WO2022209197A1 - Coating processing device, coating processing method, and coating processing program - Google Patents

Coating processing device, coating processing method, and coating processing program Download PDF

Info

Publication number
WO2022209197A1
WO2022209197A1 PCT/JP2022/002225 JP2022002225W WO2022209197A1 WO 2022209197 A1 WO2022209197 A1 WO 2022209197A1 JP 2022002225 W JP2022002225 W JP 2022002225W WO 2022209197 A1 WO2022209197 A1 WO 2022209197A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pressure
unit
functional liquid
stage
Prior art date
Application number
PCT/JP2022/002225
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 三根
文宏 宮▲崎▼
耕三 金川
裕一 道木
光利 冨田
和幸 池田
繁実 大野
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022209197A1 publication Critical patent/WO2022209197A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the present disclosure relates to a coating processing apparatus, a coating processing method, and a coating processing program.
  • Patent Document 1 discloses a stage section that floats a substrate to a predetermined height by the wind pressure of gas, and a plurality of ejections that drop functional liquid droplets from above onto the substrate that is floated at a predetermined height from the stage section.
  • a coating device is disclosed that includes a head.
  • the present disclosure provides a technique for suppressing ejection failure due to drying of the functional liquid.
  • a coating processing apparatus includes a stage, a carriage, a transport section, an elevating mechanism, and a control section.
  • the stage floats the substrate by wind pressure of gas.
  • the carriage is arranged above the stage and has a plurality of ejection heads for ejecting the functional liquid.
  • the transport unit holds the substrate floated from the stage and moves it along the transport direction.
  • the elevating mechanism elevates the carriage between a processing position where the functional liquid is discharged onto the substrate and a retracted position above the processing position.
  • the control unit controls the elevating mechanism to move the carriage from the retracted position to the processing position after the transport of the substrate by the transport unit is started and before the functional liquid is started to be discharged onto the substrate. and a second moving process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate is completed.
  • ejection failure due to drying of the functional liquid can be suppressed.
  • FIG. 1 is a schematic plan view showing part of the substrate processing apparatus according to the embodiment.
  • FIG. 2 is a schematic plan view showing the configuration of a drawing unit according to the embodiment;
  • FIG. 3 is a schematic plan view showing the configuration of the carriage according to the embodiment;
  • FIG. 4 is a schematic side view showing the configuration of the drawing unit according to the embodiment;
  • FIG. 5 is a schematic side view showing an operation example of the flushing section and the inspection section according to the embodiment;
  • FIG. 6 is a schematic side view showing an operation example of the flushing section and the inspection section according to the embodiment;
  • FIG. 7 is a block diagram showing the configuration of the control device according to the embodiment.
  • FIG. 8 is a diagram showing an example of drawing gap information for a certain ejection head.
  • FIG. 9 is a diagram for explaining an example of a method of creating drawing gap information according to the embodiment.
  • FIG. 10 is a schematic plan view showing the arrangement of the second measuring section according to the embodiment.
  • FIG. 11 is a flowchart showing procedures of a first movement process, a second movement process, a first pressure change process, and a second pressure change process among processes executed by the substrate processing apparatus according to the embodiment.
  • FIG. 12 is a diagram showing the state of the drawing unit before the first movement process, the second movement process, the first pressure change process, and the second pressure change process are started.
  • FIG. 13 is a diagram showing an operation example of the first movement process and the first pressure change process for the first carriage group.
  • FIG. 14 is a diagram showing an operation example of the first movement process and the first pressure change process for the second carriage group.
  • FIG. 15 is a diagram showing an operation example of the first movement process and the first pressure change process for the third carriage group.
  • FIG. 16 is a diagram showing an operation example of the second movement process and the second pressure change process for the first carriage group.
  • FIG. 17 is a diagram showing an operation example of the second movement process and the second pressure change process for the second carriage group.
  • 18 is a schematic side view showing the configuration of a drawing unit according to the first modification of the embodiment;
  • FIG. FIG. 19 is a schematic side view showing the configuration of the drawing unit according to the second modification of the embodiment;
  • Each drawing referred to below shows an orthogonal coordinate system in which the X-axis direction, the Y-axis direction, and the Z-axis direction are defined to be orthogonal to each other, and the Z-axis positive direction is the vertically upward direction, in order to make the explanation easier to understand.
  • the front-rear direction is defined with the positive direction of the Y-axis as the front and the negative direction of the Y-axis as the rear, and the left-right direction with the positive direction of the X-axis as the right and the negative direction of the X-axis as the left.
  • a vertical direction is defined in which the positive direction of the Z-axis is upward and the negative direction of the Z-axis is downward.
  • the substrate processing apparatus 1 processes the substrate S while transporting the substrate S forward and backward along the front-rear direction. That is, the substrate processing apparatus 1 processes the substrate S while transporting the substrate S along the transport direction (Y-axis positive direction).
  • FIG. 1 is a schematic plan view showing part of a substrate processing apparatus 1 according to an embodiment.
  • the substrate processing apparatus 1 performs drawing on the substrate S by an inkjet method while horizontally transporting the substrate S as a work.
  • the substrate S is, for example, a substrate used for flat panel displays.
  • the substrate processing apparatus 1 includes a first transfer stage 2 , a second transfer stage 3 , a transfer section 4 and a drawing section 5 .
  • the substrate processing apparatus 1 also includes a flushing section 6 , an inspection section 7 and a control device 8 .
  • the first transfer stage 2 and the second transfer stage 3 have many ejection ports (not shown).
  • the stage blows compressed gas (for example, air) from an ejection port toward the lower surface of the substrate S, and floats the substrate S by the wind pressure of the gas.
  • compressed gas for example, air
  • the first transport stage 2 and the second transport stage 3 are arranged along the substrate S transport direction.
  • the first carrier stage 2 is arranged on the upstream side (Y-axis negative direction side) of the substrate S in the carrier direction of the second carrier stage 3 .
  • a drawing unit 5 is arranged between the first carrier stage 2 and the second carrier stage 3 .
  • the first carrier stage 2, the second carrier stage 3, and the drawing section 5 are arranged in the order of the first carrier stage 2, the drawing section 5, and the second carrier stage 3 along the positive Y-axis direction.
  • the transport unit 4 holds the substrate S floated from the first transport stage 2, the second transport stage 3, and a first processing stage 54 to a third processing stage 56 (see FIG. 2) to be described later, and moves the substrate S in the transport direction (positive Y-axis). direction).
  • the transport section 4 includes a pair of guide rails 41 , 41 , a pair of moving sections 42 , 42 , and a plurality of (here, four) holding sections 43 .
  • the pair of guide rails 41, 41 are arranged in the horizontal direction (X-axis direction) and extend along the transport direction (Y-axis positive direction).
  • the pair of guide rails 41, 41 are arranged so as to sandwich the first transfer stage 2, the second transfer stage 3, and the first to third processing stages 54 to 56, which will be described later, in the left-right direction (X-axis direction). .
  • one of the pair of guide rails 41, 41 is arranged on the X-axis positive direction side of the first transfer stage 2, the second transfer stage 3, and the first processing stage 54 to the third processing stage 56 described later. be done.
  • the other of the pair of guide rails 41, 41 is arranged on the X-axis negative direction side of the first transfer stage 2, the second transfer stage 3, and the first to third processing stages 54 to 56 described later.
  • the pair of guide rails 41, 41 is made of granite, for example.
  • a pair of moving parts 42 , 42 are provided corresponding to a pair of guide rails 41 , 41 .
  • one of the pair of moving parts 42 , 42 is provided on one of the pair of guide rails 41 , 41 and moves along one of the guide rails 41 .
  • the other of the pair of moving parts 42 , 42 is provided on the other of the pair of guide rails 41 , 41 and moves along the other guide rail 41 .
  • the pair of moving parts 42, 42 each have a driving part such as a motor, and can move independently.
  • a plurality of holding parts 43 are provided on the pair of moving parts 42, 42, respectively, and hold the substrate S by suction from below.
  • two holding portions 43, 43 are provided on one of the pair of moving portions 42, 42, and the remaining two holding portions 43 , 43 are provided on the other of the pair of moving parts 42 , 42 .
  • the number of the plurality of holding portions 43 is not limited to four.
  • the plurality (here, four) of holding parts 43 suck and hold the four corners of the substrate S from below.
  • the transport unit 4 uses a plurality of holding units 43 to hold the four corners of the substrate S floated by the first transport stage 2 or the like, and moves the held substrate S in the transport direction (Y axis positive direction).
  • the drawing unit 5 is arranged between the first carrier stage 2 and the second carrier stage 3 .
  • the drawing unit 5 draws on the board surface of the substrate S by discharging the functional liquid toward the substrate S from above.
  • FIG. 2 is a schematic plan view showing the configuration of the drawing unit 5 according to the embodiment.
  • FIG. 3 is a schematic plan view showing the configuration of the carriage 50 according to the embodiment.
  • FIG. 4 is a schematic side view showing the configuration of the drawing unit 5 according to the embodiment.
  • the drawing unit 5 includes a first carriage group 51, a second carriage group 52, a third carriage group 53, a first processing stage 54, a second processing stage 55, and a third processing stage. and a stage 56 .
  • the first carriage group 51, the second carriage group 52 and the third carriage group 53 are arranged along the transport direction. Specifically, the first carriage group 51, the second carriage group 52, and the third carriage group 53 are arranged in this order from the upstream side in the transport direction.
  • the first carriage group 51 , the second carriage group 52 and the third carriage group 53 each include a plurality of (here, six) carriages 50 .
  • a plurality of carriages 50 are arranged in a direction (X-axis direction) perpendicular to the transport direction.
  • the carriage 50 is, for example, a flat member.
  • the carriage 50 is provided with a plurality of ejection heads 500 .
  • the carriage 50 has a total of 12 ejection heads 500 arranged in a matrix along the X-axis direction and the Y-axis direction.
  • the number of ejection heads 500 may be more or less than twelve.
  • the ejection head 500 is inserted into an opening (not shown) formed in the carriage 50 from above the carriage 50, for example.
  • the ejection head 500 is fixed to the carriage 50 by a fixing portion (not shown).
  • the ejection head 500 is, for example, a piezo nozzle head.
  • a plurality of ejection holes (not shown) are formed in the lower surface of the ejection head 500 (the surface facing the substrate S).
  • a plurality of ejection holes are provided in a matrix along, for example, the X-axis direction and the Y-axis direction.
  • the ejection head 500 has a pump section (not shown).
  • the pump section includes a cavity that stores the functional liquid, a piezoelectric element that changes the volume of the cavity, a diaphragm, and the like. By applying a voltage to the piezoelectric element and vibrating the diaphragm, the volume of the cavity is changed. droplets of the functional liquid are ejected from the respective ejection holes.
  • the ejection head 500 is provided with a functional liquid introduction section connected to the functional liquid tank via a supply tube, a head substrate connected to the control device 8 (see FIG. 1) via a flexible flat cable, and the like. ing.
  • the multiple carriages 50 eject the functional liquid from the multiple ejection heads 500 onto the substrate S transported along the transport direction (Y-axis positive direction).
  • the functional liquid is ink.
  • the drawing unit 5 includes a plurality of elevating mechanisms 510.
  • the plurality of lifting mechanisms 510 are provided in one-to-one correspondence with the plurality of carriages 50 .
  • the elevating mechanism 510 elevates the corresponding carriage 50 .
  • the elevating mechanism 510 elevates the carriage 50 between a processing position where the functional liquid is discharged onto the substrate S and a retracted position above the processing position.
  • one carriage 50 is provided with one elevating mechanism 510 , but one elevating mechanism 510 is provided for each of the first carriage group 51 , the second carriage group 52 and the third carriage group 53 . It is sufficient if it is provided.
  • the first processing stage 54, the second processing stage 55, and the third processing stage 56 are arranged along the transport direction of the substrate S (Y-axis positive direction). Specifically, the first processing stage 54, the second processing stage 55, and the third processing stage 56 are arranged in this order along the transport direction. In the transport direction (Y-axis positive direction), the first transport stage 2 is positioned upstream of the first processing stage 54, and the second transport stage 3 is positioned downstream of the third processing stage 56. is doing.
  • a first processing stage 54, a second processing stage 55 and a third processing stage 56 are provided corresponding to the first carriage group 51, the second carriage group 52 and the third carriage group 53, respectively.
  • the first processing stage 54 is arranged below the first carriage group 51
  • the second processing stage 55 is arranged below the second carriage group 52
  • the third processing stage 56 is arranged below the third carriage group 52 . It is arranged below the carriage group 53 .
  • the first processing stage 54, the second processing stage 55, and the third processing stage 56 discharge compressed gas (for example, air) toward the lower surface of the substrate S, and remove the air between the substrate S and the stage.
  • compressed gas for example, air
  • the floating height of the substrate S can be adjusted by the suction.
  • the first processing stage 54, the second processing stage 55, and the third processing stage 56 each include an air supply section 520, a suction section 530, and an air release valve 550.
  • the air supply unit 520, the suction unit 530, and the atmosphere release valve 550 will be described by taking the first processing stage 54 as an example.
  • a plurality of ejection ports (not shown) and a plurality of suction ports (not shown) are opened on the upper surface of the first processing stage 54 .
  • the air supply unit 520 is connected to a plurality of ejection ports via an air supply pipe 521 and supplies compressed gas to the plurality of ejection ports.
  • the suction unit 530 is connected to a plurality of suction ports via suction pipes 531, and suctions the atmosphere on the upper surface side of the first processing stage 54 via the plurality of suction ports.
  • the atmosphere release valve 550 is provided in a branch pipe 551 branching from the air supply pipe 521 . By opening the air release valve 550 , part of the gas supplied from the air supply unit 520 to the first processing stage 54 through the air supply pipe 521 is discharged from the branch pipe 551 to the outside. This weakens the wind pressure of the gas ejected from the plurality of ejection ports. As described above, the atmosphere release valve 550 is an example of a wind pressure adjustment unit that adjusts the wind pressure of the gas ejected from the first processing stage 54 .
  • the flushing unit 6 is arranged downstream of the drawing unit 5 in the transport direction, and is used for the flushing process of periodically discharging the functional liquid in the ejection head 500 .
  • the flushing part 6 includes a base part 61 and a receiving part 62 arranged on the base part 61 .
  • the base portion 61 is provided on the pair of guide rails 41 and 41 and is movable along the pair of guide rails 41 and 41 .
  • the receiving portion 62 is made of, for example, porous resin or the like, and receives the functional liquid ejected from the plurality of ejection heads 500 .
  • a drain pipe (not shown) is connected to the receiving portion 62, and the functional liquid received by the receiving portion 62 is discharged through the drain pipe.
  • the inspection unit 7 is arranged downstream of the flushing unit 6 in the transport direction, and inspects whether or not the functional liquid is normally ejected from the plurality of ejection heads 500 .
  • FIG. 5 is a schematic side view showing an operation example of the flushing section 6 and the inspection section 7 according to the embodiment.
  • FIG. 6 is a schematic side view showing an operation example of the flushing section 6 and the inspection section 7 according to the embodiment.
  • the inspection unit 7 includes a base unit 71, a plurality of roll papers 72, and an imaging unit 73 (see FIGS. 5 and 6).
  • the base portion 71 is provided on the pair of guide rails 41 and 41 and is movable along the pair of guide rails 41 and 41 .
  • a plurality (here, three) of roll paper 72 are arranged side by side on the base portion 71 along the transport direction.
  • a plurality of roll papers 72 correspond to the first carriage group 51, the second carriage group 52, and the third carriage group 53, respectively.
  • the imaging unit 73 images the functional liquid ejected onto the roll paper 72 . As shown in FIGS. 5 and 6, the imaging unit 73 is arranged downstream of the drawing unit 5 in the transport direction.
  • the imaging unit 73 is arranged at a position sufficiently distant from the drawing unit 5 , more specifically, at least downstream of the substrate S that has passed through the drawing unit 5 .
  • the control device 8 controls the base portion 71 of the inspection portion 7 to arrange the base portion 71 below the drawing portion 5 . Subsequently, the control device 8 controls the drawing section 5 to eject the functional liquid onto the plurality of roll papers 72 . Subsequently, the control device 8 positions the base section 71 of the inspection section 7 below the imaging section 73 . Then, the control device 8 controls the imaging unit 73 to capture an image of the roll paper 72 from above. Specifically, the imaging unit 73 is provided with a moving mechanism (not shown). The control device 8 controls a moving mechanism (not shown) to move the imaging unit 73 in the Y-axis direction and the X-axis direction, and captures an image of the roll paper 72 from above.
  • the inspection unit 7 may include a plurality of imaging units 73 corresponding to a plurality of roll papers 72 .
  • a moving mechanism (not shown) may be provided in each imaging section 73 to move each imaging section 73 along the X-axis direction.
  • the imaging result is output to the control device 8, and the control device 8 determines whether or not the functional liquid is normally discharged.
  • the inspection process by the inspection unit 7 is performed, for example, after the drawing unit 5 finishes drawing on the substrate S. Further, the flushing process by the flushing unit 6 is performed, for example, after the drawing on the substrate S is completed by the drawing unit 5 and before the drawing process on the next substrate S is performed. Specifically, after the base portion 71 of the inspection portion 7 has moved from below the drawing portion 5 , the control device 8 controls the base portion 61 of the flushing portion 6 to move the base portion 61 below the drawing portion 5 . place it. Then, the control device 8 controls the drawing section 5 to discharge the functional liquid to the receiving section 62 of the flushing section 6 .
  • the flushing section 6 and the inspection section 7 are configured to be independently movable on the pair of guide rails 41 , 41 .
  • the imaging section 73 of the inspection section 7 is arranged at a position away from the drawing section 5 .
  • FIG. 7 is a block diagram showing the configuration of the control device 8 according to the embodiment.
  • the control device 8 is, for example, a computer, and includes a control section 81 and a storage section 82 as shown in FIG.
  • the storage unit 82 stores programs for controlling various processes executed in the substrate processing apparatus 1 .
  • the control unit 81 controls the operation of the substrate processing apparatus 1 by reading out and executing a program (an example of a substrate transfer program) stored in the storage unit 82 .
  • the program may be recorded in a computer-readable storage medium and installed in the storage unit 82 of the control device 8 from the storage medium.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
  • the control unit 81 is a controller.
  • the control unit 81 is realized by executing various programs stored in a storage device inside the control device 8 using the RAM as a work area, for example, by a CPU (Central Processing Unit) or MPU (Micro Processing Unit). be.
  • the control unit 81 is a controller, and is implemented by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the control unit 81 includes a transport control unit 811, a drawing control unit 812, an elevation control unit 813, and a stage control unit 814, and implements or executes the functions and actions of the processes described below.
  • the storage unit 82 is implemented by, for example, a semiconductor memory device such as RAM (Random Access Memory) or flash memory, or a storage device such as a hard disk or optical disk. As shown in FIG. 7, the storage unit 82 stores drawing gap information 821 .
  • a semiconductor memory device such as RAM (Random Access Memory) or flash memory
  • a storage device such as a hard disk or optical disk. As shown in FIG. 7, the storage unit 82 stores drawing gap information 821 .
  • the drawing gap information 821 is information indicating, for each ejection head 500, the change in the distance from the ejection head 500 to the landing position of the functional liquid on the predetermined substrate while the predetermined substrate passes under the ejection head 500. .
  • FIG. 8 is a diagram showing an example of drawing gap information 821 for a certain ejection head 500.
  • the position of the substrate is, for example, the position of the substrate along the transport direction (Y-axis positive direction) when the position directly below the ejection head 500 is 0 mm.
  • the drawing gap is the distance from the ejection head 500 to the landing position of the functional liquid on the predetermined substrate.
  • the storage unit 82 stores information as shown in FIG. 8 for each ejection head 500 as the drawing gap information 821 .
  • the writing gap information 821 is obtained by preliminary measurement using a predetermined substrate, for example, a measurement substrate on which no film is formed (hereinafter referred to as "measurement substrate").
  • a method for creating the drawing gap information 821 will be described with reference to FIG.
  • FIG. 9 is a diagram for explaining an example of a method for creating drawing gap information 821 according to the embodiment.
  • the substrate processing apparatus 1 may include a first measuring section 91 and a moving mechanism 92.
  • the first measurement unit 91 is, for example, a laser displacement gauge, and measures the vertical distance from above the measurement substrate to the upper surface of the measurement substrate.
  • the first measurement unit 91 is arranged, for example, near the ejection head 500 . Also, the first measurement unit 91 is arranged at a height position equivalent to that of the ejection head 500, for example.
  • the moving mechanism 92 moves the first measuring section 91 along the X-axis direction and the Y-axis direction. Thereby, the first measurement unit 91 can be positioned near each ejection head 500 .
  • control unit 81 uses the transport unit 4 to move the substrate for measurement in the transport direction in a state in which the first measurement unit 91 is arranged in the vicinity of a certain ejection head 500, and uses the first measurement unit 91 to move the substrate for measurement in the transport direction. to measure the write gap.
  • the control unit 81 converts the measurement result of the first measurement unit 91, specifically, the distance from the reference position of the first measurement unit 91 to the upper surface of the substrate for measurement into the distance from the ejection head 500 to the landing position of the functional liquid, that is, Get as drawing gap.
  • control unit 81 uses the moving mechanism 92 to place the first measuring unit 91 near another ejection head 500, and then uses the transport unit 4 again to move the substrate for measurement in the transport direction. , the first measurement unit 91 is used to measure the writing gap. By repeating such processing for all the ejection heads 500, the control unit 81 can create the drawing gap information 821.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the substrate processing apparatus 1 corresponds to a plurality of ejection heads 500 .
  • a plurality of first measurement units 91 may be provided. In this case, the moving mechanism 92 is unnecessary.
  • the substrate processing apparatus 1 does not necessarily need to include the first measurement section 91 . That is, the first measuring unit 91 may be attached to the drawing unit 5 when creating the drawing gap information 821 .
  • the “change in distance from the ejection head 500 to the landing position of the functional liquid on the predetermined substrate” in the drawing gap information 821 is from the upper surface of the first to third processing stages 54 to 56 to the lower surface of the predetermined substrate. (ie flying height).
  • the transport control unit 811 controls the transport unit 4 to perform transport processing of the substrate S. Specifically, the plurality of holding portions 43 are controlled to suck and hold the substrate S, and the pair of moving portions 42, 42 are controlled to move the substrate S in the transport direction (Y-axis positive direction).
  • the drawing control unit 812 performs drawing processing on the substrate S by controlling the plurality of ejection heads 500 of the drawing unit 5 . Specifically, the drawing control unit 812 ejects the functional liquid from the plurality of ejection heads 500 onto the substrate S that is transported along the transport direction (Y-axis positive direction) by the transport process.
  • the drawing control unit 812 may perform timing adjustment processing for adjusting the ejection timing of the functional liquid for each ejection head based on the drawing gap information 821 described above. Specifically, the drawing control unit 812 adjusts the ejection timing of the functional liquid based on the drawing gap information 821 assuming that there is no variation in the drawing gap.
  • the drawing control unit 812 controls the ejection head 500 corresponding to the drawing gap information 821 shown in FIG. faster than As a result, it is possible to prevent the landing position of the functional liquid from shifting to the upstream side in the transport direction (the Y-axis negative direction side).
  • the drawing control unit 812 controls the ejection head 500 corresponding to the drawing gap information 821 shown in FIG. slower than As a result, it is possible to prevent the landing position of the functional liquid from shifting downstream in the transport direction (positive Y-axis direction).
  • the drawing control unit 812 may perform timing adjustment processing for adjusting the ejection timing of the functional liquid for each ejection head based on the drawing gap information 821 .
  • deviation of the writing gap due to the substrate processing apparatus 1, such as distortion of the pair of guide rails 41, 41, can be suppressed. Therefore, according to the substrate processing apparatus 1 according to the embodiment, it is possible to improve the accuracy of the drawing process.
  • FIG. 10 is a schematic plan view showing the arrangement of the second measuring section 93 according to the embodiment. As shown in FIG. 10 , the substrate processing apparatus 1 according to the embodiment may have a plurality of second measurement units 93 .
  • the plurality of second measurement units 93 are arranged on the upstream side in the transport direction of the plurality of carriages 50 included in the drawing unit 5 . Also, the plurality of second measurement units 93 are arranged side by side in a direction (X-axis direction) orthogonal to the transport direction, for example.
  • X-axis direction a direction orthogonal to the transport direction
  • an example is shown in which the number of the plurality of second measuring units 93 is the same as the number of the plurality of carriages 50 arranged along the X-axis direction and arranged at the same intervals. Not limited to this, the number of the plurality of second measurement units 93 may be less than or greater than the number of the plurality of carriages 50 arranged along the X-axis direction.
  • the second measuring unit 93 is, for example, a laser displacement meter, and measures the vertical distance from the reference position above the substrate S to the upper surface of the substrate S.
  • the second measurement unit 93 is arranged at the same height position as the ejection head 500, for example.
  • the drawing control unit 812 also controls the drawing gap derived from the substrate S on which drawing is actually performed, for example, the drawing caused by the thickness of the film formed on the substrate S, the warp of the substrate S, and the like.
  • the ejection timing of the functional liquid may be adjusted in consideration of the gap. That is, the drawing control unit 812 measures the distance from the reference position to the board surface of the substrate S using the second measuring unit 93, and based on the obtained measurement result and the drawing gap information 821 acquired in advance. You may perform a timing adjustment process.
  • the drawing control unit 812 further adjusts the ejection timing based on the measurement result of the second measurement unit 93, thereby suppressing the deviation of the landing position due to the warp of the substrate S. Therefore, according to the substrate processing apparatus 1 according to the embodiment, it is possible to improve the accuracy of the drawing process.
  • the elevation control unit 813 controls the plurality of elevation mechanisms 510 to execute movement processing for moving the plurality of carriages 50 between the processing position and the retracted position during drawing processing.
  • the elevation control unit 813 executes a first movement process and a second movement process.
  • the lifting mechanism 510 is controlled to move the carriage 50 from the retracted position after the transportation of the substrate S by the transportation section 4 is started and before the discharge of the functional liquid onto the substrate S is started.
  • This is a process of moving to a position.
  • the second movement process is a process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate S is completed.
  • the first movement process and the second movement process are executed for each of the first carriage group 51, the second carriage group 52 and the third carriage group 53.
  • the stage control unit 814 controls the first processing stage 54 to the third processing stage 56 to adjust the wind pressure of the gas jetted from the first processing stage 54 to the third processing stage 56 during the drawing processing. to run.
  • the stage control unit 814 executes a first pressure change process and a second pressure change process.
  • the air release valve 550 is controlled to change the wind pressure to the first pressure. to a second pressure that is higher than the first pressure.
  • the second pressure change process is a process of controlling the air release valve 550 to change the wind pressure from the second pressure to the first pressure after the functional liquid has been discharged onto the substrate S.
  • the first pressure change process and the second pressure change process are executed for each of the first processing stage 54, second processing stage 55 and third processing stage 56.
  • the stage control unit 814 causes the first processing stage 54 to
  • the air release valve 550 is controlled to change the wind pressure from the first pressure to the second pressure.
  • the stage control unit 814 causes the second processing stage 55 to open the atmosphere release valve before the second carriage group 52 starts ejecting the functional liquid onto the substrate S. 550 is controlled to change the wind pressure from the first pressure to the second pressure.
  • the stage control unit 814 causes the third processing stage 56 to open the atmosphere release valve before the discharge of the functional liquid onto the substrate S from the third carriage group 53 is started. 550 is controlled to change the wind pressure from the first pressure to the second pressure.
  • the stage control unit 814 opens the air release valve 550 of the first processing stage 54 after the functional liquid is discharged from the first carriage group 51 onto the substrate S.
  • the wind pressure is controlled to change from the second pressure to the first pressure.
  • the stage control unit 814 opens the air release valve 550 of the second processing stage 55 after the ejection of the functional liquid onto the substrate S from the second carriage group 52 is completed.
  • the wind pressure is controlled to change from the second pressure to the first pressure.
  • the stage control unit 814 opens the air release valve 550 of the third processing stage 56 after the discharge of the functional liquid onto the substrate S from the third carriage group 53 is completed.
  • the wind pressure is controlled to change from the second pressure to the first pressure.
  • FIG. 11 is a flow chart showing procedures of the first movement process, the second movement process, the first pressure change process, and the second pressure change process among the processes executed by the substrate processing apparatus 1 according to the embodiment. Each process shown in FIG. 11 is executed under the control of the control device 8 .
  • FIG. 12 is a diagram showing the state of the drawing unit 5 before the first movement process, the second movement process, the first pressure change process, and the second pressure change process are started.
  • 13A and 13B are diagrams showing an operation example of the first movement process and the first pressure change process for the first carriage group 51.
  • FIG. 14A and 14B are diagrams showing an operation example of the first movement processing and the first pressure change processing for the second carriage group 52.
  • FIG. 15A and 15B are diagrams showing an operation example of the first movement processing and the first pressure change processing for the third carriage group 53.
  • FIG. 16A and 16B are diagrams showing operation examples of the second movement process and the second pressure change process for the first carriage group 51.
  • FIG. 17A and 17B are diagrams showing operation examples of the second movement processing and the second pressure change processing for the second carriage group 52.
  • control unit 81 executes the first movement process for the first carriage group 51 arranged on the most upstream side in the transport direction (Y-axis positive direction), and moves the first processing stage 54 . (step S101).
  • the first carriage group 51 to the third carriage group 53 are positioned at the retreat position. is doing.
  • the air release valves 550 of the first processing stage 54 to the third processing stage 56 are each opened, so that the wind pressure of the gas ejected from the first processing stage 54 to the third processing stage 56 is reduced to the first adjusted for pressure.
  • the first carriage group 51 to the third carriage group 53 are separated from the first processing stage 54 to the third processing stage 56 before starting the drawing process on the substrate S. Keep As a result, the functional liquid accumulated in the ejection head 500 can be prevented from being dried by the gas ejected from the first to third processing stages 54 to 56 . That is, it is possible to suppress ejection failure due to drying of the functional liquid.
  • the functional liquid accumulated in the ejection head 500 can be discharged to the first stage. It is possible to further suppress drying by the gas jetted from the processing stage 54 to the third processing stage 56 .
  • step S101 is performed after the transportation of the substrate S by the transportation unit 4 is started and before the discharge of the functional liquid onto the substrate S is started.
  • step S ⁇ b>101 is performed before the substrate S transported by the transport section 4 enters the first processing stage 54 .
  • the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the first carriage group 51 to move the plurality of ejection heads 500 from the retracted position to the processing position. move to In addition, the control unit 81 closes the atmosphere release valve 550 of the first processing stage 54 to change the wind pressure of the gas ejected from the first processing stage 54 from the first pressure to the second pressure.
  • part of the gas supplied to the first processing stage 54 is diverted to a place other than the first processing stage 54 by using the air release valve 550 as the wind pressure adjustment unit. decided to eject.
  • the air pressure is weakened while continuing to blow out the gas from the first processing stage 54 .
  • step S102 the control unit 81 executes a first movement process for the second carriage group 52 and a first pressure change process for the second processing stage 55 (step S102).
  • the processing of step S ⁇ b>102 is performed, for example, after the substrate S enters the first processing stage 54 and before entering the second processing stage 55 .
  • control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the second carriage group 52 to move the plurality of ejection heads 500 from the retracted position to the processing position. move to In addition, the control unit 81 closes the atmosphere release valve 550 of the second processing stage 55 to change the wind pressure of the gas ejected from the second processing stage 55 from the first pressure to the second pressure.
  • step S103 the control unit 81 executes a first movement process for the third carriage group 53 and a first pressure change process for the third processing stage 56 (step S103).
  • the process of step S ⁇ b>103 is performed, for example, after the substrate S enters the second processing stage 55 and before entering the third processing stage 56 .
  • control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the third carriage group 53 to move the plurality of ejection heads 500 from the retracted position to the processing position. move to Further, the control unit 81 closes the atmosphere release valve 550 of the third processing stage 56 to change the wind pressure of the gas ejected from the third processing stage 56 from the first pressure to the second pressure.
  • step S104 executes a second movement process for the first carriage group 51 and a second pressure change process for the first processing stage 54 (step S104).
  • the processing of step S ⁇ b>104 is performed, for example, after the substrate S passes through the first processing stage 54 and before passing through the second processing stage 55 .
  • control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the first carriage group 51 to move the plurality of ejection heads 500 from the processing position to the retracted position. move to Further, the control unit 81 opens the atmosphere release valve 550 of the first processing stage 54 to change the wind pressure of the gas ejected from the first processing stage 54 from the second pressure to the first pressure.
  • step S105 executes a second movement process for the second carriage group 52 and a second pressure change process for the second processing stage 55 (step S105).
  • the processing of step S ⁇ b>105 is performed, for example, after the substrate S passes through the second processing stage 55 and before passing through the third processing stage 56 .
  • control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the second carriage group 52 to move the plurality of ejection heads 500 from the processing position to the retracted position. move to Further, the control unit 81 opens the atmosphere release valve 550 of the second processing stage 55 to change the wind pressure of the gas ejected from the second processing stage 55 from the second pressure to the first pressure.
  • step S106 the control unit 81 executes a second movement process for the third carriage group 53 and a second pressure change process for the third processing stage 56 (step S106).
  • the processing of step S106 is performed, for example, after the substrate S has passed through the third processing stage 56 .
  • the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the third carriage group 53 to move the plurality of ejection heads 500 from the processing position to the retracted position. Further, the control unit 81 opens the atmosphere release valve 550 of the third processing stage 56 to change the wind pressure of the gas ejected from the third processing stage 56 from the second pressure to the first pressure. As a result, the drawing unit 5 returns to the state shown in FIG.
  • FIG. 18 is a schematic side view showing the configuration of the drawing section 5 according to the first modified example of the embodiment.
  • the substrate processing apparatus 1 may also include an atmosphere release valve 560 in the suction path of the atmosphere in the suction section 530 .
  • the atmosphere release valve 560 is provided on a branch pipe 561 branching from the suction pipe 531 .
  • the suction ports provided on the upper surfaces of the first processing stage 54, the second processing stage 55, and the third processing stage 56 are sucked into the suction section 530 via the suction pipe 531.
  • Part of the atmosphere is discharged outside through the branch pipe 561 .
  • the atmosphere release valve 560 is an example of a suction force adjustment unit that adjusts the suction force of the suction unit 530 .
  • the control unit 81 executes a first attraction force change process and a second attraction force change process.
  • the atmospheric release valve 560 is controlled to change the suction force to the first level. This is the process of changing from the first attraction force to the second attraction force, which is greater than the first attraction force.
  • the control unit 81 changes the suction force from the first suction force to the second suction force by closing the open air valve 560 .
  • the second suction force changing process is a process of controlling the atmosphere release valve 560 to change the suction force from the second suction force to the first suction force after the functional liquid has been discharged onto the substrate S.
  • the control unit 81 changes the suction force from the second suction force to the first suction force by opening the atmosphere relief valve 560 .
  • first suction force change processing and second suction force change processing are executed for each of the first processing stage 54, second processing stage 55 and third processing stage 56, similarly to the first pressure change processing and second pressure change processing. be done.
  • control unit 81 executes the first pressure change process and the first suction force change process on the first processing stage 54 in step S101 of the flowchart shown in FIG. Further, the control unit 81 executes the first pressure change process and the first suction force change process on the second processing stage 55 in step S102. Further, the control unit 81 executes the first pressure changing process and the first suction force changing process on the third processing stage 56 in step S103.
  • control unit 81 executes the second pressure change process and the second suction force change process on the first processing stage 54 in step S104. Further, the control unit 81 executes the second pressure change process and the second suction force change process on the second processing stage 55 in step S105. Further, the control unit 81 executes the second pressure change process and the second suction force change process on the third processing stage 56 in step S105.
  • control unit 81 may perform the first attraction force adjustment process and the second attraction force adjustment process.
  • the control unit 81 may execute the first suction force adjustment process and the second suction force adjustment process without executing the first pressure change process and the second pressure change process.
  • the substrate processing apparatus 1 does not necessarily need to include the air release valve 550 as the wind pressure adjusting section.
  • FIG. 19 is a schematic side view showing the configuration of the drawing unit according to the second modification of the embodiment; Note that the second carriage group 52 and the second processing stage 55 are omitted here.
  • the configuration of the second processing stage 55 is similar to that of the first processing stage 54 and the third processing stage 56 .
  • each of the processing stages 54 to 56 has a plurality of first control areas 101 capable of individually controlling air ejection/suction.
  • the plurality of first control areas 101 are arranged along the transport direction of the substrate S (Y-axis positive direction) and correspond to the plurality of ejection heads 500 provided on the carriage 50 . That is, in the drawing unit 5 according to the second modification, one first control area 101 is arranged directly below each ejection head 500 provided on the carriage 50 .
  • each of the processing stages 54 to 56 has a second control area 102 in a region where the ejection head 500 is not positioned above.
  • the second control area 102 is provided adjacent to the plurality of first control areas 101 .
  • the second control area 102 is arranged upstream or downstream of the plurality of first control areas 101 in the transport direction of the substrate S (Y-axis positive direction).
  • Each first control area 101 and second control area 102 are connected to an air supply section 520 .
  • the air supply unit 520 is connected to a collective air supply pipe 525, and each of the first control area 101 and the second control area 102 is connected to the collective air supply pipe 525 via individual air supply pipes 526.
  • each of first control area 101 and second control area 102 is connected to air supply section 520 via collective air supply pipe 525 and individual air supply pipe 526 .
  • the collective air supply pipe 525 is provided with a pressure gauge 131 and a pressure adjustment section 132 .
  • a pressure gauge 131 detects the air pressure in the collective air supply pipe 525 .
  • Pressure adjustment unit 132 is, for example, a manual regulator, and adjusts the pressure of air in collective air supply pipe 525 .
  • the individual air supply pipe 526 connected to the first control area 101 is provided with a filter 111, an on-off valve 112, a pressure gauge 113, and a pressure regulator 114.
  • the filter 111 , the on-off valve 112 , the pressure gauge 113 and the pressure adjustment section 114 are provided in the order of the pressure adjustment section 114 , the pressure gauge 113 , the on-off valve 112 and the filter 111 from the side closer to the air supply section 520 .
  • Filter 111 removes foreign matter from the air flowing through individual air supply pipe 526 .
  • the filter 111 is preferably of a type with as little pressure loss as possible in order to maintain responsiveness to the rise of wind pressure.
  • the on-off valve 112 is, for example, an electromagnetic valve, and opens and closes the individual air supply pipe 526 .
  • Pressure gauge 113 detects the pressure of air in individual air supply pipe 526 .
  • Pressure adjustment unit 114 is, for example, an electro-pneumatic regulator, and adjusts the pressure of air in individual air supply pipe 526 .
  • the individual air supply pipe 526 connected to the second control area 102 is provided with a pressure gauge 121 and a pressure adjustment section 122 .
  • Pressure gauge 121 detects the pressure of air in individual air supply pipe 526 .
  • Pressure adjustment unit 122 is, for example, a manual regulator that adjusts the air pressure in individual air supply pipe 526 .
  • each first control area 101 is connected to the first suction unit 530A.
  • the first suction section 530A is connected to a collective suction pipe 535A
  • each first control area 101 is connected to the collective suction pipe 535A via individual air supply pipes 536A. That is, each first control area 101 is connected to the first suction section 530A via the collective suction pipe 535A and the individual air supply pipe 536A.
  • An on-off valve 115 is provided in the individual air supply pipe 536A.
  • the on-off valve 115 is, for example, an electromagnetic valve, and opens and closes the individual air supply pipe 536A.
  • each second control area 102 is connected to the second suction unit 530B.
  • the second suction section 530B is connected to a collective suction pipe 535B
  • each second control area 102 is connected to the collective suction pipe 535B via an individual air supply pipe 536B. That is, each second control area 102 is connected to the second suction section 530B via the collective suction pipe 535B and the individual air supply pipe 536B.
  • a plurality of jet openings opening on the upper surfaces of the processing stages 54-56 are connected to individual air supply pipes 526 via spaces formed inside the processing stages 54-56, for example.
  • a plurality of suction ports opening on the upper surfaces of the processing stages 54-56 are connected to individual air supply pipes 536A or 536B via spaces formed inside the processing stages 54-56, for example.
  • xD2 (n is a positive integer) is preferable.
  • the control unit 81 starts ejecting air from the plurality of ejection ports in order from the first control area 101 located upstream in the transport direction of the substrate S among the plurality of first control areas 101. Let Specifically, the control unit 81 opens the on-off valve 112 of the first control area 101 a predetermined time before the substrate S passes over the first control area 101, thereby Blow out air.
  • control unit 81 stops the ejection of air from the plurality of ejection ports in order from the first control area 101 located upstream in the transport direction of the substrate S among the plurality of first control areas 101 . Specifically, the control unit 81 closes the on-off valve 112 of the first control area 101 after a predetermined period of time after the substrate S has finished passing over the first control area 101 . to stop air spurting from the
  • the drawing unit 5 according to the second modification can control the start and stop of air ejection for each of the plurality of first control areas 101 corresponding to the plurality of ejection heads 500 . Therefore, according to the substrate processing apparatus 1 according to the second modified example, it is possible to further suppress ejection failure due to drying of the functional liquid.
  • control unit 81 starts sucking air from the plurality of suction ports in order from the first control area 101 positioned upstream in the transport direction of the substrate S among the plurality of first control areas 101 . Specifically, the control unit 81 opens the on-off valve 115 of the first control area 101 a predetermined time before the substrate S passes over the first control area 101, so that the first control area 101 Start sucking air. Similarly, the control unit 81 stops air suction from the plurality of suction ports in order from the first control area 101 located upstream in the transport direction of the substrate S among the plurality of first control areas 101 . Specifically, the control unit 81 closes the on-off valve 115 of the first control area 101 after a predetermined period of time after the substrate S has passed above the first control area 101, so that the air in the first control area 101 is Stop aspiration of
  • control unit 81 opens the on-off valve 112 to eject air from the plurality of ejection ports provided in the first control area 101 .
  • the control unit 81 adjusts the pressure of the air in the individual air supply pipe 526 (in other words, the wind pressure of the air ejected from the ejection port) to a preset startup pressure (third pressure).
  • control unit 114 After that, for example, after a preset time has elapsed since opening the on-off valve 112, the control unit 81 controls the pressure adjustment unit 114 to make the air pressure in the individual air supply pipe 526 lower than the start-up pressure. Change to normal pressure (fourth pressure).
  • the control unit 81 can adjust the wind pressure of the air ejected from the ejection port to the third pressure or the fourth pressure by controlling the pressure adjustment unit 114 based on the detection result of the pressure gauge 113 .
  • control unit 81 sets the pressure of the air (third pressure) immediately after opening the on-off valve 112 to be higher than the pressure (fourth pressure) after that, so that the air from the plurality of ejection ports is It is possible to improve the responsiveness of the rise of wind pressure when starting to blow out. By adopting such a configuration, it is possible to stop the ejection of air until immediately before the substrate S passes through the first control area 101, so that it is possible to further suppress ejection failure due to drying of the functional liquid.
  • the coating processing apparatus (substrate processing apparatus 1 as an example) according to the embodiment includes stages (first processing stage 54, second processing stage 55 and third processing stage 56 as an example) and a carriage. (a carriage 50 as an example), a conveying unit (a drawing unit 5 as an example), an elevating mechanism (an elevating mechanism 510 as an example), and a control unit (the control unit 81 as an example).
  • the stage floats the substrate (substrate S as an example) by air pressure of gas.
  • the carriage is arranged above the stage and includes a plurality of ejection heads (ejection heads 500 as an example) that eject functional liquid.
  • the transport unit holds the substrate floated from the stage and moves it along the transport direction.
  • the elevating mechanism elevates the carriage between a processing position where the functional liquid is discharged onto the substrate and a retracted position above the processing position.
  • the control unit controls the elevating mechanism to move the carriage from the retracted position to the processing position after the transport of the substrate by the transport unit is started and before the functional liquid is started to be discharged onto the substrate. and a second moving process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate is completed.
  • the coating treatment apparatus it is possible to suppress ejection failure due to drying of the functional liquid.
  • the coating treatment apparatus includes a plurality of carriages (as an example, a first carriage group 51, a second carriage group 52, and a third carriage group 53) arranged along the transport direction, and a plurality of carriages. It may be provided with a plurality of lifting mechanisms provided at the same time. In this case, the controller may control a plurality of lifting mechanisms to perform the first movement process and the second movement process for each carriage. As a result, for example, the ejection head can be placed at the retracted position until immediately before ejection of the functional liquid is started, so ejection failure due to drying of the functional liquid can be more reliably suppressed.
  • the coating treatment apparatus may include a wind pressure adjustment section (for example, an air release valve 550) that adjusts the wind pressure of the gas ejected from the stage.
  • the control unit controls the air pressure adjustment unit to reduce the air pressure from the first pressure to the first pressure after the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started.
  • a second pressure change process for changing the air pressure from the second pressure to the first pressure by controlling the air pressure adjustment unit after the discharge of the functional liquid onto the substrate is completed. processing may be performed. In this way, by weakening the wind pressure of the gas ejected from the stage, it is possible to more reliably suppress ejection failure due to drying of the functional liquid.
  • the coating treatment apparatus includes a plurality of carriages (as an example, a first carriage group 51, a second carriage group 52, and a third carriage group 53) arranged along the transport direction, and a plurality of carriages arranged along the transport direction. a plurality of stages (for example, a first processing stage 54, a second processing stage 55, and a third processing stage 56) each arranged below each of the plurality of carriages; A plurality of wind pressure adjustment units may be provided. In this case, in the first pressure change process, the control unit controls the wind pressure adjustment unit to change the wind pressure from the first pressure to the second pressure before the discharge of the functional liquid onto the substrate from the corresponding carriage is started for each stage.
  • the air pressure adjustment unit is controlled to change the air pressure from the second pressure to the first pressure.
  • the coating treatment apparatus may include a plurality of lifting mechanisms provided corresponding to a plurality of carriages (for example, first carriage group 51, second carriage group 52, and third carriage group 53). good.
  • the controller controls the plurality of lifting mechanisms to perform the first movement process and the second movement process for each carriage, and controls the plurality of wind pressure adjustment sections to perform the first pressure change process and the second movement process for each stage.
  • a second pressure change process may be performed.
  • the coating treatment apparatus may include an air supply unit (as an example, the air supply unit 520) that supplies gas to a plurality of ejection ports provided on the stage.
  • the wind pressure adjusting unit may be an atmosphere opening valve provided in the gas supply path (for example, the air supply pipe 521).
  • the coating treatment apparatus includes a suction unit (for example, the suction unit 530) that sucks the atmosphere through a plurality of suction ports provided on the stage, and a suction force adjustment unit that adjusts the suction force of the suction unit ( As an example, an air release valve 560) may be provided.
  • the control unit controls the suction force adjusting unit to reduce the suction force from the first suction force after the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started.
  • the suction force adjustment unit is controlled to change the suction force from the second suction force to the second suction force.
  • a second suction force changing process for changing the suction force to 1 suction force may be executed.
  • the suction force adjustment unit may be an atmosphere release valve provided in the atmosphere suction path (for example, the suction pipe 531).
  • the control unit acquires drawing gap information (example Alternatively, a timing adjustment process may be executed to adjust the ejection timing of the functional liquid for each ejection head based on the drawing gap information 821). As a result, it is possible to suppress deviation of the writing gap caused by the coating processing apparatus, such as distortion of the conveying section. Therefore, the accuracy of drawing processing can be improved.
  • the coating treatment apparatus includes a measurement unit (as an example, the second measurement unit 93) that is provided on the upstream side in the transport direction of the carriage and measures the distance from the reference position above the substrate to the plate surface of the substrate. may be provided.
  • the control unit measures the distance from the reference position to the surface of the substrate using the measurement unit, and executes the timing adjustment process based on the obtained measurement result and the drawing gap information obtained in advance.
  • the writing gap caused by the substrate on which writing is actually performed for example, the writing gap caused by the thickness of the film formed on the substrate, the warpage of the substrate, etc., can be taken into account to adjust the ejection timing of the functional liquid. be able to. Therefore, the accuracy of drawing processing can be further improved.
  • Substrate 1 Substrate processing apparatus 2 First transfer stage 3 Second transfer stage 4 Transfer section 5 Drawing section 6 Flushing section 7 Inspection section 8 Control device 41 Guide rail 42 Moving section 43 Holding section 50 Carriage 51 First carriage group 52 Second Carriage group 53 Third carriage group 54 First processing stage 55 Second processing stage 56 Third processing stage 81 Control unit 82 Storage unit 500 Ejection head 510 Elevating mechanism 550 Atmospheric release valve

Landscapes

  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This coating processing device comprises: stages (54-56) that cause a substrate (S) to float by means of the wind pressure of a gas; carriages (50) that are disposed above the stages (54-56) and that are provided with a plurality of discharge heads that discharge a functional liquid; a transportation unit that holds the floated substrate (S) and moves the substrate (S) along the transportation direction; raising/lowering mechanisms (510) that raise and lower the carriages (50) between a processing position at which the functional liquid is discharged at the substrate (S) and a retracted position above the processing position; and a control unit (81) that executes a first movement process for controlling a raising/lowering mechanism (510) and moving a carriage (50) from the retracted position to the processing position after transportation of the substrate (S) by the transportation unit has started and before discharging of the functional liquid at the substrate (S) is started, and a second movement process for controlling the raising/lowering mechanism (510) and moving the carriage (50) from the processing position to the retracted position after discharging of the functional liquid at the substrate (S) has ended.

Description

塗布処理装置、塗布処理方法および塗布処理プログラムCOATING PROCESSING APPARATUS, COATING PROCESSING METHOD, AND COATING PROGRAM
 本開示は、塗布処理装置、塗布処理方法および塗布処理プログラムに関する。 The present disclosure relates to a coating processing apparatus, a coating processing method, and a coating processing program.
 従来、搬送される基板に対して塗布液の液滴をインクジェット方式で塗布する液滴吐出装置が知られている。 Conventionally, there has been known a droplet ejection device that applies droplets of a coating liquid to a substrate being conveyed by an inkjet method.
 特許文献1には、基板をガスの風圧で所定の高さに浮かせるステージ部と、ステージ部から所定の高さに浮かせている基板に対し、上方から機能液の液滴を滴下する複数の吐出ヘッドとを備えた塗布装置が開示されている。 Patent Document 1 discloses a stage section that floats a substrate to a predetermined height by the wind pressure of gas, and a plurality of ejections that drop functional liquid droplets from above onto the substrate that is floated at a predetermined height from the stage section. A coating device is disclosed that includes a head.
特開2018-126718号公報JP 2018-126718 A
 本開示は、機能液の乾燥による吐出不良を抑制する技術を提供する。 The present disclosure provides a technique for suppressing ejection failure due to drying of the functional liquid.
 本開示の一態様による塗布処理装置は、ステージと、キャリッジと、搬送部と、昇降機構と、制御部とを備える。ステージは、気体の風圧によって基板を浮上させる。キャリッジは、ステージの上方に配置され、機能液を吐出する複数の吐出ヘッドを備える。搬送部は、ステージから浮上した基板を保持して搬送方向に沿って移動させる。昇降機構は、基板に対する機能液の吐出が行われる処理位置と処理位置より上方の退避位置との間でキャリッジを昇降させる。制御部は、搬送部による基板の搬送が開始された後、かつ、基板に対する機能液の吐出が開始される前に、昇降機構を制御してキャリッジを退避位置から処理位置に移動させる第1移動処理と、基板に対する機能液の吐出が終了した後、昇降機構を制御してキャリッジを処理位置から退避位置に移動させる第2移動処理とを実行する。 A coating processing apparatus according to one aspect of the present disclosure includes a stage, a carriage, a transport section, an elevating mechanism, and a control section. The stage floats the substrate by wind pressure of gas. The carriage is arranged above the stage and has a plurality of ejection heads for ejecting the functional liquid. The transport unit holds the substrate floated from the stage and moves it along the transport direction. The elevating mechanism elevates the carriage between a processing position where the functional liquid is discharged onto the substrate and a retracted position above the processing position. The control unit controls the elevating mechanism to move the carriage from the retracted position to the processing position after the transport of the substrate by the transport unit is started and before the functional liquid is started to be discharged onto the substrate. and a second moving process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate is completed.
 本開示によれば、機能液の乾燥による吐出不良を抑制することができる。 According to the present disclosure, ejection failure due to drying of the functional liquid can be suppressed.
図1は、実施形態に係る基板処理装置の一部を示す模式的な平面図である。FIG. 1 is a schematic plan view showing part of the substrate processing apparatus according to the embodiment. 図2は、実施形態に係る描画部の構成を示す模式的な平面図である。FIG. 2 is a schematic plan view showing the configuration of a drawing unit according to the embodiment; 図3は、実施形態に係るキャリッジの構成を示す模式的な平面図である。FIG. 3 is a schematic plan view showing the configuration of the carriage according to the embodiment; 図4は、実施形態に係る描画部の構成を示す模式的な側面図である。FIG. 4 is a schematic side view showing the configuration of the drawing unit according to the embodiment; 図5は、実施形態に係るフラッシング部および検査部の動作例を示す模式的な側面図である。FIG. 5 is a schematic side view showing an operation example of the flushing section and the inspection section according to the embodiment; 図6は、実施形態に係るフラッシング部および検査部の動作例を示す模式的な側面図である。FIG. 6 is a schematic side view showing an operation example of the flushing section and the inspection section according to the embodiment; 図7は、実施形態に係る制御装置の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the control device according to the embodiment. 図8は、ある吐出ヘッドについての描画ギャップ情報の一例を示した図である。FIG. 8 is a diagram showing an example of drawing gap information for a certain ejection head. 図9は、実施形態に係る描画ギャップ情報の作成方法の一例を説明するための図である。FIG. 9 is a diagram for explaining an example of a method of creating drawing gap information according to the embodiment. 図10は、実施形態に係る第2測定部の配置を示す模式的な平面図である。FIG. 10 is a schematic plan view showing the arrangement of the second measuring section according to the embodiment. 図11は、実施形態に係る基板処理装置が実行する処理のうち、第1移動処理、第2移動処理、第1圧力変更処理および第2圧力変更処理の手順を示すフローチャートである。FIG. 11 is a flowchart showing procedures of a first movement process, a second movement process, a first pressure change process, and a second pressure change process among processes executed by the substrate processing apparatus according to the embodiment. 図12は、第1移動処理、第2移動処理、第1圧力変更処理および第2圧力変更処理が開始される前の描画部の状態を示す図である。FIG. 12 is a diagram showing the state of the drawing unit before the first movement process, the second movement process, the first pressure change process, and the second pressure change process are started. 図13は、第1キャリッジ群に対する第1移動処理および第1圧力変更処理の動作例を示す図である。FIG. 13 is a diagram showing an operation example of the first movement process and the first pressure change process for the first carriage group. 図14は、第2キャリッジ群に対する第1移動処理および第1圧力変更処理の動作例を示す図である。FIG. 14 is a diagram showing an operation example of the first movement process and the first pressure change process for the second carriage group. 図15は、第3キャリッジ群に対する第1移動処理および第1圧力変更処理の動作例を示す図である。FIG. 15 is a diagram showing an operation example of the first movement process and the first pressure change process for the third carriage group. 図16は、第1キャリッジ群に対する第2移動処理および第2圧力変更処理の動作例を示す図である。FIG. 16 is a diagram showing an operation example of the second movement process and the second pressure change process for the first carriage group. 図17は、第2キャリッジ群に対する第2移動処理および第2圧力変更処理の動作例を示す図である。FIG. 17 is a diagram showing an operation example of the second movement process and the second pressure change process for the second carriage group. 図18は、実施形態における第1変形例に係る描画部の構成を示す模式的な側面図である。18 is a schematic side view showing the configuration of a drawing unit according to the first modification of the embodiment; FIG. 図19は、実施形態における第2変形例に係る描画部の構成を示す模式的な側面図である。FIG. 19 is a schematic side view showing the configuration of the drawing unit according to the second modification of the embodiment;
 以下、添付図面を参照して、本願の開示する塗布処理装置、塗布処理方法および塗布処理プログラムの実施形態を詳細に説明する。なお、以下に示す実施形態により開示される塗布処理装置、塗布処理方法および塗布処理プログラムが限定されるものではない。 Hereinafter, embodiments of the coating processing apparatus, the coating processing method, and the coating processing program disclosed in the present application will be described in detail with reference to the accompanying drawings. Note that the coating processing apparatus, the coating processing method, and the coating processing program disclosed by the embodiments shown below are not limited.
 以下参照する各図面では、説明を分かりやすくするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする直交座標系を示す。 Each drawing referred to below shows an orthogonal coordinate system in which the X-axis direction, the Y-axis direction, and the Z-axis direction are defined to be orthogonal to each other, and the Z-axis positive direction is the vertically upward direction, in order to make the explanation easier to understand.
 また、ここでは、Y軸正方向を前方とし、Y軸負方向を後方とする前後方向を規定し、X軸正方向を右方とし、X軸負方向を左方とする左右方向を規定する。また、Z軸正方向を上方とし、Z軸負方向を下方とする上下方向を規定する。基板処理装置1は、基板Sを後方から前方に向けて前後方向に沿って搬送しながら基板Sを処理する。すなわち、基板処理装置1は、搬送方向(Y軸正方向)に沿って基板Sを搬送しながら、基板Sを処理する。 Here, the front-rear direction is defined with the positive direction of the Y-axis as the front and the negative direction of the Y-axis as the rear, and the left-right direction with the positive direction of the X-axis as the right and the negative direction of the X-axis as the left. . A vertical direction is defined in which the positive direction of the Z-axis is upward and the negative direction of the Z-axis is downward. The substrate processing apparatus 1 processes the substrate S while transporting the substrate S forward and backward along the front-rear direction. That is, the substrate processing apparatus 1 processes the substrate S while transporting the substrate S along the transport direction (Y-axis positive direction).
<全体構成>
 実施形態に係る基板処理装置1の全体構成について図1を参照して説明する。図1は、実施形態に係る基板処理装置1の一部を示す模式的な平面図である。基板処理装置1は、ワークである基板Sを水平方向に搬送しながら、インクジェット方式で基板Sに描画を行う。基板Sは、例えば、フラットパネルディスプレイに用いられる基板である。
<Overall composition>
An overall configuration of a substrate processing apparatus 1 according to an embodiment will be described with reference to FIG. FIG. 1 is a schematic plan view showing part of a substrate processing apparatus 1 according to an embodiment. The substrate processing apparatus 1 performs drawing on the substrate S by an inkjet method while horizontally transporting the substrate S as a work. The substrate S is, for example, a substrate used for flat panel displays.
 基板処理装置1は、第1搬送ステージ2と、第2搬送ステージ3と、搬送部4と、描画部5とを備える。また、基板処理装置1は、フラッシング部6と、検査部7と、制御装置8とを備える。 The substrate processing apparatus 1 includes a first transfer stage 2 , a second transfer stage 3 , a transfer section 4 and a drawing section 5 . The substrate processing apparatus 1 also includes a flushing section 6 , an inspection section 7 and a control device 8 .
 第1搬送ステージ2および第2搬送ステージ3は、多数の噴出口(図示せず)を有する。ステージは、圧縮された気体(例えば、空気)を噴出口から基板Sの下面に向けて吹き付けて、かかる気体の風圧によって基板Sを浮上させる。 The first transfer stage 2 and the second transfer stage 3 have many ejection ports (not shown). The stage blows compressed gas (for example, air) from an ejection port toward the lower surface of the substrate S, and floats the substrate S by the wind pressure of the gas.
 第1搬送ステージ2および第2搬送ステージ3は、基板Sの搬送方向にそって並べられている。具体的には、第1搬送ステージ2は、第2搬送ステージ3よりも基板Sの搬送方向における上流側(Y軸負方向側)に配置され、第2搬送ステージ3は、第1搬送ステージ2よりも基板Sの搬送方向における下流側(Y軸正方向側)に配置される。また、第1搬送ステージ2と第2搬送ステージ3との間には、描画部5が配置される。このように、第1搬送ステージ2、第2搬送ステージ3および描画部5は、Y軸正方向に沿って、第1搬送ステージ2、描画部5および第2搬送ステージ3の順番で並べられている。 The first transport stage 2 and the second transport stage 3 are arranged along the substrate S transport direction. Specifically, the first carrier stage 2 is arranged on the upstream side (Y-axis negative direction side) of the substrate S in the carrier direction of the second carrier stage 3 . is disposed downstream (Y-axis positive direction side) in the transport direction of the substrate S. A drawing unit 5 is arranged between the first carrier stage 2 and the second carrier stage 3 . In this manner, the first carrier stage 2, the second carrier stage 3, and the drawing section 5 are arranged in the order of the first carrier stage 2, the drawing section 5, and the second carrier stage 3 along the positive Y-axis direction. there is
 搬送部4は、第1搬送ステージ2、第2搬送ステージ3および後述する第1処理ステージ54~第3処理ステージ56(図2参照)から浮上した基板Sを保持して搬送方向(Y軸正方向)に沿って移動させる。具体的には、搬送部4は、一対のガイドレール41,41と、一対の移動部42,42と、複数(ここでは、4つ)の保持部43とを備える。 The transport unit 4 holds the substrate S floated from the first transport stage 2, the second transport stage 3, and a first processing stage 54 to a third processing stage 56 (see FIG. 2) to be described later, and moves the substrate S in the transport direction (positive Y-axis). direction). Specifically, the transport section 4 includes a pair of guide rails 41 , 41 , a pair of moving sections 42 , 42 , and a plurality of (here, four) holding sections 43 .
 一対のガイドレール41,41は、左右方向(X軸方向)に並べられ、且つ、搬送方向(Y軸正方向)に沿って延在する。 The pair of guide rails 41, 41 are arranged in the horizontal direction (X-axis direction) and extend along the transport direction (Y-axis positive direction).
 一対のガイドレール41,41は、左右方向(X軸方向)において、第1搬送ステージ2、第2搬送ステージ3および後述する第1処理ステージ54~第3処理ステージ56を挟むように配置される。具体的には、一対のガイドレール41,41のうち一方は、第1搬送ステージ2、第2搬送ステージ3および後述する第1処理ステージ54~第3処理ステージ56のX軸正方向側に配置される。一対のガイドレール41,41のうち他方は、第1搬送ステージ2、第2搬送ステージ3および後述する第1処理ステージ54~第3処理ステージ56のX軸負方向側に配置される。一対のガイドレール41,41は、例えば、グラナイトによって構成される。 The pair of guide rails 41, 41 are arranged so as to sandwich the first transfer stage 2, the second transfer stage 3, and the first to third processing stages 54 to 56, which will be described later, in the left-right direction (X-axis direction). . Specifically, one of the pair of guide rails 41, 41 is arranged on the X-axis positive direction side of the first transfer stage 2, the second transfer stage 3, and the first processing stage 54 to the third processing stage 56 described later. be done. The other of the pair of guide rails 41, 41 is arranged on the X-axis negative direction side of the first transfer stage 2, the second transfer stage 3, and the first to third processing stages 54 to 56 described later. The pair of guide rails 41, 41 is made of granite, for example.
 一対の移動部42,42は、一対のガイドレール41,41に対応して設けられる。具体的には、一対の移動部42,42のうち一方は、一対のガイドレール41,41のうち一方の上に設けられ、一方のガイドレール41に沿って移動する。また、一対の移動部42,42のうち他方は、一対のガイドレール41,41のうち他方の上に設けられ、他方のガイドレール41に沿って移動する。一対の移動部42,42は、それぞれモータ等の駆動部を有しており、各々独立して移動することが可能である。 A pair of moving parts 42 , 42 are provided corresponding to a pair of guide rails 41 , 41 . Specifically, one of the pair of moving parts 42 , 42 is provided on one of the pair of guide rails 41 , 41 and moves along one of the guide rails 41 . The other of the pair of moving parts 42 , 42 is provided on the other of the pair of guide rails 41 , 41 and moves along the other guide rail 41 . The pair of moving parts 42, 42 each have a driving part such as a motor, and can move independently.
 複数の保持部43は、一対の移動部42,42上にそれぞれ設けられ、基板Sの下方から基板Sを吸着保持する。 A plurality of holding parts 43 are provided on the pair of moving parts 42, 42, respectively, and hold the substrate S by suction from below.
 具体的には、複数(ここでは、4つ)の保持部43のうち、2つの保持部43,43は、一対の移動部42,42のうち一方の上に設けられ、残り2つの保持部43,43は、一対の移動部42,42のうち他方の上に設けられる。なお、複数の保持部43の数は、4つに限定されない。 Specifically, among the plurality of (here, four) holding portions 43, two holding portions 43, 43 are provided on one of the pair of moving portions 42, 42, and the remaining two holding portions 43 , 43 are provided on the other of the pair of moving parts 42 , 42 . Note that the number of the plurality of holding portions 43 is not limited to four.
 実施形態において複数(ここでは4つ)の保持部43は、基板Sの四隅を基板Sの下方から吸着保持する。搬送部4は、第1搬送ステージ2等によって浮上した基板Sの四隅を複数の保持部43を用いて保持し、保持した基板Sを一対の移動部42,42を用いて搬送方向(Y軸正方向)に沿って移動させる。 In the embodiment, the plurality (here, four) of holding parts 43 suck and hold the four corners of the substrate S from below. The transport unit 4 uses a plurality of holding units 43 to hold the four corners of the substrate S floated by the first transport stage 2 or the like, and moves the held substrate S in the transport direction (Y axis positive direction).
 描画部5は、第1搬送ステージ2と第2搬送ステージ3との間に配置される。描画部5は、基板Sの上方から基板Sに向けて機能液を吐出することにより、基板Sの板面に描画を行う。 The drawing unit 5 is arranged between the first carrier stage 2 and the second carrier stage 3 . The drawing unit 5 draws on the board surface of the substrate S by discharging the functional liquid toward the substrate S from above.
 ここで、描画部5の構成について図2~図4を参照して説明する。図2は、実施形態に係る描画部5の構成を示す模式的な平面図である。図3は、実施形態に係るキャリッジ50の構成を示す模式的な平面図である。図4は、実施形態に係る描画部5の構成を示す模式的な側面図である。 Here, the configuration of the drawing unit 5 will be described with reference to FIGS. 2 to 4. FIG. FIG. 2 is a schematic plan view showing the configuration of the drawing unit 5 according to the embodiment. FIG. 3 is a schematic plan view showing the configuration of the carriage 50 according to the embodiment. FIG. 4 is a schematic side view showing the configuration of the drawing unit 5 according to the embodiment.
 図2に示すように、描画部5は、第1キャリッジ群51と、第2キャリッジ群52と、第3キャリッジ群53と、第1処理ステージ54と、第2処理ステージ55と、第3処理ステージ56とを備える。 As shown in FIG. 2, the drawing unit 5 includes a first carriage group 51, a second carriage group 52, a third carriage group 53, a first processing stage 54, a second processing stage 55, and a third processing stage. and a stage 56 .
 第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53は、搬送方向に沿って並べられる。具体的には、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53は、搬送方向の上流側からこの順番で並べられている。 The first carriage group 51, the second carriage group 52 and the third carriage group 53 are arranged along the transport direction. Specifically, the first carriage group 51, the second carriage group 52, and the third carriage group 53 are arranged in this order from the upstream side in the transport direction.
 第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53は、それぞれ複数(ここでは、6つ)のキャリッジ50を含む。第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53の各々において、複数のキャリッジ50は、搬送方向と直交する方向(X軸方向)に並べられている。 The first carriage group 51 , the second carriage group 52 and the third carriage group 53 each include a plurality of (here, six) carriages 50 . In each of the first carriage group 51, the second carriage group 52, and the third carriage group 53, a plurality of carriages 50 are arranged in a direction (X-axis direction) perpendicular to the transport direction.
 図3に示すように、キャリッジ50は、たとえば平板状の部材である。キャリッジ50には、複数の吐出ヘッド500が設けられている。一例として、図3に示す例において、キャリッジ50には、合計12個の吐出ヘッド500がX軸方向およびY軸方向に沿ってマトリクス状に設けられている。なお、ここでは、キャリッジ50に12個の吐出ヘッド500が設けられる場合の例を示したが、吐出ヘッド500の個数は、12個より多くてもよいし少なくてもよい。 As shown in FIG. 3, the carriage 50 is, for example, a flat member. The carriage 50 is provided with a plurality of ejection heads 500 . As an example, in the example shown in FIG. 3, the carriage 50 has a total of 12 ejection heads 500 arranged in a matrix along the X-axis direction and the Y-axis direction. Although an example in which twelve ejection heads 500 are provided on the carriage 50 is shown here, the number of ejection heads 500 may be more or less than twelve.
 吐出ヘッド500は、たとえばキャリッジ50の上方からキャリッジ50に形成された開口部(図示せず)に差し込まれる。そして、吐出ヘッド500は、図示しない固定部によってキャリッジ50に固定される。 The ejection head 500 is inserted into an opening (not shown) formed in the carriage 50 from above the carriage 50, for example. The ejection head 500 is fixed to the carriage 50 by a fixing portion (not shown).
 吐出ヘッド500は、たとえばピエゾ方式のノズルヘッドである。吐出ヘッド500の下面(基板Sとの対向面)には、複数の吐出穴(図示せず)が形成される。複数の吐出穴は、例えばX軸方向およびY軸方向に沿ってマトリクス状に設けられている。 The ejection head 500 is, for example, a piezo nozzle head. A plurality of ejection holes (not shown) are formed in the lower surface of the ejection head 500 (the surface facing the substrate S). A plurality of ejection holes are provided in a matrix along, for example, the X-axis direction and the Y-axis direction.
 吐出ヘッド500は、図示しないポンプ部を有する。ポンプ部は、機能液を貯めるキャビティ、キャビティの体積を変化させる圧電素子や振動板等を含んで構成され、圧電素子に電圧を印加して振動板を振動させることにより、キャビティの体積を変化させて各吐出穴から機能液の液滴を吐出させる。その他、吐出ヘッド500には、供給チューブを介して機能液タンクに接続される機能液導入部や、フレキシブルフラットケーブルを介して制御装置8(図1参照)に接続されるヘッド基板等が設けられている。 The ejection head 500 has a pump section (not shown). The pump section includes a cavity that stores the functional liquid, a piezoelectric element that changes the volume of the cavity, a diaphragm, and the like. By applying a voltage to the piezoelectric element and vibrating the diaphragm, the volume of the cavity is changed. droplets of the functional liquid are ejected from the respective ejection holes. In addition, the ejection head 500 is provided with a functional liquid introduction section connected to the functional liquid tank via a supply tube, a head substrate connected to the control device 8 (see FIG. 1) via a flexible flat cable, and the like. ing.
 複数のキャリッジ50は、搬送方向(Y軸正方向)に沿って搬送される基板Sに対して複数の吐出ヘッド500から機能液を吐出する。機能液は、インクである。 The multiple carriages 50 eject the functional liquid from the multiple ejection heads 500 onto the substrate S transported along the transport direction (Y-axis positive direction). The functional liquid is ink.
 図4に示すように、描画部5は、複数の昇降機構510を備える。複数の昇降機構510は、複数のキャリッジ50に1対1で対応して設けられる。昇降機構510は、対応するキャリッジ50を昇降させる。具体的には、昇降機構510は、基板Sに対する機能液の吐出が行われる処理位置と、処理位置より上方の退避位置との間でキャリッジ50を昇降させる。 As shown in FIG. 4, the drawing unit 5 includes a plurality of elevating mechanisms 510. The plurality of lifting mechanisms 510 are provided in one-to-one correspondence with the plurality of carriages 50 . The elevating mechanism 510 elevates the corresponding carriage 50 . Specifically, the elevating mechanism 510 elevates the carriage 50 between a processing position where the functional liquid is discharged onto the substrate S and a retracted position above the processing position.
 なお、ここでは、1つのキャリッジ50に1つの昇降機構510が設けられるものとするが、昇降機構510は、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53の各々につき1つ設けられていればよい。 Here, it is assumed that one carriage 50 is provided with one elevating mechanism 510 , but one elevating mechanism 510 is provided for each of the first carriage group 51 , the second carriage group 52 and the third carriage group 53 . It is sufficient if it is provided.
 第1処理ステージ54、第2処理ステージ55および第3処理ステージ56は、基板Sの搬送方向(Y軸正方向)に沿って並べられる。具体的には、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56は、搬送方向に沿ってこの順番で並べられている。なお、搬送方向(Y軸正方向)において、第1処理ステージ54の上流側には第1搬送ステージ2が位置しており、第3処理ステージ56の下流側には第2搬送ステージ3が位置している。 The first processing stage 54, the second processing stage 55, and the third processing stage 56 are arranged along the transport direction of the substrate S (Y-axis positive direction). Specifically, the first processing stage 54, the second processing stage 55, and the third processing stage 56 are arranged in this order along the transport direction. In the transport direction (Y-axis positive direction), the first transport stage 2 is positioned upstream of the first processing stage 54, and the second transport stage 3 is positioned downstream of the third processing stage 56. is doing.
 第1処理ステージ54、第2処理ステージ55および第3処理ステージ56は、それぞれ第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53に対応して設けられる。具体的には、第1処理ステージ54は、第1キャリッジ群51の下方に配置され、第2処理ステージ55は、第2キャリッジ群52の下方に配置され、第3処理ステージ56は、第3キャリッジ群53の下方に配置される。 A first processing stage 54, a second processing stage 55 and a third processing stage 56 are provided corresponding to the first carriage group 51, the second carriage group 52 and the third carriage group 53, respectively. Specifically, the first processing stage 54 is arranged below the first carriage group 51 , the second processing stage 55 is arranged below the second carriage group 52 , and the third processing stage 56 is arranged below the third carriage group 52 . It is arranged below the carriage group 53 .
 第1処理ステージ54、第2処理ステージ55および第3処理ステージ56は、圧縮された気体(たとえば、空気)を基板Sの下面に向けて吐出するとともに、基板Sとステージとの間の空気を吸引することによって、基板Sの浮上高を調整することができる。 The first processing stage 54, the second processing stage 55, and the third processing stage 56 discharge compressed gas (for example, air) toward the lower surface of the substrate S, and remove the air between the substrate S and the stage. The floating height of the substrate S can be adjusted by the suction.
 具体的には、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56は、それぞれ、給気部520と、吸引部530と、大気開放バルブ550とを備える。以下、給気部520、吸引部530および大気開放バルブ550について、第1処理ステージ54を例に挙げて説明する。 Specifically, the first processing stage 54, the second processing stage 55, and the third processing stage 56 each include an air supply section 520, a suction section 530, and an air release valve 550. Hereinafter, the air supply unit 520, the suction unit 530, and the atmosphere release valve 550 will be described by taking the first processing stage 54 as an example.
 第1処理ステージ54の上面には、複数の噴出口(図示せず)と、複数の吸引口(図示せず)とが開口している。給気部520は、給気管521を介して複数の噴出口に接続されており、複数の噴出口に対して圧縮した気体を供給する。また、吸引部530は、吸引管531を介して複数の吸引口に接続されており、複数の吸引口を介して第1処理ステージ54の上面側の雰囲気を吸引する。 A plurality of ejection ports (not shown) and a plurality of suction ports (not shown) are opened on the upper surface of the first processing stage 54 . The air supply unit 520 is connected to a plurality of ejection ports via an air supply pipe 521 and supplies compressed gas to the plurality of ejection ports. The suction unit 530 is connected to a plurality of suction ports via suction pipes 531, and suctions the atmosphere on the upper surface side of the first processing stage 54 via the plurality of suction ports.
 大気開放バルブ550は、給気管521から分岐する分岐管551に設けられる。大気開放バルブ550が開放されることで、給気部520から給気管521を介して第1処理ステージ54に供給される気体の一部が分岐管551から外部に排出される。これにより、複数の噴出口から噴出する気体の風圧が弱まる。このように、大気開放バルブ550は、第1処理ステージ54から噴出される気体の風圧を調整する風圧調整部の一例である。 The atmosphere release valve 550 is provided in a branch pipe 551 branching from the air supply pipe 521 . By opening the air release valve 550 , part of the gas supplied from the air supply unit 520 to the first processing stage 54 through the air supply pipe 521 is discharged from the branch pipe 551 to the outside. This weakens the wind pressure of the gas ejected from the plurality of ejection ports. As described above, the atmosphere release valve 550 is an example of a wind pressure adjustment unit that adjusts the wind pressure of the gas ejected from the first processing stage 54 .
 図1に戻り、フラッシング部6について説明する。フラッシング部6は、搬送方向において描画部5よりも下流側に配置され、吐出ヘッド500内の機能液を定期的に排出するフラッシング処理に用いられる。 Returning to FIG. 1, the flushing section 6 will be described. The flushing unit 6 is arranged downstream of the drawing unit 5 in the transport direction, and is used for the flushing process of periodically discharging the functional liquid in the ejection head 500 .
 フラッシング部6は、ベース部61と、ベース部61上に配置された受け部62とを備える。ベース部61は、一対のガイドレール41,41上に設けられ、一対のガイドレール41,41に沿って移動可能である。受け部62は、たとえば多孔質状の樹脂等で構成されており、複数の吐出ヘッド500から吐出される機能液を受ける。受け部62には、図示しない排液管が接続されており、受け部62が受けた機能液は、排液管を介して排出される。 The flushing part 6 includes a base part 61 and a receiving part 62 arranged on the base part 61 . The base portion 61 is provided on the pair of guide rails 41 and 41 and is movable along the pair of guide rails 41 and 41 . The receiving portion 62 is made of, for example, porous resin or the like, and receives the functional liquid ejected from the plurality of ejection heads 500 . A drain pipe (not shown) is connected to the receiving portion 62, and the functional liquid received by the receiving portion 62 is discharged through the drain pipe.
 検査部7は、搬送方向においてフラッシング部6よりも下流側に配置され、複数の吐出ヘッド500から機能液が正常に吐出されているか否かを検査する。ここで、検査部7の構成について、図5および図6をさらに参照して説明する。図5は、実施形態に係るフラッシング部6および検査部7の動作例を示す模式的な側面図である。図6は、実施形態に係るフラッシング部6および検査部7の動作例を示す模式的な側面図である。 The inspection unit 7 is arranged downstream of the flushing unit 6 in the transport direction, and inspects whether or not the functional liquid is normally ejected from the plurality of ejection heads 500 . Here, the configuration of the inspection unit 7 will be described with further reference to FIGS. 5 and 6. FIG. FIG. 5 is a schematic side view showing an operation example of the flushing section 6 and the inspection section 7 according to the embodiment. FIG. 6 is a schematic side view showing an operation example of the flushing section 6 and the inspection section 7 according to the embodiment.
 検査部7は、ベース部71と、複数のロール紙72と、撮像部73(図5および図6参照)とを備える。ベース部71は、一対のガイドレール41,41上に設けられ、一対のガイドレール41,41に沿って移動可能である。複数(ここでは、3つ)のロール紙72は、ベース部71上に搬送方向に沿って並べて配置される。複数のロール紙72は、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53にそれぞれ対応している。撮像部73は、ロール紙72に吐出された機能液を撮像する。図5および図6に示すように、撮像部73は、搬送方向において描画部5よりも下流側に配置される。撮像部73は、描画部5から十分離れた位置、具体的には、少なくとも、描画部5を通過し終えた基板Sよりも下流側に配置される。 The inspection unit 7 includes a base unit 71, a plurality of roll papers 72, and an imaging unit 73 (see FIGS. 5 and 6). The base portion 71 is provided on the pair of guide rails 41 and 41 and is movable along the pair of guide rails 41 and 41 . A plurality (here, three) of roll paper 72 are arranged side by side on the base portion 71 along the transport direction. A plurality of roll papers 72 correspond to the first carriage group 51, the second carriage group 52, and the third carriage group 53, respectively. The imaging unit 73 images the functional liquid ejected onto the roll paper 72 . As shown in FIGS. 5 and 6, the imaging unit 73 is arranged downstream of the drawing unit 5 in the transport direction. The imaging unit 73 is arranged at a position sufficiently distant from the drawing unit 5 , more specifically, at least downstream of the substrate S that has passed through the drawing unit 5 .
 制御装置8は、検査部7のベース部71を制御して、ベース部71を描画部5の下方に配置させる。つづいて、制御装置8は、描画部5を制御して、複数のロール紙72に対して機能液を吐出させる。つづいて、制御装置8は、検査部7のベース部71を撮像部73の下方に位置させる。そして、制御装置8は、撮像部73を制御して、ロール紙72を上方から撮像する。具体的には、撮像部73には、図示しない移動機構が設けられている。制御装置8は、図示しない移動機構を制御して、撮像部73をY軸方向およびX軸方向に移動させつつ、ロール紙72を上方から撮像する。なお、検査部7は、複数のロール紙72に対応する複数の撮像部73を備えていてもよい。この場合、図示しない移動機構は、各撮像部73に設けられ、各撮像部73をX軸方向に沿って移動させるものであってもよい。撮像結果は、制御装置8に出力され、制御装置8によって、機能液が正常に吐出されているか否かが判定される。 The control device 8 controls the base portion 71 of the inspection portion 7 to arrange the base portion 71 below the drawing portion 5 . Subsequently, the control device 8 controls the drawing section 5 to eject the functional liquid onto the plurality of roll papers 72 . Subsequently, the control device 8 positions the base section 71 of the inspection section 7 below the imaging section 73 . Then, the control device 8 controls the imaging unit 73 to capture an image of the roll paper 72 from above. Specifically, the imaging unit 73 is provided with a moving mechanism (not shown). The control device 8 controls a moving mechanism (not shown) to move the imaging unit 73 in the Y-axis direction and the X-axis direction, and captures an image of the roll paper 72 from above. Note that the inspection unit 7 may include a plurality of imaging units 73 corresponding to a plurality of roll papers 72 . In this case, a moving mechanism (not shown) may be provided in each imaging section 73 to move each imaging section 73 along the X-axis direction. The imaging result is output to the control device 8, and the control device 8 determines whether or not the functional liquid is normally discharged.
 検査部7による検査処理は、たとえば、描画部5によって基板Sへの描画が終了した後に行われる。また、フラッシング部6によるフラッシング処理は、たとえば、描画部5によって基板Sへの描画が終了した後、次の基板Sに対する描画処理が行われる前に行われる。具体的には、制御装置8は、検査部7のベース部71が描画部5の下方から移動した後、フラッシング部6のベース部61を制御して、ベース部61を描画部5の下方に配置させる。そして、制御装置8は、描画部5を制御して、フラッシング部6の受け部62に対して機能液を吐出させる。 The inspection process by the inspection unit 7 is performed, for example, after the drawing unit 5 finishes drawing on the substrate S. Further, the flushing process by the flushing unit 6 is performed, for example, after the drawing on the substrate S is completed by the drawing unit 5 and before the drawing process on the next substrate S is performed. Specifically, after the base portion 71 of the inspection portion 7 has moved from below the drawing portion 5 , the control device 8 controls the base portion 61 of the flushing portion 6 to move the base portion 61 below the drawing portion 5 . place it. Then, the control device 8 controls the drawing section 5 to discharge the functional liquid to the receiving section 62 of the flushing section 6 .
 このように、実施形態に係る基板処理装置1では、フラッシング部6と、検査部7とが一対のガイドレール41,41上を独立して移動可能に構成される。また、実施形態に係る基板処理装置1では、検査部7の撮像部73が描画部5から離れた位置に配置される。かかる構成とすることにより、たとえば、撮像部73を用いて複数のロール紙72を撮像している間に、フラッシング部6によるフラッシング処理および次の基板Sに対する描画処理を開始させることができる。したがって、実施形態に係る基板処理装置1によれば、描画処理、検査処理およびフラッシング処理を含む一連の基板処理の処理時間を短縮することができる。 Thus, in the substrate processing apparatus 1 according to the embodiment, the flushing section 6 and the inspection section 7 are configured to be independently movable on the pair of guide rails 41 , 41 . Further, in the substrate processing apparatus 1 according to the embodiment, the imaging section 73 of the inspection section 7 is arranged at a position away from the drawing section 5 . By adopting such a configuration, for example, the flushing process by the flushing part 6 and the drawing process for the next substrate S can be started while the imaging part 73 is used to image the plurality of roll papers 72 . Therefore, according to the substrate processing apparatus 1 according to the embodiment, it is possible to shorten the processing time of a series of substrate processing including drawing processing, inspection processing and flushing processing.
 次に、制御装置8の構成について図7を参照して説明する。図7は、実施形態に係る制御装置8の構成を示すブロック図である。 Next, the configuration of the control device 8 will be described with reference to FIG. FIG. 7 is a block diagram showing the configuration of the control device 8 according to the embodiment.
 制御装置8は、たとえばコンピュータであり、図7に示すように制御部81と記憶部82とを備える。記憶部82には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部81は、記憶部82に記憶されたプログラム(基板搬送プログラムの一例)を読み出して実行することによって基板処理装置1の動作を制御する。 The control device 8 is, for example, a computer, and includes a control section 81 and a storage section 82 as shown in FIG. The storage unit 82 stores programs for controlling various processes executed in the substrate processing apparatus 1 . The control unit 81 controls the operation of the substrate processing apparatus 1 by reading out and executing a program (an example of a substrate transfer program) stored in the storage unit 82 .
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、記憶媒体から制御装置8の記憶部82にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The program may be recorded in a computer-readable storage medium and installed in the storage unit 82 of the control device 8 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
 制御部81は、コントローラ(controller)である。制御部81は、たとえば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、制御装置8内部の記憶装置に記憶されている各種プログラムがRAMを作業領域として実行されることにより実現される。また、制御部81は、コントローラであり、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。制御部81は、搬送制御部811と、描画制御部812と、昇降制御部813と、ステージ制御部814とを備えており、以下に説明する処理の機能や作用を実現または実行する。 The control unit 81 is a controller. The control unit 81 is realized by executing various programs stored in a storage device inside the control device 8 using the RAM as a work area, for example, by a CPU (Central Processing Unit) or MPU (Micro Processing Unit). be. Also, the control unit 81 is a controller, and is implemented by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). The control unit 81 includes a transport control unit 811, a drawing control unit 812, an elevation control unit 813, and a stage control unit 814, and implements or executes the functions and actions of the processes described below.
 記憶部82は、たとえば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。図7に示すように、記憶部82は、描画ギャップ情報821を記憶する。 The storage unit 82 is implemented by, for example, a semiconductor memory device such as RAM (Random Access Memory) or flash memory, or a storage device such as a hard disk or optical disk. As shown in FIG. 7, the storage unit 82 stores drawing gap information 821 .
 描画ギャップ情報821は、所定の基板が吐出ヘッド500の下方を通過する間における吐出ヘッド500から所定の基板上における機能液の着弾位置までの距離の変化を吐出ヘッド500ごとに示した情報である。 The drawing gap information 821 is information indicating, for each ejection head 500, the change in the distance from the ejection head 500 to the landing position of the functional liquid on the predetermined substrate while the predetermined substrate passes under the ejection head 500. .
 図8は、ある吐出ヘッド500についての描画ギャップ情報821の一例を示した図である。図8では、横軸を基板位置とし、縦軸を描画ギャップとしたグラフを描画ギャップ情報821として示している。基板位置とは、たとえば、吐出ヘッド500の直下を0mmとした場合における搬送方向(Y軸正方向)に沿った基板の位置のことである。また、描画ギャップとは、吐出ヘッド500から所定の基板上における機能液の着弾位置までの距離のことである。 FIG. 8 is a diagram showing an example of drawing gap information 821 for a certain ejection head 500. FIG. In FIG. 8, a graph with the substrate position on the horizontal axis and the writing gap on the vertical axis is shown as writing gap information 821 . The position of the substrate is, for example, the position of the substrate along the transport direction (Y-axis positive direction) when the position directly below the ejection head 500 is 0 mm. The drawing gap is the distance from the ejection head 500 to the landing position of the functional liquid on the predetermined substrate.
 記憶部82は、描画ギャップ情報821として、図8に示すような情報を吐出ヘッド500ごとに記憶する。 The storage unit 82 stores information as shown in FIG. 8 for each ejection head 500 as the drawing gap information 821 .
 描画ギャップ情報821は、所定の基板、たとえば、表面に膜が形成されていない測定用の基板(以下、「測定用基板」と記載する)を用いた事前の測定により得られる。ここで、描画ギャップ情報821の作成方法について図9を参照しつつ説明する。図9は、実施形態に係る描画ギャップ情報821の作成方法の一例を説明するための図である。 The writing gap information 821 is obtained by preliminary measurement using a predetermined substrate, for example, a measurement substrate on which no film is formed (hereinafter referred to as "measurement substrate"). Here, a method for creating the drawing gap information 821 will be described with reference to FIG. FIG. 9 is a diagram for explaining an example of a method for creating drawing gap information 821 according to the embodiment.
 図9に示すように、基板処理装置1は、第1測定部91と移動機構92とを備えていても良い。第1測定部91は、たとえばレーザ変位計であり、測定用基板の上方から測定用基板の上面までの垂直距離を測定する。第1測定部91は、たとえば、吐出ヘッド500の近傍に配置される。また、第1測定部91は、たとえば吐出ヘッド500と同等の高さ位置に配置される。 As shown in FIG. 9, the substrate processing apparatus 1 may include a first measuring section 91 and a moving mechanism 92. The first measurement unit 91 is, for example, a laser displacement gauge, and measures the vertical distance from above the measurement substrate to the upper surface of the measurement substrate. The first measurement unit 91 is arranged, for example, near the ejection head 500 . Also, the first measurement unit 91 is arranged at a height position equivalent to that of the ejection head 500, for example.
 移動機構92は、第1測定部91をX軸方向およびY軸方向に沿って移動させる。これにより、各吐出ヘッド500の近傍に第1測定部91を位置させることができる。 The moving mechanism 92 moves the first measuring section 91 along the X-axis direction and the Y-axis direction. Thereby, the first measurement unit 91 can be positioned near each ejection head 500 .
 制御部81は、たとえば、第1測定部91をある吐出ヘッド500の近傍に配置させた状態で、搬送部4を用いて測定用基板を搬送方向に移動させつつ、第1測定部91を用いて描画ギャップを測定する。制御部81は、第1測定部91の測定結果、具体的には、第1測定部91における基準位置から測定用基板の上面までの距離を吐出ヘッド500から機能液の着弾位置までの距離すなわち描画ギャップとして取得する。 For example, the control unit 81 uses the transport unit 4 to move the substrate for measurement in the transport direction in a state in which the first measurement unit 91 is arranged in the vicinity of a certain ejection head 500, and uses the first measurement unit 91 to move the substrate for measurement in the transport direction. to measure the write gap. The control unit 81 converts the measurement result of the first measurement unit 91, specifically, the distance from the reference position of the first measurement unit 91 to the upper surface of the substrate for measurement into the distance from the ejection head 500 to the landing position of the functional liquid, that is, Get as drawing gap.
 つづいて、制御部81は、移動機構92を用いて第1測定部91を別の吐出ヘッド500の近傍に配置させた後、再び搬送部4を用いて測定用基板を搬送方向に移動させつつ、第1測定部91を用いて描画ギャップを測定する。このような処理を全ての吐出ヘッド500について繰り返すことで、制御部81は、描画ギャップ情報821を作成することができる。 Subsequently, the control unit 81 uses the moving mechanism 92 to place the first measuring unit 91 near another ejection head 500, and then uses the transport unit 4 again to move the substrate for measurement in the transport direction. , the first measurement unit 91 is used to measure the writing gap. By repeating such processing for all the ejection heads 500, the control unit 81 can create the drawing gap information 821. FIG.
 なお、ここで、移動機構92を用いて第1測定部91を移動させることによって、各吐出ヘッド500の近傍に位置させることとしたが、基板処理装置1は、複数の吐出ヘッド500に対応する複数の第1測定部91を備えていてもよい。この場合、移動機構92は不要である。また、基板処理装置1は、必ずしも第1測定部91を備えることを要しない。すなわち、第1測定部91は、描画ギャップ情報821を作成する場合に描画部5に取り付けられるものであってもよい。 Here, by moving the first measuring unit 91 using the moving mechanism 92 , it is positioned near each ejection head 500 , but the substrate processing apparatus 1 corresponds to a plurality of ejection heads 500 . A plurality of first measurement units 91 may be provided. In this case, the moving mechanism 92 is unnecessary. Also, the substrate processing apparatus 1 does not necessarily need to include the first measurement section 91 . That is, the first measuring unit 91 may be attached to the drawing unit 5 when creating the drawing gap information 821 .
 なお、描画ギャップ情報821における「吐出ヘッド500から所定の基板上における機能液の着弾位置までの距離の変化」は、第1処理ステージ54~第3処理ステージ56の上面から所定の基板の下面までの距離(すなわち、浮上高さ)で表されてもよい。 Note that the “change in distance from the ejection head 500 to the landing position of the functional liquid on the predetermined substrate” in the drawing gap information 821 is from the upper surface of the first to third processing stages 54 to 56 to the lower surface of the predetermined substrate. (ie flying height).
 搬送制御部811は、搬送部4を制御して基板Sの搬送処理を行う。具体的には、複数の保持部43を制御して基板Sの吸着保持し、一対の移動部42,42を制御して基板Sを搬送方向(Y軸正方向)に移動させる。 The transport control unit 811 controls the transport unit 4 to perform transport processing of the substrate S. Specifically, the plurality of holding portions 43 are controlled to suck and hold the substrate S, and the pair of moving portions 42, 42 are controlled to move the substrate S in the transport direction (Y-axis positive direction).
 描画制御部812は、描画部5が有する複数の吐出ヘッド500を制御して、基板Sに対する描画処理を行う。具体的には、描画制御部812は、搬送処理により搬送方向(Y軸正方向)に沿って搬送される基板Sに対し、複数の吐出ヘッド500から機能液を吐出する。 The drawing control unit 812 performs drawing processing on the substrate S by controlling the plurality of ejection heads 500 of the drawing unit 5 . Specifically, the drawing control unit 812 ejects the functional liquid from the plurality of ejection heads 500 onto the substrate S that is transported along the transport direction (Y-axis positive direction) by the transport process.
 ここで、描画制御部812は、上述した描画ギャップ情報821に基づき、機能液の吐出タイミングを吐出ヘッドごとに調整するタイミング調整処理を行ってもよい。具体的には、描画制御部812は、描画ギャップのバラツキがないと仮定した場合における機能液の吐出タイミングを描画ギャップ情報821に基づいて調整する。 Here, the drawing control unit 812 may perform timing adjustment processing for adjusting the ejection timing of the functional liquid for each ejection head based on the drawing gap information 821 described above. Specifically, the drawing control unit 812 adjusts the ejection timing of the functional liquid based on the drawing gap information 821 assuming that there is no variation in the drawing gap.
 たとえば、図8に示す描画ギャップ情報821において、基板位置P1での描画ギャップが基準値Cよりも大きかったとする。言い換えれば、基板位置P1での測定用基板の浮上高さが基準よりも低かったとする。この場合、描画制御部812は、図8に示す描画ギャップ情報821に対応する吐出ヘッド500を制御して、かかる吐出ヘッド500の吐出タイミングを、描画ギャップのバラツキがないと仮定した場合における吐出タイミングよりも早くする。これにより、機能液の着弾位置が搬送方向上流側(Y軸負方向側)にずれることを抑制することができる。 For example, in the drawing gap information 821 shown in FIG. 8, assume that the drawing gap at the substrate position P1 is larger than the reference value C. In other words, assume that the flying height of the measurement substrate at the substrate position P1 is lower than the reference. In this case, the drawing control unit 812 controls the ejection head 500 corresponding to the drawing gap information 821 shown in FIG. faster than As a result, it is possible to prevent the landing position of the functional liquid from shifting to the upstream side in the transport direction (the Y-axis negative direction side).
 また、図8に示す描画ギャップ情報821において、基板位置P2での描画ギャップが基準値Cよりも小さかったとする。言い換えれば、基板位置P2での測定用基板の浮上高さが基準よりも高かったとする。この場合、描画制御部812は、図8に示す描画ギャップ情報821に対応する吐出ヘッド500を制御して、かかる吐出ヘッド500の吐出タイミングを、描画ギャップのバラツキがないと仮定した場合における吐出タイミングよりも遅くする。これにより、機能液の着弾位置が搬送方向下流側(Y軸正方向側)にずれることを抑制することができる。 Also, assume that the drawing gap at the substrate position P2 is smaller than the reference value C in the drawing gap information 821 shown in FIG. In other words, assume that the flying height of the measurement substrate at the substrate position P2 is higher than the reference. In this case, the drawing control unit 812 controls the ejection head 500 corresponding to the drawing gap information 821 shown in FIG. slower than As a result, it is possible to prevent the landing position of the functional liquid from shifting downstream in the transport direction (positive Y-axis direction).
 このように、描画制御部812は、描画ギャップ情報821に基づき、機能液の吐出タイミングを吐出ヘッドごとに調整するタイミング調整処理を行ってもよい。これにより、たとえば一対のガイドレール41,41の歪み等の基板処理装置1に由来する描画ギャップのずれを抑制することができる。したがって、実施形態に係る基板処理装置1によれば、描画処理の精度を向上させることができる。 In this manner, the drawing control unit 812 may perform timing adjustment processing for adjusting the ejection timing of the functional liquid for each ejection head based on the drawing gap information 821 . As a result, deviation of the writing gap due to the substrate processing apparatus 1, such as distortion of the pair of guide rails 41, 41, can be suppressed. Therefore, according to the substrate processing apparatus 1 according to the embodiment, it is possible to improve the accuracy of the drawing process.
 図10は、実施形態に係る第2測定部93の配置を示す模式的な平面図である。図10に示すように、実施形態に係る基板処理装置1は、複数の第2測定部93を備えていてもよい。 FIG. 10 is a schematic plan view showing the arrangement of the second measuring section 93 according to the embodiment. As shown in FIG. 10 , the substrate processing apparatus 1 according to the embodiment may have a plurality of second measurement units 93 .
 複数の第2測定部93は、描画部5が備える複数のキャリッジ50よりも搬送方向上流側に配置される。また、複数の第2測定部93は、たとえば、搬送方向と直交する方向(X軸方向)に並べて配置される。ここでは、複数の第2測定部93の数が、X軸方向に沿って並べられた複数のキャリッジ50と同数かつ同間隔で並べられる場合の例を示している。これに限らず、複数の第2測定部93の数は、X軸方向に沿って並べられた複数のキャリッジ50の数よりも少なくてもよいし多くてもよい。 The plurality of second measurement units 93 are arranged on the upstream side in the transport direction of the plurality of carriages 50 included in the drawing unit 5 . Also, the plurality of second measurement units 93 are arranged side by side in a direction (X-axis direction) orthogonal to the transport direction, for example. Here, an example is shown in which the number of the plurality of second measuring units 93 is the same as the number of the plurality of carriages 50 arranged along the X-axis direction and arranged at the same intervals. Not limited to this, the number of the plurality of second measurement units 93 may be less than or greater than the number of the plurality of carriages 50 arranged along the X-axis direction.
 第2測定部93は、たとえばレーザ変位計であり、基板Sの上方における基準位置から基板Sの上面までの垂直距離を測定する。第2測定部93は、たとえば吐出ヘッド500と同等の高さ位置に配置される。 The second measuring unit 93 is, for example, a laser displacement meter, and measures the vertical distance from the reference position above the substrate S to the upper surface of the substrate S. The second measurement unit 93 is arranged at the same height position as the ejection head 500, for example.
 描画制御部812は、上述した描画ギャップ情報821に加え、実際に描画を行う基板Sに由来する描画ギャップ、たとえば、基板Sに形成された膜の膜厚や基板Sの反り等に起因する描画ギャップを考慮して機能液の吐出タイミングを調整してもよい。すなわち、描画制御部812は、第2測定部93を用いて基準位置から基板Sの板面までの距離を測定しつつ、得られた測定結果と、予め取得された描画ギャップ情報821とに基づいてタイミング調整処理を実行してもよい。 In addition to the above-described drawing gap information 821, the drawing control unit 812 also controls the drawing gap derived from the substrate S on which drawing is actually performed, for example, the drawing caused by the thickness of the film formed on the substrate S, the warp of the substrate S, and the like. The ejection timing of the functional liquid may be adjusted in consideration of the gap. That is, the drawing control unit 812 measures the distance from the reference position to the board surface of the substrate S using the second measuring unit 93, and based on the obtained measurement result and the drawing gap information 821 acquired in advance. You may perform a timing adjustment process.
 たとえば、基板Sが基板位置P1(図8参照)において下方に反っていたとする。この場合、機能液の着弾位置は、基板位置P1に反りがない場合と比べて搬送方向上流側にずれる。描画制御部812は、第2測定部93による測定結果に基づき、吐出タイミングをさらに調整することで、かかる基板Sの反りによる着弾位置のずれを抑制することがでる。したがって、実施形態に係る基板処理装置1によれば、描画処理の精度を向上させることができる。 For example, assume that the substrate S warps downward at the substrate position P1 (see FIG. 8). In this case, the landing position of the functional liquid shifts to the upstream side in the transport direction compared to the case where there is no warp at the substrate position P1. The drawing control unit 812 further adjusts the ejection timing based on the measurement result of the second measurement unit 93, thereby suppressing the deviation of the landing position due to the warp of the substrate S. Therefore, according to the substrate processing apparatus 1 according to the embodiment, it is possible to improve the accuracy of the drawing process.
 昇降制御部813は、複数の昇降機構510を制御することにより、描画処理中において処理位置と退避位置との間で複数のキャリッジ50を移動させる移動処理を実行する。 The elevation control unit 813 controls the plurality of elevation mechanisms 510 to execute movement processing for moving the plurality of carriages 50 between the processing position and the retracted position during drawing processing.
 具体的には、昇降制御部813は、第1移動処理と第2移動処理とを実行する。第1移動処理は、搬送部4による基板Sの搬送が開始された後、かつ、基板Sに対する機能液の吐出が開始される前に、昇降機構510を制御してキャリッジ50を退避位置から処理位置に移動させる処理である。また、第2移動処理は、基板Sに対する機能液の吐出が終了した後、昇降機構を制御してキャリッジを処理位置から退避位置に移動させる処理である。第1移動処理および第2移動処理は、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53ごとに実行される。 Specifically, the elevation control unit 813 executes a first movement process and a second movement process. In the first movement process, the lifting mechanism 510 is controlled to move the carriage 50 from the retracted position after the transportation of the substrate S by the transportation section 4 is started and before the discharge of the functional liquid onto the substrate S is started. This is a process of moving to a position. The second movement process is a process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate S is completed. The first movement process and the second movement process are executed for each of the first carriage group 51, the second carriage group 52 and the third carriage group 53. FIG.
 ステージ制御部814は、第1処理ステージ54~第3処理ステージ56を制御して、描画処理中において第1処理ステージ54~第3処理ステージ56から噴出される気体の風圧を調整する圧力変更処理を実行する。 The stage control unit 814 controls the first processing stage 54 to the third processing stage 56 to adjust the wind pressure of the gas jetted from the first processing stage 54 to the third processing stage 56 during the drawing processing. to run.
 具体的には、ステージ制御部814は、第1圧力変更処理と第2圧力変更処理とを実行する。第1圧力変更処理は、搬送部4による基板Sの搬送が開始された後、かつ、基板Sに対する機能液の吐出が開始される前に、大気開放バルブ550を制御して風圧を第1圧力から第1圧力よりも大きい第2圧力に変更する処理である。また、第2圧力変更処理は、基板Sに対する機能液の吐出が終了した後、大気開放バルブ550を制御して風圧を第2圧力から第1圧力に変更する処理である。 Specifically, the stage control unit 814 executes a first pressure change process and a second pressure change process. In the first pressure change process, after the transfer of the substrate S by the transfer unit 4 is started and before the discharge of the functional liquid onto the substrate S is started, the air release valve 550 is controlled to change the wind pressure to the first pressure. to a second pressure that is higher than the first pressure. The second pressure change process is a process of controlling the air release valve 550 to change the wind pressure from the second pressure to the first pressure after the functional liquid has been discharged onto the substrate S.
 第1圧力変更処理および第2圧力変更処理は、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56ごとに実行される。具体的には、ステージ制御部814は、第1処理ステージ54に対する第1圧力変更処理において、第1キャリッジ群51から基板Sに対する機能液の吐出が開始される前に、第1処理ステージ54の大気開放バルブ550を制御して風圧を第1圧力から第2圧力に変更する。また、ステージ制御部814は、第2処理ステージ55に対する第1圧力変更処理において、第2キャリッジ群52から基板Sに対する機能液の吐出が開始される前に、第2処理ステージ55の大気開放バルブ550を制御して風圧を第1圧力から第2圧力に変更する。また、ステージ制御部814は、第3処理ステージ56に対する第1圧力変更処理において、第3キャリッジ群53から基板Sに対する機能液の吐出が開始される前に、第3処理ステージ56の大気開放バルブ550を制御して風圧を第1圧力から第2圧力に変更する。 The first pressure change process and the second pressure change process are executed for each of the first processing stage 54, second processing stage 55 and third processing stage 56. Specifically, in the first pressure changing process for the first processing stage 54, the stage control unit 814 causes the first processing stage 54 to The air release valve 550 is controlled to change the wind pressure from the first pressure to the second pressure. In addition, in the first pressure change process for the second processing stage 55, the stage control unit 814 causes the second processing stage 55 to open the atmosphere release valve before the second carriage group 52 starts ejecting the functional liquid onto the substrate S. 550 is controlled to change the wind pressure from the first pressure to the second pressure. Further, in the first pressure change process for the third processing stage 56, the stage control unit 814 causes the third processing stage 56 to open the atmosphere release valve before the discharge of the functional liquid onto the substrate S from the third carriage group 53 is started. 550 is controlled to change the wind pressure from the first pressure to the second pressure.
 また、ステージ制御部814は、第1処理ステージ54に対する第2圧力変更処理において、第1キャリッジ群51から基板Sに対する機能液の吐出が終了した後、第1処理ステージ54の大気開放バルブ550を制御して風圧を第2圧力から第1圧力に変更する。また、ステージ制御部814は、第2処理ステージ55に対する第2圧力変更処理において、第2キャリッジ群52から基板Sに対する機能液の吐出が終了した後、第2処理ステージ55の大気開放バルブ550を制御して風圧を第2圧力から第1圧力に変更する。また、ステージ制御部814は、第3処理ステージ56に対する第2圧力変更処理において、第3キャリッジ群53から基板Sに対する機能液の吐出が終了した後、第3処理ステージ56の大気開放バルブ550を制御して風圧を第2圧力から第1圧力に変更する。 In addition, in the second pressure change process for the first processing stage 54, the stage control unit 814 opens the air release valve 550 of the first processing stage 54 after the functional liquid is discharged from the first carriage group 51 onto the substrate S. The wind pressure is controlled to change from the second pressure to the first pressure. In addition, in the second pressure change process for the second processing stage 55, the stage control unit 814 opens the air release valve 550 of the second processing stage 55 after the ejection of the functional liquid onto the substrate S from the second carriage group 52 is completed. The wind pressure is controlled to change from the second pressure to the first pressure. In addition, in the second pressure change process for the third processing stage 56, the stage control unit 814 opens the air release valve 550 of the third processing stage 56 after the discharge of the functional liquid onto the substrate S from the third carriage group 53 is completed. The wind pressure is controlled to change from the second pressure to the first pressure.
<基板処理装置の処理フロー>
 次に、実施形態に係る基板処理装置1が実行する処理のうち、第1移動処理、第2移動処理、第1圧力変更処理および第2圧力変更処理の手順について図11~図17を参照して説明する。図11は、実施形態に係る基板処理装置1が実行する処理のうち、第1移動処理、第2移動処理、第1圧力変更処理および第2圧力変更処理の手順を示すフローチャートである。図11に示す各処理は、制御装置8による制御に従って実行される。
<Processing Flow of Substrate Processing Apparatus>
Next, among the processes executed by the substrate processing apparatus 1 according to the embodiment, procedures of the first movement process, the second movement process, the first pressure change process, and the second pressure change process will be described with reference to FIGS. 11 to 17. to explain. FIG. 11 is a flow chart showing procedures of the first movement process, the second movement process, the first pressure change process, and the second pressure change process among the processes executed by the substrate processing apparatus 1 according to the embodiment. Each process shown in FIG. 11 is executed under the control of the control device 8 .
 また、図12は、第1移動処理、第2移動処理、第1圧力変更処理および第2圧力変更処理が開始される前の描画部5の状態を示す図である。図13は、第1キャリッジ群51に対する第1移動処理および第1圧力変更処理の動作例を示す図である。図14は、第2キャリッジ群52に対する第1移動処理および第1圧力変更処理の動作例を示す図である。図15は、第3キャリッジ群53に対する第1移動処理および第1圧力変更処理の動作例を示す図である。また、図16は、第1キャリッジ群51に対する第2移動処理および第2圧力変更処理の動作例を示す図である。図17は、第2キャリッジ群52に対する第2移動処理および第2圧力変更処理の動作例を示す図である。 Also, FIG. 12 is a diagram showing the state of the drawing unit 5 before the first movement process, the second movement process, the first pressure change process, and the second pressure change process are started. 13A and 13B are diagrams showing an operation example of the first movement process and the first pressure change process for the first carriage group 51. FIG. 14A and 14B are diagrams showing an operation example of the first movement processing and the first pressure change processing for the second carriage group 52. FIG. 15A and 15B are diagrams showing an operation example of the first movement processing and the first pressure change processing for the third carriage group 53. FIG. 16A and 16B are diagrams showing operation examples of the second movement process and the second pressure change process for the first carriage group 51. FIG. 17A and 17B are diagrams showing operation examples of the second movement processing and the second pressure change processing for the second carriage group 52. FIG.
 図11に示すように、制御部81は、搬送方向(Y軸正方向)において最も上流側に配置される第1キャリッジ群51に対して第1移動処理を実行するとともに、第1処理ステージ54に対して第1圧力変更処理を実行する(ステップS101)。 As shown in FIG. 11 , the control unit 81 executes the first movement process for the first carriage group 51 arranged on the most upstream side in the transport direction (Y-axis positive direction), and moves the first processing stage 54 . (step S101).
 具体的には、図12に示すように、第1キャリッジ群51に対する第1移動処理および第1圧力変更処理の開始前において、第1キャリッジ群51~第3キャリッジ群53は、退避位置に位置している。また、第1処理ステージ54~第3処理ステージ56の各大気開放バルブ550は開かれており、これにより、第1処理ステージ54~第3処理ステージ56から噴出される気体の風圧は、第1圧力に調整されている。 Specifically, as shown in FIG. 12, before the first movement process and the first pressure change process for the first carriage group 51 are started, the first carriage group 51 to the third carriage group 53 are positioned at the retreat position. is doing. In addition, the air release valves 550 of the first processing stage 54 to the third processing stage 56 are each opened, so that the wind pressure of the gas ejected from the first processing stage 54 to the third processing stage 56 is reduced to the first adjusted for pressure.
 このように、実施形態に係る基板処理装置1では、基板Sに対する描画処理の開始前において、第1キャリッジ群51~第3キャリッジ群53を第1処理ステージ54~第3処理ステージ56から離隔させておく。これにより、吐出ヘッド500に溜まっている機能液が、第1処理ステージ54~第3処理ステージ56から噴出される気体によって乾燥することを抑制することができる。すなわち、機能液の乾燥による吐出不良を抑制することができる。 As described above, in the substrate processing apparatus 1 according to the embodiment, the first carriage group 51 to the third carriage group 53 are separated from the first processing stage 54 to the third processing stage 56 before starting the drawing process on the substrate S. Keep As a result, the functional liquid accumulated in the ejection head 500 can be prevented from being dried by the gas ejected from the first to third processing stages 54 to 56 . That is, it is possible to suppress ejection failure due to drying of the functional liquid.
 また、基板Sに対する描画処理の開始前において、第1処理ステージ54~第3処理ステージ56から噴出される気体の風圧を弱めておくことで、吐出ヘッド500に溜まっている機能液が、第1処理ステージ54~第3処理ステージ56から噴出される気体によって乾燥することをさらに抑制することができる。 In addition, by weakening the air pressure of the gas ejected from the first to third processing stages 54 to 56 before the writing process on the substrate S is started, the functional liquid accumulated in the ejection head 500 can be discharged to the first stage. It is possible to further suppress drying by the gas jetted from the processing stage 54 to the third processing stage 56 .
 ステップS101の処理は、搬送部4による基板Sの搬送が開始された後、かつ、基板Sに対する機能液の吐出が開始される前に行われる。たとえば、ステップS101の処理は、搬送部4によって搬送される基板Sが第1処理ステージ54に進入する前に行われる。図13に示すように、制御部81は、第1キャリッジ群51に含まれる複数の吐出ヘッド500に対応する複数の昇降機構510を制御して、上記複数の吐出ヘッド500を退避位置から処理位置に移動させる。また、制御部81は、第1処理ステージ54の大気開放バルブ550を閉じて、第1処理ステージ54から噴出される気体の風圧を第1圧力から第2圧力に変更する。 The processing of step S101 is performed after the transportation of the substrate S by the transportation unit 4 is started and before the discharge of the functional liquid onto the substrate S is started. For example, the process of step S<b>101 is performed before the substrate S transported by the transport section 4 enters the first processing stage 54 . As shown in FIG. 13, the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the first carriage group 51 to move the plurality of ejection heads 500 from the retracted position to the processing position. move to In addition, the control unit 81 closes the atmosphere release valve 550 of the first processing stage 54 to change the wind pressure of the gas ejected from the first processing stage 54 from the first pressure to the second pressure.
 ここで、描画処理の開始前において、第1処理ステージ54からの気体の噴出を停止させておくことも考えられる。しかしながら、第1処理ステージ54からの気体の噴出を完全に停止させてしまうと、第1圧力変更処理において気体の噴出を開始させても、風圧が安定するまでに時間がかかってしまう。この場合、たとえば、風圧が安定するまで第1処理ステージ54への基板Sの進入を待たなければならず、基板Sに対する処理時間が長くなってしまう。 Here, it is also conceivable to stop the ejection of gas from the first processing stage 54 before starting the drawing process. However, if the ejection of gas from the first processing stage 54 is completely stopped, it will take time for the wind pressure to stabilize even if the ejection of gas is started in the first pressure change processing. In this case, for example, it is necessary to wait for the substrate S to enter the first processing stage 54 until the air pressure is stabilized, resulting in a longer processing time for the substrate S.
 これに対し、実施形態に係る基板処理装置1では、風圧調整部としての大気開放バルブ550を用いて、第1処理ステージ54に供給される気体の一部を第1処理ステージ54以外の場所に排出することとした。すなわち、実施形態に係る基板処理装置1では、第1処理ステージ54からの気体の噴出を継続しつつ、風圧を弱めることとした。これにより、第1圧力変更処理において、気体の風圧が安定するまでの時間を短くすることができる。したがって、基板Sに対する処理時間が長くなることを抑制することができる。 On the other hand, in the substrate processing apparatus 1 according to the embodiment, part of the gas supplied to the first processing stage 54 is diverted to a place other than the first processing stage 54 by using the air release valve 550 as the wind pressure adjustment unit. decided to eject. In other words, in the substrate processing apparatus 1 according to the embodiment, the air pressure is weakened while continuing to blow out the gas from the first processing stage 54 . Thereby, in the first pressure change process, it is possible to shorten the time until the wind pressure of the gas is stabilized. Therefore, it is possible to suppress the processing time for the substrate S from becoming long.
 つづいて、制御部81は、第2キャリッジ群52に対する第1移動処理および第2処理ステージ55に対する第1圧力変更処理を実行する(ステップS102)。ステップS102の処理は、たとえば、基板Sが第1処理ステージ54に進入した後、第2処理ステージ55に進入する前に実行される。 Subsequently, the control unit 81 executes a first movement process for the second carriage group 52 and a first pressure change process for the second processing stage 55 (step S102). The processing of step S<b>102 is performed, for example, after the substrate S enters the first processing stage 54 and before entering the second processing stage 55 .
 図14に示すように、制御部81は、第2キャリッジ群52に含まれる複数の吐出ヘッド500に対応する複数の昇降機構510を制御して、上記複数の吐出ヘッド500を退避位置から処理位置に移動させる。また、制御部81は、第2処理ステージ55の大気開放バルブ550を閉じて、第2処理ステージ55から噴出される気体の風圧を第1圧力から第2圧力に変更する。 As shown in FIG. 14, the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the second carriage group 52 to move the plurality of ejection heads 500 from the retracted position to the processing position. move to In addition, the control unit 81 closes the atmosphere release valve 550 of the second processing stage 55 to change the wind pressure of the gas ejected from the second processing stage 55 from the first pressure to the second pressure.
 つづいて、制御部81は、第3キャリッジ群53に対する第1移動処理および第3処理ステージ56に対する第1圧力変更処理を実行する(ステップS103)。ステップS103の処理は、たとえば、基板Sが第2処理ステージ55に進入した後、第3処理ステージ56に進入する前に実行される。 Subsequently, the control unit 81 executes a first movement process for the third carriage group 53 and a first pressure change process for the third processing stage 56 (step S103). The process of step S<b>103 is performed, for example, after the substrate S enters the second processing stage 55 and before entering the third processing stage 56 .
 図15に示すように、制御部81は、第3キャリッジ群53に含まれる複数の吐出ヘッド500に対応する複数の昇降機構510を制御して、上記複数の吐出ヘッド500を退避位置から処理位置に移動させる。また、制御部81は、第3処理ステージ56の大気開放バルブ550を閉じて、第3処理ステージ56から噴出される気体の風圧を第1圧力から第2圧力に変更する。 As shown in FIG. 15, the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the third carriage group 53 to move the plurality of ejection heads 500 from the retracted position to the processing position. move to Further, the control unit 81 closes the atmosphere release valve 550 of the third processing stage 56 to change the wind pressure of the gas ejected from the third processing stage 56 from the first pressure to the second pressure.
 つづいて、制御部81は、第1キャリッジ群51に対する第2移動処理および第1処理ステージ54に対する第2圧力変更処理を実行する(ステップS104)。ステップS104の処理は、たとえば、基板Sが第1処理ステージ54を通過した後、第2処理ステージ55を通過する前に実行される。 Subsequently, the control unit 81 executes a second movement process for the first carriage group 51 and a second pressure change process for the first processing stage 54 (step S104). The processing of step S<b>104 is performed, for example, after the substrate S passes through the first processing stage 54 and before passing through the second processing stage 55 .
 図16に示すように、制御部81は、第1キャリッジ群51に含まれる複数の吐出ヘッド500に対応する複数の昇降機構510を制御して、上記複数の吐出ヘッド500を処理位置から退避位置に移動させる。また、制御部81は、第1処理ステージ54の大気開放バルブ550を開いて、第1処理ステージ54から噴出される気体の風圧を第2圧力から第1圧力に変更する。 As shown in FIG. 16, the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the first carriage group 51 to move the plurality of ejection heads 500 from the processing position to the retracted position. move to Further, the control unit 81 opens the atmosphere release valve 550 of the first processing stage 54 to change the wind pressure of the gas ejected from the first processing stage 54 from the second pressure to the first pressure.
 つづいて、制御部81は、第2キャリッジ群52に対する第2移動処理および第2処理ステージ55に対する第2圧力変更処理を実行する(ステップS105)。ステップS105の処理は、たとえば、基板Sが第2処理ステージ55を通過した後、第3処理ステージ56を通過する前に実行される。 Subsequently, the control unit 81 executes a second movement process for the second carriage group 52 and a second pressure change process for the second processing stage 55 (step S105). The processing of step S<b>105 is performed, for example, after the substrate S passes through the second processing stage 55 and before passing through the third processing stage 56 .
 図17に示すように、制御部81は、第2キャリッジ群52に含まれる複数の吐出ヘッド500に対応する複数の昇降機構510を制御して、上記複数の吐出ヘッド500を処理位置から退避位置に移動させる。また、制御部81は、第2処理ステージ55の大気開放バルブ550を開いて、第2処理ステージ55から噴出される気体の風圧を第2圧力から第1圧力に変更する。 As shown in FIG. 17, the control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the second carriage group 52 to move the plurality of ejection heads 500 from the processing position to the retracted position. move to Further, the control unit 81 opens the atmosphere release valve 550 of the second processing stage 55 to change the wind pressure of the gas ejected from the second processing stage 55 from the second pressure to the first pressure.
 つづいて、制御部81は、第3キャリッジ群53に対する第2移動処理および第3処理ステージ56に対する第2圧力変更処理を実行する(ステップS106)。ステップS106の処理は、たとえば、基板Sが第3処理ステージ56を通過した後に実行される。 Subsequently, the control unit 81 executes a second movement process for the third carriage group 53 and a second pressure change process for the third processing stage 56 (step S106). The processing of step S106 is performed, for example, after the substrate S has passed through the third processing stage 56 .
 制御部81は、第3キャリッジ群53に含まれる複数の吐出ヘッド500に対応する複数の昇降機構510を制御して、上記複数の吐出ヘッド500を処理位置から退避位置に移動させる。また、制御部81は、第3処理ステージ56の大気開放バルブ550を開いて、第3処理ステージ56から噴出される気体の風圧を第2圧力から第1圧力に変更する。これにより、描画部5は、図12に示した状態に戻る。 The control unit 81 controls a plurality of elevating mechanisms 510 corresponding to the plurality of ejection heads 500 included in the third carriage group 53 to move the plurality of ejection heads 500 from the processing position to the retracted position. Further, the control unit 81 opens the atmosphere release valve 550 of the third processing stage 56 to change the wind pressure of the gas ejected from the third processing stage 56 from the second pressure to the first pressure. As a result, the drawing unit 5 returns to the state shown in FIG.
(第1変形例)
 図18は、実施形態における第1変形例に係る描画部5の構成を示す模式的な側面図である。図18に示すように、基板処理装置1は、吸引部530における雰囲気の吸引経路にも大気開放バルブ560を備えていてもよい。
(First modification)
FIG. 18 is a schematic side view showing the configuration of the drawing section 5 according to the first modified example of the embodiment. As shown in FIG. 18 , the substrate processing apparatus 1 may also include an atmosphere release valve 560 in the suction path of the atmosphere in the suction section 530 .
 大気開放バルブ560は、吸引管531から分岐する分岐管561に設けられる。大気開放バルブ560が開放されることで、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56の上面に設けられた吸引口から吸引管531を介して吸引部530に吸引される雰囲気の一部が分岐管561から外部に排出される。これにより、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56の上面に発生する吸引力が弱まる。このように、大気開放バルブ560は、吸引部530による吸引力を調整する吸引力調整部の一例である。 The atmosphere release valve 560 is provided on a branch pipe 561 branching from the suction pipe 531 . When the atmospheric release valve 560 is opened, the suction ports provided on the upper surfaces of the first processing stage 54, the second processing stage 55, and the third processing stage 56 are sucked into the suction section 530 via the suction pipe 531. Part of the atmosphere is discharged outside through the branch pipe 561 . As a result, the suction forces generated on the upper surfaces of the first processing stage 54, the second processing stage 55, and the third processing stage 56 are weakened. As described above, the atmosphere release valve 560 is an example of a suction force adjustment unit that adjusts the suction force of the suction unit 530 .
 第1変形例に係る制御部81は、第1吸引力変更処理と第2吸引力変更処理とを実行する。第1吸引力変更処理は、搬送部4による基板Sの搬送が開始された後、かつ、基板Sに対する機能液の吐出が開始される前に、大気開放バルブ560を制御して吸引力を第1吸引力から第1吸引力よりも大きい第2吸引力に変更する処理である。具体的には、制御部81は、大気開放バルブ560を閉じることによって吸引力を第1吸引力から第2吸引力に変更する。 The control unit 81 according to the first modification executes a first attraction force change process and a second attraction force change process. In the first suction force changing process, after the transfer of the substrate S by the transfer unit 4 is started and before the discharge of the functional liquid onto the substrate S is started, the atmospheric release valve 560 is controlled to change the suction force to the first level. This is the process of changing from the first attraction force to the second attraction force, which is greater than the first attraction force. Specifically, the control unit 81 changes the suction force from the first suction force to the second suction force by closing the open air valve 560 .
 また、第2吸引力変更処理は、基板Sに対する機能液の吐出が終了した後、大気開放バルブ560を制御して吸引力を第2吸引力から第1吸引力に変更する処理である。具体的には、制御部81は、大気開放バルブ560を開くことによって吸引力を第2吸引力から第1吸引力に変更する。 In addition, the second suction force changing process is a process of controlling the atmosphere release valve 560 to change the suction force from the second suction force to the first suction force after the functional liquid has been discharged onto the substrate S. Specifically, the control unit 81 changes the suction force from the second suction force to the first suction force by opening the atmosphere relief valve 560 .
 これら第1吸引力変更処理および第2吸引力変更処理は、第1圧力変更処理および第2圧力変更処理と同様、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56ごとに実行される。 These first suction force change processing and second suction force change processing are executed for each of the first processing stage 54, second processing stage 55 and third processing stage 56, similarly to the first pressure change processing and second pressure change processing. be done.
 たとえば、制御部81は、図11に示すフローチャートのステップS101において、第1処理ステージ54に対して第1圧力変更処理および第1吸引力変更処理を実行する。また、制御部81は、ステップS102において、第2処理ステージ55に対して第1圧力変更処理および第1吸引力変更処理を実行する。また、制御部81は、ステップS103において、第3処理ステージ56に対して第1圧力変更処理および第1吸引力変更処理を実行する。 For example, the control unit 81 executes the first pressure change process and the first suction force change process on the first processing stage 54 in step S101 of the flowchart shown in FIG. Further, the control unit 81 executes the first pressure change process and the first suction force change process on the second processing stage 55 in step S102. Further, the control unit 81 executes the first pressure changing process and the first suction force changing process on the third processing stage 56 in step S103.
 また、制御部81は、ステップS104において、第1処理ステージ54に対して第2圧力変更処理および第2吸引力変更処理を実行する。また、制御部81は、ステップS105において、第2処理ステージ55に対して第2圧力変更処理および第2吸引力変更処理を実行する。また、制御部81は、ステップS105において、第3処理ステージ56に対して第2圧力変更処理および第2吸引力変更処理を実行する。 Also, the control unit 81 executes the second pressure change process and the second suction force change process on the first processing stage 54 in step S104. Further, the control unit 81 executes the second pressure change process and the second suction force change process on the second processing stage 55 in step S105. Further, the control unit 81 executes the second pressure change process and the second suction force change process on the third processing stage 56 in step S105.
 このように、制御部81は、第1吸引力調整処理および第2吸引力調整処理を行ってもよい。これにより、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56に吸引される雰囲気の気流による機能液の乾燥を抑制することができる。したがって、吐出ヘッド500に溜まっている機能液の乾燥をより確実に抑制することができる。すなわち、機能液の乾燥による吐出不良をより確実に抑制することができる。 Thus, the control unit 81 may perform the first attraction force adjustment process and the second attraction force adjustment process. As a result, it is possible to suppress drying of the functional liquid due to air currents of the atmosphere sucked into the first processing stage 54 , the second processing stage 55 and the third processing stage 56 . Therefore, drying of the functional liquid accumulated in the ejection head 500 can be suppressed more reliably. That is, it is possible to more reliably suppress ejection failure due to drying of the functional liquid.
 なお、ここでは、第1圧力変更処理および第2圧力変更処理と、第1吸引力調整処理および第2吸引力調整処理との両方を実行する場合の例について説明した。これに限らず、制御部81は、第1圧力変更処理および第2圧力変更処理を実行することなく、第1吸引力調整処理および第2吸引力調整処理を実行してもよい。この場合、基板処理装置1は、必ずしも風圧調整部としての大気開放バルブ550を備えることを要しない。 Here, an example in which both the first pressure change process and the second pressure change process and the first suction force adjustment process and the second suction force adjustment process are executed has been described. Alternatively, the control unit 81 may execute the first suction force adjustment process and the second suction force adjustment process without executing the first pressure change process and the second pressure change process. In this case, the substrate processing apparatus 1 does not necessarily need to include the air release valve 550 as the wind pressure adjusting section.
(第2変形例)
 図19は、実施形態における第2変形例に係る描画部の構成を示す模式的な側面図である。なお、ここでは、第2キャリッジ群52および第2処理ステージ55を省略して示している。第2処理ステージ55の構成は、第1処理ステージ54および第3処理ステージ56と同様である。
(Second modification)
FIG. 19 is a schematic side view showing the configuration of the drawing unit according to the second modification of the embodiment; Note that the second carriage group 52 and the second processing stage 55 are omitted here. The configuration of the second processing stage 55 is similar to that of the first processing stage 54 and the third processing stage 56 .
 図19に示すように、第2変形例に係る描画部5において、各処理ステージ54~56は、空気の吐出・吸引を個別に制御可能な複数の第1制御エリア101を有する。複数の第1制御エリア101は、基板Sの搬送方向(Y軸正方向)に沿って並べられており、キャリッジ50が備える複数の吐出ヘッド500に対応している。すなわち、第2変形例に係る描画部5では、キャリッジ50が備える各吐出ヘッド500の直下にそれぞれ第1制御エリア101が1つずつ配置されている。 As shown in FIG. 19, in the drawing unit 5 according to the second modification, each of the processing stages 54 to 56 has a plurality of first control areas 101 capable of individually controlling air ejection/suction. The plurality of first control areas 101 are arranged along the transport direction of the substrate S (Y-axis positive direction) and correspond to the plurality of ejection heads 500 provided on the carriage 50 . That is, in the drawing unit 5 according to the second modification, one first control area 101 is arranged directly below each ejection head 500 provided on the carriage 50 .
 また、各処理ステージ54~56は、吐出ヘッド500が上方に位置しない領域に第2制御エリア102を有する。第2制御エリア102は、複数の第1制御エリア101に隣接して設けられる。具体的には、第2制御エリア102は、複数の第1制御エリア101に対して、基板Sの搬送方向(Y軸正方向)上流側または下流側に配置される。 Also, each of the processing stages 54 to 56 has a second control area 102 in a region where the ejection head 500 is not positioned above. The second control area 102 is provided adjacent to the plurality of first control areas 101 . Specifically, the second control area 102 is arranged upstream or downstream of the plurality of first control areas 101 in the transport direction of the substrate S (Y-axis positive direction).
 各第1制御エリア101および第2制御エリア102は、給気部520に接続される。具体的には、給気部520は、集合給気管525に接続されており、各第1制御エリア101および第2制御エリア102は、個別給気管526を介して集合給気管525に接続されている。すなわち、各第1制御エリア101および第2制御エリア102は、集合給気管525および個別給気管526を介して給気部520に接続される。 Each first control area 101 and second control area 102 are connected to an air supply section 520 . Specifically, the air supply unit 520 is connected to a collective air supply pipe 525, and each of the first control area 101 and the second control area 102 is connected to the collective air supply pipe 525 via individual air supply pipes 526. there is That is, each of first control area 101 and second control area 102 is connected to air supply section 520 via collective air supply pipe 525 and individual air supply pipe 526 .
 集合給気管525には、圧力計131と、圧力調整部132とが設けられている。圧力計131は、集合給気管525における空気の圧力を検出する。圧力調整部132は、たとえば手動式のレギュレータであり、集合給気管525における空気の圧力を調整する。 The collective air supply pipe 525 is provided with a pressure gauge 131 and a pressure adjustment section 132 . A pressure gauge 131 detects the air pressure in the collective air supply pipe 525 . Pressure adjustment unit 132 is, for example, a manual regulator, and adjusts the pressure of air in collective air supply pipe 525 .
 第1制御エリア101に接続される個別給気管526には、フィルタ111と、開閉弁112と、圧力計113と、圧力調整部114とが設けられている。フィルタ111、開閉弁112、圧力計113および圧力調整部114は、給気部520に近い側から、圧力調整部114、圧力計113、開閉弁112およびフィルタ111の順番で設けられている。フィルタ111は、個別給気管526を流れる空気から異物を除去する。なお、風圧の立ち上がりの応答性を維持するために、フィルタ111は圧力損失ができるだけ少ないタイプであることが好ましい。開閉弁112は、たとえば電磁弁であり、個別給気管526を開閉する。圧力計113は、個別給気管526における空気の圧力を検出する。圧力調整部114は、たとえば電空レギュレータであり、個別給気管526における空気の圧力を調整する。 The individual air supply pipe 526 connected to the first control area 101 is provided with a filter 111, an on-off valve 112, a pressure gauge 113, and a pressure regulator 114. The filter 111 , the on-off valve 112 , the pressure gauge 113 and the pressure adjustment section 114 are provided in the order of the pressure adjustment section 114 , the pressure gauge 113 , the on-off valve 112 and the filter 111 from the side closer to the air supply section 520 . Filter 111 removes foreign matter from the air flowing through individual air supply pipe 526 . Note that the filter 111 is preferably of a type with as little pressure loss as possible in order to maintain responsiveness to the rise of wind pressure. The on-off valve 112 is, for example, an electromagnetic valve, and opens and closes the individual air supply pipe 526 . Pressure gauge 113 detects the pressure of air in individual air supply pipe 526 . Pressure adjustment unit 114 is, for example, an electro-pneumatic regulator, and adjusts the pressure of air in individual air supply pipe 526 .
 第2制御エリア102に接続される個別給気管526には、圧力計121と、圧力調整部122とが設けられている。圧力計121は、個別給気管526における空気の圧力を検出する。圧力調整部122は、たとえば手動式のレギュレータであり、個別給気管526における空気の圧力を調整する。 The individual air supply pipe 526 connected to the second control area 102 is provided with a pressure gauge 121 and a pressure adjustment section 122 . Pressure gauge 121 detects the pressure of air in individual air supply pipe 526 . Pressure adjustment unit 122 is, for example, a manual regulator that adjusts the air pressure in individual air supply pipe 526 .
 また、各第1制御エリア101は、第1吸引部530Aに接続される。具体的には、第1吸引部530Aは、集合吸引管535Aに接続されており、各第1制御エリア101は、個別給気管536Aを介して集合吸引管535Aに接続されている。すなわち、各第1制御エリア101は、集合吸引管535Aおよび個別給気管536Aを介して第1吸引部530Aに接続される。個別給気管536Aには、開閉弁115が設けられている。開閉弁115は、たとえば電磁弁であり、個別給気管536Aを開閉する。 Also, each first control area 101 is connected to the first suction unit 530A. Specifically, the first suction section 530A is connected to a collective suction pipe 535A, and each first control area 101 is connected to the collective suction pipe 535A via individual air supply pipes 536A. That is, each first control area 101 is connected to the first suction section 530A via the collective suction pipe 535A and the individual air supply pipe 536A. An on-off valve 115 is provided in the individual air supply pipe 536A. The on-off valve 115 is, for example, an electromagnetic valve, and opens and closes the individual air supply pipe 536A.
 また、各第2制御エリア102は、第2吸引部530Bに接続される。具体的には、第2吸引部530Bは、集合吸引管535Bに接続されており、各第2制御エリア102は、個別給気管536Bを介して集合吸引管535Bに接続されている。すなわち、各第2制御エリア102は、集合吸引管535Bおよび個別給気管536Bを介して第2吸引部530Bに接続される。 Also, each second control area 102 is connected to the second suction unit 530B. Specifically, the second suction section 530B is connected to a collective suction pipe 535B, and each second control area 102 is connected to the collective suction pipe 535B via an individual air supply pipe 536B. That is, each second control area 102 is connected to the second suction section 530B via the collective suction pipe 535B and the individual air supply pipe 536B.
 処理ステージ54~56の上面に開口する複数の噴出口は、たとえば処理ステージ54~56の内部に形成された空間を介して個別給気管526に接続される。同様に、処理ステージ54~56の上面に開口する複数の吸引口は、たとえば処理ステージ54~56の内部に形成された空間を介して個別給気管536Aまたは個別給気管536Bに接続される。 A plurality of jet openings opening on the upper surfaces of the processing stages 54-56 are connected to individual air supply pipes 526 via spaces formed inside the processing stages 54-56, for example. Similarly, a plurality of suction ports opening on the upper surfaces of the processing stages 54-56 are connected to individual air supply pipes 536A or 536B via spaces formed inside the processing stages 54-56, for example.
 ここで、基板Sの搬送方向における噴出口と吸引口との間隔をD1とし、基板Sの搬送方向における吐出ヘッド500の幅をD2とすると、間隔D1と間隔D2との関係は、D1=n×D2(nは、正の整数)であることが好ましい。 Assuming that the distance between the ejection port and the suction port in the transport direction of the substrate S is D1 and the width of the ejection head 500 in the transport direction of the substrate S is D2, the relationship between the space D1 and the space D2 is D1=n. xD2 (n is a positive integer) is preferable.
 第2変形例において、制御部81は、複数の第1制御エリア101のうち基板Sの搬送方向の上流側に位置する第1制御エリア101から順に、複数の噴出口からの空気の噴出を開始させる。具体的には、制御部81は、基板Sが第1制御エリア101の上方を通過する所定時間前に、その第1制御エリア101の開閉弁112を開くことにより、その第1制御エリア101から空気を噴出させる。 In the second modification, the control unit 81 starts ejecting air from the plurality of ejection ports in order from the first control area 101 located upstream in the transport direction of the substrate S among the plurality of first control areas 101. Let Specifically, the control unit 81 opens the on-off valve 112 of the first control area 101 a predetermined time before the substrate S passes over the first control area 101, thereby Blow out air.
 その後、制御部81は、複数の第1制御エリア101のうち基板Sの搬送方向の上流側に位置する第1制御エリア101から順に、複数の噴出口からの空気の噴出を停止させる。具体的には、制御部81は、基板Sが第1制御エリア101の上方を通過し終えた所定時間後に、その第1制御エリア101の開閉弁112を閉じることにより、その第1制御エリア101からの空気の噴出を停止させる。 After that, the control unit 81 stops the ejection of air from the plurality of ejection ports in order from the first control area 101 located upstream in the transport direction of the substrate S among the plurality of first control areas 101 . Specifically, the control unit 81 closes the on-off valve 112 of the first control area 101 after a predetermined period of time after the substrate S has finished passing over the first control area 101 . to stop air spurting from the
 このように、第2変形例に係る描画部5は、複数の吐出ヘッド500に対応する複数の第1制御エリア101ごとに、空気の噴出の開始および停止を制御することができる。したがって、第2変形例に係る基板処理装置1によれば、機能液の乾燥による吐出不良をさらに抑制することができる。 Thus, the drawing unit 5 according to the second modification can control the start and stop of air ejection for each of the plurality of first control areas 101 corresponding to the plurality of ejection heads 500 . Therefore, according to the substrate processing apparatus 1 according to the second modified example, it is possible to further suppress ejection failure due to drying of the functional liquid.
 なお、制御部81は、複数の第1制御エリア101のうち基板Sの搬送方向の上流側に位置する第1制御エリア101から順に、複数の吸引口からの空気の吸引を開始させる。具体的には、制御部81は、基板Sが第1制御エリア101の上方を通過する所定時間前に、その第1制御エリア101の開閉弁115を開くことにより、その第1制御エリア101の空気の吸引を開始させる。同様に、制御部81は、複数の第1制御エリア101のうち基板Sの搬送方向の上流側に位置する第1制御エリア101から順に、複数の吸引口からの空気の吸引を停止させる。具体的には、制御部81は、基板Sが第1制御エリア101の上方を通過した所定時間後に、その第1制御エリア101の開閉弁115を閉じることにより、その第1制御エリア101の空気の吸引を停止させる。 Note that the control unit 81 starts sucking air from the plurality of suction ports in order from the first control area 101 positioned upstream in the transport direction of the substrate S among the plurality of first control areas 101 . Specifically, the control unit 81 opens the on-off valve 115 of the first control area 101 a predetermined time before the substrate S passes over the first control area 101, so that the first control area 101 Start sucking air. Similarly, the control unit 81 stops air suction from the plurality of suction ports in order from the first control area 101 located upstream in the transport direction of the substrate S among the plurality of first control areas 101 . Specifically, the control unit 81 closes the on-off valve 115 of the first control area 101 after a predetermined period of time after the substrate S has passed above the first control area 101, so that the air in the first control area 101 is Stop aspiration of
 また、第2変形例において、制御部81は、開閉弁112を開くことにより第1制御エリア101に設けられた複数の噴出口から空気を噴出させる。このとき、制御部81は、個別給気管526における空気の圧力(言い換えれば、噴出口から噴出される空気の風圧)が予め設定された立上げ時圧力(第3圧力)となるように圧力調整部114を制御する。その後、制御部81は、たとえば開閉弁112を開いてから予め設定された時間が経過した後、圧力調整部114を制御して、個別給気管526における空気の圧力を立上げ時圧力よりも低い通常圧力(第4圧力)に変更する。制御部81は、圧力計113の検出結果に基づいて、圧力調整部114を制御することにより、噴出口から噴出する空気の風圧を第3圧力または第4圧力に調整することができる。 In addition, in the second modification, the control unit 81 opens the on-off valve 112 to eject air from the plurality of ejection ports provided in the first control area 101 . At this time, the control unit 81 adjusts the pressure of the air in the individual air supply pipe 526 (in other words, the wind pressure of the air ejected from the ejection port) to a preset startup pressure (third pressure). control unit 114; After that, for example, after a preset time has elapsed since opening the on-off valve 112, the control unit 81 controls the pressure adjustment unit 114 to make the air pressure in the individual air supply pipe 526 lower than the start-up pressure. Change to normal pressure (fourth pressure). The control unit 81 can adjust the wind pressure of the air ejected from the ejection port to the third pressure or the fourth pressure by controlling the pressure adjustment unit 114 based on the detection result of the pressure gauge 113 .
 このように、制御部81は、開閉弁112を開いた直後における空気の圧力(第3圧力)をその後の圧力(第4圧力)よりも高めに設定することで、複数の噴出口からの空気の噴出を開始させた際の風圧の立ち上がりの応答性を向上させることができる。かかる構成とすることにより、基板Sが第1制御エリア101を通過する直前まで空気の噴出を停止させておくことができることから、機能液の乾燥による吐出不良をさらに抑制することができる。 In this way, the control unit 81 sets the pressure of the air (third pressure) immediately after opening the on-off valve 112 to be higher than the pressure (fourth pressure) after that, so that the air from the plurality of ejection ports is It is possible to improve the responsiveness of the rise of wind pressure when starting to blow out. By adopting such a configuration, it is possible to stop the ejection of air until immediately before the substrate S passes through the first control area 101, so that it is possible to further suppress ejection failure due to drying of the functional liquid.
 上述してきたように、実施形態に係る塗布処理装置(一例として、基板処理装置1)は、ステージ(一例として、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56)と、キャリッジ(一例として、キャリッジ50)と、搬送部(一例として、描画部5)と、昇降機構(一例として、昇降機構510)と、制御部(一例として、制御部81)とを備える。ステージは、気体の風圧によって基板(一例として、基板S)を浮上させる。キャリッジは、ステージの上方に配置され、機能液を吐出する複数の吐出ヘッド(一例として、吐出ヘッド500)を備える。搬送部は、ステージから浮上した基板を保持して搬送方向に沿って移動させる。昇降機構は、基板に対する機能液の吐出が行われる処理位置と処理位置より上方の退避位置との間でキャリッジを昇降させる。制御部は、搬送部による基板の搬送が開始された後、かつ、基板に対する機能液の吐出が開始される前に、昇降機構を制御してキャリッジを退避位置から処理位置に移動させる第1移動処理と、基板に対する機能液の吐出が終了した後、昇降機構を制御してキャリッジを処理位置から退避位置に移動させる第2移動処理とを実行する。 As described above, the coating processing apparatus (substrate processing apparatus 1 as an example) according to the embodiment includes stages (first processing stage 54, second processing stage 55 and third processing stage 56 as an example) and a carriage. (a carriage 50 as an example), a conveying unit (a drawing unit 5 as an example), an elevating mechanism (an elevating mechanism 510 as an example), and a control unit (the control unit 81 as an example). The stage floats the substrate (substrate S as an example) by air pressure of gas. The carriage is arranged above the stage and includes a plurality of ejection heads (ejection heads 500 as an example) that eject functional liquid. The transport unit holds the substrate floated from the stage and moves it along the transport direction. The elevating mechanism elevates the carriage between a processing position where the functional liquid is discharged onto the substrate and a retracted position above the processing position. The control unit controls the elevating mechanism to move the carriage from the retracted position to the processing position after the transport of the substrate by the transport unit is started and before the functional liquid is started to be discharged onto the substrate. and a second moving process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate is completed.
 したがって、実施形態に係る塗布処理装置によれば、機能液の乾燥による吐出不良を抑制することができる。 Therefore, according to the coating treatment apparatus according to the embodiment, it is possible to suppress ejection failure due to drying of the functional liquid.
 実施形態に係る塗布処理装置は、搬送方向に沿って並べられた複数のキャリッジ(一例として、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53)と、複数のキャリッジに対応して設けられた複数の昇降機構とを備えていてもよい。この場合、制御部は、複数の昇降機構を制御して、キャリッジごとに第1移動処理および第2移動処理を行ってもよい。これにより、たとえば、機能液の吐出が開始される直前まで吐出ヘッドを退避位置に配置させておくことができることから、機能液の乾燥による吐出不良をより確実に抑制することができる。 The coating treatment apparatus according to the embodiment includes a plurality of carriages (as an example, a first carriage group 51, a second carriage group 52, and a third carriage group 53) arranged along the transport direction, and a plurality of carriages. It may be provided with a plurality of lifting mechanisms provided at the same time. In this case, the controller may control a plurality of lifting mechanisms to perform the first movement process and the second movement process for each carriage. As a result, for example, the ejection head can be placed at the retracted position until immediately before ejection of the functional liquid is started, so ejection failure due to drying of the functional liquid can be more reliably suppressed.
 実施形態に係る塗布処理装置は、ステージから噴出される気体の風圧を調整する風圧調整部(一例として、大気開放バルブ550)を備えていてもよい。この場合、制御部は、搬送部による基板の搬送が開始された後、かつ、基板に対する機能液の吐出が開始される前に、風圧調整部を制御して風圧を第1圧力から第1圧力よりも大きい第2圧力に変更する第1圧力変更処理と、基板に対する機能液の吐出が終了した後、風圧調整部を制御して風圧を第2圧力から第1圧力に変更する第2圧力変更処理とを実行してもよい。このように、ステージから噴出される気体の風圧を弱めておくことで、機能液の乾燥による吐出不良をより確実に抑制することができる。 The coating treatment apparatus according to the embodiment may include a wind pressure adjustment section (for example, an air release valve 550) that adjusts the wind pressure of the gas ejected from the stage. In this case, the control unit controls the air pressure adjustment unit to reduce the air pressure from the first pressure to the first pressure after the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started. and a second pressure change process for changing the air pressure from the second pressure to the first pressure by controlling the air pressure adjustment unit after the discharge of the functional liquid onto the substrate is completed. processing may be performed. In this way, by weakening the wind pressure of the gas ejected from the stage, it is possible to more reliably suppress ejection failure due to drying of the functional liquid.
 実施形態に係る塗布処理装置は、搬送方向に沿って並べられた複数のキャリッジ(一例として、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53)と、搬送方向に沿って並べられ、各々が複数のキャリッジの各々の下方に配置された複数のステージ(一例として、第1処理ステージ54、第2処理ステージ55および第3処理ステージ56)と、複数のステージに対応して設けられた複数の風圧調整部とを備えていてもよい。この場合、制御部は、第1圧力変更処理において、ステージごとに、対応するキャリッジから基板に対する機能液の吐出が開始される前に、風圧調整部を制御して風圧を第1圧力から第2圧力に変更し、第2圧力変更処理において、ステージごとに、対応するキャリッジから基板に対する機能液の吐出が終了した後、風圧調整部を制御して風圧を第2圧力から第1圧力に変更してもよい。これにより、たとえば、機能液の吐出が開始される直前までステージから噴出される気体の風圧を弱めておくことができることから、機能液の乾燥による吐出不良をより確実に抑制することができる。 The coating treatment apparatus according to the embodiment includes a plurality of carriages (as an example, a first carriage group 51, a second carriage group 52, and a third carriage group 53) arranged along the transport direction, and a plurality of carriages arranged along the transport direction. a plurality of stages (for example, a first processing stage 54, a second processing stage 55, and a third processing stage 56) each arranged below each of the plurality of carriages; A plurality of wind pressure adjustment units may be provided. In this case, in the first pressure change process, the control unit controls the wind pressure adjustment unit to change the wind pressure from the first pressure to the second pressure before the discharge of the functional liquid onto the substrate from the corresponding carriage is started for each stage. In the second pressure change process, after the discharge of the functional liquid from the corresponding carriage to the substrate is completed for each stage, the air pressure adjustment unit is controlled to change the air pressure from the second pressure to the first pressure. may As a result, for example, the wind pressure of the gas ejected from the stage can be weakened until immediately before the functional liquid starts to be ejected, so that ejection failures due to drying of the functional liquid can be more reliably suppressed.
 実施形態に係る塗布処理装置は、複数のキャリッジ(一例として、第1キャリッジ群51、第2キャリッジ群52および第3キャリッジ群53)に対応して設けられた複数の昇降機構を備えていてもよい。この場合、制御部は、複数の昇降機構を制御して、キャリッジごとに第1移動処理および第2移動処理を行い、複数の風圧調整部を制御して、ステージごとに第1圧力変更処理および第2圧力変更処理を行ってもよい。このように、吐出ヘッドを退避させておくとともに、ステージから噴出される気体の風圧を弱めておくことで、機能液の乾燥による吐出不良をより確実に抑制することができる。 The coating treatment apparatus according to the embodiment may include a plurality of lifting mechanisms provided corresponding to a plurality of carriages (for example, first carriage group 51, second carriage group 52, and third carriage group 53). good. In this case, the controller controls the plurality of lifting mechanisms to perform the first movement process and the second movement process for each carriage, and controls the plurality of wind pressure adjustment sections to perform the first pressure change process and the second movement process for each stage. A second pressure change process may be performed. In this way, by retracting the ejection head and weakening the wind pressure of the gas ejected from the stage, ejection failure due to drying of the functional liquid can be suppressed more reliably.
 実施形態に係る塗布処理装置は、ステージに設けられた複数の噴出口に対して気体を供給する給気部(一例として、給気部520)を備えていてもよい。この場合、風圧調整部は、気体の供給経路(一例として、給気管521)に設けられた大気開放バルブであってもよい。これにより、たとえば第1圧力変更処理において、気体の風圧が安定するまでの時間を短くすることができる。したがって、基板に対する処理時間が長くなることを抑制することができる。 The coating treatment apparatus according to the embodiment may include an air supply unit (as an example, the air supply unit 520) that supplies gas to a plurality of ejection ports provided on the stage. In this case, the wind pressure adjusting unit may be an atmosphere opening valve provided in the gas supply path (for example, the air supply pipe 521). Thereby, for example, in the first pressure change process, it is possible to shorten the time until the wind pressure of the gas is stabilized. Therefore, it is possible to suppress an increase in processing time for the substrate.
 実施形態に係る塗布処理装置は、ステージに設けられた複数の吸引口を介して雰囲気を吸引する吸引部(一例として、吸引部530)と、吸引部による吸引力を調整する吸引力調整部(一例として、大気開放バルブ560)とを備えていてもよい。この場合、制御部は、搬送部による基板の搬送が開始された後、かつ、基板に対する機能液の吐出が開始される前に、吸引力調整部を制御して吸引力を第1吸引力から第1吸引力よりも大きい第2吸引力に変更する第1吸引力変更処理と、基板に対する機能液の吐出が終了した後、吸引力調整部を制御して吸引力を第2吸引力から第1吸引力に変更する第2吸引力変更処理とを実行してもよい。これにより、ステージに吸引される雰囲気の気流による機能液の乾燥を抑制することができる。したがって、機能液の乾燥による吐出不良をより確実に抑制することができる。 The coating treatment apparatus according to the embodiment includes a suction unit (for example, the suction unit 530) that sucks the atmosphere through a plurality of suction ports provided on the stage, and a suction force adjustment unit that adjusts the suction force of the suction unit ( As an example, an air release valve 560) may be provided. In this case, the control unit controls the suction force adjusting unit to reduce the suction force from the first suction force after the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started. After the first suction force changing process for changing the suction force to a second suction force larger than the first suction force and the discharge of the functional liquid onto the substrate are completed, the suction force adjustment unit is controlled to change the suction force from the second suction force to the second suction force. A second suction force changing process for changing the suction force to 1 suction force may be executed. As a result, it is possible to suppress the drying of the functional liquid due to the atmospheric airflow sucked into the stage. Therefore, ejection failure due to drying of the functional liquid can be suppressed more reliably.
 吸引力調整部は、雰囲気の吸引経路(一例として、吸引管531)に設けられた大気開放バルブであってもよい。これにより、たとえば第1吸引力変更処理において、吸引力が安定するまでの時間を短くすることができる。したがって、基板に対する処理時間が長くなることを抑制することができる。 The suction force adjustment unit may be an atmosphere release valve provided in the atmosphere suction path (for example, the suction pipe 531). As a result, for example, in the first suction force changing process, it is possible to shorten the time until the suction force is stabilized. Therefore, it is possible to prevent the substrate from being processed for a long time.
 制御部は、所定の基板(一例として、測定用基板)が吐出ヘッドの下方を通過する間における吐出ヘッドから機能液の着弾位置までの距離の変化を吐出ヘッドごとに示した描画ギャップ情報(一例として、描画ギャップ情報821)に基づき、機能液の吐出タイミングを吐出ヘッドごとに調整するタイミング調整処理を実行してもよい。これにより、たとえば搬送部の歪み等の塗布処理装置に由来する描画ギャップのずれを抑制することができる。したがって、描画処理の精度を向上させることができる。 The control unit acquires drawing gap information (example Alternatively, a timing adjustment process may be executed to adjust the ejection timing of the functional liquid for each ejection head based on the drawing gap information 821). As a result, it is possible to suppress deviation of the writing gap caused by the coating processing apparatus, such as distortion of the conveying section. Therefore, the accuracy of drawing processing can be improved.
 実施形態に係る塗布処理装置は、キャリッジよりも搬送方向の上流側に設けられ、基板の上方における基準位置から基板の板面までの距離を測定する測定部(一例として、第2測定部93)を備えていてもよい。この場合、制御部は、測定部を用いて基準位置から基板の板面までの距離を測定しつつ、得られた測定結果と、予め取得された描画ギャップ情報とに基づき、タイミング調整処理を実行してもよい。これにより、たとえば、実際に描画を行う基板に由来する描画ギャップ、たとえば、基板に形成された膜の膜厚や基板の反り等に起因する描画ギャップを考慮して機能液の吐出タイミングを調整することができる。したがって、描画処理の精度をさらに向上させることができる。 The coating treatment apparatus according to the embodiment includes a measurement unit (as an example, the second measurement unit 93) that is provided on the upstream side in the transport direction of the carriage and measures the distance from the reference position above the substrate to the plate surface of the substrate. may be provided. In this case, the control unit measures the distance from the reference position to the surface of the substrate using the measurement unit, and executes the timing adjustment process based on the obtained measurement result and the drawing gap information obtained in advance. You may As a result, for example, the writing gap caused by the substrate on which writing is actually performed, for example, the writing gap caused by the thickness of the film formed on the substrate, the warpage of the substrate, etc., can be taken into account to adjust the ejection timing of the functional liquid. be able to. Therefore, the accuracy of drawing processing can be further improved.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be noted that the embodiments disclosed this time should be considered as examples in all respects and not restrictive. Indeed, the above-described embodiments may be embodied in many different forms. Also, the above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
S 基板
1 基板処理装置
2 第1搬送ステージ
3 第2搬送ステージ
4 搬送部
5 描画部
6 フラッシング部
7 検査部
8 制御装置
41 ガイドレール
42 移動部
43 保持部
50 キャリッジ
51 第1キャリッジ群
52 第2キャリッジ群
53 第3キャリッジ群
54 第1処理ステージ
55 第2処理ステージ
56 第3処理ステージ
81 制御部
82 記憶部
500 吐出ヘッド
510 昇降機構
550 大気開放バルブ
S Substrate 1 Substrate processing apparatus 2 First transfer stage 3 Second transfer stage 4 Transfer section 5 Drawing section 6 Flushing section 7 Inspection section 8 Control device 41 Guide rail 42 Moving section 43 Holding section 50 Carriage 51 First carriage group 52 Second Carriage group 53 Third carriage group 54 First processing stage 55 Second processing stage 56 Third processing stage 81 Control unit 82 Storage unit 500 Ejection head 510 Elevating mechanism 550 Atmospheric release valve

Claims (12)

  1.  気体の風圧によって基板を浮上させるステージと、
     前記ステージの上方に配置され、機能液を吐出する複数の吐出ヘッドを備えたキャリッジと、
     前記ステージから浮上した前記基板を保持して搬送方向に沿って移動させる搬送部と、
     前記基板に対する前記機能液の吐出が行われる処理位置と前記処理位置より上方の退避位置との間で前記キャリッジを昇降させる昇降機構と、
     前記搬送部による前記基板の搬送が開始された後、かつ、前記基板に対する前記機能液の吐出が開始される前に、前記昇降機構を制御して前記キャリッジを前記退避位置から前記処理位置に移動させる第1移動処理と、前記基板に対する前記機能液の吐出が終了した後、前記昇降機構を制御して前記キャリッジを前記処理位置から前記退避位置に移動させる第2移動処理とを実行する制御部と
     を備える、塗布処理装置。
    a stage that floats the substrate by gas wind pressure;
    a carriage disposed above the stage and provided with a plurality of ejection heads for ejecting functional liquid;
    a transport unit that holds the substrate levitated from the stage and moves it along the transport direction;
    an elevating mechanism for elevating the carriage between a processing position where the functional liquid is discharged onto the substrate and a retracted position above the processing position;
    After the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started, the lifting mechanism is controlled to move the carriage from the retracted position to the processing position. and a second movement process of controlling the elevating mechanism to move the carriage from the processing position to the retracted position after the discharge of the functional liquid onto the substrate is completed. A coating processing apparatus comprising:
  2.  前記搬送方向に沿って並べられた複数の前記キャリッジと、
     複数の前記キャリッジに対応して設けられた複数の前記昇降機構と
     を備え、
     前記制御部は、
     複数の前記昇降機構を制御して、前記キャリッジごとに前記第1移動処理および前記第2移動処理を行う、請求項1に記載の塗布処理装置。
    a plurality of the carriages arranged along the transport direction;
    a plurality of lifting mechanisms provided corresponding to the plurality of carriages,
    The control unit
    2. The coating processing apparatus according to claim 1, wherein said first movement processing and said second movement processing are performed for each of said carriages by controlling a plurality of said elevating mechanisms.
  3.  前記ステージから噴出される前記気体の風圧を調整する風圧調整部
     を備え、
     前記制御部は、
     前記搬送部による前記基板の搬送が開始された後、かつ、前記基板に対する前記機能液の吐出が開始される前に、前記風圧調整部を制御して前記風圧を第1圧力から前記第1圧力よりも大きい第2圧力に変更する第1圧力変更処理と、前記基板に対する前記機能液の吐出が終了した後、前記風圧調整部を制御して前記風圧を前記第2圧力から前記第1圧力に変更する第2圧力変更処理とを実行する、請求項1に記載の塗布処理装置。
    a wind pressure adjustment unit that adjusts the wind pressure of the gas ejected from the stage,
    The control unit
    After the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started, the air pressure adjustment unit is controlled to reduce the air pressure from the first pressure to the first pressure. and a first pressure change process for changing the pressure to a second pressure higher than the pressure of the substrate, and after the discharge of the functional liquid onto the substrate is completed, the wind pressure adjusting unit is controlled to change the wind pressure from the second pressure to the first pressure. 2. The coating processing apparatus according to claim 1, wherein said second pressure changing process is executed.
  4.  前記搬送方向に沿って並べられた複数の前記キャリッジと、
     前記搬送方向に沿って並べられ、各々が複数の前記キャリッジの各々の下方に配置された複数の前記ステージと、
     複数の前記ステージに対応して設けられた複数の前記風圧調整部と
     を備え、
     前記制御部は、
     前記第1圧力変更処理において、前記ステージごとに、対応する前記キャリッジから前記基板に対する前記機能液の吐出が開始される前に、前記風圧調整部を制御して前記風圧を前記第1圧力から前記第2圧力に変更し、
     前記第2圧力変更処理において、前記ステージごとに、対応する前記キャリッジから前記基板に対する前記機能液の吐出が終了した後、前記風圧調整部を制御して前記風圧を前記第2圧力から前記第1圧力に変更する、請求項3に記載の塗布処理装置。
    a plurality of the carriages arranged along the transport direction;
    a plurality of stages arranged along the transport direction and arranged below each of the plurality of carriages;
    and a plurality of wind pressure adjustment units provided corresponding to the plurality of stages,
    The control unit
    In the first pressure changing process, before the discharge of the functional liquid from the corresponding carriage to the substrate is started for each stage, the wind pressure adjusting unit is controlled to change the wind pressure from the first pressure to the change to the second pressure,
    In the second pressure changing process, after the discharge of the functional liquid from the corresponding carriage to the substrate is completed for each stage, the wind pressure adjusting unit is controlled to change the wind pressure from the second pressure to the first pressure. 4. The coating treatment apparatus according to claim 3, wherein the pressure is changed.
  5.  複数の前記キャリッジに対応して設けられた複数の前記昇降機構
     を備え、
     前記制御部は、
     複数の前記昇降機構を制御して、前記キャリッジごとに前記第1移動処理および前記第2移動処理を行い、複数の前記風圧調整部を制御して、前記ステージごとに前記第1圧力変更処理および前記第2圧力変更処理を行う、請求項4に記載の塗布処理装置。
    a plurality of lifting mechanisms provided corresponding to the plurality of carriages,
    The control unit
    controlling the plurality of lifting mechanisms to perform the first movement processing and the second movement processing for each carriage; controlling the plurality of wind pressure adjustment units to perform the first pressure change processing and the 5. The coating processing apparatus according to claim 4, wherein said second pressure change processing is performed.
  6.  前記ステージに設けられた複数の噴出口に対して前記気体を供給する給気部
     を備え、
     前記風圧調整部は、前記気体の供給経路に設けられた大気開放バルブである、請求項3~5のいずれか一つに記載の塗布処理装置。
    an air supply unit that supplies the gas to a plurality of ejection ports provided on the stage;
    The coating treatment apparatus according to any one of claims 3 to 5, wherein the wind pressure adjustment unit is an atmosphere release valve provided in the gas supply path.
  7.  前記ステージに設けられた複数の吸引口を介して雰囲気を吸引する吸引部と、
     前記吸引部による吸引力を調整する吸引力調整部と
     を備え、
     前記制御部は、
     前記搬送部による前記基板の搬送が開始された後、かつ、前記基板に対する前記機能液の吐出が開始される前に、前記吸引力調整部を制御して前記吸引力を第1吸引力から前記第1吸引力よりも大きい第2吸引力に変更する第1吸引力変更処理と、前記基板に対する前記機能液の吐出が終了した後、前記吸引力調整部を制御して前記吸引力を前記第2吸引力から前記第1吸引力に変更する第2吸引力変更処理とを実行する、請求項1に記載の塗布処理装置。
    a suction unit that sucks the atmosphere through a plurality of suction ports provided on the stage;
    a suction force adjustment unit that adjusts the suction force of the suction unit,
    The control unit
    After the transfer of the substrate by the transfer unit is started and before the discharge of the functional liquid onto the substrate is started, the suction force adjustment unit is controlled to reduce the suction force from the first suction force to the A first suction force changing process for changing the suction force to a second suction force larger than the first suction force, and after the discharge of the functional liquid onto the substrate is completed, the suction force adjustment unit is controlled to change the suction force to the second suction force. 2. The coating processing apparatus according to claim 1, further executing a second suction force changing process of changing from the second suction force to the first suction force.
  8.  前記吸引力調整部は、前記雰囲気の吸引経路に設けられた大気開放バルブである、請求項7に記載の塗布処理装置。 The coating processing apparatus according to claim 7, wherein the suction force adjustment unit is an air release valve provided in the atmosphere suction path.
  9.  前記制御部は、
     所定の基板が前記吐出ヘッドの下方を通過する間における前記吐出ヘッドから前記機能液の着弾位置までの距離の変化を前記吐出ヘッドごとに示した描画ギャップ情報に基づき、前記機能液の吐出タイミングを前記吐出ヘッドごとに調整するタイミング調整処理を実行する、請求項1~8のいずれか一つに記載の塗布処理装置。
    The control unit
    The ejection timing of the functional liquid is determined based on the drawing gap information indicating the change in the distance from the ejection head to the landing position of the functional liquid for each ejection head while a predetermined substrate passes under the ejection head. 9. The coating processing apparatus according to any one of claims 1 to 8, wherein a timing adjustment process for adjusting each ejection head is executed.
  10.  前記キャリッジよりも前記搬送方向の上流側に設けられ、前記基板の上方における基準位置から前記基板の板面までの距離を測定する測定部
     を備え、
     前記制御部は、
     前記測定部を用いて前記基準位置から前記基板の板面までの距離を測定しつつ、得られた測定結果と、予め取得された前記描画ギャップ情報とに基づき、前記タイミング調整処理を実行する、請求項9に記載の塗布処理装置。
    a measuring unit that is provided upstream of the carriage in the transport direction and measures a distance from a reference position above the substrate to a plate surface of the substrate;
    The control unit
    While measuring the distance from the reference position to the board surface of the substrate using the measurement unit, the timing adjustment process is performed based on the obtained measurement result and the previously acquired writing gap information. The coating processing apparatus according to claim 9.
  11.  気体の風圧によって基板を浮上させるステージを用いて前記基板を浮上させつつ、前記ステージから浮上した前記基板を保持して搬送方向に沿って移動させる搬送部を用いて前記基板を搬送する工程と、
     前記ステージの上方に配置され、機能液を吐出する複数の吐出ヘッドを備えたキャリッジを用い、前記搬送部によって搬送される前記基板に対して前記機能液を吐出する工程と、
     前記搬送部による前記基板の搬送が開始された後、かつ、前記基板に対する前記機能液の吐出が開始される前に、前記基板に対する前記機能液の吐出が行われる処理位置と前記処理位置より上方の退避位置との間で前記キャリッジを昇降させる昇降機構を用いて前記キャリッジを前記退避位置から前記処理位置に移動させる工程と、
     前記基板に対する前記機能液の吐出が終了した後、前記昇降機構を用いて前記キャリッジを前記処理位置から前記退避位置に移動させる工程と
     を含む、塗布処理方法。
    A step of transporting the substrate using a transport unit that holds and moves the substrate floated from the stage along the transport direction while floating the substrate using a stage that floats the substrate by air pressure of gas;
    a step of ejecting the functional liquid onto the substrate transported by the transport section using a carriage disposed above the stage and having a plurality of ejection heads for ejecting the functional liquid;
    A processing position at which the functional liquid is discharged onto the substrate and a position above the processing position after the transport of the substrate by the transport section is started and before the discharge of the functional liquid onto the substrate is started. a step of moving the carriage from the retracted position to the processing position using an elevating mechanism that moves the carriage up and down between the retracted position and the retracted position;
    and a step of moving the carriage from the processing position to the retracted position using the elevating mechanism after the functional liquid has been discharged onto the substrate.
  12.  請求項11に記載の塗布処理方法をコンピュータに実行させる、塗布処理プログラム。 A coating processing program that causes a computer to execute the coating processing method according to claim 11.
PCT/JP2022/002225 2021-03-31 2022-01-21 Coating processing device, coating processing method, and coating processing program WO2022209197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060002 2021-03-31
JP2021-060002 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209197A1 true WO2022209197A1 (en) 2022-10-06

Family

ID=83458605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002225 WO2022209197A1 (en) 2021-03-31 2022-01-21 Coating processing device, coating processing method, and coating processing program

Country Status (2)

Country Link
TW (1) TW202304599A (en)
WO (1) WO2022209197A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253373A (en) * 2005-03-10 2006-09-21 Tokyo Electron Ltd Apparatus, method, and program for substrate processing
JP2012206114A (en) * 2011-03-16 2012-10-25 Tokyo Electron Ltd Coated layer formation method, coated film formation apparatus, and recording medium
JP2018126718A (en) * 2017-02-10 2018-08-16 東京エレクトロン株式会社 Application device and application method
JP2019195940A (en) * 2018-05-10 2019-11-14 コニカミノルタ株式会社 Ink jet recording device and detection method of floating of recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253373A (en) * 2005-03-10 2006-09-21 Tokyo Electron Ltd Apparatus, method, and program for substrate processing
JP2012206114A (en) * 2011-03-16 2012-10-25 Tokyo Electron Ltd Coated layer formation method, coated film formation apparatus, and recording medium
JP2018126718A (en) * 2017-02-10 2018-08-16 東京エレクトロン株式会社 Application device and application method
JP2019195940A (en) * 2018-05-10 2019-11-14 コニカミノルタ株式会社 Ink jet recording device and detection method of floating of recording medium

Also Published As

Publication number Publication date
TW202304599A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP5062339B2 (en) Inkjet device
JP2011088103A (en) Droplet discharge device
JP4634265B2 (en) Coating method and coating apparatus
JP5658858B2 (en) Coating apparatus and coating method
JP2005228881A (en) Levitation substrate transfer processing method and its apparatus
JP2007326271A (en) Inkjet recorder
JP7091172B2 (en) Inkjet recording device and its control method
JP2009285845A (en) Printer and printing method
JP2008076170A (en) Substrate inspection device
US11148433B2 (en) Liquid ejecting apparatus
JP2011210985A (en) Substrate carrier, and substrate processing apparatus
WO2022209197A1 (en) Coating processing device, coating processing method, and coating processing program
JP6860356B2 (en) Coating device and coating method
JP5477981B2 (en) Liquid ejection apparatus and maintenance method
TW202428364A (en) Devices, systems, and methods for controlling floatation of a substrate
JP7071068B2 (en) Inkjet recording device and control method of inkjet recording device
WO2017154793A1 (en) Liquid ejection device and method for handling curling of media
JP2022051952A (en) Inkjet recording device and method for controlling inkjet recording device
JP2013071112A (en) Coating liquid coating apparatus
JP2024015603A (en) Liquid droplet discharge device, liquid droplet discharge method and memory medium
JP2009172827A (en) Inkjet recorder
WO2023199749A1 (en) Droplet discharge device, droplet discharge method, and storage medium
JP2008229529A (en) Liquid drop discharge device and method for manufacturing device
JP2019155866A (en) Liquid discharge device
JP2011143543A (en) Liquid droplet delivering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP