」は角膜の曲率半径、「d」は角膜の頂点から瞳孔までの距離である。なお、回転角度θと、被検者の瞳孔間距離が分かれば、輻湊による視認しているものまでの距離を求めることができる。
 また、被検者の角膜のゆがみや、瞳孔位置、被検眼の構成要素の屈折率などの生体データが正確にはわからない。そのため、眼位の測定前に上式の各パラメータを推定するための被検眼の視線方向の補正用測定を行ってもよい。補正用測定は、被検眼がきちんと見える位置に視標を提示し、提示した視標を見たときの前眼部画像を取得して瞳孔中心と輝点像(Br)を取得する。そして、提示した視標の回転角で、そのときの瞳孔中心、輝点像(Br)から出る回転角に補正をかけることで行う。
 ステップS3では、ステップS2での角膜形状の測定に続き、制御部30は、左右被検眼EL、ERの屈折特性測定を同時に行う。ステップS3は、第3左眼測定光学系を用いる測定と、第3右眼測定光学系を用いる測定とを同時に実行する第3測定ステップに相当する。また、「左右被検眼EL、ERの屈折特性測定を同時に行う」とは、制御部30により、左眼測定光学系25Lのレフ測定投射系35及びレフ測定受光系36と、右眼測定光学系25Rのレフ測定投射系35及びレフ測定受光系36とを同時に制御し、左被検眼ELの屈折特性の測定データと、右被検眼ERの屈折特性の測定データとを同時に取得することである。なお、「同時」は上述の通りである。制御部30は、測定で得られた左右被検眼EL、ERの屈折特性の測定データを記憶部30dに記憶する。
 ステップS3では、制御部30は、レフ測定投射系35により眼底Efに投射されたリング状の測定光束の反射光(眼底戻り光)を撮像素子31gが受光することにより得られたリング像(パターン像)を解析する。この解析により、球面度数、乱視度数、及び乱視軸角度(屈折特性)を求める。制御部30は、算出された屈折特性の測定データを記憶部30dに記憶する。制御部30によるリング像の解析は、例えば、まず、得られたリング像が描出された画像における輝度分布からリング像の重心位置を求め、この重心位置から放射状に延びる複数のスキャン方向に沿った輝度分布を求め、この輝度分布からリング像を特定する。続いて、特定されたリング像の近似楕円を求め、この近似楕円の長径及び短径を公知の式に代入することによって球面度数、乱視度数及び乱視軸角度を求める。また、制御部30は、基準パターンに対するリング像の変形及び偏位に基づいて、屈折特性を求めてもよい。
 また、ステップS3では、制御部30は、屈折特性の測定中、固視投影系37によって固視標を呈示し、左右被検眼EL、ERの視線を固定する。このとき、無限遠の呈示位置に固視標を呈示し、左右被検眼EL、ERが無限遠を見ている状態とする。また、制御部30は、屈折特性の仮測定の結果に基づいて、左右被検眼EL、ERの遠点にリレーレンズ37bを移動させた後に、ピントが合わない位置にリレーレンズ37bを移動させて雲霧状態としてもよい。これにより、左右被検眼EL、ERは、調節休止状態(水晶体の調節除去状態)となり、その調節休止状態で屈折特性を測定できる。
 また、ステップS3では、制御部30は、屈折特性の測定中、各被検眼EL、ERから対物レンズ26L、26Rまでの距離を測定する。制御部30は、屈折特性測定中の距離の測定データも、記憶部30dに記憶する。なお、「距離の測定方法」は、上述の通りである。
 さらに、ステップS3では、制御部30は、屈折特性測定中の左被検眼EL及び右被検眼ERの眼位を検出する。制御部30は、屈折特性測定中の眼位の検出データも、記憶部30dに記憶する。なお、「眼位」は上述の通りである。
 ステップS4では、ステップS3での屈折特性の測定に続き、制御部30は、左右被検眼EL、ERの眼軸長測定を同時に行う。ステップS4は、第1左眼測定光学系を用いる測定と、第1右眼測定光学系を用いる測定とを同時に実行する第1測定ステップに相当する。また、「左右被検眼EL、ERの眼軸長測定を同時に行う」とは、制御部30により、左右被検眼EL、ERの前眼部の撮影と、左右被検眼EL、ERの眼底EfのOCTスキャンとをほぼ同時に実行し、左被検眼ELの眼軸長の測定データと、右被検眼ERの眼軸長の測定データとを同時に取得することである。なお、「同時」は上述の通りである。制御部30は、測定で得られた左右被検眼EL、ERの眼軸長の測定データを記憶部30dに記憶する。
 ステップS4における前眼部の撮影では、例えば、XYアライメント系33によりアライメント光束が投射されている左右被検眼EL、ERの前眼部を二台のカメラ39A、39Bによって撮影する。また、OCTスキャンでは、例えば、OCT光学系38によりAスキャン(又は、Bスキャン、3次元スキャン、若しくは他のスキャンモード)が行われる。制御部30は、眼底OCTスキャンにより収集されたデータからOCTデータを構築する。OCTデータは、例えば、反射強度プロファイル又は画像データである。
 次に、制御部30は、OCTスキャンが行われたときのアーム長を示すデータ(例えば、コーナーキューブ114の位置)を取得する。続いて、制御部30は、前眼部撮影画像を解析し、前眼部撮影画像における輝点像(Br)の位置を特定し、ステップS3で取得した角膜曲率半径に基づいて、前眼部撮影画像における基準位置(第1基準位置)を設定する。続いて、制御部30は、第1基準位置に対する、輝点像の位置の偏位(第1偏位)を算出し、第1偏位に対応する、左右被検眼EL、ERと測定アームとの間のアライメントの誤差を算出する。続いて、予め記憶された基準アーム長に対するアーム長の変化量を算出する。続いて、制御部30は、アーム長に対応するコヒーレンスゲート位置を特定し、特定したコヒーレンスゲート位置をOCTデータにおける基準位置(第2基準位置)として設定する。続いて、制御部30は、OCTデータを解析することで、左右被検眼EL、ERの網膜表面に相当するデータ位置(網膜表面位置)を特定する。続いて、制御部30は、第2基準位置に対する、網膜表面位置の偏位(第2偏位)を算出する。そして、制御部30は、予め記憶された基準眼軸長と、アライメント誤差と、アーム長変化量と、第2偏位とに基づき演算を行うことによって、被検眼Eの眼軸長の測定値を求める。
 また、ステップS4では、制御部30は、眼軸長の測定中、固視投影系37によって固視標を呈示し、左右被検眼EL、ERの視線を固定する。このとき、無限遠の呈示位置に固視標を呈示し、左右被検眼EL、ERが無限遠を見ている状態とする。
 さらに、ステップS4では、制御部30は、眼軸長測定中の左被検眼EL及び右被検眼ERの眼位を検出する。制御部30は、眼軸長測定中の眼位の検出データも、記憶部30dに記憶する。なお、「眼位」は上述の通りである。
 ステップS5では、ステップS4での眼軸長の測定に続き、制御部30は、記憶部30dに予め記憶された基準データを読み出す。ステップS5は、測定データを得た後、基準データを記憶した記憶部30dから基準データを読み出す読み出しステップに相当する。
 ステップS6では、ステップS5での基準データの読み出しに続き、制御部30は、記憶部30dに記憶した測定データを読み出し、基準データと測定データとを比較する。ステップS6は、基準データと測定データとを比較する比較ステップに相当する。
 ステップS7では、ステップS6でのデータの比較に続き、比較結果を出力する。なお、比較結果は、検者用コントローラ19aの表示装置19cに表示される。ステップS7は、比較結果を出力する出力ステップに相当する。
 以下、実施例1の眼科装置10における特徴作用を説明する。
 実施例1の眼科装置10は、左被検眼ELの眼軸長の測定に用いられる左眼測定光学系25LのOCT光学系38と、左被検眼ELの角膜形状の測定に用いられる左眼測定光学系25Lのケラト測定系34と、左被検眼ELの屈折特性の測定に用いられる左眼測定光学系25Lのレフ測定光学系(レフ測定投射系35及びレフ測定受光系36)と、を備えている。また、実施例1の眼科装置10は、右被検眼ERの眼軸長の測定に用いられる右眼測定光学系25RのOCT光学系38と、右被検眼ERの角膜形状の測定に用いられる右眼測定光学系25Rのケラト測定系34と、右被検眼ERの屈折特性の測定に用いられる右眼測定光学系25Rのレフ測定光学系(レフ測定投射系35及びレフ測定受光系36)と、を備えている。
 そして、実施例1の眼科装置10において被検眼の眼特性の測定を行う場合、まず、制御部30は、Zアライメント系32及びXYアライメント系33と、前眼部観察系31とを制御し、左眼測定ヘッド22L及び右眼測定ヘッド22Rを検査位置に配置する(図7に示すフローチャートのステップS1)。
 続いて、図7に示すフローチャートのステップS2、ステップS3、ステップS4と順に進む。すなわち、制御部30によって、左眼測定光学系25LのOCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)及び左ハウジング22a内に設けられた二台のカメラ39A、39Bと、右眼測定光学系25RのOCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)及び右ハウジング22b内に設けられた二台のカメラ39A、39Bと、がそれぞれ制御される。そして、角膜形状の測定が左右被検眼EL、ERで同時に実行され、屈折特性の測定が左右被検眼EL、ERで同時に実行され、眼軸長の測定が左右被検眼EL、ERで同時に実行される。
 これにより、実施例1の眼科装置10は、両眼を開放している状態でほぼ同じ条件下のもと、左右被検眼EL、ERの眼特性(眼軸長、角膜形状、屈折特性)を測定することができる。この結果、左右両眼でモノを視認している日常生活の状態に近い状態で左右被検眼EL、ERの眼特性を測定することができ、適切な眼特性の測定が可能となる。
 また、実施例1の眼科装置10では、左眼測定光学系25LのOCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)が、左眼測定ヘッド22Lの左ハウジング22aに収容されている。また、右眼測定光学系25RのOCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)は、右眼測定ヘッド22Rの右ハウジング22bに収容されている。そして、制御部30は、左駆動機構21Lと右駆動機構21Rとをそれぞれ駆動し、左眼測定ヘッド22L(左ハウジング22a)及び右眼測定ヘッド22R(右ハウジング22b)のXYZ方向の位置及び眼球回旋軸OL、ORを中心位置とする向きを制御する。
 これにより、各光学系38、34、35、36は、左右被検眼EL、ERに対して一体となって移動することができ、アライメント等の調整を容易に行うことができる。また、各光学系38、34、35、36を収容した左右の各測定ヘッド22L、22Rを駆動する駆動機構(左駆動機構21L、右駆動機構21R)が左右一つずつでよいため、装置のコンパクト化を図ることができる。
 また、実施例1の眼科装置10では、制御部30が、基準データを予め記憶した記憶部30dを有している。そして、左右被検眼EL、ERの角膜形状、屈折特性、眼軸長の各測定データを取得後、図7に示すフローチャートのステップS5、ステップS6、ステップS7と順に進む。つまり、制御部30は、記憶部30d記憶した基準データを読み出し、読み出した基準データと、左右被検眼EL、ERで同時に測定して得られた左右被検眼EL、ERの眼特性(眼軸長、角膜形状、屈折特性)の測定データとを比較し、比較結果を出力する。これにより、検者は、表示装置19c等に表示された比較結果を認識することで、比較結果に基づいて眼科装置10によって測定された左右被検眼EL、ERが基準データからどの程度逸脱しているのか、また既知の症状をすでに呈しているか等を容易に評価できる。
 また、実施例1の眼科装置10では、左眼測定光学系25LのOCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)が、共通の左眼測定軸LLを有している。また、左眼測定光学系25Lの構成と右眼測定光学系25Rの構成が同一であることから、右眼測定光学系25RのOCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)は、共通の右眼測定軸LRを有している。
 これにより、共通の左眼測定軸LL及び右眼測定軸LRを左右被検眼EL、ERに対してアライメントすることで、OCT光学系38、ケラト測定系34、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)のアライメントを完了することができる。また、各光学系38、34、35、36のアライメントが同時になされることで、各光学系38、34、35、36を用いた測定を同じアライメント条件下で実行することができ、高精度に比較できる形で測定データを得ることができる。また、光学部品の共通化を図ることが可能になり、部品点数の低減を図ることが可能となる。
 また、実施例1の眼科装置10では、左被検眼ELから対物レンズ26Lまでの距離を測定する二台のカメラ39A、39Bが左ハウジング22a内に設けられ、右被検眼ERから対物レンズ26Rまでの距離を測定する二台のカメラ39A、39Bが右ハウジング22b内に設けられている。そして、制御部30は、ステップS2において、ケラト測定系34を用いた角膜形状の測定中、左被検眼ELから対物レンズ26Lまでの距離と、右被検眼ERから対物レンズ26Rまでの距離をそれぞれ測定する。また、制御部30は、ステップS3において、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)を用いた屈折特性の測定中、左被検眼ELから対物レンズ26Lまでの距離と、右被検眼ERから対物レンズ26Rまでの距離をそれぞれ測定する。
 これにより、左右被検眼EL、ERから対物レンズ26L、26Rまでの距離が、角膜形状や屈折特性の測定に適した距離であるか否かの判断ができ、当該判断の結果を踏まえて角膜形状や屈折特性の測定を実行することができる。そのため、より正確な測定が可能となる。また、基準データと比較を行う際、精度の高い比較結果を出力することができる。
 また、実施例1の眼科装置10では、左被検眼ELの固視に用いられる左眼測定光学系25Lの固視投影系37と、右被検眼ERの固視に用いられる右眼測定光学系25Rの固視投影系37と、を備えている。そして、制御部30は、ステップS2において、左眼測定光学系25Lの固視投影系37を用いて左被検眼ELを固視し、右眼測定光学系25Rの固視投影系37を用いて右被検眼ERを固視した状態で、ケラト測定系34を用いた角膜形状の測定を実行させる。また、制御部30は、ステップS3において、左眼測定光学系25Lの固視投影系37を用いて左被検眼ELを固視し、右眼測定光学系25Rの固視投影系37を用いて右被検眼ERを固視した状態で、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)を用いた屈折特性の測定を実行させる。さらに、制御部30は、ステップS4において、左眼測定光学系25Lの固視投影系37を用いて左被検眼ELを固視し、右眼測定光学系25Rの固視投影系37を用いて右被検眼ERを固視した状態で、OCT光学系38及び二台のカメラ39A、39Bを用いた眼軸長の測定を実行させる。
 これにより、左右被検眼EL、ERは、固視標上に焦点を合わせることができ、左右被検眼EL、ERの視線を固定することができる。ここで、左右被検眼EL、ERの視線の向き(視軸)を左眼測定軸LL及び右眼測定軸LRに対して正しい位置に設定することは、正確な測定のために必須である。すなわち、左右被検眼EL、ERの視線を所望の方向(実施例1では無限遠)に固定することで、視軸と左眼測定軸LL及び右眼測定軸LRとのアライメントを行うことができ、眼特性の測定精度の向上を図ることができる。
 また、実施例1の眼科装置10では、左右被検眼EL、ERの眼軸長(前後方向の寸法情報)の測定に用いられるOCT光学系38が、干渉法測定機構を構成している。このため、例えば超音波を用いて眼軸測定を行う場合のように、眼球にプローブを接触させる必要がなく、眼球圧迫による測定誤差の発生を防止することができる。また、点眼麻酔も不要とすることができる。この結果、左右被検眼EL、ERの眼軸長を高精度に測定することができる。
 特に、実施例1のOCT光学系38は、光学コヒーレンス干渉法を用いた干渉計である。そのため、コヒーレンス長の比較的短い光を用いて眼軸長の測定を実行させることができ、OCT光学系38の光路長が不要に長くなることを防止できる。
 また、実施例1の眼科装置10では、左右被検眼EL、ERの角膜形状の測定に用いられるケラト測定系34がケラトメータ機構を構成している。そのため、制御部30は、左右被検眼EL、ERに投射されたリング状光束(角膜形状測定用の光束)の反射光を撮影したことで、得られた画像に基づいて角膜形状の測定を実行させることができる。
 特に、実施例1のケラト測定系34は、左右被検眼EL、ERの角膜Crに角膜形状測定用のリング状光束を投射するケラト板34a及びケラトリング光源34bを有している。そして、制御部30は、リング状光束のパターン像が形成されている左右被検眼EL、ERの前眼部を撮影して得られた画像を解析して角膜形状を求める。これにより、いわゆる画像処理によって、容易に角膜形状を求めることができる。
 また、実施例1の眼科装置10では、左右被検眼EL、ERの屈折特性に用いられるレフ測定光学系(レフ測定投射系35及びレフ測定受光系36)が、オートレフラクトメータ機構を構成している。そのため、左右被検眼EL、ERの屈折特性を容易に測定することが可能となる。
 特に、実施例1のレフ測定光学系は、左右被検眼EL、ERの眼底Efに測定光束(屈折特性測定用の光束)を投射するレフ測定投射系35と、左右被検眼EL、ERの眼底Efから反射された測定光束を受光するレフ測定受光系36とを有している。これにより、屈折特性測定用の光束を眼底Efに投影し、眼底Efからの反射像を受光し、制御部30にて演算処理することにより屈折力値等の屈折特性を算出することができる。
 そして、実施例1の眼科装置10では、制御部30は、ステップS2において、ケラト測定系34を用いた角膜形状の測定時に、左右被検眼EL、ERの眼位を検出する。また、制御部30は、ステップS3において、レフ測定光学系(レフ測定投射系35及びレフ測定受光系36)を用いた屈折特性の測定時に、左右被検眼EL、ERの眼位を検出する。さらに、制御部30は、ステップS4において、OCT光学系38及び二台のカメラ39A、39Bを用いた眼軸長の測定時に、左右被検眼EL、ERの眼位を検出する。
 これにより、各眼特性の測定中の眼位を把握することができ、測定により得られた測定データの妥当性や、精度等を認識することが可能となる。また、眼位の状態によっては、測定のやり直し等の対応も可能となり、測定精度の向上を図ることができる。
 以上、本発明の眼科装置を実施例1に基づいて説明してきたが、具体的な構成については、この実施例に限定されるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 例えば、実施例1では、左右被検眼EL、ERの前後方向の寸法情報である眼軸長を測定する際、二台のカメラ39A、39Bを用いて角膜位置を測定し、OCT光学系38を用いて網膜位置を測定する例を示したが、これに限らない。例えば、特開2017-189669号公報等に記載のように、OCT光学系38を用いて角膜位置及び網膜位置の双方を測定してもよい。
 また、実施例1の眼科装置10では、角膜形状の測定及び屈折特性の測定のいずれにおいても、左右被検眼EL、ERから対物レンズ26L、26Rまでの距離を測定する例を示したが、これに限らない。各被検眼EL、ERから対物レンズ26L、26Rまでの距離は、角膜形状又は屈折特性の少なくとも一方の測定中に検出すればよい。なお、必ずしも各被検眼EL、ERから対物レンズ26L、26Rまでの距離を検出しなくてもよい。
 また、実施例1では、距離を検出する際の第1基準位置を左眼測定ヘッド22Lに設けた対物レンズ26Lとし、第2基準位置を右眼測定ヘッド22Rに設けた対物レンズ26Lとしたが、これに限らない。例えば、二台のカメラ39A、39Bの中心位置等任意に設定できる。また、左眼距離測定部及び右眼距離測定部は、例えば任意の距離センサ等によって構成してもよい。
 また、実施例1の眼科装置10では、眼軸長の測定、角膜形状の測定、屈折特性の測定のいずれにおいても、左右被検眼EL、ERを固視させた状態とする例を示した。しかしながら、これに限らず、少なくとも眼軸長と角膜形状と屈折特性いずれかの測定時に固視させればよい。また、必ずしも固視投影系37を用いて固視させる必要はない。
 そして、実施例1の眼科装置10は、左右被検眼EL、ERの角膜形状を左右同時に測定し、次に、左右被検眼EL、ERの屈折特性を左右同時に測定し、最後に、左右被検眼EL、ERの眼軸長を左右同時に測定する例を示した。つまり、各眼特性の測定を左右同時に実行する一方、各眼特性は順番に測定する。しかしながら、これに限らない。例えば、左右被検眼EL、ERの角膜形状を左右同時に測定すると同時に、左右被検眼EL、ERの屈折特性を左右同時に測定してもよい。さらに、眼軸長についても、角膜形状や屈折特性と同時に測定してもよいし、全ての眼特性を同時に測定してもよい。
 さらに、眼軸長と角膜形状と屈折特性の測定順は、実施例1に示す順番に限らず、任意に決めることができる。また、眼軸長と角膜形状と屈折特性の各測定の合間にアライメントの微調整を行ってもよい。
関連出願の相互参照
 本出願は、2021年3月31日に日本国特許庁に出願された特願2021-059896に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
 
 
 

Claims (16)

  1.  左被検眼の前後方向の寸法情報の測定に用いられる第1左眼測定光学系と、
     前記左被検眼の角膜形状の測定に用いられる第2左眼測定光学系と、
     前記左被検眼の屈折特性の測定に用いられる第3左眼測定光学系と、
     右被検眼の前後方向の寸法情報の測定に用いられる第1右眼測定光学系と、
     前記右被検眼の角膜形状の測定に用いられる第2右眼測定光学系と、
     前記右被検眼の屈折特性の測定に用いられる第3右眼測定光学系と、
     前記第1左眼測定光学系と、前記第2左眼測定光学系と、前記第3左眼測定光学系と、
    前記第1右眼測定光学系と、前記第2右眼測定光学系と、前記第3右眼測定光学系とを制御すると共に、前記各光学系を用いて得られた測定データを処理する制御部と、を備え、
     前記制御部は、前記第1左眼測定光学系を用いる測定と、前記第1右眼測定光学系を用いる測定とを同時に実行させ、
     前記第2左眼測定光学系を用いる測定と、前記第2右眼測定光学系を用いる測定とを同時に実行させ、
     前記第3左眼測定光学系を用いる測定と、前記第3右眼測定光学系を用いる測定とを同時に実行させる
     ことを特徴とする眼科装置。
  2.  請求項1に記載された眼科装置において、
     前記第1左眼測定光学系と、前記第2左眼測定光学系と、前記第3左眼測定光学系とは、左眼用筐体に収容され、
     前記第1右眼測定光学系と、前記第2右眼測定光学系と、前記第3右眼測定光学系とは、右眼用筐体に収容され、
     前記制御部は、前記左眼用筐体及び前記右眼用筐体の位置及び向きをそれぞれ制御する
     ことを特徴とする眼科装置。
  3.  請求項1又は請求項2に記載された眼科装置において、
     基準データを記憶した記憶部を有し、
     前記制御部は、前記記憶部から読み出した基準データと前記測定データとを比較し、比較結果を出力する
     ことを特徴とする眼科装置。
  4.  請求項1から請求項3のいずれか一項に記載された眼科装置において、
     前記第1左眼測定光学系と、前記第2左眼測定光学系と、前記第3左眼測定光学系とは、共通の左眼測定軸を有しており、
     前記第1右眼測定光学系と、前記第2右眼測定光学系と、前記第3右眼測定光学系とは、共通の右眼測定軸を有している
     ことを特徴とする眼科装置。
  5.  請求項1から請求項4のいずれか一項に記載された眼科装置において、
     前記左被検眼から所定の第1基準位置までの距離を測定する左眼距離測定部と、前記右被検眼から所定の第2基準位置までの距離を測定する右眼距離測定部と、を備え、
     前記制御部は、前記第2左眼測定光学系又は前記第3左眼測定光学系の少なくともいずれかを用いた測定中、前記左眼距離測定部により前記左被検眼から前記第1基準位置までの距離を測定し、前記第2右眼測定光学系又は前記第3右眼測定光学系の少なくともいずれかを用いた測定中、前記右眼距離測定部により前記右被検眼から前記第2基準位置までの距離を測定する
     ことを特徴とする眼科装置。
  6.  請求項1から請求項5のいずれか一項に記載された眼科装置において、
     前記左被検眼の固視に用いられる左眼固視光学系と、前記右被検眼の固視に用いられる右眼固視光学系と、を備え、
     前記制御部は、前記左眼固視光学系を用いて前記左被検眼を固視させた状態で、前記第1左眼測定光学系、前記第2左眼測定光学系又は前記第3左眼測定光学系の少なくともいずれか一つを用いる測定を実行させ、前記右眼固視光学系を用いて前記右被検眼を固視させた状態で、前記第1右眼測定光学系、前記第2右眼測定光学系又は前記第3右眼測定光学系の少なくともいずれか一つを用いる測定を実行させる
     ことを特徴とする眼科装置。
  7.  請求項1から請求項6のいずれか一項に記載された眼科装置において、
     前記第1左眼測定光学系及び前記第1右眼測定光学系は、干渉法測定機構を構成する
     ことを特徴とする眼科装置。
  8.  請求項7に記載された眼科装置において、
     前記干渉法測定機構は、光学コヒーレンス干渉法を用いた干渉計である
     ことを特徴とする眼科装置。
  9.  請求項1から請求項8のいずれか一項に記載された眼科装置において、
     前記第2左眼測定光学系及び前記第2右眼測定光学系は、ケラトメータ機構を構成する
     ことを特徴とする眼科装置。
  10.  請求項9に記載された眼科装置において、
     前記ケラトメータ機構は、前記左被検眼又は前記右被検眼の角膜に角膜形状測定用の光束を投射するケラト投射系を有し、
     前記制御部は、前記角膜形状測定用の光束の投射によるパターン像が形成されている前記左被検眼又は前記右被検眼の前眼部を撮影して得られた画像に基づいて前記角膜形状を求める
     ことを特徴とする眼科装置。
  11.  請求項1から請求項10のいずれか一項に記載された眼科装置において、
     前記第3左眼測定光学系及び前記第3右眼測定光学系は、オートレフラクトメータ機構を構成する
     ことを特徴とする眼科装置。
  12.  請求項11に記載された眼科装置において、
     前記オートレフラクトメータ機構は、前記左被検眼又は前記右被検眼の眼底に屈折特性測定用の光束を投射するレフ測定投射系と、前記左被検眼又は前記右被検眼の眼底から反射された前記屈折特性測定用の光束を受光するレフ測定受光系と、で構成される
     ことを特徴とする眼科装置。
  13.  請求項1から請求項12のいずれか一項に記載された眼科装置において、
     前記制御部は、前記第1左眼測定光学系及び前記第1右眼測定光学系を用いる測定時と、前記第2左眼測定光学系及び前記第2右眼測定光学系を用いる測定時と、前記第3左眼測定光学系及び前記第3右眼測定光学系を用いる測定時に、前記左被検眼及び前記右被検眼の眼位を検出する
     ことを特徴とする眼科装置。
  14.  左被検眼の前後方向の寸法情報の測定に用いられる第1左眼測定光学系と、前記左被検眼の角膜形状の測定に用いられる第2左眼測定光学系と、前記左被検眼の屈折特性の測定に用いられる第3左眼測定光学系と、右被検眼の前後方向の寸法情報の測定に用いられる第1右眼測定光学系と、前記右被検眼の角膜形状の測定に用いられる第2右眼測定光学系と、前記右被検眼の屈折特性の測定に用いられる第3右眼測定光学系と、前記第1左眼測定光学系と、前記第2左眼測定光学系と、前記第3左眼測定光学系と、前記第1右眼測定光学系と、前記第2右眼測定光学系と、前記第3右眼測定光学系とを制御すると共に、前記各光学系を用いて得られた測定データを処理する制御部と、を備えた眼科装置による被検眼の検査方法であって、
     前記第1左眼測定光学系を用いる測定と、前記第1右眼測定光学系を用いる測定とを同時に実行する第1測定ステップと、
     前記第2左眼測定光学系を用いる測定と、前記第2右眼測定光学系を用いる測定とを同時に実行する第2測定ステップと、
     前記第3左眼測定光学系を用いる測定と、前記第3右眼測定光学系を用いる測定とを同時に実行する第3測定ステップと、を有する
     ことを特徴とする被検眼の検査方法。
  15.  請求項14に記載された被検眼の検査方法において、
     前記第1測定ステップと、前記第2測定ステップと、前記第3測定ステップとで前記測定データを得た後、基準データを記憶した記憶部から前記基準データを読み出す読み出しステップと、
     前記読み出しステップで読み出した前記基準データと前記測定データとを比較する比較ステップと、
     前記比較ステップでの比較結果を出力する出力ステップと、を有する
     ことを特徴とする被検眼の検査方法。
  16.  請求項14又は請求項15に記載された被検眼の検査方法において、
     前記第1測定ステップでは、前記第1左眼測定光学系及び前記第1右眼測定光学系を用いる測定時に前記左被検眼及び前記右被検眼の眼位を検出し、
     前記第2測定ステップでは、前記第2左眼測定光学系及び前記第2右眼測定光学系を用いる測定時に前記左被検眼及び前記右被検眼の眼位を検出し、
     前記第3測定ステップでは、前記第3左眼測定光学系及び前記第3右眼測定光学系を用いる測定時に前記左被検眼及び前記右被検眼の眼位を検出する
     ことを特徴とする被検眼の検査方法。
     
PCT/JP2022/006301 2021-03-31 2022-02-17 眼科装置及び被検眼の検査方法 WO2022209387A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/283,586 US20240156339A1 (en) 2021-03-31 2022-02-17 Ophthalmologic apparatus and method of examining eye to be examined
EP22779614.1A EP4316351A1 (en) 2021-03-31 2022-02-17 Ophthalmic device and eye inspection method
CN202280023860.XA CN117157006A (zh) 2021-03-31 2022-02-17 眼科装置以及受检眼的检查方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059896 2021-03-31
JP2021059896A JP2022156295A (ja) 2021-03-31 2021-03-31 眼科装置及び被検眼の検査方法

Publications (1)

Publication Number Publication Date
WO2022209387A1 true WO2022209387A1 (ja) 2022-10-06

Family

ID=83458834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006301 WO2022209387A1 (ja) 2021-03-31 2022-02-17 眼科装置及び被検眼の検査方法

Country Status (5)

Country Link
US (1) US20240156339A1 (ja)
EP (1) EP4316351A1 (ja)
JP (1) JP2022156295A (ja)
CN (1) CN117157006A (ja)
WO (1) WO2022209387A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099532A (ja) * 2015-11-30 2017-06-08 株式会社トプコン 眼科検査装置
JP2017189669A (ja) 2017-07-27 2017-10-19 株式会社トプコン 眼科装置
JP2018038481A (ja) * 2016-09-05 2018-03-15 株式会社ニデック 自覚式検眼装置及び自覚式検眼プログラム
JP2019062939A (ja) * 2017-09-28 2019-04-25 株式会社トプコン 眼科装置
JP2020121114A (ja) 2019-01-21 2020-08-13 オクルス オプティクゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング 眼を検査する方法及び視力検査システム
JP2021059896A (ja) 2019-10-07 2021-04-15 株式会社竹中工務店 プレキャスト部材及び梁

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099532A (ja) * 2015-11-30 2017-06-08 株式会社トプコン 眼科検査装置
JP2018038481A (ja) * 2016-09-05 2018-03-15 株式会社ニデック 自覚式検眼装置及び自覚式検眼プログラム
JP2017189669A (ja) 2017-07-27 2017-10-19 株式会社トプコン 眼科装置
JP2019062939A (ja) * 2017-09-28 2019-04-25 株式会社トプコン 眼科装置
JP2020121114A (ja) 2019-01-21 2020-08-13 オクルス オプティクゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング 眼を検査する方法及び視力検査システム
JP2021059896A (ja) 2019-10-07 2021-04-15 株式会社竹中工務店 プレキャスト部材及び梁

Also Published As

Publication number Publication date
JP2022156295A (ja) 2022-10-14
EP4316351A1 (en) 2024-02-07
CN117157006A (zh) 2023-12-01
US20240156339A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
EP3222204B1 (en) Ophthalmologic apparatus
US10136809B2 (en) Ophthalmic apparatus
US9042622B2 (en) Optical coherence tomographic apparatus, control method for optical coherence tomographic apparatus and storage medium
EP2371273B1 (en) Method of operating an optical tomographic image photographing apparatus
JP7304780B2 (ja) 眼科装置
EP2644085B1 (en) Fundus photographing apparatus
US10791922B2 (en) Ophthalmological device and ophthalmological inspection system
JP7027698B2 (ja) 眼科撮影装置
JP7186587B2 (ja) 眼科装置
JP7394948B2 (ja) 眼科装置
JP6814062B2 (ja) 眼科装置
JP6809926B2 (ja) 眼科装置
JP2020156622A (ja) 眼科装置
WO2022209387A1 (ja) 眼科装置及び被検眼の検査方法
JP7349807B2 (ja) 眼科装置
JP7164328B2 (ja) 眼科装置、及び眼科装置の制御方法
US20230218167A1 (en) Ophthalmic apparatus
US20230218161A1 (en) Ophthalmic apparatus
JP7133995B2 (ja) 眼科装置、及びその制御方法
JP2023126596A (ja) 眼科装置、及びその制御方法
JP6899661B2 (ja) 眼科装置
JP2020199210A (ja) 眼科装置及び眼科装置の制御方法
JP2020006105A (ja) 眼科装置、及び眼科装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283586

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779614

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779614

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE