WO2022209059A1 - 二次電池およびその製造方法 - Google Patents

二次電池およびその製造方法 Download PDF

Info

Publication number
WO2022209059A1
WO2022209059A1 PCT/JP2021/047213 JP2021047213W WO2022209059A1 WO 2022209059 A1 WO2022209059 A1 WO 2022209059A1 JP 2021047213 W JP2021047213 W JP 2021047213W WO 2022209059 A1 WO2022209059 A1 WO 2022209059A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
terminal portion
terminal
lid
hole
Prior art date
Application number
PCT/JP2021/047213
Other languages
English (en)
French (fr)
Inventor
健佑 藤原
吉一 堀越
大貴 西家
泰地 葛本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022209059A1 publication Critical patent/WO2022209059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/153Lids or covers characterised by their shape for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/181Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts

Definitions

  • This technology relates to a secondary battery and its manufacturing method.
  • secondary batteries Due to the widespread use of various electronic devices such as mobile phones, secondary batteries are being developed as power sources that are compact, lightweight, and capable of obtaining high energy density.
  • This secondary battery has a battery element housed inside an exterior member, and various studies have been made on the configuration of the secondary battery.
  • the insertion portion of the electrode terminal is inserted into the through hole provided in each of the sealing plate and the insulating gasket, and the electrode terminal is crimped together with the sealing plate and the insulating gasket (for example, See Patent Document 1.).
  • a secondary battery includes an exterior member having a through hole, a battery element housed inside the exterior member, an electrode terminal that shields the through hole, and the electrode terminal and the exterior member. and an insulating sealing member disposed between.
  • the exterior member includes a storage portion having an opening for storing the battery element inside, and a lid closing the opening and having a through hole, and the storage and lid are joined together.
  • the electrode terminal includes a first terminal portion arranged on one of the inner side and the outer side of the lid portion, and a second terminal portion arranged on the other of the inner side and the outer side of the lid portion. The terminal portion and the second terminal portion are fitted to each other inside the through hole.
  • a first terminal portion is arranged on one of the inside and the outside of a lid portion having a through hole, and the first terminal portion is arranged on the other of the inside and the outside of the lid portion.
  • the second terminal portion is arranged, and an insulating sealing member is interposed between one of the first terminal portion and the second terminal portion and the lid portion inside the through hole, and the inside of the through hole
  • an electrode terminal including the first terminal portion and the second terminal portion is formed, and the through hole is shielded using the electrode terminal,
  • the cover is used to close the opening and form an exterior member including the container and the cover.
  • the battery element is housed inside the exterior member having the through hole, the electrode terminal shields the through hole, and the electrode terminal and the exterior member are separated from each other.
  • An insulating sealing member is disposed therebetween, the exterior member includes a lid portion joined to the housing portion, the electrode terminals include the first terminal portion and the second terminal portion, and the Since the first terminal portion and the second terminal portion are fitted to each other inside the through hole, excellent capacitive characteristics and excellent sealing characteristics can be obtained.
  • the first terminal portion and the second terminal portion are fitted together inside the through hole of the lid portion.
  • the lid portion is joined to the storage portion to form the exterior member including the storage portion and the lid portion. can be obtained.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration of the secondary battery shown in FIG. 1;
  • FIG. 3 is a cross-sectional view showing an enlarged configuration of a part of the secondary battery shown in FIG. 2;
  • FIG. 3 is an enlarged sectional view showing the configuration of the battery element shown in FIG. 2;
  • FIG. It is a perspective view for explaining a manufacturing method of a secondary battery. It is a sectional view for explaining a formation method of an external terminal.
  • FIG. 7 is a cross-sectional view for explaining the method of forming the external terminals following FIG. 6 ;
  • FIG. 2 is a cross-sectional view showing the configuration of a secondary battery of a first comparative example;
  • FIG. 5 is a cross-sectional view showing the configuration of a secondary battery of a second comparative example
  • FIG. 3 is a cross-sectional view showing a configuration (part 1) of a secondary battery of modification 1
  • FIG. 10 is a cross-sectional view showing the configuration (part 2) of the secondary battery of Modification 1
  • FIG. 10 is a cross-sectional view showing the configuration (part 3) of the secondary battery of Modification 1
  • FIG. 10 is a cross-sectional view showing a configuration (part 4) of a secondary battery of Modification 1
  • 10 is a cross-sectional view showing the configuration of a secondary battery of Modification 2.
  • FIG. FIG. 11 is a cross-sectional view showing the configuration of a secondary battery of Modification 3
  • FIG. 11 is a cross-sectional view showing the configuration of a secondary battery of Modification 4;
  • the secondary battery described here has a columnar three-dimensional shape. As will be described later, this secondary battery has a pair of bottom portions facing each other and side wall portions connected to each of the pair of bottom portions.
  • the secondary battery is a so-called coin-side or button-type secondary battery, and the height of the secondary battery is smaller than the outer diameter.
  • the “outer diameter” is the diameter (maximum diameter) of each of the pair of bottoms, and the “height” is the distance (maximum distance) from one bottom to the other.
  • This secondary battery includes an electrolyte together with a positive electrode and a negative electrode, and in the secondary battery, the charge capacity of the negative electrode is greater than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • alkali metals are lithium, sodium and potassium
  • alkaline earth metals are beryllium, magnesium and calcium.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • FIG. 1 shows a perspective configuration of a secondary battery.
  • FIG. 2 is an enlarged sectional view of the secondary battery shown in FIG.
  • FIG. 3 is an enlarged sectional view of part of the secondary battery shown in FIG.
  • FIG. 4 is an enlarged sectional view of the battery element 20 shown in FIG.
  • the positive electrode 21, the negative electrode 22, the separator 23, the positive electrode lead 51, and the negative electrode lead 52 are shown linearly for the sake of simplification of the illustration. Only a portion of each of 41 and 42 is shown. In FIG. 4, only part of the battery element 20 is shown.
  • the upper, lower, right and left sides in FIGS. 2 and 3 are the upper, lower, right and left sides of the secondary battery.
  • the horizontal dimension is the width.
  • the lateral direction is a direction (horizontal direction) intersecting with a direction (vertical direction) in which the projecting portion 32Y is fitted into the fitting space 31S, as will be described later.
  • the secondary battery shown in FIG. 1 is a button-type secondary battery and has an outer diameter D and a height H. Therefore, the secondary battery has a three-dimensional shape in which the height H is smaller than the outer diameter D, that is, a flat and columnar three-dimensional shape.
  • the ratio D/H of the outer diameter D to the height H is greater than one.
  • the specific dimensions of the secondary battery are not particularly limited.
  • the ratio D/H is preferably 25 or less.
  • This secondary battery includes an outer can 10, a battery element 20, an external terminal 30, gaskets 41 and 42, a positive electrode lead 51 and a negative electrode lead 52, as shown in FIGS.
  • the outer can 10 is a hollow outer member that houses the battery element 20 and the like, and has a through hole 10K.
  • the outer can 10 has a flat and cylindrical three-dimensional shape according to the three-dimensional shape of the secondary battery, which is flat and cylindrical. Therefore, the outer can 10 has an upper bottom portion M1 and a lower bottom portion M2 facing each other, and a side wall portion M3.
  • the side wall portion M3 is arranged between the upper base portion M1 and the lower base portion M2, and is connected to the upper base portion M1 and the lower base portion M2, respectively.
  • the planar shape of each of the upper base portion M1 and the lower base portion M2 is circular, and the surface of the side wall portion M3 is an outwardly convex curved surface.
  • the outer can 10 includes a storage portion 11 and a lid portion 12 that are joined together, and the storage portion 11 is sealed by the lid portion 12 .
  • the storage portion 11 and the lid portion 12 are welded together.
  • the housing portion 11 is a flat and columnar substantially container-like member (lower bottom portion M2 and side wall portion M3) that houses therein the battery element 20 and the like.
  • the storage portion 11 has a structure in which the lower bottom portion M2 and the side wall portion M3 are integrated with each other. Since the housing portion 11 has a hollow structure with an open upper end and a closed lower end, it has an opening 11K at its upper end.
  • the lid portion 12 is a substantially disc-shaped member (upper bottom portion M1) that closes the opening portion 11K, and has the above-described through hole 10K. Therefore, the lid portion 12 has an inner wall surface 12M inside the through hole 10K.
  • the through hole 10K is a path for connecting the lower terminal portion 31 and the upper terminal portion 32 to each other, that is, for fitting the projecting portion 32Y into the fitting space 31S, as will be described later.
  • the lid portion 12 is already welded to the housing portion 11 as described above, so the opening portion 11K is closed by the lid portion 12 . In this case, it may not be possible to confirm whether or not the storage portion 11 has the opening 11K by looking at the appearance of the secondary battery.
  • the lid portion 12 has a recess portion 12U.
  • the lid portion 12 is bent so as to be partially recessed toward the inside of the storage portion 11, so that a portion of the lid portion 12 is bent to form a downward step.
  • the shape of the recessed portion 12U that is, the shape defined by the outer edge of the recessed portion 12U when the secondary battery is viewed from above is not particularly limited.
  • the shape of the recessed portion 12U is circular.
  • the inner diameter and depth of the recessed portion 12U are not particularly limited, they can be set arbitrarily.
  • the outer can 10 is a so-called welded can because it is a can in which two members (the storage portion 11 and the lid portion 12) that are physically separated from each other are welded together. As a result, after the completion of the secondary battery, the outer can 10 is physically one member as a whole, and thus cannot be separated into two members (the storage portion 11 and the lid portion 12) afterwards. .
  • the outer can 10 which is a welded can, is a so-called crimpless can that is different from a crimped can formed using caulking. This is because the energy density per unit volume increases because the element space volume increases inside the outer can 10 .
  • This “element space volume” is the volume (effective volume) of the internal space of the outer can 10 that can be used to house the battery element 20 .
  • the armored can 10 which is a welded can, does not have a portion in which two or more members overlap each other, and does not have a portion in which two or more members overlap each other.
  • Does not have a portion folded over means that the outer can 10 is not processed (bent) so that a part of the outer can 10 is folded over. Further, “not having a portion where two or more members overlap each other” means that the outer can 10 is physically one member after the completion of the secondary battery. It literally means that it cannot be separated into two or more members. That is, the state of the outer can 10 in the secondary battery after completion is not a state in which two or more members are combined while overlapping each other so that they can be separated later.
  • each of the storage portion 11 and the lid portion 12 has conductivity.
  • the outer can 10 is connected to the battery element 20 (negative electrode 22 to be described later) via a negative electrode lead 52 .
  • the outer can 10 is electrically connected to the negative electrode 22 and functions as an external connection terminal for the negative electrode 22 . Since the secondary battery does not need to be provided with an external connection terminal for the negative electrode 22 separately from the outer can 10, the decrease in the element space volume due to the presence of the external connection terminal for the negative electrode 22 is suppressed. is. As a result, the element space volume increases, so the energy density per unit volume increases.
  • each of the outer can 10, that is, the storage portion 11 and the lid portion 12 contains one or more of conductive materials such as metal materials and alloy materials, and the conductive materials Materials include iron, copper, nickel, stainless steel, iron alloys, copper alloys and nickel alloys.
  • the type of stainless steel is not particularly limited, but specific examples include SUS304 and SUS316.
  • the material for forming the storage portion 11 and the material for forming the lid portion 12 may be the same as or different from each other.
  • the lid portion 12 is insulated via gaskets 41 and 42 from the external terminal 30 that functions as an external connection terminal for the positive electrode 21, as will be described later. This is because contact (short circuit) between the outer can 10 (terminal for external connection of the negative electrode 22) and the external terminal 30 (terminal for external connection of the positive electrode 21) is prevented.
  • the battery element 20 is a power generating element that advances charge/discharge reactions, and is housed inside the outer can 10. As shown in FIG.
  • the battery element 20 includes a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown) that is a liquid electrolyte.
  • the battery element 20 described here is a so-called wound electrode assembly. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and the positive electrode 21, the negative electrode 22 and the separator 23 are wound. Accordingly, since the positive electrode 21 and the negative electrode 22 are wound while facing each other with the separator 23 interposed therebetween, the battery element 20 has a winding center space 20K that is a winding core.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are wound so that the separator 23 is arranged on the outermost periphery.
  • the battery element 20 has a three-dimensional shape similar to the three-dimensional shape of the outer can 10, and thus has a cylindrical three-dimensional shape. Compared to the case where the battery element 20 has a three-dimensional shape different from the three-dimensional shape of the outer can 10, when the battery element 20 is accommodated inside the outer can 10, dead space (the outer can 10 and the battery element 20) is less likely to occur, and the internal space of the outer can 10 is effectively utilized. As a result, the element space volume increases, so the energy density per unit volume increases.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
  • the positive electrode current collector 21A is a conductive support that supports the positive electrode active material layer 21B, and has a pair of surfaces on which the positive electrode active material layer 21B is provided.
  • This positive electrode current collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
  • the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A, and contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium.
  • the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 .
  • the positive electrode active material layer 21B may further contain one or more of materials such as a positive electrode binder and a positive electrode conductive agent.
  • a method for forming the positive electrode active material layer 21B is not particularly limited, but a specific example is a coating method.
  • the positive electrode active material contains a lithium compound. This is because a high energy density can be obtained.
  • This lithium compound is a compound containing lithium as a constituent element, and more specifically, a compound containing lithium and one or more transition metal elements as constituent elements.
  • the lithium compound may further contain one or more of elements other than lithium and transition metal elements.
  • the type of lithium compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds. Specific examples of oxides include LiNiO 2 , LiCoO 2 and LiMn 2 O 4 . Specific examples of phosphoric acid compounds include LiFePO4 and LiMnPO4 .
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • the synthetic rubber is styrene-butadiene rubber and the like, and the polymer compound is polyvinylidene fluoride and the like.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, such as graphite, carbon black, acetylene black, and ketjen black.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
  • the negative electrode current collector 22A is a conductive support that supports the negative electrode active material layer 22B, and has a pair of surfaces on which the negative electrode active material layer 22B is provided.
  • This negative electrode current collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like.
  • the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A, and contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium.
  • the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 .
  • the negative electrode active material layer 22B may further contain one or more of materials such as a negative electrode binder and a negative electrode conductor. The details of the negative electrode binder and the negative electrode electrical conductor are the same as the details of the positive electrode binder and the positive electrode electrical conductor.
  • the method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or the like, or Two or more types.
  • the negative electrode active material includes one or both of a carbon material and a metal-based material. This is because a high energy density can be obtained.
  • Carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • a metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , one or both of silicon and tin, and the like. However, the metallic material may be a single substance, an alloy, a compound, a mixture of two or more thereof, or a material containing two or more phases thereof. Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2 or 0.2 ⁇ x ⁇ 1.4).
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through.
  • This separator 23 contains a polymer compound such as polyethylene.
  • the electrolyte is impregnated in each of the positive electrode 21, the negative electrode 22 and the separator 23 and contains a solvent and an electrolyte salt.
  • the solvent contains one or more of non-aqueous solvents (organic solvents) such as a carbonate-based compound, a carboxylic acid ester-based compound, and a lactone-based compound, and includes the non-aqueous solvent.
  • the electrolytic solution is a so-called non-aqueous electrolytic solution.
  • the electrolyte salt contains one or more of light metal salts such as lithium salts.
  • the external terminal 30 is an electrode terminal connected to an electronic device when the secondary battery is mounted on the electronic device, and shields the through hole 10K.
  • the external terminal 30 is crimped to the lid portion 12 via gaskets 41 and 42, as will be described later. Thereby, the external terminal 30 is fixed to the lid portion 12 via the gaskets 41 and 42 and is insulated from the lid portion 12 via the gaskets 41 and 42 .
  • the external terminal 30 is connected to the battery element 20 (the positive electrode 21 described above) via the positive electrode lead 51 . Since the external terminal 30 is electrically connected to the positive electrode 21 , it functions as an external connection terminal for the positive electrode 21 . Therefore, when the secondary battery is used, the secondary battery is connected to the electronic device via the external terminal 30 (terminal for external connection of the positive electrode 21) and the outer can 10 (terminal for external connection of the negative electrode 22). An electronic device becomes operable using a secondary battery as a power source.
  • the external terminal 30 includes a lower terminal portion 31 and an upper terminal portion 32, as shown in FIG. mated.
  • the lower terminal portion 31 is a first terminal portion arranged inside (under) the lid portion 12 .
  • the lower terminal portion 31 includes a flat portion 31X and a pair of projecting portions 31YR and 31YL connected to the flat portion 31X.
  • the flat portion 31X is a plate-like member that supports the projecting portions 31YR and 31YL, and is arranged outside the through-hole 10K.
  • the outer diameter of the flat portion 31X that determines the outer diameter (maximum outer diameter) of the lower terminal portion 31 is not particularly limited, but is preferably larger than the inner diameter of the through hole 10K. This is because the external terminal 30 can be easily crimped to the lid portion 12 via the gaskets 41 and 42, so that the sealing strength (seal strength) of the outer can 10 using the gaskets 41 and 42 is improved.
  • the protrusions 31YR and 31YL are a pair of first protrusions separated from each other, and a fitting space 31S is formed between the protrusions 31YR and 31YL.
  • the cross-sectional shape of the fitting space 31S is rectangular.
  • the projections 31YR and 31YL are separated from each other via the fitting space 31S.
  • the projecting portions 31YR and 31YL have a pair of opposing surfaces 31TR and 31TL that face each other with a fitting space 31S interposed therebetween. That is, the projecting portion 31YR has a facing surface 31TR, and the projecting portion 31YL has a facing surface 31TL.
  • each of the protruding portions 31YR and 31YL protrudes toward the upper terminal portion 32 via the through hole 10K, that is, protrudes upward.
  • each of the projecting portions 31YR and 31YL is integrated with the flat portion 31X.
  • each of the projecting portions 31YR and 31YL may be separated from the flat portion 31X as long as it is fixed to the flat portion 31X.
  • each of the protrusions 31YR and 31YL is part of one ring-shaped member. That is, the projecting portion 31YR is a part of the ring-shaped member, and the projecting portion 31YL is a portion of the ring-shaped member that faces the projecting portion 31YR through the fitting space 31S.
  • the protrusions 31YR and 31YL may be two members that are physically separated from each other.
  • the upper terminal portion 32 is a second terminal portion arranged outside (upper side) of the lid portion 12 .
  • the upper terminal portion 32 includes a flat portion 32X and a projecting portion 32Y connected to the flat portion 32X.
  • the upper terminal portion 32 has a three-dimensional shape in which the thickness of the central portion is locally increased.
  • the flat portion 32X is a plate-like member that supports the projecting portion 32Y, and is arranged outside the through-hole 10K.
  • the outer diameter of the flat portion 32X that determines the outer diameter (maximum outer diameter) of the upper terminal portion 32 is not particularly limited, but is preferably larger than the inner diameter of the through hole 10K. This is because the external terminal 30 can be easily crimped to the lid portion 12 via the gaskets 41 and 42, so that the sealing strength of the outer can 10 using the gaskets 41 and 42 is improved.
  • the flat portion 32X is arranged inside the recessed portion 12U. That is, the flat portion 32X is housed inside the recessed portion 12U so as not to protrude outside the recessed portion 12U. This is because the energy density per unit volume is increased because the height H of the secondary battery is smaller than when the flat portion 32X protrudes outward beyond the recessed portion 12U.
  • the protruding portion 32Y protrudes toward the lower terminal portion 31 through the through-hole 10K, that is, protrudes downward.
  • the cross-sectional shape of the projecting portion 32Y is an inverted trapezoid, and the projecting portion 32Y is integrated with the flat portion 32X.
  • the projecting portion 32Y may be separated from the flat portion 32X as long as it is fixed to the flat portion 32X.
  • the width W of the projecting portion 32Y gradually increases in the direction away from the lower terminal portion 31 (upward direction).
  • the projecting portion 32Y has a pair of inclined surfaces 32MR and 32ML that gradually increase in width W from the tip.
  • the inclined surface 32MR faces the facing surface 31TR
  • the inclined surface 32ML faces the facing surface 31TL.
  • each of the inclined surfaces 32MR and 32ML is a flat surface.
  • the projecting portion 32Y of the upper terminal portion 32 is inserted into the fitting space 31S provided in the lower terminal portion 31, and more specifically, is fitted into the fitting space 31S.
  • the inclined surfaces 32MR and 32ML are in contact with the opposing surfaces 31TR and 31TL, respectively, and the protruding portions 31YR and 31YL are arranged such that the opposing surfaces 31TR and 31TL are in contact with the inclined surfaces 32MR and 32ML, respectively. It is slanted along each other. Therefore, the lower terminal portion 31 and the upper terminal portion 32 are electrically connected to each other by being coupled to each other.
  • the inclined surface 32MR is in contact with the facing surface 31TR, and the inclined surface 32ML is in contact with the facing surface 31TL.
  • the projecting portion 31YR is inclined rightward.
  • the projecting portion 31YL is inclined leftward because the facing surface 31TL is inclined along the inclined surface 32ML.
  • the outer edges ER and EL of the tips of the protruding portions 31YR and 31YL are arranged at positions overlapping the lid portion 12 . That is, since the outer edge ER of the projecting portion 31YR is arranged at a position overlapping the lid portion 12, the position P1 of the outer edge ER is on the right side of the position P2 of the inner wall surface 12M in the width direction (horizontal direction). Further, since the outer edge EL of the protruding portion 31YL is arranged at a position overlapping with the lid portion 12, the position P3 of the outer edge EL is on the left side of the position P4 of the inner wall surface 12M in the width direction.
  • the protruding portion 32Y of the upper terminal portion 32 is fitted into the fitting space 31S of the lower terminal portion 31, and the outer edges ER and EL are arranged at positions overlapping the lid portion 12, which will be described later. Since the upper terminal portion 32 is firmly connected to the lower terminal portion 31 using the pressures FR and FL (see FIG. 7), the sealing strength of the outer can 10 using the gaskets 41 and 42 is improved. Because it does. The details of the reasons explained here will be described later.
  • the external terminals 30, that is, the lower terminal portions 31 and the upper terminal portions 32 each include one or more of conductive materials such as metal materials and alloy materials. Materials include aluminum and aluminum alloys. This is because even if the potential of the external terminal 30 becomes high, the external terminal 30 is less likely to be eluted into the electrolytic solution, so that the sealing strength can be easily maintained. Also, since the weight of the external terminal 30 is reduced, the energy density per unit weight of the secondary battery is increased. Only one of lower terminal portion 31 and upper terminal portion 32 may contain aluminum, an aluminum alloy, or the like. In this case, the other of the lower terminal portion 31 and the upper terminal portion 32 may contain stainless steel or the like.
  • the external terminal 30 may contain a clad material.
  • This clad material includes an aluminum layer and a nickel layer in order from the side closer to the battery element 20, and the aluminum layer and the nickel layer are roll-bonded to each other.
  • the clad material may contain a nickel alloy layer instead of the nickel layer.
  • the gaskets 41 and 42 are insulating sealing members arranged between the external terminal 30 and the outer can 10 so as not to block the through hole 10K, as shown in FIGS.
  • the gasket 41 is arranged between the lower terminal portion 31 and the lid portion 12
  • the gasket 42 is arranged between the upper terminal portion 32 and the lid portion 12 .
  • the gaskets 41 and 42 are pressed by the projecting portions 31YR and 31YL using pressing forces FR and FL which will be described later. As a result, the gasket 41 is compressed by the lower terminal portion 31 and the gasket 42 is compressed by the upper terminal portion 32 . Therefore, the sealing strength of the outer can 10 using the gaskets 41 and 42 is improved.
  • Each of the gaskets 41 and 42 contains one or more insulating polymeric compounds, and the polymeric compounds include polyphenylene sulfide (PPS) and perfluoroethylene propene. Copolymers (copolymerization of ethylene tetrafluoride and propylene hexafluoride (PFA), etc.).
  • PPS polyphenylene sulfide
  • PFA propylene hexafluoride
  • each of the gaskets 41 and 42 does not block the through hole 10K as described above, it has a ring-shaped planar shape with a through hole at a location corresponding to the through hole 10K.
  • the planar shape of each of the gaskets 41 and 42 is not particularly limited, it can be arbitrarily changed.
  • each of the gaskets 41 and 42 is not particularly limited, and can be set arbitrarily.
  • the installation range of the gasket 41 may extend outside the space between the lower terminal portion 31 and the lid portion 12
  • the installation range of the gasket 42 may extend between the upper terminal portion 32 and the lid portion 12 . may extend beyond the space between
  • the positive electrode lead 51 is accommodated inside the outer can 10 and is a connection wiring for the positive electrode 21 that connects the positive electrode 21 to the external terminal 30 .
  • the positive electrode lead 51 is connected to the positive electrode current collector 21A and is also connected to the lower terminal portion 31 via the through hole 10K.
  • the secondary battery has one positive electrode lead 51 here, it may have two or more positive electrode leads 51 . This is because the electrical resistance of the battery element 20 decreases as the number of the positive electrode leads 51 increases.
  • the details of the material forming the positive electrode lead 51 are the same as the details of the material forming the positive electrode current collector 21A. However, the material for forming the positive electrode lead 51 and the material for forming the positive electrode current collector 21A may be the same as or different from each other.
  • the positive electrode lead 51 is physically separated from the positive electrode current collector 21A, it is separated from the positive electrode current collector 21A. However, since the positive electrode lead 51 is physically continuous with the positive electrode current collector 21A, it may be integrated with the positive electrode current collector 21A.
  • the negative electrode lead 52 is housed inside the outer can 10 as shown in FIG.
  • the negative electrode lead 52 is connected to the negative electrode current collector 22A and to the housing portion 11 .
  • the secondary battery has one negative electrode lead 52 here, it may have two or more negative electrode leads 52 . This is because the electrical resistance of the battery element 20 decreases as the number of the negative electrode leads 52 increases.
  • the details of the material forming the negative electrode lead 52 are the same as the details of the material forming the negative electrode current collector 22A. However, the material for forming the negative electrode lead 52 and the material for forming the negative electrode current collector 22A may be the same as or different from each other.
  • the negative electrode lead 52 is physically separated from the negative electrode current collector 22A, it is separated from the negative electrode current collector 22A. However, since the negative electrode lead 52 is physically continuous with the negative electrode current collector 22A, it may be integrated with the negative electrode current collector 22A.
  • the secondary battery may further include one or more of other components (not shown).
  • the secondary battery may have only one of the lower insulating plate and the upper insulating plate.
  • a secondary battery operates as described below during charging and discharging.
  • lithium is released from the positive electrode 21 and absorbed into the negative electrode 22 via the electrolyte.
  • lithium is released from the negative electrode 22 and absorbed into the positive electrode 21 through the electrolyte.
  • this charge/discharge lithium is intercalated and deintercalated in an ionic state.
  • FIG. 5 shows a perspective configuration corresponding to FIG. 1 in order to explain the manufacturing method of the secondary battery.
  • 6 and 7 each show a cross-sectional configuration corresponding to FIG. 3 in order to explain the method of forming the external terminal 30 (the principle of fitting the projecting portion 32Y into the fitting space 31S).
  • FIG. 5 shows a state in which the storage portion 11 and the lid portion 12 are separated from each other.
  • 6 and 7 each show a state in which the lower terminal portion 31 and the upper terminal portion 32 are separated from each other.
  • FIGS. 1 to 4 already described will be referred to along with FIGS. 5 to 7 as needed.
  • the positive electrode 21 and the negative electrode 22 are prepared and the electrolytic solution is prepared according to the procedure illustrated below, and then the secondary battery is assembled using the positive electrode 21, the negative electrode 22 and the electrolytic solution. At the same time, the secondary battery after assembly is stabilized.
  • a storage portion 11 and a lid portion 12 that are physically separated from each other are used to form the outer can 10 .
  • the storage section 11 has the opening 11K.
  • a paste-like positive electrode mixture slurry is prepared by putting a positive electrode mixture in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent.
  • This solvent may be an aqueous solvent or an organic solvent.
  • the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A.
  • the cathode active material layer 21B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated and the compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
  • a paste-like negative electrode mixture slurry is prepared by putting a negative electrode mixture in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed together into a solvent.
  • the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 22A.
  • the negative electrode active material layer 22B is compression-molded using a roll press or the like. The details of the compression molding of the negative electrode active material layer 22B are the same as the details of the compression molding of the positive electrode active material layer 21B. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
  • the positive electrode lead 51 is connected to the positive electrode current collector 21A of the positive electrode 21 using a welding method or the like.
  • the negative electrode lead 52 is connected to the negative electrode current collector 22A of the negative electrode 22 by using a welding method or the like.
  • the welding method is one or more of resistance welding, laser welding, and the like. The details of the welding method described here are the same hereinafter.
  • a wound body 20Z having The wound body 20Z has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution.
  • the external terminals 30 are formed according to the procedure described below. That is, in order to form the external terminals 30, the lower terminal portion 31 and the upper terminal portion 32 are attached to the lid portion 12 via the gaskets 41 and 42. As shown in FIG.
  • the gaskets 41 and 42 are attached to the lid portion 12 and then the lower terminal portion 31 is attached to the lid portion 12 .
  • the lower terminal portion 31 is arranged inside the lid portion 12 .
  • the lower terminal portion 31 is positioned with respect to the lid portion 12 so that each of the projecting portions 31YR and 31YL is inserted into the through hole 10K.
  • the projecting portions 31YR and 31YL are not tilted and are substantially upright.
  • the fitting space 31S has a substantially constant width W1.
  • the upper terminal portion 32 is arranged above the lid portion 12 to which the lower terminal portion 31 and the gaskets 41 and 42 are attached.
  • the upper terminal portion 32 is arranged outside the lid portion 12 .
  • the upper terminal portion 32 is aligned with the lid portion 12 so that the projecting portion 32Y faces the lower terminal portion 31 .
  • the projecting portion 32Y has the inclined surfaces 32MR and 32ML as described above.
  • the tip of the projecting portion 32Y has a width W2 (minimum width), and the base of the projecting portion 32Y has a width W3 (maximum width). That is, the width W of the projecting portion 32Y gradually increases from the tip, and more specifically, gradually increases from the width W2 to the width W3.
  • the width W2 is less than or equal to the width W1. This is because the projecting portion 32Y can be easily inserted into the fitting space 31S. Moreover, the width W3 is larger than the width W1. This is because when the projecting portion 32Y is inserted into the fitting space 31S, the inclined surfaces 32MR and 32ML contact the opposing surfaces 31TR and 31TL, respectively, so that pressing forces FR and FL, which will be described later, are generated.
  • the projecting portions 31YR, 31YL and the projecting portion 32Y are inserted into the through-hole 10K, and the fitting space is opened.
  • the projecting portion 32Y is inserted into 31S.
  • the projecting portions 31YR and 31YL are tilted by pushing the projecting portions 31YR and 31YL to both sides using the projecting portion 32Y.
  • the inclined surface 32MR contacts the opposing surface 31TR. Since the surface 32ML contacts the opposing surface 31TL, the opposing surface 31TL is pressed leftward by the inclined surface 32ML.
  • a pressing force FR is generated in a direction (rightward) from the fitting space 31S toward the projecting portion 31YR in response to the pressing of the inclined surface 32MR against the opposing surface 31TR.
  • the portion 31YR inclines rightward.
  • a pressing force FL is generated in a direction (leftward) from the fitting space 31S toward the projecting portion 31YL. Tilt to the left. As a result, the position P3 of the outer edge EL shifts to the left while the position P4 of the inner wall surface 12M is fixed.
  • the protrusion 32Y is continuously inserted into the fitting space 31S until the inclined surface 32MR is brought into contact with the facing surface 31TR and the inclined surface 32ML is brought into contact with the facing surface 31TL.
  • the projecting portion 32Y is fitted into the fitting space 31S. That is, the gaskets 41 and 42 are interposed between the lower terminal portion 31 and the lid portion 12 inside the through hole 10K, and the lower terminal portion 31 and the upper terminal portion 32 are connected to each other inside the through hole 10K. Mate. Since the upper terminal portion 32 is thereby connected to the lower terminal portion 31, the external terminal 30 is formed.
  • the protrusions 31YR and 31YL are tilted by pushing the protrusions 31YR and 31YL to both sides using the protrusion 32Y.
  • the position P1 of the outer edge ER is positioned to the right of the position P2 of the inner wall surface 12M.
  • the outer edge ER is arranged at a position overlapping the lid portion 12 .
  • the position P3 of the outer edge EL is positioned to the left of the position P4 of the inner wall surface 12M.
  • the outer edge EL is arranged at a position overlapping the lid portion 12 .
  • the external terminal 30 is crimped to the lid portion 12 via the gaskets 41 and 42 using the pressing forces FR and FL, the external terminal 30 is fixed to the lid portion 12 via the gaskets 41 and 42.
  • the gasket 41 is sandwiched while being compressed by the lower terminal portion 31 and the lid portion 12, and the gasket 42 is sandwiched while being compressed by the upper terminal portion 32 and the lid portion 12 according to the pressing forces FR and FL. Therefore, the sealing strength using the gaskets 41 and 42 is improved.
  • the electrolytic solution is injected into the storage portion 11 through the opening portion 11K.
  • the wound body 20Z (the positive electrode 21, the negative electrode 22, and the separator 23) is impregnated with the electrolytic solution, so that the battery element 20 is produced.
  • part of the electrolytic solution is supplied to the winding central space 20K, so that the electrolytic solution impregnates the wound body 20Z from the winding central space 20K.
  • the lid 12 is joined to the storage portion 11.
  • the lid portion 12 is welded to the storage portion 11 using a welding method.
  • the positive electrode lead 51 is connected to the external terminal 30 via the through hole 10K using a welding method or the like.
  • the storage portion 11 and the lid portion 12 are welded to each other, so that the outer can 10 including the storage portion 11 and the lid portion 12 is formed, and the battery element 20 and the like are housed inside the outer can 10. Therefore, a secondary battery is assembled.
  • the battery element 20 is housed inside the outer can 10 having the through hole 10K, and the external terminal 30 shields the through hole 10K.
  • Gaskets 41 and 42 are arranged between and the outer can 10 includes a lid portion 12 joined to a storage portion 11 .
  • the external terminal 30 includes a lower terminal portion 31 and an upper terminal portion 32, and the lower terminal portion 31 and the upper terminal portion 32 are fitted to each other inside the through hole 10K. Therefore, for the reasons explained below, excellent capacitive properties and excellent sealing properties can be obtained.
  • the secondary battery of the present embodiment and two types of secondary batteries of comparative examples are compared with each other to explain the difference in action and effect.
  • FIG. 8 shows the cross-sectional structure of the secondary battery of the first comparative example, and corresponds to FIG. As shown in FIG. 8, the secondary battery of this first comparative example has the same configuration as that of the secondary battery of the present embodiment shown in FIG. 2, except for the following description. there is
  • the secondary battery of the first comparative example includes lid portion 112 and external terminal 130 corresponding to lid portion 12 and external terminal 30 (lower terminal portion 31 and upper terminal portion 32), A new auxiliary terminal 140 is provided.
  • the lid portion 112 has a recessed portion 112U, and the recessed portion 112U has a lower recessed portion 112UX and an upper recessed portion 112UY.
  • the lower recessed portion 112UX is located in the center, and the upper recessed portion 112UY is located around the lower recessed portion 112UX.
  • the depth of lower recessed portion 112UX is greater than the depth of upper recessed portion 112UY.
  • the through-hole 10K is provided in the lower hollow portion 112UX.
  • the external terminal 130 is a substantially plate-shaped member arranged outside the lid portion 112, and has a through hole 130K and a recess portion 130U.
  • the external terminal 130 is arranged inside the recess 112U so as not to protrude outside the recess 112U.
  • the through-hole 130K is provided in the recessed portion 130U. In this recessed portion 130U, the external terminal 130 is bent so as to be partially recessed toward the inside of the storage portion 11. As shown in FIG.
  • the auxiliary terminal 140 is a substantially rivet-shaped member in which two large outer diameter portions are connected to each other via one small outer diameter portion.
  • the small outer diameter portion is inserted into the through hole 10K and has an outer diameter equal to or smaller than the inner diameter of the through hole 10K.
  • a large outer diameter portion (hereinafter referred to as an “upper large outer diameter portion”) disposed outside the lid portion 112 has an outer diameter larger than the inner diameters of the through holes 10K and 130K. .
  • This upper large outer diameter portion is arranged inside the recessed portion 130U so as not to protrude outside the recessed portion 130U.
  • a large outer diameter portion (hereinafter referred to as a “lower large outer diameter portion”) disposed inside the lid portion 112 has an outer diameter larger than the inner diameters of the through holes 10K and 130K. there is Part or all of the lower large outer diameter portion is arranged inside the winding center space 20K.
  • the gasket 41 is arranged between the lid portion 112 and the auxiliary terminal 140
  • the gasket 42 is arranged between the lid portion 112 and the external terminal 130 .
  • the external terminal 130 and the auxiliary terminal 140 are It is crimped to the lid portion 112 via gaskets 41 and 42 . Thereby, the external terminal 130 and the auxiliary terminal 140 are electrically connected to each other and insulated from the lid portion 112 via the gaskets 41 and 42 .
  • the positive lead 51 is connected to the auxiliary terminal 140 .
  • FIG. 9 shows the cross-sectional structure of the secondary battery of the second comparative example, and corresponds to FIG.
  • the secondary battery of this second comparative example includes external terminals 230 (lower terminal portion 231 and upper terminal portion 232) corresponding to external terminals 30 (lower terminal portion 31 and upper terminal portion 32). Except for this, it has the same configuration as the configuration of the secondary battery of the present embodiment shown in FIG.
  • FIG. 3 will be referred to as needed to describe the configuration of the secondary battery of the second comparative example.
  • the lower terminal portion 231 has a configuration similar to that of the lower terminal portion 31, except that the projecting portions 31YR and 31YL are not inclined and are substantially upright.
  • the upper terminal portion 232 has a configuration similar to that of the upper terminal portion 32, except that the width W of the projecting portion 32Y does not change and is substantially constant. As a result, the projecting portion 32Y is inserted into the fitting space 31S, but the outer edges ER and EL of the projecting portions 31YR and 31YL are not positioned to overlap the lid portion 12. As shown in FIG. That is, the configuration of the lower terminal portion 231 is the same as the configuration of the lower terminal portion 31 before fitting shown in FIG.
  • the auxiliary terminal 140 is connected to the external terminal 130, and the auxiliary terminal 140 is arranged inside the winding center space 20K. Easier to connect. This makes it easier for the positive electrode lead 51 to be electrically connected to the external terminal 130 .
  • the outer can 10 is sealed using the gaskets 41 and 42. Strength is guaranteed.
  • the inner diameter of the winding center space 20K is larger than the outer diameter of the auxiliary terminal 140, that is, the outer diameter of the lower large outer diameter portion. There must be.
  • the internal volume (effective volume) of the outer can 10 that can be used to house the battery element 20 is reduced, so the facing area between the positive electrode 21 and the negative electrode 22 is reduced.
  • the charging/discharging area decreases due to the decrease in the facing area, and the battery capacity decreases.
  • the secondary battery of the second comparative example does not use the auxiliary terminal 140 .
  • the internal volume (effective volume) of the outer can 10 increases, the volume occupied by the battery element 20 increases.
  • the charge/discharge area increases as the facing area increases, so the battery capacity increases.
  • the projecting portion 32Y is simply inserted into the fitting space 31S.
  • the gaskets 41 and 42 are not compressed.
  • the respective sealing properties of the gaskets 41 and 42 are not sufficient.
  • the lower terminal portion 231 and the upper terminal portion 232 are likely to be separated from each other due to an external force such as vibration, a gap is likely to occur between the lower terminal portion 231 and the upper terminal portion 232, or The lower terminal portion 231 is likely to fall off from the upper terminal portion 232 .
  • the sealing strength of the outer can 10 using the gaskets 41 and 42 is lowered.
  • the projecting portion 32Y is fitted into the fitting space 31S using the pressing forces FR and FL.
  • the external terminal 30 is crimped to the lid portion 12 via the gaskets 41 and 42, the lower terminal portion 31 and the upper terminal portion 32 are firmly connected to each other. Thereby, the respective sealing properties of the gaskets 41 and 42 are sufficient.
  • the lower terminal portion 31 and the upper terminal portion 32 are less likely to be separated from each other without depending on an external force such as vibration, a gap is less likely to occur between the lower terminal portion 31 and the upper terminal portion 32.
  • the lower terminal portion 31 is less likely to come off from the upper terminal portion 32 . Therefore, the sealing strength of the outer can 10 using the gaskets 41 and 42 is improved.
  • the battery capacity is increased and the sealing strength of the outer can 10 is also improved. Therefore, both capacity characteristics and sealing characteristics can be achieved, so excellent capacity characteristics and excellent sealing characteristics can be obtained.
  • part of the gaskets 41 and 42 is arranged between the lower terminal portion 31 and the lid portion 12 inside the through hole 10K. If a portion is compressed toward the lid portion 12 by the lower terminal portion 31, the lower terminal portion 31 and the upper terminal portion 32 are more strongly connected to each other. Therefore, since the sealing performance of the outer can 10 is further improved, a higher effect can be obtained.
  • the lower terminal portion 31 includes projecting portions 31YR and 31YL, and the projecting portions 31YR and 31YL project toward the upper terminal portion 32 through the through-hole 10K and through the fitting space 31S.
  • the upper terminal portion 32 includes a projecting portion 32Y, which protrudes toward the lower terminal portion 31 via the through hole 10K and fits into the fitting space 31S. If so, the lower terminal portion 31 and the upper terminal portion 32 are sufficiently firmly connected to each other. Therefore, since the sealing performance of the outer can 10 is sufficiently improved, a higher effect can be obtained.
  • the protruding portions 31YR and 31YL have opposing surfaces 31TR and 31TL facing each other through the fitting space 31S, and the protruding portion 32Y forms inclined surfaces 32MR and 32ML that gradually increase the width W from the tip.
  • the inclined surfaces 32MR and 32ML are in contact with the opposed surfaces 31TR and 31TL, respectively.
  • the lower terminal portion 31 and the upper terminal portion 32 are more strongly connected to each other if they are inclined along the respective lines. Therefore, since the sealing performance of the outer can 10 is further improved, a higher effect can be obtained.
  • the external terminal 30 can be moved to the lid portion by utilizing the inclination state of the protruding portions 31YR and 31YL. Since it is locked with the portion 12, the lower terminal portion 31 and the upper terminal portion 32 are extremely strongly connected to each other. Therefore, the sealing performance of the outer can 10 is remarkably improved, and a remarkably high effect can be obtained.
  • the storage portion 11 and the lid portion 12 are welded to each other, the storage portion 11 and the lid portion 12 are firmly connected to each other. Therefore, since the sealing performance of the outer can 10 is further improved, a higher effect can be obtained.
  • the outer diameter of the lower terminal portion 31 is larger than the outer diameter of the through hole 10K, the external terminal 30 can be easily crimped to the lid portion 12 via the gaskets 41 and 42 . Therefore, since the sealing strength of the outer can 10 is further improved, a higher effect can be obtained.
  • the advantages described here are similarly obtained even when the outer diameter of the upper terminal portion 32 is larger than the outer diameter of the through-hole 10K.
  • the lower terminal portion 31 contains one or both of aluminum and an aluminum alloy
  • the external terminal 30 is less likely to be eluted into the electrolytic solution even at a high potential, and the weight energy density is increased. Therefore, the sealing strength of the outer can 10 is easily maintained, and the battery capacity is further increased, so that a higher effect can be obtained.
  • the advantages described herein are also obtained when upper terminal portion 32 includes one or both of aluminum and an aluminum alloy.
  • the lid portion 12 has the recessed portion 12U and the upper terminal portion 32 is arranged inside the recessed portion 12U, the volumetric energy density increases according to the increase in the element space volume. effect can be obtained.
  • the external terminal 30 functions as an external connection terminal for the positive electrode 21
  • the outer can 10 functions as an external connection terminal for the negative electrode 22 .
  • the secondary battery is a flat and columnar secondary battery, even a small secondary battery can achieve both capacity characteristics and sealing characteristics, so that a higher effect can be obtained.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • the outer can 10 is formed by joining the lid portion 12 to the storage portion 11 .
  • both the capacity characteristics and the sealing characteristics are achieved for the reasons described above, so that a secondary battery having excellent capacity characteristics and excellent sealing characteristics can be obtained.
  • the projecting portion 31Y protrudes into the fitting space 31S.
  • the projections 31YR and 31YL are pushed to both sides by fitting the projections 32Y and by inclining the projections 31YR and 31YL, the external terminals 30 are formed as described above. Since it is locked to the lid portion 12, a higher effect can be obtained.
  • the width W of the projecting portion 32Y gradually increases from the tip, as described above, the lower terminal portion 31 and the upper terminal portion 32 are firmly connected to each other, so that a higher effect can be obtained. .
  • each of the cross-sectional shape of the fitting space 31S and the cross-sectional shape of the projecting portion 32Y may be an inverted triangle.
  • each of the cross-sectional shape of the fitting space 31S and the cross-sectional shape of the projecting portion 32Y may be substantially semicircular.
  • the cross-sectional shape of the fitting space 31S and the cross-sectional shape of the projecting portion 32Y are each an inverted trapezoid, and the projecting portion 32Y is provided.
  • the upper terminal portion 32 may be recessed along the fitting space 31S at a location. In this case, since the upper terminal portion 32 is bent so as to be locally depressed, a projecting portion 32Y is formed.
  • the lower terminal portion 31 may have a through hole 31K at a location corresponding to the projecting portion 32Y.
  • the positive electrode 21 is electrically connected to the external terminal 30 because the positive electrode lead 51 is connected to the projecting portion 32Y via the through hole 31K.
  • the configuration of the lower terminal portion 31 and the configuration of the upper terminal portion 32 may be reversed. That is, the lower terminal portion 31 arranged inside the lid portion 12 is the second terminal portion having one projecting portion, and the upper terminal portion 32 arranged outside the lid portion 12 is two terminal portions. The first terminal portion may have two projecting portions, and the projecting portion of the lower terminal portion 31 may be fitted into the fitting space of the upper terminal portion 32 . As described above, the configuration of the lower terminal portion 31 and the upper terminal portion 32 is opposite to the configuration of the lower terminal portion 31 and the configuration of the upper terminal portion 32, as described above. It is the same as the case shown in FIG. 2, except that .
  • the positive electrode 21 is connected to the external terminal 30 via the positive lead 51
  • the negative electrode 22 is connected to the housing 11 via the negative lead 52 .
  • the external terminal 30 functions as an external connection terminal for the positive electrode 21
  • the outer can 10 functions as an external connection terminal for the negative electrode 22 .
  • the positive electrode 21 is connected to the housing portion 11 via the positive electrode lead 51, and the negative electrode 22 is connected to the external terminal 30 via the negative electrode lead 52.
  • the outer can 10 may function as an external connection terminal for the positive electrode 21 and the external terminal 30 may function as an external connection terminal for the negative electrode 22 .
  • the external terminal 30 contains one or more of conductive materials such as a metal material and an alloy material in order to function as a terminal for external connection of the negative electrode 22, and its conductivity Materials include iron, copper, nickel, stainless steel, iron alloys, copper alloys and nickel alloys.
  • conductive materials include aluminum, aluminum alloys and stainless steel.
  • the outer can 10 which accounts for the majority of the secondary battery, contains one or both of aluminum and an aluminum alloy, the outer can 10 is less likely to be eluted into the electrolytic solution even at a high potential. As the weight increases, the gravimetric energy density increases significantly. Therefore, the sealing strength of the outer can 10 is easily maintained, and the battery capacity is further increased, so that a higher effect can be obtained.
  • the lid portion 12 has a recessed portion 12U, and the upper terminal portion 32 is arranged inside the recessed portion 12U.
  • the upper terminal portion 32 may not be arranged inside the recessed portion 12U. In this case as well, both the capacitive characteristics and the sealing characteristics are achieved, so that the same effect as in the case shown in FIG. 2 can be obtained.
  • the battery structure of the secondary battery is a button type.
  • the battery structure of the secondary battery may be cylindrical.
  • the structure of this cylindrical secondary battery is the same as that of the button-type secondary battery, except that the three-dimensional shape of the secondary battery is cylindrical because the ratio D/H is different.
  • a separator 23 which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that the winding misalignment of the battery element 20 is suppressed. As a result, even if a decomposition reaction of the electrolytic solution occurs, the secondary battery is less likely to swell.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
  • One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the plurality of insulating particles dissipate heat when the secondary battery generates heat, thereby improving the safety (heat resistance) of the secondary battery.
  • the insulating particles include one or both of inorganic particles and resin particles. Specific examples of inorganic particles are particles such as aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin particles are particles of acrylic resins, styrene resins, and the like.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • the porous membrane may be immersed in the precursor solution, or a plurality of insulating particles may be contained in the precursor solution.
  • Modification 7 An electrolytic solution, which is a liquid electrolyte, was used. However, although not specifically illustrated here, an electrolyte layer that is a gel electrolyte may be used instead of the electrolyte solution.
  • the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound.
  • This electrolyte layer is arranged between the positive electrode 21 and the separator 23 and between the negative electrode 22 and the separator 23 .
  • the electrolyte layer may be arranged only between the positive electrode 21 and the separator 23 , or may be arranged only between the negative electrode 22 and the separator 23 .
  • the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • a wound-type battery element 20 wound electrode body
  • a laminated battery element laminated electrode body
  • the laminated battery element has the same structure as the wound battery element 20 except for the following description.
  • a laminated battery element In a laminated battery element, positive electrodes and negative electrodes are alternately laminated with separators interposed therebetween. Therefore, a laminated battery element includes one or more positive electrodes, one or more negative electrodes, and one or more separators.
  • the configurations of the positive electrode, the negative electrode, and the separator are the same as the configurations of the positive electrode 21, the negative electrode 22, and the separator 23, respectively.
  • the laminated battery element When the laminated battery element includes a plurality of positive electrodes and a plurality of negative electrodes, a positive electrode lead is connected to each positive electrode current collector of each of the plurality of positive electrodes, and each negative electrode current collector of each of the plurality of negative electrodes is connected to the positive electrode lead. Since the negative lead is connected to the body, the secondary battery has a plurality of positive leads and a plurality of negative leads. The plurality of positive leads are connected to the external terminal 30 while being joined together, and the plurality of negative leads are connected to the storage portion 11 while being joined to each other.
  • the electrode reactant is lithium
  • the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

二次電池は、貫通口を有する外装部材と、その外装部材の内部に収納された電池素子と、その貫通口を遮蔽する電極端子と、その電極端子と外装部材との間に配置された絶縁性の封止部材とを備える。外装部材は、開口部を有すると共に電池素子を内部に収納する収納部と、その開口部を閉塞すると共に貫通口を有する蓋部とを含み、その収納部および蓋部は、互いに接合されている。電極端子は、蓋部の内側および外側のうちの一方に配置された第1端子部と、その蓋部の内側および外側のうちの他方に配置された第2端子部とを含み、その第1端子部および第2端子部は、貫通口の内部において互いに嵌合されている。

Description

二次電池およびその製造方法
 本技術は、二次電池およびその製造方法に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を得ることが可能である電源として二次電池の開発が進められている。この二次電池は、外装部材の内部に収納された電池素子を備えており、その二次電池の構成に関しては、様々な検討がなされている。
 具体的には、封口板および絶縁ガスケットのそれぞれに設けられた貫通口に電極端子の挿通部が挿通されており、その電極端子が封口板および絶縁ガスケットと一緒に加締められている(例えば、特許文献1参照。)。
特開2016-184466号公報
 二次電池の構成に関する様々な検討がなされているが、その二次電池の容量特性および封止特性は未だ十分でないため、改善の余地がある。
 よって、優れた容量特性および優れた封止特性を得ることが可能である二次電池およびその製造方法が望まれている。
 本技術の一実施形態の二次電池は、貫通口を有する外装部材と、その外装部材の内部に収納された電池素子と、その貫通口を遮蔽する電極端子と、その電極端子と外装部材との間に配置された絶縁性の封止部材とを備えたものである。外装部材は、開口部を有すると共に電池素子を内部に収納する収納部と、その開口部を閉塞すると共に貫通口を有する蓋部とを含み、その収納部および蓋部は、互いに接合されている。電極端子は、蓋部の内側および外側のうちの一方に配置された第1端子部と、その蓋部の内側および外側のうちの他方に配置された第2端子部とを含み、その第1端子部および第2端子部は、貫通口の内部において互いに嵌合されている。
 本技術の一実施形態の二次電池の製造方法は、貫通口を有する蓋部の内側および外側のうちの一方に第1端子部を配置し、その蓋部の内側および外側のうちの他方に第2端子部を配置し、その貫通口の内部において第1端子部および第2端子部のうちの一方と蓋部との間に絶縁性の封止部材を介在させながら、その貫通口の内部において第1端子部と第2端子部とを互いに嵌合させることにより、その第1端子部および第2端子部を含む電極端子を形成すると共に、その電極端子を用いて貫通口を遮蔽し、開口部を有する収納部に電極端子が形成された蓋部を接合させることにより、その蓋部を用いて開口部を閉塞すると共に、その収納部および蓋部を含む外装部材を形成するものである。
 本技術の一実施形態の二次電池によれば、貫通口を有する外装部材の内部に電池素子が収納されており、電極端子が貫通口を遮蔽しており、その電極端子と外装部材との間に絶縁性の封止部材が配置されており、その外装部材が収納部に接合された蓋部を含んでおり、その電極端子が第1端子部および第2端子部を含んでおり、その第1端子部および第2端子部が貫通口の内部において互いに嵌合されているので、優れた容量特性および優れた封止特性を得ることができる。
 本技術の一実施形態の二次電池の製造方法によれば、蓋部の貫通口の内部において第1端子部と第2端子部とを互いに嵌合させることにより、その第1端子部および第2端子部を含む電極端子を形成したのち、収納部に蓋部を接合させることにより、その収納部および蓋部を含む外装部材を形成しているので、優れた容量特性および優れた封止特性を有する二次電池を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池の構成を表す斜視図である。 図1に示した二次電池の構成を拡大して表す断面図である。 図2に示した二次電池の一部の構成を拡大して表す断面図である。 図2に示した電池素子の構成を拡大して表す断面図である。 二次電池の製造方法を説明するための斜視図である。 外部端子の形成方法を説明するための断面図である。 図6に続く外部端子の形成方法を説明するための断面図である。 第1比較例の二次電池の構成を表す断面図である。 第2比較例の二次電池の構成を表す断面図である。 変形例1の二次電池の構成(その1)を表す断面図である。 変形例1の二次電池の構成(その2)を表す断面図である。 変形例1の二次電池の構成(その3)を表す断面図である。 変形例1の二次電池の構成(その4)を表す断面図である。 変形例2の二次電池の構成を表す断面図である。 変形例3の二次電池の構成を表す断面図である。 変形例4の二次電池の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.構成
  1-2.動作
  1-3.製造方法
  1-4.作用および効果
 2.変形例
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、柱状の立体的形状を有している。この二次電池は、後述するように、互いに対向する一対の底部と、その一対の底部のそれぞれに連結された側壁部とを有している。
 ここでは、二次電池は、いわゆるコイン側またはボタン型と呼称される二次電池であり、その二次電池では、外径よりも高さが小さくなっている。この「外径」とは、一対の底部のそれぞれの直径(最大直径)であると共に、「高さ」とは、一方の底部から他方の底部までの距離(最大距離)である。
 二次電池の充放電原理は、特に限定されないが、以下では、電極反応物質の吸蔵放出を利用して電池容量が得られる場合に関して説明する。この二次電池は、正極および負極と共に電解質を備えており、その二次電池では、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属の具体例は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属の具体例は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。
<1-1.構成>
 図1は、二次電池の斜視構成を表している。図2は、図1に示した二次電池の断面構成を拡大している。図3は、図2に示した二次電池の一部の断面構成を拡大している。図4は、図2に示した電池素子20の断面構成を拡大している。
 ただし、図2では、図示内容を簡略化するために、正極21、負極22、セパレータ23、正極リード51および負極リード52のそれぞれを線状に示している、図3では、外部端子30およびガスケット41,42のそれぞれの一部だけを示している。図4では、電池素子20の一部だけを示している。
 以下の説明では、便宜上、図2および図3中の上側、下側、右側および左側を二次電池の上側、下側、右側および左側とする。また、図3では、横方向の寸法を幅とする。この横方向とは、後述するように、嵌合用空間31Sに突出部32Yが嵌合される方向(上下方向)と交差する方向(左右方向)である。
 図1に示した二次電池は、ボタン型の二次電池であり、外径Dおよび高さHを有している。このため、二次電池は、外径Dよりも高さHが小さい立体的形状、すなわち扁平かつ柱状の立体的形状を有している。ここでは、二次電池の立体的形状は、扁平かつ円筒(円柱)状であるため、高さHに対する外径Dの比D/Hは、1よりも大きくなっている。
 二次電池の具体的な寸法は、特に限定されない。一例を挙げると、外径D=3mm~30mmであると共に、高さH=0.5mm~70mmである。なお、比D/Hは、25以下であることが好ましい。
 この二次電池は、図1~図4示したように、外装缶10と、電池素子20と、外部端子30と、ガスケット41,42と、正極リード51および負極リード52とを備えている。
[外装缶]
 外装缶10は、図1~図3に示したように、電池素子20などを収納する中空の外装部材であり、貫通口10Kを有している。
 ここでは、外装缶10は、扁平かつ円柱状である二次電池の立体的形状に応じて、扁平かつ円柱状の立体的形状を有している。このため、外装缶10は、互いに対向する上底部M1および下底部M2と、側壁部M3とを有している。この側壁部M3は、上底部M1と下底部M2との間に配置されており、その上底部M1および下底部M2のそれぞれに連結されている。ここでは、上底部M1および下底部M2のそれぞれの平面形状は、円形であると共に、側壁部M3の表面は、外側に向かって凸型の湾曲面である。
 この外装缶10は、互いに接合された収納部11および蓋部12を含んでおり、その収納部11は、蓋部12により封止されている。ここでは、後述するように、収納部11および蓋部12は、互いに溶接されている。
 収納部11は、電池素子20などを内部に収納する扁平かつ円柱状の略器状の部材(下底部M2および側壁部M3)である。ここでは、収納部11は、下底部M2と側壁部M3とが互いに一体化された構造を有している。この収納部11は、上端が開放されると共に下端が閉塞された中空の構造を有しているため、その上端に開口部11Kを有している。
 蓋部12は、開口部11Kを閉塞する略円盤状の部材(上底部M1)であり、上記した貫通口10Kを有している。このため、蓋部12は、貫通口10Kの内部に内壁面12Mを有している。この貫通口10Kは、後述するように、下側端子部31と上側端子部32とを互いに連結させるため、すなわち嵌合用空間31Sに突出部32Yを嵌合させるための経路である。
 なお、完成後の二次電池では、上記したように、蓋部12が既に収納部11に溶接されているため、開口部11Kが蓋部12により閉塞されている。この場合には、二次電池の外観を見ても、収納部11が開口部11Kを有していたかどうかを確認できないとも考えられる。
 しかしながら、蓋部12が収納部11に溶接されていると、外装缶10の表面、より具体的には収納部11と蓋部12との境界に溶接痕が残っているはずである。このため、溶接痕の有無に応じて、収納部11が開口部11Kを有していたかどうかを事後的に確認できる。
 すなわち、外装缶10の表面に溶接痕が残っている場合には、収納部11が開口部11Kを有していたということである。一方、外装缶10の表面に溶接痕が残っていない場合には、収納部11が開口部11Kを有していなかったということである。
 ここでは、蓋部12は、窪み部12Uを有している。この窪み部12Uでは、蓋部12が収納部11の内部に向かって部分的に窪むように屈曲しているため、その蓋部12の一部が下向きの段差を形成するように折れ曲がっている。
 窪み部12Uの形状、すなわち二次電池を上方から見た場合において窪み部12Uの外縁により画定される形状は、特に限定されない。ここでは、窪み部12Uの形状は、円形である。なお、窪み部12Uの内径および深さは、特に限定されないため、任意に設定可能である。
 上記したように、外装缶10は、互いに物理的に分離されていた2個の部材(収納部11および蓋部12)が互いに溶接された缶であるため、いわゆる溶接缶である。これにより、外装缶10は、二次電池の完成後において全体として物理的に1個の部材であるため、事後的に2個の部材(収納部11および蓋部12)に分離できない状態である。
 溶接缶である外装缶10は、加締め加工を用いて形成されたクリンプ缶とは異なる缶であり、いわゆるクリンプレス缶である。外装缶10の内部において素子空間体積が増加するため、単位体積当たりのエネルギー密度が増加するからである。この「素子空間体積」とは、電池素子20を収納するために利用可能である外装缶10の内部空間の体積(有効体積)である。
 また、溶接缶である外装缶10は、互いに折り重なった部分を有していないと共に、2個以上の部材が互いに重なった部分を有していない。
 「互いに折り重なった部分を有していない」とは、外装缶10の一部が互いに折り重なるように加工(折り曲げ加工)されていないことを意味している。また、「2個以上の部材が互いに重なった部分を有していない」とは、二次電池の完成後において外装缶10が物理的に1個の部材であるため、その外装缶10が事後的に2個以上の部材に分離できないことを意味している。すなわち、完成後の二次電池における外装缶10の状態は、事後的に分離できるように2個以上の部材が互いに重なりながら組み合わされている状態でない。
 ここでは、外装缶10が導電性を有しているため、収納部11および蓋部12のそれぞれが導電性を有している。この外装缶10は、負極リード52を介して電池素子20(後述する負極22)と接続されている。これにより、外装缶10は、負極22と電気的に接続されているため、その負極22の外部接続用端子として機能する。二次電池が外装缶10とは別個に負極22の外部接続用端子を備えていなくてもよいため、その負極22の外部接続用端子の存在に起因する素子空間体積の減少が抑制されるからである。これにより、素子空間体積が増加するため、単位体積当たりのエネルギー密度が増加する。
 具体的には、外装缶10、すなわち収納部11および蓋部12のそれぞれは、金属材料および合金材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料は、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などである。ステンレスの種類は、特に限定されないが、具体的には、SUS304およびSUS316などである。ただし、収納部11の形成材料と蓋部12の形成材料とは、互いに同じでもよいし、互いに異なってもよい。
 なお、蓋部12は、後述するように、正極21の外部接続用端子として機能する外部端子30からガスケット41,42を介して絶縁されている。外装缶10(負極22の外部接続用端子)と外部端子30(正極21の外部接続用端子)との接触(短絡)が防止されるからである。
[電池素子]
 電池素子20は、図1、図2および図4に示したように、充放電反応を進行させる発電素子であり、外装缶10の内部に収納されている。この電池素子20は、正極21、負極22およびセパレータ23と共に、液状の電解質である電解液(図示せず)を含んでいる。
 ここで説明する電池素子20は、いわゆる巻回電極体である。すなわち、電池素子20では、正極21および負極22がセパレータ23を介して互いに積層されていると共に、その正極21、負極22およびセパレータ23が巻回されている。これにより、正極21および負極22は、セパレータ23を介して互いに対向しながら巻回されているため、電池素子20は、巻芯部である巻回中心空間20Kを有している。ここでは、セパレータ23が最外周に配置されるように正極21、負極22およびセパレータ23が巻回されている。
 この電池素子20は、外装缶10の立体的形状と同様の立体的形状を有しているため、円柱状の立体的形状を有している。電池素子20が外装缶10の立体的形状とは異なる立体的形状を有している場合と比較して、その外装缶10の内部に電池素子20が収納された際にデッドスペース(外装缶10と電池素子20との間の余剰空間)が発生しにくくなるため、その外装缶10の内部空間が有効に利用されるからである。これにより、素子空間体積が増加するため、単位体積当たりのエネルギー密度が増加する。
(正極)
 正極21は、図4に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。
 正極集電体21Aは、正極活物質層21Bを支持する導電性の支持体であり、その正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。
 ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられており、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。また、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などである。
 正極活物質は、リチウム化合物を含んでいる。高いエネルギー密度が得られるからである。このリチウム化合物は、リチウムを構成元素として含む化合物であり、より具体的には、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物である。ただし、リチウム化合物は、さらに、リチウムおよび遷移金属元素のそれぞれ以外の他元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 リチウム化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。酸化物の具体例は、LiNiO、LiCoOおよびLiMnなどである。リン酸化合物の具体例は、LiFePOおよびLiMnPOなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴムなどであると共に、高分子化合物は、ポリフッ化ビニリデンなどである。正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
(負極)
 負極22は、図4に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。
 負極集電体22Aは、負極活物質層22Bを支持する導電性の支持体であり、その負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。
 ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられており、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。また、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。
 負極活物質は、炭素材料および金属系材料のうちの一方または双方などを含んでいる。高いエネルギー密度が得られるからである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズのうちの一方または双方などである。ただし、金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよい、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2または0.2<x<1.4)などである。
(セパレータ)
 セパレータ23は、図4に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。
[外部端子]
 外部端子30は、図1~図3に示したように、二次電池が電子機器に搭載される際に、その電子機器に接続される電極端子であり、貫通口10Kを遮蔽している。
 この外部端子30は、後述するように、ガスケット41,42を介して蓋部12に加締められている。これにより、外部端子30は、ガスケット41,42を介して蓋部12に固定されていると共に、そのガスケット41,42を介して蓋部12から絶縁されている。
 ここでは、外部端子30は、正極リード51を介して電池素子20(上記した正極21)と接続されている。これにより、外部端子30は、正極21と電気的に接続されているため、その正極21の外部接続用端子として機能する。よって、二次電池の使用時には、外部端子30(正極21の外部接続用端子)および外装缶10(負極22の外部接続用端子)を介して二次電池が電子機器に接続されるため、その電子機器が二次電池を電源として用いて動作可能になる。
 特に、外部端子30は、図3に示したように、下側端子部31および上側端子部32を含んでおり、その下側端子部31および上側端子部32は、貫通口10Kの内部において互いに嵌合されている。
(下側端子部)
 下側端子部31は、蓋部12の内側(下側)に配置されている第1端子部である。ここでは、下側端子部31は、平坦部31Xと、その平坦部31Xに連結された一対の突出部31YR,31YLとを含んでいる。
 平坦部31Xは、突出部31YR,31YLを支持する平板状の部材であり、貫通口10Kの外側に配置されている。下側端子部31の外径(最大外径)を決定する平坦部31Xの外径は、特に限定されないが、中でも、貫通口10Kの内径よりも大きいことが好ましい。外部端子30がガスケット41,42を介して蓋部12に加締められやすくなるため、そのガスケット41,42を用いた外装缶10の封止強度(シール強度)が向上するからである。
 突出部31YR,31YLは、互いに離隔されている一対の第1突出部であり、その突出部31YR,31YLの間には、嵌合用空間31Sが形成されている。ここでは、嵌合用空間31Sの断面形状は、矩形である。これにより、突出部31YR,31YLは、嵌合用空間31Sを介して互いに離隔されている。また、突出部31YR,31YLは、嵌合用空間31Sを介して互いに対向する一対の対向面31TR,31TLを有している。すなわち、突出部31YRは、対向面31TRを有していると共に、突出部31YLは、対向面31TLを有している。
 突出部31YR,31YLのそれぞれは、貫通口10Kを経由しながら上側端子部32に向かって突出しており、すなわち上方に向かって突出している。ここでは、突出部31YR,31YLのそれぞれは、平坦部31Xと一体化されている。ただし、突出部31YR,31YLのそれぞれは、平坦部31Xに固定されていれば、その平坦部31Xとは別体化されていてもよい。
 ここでは、突出部31YR,31YLのそれぞれは、リング状である1個の部材の一部である。すなわち、突出部31YRは、リング状の部材のうちの一部であると共に、突出部31YLは、そのリング状の部材のうちの嵌合用空間31Sを介して突出部31YRに対向する部分である。ただし、突出部31YR,31YLは、互いに物理的に分離された2個の部材でもよい。
(上側端子部)
 上側端子部32は、蓋部12の外側(上側)に配置された第2端子部である。ここでは、上側端子部32は、平坦部32Xと、その平坦部32Xに連結された突出部32Yとを含んでいる。これにより、上側端子部32は、中央部の厚さが局所的に増加した立体的形状を有している。
 平坦部32Xは、突出部32Yを支持する平板状の部材であり、貫通口10Kの外側に配置されている。上側端子部32の外径(最大外径)を決定する平坦部32Xの外径は、特に限定されないが、中でも、貫通口10Kの内径よりも大きいことが好ましい。外部端子30がガスケット41,42を介して蓋部12に加締められやすくなるため、そのガスケット41,42を用いた外装缶10の封止強度が向上するからである。
 ここでは、上側端子部32が窪み部12Uの内部に配置されているため、平坦部32Xが窪み部12Uの内部に配置されている。すなわち、平坦部32Xは、窪み部12Uよりも外側に突出しないように、その窪み部12Uの内部に収納されている。平坦部32Xが窪み部12Uよりも外側に突出している場合と比較して、二次電池の高さHが小さくなるため、単位体積当たりのエネルギー密度が増加するからである。
 突出部32Yは、貫通口10Kを経由しながら下側端子部31に向かって突出しており、すなわち下方に向かって突出している。ここでは、突出部32Yの断面形状は、逆台形であると共に、その突出部32Yは、平坦部32Xと一体化されている。ただし、突出部32Yは、平坦部32Xに固定されていれば、その平坦部32Xとは別体化されていてもよい。
 突出部32Yの幅Wは、下側端子部31から遠ざかる方向(上方向)において次第に増加している。これにより、突出部32Yは、先端から幅Wを次第に増加させる一対の傾斜面32MR,32MLを有している。傾斜面32MRは、対向面31TRに対向していると共に、傾斜面32MLは、対向面31TLに対向している。ここでは、傾斜面32MR,32MLのそれぞれは、平坦面である。
 特に、上側端子部32の突出部32Yは、下側端子部31に設けられている嵌合用空間31Sに挿入されており、より具体的には、その嵌合用空間31Sに嵌合されている。これにより、傾斜面32MR,32MLのそれぞれは、対向面31TR,31TLのそれぞれに当接されていると共に、突出部31YR,31YLのそれぞれは、対向面31TR,31TLのそれぞれが傾斜面32MR,32MLのそれぞれに沿うように傾斜している。よって、下側端子部31および上側端子部32は、互いに連結されることにより、互いに電気的に接続されている。
 より具体的には、傾斜面32MRは、対向面31TRに当接されていると共に、傾斜面32MLは、対向面31TLに当接されている。
 また、突出部31YRは、対向面31TRが傾斜面32MRに沿うように傾斜しているため、右側に向かって傾斜している。突出部31YLは、対向面31TLが傾斜面32MLに沿うように傾斜しているため、左側に向かって傾斜している。
 この場合において、突出部31YR,31YLのそれぞれの先端の外縁ER,ELは、蓋部12と重なる位置に配置されている。すなわち、突出部31YRの外縁ERは、蓋部12と重なる位置に配置されているため、その外縁ERの位置P1は、幅方向(横方向)において内壁面12Mの位置P2よりも右側である。また、突出部31YLの外縁ELは、蓋部12と重なる位置に配置されているため、その外縁ELの位置P3は、幅方向において内壁面12Mの位置P4よりも左側である。
 下側端子部31の嵌合用空間31Sに上側端子部32の突出部32Yが嵌合されており、外縁ER,ELのそれぞれが蓋部12と重なる位置に配置されているのは、後述する押圧力FR,FL(図7参照)を利用して上側端子部32が下側端子部31に対して強固に連結されているため、ガスケット41,42を用いた外装缶10の封止強度が向上するからである。ここで説明した理由の詳細に関しては、後述する。
 なお、外部端子30、すなわち下側端子部31および上側端子部32のそれぞれは、金属材料および合金材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料は、アルミニウムおよびアルミニウム合金などである。外部端子30の電位が高くなっても、その外部端子30が電解液中に溶出しにくくなるため、封止強度が維持されやすくなるからである。また、外部端子30の重量が減少するため、二次電池の重量当たりのエネルギー密度が増加するからである。なお、下側端子部31および上側端子部32のうちの一方だけがアルミニウムおよびアルミニウム合金などを含んでいてもよい。この場合において、下側端子部31および上側端子部32のうちの他方は、ステンレス鋼などを含んでいてもよい。
 ただし、外部端子30は、クラッド材を含んでいてもよい。このクラッド材は、電池素子20に近い側から順にアルミニウム層およびニッケル層を含んでおり、そのアルミニウム層およびニッケル層は、互いに圧延接合されている。なお、クラッド材は、ニッケル層の代わりにニッケル合金層を含んでいてもよい。
[ガスケット]
 ガスケット41,42は、図2および図3に示したように、貫通口10Kを遮蔽しないように外部端子30と外装缶10との間に配置されている絶縁性の封止部材である。ここでは、ガスケット41は、下側端子部31と蓋部12との間に配置されていると共に、ガスケット42は、上側端子部32と蓋部12との間に配置されている。
 ガスケット41,42のそれぞれは、後述する押圧力FR,FLを利用して突出部31YR,31YLにより押圧されている。これにより、ガスケット41は、下側端子部31により圧縮されていると共に、ガスケット42は、上側端子部32により圧縮されている。よって、ガスケット41,42を用いた外装缶10の封止強度が向上している。
 すなわち、ガスケット41,42の一部は、貫通口10Kの内部において突出部31YRと蓋部12との間に配置されているため、その突出部31YRにより蓋部12に向けて圧縮されている。また、ガスケット41,42の一部は、貫通口10Kの内部において突出部31YLと蓋部12との間に配置されているため、その突出部31YLにより蓋部12に向けて圧縮されている。ガスケット41,42を用いた外装缶10の封止強度が向上するからである。
 なお、ガスケット41,42のそれぞれは、絶縁性を有する高分子化合物のうちのいずれか1種類または2種類以上を含んでおり、その高分子化合物は、ポリフェニレンスルファイド(PPS)およびパーフルオロエチレンプロペンコポリマー(四フッ化エチレンと六フッ化プロピレンとの共重合(PFA)などである。
 ここでは、ガスケット41,42のそれぞれは、上記したように、貫通口10Kを遮蔽していないため、その貫通口10Kに対応する箇所に貫通口を有するリング状の平面形状を有している。ただし、ガスケット41,42のそれぞれの平面形状は、特に限定されないため、任意に変更可能である。
 なお、ガスケット41,42のそれぞれの設置範囲は、特に限定されないため、任意に設定可能である。ガスケット41の設置範囲は、下側端子部31と蓋部12との間の空間よりも外側まで拡張されていてもよいと共に、ガスケット42の設置範囲は、上側端子部32と蓋部12との間の空間よりも外側まで拡張されていてもよい
[正極リード]
 正極リード51は、図2に示したように、外装缶10の内部に収納されており、外部端子30に正極21を接続させる正極21用の接続配線である。この正極リード51は、正極集電体21Aに接続されていると共に、貫通口10Kを経由して下側端子部31に接続されている。
 ここでは、二次電池は、1本の正極リード51を備えているが、2本以上の正極リード51を備えていてもよい。正極リード51の本数が増加すると、電池素子20の電気抵抗が低下するからである。
 正極リード51の形成材料に関する詳細は、正極集電体21Aの形成材料に関する詳細と同様である。ただし、正極リード51の形成材料と正極集電体21Aの形成材料とは、互いに同じでもよいし、互いに異なってもよい。
 ここでは、正極リード51は、正極集電体21Aから物理的に分離されているため、その正極集電体21Aとは別体化されている。ただし、正極リード51は、正極集電体21Aと物理的に連続しているため、その正極集電体21Aと一体化されていてもよい。
[負極リード]
 負極リード52は、図2に示したように、外装缶10の内部に収納されており、外装缶10に負極22を接続させる負極22用の接続配線である。この負極リード52は、負極集電体22Aに接続されていると共に、収納部11に接続されている。
 ここでは、二次電池は、1本の負極リード52を備えているが、2本以上の負極リード52を備えていてもよい。負極リード52の本数が増加すると、電池素子20の電気抵抗が低下するからである。
 負極リード52の形成材料に関する詳細は、負極集電体22Aの形成材料に関する詳細と同様である。ただし、負極リード52の形成材料と負極集電体22Aの形成材料とは、互いに同じでもよいし、互いに異なってもよい。
 ここでは、負極リード52は、負極集電体22Aから物理的に分離されているため、その負極集電体22Aとは別体化されている。ただし、負極リード52は、負極集電体22Aと物理的に連続しているため、その負極集電体22Aと一体化されていてもよい。
[その他]
 なお、二次電池は、さらに、図示しない他の構成要素のうちのいずれか1種類または2種類以上を備えていてもよい。
 他の構成要素の具体例は、下側絶縁板および上側絶縁板である。下側絶縁板は、収納部11(下底部M2)と電池素子20との間に配置されていると共に、上側絶縁板は、蓋部12と電池素子20との間に配置されている。これにより、外装缶10と正極21との短絡が防止される。ただし、二次電池は、下側絶縁板および上側絶縁板のうちのいずれか一方だけを備えていてもよい。
<1-2.動作>
 二次電池は、充放電時において、以下で説明するように動作する。充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。一方、放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。この充放電時には、リチウムがイオン状態で吸蔵放出される。
<1-3.製造方法>
 図5は、二次電池の製造方法を説明するために、図1に対応する斜視構成を表している。図6および図7のそれぞれは、外部端子30の形成方法(嵌合用空間31Sに対する突出部32Yの嵌合原理)を説明するために、図3に対応する断面構成を表している。
 ただし、図5では、収納部11と蓋部12とが互いに分離されている状態を示している。また、図6および図7のそれぞれでは、下側端子部31と上側端子部32とが互いに分離されている状態を示している。
 以下の説明では、随時、図5~図7と共に、既に説明した図1~図4を参照する。
 二次電池を製造する場合には、以下で例示する手順により、正極21および負極22を作製すると共に電解液を調製したのち、その正極21、負極22および電解液を用いて二次電池を組み立てると共に、その組み立て後の二次電池の安定化処理を行う。
 ここでは、図5に示したように、外装缶10を形成するために、互いに物理的に分離されている収納部11および蓋部12を用いる。上記したように、収納部11は、開口部11Kを有している。
[正極の作製]
 最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された正極合剤を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。ここで説明した溶媒に関する詳細は、以降においても同様である。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。最後に、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、正極活物質層21Bを加熱してもよいと共に、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[負極の作製]
 最初に、負極活物質、負極結着剤および負極導電剤が互いに混合された負極合剤を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。最後に、ロールプレス機などを用いて負極活物質層22Bを圧縮成型する。負極活物質層22Bの圧縮成型に関する詳細は、正極活物質層21Bの圧縮成型に関する詳細と同様である。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
[電解液の調製]
 溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[二次電池の組み立て]
 最初に、溶接法などを用いて、正極21のうちの正極集電体21Aに正極リード51を接続させる。また、溶接法などを用いて、負極22のうちの負極集電体22Aに負極リード52を接続させる。溶接法は、抵抗溶接法およびレーザ溶接法などのうちのいずれか1種類または2種類以上である。ここで説明した溶接法に関する詳細は、以降においても同様である。
 続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、図5に示したように、巻回中心空間20Kを有する巻回体20Zを作製する。この巻回体20Zは、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。
 続いて、以下で説明する手順により、外部端子30を形成する。すなわち、外部端子30を形成するために、ガスケット41,42を介して蓋部12に下側端子部31および上側端子部32を取り付ける。
 最初に、図6に示したように、蓋部12にガスケット41,42を取り付けたのち、その蓋部12に下側端子部31を取り付ける。この場合には、蓋部12の内側に下側端子部31を配置する。また、突出部31YR,31YLのそれぞれが貫通口10Kに挿入されるように、蓋部12に対して下側端子部31を位置合わせする。下側端子部31の嵌合用空間31Sに上側端子部32の突出部32Yが嵌合される前の状態では、突出部31YR,31YLのそれぞれが傾斜しておらずにほぼ直立しているため、その嵌合用空間31Sは、ほぼ一定である幅W1を有している。
 続いて、下側端子部31およびガスケット41,42が取り付けられている蓋部12の上方に上側端子部32を配置する。この場合には、蓋部12の外側に上側端子部32を配置する。また、突出部32Yが下側端子部31に対向するように、蓋部12に対して上側端子部32を位置合わせする。この突出部32Yは、上記したように、傾斜面32MR,32MLを有している。これにより、突出部32Yの先端は幅W2(最小幅)を有していると共に、その突出部32Yの根本は幅W3(最大幅)を有している。すなわち、突出部32Yの幅Wは、先端から次第に増加しており、より具体的には、幅W2から幅W3まで次第に増加している。
 幅W2は、幅W1以下である。突出部32Yが嵌合用空間31Sに挿入されやすくなるからである。また、幅W3は、幅W1よりも大きくなっている。嵌合用空間31Sに対する突出部32Yの挿入時において、傾斜面32MR,32MLのそれぞれが対向面31TR,31TLのそれぞれに接触するため、後述する押圧力FR,FLが発生するからである。
 続いて、蓋部12に上側端子部32を接近させることにより、図7に示したように、貫通口10Kの内部に突出部31YR,31YLおよび突出部32Yのそれぞれを挿入させると共に、嵌合用空間31Sに突出部32Yを挿入させる。これにより、突出部32Yを用いて突出部31YR,31YLを両側に押すことにより、その突出部31YR,31YLのそれぞれを傾斜させる。
 具体的には、嵌合用空間31Sに突出部32Yが挿入される場合には、傾斜面32MRが対向面31TRに接触するため、その対向面31TRが傾斜面32MRにより右側に押圧されると共に、傾斜面32MLが対向面31TLに接触するため、その対向面31TLが傾斜面32MLにより左側に押圧される。
 この場合には、対向面31TRに対する傾斜面32MRの押圧に応じて、嵌合用空間31Sから突出部31YRに向かう方向(右向き)の押圧力FRが発生するため、その押圧力FRを利用して突出部31YRが右向きに傾斜する。これにより、内壁面12Mの位置P2が固定されているのに対して、外縁ERの位置P1が右側にシフトする。
 また、対向面31TLに対する傾斜面32MLの押圧に応じて、嵌合用空間31Sから突出部31YLに向かう方向(左向き)の押圧力FLが発生するため、その押圧力FLを利用して突出部31YLが左向きに傾斜する。これにより、内壁面12Mの位置P4が固定されているのに対して、外縁ELの位置P3が左側にシフトする。
 最後に、傾斜面32MRが対向面31TRに当接されると共に、傾斜面32MLが対向面31TLに当接されるまで、引き続き嵌合用空間31Sに突出部32Yを挿入させることにより、図3に示したように、その嵌合用空間31Sに突出部32Yを嵌合させる。すなわち、貫通口10Kの内部において下側端子部31と蓋部12との間にガスケット41,42を介在させながら、その貫通口10Kの内部において下側端子部31と上側端子部32とを互いに嵌合させる。これにより、上側端子部32が下側端子部31に連結されるため、外部端子30が形成される。
 この場合には、突出部32Yを用いて突出部31YR,31YLを両側に押すことにより、その突出部31YR,31YLのそれぞれを傾斜させる。
 具体的には、押圧力FRを利用して突出部31YRがさらに右向きに傾斜するため、外縁ERの位置P1が内壁面12Mの位置P2よりも右側に位置することになる。これにより、外縁ERが蓋部12と重なる位置に配置される。
 また、押圧力FLを利用して突出部31YLがさらに左向きに傾斜するため、外縁ELの位置P3が内壁面12Mの位置P4よりも左側に位置することになる。これにより、外縁ELが蓋部12と重なる位置に配置される。
 よって、押圧力FR,FLを利用して外部端子30がガスケット41,42を介して蓋部12に加締められるため、その外部端子30がガスケット41,42を介して蓋部12に固定される。この場合には、押圧力FR,FLに応じて、ガスケット41が下側端子部31および蓋部12により圧縮されながら挟まれると共に、ガスケット42が上側端子部32および蓋部12により圧縮されながら挟まれるため、そのガスケット41,42を用いた封止強度が向上する。
 上記した手順により、外部端子30を形成すると共に、その外部端子30を用いて貫通口10Kを遮蔽したのち、図5に示したように、開口部11Kから収納部11の内部に巻回体20Zを収納する。この場合には、溶接法などを用いて、収納部11に負極リード52を接続させる。
 続いて、開口部11Kから収納部11の内部に電解液を注入する。これにより、巻回体20Z(正極21、負極22およびセパレータ23)に電解液が含浸されるため、電池素子20が作製される。この場合には、電解液の一部が巻回中心空間20Kに供給されるため、その電解液が巻回中心空間20Kから巻回体20Zに含浸される。
 続いて、外部端子30がガスケット41,42を介して固定されている蓋部12を用いて開口部11Kを閉塞したのち、収納部11に蓋部12を接合させる。ここでは、溶接法を用いて収納部11に蓋部12を溶接する。この場合には、溶接法などを用いて、貫通口10Kを経由して外部端子30に正極リード51を接続させる。
 これにより、収納部11および蓋部12が互いに溶接されるため、その収納部11および蓋部12を含む外装缶10が形成されると共に、その外装缶10の内部に電池素子20などが収納されるため、二次電池が組み立てられる。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの条件は、任意に設定可能である。これにより、電池素子20において正極21および負極22のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。
 よって、外装缶10の内部に電池素子20などが封入されるため、二次電池が完成する。
<1-4.作用および効果>
 本実施形態の二次電池によれば、以下で説明する作用および効果が得られる。
[主な作用および効果]
 本実施形態の二次電池では、貫通口10Kを有する外装缶10の内部に電池素子20が収納されており、外部端子30が貫通口10Kを遮蔽しており、その外部端子30と外装缶10との間にガスケット41,42が配置されており、その外装缶10が収納部11に接合された蓋部12を含んでいる。また、外部端子30が下側端子部31および上側端子部32を含んでおり、その下側端子部31および上側端子部32が貫通口10Kの内部において互いに嵌合されている。よって、以下で説明する理由により、優れた容量特性および優れた封止特性を得ることができる。
 以下では、本実施形態の二次電池と2種類の比較例の二次電池とを互いに比較することにより、作用および効果の差異に関して説明する。
(第1比較例の二次電池の構成)
 図8は、第1比較例の二次電池の断面構成を表しており、図2に対応している。この第1比較例の二次電池は、図8に示したように、以下で説明することを除いて、図2に示した本実施形態の二次電池の構成と同様の構成を有している。
 具体的には、第1比較例の二次電池は、蓋部12および外部端子30(下側端子部31および上側端子部32)に対応する蓋部112および外部端子130を備えていると共に、新たに補助端子140を備えている。
 蓋部112は、窪み部112Uを有しており、その窪み部112Uは、下側窪み部112UXおよび上側窪み部112UYを有している。下側窪み部112UXは、中央に位置していると共に、上側窪み部112UYは、下側窪み部112UXの周囲に位置している。下側窪み部112UXの深さは、上側窪み部112UYの深さよりも大きくなっている。貫通口10Kは、下側窪み部112UXに設けられている。
 外部端子130は、蓋部112の外側に配置されている略板状の部材であり、貫通口130Kおよび窪み部130Uを有している。この外部端子130は、窪み部112Uよりも外側に突出しないように、その窪み部112Uの内部に配置されている。貫通口130Kは、窪み部130Uに設けられている。この窪み部130Uでは、外部端子130が収納部11の内部に向かって部分的に窪むように屈曲している。
 補助端子140は、2個の大外径部分が1個の小外径部分を介して互いに連結された略リベット状の部材である。小外径部分は、貫通口10Kの内部に挿通されており、その貫通口10Kの内径以下の外径を有している。蓋部112の外側に配置されている大外径部分(以下、「上側大外径部分」と呼称する。)は、貫通口10K,130Kのそれぞれの内径よりも大きな外径を有している。この上側大外径部分は、窪み部130Uよりも外側に突出しないように、その窪み部130Uの内部に配置されている。蓋部112の内側に配置されている大外径部分(以下、「下側大外径部分」と呼称する。)は、貫通口10K,130Kのそれぞれの内径よりも大きな外径を有している。下側大外径部分の一部または全部は、巻回中心空間20Kの内部に配置されている。
 ガスケット41は、蓋部112と補助端子140との間に配置されていると共に、ガスケット42は、蓋部112と外部端子130との間に配置されている。
 補助端子140では、上側大外径部分および下側大外径部分がガスケット41,42を介して蓋部112および外部端子130を上下から挟んでいるため、その外部端子130および補助端子140は、ガスケット41,42を介して蓋部112に加締められている。これにより、外部端子130および補助端子140は、互いに電気的に接続されていると共に、ガスケット41,42を介して蓋部112から絶縁されている。正極リード51は、補助端子140に接続されている。
(第2比較例の二次電池の構成)
 図9は、第2比較例の二次電池の断面構成を表しており、図2に対応している。この第2比較例の二次電池は、外部端子30(下側端子部31および上側端子部32)に対応する外部端子230(下側端子部231および上側端子部232)を備えていることを除いて、図2に示した本実施形態の二次電池の構成と同様の構成を有している。以下では、第2比較例の二次電池の構成を説明するために、随時、図3を参照する。
 下側端子部231は、突出部31YR,31YLのそれぞれが傾斜しておらずにほぼ直立していることを除いて、下側端子部31の構成と同様の構成を有している。上側端子部232は、突出部32Yの幅Wが変化しておらずにほぼ一定であることを除いて、上側端子部32の構成と同様の構成を有している。これにより、突出部32Yは嵌合用空間31Sに挿入されているが、突出部31YR,31YLのそれぞれの外縁ER,ELは蓋部12と重なる位置に配置されていない。すなわち、下側端子部231の構成は、図6に示した嵌合前の下側端子部31の構成と同様である。
(第1比較例の二次電池の問題点)
 第1比較例の二次電池では、外部端子130に補助端子140が接続されており、その補助端子140が巻回中心空間20Kの内部に配置されているため、正極リード51が補助端子140に接続されやすくなる。これにより、正極リード51が外部端子130と電気的に接続されやすくなる。
 この場合には、上記したように、外部端子130および補助端子140がガスケット41,42を介して蓋部112に加締められているため、そのガスケット41,42を用いた外装缶10の封止強度が担保される。
 しかしながら、補助端子140が巻回中心空間20Kの内部に配置されているため、その巻回中心空間20Kの内径は、補助端子140の外径、すなわち下側大外径部分の外径よりも大きくなければならない。この場合には、電池素子20を収納するために利用可能である外装缶10の内部体積(有効体積)が減少するため、正極21と負極22との対向面積が減少する。
 詳細には、補助端子140を避けながら正極21および負極22のそれぞれの高さを増加させると、その正極21および負極22のそれぞれの巻回数が減少するため、対向面積が減少する。また、補助端子140を避けながら正極21および負極22のそれぞれの巻回数を増加させると、その正極21および負極22のそれぞれの高さが減少するため、対向面積が減少する。よって、対向面積の減少に起因して充放電面積が減少するため、電池容量が減少する。
 これらのことから、第1比較例の二次電池では、外装缶10の封止強度が担保される反面、電池容量が減少するため、容量特性と封止特性とを両立させることができない。
(第2比較例の二次電池の問題点)
 第2比較例の二次電池では、第1比較例の二次電池とは異なり、補助端子140を用いていない。この場合には、外装缶10の内部体積(有効体積)が増加するため、電池素子20の占有体積が増加する。これにより、対向面積の増加に応じて充放電面積が増加するため、電池容量が増加する。
 しかしながら、外部端子230では、単に突出部32Yが嵌合用空間31Sに挿入されているだけである。この場合には、外部端子230がガスケット41,42を介して蓋部12に加締められていないため、そのガスケット41,42のそれぞれが圧縮されていない。これにより、ガスケット41,42のそれぞれの封止性が十分でない。また、振動などの外力に起因して下側端子部231および上側端子部232が互いに分離されやすいため、その下側端子部231と上側端子部232との間に隙間が発生しやすくなり、または下側端子部231が上側端子部232から脱落しやすくなる。これにより、ガスケット41,42を用いた外装缶10の封止強度が低下する。
 これらのことから、第2比較例の二次電池では、電池容量が増加する反面、外装缶10の封止強度が低下するため、容量特性と封止特性とを両立させることができない。
(本実施形態の二次電池の利点)
 これに対して、本実施形態の二次電池では、第2比較例の二次電池と同様に、補助端子140を用いていないため、電池素子20の占有体積が増加する。これにより、対向面積の増加に応じて充放電面積が増加するため、電池容量が増加する。
 しかも、押圧力FR,FLを利用して突出部32Yが嵌合用空間31Sに嵌合されている。この場合には、外部端子30がガスケット41,42を介して蓋部12に加締められているため、下側端子部31および上側端子部32が互いに強固に連結されている。これにより、ガスケット41,42のそれぞれの封止性が十分である。また、振動などの外力に依存せずに下側端子部31および上側端子部32が互いに分離されにくくなるため、その下側端子部31と上側端子部32との間に隙間が発生しにくくなると共に、その下側端子部31が上側端子部32から脱落しにくくなる。よって、ガスケット41,42を用いた外装缶10の封止強度が向上する。
 これらのことから、本実施形態の二次電池では、電池容量が増加すると共に、外装缶10の封止強度も向上する。よって、容量特性と封止特性とが両立されるため、優れた容量特性および優れた封止特性を得ることができる。
[他の作用および効果]
 本実施形態の二次電池では、特に、ガスケット41,42の一部が貫通口10Kの内部において下側端子部31と蓋部12との間に配置されているため、そのガスケット41,42の一部が下側端子部31により蓋部12に向けて圧縮されていれば、その下側端子部31および上側端子部32が互いにより強固に連結される。よって、外装缶10の封止性がより向上するため、より高い効果を得ることができる。
また、下側端子部31が突出部31YR,31YLを含んでおり、その突出部31YR,31YLが貫通口10Kを経由しながら上側端子部32に向かって突出していると共に嵌合用空間31Sを介して互いに離隔されており、上側端子部32が突出部32Yを含んでおり、その突出部32Yが貫通口10Kを経由しながら下側端子部31に向かって突出
していると共に嵌合用空間31Sに嵌合されていれば、その下側端子部31および上側端子部32が互いに十分に強固に連結される。よって、外装缶10の封止性が十分に向上するため、より高い効果を得ることができる。
 この場合には、突出部31YR,31YLが嵌合用空間31Sを介して互いに対向する対向面31TR,31TLを有しており、突出部32Yが幅Wを先端から次第に増加させる傾斜面32MR,32MLを有しており、その傾斜面32MR,32MLそれぞれが対向面31TR,31TLのそれぞれに当接されており、その突出部31YR,31YLのそれぞれは対向面31TR,31TLのそれぞれが傾斜面32MR,32MLのそれぞれに沿うように傾斜していれば、下側端子部31および上側端子部32が互いにより強固に連結される。よって、外装缶10の封止性がより向上するため、さらに高い効果を得ることができる。
 また、突出部31YR,31YLのそれぞれの先端の外縁ER,ELが蓋部12と重なる位置に配置されていれば、その突出部31YR,31YLのそれぞれの傾斜状態を利用して外部端子30が蓋部12にロックされるため、下側端子部31および上側端子部32が互いに著しく強固に連結される。よって、外装缶10の封止性が著しく向上するため、著しく高い効果を得ることができる。
 また、収納部11および蓋部12が互いに溶接されていれば、その収納部11および蓋部12が互いに強固に連結される。よって、外装缶10の封止性がより向上するため、より高い効果を得ることができる。
 また、下側端子部31の外径が貫通口10Kの外径よりも大きくなっていれば、外部端子30がガスケット41,42を介して蓋部12に加締められやすくなる。よって、外装缶10の封止強度がより向上するため、より高い効果を得ることができる。ここで説明した利点は、上側端子部32の外径が貫通口10Kの外径よりも大きい場合においても同様に得られる。
 また、下側端子部31がアルミニウムおよびアルミニウム合金のうちの一方または双方を含んでいれば、高電位においても外部端子30が電解液中に溶出しにくくなると共に、重量エネルギー密度が増加する。よって、外装缶10の封止強度が維持されやすくなると共に、電池容量がより増加するため、より高い効果を得ることができる。ここで説明した利点は、上側端子部32がアルミニウムおよびアルミニウム合金のうちの一方または双方を含んでいる場合においても同様に得られる。
 また、蓋部12が窪み部12Uを有しており、上側端子部32が窪み部12Uの内部に配置されていれば、素子空間体積の増加に応じて体積エネルギー密度が増加するため、より高い効果を得ることができる。
 また、正極21が外部端子30と電気的に接続されており、負極22が外装缶10と電気的に接続されていれば、その外部端子30が正極21の外部接続用端子として機能すると共に、その外装缶10が負極22の外部接続用端子として機能する。この場合には、素子空間体積が増加するため、単位体積当たりのエネルギー密度が増加する。よって、容量特性がより向上するため、より高い効果を得ることができる。
 また、二次電池が扁平かつ柱状の二次電池であれば、小型の二次電池においても容量特性と封止特性とが両立されるため、より高い効果を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
 この他、本実施形態の二次電池の製造方法によれば、蓋部12に設けられている貫通口10Kの内部において下側端子部31と上側端子部32とを互いに嵌合させることにより、外部端子30を形成したのち、収納部11に蓋部12を接合させることにより、外装缶10を形成している。この場合には、上記した理由により、容量特性と封止特性とが両立されるため、優れた容量特性および優れた封止特性を有する二次電池を得ることができる。
 特に、下側端子部31と上側端子部32とを互いに嵌合させる際に、貫通口10Kの内部に突出部31YR,31YLおよび突出部32Yのそれぞれを挿入することにより、嵌合用空間31Sに突出部32Yを嵌合させると共に、その突出部32Yを用いて突出部31YR,31YLを両側に押すことにより、その突出部31YR,31YLのそれぞれを傾斜させれば、上記したように、外部端子30が蓋部12にロックされるため、より高い効果を得ることができる。
 また、突出部32Yの幅Wが先端から次第に増加していれば、上記したように、下側端子部31および上側端子部32が互いに強固に連結されるため、さらに高い効果を得ることができる。
<2.変形例>
 上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 上側端子部32の突出部32Yが下側端子部31の嵌合用空間31Sに嵌合されていると共に、突出部31YR,31YLのそれぞれの外縁ER,ELが蓋部12と重なる位置に配置されていれば、その下側端子部31および上側端子部32のそれぞれの形状は、任意に変更可能である。
 具体的には、図2および図3に対応する図10に示したように、嵌合用空間31Sの断面形状および突出部32Yの断面形状のそれぞれが逆三角形でもよい。また、図2および図3に対応する図11に示したように、嵌合用空間31Sの断面形状および突出部32Yの断面形状のそれぞれが略半円形でもよい。さらに、図2および図3に対応する図12に示したように、嵌合用空間31Sの断面形状および突出部32Yの断面形状のそれぞれが逆台形であるが、その突出部32Yが設けられている箇所において上側端子部32が嵌合用空間31Sに沿って窪んでいてもよい。この場合には、上側端子部32が局所的に窪むように屈曲しているため、突出部32Yが形成されている。
 この他、図2および図3に対応する図13に示したように、下側端子部31が突出部32Yに対応する箇所に貫通口31Kを有していてもよい。この場合には、正極リード51が貫通口31Kを経由して突出部32Yに接続されているため、正極21が外部端子30と電気的に接続されている。
 これらの場合においても、容量特性と封止特性とが両立されるため、図2に示した場合と同様の効果を得ることができる。
[変形例2]
 ここでは詳細な図示を省略するが、図2に対応する図14に示したように、下側端子部31の構成と上側端子部32の構成とを互いに反対にしてもよい。すなわち、蓋部12の内側に配置されている下側端子部31が1個の突出部を有する第2端子部であると共に、その蓋部12の外側に配置されている上側端子部32が2個の突出部を有する第1端子部であり、その上側端子部32の嵌合用空間に下側端子部31の突出部が嵌合されていてもよい。下側端子部31および上側端子部32のそれぞれの構成および嵌合用空間に対する突出部の嵌合原理は、上記したように、その下側端子部31の構成と上側端子部32の構成が互いに反対であることを除いて、図2に示した場合と同様である。
 この場合においても、容量特性と封止特性とが両立されるため、図2に示した場合と同様の効果を得ることができる。
[変形例3]
 図2では、正極21が正極リード51を介して外部端子30に接続されていると共に、負極22が負極リード52を介して収納部11に接続されている。これにより、外部端子30が正極21の外部接続用端子として機能していると共に、外装缶10が負極22の外部接続用端子として機能している。
 しかしながら、図2に対応する図15に示したように、正極21が正極リード51を介して収納部11に接続されていると共に、負極22が負極リード52を介して外部端子30に接続されていてもよい。これにより、外装缶10が正極21の外部接続用端子として機能していると共に、外部端子30が負極22の外部接続用端子として機能していてもよい。
 この場合において、外部端子30は、負極22の外部接続用端子として機能するために、金属材料および合金材料の導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料は、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などである。外装缶10、すなわち収納部11および蓋部12のそれぞれは、正極21の外部接続用端子として機能するために、金属材料および合金材料の導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料は、アルミニウム、アルミニウム合金およびステンレスなどである。
 この場合においても、容量特性と封止特性とが両立されるため、図2に示した場合と同様の効果を得ることができる。
 この場合には、特に、二次電池の大部分を占める外装缶10がアルミニウムおよびアルミニウム合金のうちの一方または双方を含んでいれば、高電位においても外装缶10が電解液中に溶出しにくくなると共に、重量エネルギー密度が著しく増加する。よって、外装缶10の封止強度が維持されやすくなると共に、電池容量がより増加するため、より高い効果を得ることができる。
[変形例4]
 図2では、蓋部12が窪み部12Uを有しており、上側端子部32が窪み部12Uの内部に配置されている。しかしながら、図2に対応する図16に示したように、蓋部12が窪み部12Uを有していないため、上側端子部32が窪み部12Uの内部に配置されていなくてもよい。この場合においても、容量特性と封止特性とが両立されるため、図2に示した場合と同様の効果を得ることができる。
[変形例5]
 図2では、比D/Hが1よりも大きいため、二次電池の電池構造がボタン型である。しかしながら、ここでは具体的に図示しないが、比D/Hが1よりも小さいため、二次電池の電池構造が円筒型でもよい。この円筒型の二次電池の構成は、比D/Hが異なるため、その二次電池の立体的形状が円柱状であることを除いて、ボタン型の二次電池の構成と同様である。
 この場合においても、容量特性と封止特性とが両立されるため、図2に示した場合と同様の効果を得ることができる。
[変形例6]
 多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の巻きずれが抑制されるからである。これにより、電解液の分解反応が発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱するため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機粒子および樹脂粒子のうちの一方または双方などである。無機粒子の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどの粒子である。樹脂粒子の具体例は、アクリル樹脂およびスチレン樹脂などの粒子である。
 積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、前駆溶液中に多孔質膜を浸漬させてもよいし、その前駆溶液中に複数の絶縁性粒子を含有させてもよい。
 この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、二次電池の安全性が向上するため、より高い効果を得ることができる。
[変形例7]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に配置されていると共に、負極22とセパレータ23との間に配置されている。ただし、電解質層は、正極21とセパレータ23との間だけに配置されていてもよいし、負極22とセパレータ23との間だけに配置されていてもよい。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および溶媒などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。
 この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。
[変形例8]
 図2では、巻回型の電池素子20(巻回電極体)を用いた。しかしながら、ここでは具体的に図示しないが、積層型の電池素子(積層電極体)を用いてもよい。積層型の電池素子は、以下で説明することを除いて、巻回型の電池素子20の構成と同様の構成を有している。
 積層型の電池素子では、正極および負極がセパレータを介して交互に積層されている。このため、積層型の電池素子は、1個または2個以上の正極と、1個または2個以上の負極と、1個または2個以上のセパレータとを含んでいる。正極、負極およびセパレータのそれぞれの構成は、正極21、負極22およびセパレータ23のそれぞれの構成と同様である。
 積層型の電池素子が複数の正極および複数の負極を含んでいる場合には、複数の正極のそれぞれの正極集電体に正極リードが接続されていると共に、複数の負極のそれぞれの負極集電体に負極リードが接続されているため、二次電池は、複数の正極リードおよび複数の負極リードを備えている。複数の正極リードは、互いに接合された状態において外部端子30に接続されていると共に、複数の負極リードは、互いに接合された状態において収納部11に接続されている。
 この場合においても、積層型の電池素子において充放電されるため、同様の効果を得ることができる。
 以上、一実施形態を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態において説明された構成に限定されないため、種々に変形可能である。
 具体的には、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。このため、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (15)

  1.  貫通口を有する外装部材と、
     前記外装部材の内部に収納された電池素子と、
     前記貫通口を遮蔽する電極端子と、
     前記電極端子と前記外装部材との間に配置された絶縁性の封止部材と
     を備え、
     前記外装部材は、
     開口部を有すると共に前記電池素子を内部に収納する収納部と、
     前記開口部を閉塞すると共に前記貫通口を有する蓋部と
     を含み、
     前記収納部および前記蓋部は、互いに接合されており、
     前記電極端子は、
     前記蓋部の内側および外側のうちの一方に配置された第1端子部と、
     前記蓋部の内側および外側のうちの他方に配置された第2端子部と
     を含み、
     前記第1端子部および前記第2端子部は、前記貫通口の内部において互いに嵌合されている、
     二次電池。
  2.  前記封止部材の一部は、前記貫通口の内部において前記第1端子部および前記第2端子部のうちの一方と前記蓋部との間に配置されていると共に、前記第1端子部および前記第2端子部のうちの一方により前記蓋部に向けて圧縮されている、
     請求項1記載の二次電池。
  3.  前記第1端子部は、前記貫通口を経由して前記第2端子部に向かって突出すると共に嵌合用空間を介して互いに離隔された一対の第1突出部を含み、
     前記第2端子部は、前記貫通口を経由して前記第1端子部に向かって突出すると共に前記嵌合用空間に嵌合された第2突出部を含む、
     請求項1または請求項2に記載の二次電池。
  4.  前記一対の第1突出部は、前記嵌合用空間を介して互いに対向する一対の対向面を有し、
     前記第2突出部は、前記第2突出部の幅を先端から次第に増加させる一対の傾斜面を有し、
     前記一対の傾斜面のそれぞれは、前記一対の対向面のそれぞれに当接されており、
     前記一対の第1突出部のそれぞれは、前記一対の対向面のそれぞれが前記一対の傾斜面のそれぞれに沿うように傾斜している、
     請求項3記載の二次電池。
  5.  前記一対の第1突出部のそれぞれの先端の外縁は、前記蓋部と重なる位置に配置されている、
     請求項3または請求項4に記載の二次電池。
  6.  前記収納部および前記蓋部は、互いに溶接されている、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  前記第1端子部および前記第2端子部のうちの少なくとも一方の外径は、前記貫通口の内径よりも大きい、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
  8.  前記第1端子部および前記第2端子部のうちの少なくとも一方は、アルミニウムおよびアルミニウム合金のうちの少なくとも一方を含む、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
  9.  前記蓋部は、窪み部を有し、
     前記窪み部では、前記蓋部が前記収納部の内部に向かって部分的に窪むように屈曲しており、
     前記第1端子部および前記第2端子部のうちの前記蓋部の外側に配置されている一方は、前記窪み部の内部に配置されている、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
  10.  前記電池素子は、正極および負極を含み、
     前記正極および前記負極のうちの一方は、前記電極端子と電気的に接続されており、
     前記正極および前記負極のうちの他方は、前記外装部材と電気的に接続されている、
     請求項1ないし請求項9のいずれか1項に記載の二次電池。
  11.  扁平かつ柱状の二次電池である、
     請求項1ないし請求項10のいずれか1項に記載の二次電池。
  12.  リチウムイオン二次電池である、
     請求項1ないし請求項11のいずれか1項に記載の二次電池。
  13. 貫通口を有する蓋部の内側および外側のうちの一方に第1端子部を配置し、
     前記蓋部の内側および外側のうちの他方に第2端子部を配置し、
     前記貫通口の内部において前記第1端子部および前記第2端子部のうちの一方と前記蓋部との間に絶縁性の封止部材を介在させながら、前記貫通口の内部において前記第1端子部と前記第2端子部とを互いに嵌合させることにより、前記第1端子部および前記第2端子部を含む電極端子を形成すると共に、前記電極端子を用いて前記貫通口を遮蔽し、
     開口部を有する収納部に、前記電極端子が形成された前記蓋部を接合させることにより、前記蓋部を用いて前記開口部を閉塞すると共に、前記収納部および前記蓋部を含む外装部材を形成する、
     二次電池の製造方法。
  14.  前記第1端子部は、前記第2端子部に向かって突出すると共に嵌合用空間を介して互いに離隔された一対の第1突出部を含み、
     前記第2端子部は、第1端子部に向かって突出する第2突出部を含み、
     前記第1端子部と前記第2端子部とを互いに嵌合させる際に、
     前記貫通口の内部に前記一対の第1突出部および前記第2突出部のそれぞれを挿入することにより、前記嵌合用空間に前記第2突出部を嵌合させると共に、
     前記第2突出部を用いて前記一対の第1突出部を両側に押すことにより、前記一対の第1突出部のそれぞれを傾斜させる、
     請求項13記載の二次電池の製造方法。
  15.  前記第2突出部の幅は、先端から次第に増加している、
     請求項14記載の二次電池の製造方法。
PCT/JP2021/047213 2021-03-31 2021-12-21 二次電池およびその製造方法 WO2022209059A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060141 2021-03-31
JP2021-060141 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209059A1 true WO2022209059A1 (ja) 2022-10-06

Family

ID=83455758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047213 WO2022209059A1 (ja) 2021-03-31 2021-12-21 二次電池およびその製造方法

Country Status (1)

Country Link
WO (1) WO2022209059A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037817A (ja) * 2007-08-01 2009-02-19 Toyota Motor Corp 電池
JP2016184466A (ja) * 2015-03-25 2016-10-20 Fdk鳥取株式会社 筒型電池の封口体及び筒型電池
JP2018139191A (ja) * 2017-02-24 2018-09-06 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子及び蓄電素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037817A (ja) * 2007-08-01 2009-02-19 Toyota Motor Corp 電池
JP2016184466A (ja) * 2015-03-25 2016-10-20 Fdk鳥取株式会社 筒型電池の封口体及び筒型電池
JP2018139191A (ja) * 2017-02-24 2018-09-06 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子及び蓄電素子の製造方法

Similar Documents

Publication Publication Date Title
JP7272448B2 (ja) 二次電池
CN102646844B (zh) 二次电池
WO2021161812A1 (ja) 二次電池
JP2006080066A (ja) リチウムイオン二次電池
WO2021065334A1 (ja) 二次電池
WO2022209062A1 (ja) 二次電池
WO2022209059A1 (ja) 二次電池およびその製造方法
WO2022149392A1 (ja) 電池
WO2022059337A1 (ja) 二次電池
WO2022059338A1 (ja) 二次電池
KR20070025686A (ko) 리튬 이차전지
WO2023063223A1 (ja) 二次電池
WO2023026959A1 (ja) 二次電池
WO2022209060A1 (ja) 二次電池
WO2023063222A1 (ja) 二次電池
WO2024053226A1 (ja) 二次電池
WO2022264822A1 (ja) 二次電池
CN219553699U (zh) 二次电池
WO2023002807A1 (ja) 二次電池
WO2022209061A1 (ja) 二次電池
WO2024116623A1 (ja) 電池
WO2022264526A1 (ja) 二次電池
JP7276479B2 (ja) 扁平型二次電池
WO2024062916A1 (ja) 二次電池
WO2023276263A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935208

Country of ref document: EP

Kind code of ref document: A1