WO2022208917A1 - 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液 - Google Patents

発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液 Download PDF

Info

Publication number
WO2022208917A1
WO2022208917A1 PCT/JP2021/024286 JP2021024286W WO2022208917A1 WO 2022208917 A1 WO2022208917 A1 WO 2022208917A1 JP 2021024286 W JP2021024286 W JP 2021024286W WO 2022208917 A1 WO2022208917 A1 WO 2022208917A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
quantum dot
emitting
light emitting
Prior art date
Application number
PCT/JP2021/024286
Other languages
English (en)
French (fr)
Inventor
吉裕 上田
康 浅岡
裕真 矢口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US18/279,573 priority Critical patent/US20240141227A1/en
Publication of WO2022208917A1 publication Critical patent/WO2022208917A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds

Definitions

  • the present invention relates to a light-emitting element, a display device having a plurality of such light-emitting elements, a method for manufacturing a light-emitting element, a method for manufacturing a display device, a method for manufacturing a colloidal quantum dot solution, and a colloidal quantum dot solution.
  • a light-emitting device that includes a quantum dot having a halogen element bonded to its surface and a coordination compound capable of coordinating with this quantum dot (Patent Document 2).
  • a fluoride anion is bound to the surface of the quantum dot, the molar ratio of the fluoride anion to Zn contained in the quantum dot is 0.1 to 0.5, and the molar ratio of the fluoride anion is the quantum dot It has reached a level that can be said to be a composition for Fluoride anions bound to the surface of the quantum dots can deactivate defects on the surface of the quantum dots.
  • a light-emitting element containing a halogen element is known (Patent Document 3).
  • the molar ratio of the halogen element to In contained in the core of this quantum dot is 0.80 to 15.00, and this molar ratio of the halogen element has reached a level that can be said to be the composition of the quantum dot.
  • a light-emitting device is known in which the distribution of organic ligands on the surface of the quantum dots present at the interface with the quantum dot light-emitting layer is different (Patent Document 4). Therefore, the ligand density of the quantum dots is distributed along the thickness direction of the quantum dot light-emitting layer.
  • the inventors have found configurations of the light-emitting element and the display device that further improve the characteristics of the light-emitting element.
  • Patent Document 2 can inactivate defects on the quantum dot surface by means of fluoride anions bound to the surface of the light-emitting device.
  • US Pat. No. 5,331,000 presents the view that when the coordination compound of the quantum dots is reduced, the luminescence is reduced and thus the device is degraded.
  • the ligand density of the quantum dots has a distribution along the thickness direction of the quantum dot light-emitting layer, but does not disclose a halogen element, and the defects on the surface of the quantum dots are inactivated. I can't let you.
  • One aspect of the present invention is to provide a light-emitting element, a display device, a method for manufacturing a light-emitting element, a method for manufacturing a display device, a method for manufacturing a quantum dot colloidal solution, and a quantum dot colloidal solution that can increase luminous efficiency. It is in.
  • a method for manufacturing a light-emitting element is a method for manufacturing a light-emitting element including an anode, a light-emitting layer, and a cathode arranged in this order, wherein the anode is formed an anode forming step; a light emitting layer forming step of forming the light emitting layer containing a plurality of quantum dots and an insulating material; and a cathode forming step of forming the cathode, wherein the light emitting layer forming step comprises a plurality of the a quantum dot material layer forming step of forming a quantum dot material layer containing quantum dots; and an insulating material layer forming step of forming an insulating material layer containing the insulating material, wherein the anode of the light emitting layer
  • the average value of the distance between the quantum dots on the end surface portion on the side of the light emitting layer and the end surface on the anode side of the light emitting layer is
  • a display device includes a substrate, a plurality of light emitting elements arranged on the substrate for each subpixel, and banks partitioning the light emitting elements for each subpixel.
  • each of the light-emitting elements includes an anode, a light-emitting layer, and a cathode arranged in this order, and the light-emitting layer includes a main light-emitting portion containing a light-emitting material and the substrate.
  • the bank having a forward tapered surface on a side surface, and The tapered surface is in contact with the outer edge.
  • a method for manufacturing a display device includes a plurality of light-emitting elements each including an anode, a light-emitting layer, and a cathode arranged in this order on a substrate, and sub-pixels.
  • a light-emitting element is a light-emitting element including a light-emitting layer, wherein the light-emitting layer includes a quantum dot, a halogen element, and a coordination capable of coordinating with the quantum dot.
  • a method for manufacturing a light-emitting device uses a quantum dot colloidal solution manufactured by a method for manufacturing a quantum dot colloidal solution according to one aspect of the present invention, using a first charge A step of forming a quantum dot layer on a transport layer, a step of applying a solvent to the quantum dot layer after the step of forming the film to remove excess ligands, and a quantum dot layer from which the excess ligands have been removed. and heat treating.
  • the quantum dot colloidal solution includes quantum dots, a halogen element, a coordination compound that can be coordinated to the quantum dots, the quantum dots, the halogen element, and and a solvent in which the coordination compound is dispersed, wherein the coordination compound is a compound having 1 or more and n (n is plural) or less carbon-hydrogen bonds, or essentially has 4 or more coordination.
  • the coordination compound is a compound having 1 or more and n (n is plural) or less carbon-hydrogen bonds, or essentially has 4 or more coordination.
  • a compound having n chain structures in which heterogeneous elements are bonded to arbitrary two-coordinated positions of the obtained element is included, and the mass ratio between the coordination compound and the quantum dots is 0.5 or less.
  • the present invention it is possible to improve the characteristics of a light-emitting element and improve the display quality or life of a display device including the light-emitting element.
  • the light emitting element which can improve luminous efficiency
  • the manufacturing method of a quantum dot colloidal solution the manufacturing method of a light emitting element, and a quantum dot colloidal solution
  • the manufacturing method of a light emitting element can be provided. be able to.
  • FIG. 1A and 1B are a schematic diagram showing a side cross-section of a display device according to Embodiment 1, and a schematic diagram in which the side cross-section is enlarged in the vicinity of a light-emitting layer;
  • 1 is a schematic plan view of a display device according to Embodiment 1.
  • FIG. 2 is a schematic diagram enlarging the vicinity of a certain pixel in plan view of the display device according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram showing an enlarged side cross section of the display device according to Embodiment 1 in the vicinity of a bank and a light emitting layer;
  • FIG. 10 is a schematic diagram showing a side cross section of the display device according to Embodiment 2, enlarged in the vicinity of the light-emitting layer; 8 is a flow chart for explaining a method for forming a light emitting layer of a light emitting element according to Embodiment 2.
  • FIG. 10A to 10D are schematic process cross-sectional views for explaining a method for forming a light-emitting layer of a light-emitting element according to Embodiment 2;
  • FIG. 11 is a schematic diagram showing a side cross section of the display device according to Embodiment 3, enlarged in the vicinity of the light-emitting layer; 5 is a graph for evaluating the characteristics of the light-emitting elements according to Embodiments 1 and 3 in comparison with the characteristics of the light-emitting element according to Comparative Embodiment. 10 is a flowchart for explaining a method for forming a light-emitting layer of a light-emitting element according to Embodiment 3; FIG.
  • FIG. 11 is a schematic diagram showing a side cross section of a display device according to Embodiment 4, enlarged in the vicinity of a light-emitting layer; 10 is a flow chart for explaining a method for forming a light emitting layer of a light emitting element according to Embodiment 4.
  • FIG. FIG. 20 is a schematic diagram enlarging the vicinity of a certain pixel in a plan view of the display device according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a side cross-section of a display device according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a side cross section of the display device according to Embodiment 5 enlarged in the vicinity of the bank and the light-emitting layer; 10 is a flow chart for explaining a method for forming a light emitting layer of a light emitting element according to Embodiment 5.
  • FIG. 10A to 10D are schematic process cross-sectional views for explaining a method for forming a light-emitting layer of a light-emitting element according to Embodiment 5;
  • FIG. 10A to 10D are schematic process cross-sectional views for explaining a method for forming a light-emitting layer of a light-emitting element according to Embodiment 5; FIG.
  • FIG. 11 is a schematic diagram of quantum dots included in a light-emitting layer of a light-emitting device according to Embodiment 6; 4 is a graph showing typical electrical characteristics of a light-emitting element and the analysis results thereof; It is a schematic diagram of the quantum dot which concerns on a comparative example. Schematic diagram of halogen density, quantum dot levels, and carrier injection
  • FIG. 10 is a schematic diagram of a quantum dot according to another comparative example; It is a schematic diagram of the quantum dot which concerns on another comparative example. 10 is a flow chart showing a method for producing a quantum dot colloidal solution in which quantum dots are dispersed in a solvent according to Embodiment 6.
  • FIG. 10 is a flow chart showing a method for producing a quantum dot colloidal solution in which quantum dots are dispersed in a solvent according to Embodiment 6.
  • FIG. 10 is a diagram for explaining halogen elements present near the surface of quantum dots according to Embodiment 6; 11 is a graph illustrating details of electrical characteristics of a light-emitting element according to Embodiment 6.
  • FIG. 10 is a diagram for explaining halogen elements present near
  • 5 is a graph illustrating details of electrical characteristics of a light-emitting element according to a comparative example
  • 7 is a graph illustrating details of electrical characteristics of a light-emitting element according to another comparative example
  • 10 is a graph showing other characteristics of the light emitting element according to Embodiment 6 and the light emitting element according to the comparative example
  • 4 is a graph showing the characteristics of the light-emitting device from which excess ligands have been discharged.
  • FIG. 2 is a schematic plan view of a substrate 4, which will be described later, of the display device 2 according to this embodiment.
  • the display device 2 according to the present embodiment includes a display area DA that performs display by extracting light emitted from each sub-pixel described later, and a frame area NA that surrounds the display area DA. Prepare. Terminals T to which signals for driving the light emitting elements of the display device 2 are input are formed in the frame area NA.
  • FIG. 3 is an enlarged view of area A, which is a partial area of display area DA, in the schematic diagram shown in FIG.
  • FIG. 1 is a schematic cross-sectional view of a display device 2 according to this embodiment, and a schematic view showing an enlarged partial region of the cross section.
  • a schematic cross-sectional view of the display device 2 shown in FIG. 1 is a cross-sectional view taken along line BC in FIG.
  • the schematic enlarged view of the display device 2 shown in FIG. 1 is an enlarged view of the area D shown in FIG.
  • the sealing layer 8, the electron transport layer 16, and the cathode 18, which will be described in detail later, are omitted in order to more clearly illustrate the pixels and sub-pixels, which will be described in detail later.
  • the display device 2 includes a plurality of pixels at positions overlapping the display area DA in plan view. Also, each pixel comprises a plurality of sub-pixels.
  • a schematic cross-sectional view of the display device 2 shown in FIG. 1 and FIG. 3 show a pixel P among a plurality of pixels included in the display device 2 .
  • pixel P comprises a red sub-pixel SPR, a green sub-pixel SPG and a blue sub-pixel SPB.
  • the substrate 4 has a structure in which a TFT (Thin Film Transistor) (not shown) is formed on a flexible film substrate such as a PET film. Furthermore, a flexible light emitting element layer 6 and a sealing layer 8 are formed on the substrate 4 .
  • the display device 2 according to this embodiment realizes a flexible display device that can be folded with at least one of the substrate 4 and the sealing layer 8 inside.
  • the display device 2 according to this embodiment is not limited to this, and may include a rigid substrate 4 , a light emitting element layer 6 , or a sealing layer 8 .
  • the direction from the light-emitting layer 14 of the light-emitting element layer 6 to the anode 10 is referred to as the "downward direction”
  • the direction from the light-emitting layer 14 to the cathode 18 is referred to as the "upward direction”.
  • the light emitting element layer 6 includes an anode 10, a hole transport layer 12, a light emitting layer 14, an electron transport layer 16, and a cathode 18 in order from the substrate 4 side.
  • the light-emitting element layer 6 comprises the light-emitting layer 14 between the two electrodes of the anode 10 and the cathode 18 .
  • the anode 10 of the light emitting element layer 6 formed on the upper layer of the substrate 4 is formed like an island for each sub-pixel described above, and is electrically connected to each of the TFTs of the substrate 4 .
  • the light-emitting element layer 6 includes a plurality of light-emitting elements, particularly one light-emitting element for each sub-pixel.
  • the light-emitting element layer 6 includes, as light-emitting elements, a red light-emitting element 6R for the red sub-pixel SPR, a green light-emitting element 6G for the green sub-pixel SPG, and a blue light-emitting element 6B for the blue sub-pixel SPB. Prepare for each.
  • the term “light-emitting element” refers to any one of the red light-emitting element 6R, the green light-emitting element 6G, and the blue light-emitting element 6B included in the light-emitting element layer 6.
  • each of the anode 10, the hole transport layer 12, and the light emitting layer 14 is individually formed for each sub-pixel.
  • anodes 10 include anode 10R for red light emitting element 6R, anode 10G for green light emitting element 6G, and anode 10B for blue light emitting element 6B.
  • the hole transport layer 12 also includes a hole transport layer 12R for the red light emitting element 6R, a hole transport layer 12G for the green light emitting element 6G, and a hole transport layer 12B for the blue light emitting element 6B.
  • the red light emitting element 6R consists of the anode 10R, the hole transport layer 12R, the red light emitting layer 14R, the electron transport layer 16, and the cathode 18.
  • the green light emitting element 6G is composed of an anode 10G, a hole transport layer 12G, a green light emitting layer 14G, an electron transport layer 16, and a cathode .
  • the blue light-emitting element 6B is composed of an anode 10B, a hole transport layer 12G, a blue light-emitting layer 14B, an electron transport layer 16, and a cathode .
  • blue light is, for example, light having an emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • green light is, for example, light having an emission central wavelength in a wavelength band of more than 500 nm and less than or equal to 600 nm.
  • Red light is light having an emission central wavelength in a wavelength band of more than 600 nm and less than or equal to 780 nm, for example.
  • the light-emitting element layer 6 is not limited to the above configuration, and may further include additional layers between the anode 10 and the cathode 18 .
  • the light emitting device layer 6 may further comprise a hole injection layer between the anode 10 and the hole transport layer 12 .
  • the light-emitting element layer 6 may further include an electron injection layer between the electron transport layer 16 and the cathode 18 .
  • Anode 10 and cathode 18 contain a conductive material and are electrically connected to light-emitting layer 14 .
  • the anode 10 is a pixel electrode formed like an island for each sub-pixel, and the cathode 18 is a common electrode formed commonly for a plurality of sub-pixels.
  • the electrode closer to the display surface of the display device 2 is a semi-transparent electrode, and the other is a reflective electrode.
  • the hole-transporting layer 12 contains a material having hole-transporting properties, and has the function of transporting holes injected from the anode 10 to the light-emitting layer 14 .
  • the hole-transporting layer 12 may have the function of inhibiting transport of electrons from the light-emitting layer 14 to the anode 10 .
  • the electron transport layer 16 contains a material having an electron transport property and has a function of transporting electrons injected from the cathode 18 to the light emitting layer 14 .
  • the electron transport layer 16 may have the function of inhibiting transport of holes from the light emitting layer 14 to the cathode 18 .
  • the hole-transporting layer 12 and the electron-transporting layer 16 transmit at least part of the light from each light-emitting layer 14 .
  • the light emitting layer 14 emits light by recombination of holes transported from the anode 10 through the hole transport layer 12 and electrons transported from the cathode 18 through the electron transport layer 16. layer.
  • the light emitting layer 14 includes a quantum dot material, which will be described later, as a light emitter. Therefore, each light emitting element according to this embodiment is a QLED (Quantum dot Light-Emitting Diode) element.
  • the display device 2 further includes banks 20 on the upper surface of the substrate 4 .
  • the bank 20 includes, for example, a coatable resin material including polyimide, and is formed at a position straddling the boundary between sub-pixels adjacent to each other in plan view. Therefore, the bank 20 partitions the light emitting element layer 6 into red light emitting elements 6R, green light emitting elements 6G, and blue light emitting elements 6B. Note that the bank 20 may be formed at a position covering each peripheral edge of the anode 10 as shown in FIG.
  • the bank 20 contains a coatable photosensitive resin.
  • the bank 20 contains a positive photosensitive resin.
  • Banks 20 each have a side surface 20S.
  • the bank 20 is formed so that the area in plan view becomes gradually smaller from the substrate 4 side toward the sealing layer 8 side. Therefore, of the normal directions of the side surfaces 20S, the direction toward the inner side of the bank 20 is closer to the substrate 4 from the sealing layer 8 than the planar direction of the upper surface of the substrate 4, which is the surface on which the bank 20 is formed. It becomes the direction to go.
  • the angle formed by the outer surface side of the side surface and the specific surface is an obtuse angle.
  • the side surface is defined as a forward tapered surface.
  • all side surfaces of the truncated quadrangular pyramid are forward tapered surfaces.
  • the sealing layer 8 covers the light emitting element layer 6 and the bank 20 and seals each light emitting element included in the display device 2 .
  • the sealing layer 8 reduces the infiltration of foreign substances including moisture and the like into the light emitting element layer 6 and the like from the outside of the display device 2 on the side of the sealing layer 8 .
  • the sealing layer may have a laminated structure of, for example, an inorganic sealing film made of an inorganic material and an organic sealing film made of an organic material.
  • the inorganic sealing film is formed by CVD, for example, and is composed of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film thereof.
  • the organic sealing film is composed of, for example, a coatable resin material including polyimide or the like.
  • the light-emitting layer 14 according to this embodiment will be described in more detail with reference to the schematic enlarged view of the vicinity of the light-emitting layer 14 shown in FIG.
  • the schematic enlarged view is a schematic enlarged view particularly showing the vicinity of the blue light emitting layer 14B of the blue light emitting element 6B of the display device 2 according to this embodiment.
  • the red light emitting layer 14R and the green light emitting layer 14G according to this embodiment have the same configuration as the blue light emitting layer 14B except for blue quantum dots which will be described later.
  • the schematic enlarged view of FIG. 1 is an enlarged view showing an enlarged portion of a main light emitting portion 14BL, which will be described later, in the blue light emitting layer 14B.
  • a quantum dot refers to a particle whose outermost shell has a maximum width of 100 nm or less.
  • the shape of the quantum dot is not particularly limited as long as it satisfies the above maximum width, and is not limited to a spherical three-dimensional shape, in other words, a circular cross-sectional shape.
  • Quantum dots for example, may have a polygonal cross-sectional shape, a rod-like three-dimensional shape, a branch-like three-dimensional shape, or a three-dimensional shape having unevenness on the outermost surface, or , may have a shape that is a combination of those shapes.
  • the blue light-emitting layer 14B includes a blue quantum dot layer 22B and a and an insulating layer 24 arranged in this order.
  • Blue quantum dot layer 22B includes a plurality of blue quantum dots 26B, an insulator 28, and a plurality of ligands 30.
  • FIG. Insulating layer 24 includes insulating material 28 .
  • insulating layer 24 includes only insulating material 28 among the materials included in blue quantum dot layer 22B. Note that the insulating layer 24 does not have to be a layer having a completely uniform film thickness. good.
  • the blue quantum dot layer 22B contains a ligand 30 as a first compound capable of coordinating with the blue quantum dots 26B.
  • the ligand 30 is, for example, a compound having a coordinating functional group capable of coordinating with at least the blue quantum dots 26B at one end of the carbon chain.
  • the ligand 30 is dispersed in the insulating material 28 without coordinating with the blue quantum dot 26B, with the binding ligand 32 coordinating with the blue quantum dot 26B as a binding compound.
  • Surplus ligand 34 is included as a surplus compound.
  • the binding ligand 32 and the excess ligand 34 may have the same configuration, except for the presence or absence of coordinate bonding with the blue quantum dot 26B.
  • the ligand 30 has functions such as reducing aggregation of the blue quantum dots 26B or protecting the outer surface of the blue quantum dots 26B.
  • the ligand 30 may include, for example, the same material as the material of conventionally known ligands that can coordinate to quantum dots.
  • a ligand that is bound to a quantum dot by a coordinate bond is constrained to the quantum dot by the coordinate bond, so compared to a ligand of the same molecular weight that is not bound to the quantum dot, Diffusion coefficient becomes smaller. This corresponds to the lower free energy of ligands that bind quantum dots compared to ligands of the same molecular weight that do not bind quantum dots. Therefore, in the present embodiment, the excess ligand 34 can also be said to be a ligand having a higher free energy with respect to molecular weight than the binding ligand 32 .
  • the insulating material 28 is made of a material with high electrical resistivity and low carrier mobility compared to the material of the blue quantum dots 26B and the material of the ligands 30. Insulating material 28 included in blue quantum dot layer 22B fills between blue quantum dots 26B. Further, in the present embodiment, the insulating material 28 included in the insulating layer 24 and the insulating material 28 included in the blue quantum dot layer 22B may be the same material, or may be continuous or separate. may
  • the insulating material 28 constitutes an end face 14EA on the anode 10 side and an end face 14EC on the cathode 18 side of the blue light emitting layer 14B. Therefore, in the present embodiment, the hole transport layer 12B is in contact with the end surface 14EA, and the electron transport layer 16 is in contact with the end surface 14EC.
  • the blue quantum dot layer 22B has an end face portion 14BA on the anode 10 side near the end face 14EA, and an end face portion 14BC on the cathode 18 side near the end face 14EC.
  • a plurality of blue quantum dots 26B and ligands 30 are positioned on the end surface portion 14BA and the end surface portion 14BC, respectively.
  • At least one of the binding ligands 32 coordinated to the blue quantum dots 26B located in the end surface portion 14BC or the surplus ligands 34 located around the blue quantum dots 26B is the cathode of the blue quantum dot layer 22B. It touches the end face on the 18 side. Therefore, at least one of the ligands 30 positioned on the end surface portion 14BC is adjacent to the end surface 14EC with the insulating layer 24 interposed therebetween.
  • a part of the ligands 30 located on the end surface portion 14BA is in contact with the end surface of the blue quantum dot layer 22B on the anode 10 side, and a part of the ligands 30 located on the end surface portion 14BC. is in contact with the end face of the blue quantum dot layer 22B on the cathode 18 side.
  • the present invention is not limited to this, and at least one of the blue quantum dots 26B located on the end face portion 14BA may be in contact with the end face of the blue quantum dot layer 22B on the anode 10 side.
  • at least one of the blue quantum dots 26B positioned on the end face portion 14BC may be in contact with the end face of the blue quantum dot layer 22B on the cathode 18 side.
  • the average value of the distance between the blue quantum dots 26B and the end face 14EA in the end face portion 14BA is defined as the distance 14DA
  • the average value of the distance between the blue quantum dots 26B in the end face portion 14BC and the end face 14EC is defined as the distance 14DC.
  • the interval 14DA is the average value of the intervals between the end surface 14EA and 20 blue quantum dots 26B that are adjacent to each other among the blue quantum dots 26B facing the end surface 14EA on the cut surface.
  • the end surface of the blue quantum dot layer 22B on the anode 10 side is the same as the end surface 14EA and is in contact with the hole transport layer 12B.
  • the end surface of the blue quantum dot layer 22B on the cathode 18 side is separated from the end surface 14EA due to the insulating layer 24 . Therefore, the interval 14DA is smaller than the interval 14DC.
  • the red light emitting layer 14R includes a main light emitting portion 14RL and an outer edge portion 14RD.
  • the green light emitting layer 14G according to this embodiment includes a main light emitting portion 14GL and an outer edge portion 14GD.
  • the blue light-emitting layer 14B according to this embodiment includes a main light-emitting portion 14BL and an outer edge portion 14BD.
  • the outer edge portion 14RD, the outer edge portion 14GD, and the outer edge portion 14BD are arranged at positions surrounding the main light emitting portion 14RL, the main light emitting portion 14GL, and the main light emitting portion 14BL, respectively, in plan view of the substrate 4 .
  • the main light emitting portion 14BL includes the blue quantum dot layer 22B and the insulating layer 24 described above. Therefore, the main light-emitting portion 14BL includes blue quantum dots 26B, which are the light-emitting material included in the blue light-emitting layer 14B.
  • the outer edge portion 14BD includes the deactivation layer 22BD and does not include the insulating layer 24 .
  • the deactivation layer 22BD is in contact with the side surface 20S of the bank 20 and is continuous with the blue quantum dot layer 22B of the main light emitting section 14BL via the thin film section 22BT having a thickness thinner than the surroundings.
  • the deactivated layer 22BD includes a material in which the blue quantum dots 26B are deactivated by oxidation, moisture penetration, physical damage, or the like. Therefore, the deactivation layer 22BD has lower luminous efficiency than the blue quantum dot layer 22B. Except for this point, the deactivation layer 22BD may have the same configuration as the blue quantum dot layer 22B.
  • the outer edge portion 14RD and the outer edge portion 14GD according to the present embodiment respectively include a deactivated layer containing a material in which red quantum dots are deactivated and a deactivated layer containing a material in which green quantum dots are deactivated. It has the same configuration as the outer edge portion 14BD except for the points. The effect of the deactivation layer 22BD will be described in detail later together with the method of forming the deactivation layer 22BD.
  • the main current MC and the reactive current WC flow through the blue light emitting layer 14B.
  • the main current MC mainly flows through the blue quantum dots 26B
  • the reactive current WC mainly flows through the binding ligands 32 or excess ligands 34 around the blue quantum dots 26B.
  • a reactive current that does not flow through a quantum dot does not contribute to the mechanism of transporting carriers to the quantum dot, so it does not contribute to the emission of the quantum dot.
  • the total current TC flowing through the entire blue light emitting element 6BA is the total value of the main current MC and the reactive current WC.
  • the total current TC does not change significantly as long as the potential difference between the electrodes of the blue light emitting element 6BA is constant.
  • the power consumption of the blue light emitting element 6BA depends on the total current TC.
  • the reactive current WC is higher than the main current MC
  • the luminous efficiency of the blue light emitting element 6BA is reduced because the current that does not contribute to the emission of the blue quantum dots 26B increases.
  • the intensity of light emitted from the blue light emitting element 6BA with respect to the power consumed by the blue light emitting element 6BA is reduced.
  • the graph of FIG. 6 is a graph showing the relationship between the ratio of the reactive current to the total current and the external quantum efficiency of the light emitting device according to the comparative embodiment.
  • the horizontal axis represents the ratio of reactive current to the total current (unit: percent)
  • the vertical axis represents the external quantum efficiency (unit: percent) of the light emitting device.
  • FIG. 6 shows data obtained by manufacturing a plurality of light emitting elements having the same configuration as the blue light emitting element 6BA, driving the light emitting elements, measuring the total current, reactive current, and external quantum efficiency, and plotting each of them. show.
  • Some light-emitting devices have a low ratio of reactive current to total current and an improved external quantum efficiency, but such light-emitting devices are manufactured by chance due to manufacturing errors during the manufacturing stage of the light-emitting device. be. Therefore, in the comparative form, it is difficult to reliably manufacture a light-emitting device with high external quantum efficiency.
  • the number of manufactured light-emitting devices with a low ratio of reactive current to the total current and high external quantum efficiency is luminescence with a high ratio of reactive current to the total current and low external quantum efficiency. Extremely small compared to the number of devices manufactured.
  • the reactive current WC flowing through the ligands 30 flows mainly within the ligands 30 and between the ligands 30 by hopping conduction. Therefore, the main component of the reactive current WC flowing through the light-emitting layer is proportional to the carrier mobility and dielectric constant of the materials other than the quantum dots and the applied voltage, and inversely proportional to the film thickness of the light-emitting layer.
  • the blue light-emitting layer 14B included in the blue light-emitting device 6B according to this embodiment includes an insulating material 28 that fills the space between the blue quantum dots 26B. Therefore, the blue light-emitting layer 14B according to this embodiment can more efficiently reduce the reactive current WC flowing around the blue quantum dots 26B.
  • the spacing 14DA between the blue light emitting layers 14B is smaller than the spacing 14DC. Therefore, the efficiency of electron injection from the electron-transporting layer 16 to the blue quantum dots 26B decreases compared to the case where the spacing 14DA and the spacing 14DC are equal. Therefore, the efficiency of hole injection from the hole-transporting layer 12B to the blue quantum dots 26B increases relative to the efficiency of electron injection from the electron-transporting layer 16 to the blue quantum dots 26B.
  • an electric field carrier injection type light-emitting device containing quantum dots as a light-emitting material has a higher injection efficiency of electrons into the light-emitting layer than the efficiency of injection of holes into the light-emitting layer, and when the light-emitting device is driven, Electron overload in the emissive layer may occur. When an excess of electrons occurs in the light-emitting layer, the luminous efficiency of the light-emitting element may be lowered and the light-emitting material of the light-emitting layer may be deactivated due to the generation of Auger electrons in the deactivation process.
  • At least one of the blue quantum dots 26B and the ligands 30 positioned on the end surface portion 14BA on the side of the end surface 14EA of the blue light emitting element 6B is in contact with the hole transport layer 12B.
  • at least one of the blue quantum dots 26B and the ligands 30 located on the end face portion 14BC on the end face 14EC side of the blue light emitting element 6B is separated from the electron transport layer 16 by the insulating layer 24 . Therefore, the blue light-emitting device 6B further reduces the injection of electrons from the electron transport layer 16 to the blue quantum dots 26B via the ligands 30 .
  • the carrier mobility of the insulating material 28 is less than 10 ⁇ 6 cm 2 /V ⁇ sec.
  • the carrier mobility of organic materials generally used for the ligand 30 is about 10 ⁇ 6 cm 2 /V ⁇ sec. Therefore, with the above configuration, the insulating material 28 achieves a mobility lower than that of the ligand 30, and efficiently reduces generation of reactive current WC in the blue light emitting layer 14B.
  • the insulating material 28 has a light transmittance of 80% or more in the visible light range.
  • the insulating material 28 is less likely to block the light from the blue quantum dots 26B. Therefore, with the above configuration, the insulating material 28 suppresses a decrease in light extraction efficiency from the blue light emitting element 6B.
  • the thickness 24D of the insulating layer 24 is 2 nm or more and 5 nm or less.
  • the insulating layer 24 can be formed as a continuous film more easily and reliably.
  • the thickness 24D is 5 nm or less, injection of electrons from the electron transporting layer 16 to the blue quantum dot layer 22B is achieved by electron tunneling in the insulating layer 24 . Therefore, by setting the thickness 24D to 5 nm or less, the insulating layer 24 suppresses an increase in the resistance value of the entire blue light emitting element 6B.
  • Each of the red light emitting element 6R and the green light emitting element 6G has the same configuration as the blue light emitting element 6B except for the type of quantum dots included in each light emitting layer. Therefore, the red light emitting element 6R and the green light emitting element 6G also have the same effect as the blue light emitting element 6B.
  • the display device 2 having the red light emitting element 6R, the green light emitting element 6G, and the blue light emitting element 6B with improved luminous efficiency for each sub-pixel further reduces power consumption. Furthermore, the display device 2 can reduce the voltage applied to each light emitting element in order to obtain the same light emission intensity from each light emitting element, further improving the life of each light emitting element.
  • FIG. 7 is a flow chart for explaining the manufacturing method of the display device 2 according to this embodiment.
  • the substrate 4 is formed (step S2).
  • the substrate 4 may be formed, for example, by forming a film substrate and TFTs on the film substrate on a rigid glass substrate, and then peeling the glass substrate from the film substrate.
  • the above-described peeling of the glass substrate may be performed after forming the light-emitting element layer 6 and the sealing layer 8, which will be described later.
  • substrate 4 may be formed, for example, by forming TFTs directly on a rigid glass substrate.
  • an anode 10 is formed on the substrate 4 (step S4).
  • the anode 10 may be formed, for example, by forming a thin film of a metal material by sputtering or the like, and then patterning the thin film by dry etching or wet etching using a photoresist.
  • the anode 10R, the anode 10G, and the anode 10B which are formed in the shape of islands for each sub-pixel on the substrate 4, are obtained.
  • step S6 the bank 20 is formed by photolithography using a positive photosensitive resin. Specifically, for example, the upper surfaces of the substrate 4 and the anode 10 are coated with a positive photosensitive resin that will be the material of the bank 20 .
  • a photomask having a light-transmitting portion at a position corresponding to each sub-pixel is placed above the applied photosensitive resin, and ultraviolet light or the like is irradiated through the photomask.
  • the photosensitive resin irradiated with ultraviolet light is then washed with a suitable developer. As a result, banks 20 are formed between positions corresponding to the sub-pixels on the substrate 4 .
  • step S6 by forming the bank 20 by applying a positive photosensitive resin, exposing, and developing, the bank 20 having the forward tapered side surface 20S can be formed.
  • the hole transport layer 12 is formed (step S8).
  • the hole transport layer 12 may be formed, for example, by applying a material having a hole transport property and then patterning the thin film by dry etching or wet etching using a photoresist. As a result, a hole transport layer 12R, a hole transport layer 12G, and a hole transport layer 12B are formed on the anode 10 in an island shape for each sub-pixel.
  • a light emitting layer 14 is formed (step S10).
  • the method of forming the light emitting layer 14 is further described in more detail with reference to FIGS. 8 and 9.
  • FIG. 8 is a flow chart for explaining the method for forming the light emitting layer 14 according to this embodiment.
  • FIG. 9 shows a process cross-sectional view of the vicinity of the side surface 20S of the bank 20 located in the blue sub-pixel SPB in the process of forming the light-emitting layer 14 according to this embodiment.
  • Each process cross-sectional view shown in this specification, including FIG. 9, shows a cross-section at a position corresponding to the cross-section shown in FIG. 4, unless otherwise specified.
  • a blue quantum dot material layer 36B is formed by depositing a material containing the blue quantum dots 26B on the entire upper layer of the hole transport layer 12B and the bank 20 (step S10-2).
  • the blue quantum dot material layer 36B is formed not only for the blue sub-pixel SPB, but also for the red sub-pixel SPR and the green sub-pixel SPG. Therefore, the formation of the blue quantum dot material layer 36B is also performed on the side surfaces 20S of the bank 20 as well.
  • the film formation of the blue quantum dot material layer 36B may be performed by applying a solution containing the blue quantum dots 26B using a coating method or the like using a coater.
  • the solution may contain blue quantum dots 26B, a solvent in which the blue quantum dots 26B are dispersed, and ligands 30 for improving the dispersibility of the blue quantum dots 26B in the solvent.
  • the insulating material layer 38 is formed by depositing a material containing the insulating material 28 on the blue quantum dot material layer 36B (step S10-4).
  • the insulating material layer 38 may be formed by applying a solution containing the insulating material 28 using, for example, a coating method using a coater.
  • the insulating material layer 38 is also formed on the entire upper surface of the blue quantum dot material layer 36B. Therefore, on the upper surface of the insulating material layer 38, an inclined surface 38S reflecting the inclination of the side surface 20S of the bank 20 is formed around the blue sub-pixel SPB.
  • the insulating material 28 may contain an amorphous material.
  • deposition of the insulating material layer 38 can be performed by diluting the insulating material 28 with a suitable solvent and applying the diluted solution.
  • the insulating material 28 contains an amorphous material, the insulating material layer 38 is subjected to a heat treatment or the like in a post-process to cure the amorphous material contained in the insulating material 28, thereby stabilizing the insulating material 28. It is possible to form a thin layer.
  • the insulating material 28 may contain a glass-based material including SOG.
  • the solution containing the insulating material 28 may contain an ether solvent such as diethyl ether, dioxolane, dioxane, tetrahydrofuran, or the like.
  • the insulating material 28 may contain a tetrafluoroethylene-based material including PTFE (CYTOP).
  • the solution containing the insulating material 28 may contain, as a solvent, a perfluoro-based solvent including fluorous alcohols, fluorous ethers, fluorous hexane, and the like.
  • the insulating material 28 may contain a silicone-based material including dimethyl silicone.
  • the solution containing the insulating material 28 may contain a hydrocarbon solvent such as toluene or xylene as a solvent.
  • the insulating material 28 can be dissolved in an appropriate solvent, so that the insulating material layer 38 can be formed more easily.
  • the insulating material 28 may include a plurality of materials among the materials described above.
  • Step S10-6 may be executed by leaving the substrate 4 still for about 30 minutes after step S10-4. As a result, a mixed layer 40B containing the blue quantum dots 26B and the insulating material 28 is formed directly under the insulating material layer 38.
  • the material of the resist layer 42 is applied to the inclined surfaces of the insulating material layer 38 formed along the side surfaces 20S of the banks 20. It is also deposited on 38S. Moreover, by patterning the material of the deposited resist layer 42, the material of the resist layer 42 remains even at the position adjacent to the inclined surface 38S.
  • step S10-8 the outer edge portion 42M of the resist layer 42 is thinly formed even on the inclined surface 38S. Therefore, after execution of step S10-8, in a plan view of the substrate 4, the insulating material layer 38 and the mixed layer 40B are separated from each other by the relatively thin outer edge portion 42M of the resist layer 42 at the position overlapping the side surface 20S of the bank 20. covered.
  • step S10-10 the insulating material layer 38 and the mixed layer 40B are etched by a suitable etching method, and the insulating material layer 38 and the mixed layer 40B are patterned (step S10-10).
  • Resist layer 42 comprises a material that is resistant to the etching of insulator layer 38 and mixed layer 40B. Therefore, in step S10-10, in plan view of the substrate 4, only the insulating material layer 38 exposed from the resist layer 42 and the mixed layer 40B therebelow are etched. As a result, an island-shaped mixed layer 40B and an insulating material layer 38 are formed for each blue sub-pixel SPB, and become the blue quantum dot layer 22B and the insulating layer 24, respectively.
  • the etching of the insulating material layer 38 and the mixed layer 40B is performed by dry etching or wet etching.
  • etching of insulator layer 38 and mixed layer 40B is performed by removing exposed insulator layer 38 and mixed layer 40B from resist layer 42 with a suitable etchant.
  • the insulating material layer 38 can be removed with an etchant containing hydrofluoric acid, buffered hydrofluoric acid, or the like. Also, when the insulating material 28 contains PTFE or dimethyl silicone, the insulating material layer 38 can be removed by O 2 or O 2 plasma ashing, RIE (reactive ion etching), or the like. With the above configuration, the insulating material layer 38 and the mixed layer 40B can be etched more reliably.
  • the resist layer 42 is thinly formed as the outer edge portion 42M even on the inclined surface 38S of the insulating material layer 38 located around the blue sub-pixel SPB when step S10-8 is completed. Therefore, in a plan view of the substrate 4, etching of the insulating material layer 38 and the mixed layer 40B at the position overlapping the outer edge portion 42M is weaker than etching of the insulating material layer 38 and the mixed layer 40B exposed from the resist layer 42. be.
  • step S10-10 part of the mixed layer 40B remains on the side surface 20S of the bank 20 without being etched. However, by etching the insulating material layer 38 and the mixed layer 40B at the position overlapping the outer edge portion 42M in a plan view of the substrate 4, the insulating material layer 38 at the position is removed and the mixed layer 40B is exposed to the etchant.
  • step S10-10 the etching in step S10-10 is performed by dry etching or wet etching.
  • the blue quantum dots 26B remaining on the side surface 20S of the bank 20 and contained in the mixed layer 40B exposed to the etchant are deteriorated and deactivated by oxidation or the like. Therefore, at the completion of step S10-10, a deactivated layer 22BD that is thinner than the blue quantum dot layer 22B and contains deactivated blue quantum dots 26B is formed on the side surface 20S of the bank 20.
  • a thin film portion 22BT having a thickness thinner than the surroundings may be formed at the boundary between the blue quantum dot layer 22B and the deactivation layer 22BD.
  • the resist layer 42 is removed from the insulating material layer 38 by washing the remaining resist layer 42 with an appropriate remover (step S10-12).
  • the main light-emitting portion 14BL including the blue quantum dot layer 22B and the insulating layer 24 and the outer edge portion 14BD including the deactivation layer 22BD are obtained.
  • step S10-6 the solvent in the insulating material layer 38 may be volatilized and the amorphous material contained in the insulating material 28 may be cured by heat treatment of the insulating material layer 38 or the like. In this case, a compound derived from the solvent contained in the insulating material layer 38 may remain in the blue light emitting layer 14B as a second compound.
  • the red light-emitting layer 14R and the green light-emitting layer 14G may be formed by changing a part of the process for forming the blue light-emitting layer 14B described above.
  • the blue quantum dots 26B included in the blue quantum dot material layer 36B are replaced with red quantum dots and green quantum dots, respectively. Change to dot.
  • the position where the resist layer 42 is formed is set to the red subpixel SPR and The position is changed to overlap with the green sub-pixel SPG.
  • the process of forming the light-emitting layer 14 according to the present embodiment can be performed.
  • the electron transport layer 16 is formed (step S12).
  • the electron transport layer 16 may be formed in common for each sub-pixel, for example, by applying a material having electron transport properties.
  • a cathode 18 is formed on the electron transport layer 16 (step S14).
  • the cathode 18 may be formed, for example, by forming a thin film of a metal material commonly for each sub-pixel by a sputtering method or the like. Thus, the formation of the light emitting element layer 6 is completed.
  • a sealing layer 8 is formed (step S16).
  • the formation of the organic encapsulating film may be performed by applying an organic encapsulating material.
  • the sealing layer 8 includes an inorganic sealing film the inorganic sealing film may be formed by a CVD method or the like. Thereby, the sealing layer 8 that seals the light emitting element layer 6 is formed, and the manufacture of the display device 2 is completed.
  • the insulating material layer 38 is formed on the blue quantum dot material layer 36B, and part of the insulating material 28 in the insulating material layer 38 is replaced with the blue quantum dot material layer 36B.
  • An infiltration step is provided to infiltrate the quantum dot material layer 36B.
  • the insulating material 28 that is permeated into the blue quantum dot material layer 36B is part of the insulating material 28 in the insulating material layer 38, so the insulating material layer 38 is above the blue quantum dot material layer 36B. remain.
  • the blue light emitting element 6B including the blue quantum dot layer 22B and the insulating layer 24 which are laminated is obtained by the method of forming the blue light emitting element 6B. Therefore, by the above formation method, the blue light emitting element 6B in which the interval 14DA is smaller than the interval 14DC can be easily formed.
  • the method for manufacturing the display device 2 according to the present embodiment does not require a step of separately applying a material in which the blue quantum dots 26B and the insulating material 28 are mixed. Therefore, it is possible to select a more appropriate solvent for dispersing the blue quantum dots 26B as the material for the blue quantum dot material layer 36B.
  • the mixed layer 40B in which the concentration of the insulating material 28 gradually increases from the anode 10 side to the cathode 18 side can be easily formed.
  • the blue light-emitting element 6B including the blue quantum dot layer 22B manufactured by the manufacturing method described above more efficiently improves the efficiency of hole injection from the anode 10 side with respect to the efficiency of electron injection from the cathode 18 side. can be made
  • the blue light-emitting layer 14B is divided into two parts, one on the anode 10 side and the other on the cathode 18 side, from the central position in the stacking direction of the blue light-emitting elements 6B.
  • the average concentration of the insulating material 28 is higher in the cathode 18 side portion than the anode 10 side portion from the center position of the blue light emitting layer 14B.
  • the blue light emitting layer 14B can be formed such that
  • the blue light emitting layer 14B is composed of a first portion, a second portion located closer to the cathode 18 than the first portion, and the second portion from the anode 10 side in the stacking direction of the blue light emitting element 6B. It is assumed that the third portion located closer to the cathode 18 than the third portion is divided into three equal parts.
  • the first portion includes end surface 14EA and the third portion includes end surface 14EC.
  • a cut plane obtained by cutting the blue light emitting layer 14B at an arbitrary cross section along the normal direction of any surface of the blue light emitting layer 14B is assumed.
  • the number of insulating materials 28 per unit area is calculated on the cut surface. Accordingly, by comparing the number of insulating materials 28 per unit area, the magnitude relationship of the average concentration of the insulating materials 28 contained in the blue light emitting layer 14B may be measured.
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • the TOF-SIMS method is a method of sputtering a minute region with a side on the order of micrometers in an object to be measured, and determining the mass of the substance from the time of flight of the ejected substance. By comparing the mass detected by this method with the database, the type of substance can be identified.
  • TOF-SIMS method it is possible to directly quantify the types and masses of substances from the order of atoms to the order of macromolecules.
  • the GCMS Gas Chromatography Mass Spectrometry
  • the GCMS method is a method of qualitatively and quantitatively analyzing an analyte by gas chromatography and mass spectrometry.
  • EDX Electronic Dispersive X-ray Spectroscopy
  • step S10-8 the insulating material layer 38 is formed on the mixed layer 40B. Therefore, the insulating material layer 38 can protect the mixed layer 40B from the developer used for patterning the resist layer 42, thereby reducing deterioration of the blue quantum dots 26B.
  • step S10-10 patterning of the insulating material layer 38 and the mixed layer 40B is performed by dry etching or wet etching. Therefore, in step S10-10, at the position covered with the outer edge portion 42M of the resist layer 42, the deactivated layer 22BD including the deactivated blue quantum dots 26B and the outer edge portion 14BD including the deactivated layer 22BD are formed. is formed.
  • the blue light-emitting element 6B can make the carriers injected into the blue light-emitting layer 14B efficiently contribute to light emission in the main light-emitting section 14BL, thereby improving light emission efficiency in the main light-emitting section 14BL.
  • the blue light emitting element 6B includes an outer edge portion 14BD with low luminous efficiency at the outer edge of the main light emitting portion 14BL. Therefore, the blue light emitting element 6B can reduce the emission intensity in the vicinity of the boundary with other light emitting elements. Therefore, the display device 2 including the blue light emitting element 6B can reduce color mixture between sub-pixels and improve display quality.
  • FIG. 10 is a schematic diagram showing an enlarged partial region of a schematic cross section of the display device 2 according to the present embodiment, and is an enlarged diagram of a position corresponding to the schematic enlarged view of the display device 2 shown in FIG. be.
  • the display device 2 according to the present embodiment has a red light emitting element 44R, a green light emitting element 44R, and a green light emitting element 44R instead of the red light emitting element 6R, the green light emitting element 6G, and the blue light emitting element 6B, respectively.
  • a light emitting element 44G and a blue light emitting element 44B are provided. Except for this point, the display device 2 according to this embodiment has the same configuration as the display device 2 according to the previous embodiment.
  • the blue light emitting layer 14B further includes a blue quantum dot layer 46B containing blue quantum dots 26B and ligands 30, compared to the blue light emitting device 6B according to the previous embodiment. is provided on the anode 10 side.
  • blue quantum dot layer 46B does not include insulating material 28 among the materials included in blue quantum dot layer 22B.
  • the blue light emitting element 44B according to this embodiment has the same configuration as the blue light emitting element 6B according to the previous embodiment.
  • blue quantum dot layer 46B does not include insulating material 28 between blue quantum dots 26B.
  • the blue light emitting device 44B according to the present embodiment includes the insulating layer 24 containing the insulating material 28 on the cathode 18 side of the blue quantum dot layer 46B, like the blue light emitting device 6B according to the previous embodiment.
  • the interval 14DA is smaller than the interval 14DC.
  • the blue light-emitting element 44B reduces generation of ineffective current and excess electrons in the blue light-emitting layer 14B for the same reason as described in the previous embodiment. Therefore, the blue light emitting element 44B improves the luminous efficiency and prolongs the life.
  • the blue light emitting element 44B includes a blue quantum dot layer 46B that does not contain the insulating material 28 on the anode 10 side of the blue light emitting layer 14B.
  • blue quantum dot layer 46B includes only blue quantum dots 26B and ligands 30 among the materials of blue quantum dot layer 22B. Therefore, the blue light-emitting element 44B can further improve the efficiency of hole injection from the anode 10 side via the ligand 30 or the like while realizing a reduction in reactive current and a reduction in excess electrons. can.
  • the display device 2 according to this embodiment can be manufactured by the manufacturing method of the display device 2 according to the previous embodiment, in which only the step of forming the light-emitting layer is changed.
  • a method for forming the light-emitting layer 14 according to this embodiment will be described in more detail with reference to FIGS. 11 and 12.
  • FIG. FIG. 11 is a flow chart for explaining the method for forming the light emitting layer 14 according to this embodiment.
  • FIG. 12 shows a process cross-sectional view of the vicinity of the side surface 20S of the bank 20 located in the blue sub-pixel SPB in the process of forming the light-emitting layer 14 according to this embodiment.
  • a blue quantum dot material layer 36B is formed by the same method as in step S10-2 according to the previous embodiment.
  • the blue quantum dot material layer 36B is made thinner than in step S10-2 according to the previous embodiment.
  • a film may be formed.
  • the mixed layer 40B according to the present embodiment may contain the same material as the mixed layer 40B according to the previous embodiment. However, since the mixed layer 40B according to the present embodiment is formed from a solution in which the blue quantum dots 26B and the insulating material 28 are mixed, the amount of the insulating material 28 is lower than that of the mixed layer 40B according to the previous embodiment. Density becomes more uniform.
  • the insulating material layer 38 is formed on the mixed layer 40B by the same method as in step S10-4 according to the previous embodiment. Also in this embodiment, on the upper surface of the insulating material layer 38, an inclined surface 38S reflecting the inclination of the side surface 20S of the bank 20 is formed around the blue sub-pixel SPB.
  • a resist layer 42 is formed on the insulating material layer 38 for each blue sub-pixel SPB by the same method as in step S10-8 according to the previous embodiment. Also in this embodiment, the portion of the resist layer 42 formed adjacent to the inclined surface 38S creeps up the inclined surface 38S due to the meniscus effect. Therefore, after execution of step S10-8, in a plan view of the substrate 4, the insulating material layer 38 and the mixed layer 40B are separated from each other by the relatively thin outer edge portion 42M of the resist layer 42 at the position overlapping the side surface 20S of the bank 20. covered.
  • Step S10-16 The blue quantum dot material layer 36B, the insulator layer 38, and the mixed layer 40B are then etched by a suitable etching method, and the patterning of the blue quantum dot material layer 36B, the insulator layer 38, and the mixed layer 40B is performed.
  • Blue quantum dot material layer 36B may be etched with an etchant capable of etching insulator layer 38 and mixed layer 40B. Therefore, step S10-16 can be performed by the same method as step S10-10 according to the previous embodiment, except that the blue quantum dot material layer 36B is further patterned. As a result, an island-like blue quantum dot material layer 36B, a mixed layer 40B, and an insulating material layer 38 are formed for each blue subpixel SPB. 24.
  • the resist layer 42 is thinly formed as the outer edge portion 42M even on the inclined surface 38S of the insulating material layer 38 located around the blue sub-pixel SPB when step S10-8 is completed. . Therefore, by performing steps S10-16, portions of each of the blue quantum dot material layer 36B and the mixed layer 40B remain on the side surface 20S of the bank 20 without being etched. However, the blue quantum dot material layer 36B and the mixed layer 40B at this position are exposed to the etchant for the same reason as described in the previous embodiment.
  • step S10-16 is performed by dry etching or wet etching.
  • the blue quantum dots 26B contained in the blue quantum dot material layer 36B and the mixed layer 40B remaining on the side surface 20S of the bank 20 and exposed to the etchant are deteriorated and deactivated by oxidation or the like. Therefore, when step S10-16 is completed, the deactivation layer 46BD and the deactivation layer 22BD are formed on the side surface 20S of the bank 20 in this order from the bank 20 side.
  • the deactivated layer 46BD is formed by deactivating the blue quantum dots 26B of the blue quantum dot material layer 36B
  • the deactivated layer 22BD is formed by deactivating the blue quantum dots 26B of the mixed layer 40B.
  • the resist layer 42 is removed from the insulating material layer 38 by the same method as in step S10-12 according to the previous embodiment.
  • the main light emitting portion 14BL including the blue quantum dot layer 46B, the blue quantum dot layer 22B, and the insulating layer 24, and the outer edge portion 14BD including the deactivation layer 46BD and the deactivation layer 22BD are obtained.
  • the red light-emitting layer 14R and the green light-emitting layer 14G may be formed by modifying part of the above-described blue light-emitting layer 14B forming process according to the method described in the previous embodiment. As described above, the process of forming the light-emitting layer 14 according to the present embodiment can be performed.
  • the mixed layer 40B is formed from a solution in which the blue quantum dots 26B and the insulating material 28 are mixed. Therefore, by this forming method, it is possible to form the blue quantum dot layer 22B in which the concentration of the insulating material 28 is more uniform, and it is possible to form the blue light emitting layer 14B that more stably reduces the reactive current.
  • step S10-2 the blue quantum dot material layer 36B that does not contain the insulating material 28 is formed. Therefore, in this forming method, the blue quantum dot layer 46B that does not contain the insulating material 28 can be formed more reliably on the anode 10 side of the blue light emitting layer 14B.
  • the forming method does not include the step of infiltrating the insulating material 28 into the blue quantum dot material layer 36B. Therefore, in the present embodiment, the permeation step in the previous embodiment can be omitted, and the forming method can be simplified.
  • the mixed layer 40B formed in step S10-14 according to the present embodiment includes an insulating material 28 containing a tetrafluoroethylene-based material, a perfluoro-based solvent, and a ligand 30 soluble in the perfluoro-based solvent. may contain In this case, mixing of the colloidal blue quantum dots 26B, the insulating material 28 soluble in the perfluoro solvent, and the ligand 30 also soluble in the perfluoro solvent is facilitated. Therefore, with the above configuration, in step S10-14 according to the present embodiment, the mixing of the solutions used for forming the mixed layer 40B is promoted, and a more uniform mixed layer 40B can be formed.
  • FIG. 13 is a schematic diagram showing an enlarged partial region of a schematic cross section of the display device 2 according to the present embodiment, and is an enlarged diagram of a position corresponding to the schematic enlarged view of the display device 2 shown in FIG. be.
  • the display device 2 according to the present embodiment has a red light emitting element 48R, a green light emitting element 48R, and a green light emitting element 48R instead of the red light emitting element 6R, the green light emitting element 6G, and the blue light emitting element 6B, respectively.
  • a light emitting element 48G and a blue light emitting element 48B are provided. Except for this point, the display device 2 according to the present embodiment has the same configuration as the display device 2 according to the first embodiment.
  • the blue light-emitting device 48B according to the present embodiment has a surplus ligand 34 among the ligands 30 contained in the blue quantum dot layer 22B of the blue light-emitting layer 14B. Low concentration. Specifically, the number of surplus ligands 34 included in the blue quantum dot layer 22B according to the present embodiment is less than the number of surplus ligands 34 included in the blue quantum dot layer 22B according to the first embodiment. . For example, in the present embodiment, the ratio of surplus ligands 34 contained in the blue quantum dot layer 22B to the binding ligands 32 contained in the blue quantum dot layer 22B is low. Except for the above points, the blue light emitting element 48B according to this embodiment has the same configuration as the blue light emitting element 6B according to the first embodiment.
  • the concentration of the surplus ligands 34 contained in the blue quantum dot layer 22B according to this embodiment is lower than the concentration of the surplus ligands 34 contained in the blue quantum dot layer 22B according to each embodiment described above.
  • the surplus ligand 34 has a longer average distance from the closest blue quantum dot 26B than the binding ligand 32 does. Therefore, the surplus ligands 34 are more likely to contribute to the transport of carriers between the blue quantum dots 26B than to the injection of carriers into the blue quantum dots 26B compared to the binding ligands 32, and thus are ineffective. Contributes more strongly to current generation.
  • the blue light-emitting layer 14B of the blue light-emitting element 48B reduces the concentration of the surplus ligands 34 that mainly contribute to the generation of reactive current, thereby effectively reducing the generation of reactive current in the blue light-emitting element 48B.
  • n be the total number of carbon atoms, halogen atoms, group III atoms, group IV atoms, group V atoms, group VI atoms, and hydrogen chains of the surplus ligand 34.
  • the ratio of the number of surplus ligands 34 to the number of all ligands 30 may be 1/(2n) or less.
  • the blue light emitting layer 14B more effectively reduces generation of reactive current in the blue light emitting element 48B.
  • the blue light-emitting layer 14B further reduces generation of reactive current in the blue light-emitting element 48B. effectively reduce.
  • the ratio of the number of surplus ligands 34 to the number of ligands 30 in the blue light emitting layer 14B may be measured using, for example, the DOSY (Diffusion Ordered Spectroscopic Y) method.
  • the DOSY method is a composition analysis method for mapping the molecular weight of each molecule and the diffusion coefficient with respect to the magnetic field gradient for a mixture containing multiple types of molecules.
  • the measured value of the diffusion coefficient with respect to the molecular weight of the surplus ligand 34 is higher than the measured value of the diffusion coefficient with respect to the molecular weight of the binding ligand 32. Therefore, by calculating the integrated intensity of the peak on the molecular weight-diffusion constant map obtained by mapping by the DOSY method for the blue light emitting layer 14B, the concentration ratio between the binding ligand 32 and the surplus ligand 34 can be calculated. can be calculated.
  • the ratio of the number of surplus ligands 34 to the number of ligands 30 in the blue light emitting layer 14B may be measured using, for example, a TD-GC/MS (Thermal Desorption-Gas Chromatograph/Mass Spectrometer) method. good.
  • the TD-GC/MS method is a composition analysis method in which a sample surface is locally heated by a probe having a heat source, volatilized components are adsorbed by an adsorbent, and vapor phase chromatography and mass spectrometry are performed on the components.
  • the measured volatilization temperature for the molecular weight of the surplus ligand 34 is lower than the measured volatilization temperature for the molecular weight of the binding ligand 32. This is accompanied by a decrease in the volatilization temperature of surplus ligands 34 by a temperature corresponding to the energy consumed to form coordinate bonds of binding ligands 32 . Therefore, from the difference in the volatilization temperature with respect to the molecular weight obtained by the TD-GC/MS method for the blue light-emitting layer 14B, the bonding ligand 32 and the surplus ligand 34 are separately analyzed by mass spectrometry. A concentration ratio between the ligand 32 and the surplus ligand 34 can be calculated.
  • the ratio of the surplus ligands 34 to the total number of ligands 30 in the blue light-emitting layer 14B can be calculated from the concentration ratio of the bonding ligands 32 and the surplus ligands 34. .
  • the light emitting layers 14 included in some of the light emitting elements may be analyzed, and the measurement results may be applied to the light emitting layers 14 included in each light emitting element.
  • the TD-GC/MS method allows local heating by a probe, it is possible to analyze the light-emitting layer 14 of a single light-emitting element.
  • FIG. 14 ⁇ Comparison of characteristics of light-emitting elements>
  • characteristics of the blue light emitting element 6BA according to the comparative example, the blue light emitting element 6B according to the first embodiment, and the blue light emitting element 48B according to the present embodiment are compared and evaluated.
  • the graph shown in FIG. 14 is a graph showing the characteristics of the blue light emitting device according to each form.
  • Graphs GA1 and GA2 show the characteristics of the blue light-emitting element 6BA according to the comparative form.
  • the characteristics of the blue light emitting element 6B according to Embodiment 1 are shown in graphs G1 and G2.
  • the characteristics of the blue light emitting element 48B according to this embodiment are shown in graphs G3 and G4.
  • Graphs GA1, G1, and G3 each show the applied voltage-current characteristics of the blue light-emitting device according to each form, with the applied voltage on the horizontal axis and the logarithm of the current value on the vertical axis.
  • solid lines indicate measured values of characteristics of the blue light-emitting element according to each form, and dashed lines indicate ideal diode characteristics.
  • the difference between the ideal diode characteristics and the actual characteristics of the light-emitting element is caused by the generation of reactive current that does not contribute to light emission in the light-emitting element.
  • the difference between the ideal diode current value and the actual current value of the light emitting element indicates the magnitude of the reactive current generated in the light emitting element.
  • the blue light emitting device 6B according to Embodiment 1 has a higher maximum external quantum efficiency than the blue light emitting device 6BA according to the comparative example.
  • the blue light emitting device 48B according to the present embodiment has a further maximum external quantum efficiency compared to the blue light emitting device 6B according to the first embodiment. It is rising.
  • the blue light emitting element 6B according to Embodiment 1 reduces the reactive current and improves the luminous efficiency as compared with the blue light emitting element 6BA according to the comparative embodiment. Furthermore, the blue light emitting element 48B according to the present embodiment further reduces the reactive current and further improves the luminous efficiency as compared with the blue light emitting element 6B according to the first embodiment.
  • the red light emitting element 48R and the green light emitting element 48G have the same configuration as the blue light emitting element 48B, except for the emission color of the quantum dots included in the light emitting layer 14. Therefore, the red light emitting element 48R and the green light emitting element 48G have the same effect as the blue light emitting element 48B.
  • the display device 2 according to the present embodiment can be manufactured by the manufacturing method of the display device 2 according to the first embodiment, in which only the step of forming the light-emitting layer is changed.
  • a method for forming the light-emitting layer 14 according to this embodiment will be described in more detail with reference to FIG.
  • FIG. 15 is a flow chart for explaining the method for forming the light emitting layer 14 according to this embodiment.
  • step S10-2 In the step of forming the blue light emitting layer 14B according to the present embodiment, prior to step S10-2, excess ligands 34 are removed from the blue quantum dot solution used for forming the blue quantum dot material layer 36B. (Step S10-18).
  • step S10-18 for example, the blue quantum dot solution is centrifuged.
  • the blue quantum dot solution is separated into a solution containing the blue quantum dots 26B and the binding ligands 32 and a solution containing the excess ligands 34 by centrifugation.
  • a blue quantum dot solution in which the excess ligands 34 are reduced in concentration is obtained.
  • a blue quantum dot material layer 36B is formed by the same method as step S10-2 according to the first embodiment.
  • the blue quantum dot material layer 36B is formed using a solution of the blue quantum dots 26B in which the concentration of the surplus ligands 34 has been lowered by executing step S10-18 described above.
  • a cleaning liquid is dropped onto the formed blue quantum dot material layer 36B (step S10-20).
  • the cleaning liquid may contain, for example, alcohols or ethers, or may contain a solvent in which the ligand 30 is highly soluble. As a result, at least part of the surplus ligands 34 in the blue quantum dot material layer 36B are released into the cleaning liquid.
  • Step S10-22 the cleaning liquid is removed from the blue quantum dot material layer 36B onto which the cleaning liquid has been dropped (step S10-22).
  • Step S10-22 may be performed, for example, by tilting the blue quantum dot material layer 36B together with the substrate 4 to flow the cleaning liquid from the blue quantum dot material layer 36B.
  • the excess ligands 34 liberated in the cleaning liquid are also removed due to the viscous resistance between the cleaning liquid and the excess ligands 34. be done.
  • the viscosity of the washing liquid significantly acts on the inertia of the surplus ligand 34 due to the size effect. Therefore, the viscous resistance between the surplus ligands 34 and the washing liquid works efficiently, and the surplus ligands 34 are effectively released into the washing liquid. Moreover, the more the side chains of the surplus ligands 34, the stronger the viscous resistance between the surplus ligands 34 and the washing liquid, so that the surplus ligands 34 are more efficiently discharged by the washing liquid. In the case of removing the surplus ligand 34 which has a small number of side chains and has a relatively low viscous resistance to the cleaning solution, the above-described cleaning process may be repeated multiple times.
  • the blue light-emitting layer 14B is obtained.
  • the red light-emitting layer 14R and the green light-emitting layer 14G may be formed by modifying part of the above-described blue light-emitting layer 14B forming process according to the method described in the first embodiment. As described above, the process of forming the light-emitting layer 14 according to the present embodiment can be performed.
  • the method of forming the blue light-emitting device 6B according to this embodiment includes a step of reducing excess ligands 34 from the blue quantum dot material layer 36B. Therefore, with this formation method, the blue quantum dot layer 22B in which the concentration of the surplus ligands 34 is reduced can be formed.
  • the method for forming the blue light emitting element 6B according to the present embodiment an example in which all of Steps S10-18, S10-20, and S10-22 are executed has been described, but the present invention is not limited to this. For example, by performing any one of step S10-18, step S10-20, and step S10-22, the concentration of the surplus ligands 34 in the blue quantum dot layer 22B can be reduced.
  • steps S10-18 and S10-22 it is conceivable that in steps S10-18 and S10-22, some of the binding ligands 32 are detached from the blue quantum dots 26B and removed from the solution of the blue quantum dots 26B. In this case, the surplus ligand 34 newly forms a coordination bond with the blue quantum dot 26B from which the binding ligand 32 is partially detached, and becomes the binding ligand 32 . In this way, since the binding ligand 32 and the excess ligand 34 are in equilibrium with each other, even if a part of the binding ligand 32 is removed in the above process, as a result, the excess coordination contributes to the reduction of the child 34.
  • Steps S10-18, S10-20, and S10-22 according to the present embodiment may also be applied to the blue quantum dot material layer 36B according to the previous embodiment.
  • You may apply with respect to the mixed layer 40B which concerns on.
  • excess ligands 34 may be removed from the solution used to form mixed layer 40B prior to step S10-14.
  • dropping the cleaning liquid onto the mixed layer 40B and removing the cleaning liquid from the mixed layer 40B may be performed subsequent to step S10-14.
  • the blue quantum dot layer 22B and the blue quantum dot layer 46B in which the concentration of the excess ligands 34 is reduced can be formed by the method of forming the blue light emitting device 6B according to the previous embodiment.
  • FIG. 16 is a schematic diagram showing an enlarged partial region of a schematic cross section of the display device 2 according to the present embodiment, and is an enlarged diagram of a position corresponding to the schematic enlarged view of the display device 2 shown in FIG. be.
  • the display device 2 according to the present embodiment has a red light emitting element 50R, a green A light emitting element 50G and a blue light emitting element 50B are provided. Except for this point, the display device 2 according to the present embodiment has the same configuration as the display device 2 according to the first embodiment.
  • a blue light-emitting element 50B according to the present embodiment differs from the blue light-emitting element 6B according to Embodiment 1 in that a blue light-emitting layer 14B is formed by alternately stacking a blue quantum dot layer 46B and an insulating layer 24, and , in that each layer includes a plurality of layers.
  • the blue quantum dot layer 46B according to this embodiment may have the same configuration as the blue quantum dot layer 46B according to the second embodiment.
  • the insulating layer 24 according to the present embodiment may have the same configuration as the insulating layer 24 according to each of the embodiments described above.
  • FIG. 16 illustrates that the blue light-emitting layer 14B includes three layers each of the blue quantum dot layer 46B and the insulating layer 24, the present invention is not limited to this.
  • the blue light emitting layer 14B may include two layers each of the blue quantum dot layer 46B and the insulating layer 24, or may include four or more layers each.
  • the thickness 24D of each insulating layer 24 may be the same in at least two layers, or may be different.
  • the blue light-emitting layer 14B has the anode 10 side end face 14EA formed by the anode 10 side end face of the blue quantum dot layer 46B located closest to the anode 10 side.
  • a quantum dot layer 46B is provided.
  • the blue light emitting layer 14B includes the insulating layer 24 so that the cathode 18 side end face 14EC is formed by the cathode 18 side end face of the insulating layer 24 located closest to the cathode 18 side. Therefore, also in this embodiment, the interval 14DA is smaller than the interval 14DC.
  • the blue light emitting element 50B according to the present embodiment has the same configuration as the blue light emitting element 6B according to the first embodiment.
  • the blue light-emitting element 50B reduces generation of reactive current and excess electrons in the blue light-emitting layer 14B. Therefore, the blue light emitting element 50B improves the luminous efficiency and prolongs the life.
  • the blue light-emitting layer 14B includes the insulating layer 24 also between the two blue quantum dot layers 46B. Therefore, the blue light emitting layer 14B can reduce reactive current propagating from one blue quantum dot layer 46B to another blue quantum dot layer 46B. Therefore, the blue light-emitting element 50B according to this embodiment can further reduce generation of reactive current in the blue light-emitting layer 14B.
  • the blue light emitting layer 14B includes a plurality of blue quantum dot layers 46B that do not contain the insulating material 28 has been described, but the present invention is not limited to this.
  • the blue light emitting layer 14B according to the present embodiment may include a plurality of blue quantum dot layers 22B containing the insulating material 28 described in each of the above-described embodiments, instead of the blue quantum dot layer 46B. good. With this configuration, the blue light emitting element 50B can further efficiently reduce the reactive current propagating between the blue quantum dots 26B.
  • the red light emitting element 50R and the green light emitting element 50G have the same configuration as the blue light emitting element 50B, except for the emission color of the quantum dots provided in the light emitting layer 14. Therefore, the red light emitting element 50R and the green light emitting element 50G also have the same effect as the blue light emitting element 50B.
  • the display device 2 according to the present embodiment can be manufactured by the manufacturing method of the display device 2 according to the first embodiment, in which only the step of forming the light-emitting layer is changed.
  • a method for forming the light-emitting layer 14 according to this embodiment will be described in more detail with reference to FIG. 17 .
  • FIG. 17 is a flow chart for explaining the method for forming the light emitting layer 14 according to this embodiment.
  • step S10-2 and step S10-4 according to Embodiment 1 are alternately performed a plurality of times, and the blue quantum dot material layer A laminated structure of 36B and the insulating material layer 38 is obtained. Therefore, the step of curing the insulating material 28 included in the blue quantum dot material layer 36B and the insulating material layer 38 may be performed each time a pair of steps S10-2 and S10-4 are performed.
  • the number of times steps S10-2 and S10-4 are executed is determined according to the number of blue quantum dot layers 46B and insulating layers 24 to be formed. After Steps S10-2 and S10-4 have been executed a specified number of times, Steps S10-8 to S10-12 according to the first embodiment are sequentially executed. In step S10-10 according to this embodiment, a plurality of blue quantum dot material layers 36B and insulating material layers 38 may be patterned at once.
  • the step of forming the blue light emitting layer 14B according to this embodiment does not include the step of forming the mixed layer 40B.
  • the forming step does not include the step of infiltrating a portion of the insulating material 28 of the insulating material layer 38 into the blue quantum dot material layer 36B, and the mixed layer is formed from a solution containing the blue quantum dots 26B and the insulating material 28. It does not include the step of forming a film of 40B. Therefore, the blue light emitting layer 14B can be formed more simply by the blue light emitting layer 14B formation process according to the present embodiment.
  • the process of forming the blue light-emitting layer 14B according to this embodiment is not limited to the steps described above.
  • each time a set of steps S10-2 and S10-4 is performed part of the insulating material 28 in the insulating material layer 38 is replaced with a blue quantum dot material layer.
  • An infiltration step may be performed to infiltrate 36B.
  • the permeation step may be performed by the same method as step S10-6 according to the first embodiment.
  • the blue light emitting layer 14B including a plurality of blue quantum dot layers 22B including the insulating material 28 can be formed.
  • FIG. 18 is a schematic enlarged view of a partial area of the display area DA of the display device 52 according to the present embodiment, and is an enlarged view of a position corresponding to the schematic enlarged view shown in FIG.
  • FIG. 19 is a schematic cross-sectional view of the display device 2 according to this embodiment, and is a cross-sectional view taken along line FG in FIG.
  • FIG. 20 is a schematic enlarged view of the cross section of the display device 2 according to this embodiment, and is an enlarged view of the region H shown in FIG. 18, as in FIG. 3, illustration of the sealing layer 8, the electron transport layer 16, and the cathode 18 is omitted.
  • the display device 52 according to this embodiment differs from the display device 2 according to each of the embodiments described above only in that it includes a light emitting element layer 54 instead of the light emitting element layer 6 .
  • the light-emitting element layer 54 differs from the light-emitting element layer 6 according to each of the embodiments described above only in that it includes a light-emitting layer 56 instead of the light-emitting layer 14 .
  • the light-emitting layer 56 is individually formed for each sub-pixel.
  • the light emitting layer 56 includes a red light emitting layer 56R that emits red light, a green light emitting layer 56G that emits green light, and a blue light emitting layer 56B that emits blue light.
  • the red light emitting layer 56R includes a main light emitting portion 56RL and an outer edge portion 56RD.
  • the green light emitting layer 56G according to this embodiment includes a main light emitting portion 56GL and an outer edge portion 56GD.
  • the blue light-emitting layer 56B according to this embodiment includes a main light-emitting portion 56BL and an outer edge portion 56BD.
  • the outer edge portion 56RD, the outer edge portion 56GD, and the outer edge portion 56BD are arranged at positions surrounding the main light emitting portion 56RL, the main light emitting portion 56GL, and the main light emitting portion 56BL, respectively, in plan view of the substrate 4 . Therefore, each of outer edge portion 56RD, outer edge portion 56GD, and outer edge portion 56BD contacts side surface 20S of bank 20 .
  • FIG. 20 is a schematic enlarged view particularly showing the vicinity of the interface between the blue light emitting layer 56B of the blue light emitting element 54B of the display device 2 according to this embodiment and the bank 20, in which the region H shown in FIG. 19 is enlarged.
  • FIG. 20 is a schematic enlarged view particularly showing the vicinity of the interface between the blue light emitting layer 56B of the blue light emitting element 54B of the display device 2 according to this embodiment and the bank 20, in which the region H shown in FIG. 19 is enlarged.
  • the main light emitting portion 56RL and the main light emitting portion 56GL have the same configuration as the main light emitting portion 56BL, and the outer edge portion 56RD and the outer edge portion 56GD have the same configuration as the outer edge portion 56BD. with the configuration of
  • the main light-emitting portion 56BL includes, in order from the substrate 4 side, a main light-emitting layer 58B containing a blue light-emitting material included in the blue light-emitting layer 56B and a protective layer 60 covering the upper surface of the main light-emitting layer 58B.
  • the protective layer 60 may contain, for example, the insulating material 28 described above, and may have the same configuration as the insulating layer 24 . When the protective layer 60 contains the insulating material 28, the protective layer 60 is an insulating layer having insulating properties.
  • the outer edge portion 56BD includes the deactivation layer 58BD and does not include the protective layer 60.
  • the deactivation layer 58BD is in contact with the side surface 20S of the bank 20 and is continuous with the main light-emitting layer 58B of the main light-emitting section 56BL via the thin film section 58BT, which is thinner than the surroundings.
  • the deactivation layer 58BD may not be continuous with the main light emitting portion 56BL, and may be formed separately.
  • the blue light-emitting layer 56B may not be formed between the main light-emitting portion 56BL and the outer edge portion 56BD, and the main light-emitting portion 56BL and the outer edge portion 56BD may be separated by the electron transport layer 16.
  • the deactivation layer 58BD contains a material in which the light-emitting material contained in the main light-emitting layer 58B is deactivated by oxidation, moisture penetration, physical damage, or the like. Therefore, the deactivation layer 58BD has lower luminous efficiency than the main luminous layer 58B. Except for this point, the deactivation layer 58BD may have the same configuration as the main light emitting layer 58B.
  • the outer edge portion 56RD and the outer edge portion 56GD according to the present embodiment each include a deactivated layer containing a deactivated red light emitting material and a deactivated layer containing a deactivated green light emitting material. It has the same configuration as the outer edge portion 56BD except for the points.
  • the display device 52 according to the present embodiment can be manufactured by the manufacturing method of the display device 2 according to each embodiment described above, in which only the step of forming the light-emitting layer is changed.
  • a method for forming the light-emitting layer 56 according to this embodiment will be described in more detail with reference to FIGS. 21 and 22.
  • FIG. 21 is a flow chart for explaining the method for forming the light emitting layer 56 according to this embodiment.
  • 22 shows a process cross-sectional view of the vicinity of the side surface 20S of the bank 20 located in the blue sub-pixel SPB in the process of forming the light-emitting layer 56 according to this embodiment. 22 show cross sections at positions corresponding to the cross sections shown in FIG.
  • step S10-24 a thin film containing a blue light-emitting material is formed on the entire surface of the hole transport layer 12B and the bank 20 to form the light-emitting material layer 62B. film (step S10-24).
  • the luminescent material layer 62B is formed not only for the blue sub-pixel SPB, but also for the red sub-pixel SPR and the green sub-pixel SPG. Therefore, the formation of the light-emitting material layer 62B is also performed on the side surface 20S of the bank 20 as well.
  • a protective layer 64 is formed by forming a film of a material including the protective layer 60 on the light-emitting material layer 62B (step S10-26).
  • the protective layer 64 is also formed on the entire upper surface of the light emitting material layer 62B. Therefore, on the upper surface of the protective layer 64, an inclined surface 64S reflecting the inclination of the side surface 20S of the bank 20 is formed around the blue sub-pixel SPB.
  • the film formation of the light-emitting material layer 62B and the protective layer 64 may be performed by applying a solution containing the insulating material 28 using, for example, a coating method using a coater.
  • the film formation of the light-emitting material layer 62B and the protective layer 64 may be performed using, for example, a vapor deposition method, an electrodeposition method, or the like.
  • the luminescent material layer 62B and the protective layer 64 are etched by a suitable etching method, and the luminescent material layer 62B and the protective layer 64 are patterned (step S10-28).
  • Etching of the light-emitting material layer 62B and the protective layer 64 may be performed using, for example, the etchant used in step S10-10 according to each of the embodiments described above.
  • an island-shaped luminescent material layer 62B and a protective layer 64 are formed for each blue sub-pixel SPB, and become a main luminescent layer 58B and a protective layer 60, respectively.
  • the resist layer 42 is thinly formed as the outer edge portion 42M even on the inclined surface 64S of the protective layer 64 located around the blue sub-pixel SPB when step S10-8 is completed. Therefore, by performing step S10-28, a portion of the light-emitting material layer 62B remains on the side surface 20S of the bank 20 without being etched. However, the luminescent material layer 62B at this position is exposed to the etchant for the same reason as described in the first embodiment.
  • step S10-28 is performed by dry etching or wet etching.
  • the blue light-emitting material remaining on the side surface 20S of the bank 20 and contained in the light-emitting material layer 62B exposed to the etching agent is degraded and deactivated by oxidation or the like.
  • the deactivation layer 58BD is formed on the side surface 20S of the bank 20 at the completion of step S10-28.
  • the resist layer 42 is removed from the protective layer 64 by the same method as step S10-12 according to the previous embodiment.
  • the main light-emitting portion 56BL including the main light-emitting layer 58B and the protective layer 60, and the outer edge portion 56BD including the deactivation layer 58BD are obtained, completing the step of forming the blue light-emitting layer 56B.
  • the red light-emitting layer 56R and the green light-emitting layer 56G may be formed by partially changing the process of forming the blue light-emitting layer 56B described above.
  • the blue light-emitting material included in the light-emitting material layer 62B is changed to a red light-emitting material and a green light-emitting material, respectively. do.
  • the position where the resist layer 42 is formed is set to the red subpixel SPR and The position is changed to overlap with the green sub-pixel SPG.
  • the process of forming the light-emitting layer 56 according to the present embodiment can be performed.
  • a protective layer 64 is formed on the luminescent material layer 62B. Therefore, even if the material included in the protective layer 64 deteriorates due to contact with the developer, the protective layer 64 can reduce contact between the light emitting material layer 62B and the developer. Also, the protective layer 64 may contain a chemically stable material compared to the light emitting material contained in the light emitting material layer 62B. In this case, even if the developer used for patterning the resist layer 42 comes into contact with the protective layer 64, the deterioration of the protective layer 64 may be caused by the deterioration of the light-emitting material layer 62B when the developer comes into contact with the light-emitting material layer 62B.
  • the protective layer 64 can protect the light-emitting material layer 62B from the developer used for patterning the resist layer 42, and reduce deterioration of the blue light-emitting material included in the light-emitting material layer 62B.
  • step S10-28 patterning of the light emitting material layer 62B and the protective layer 64 is performed by dry etching or wet etching. Therefore, in step S10-28, at the position covered with the outer edge portion 42M of the resist layer 42, the deactivated layer 58BD containing the deactivated blue light-emitting material and the outer edge portion 56BD including the deactivated layer 58BD are formed. It is formed.
  • the outer edge portion 56BD included in the blue light emitting element 54B formed by the above-described formation method has a deactivation of the blue light emitting material, and the luminous efficiency is extremely reduced. Therefore, by forming the blue light emitting element 54B by the above formation method, it is possible to reduce the abnormal light emission of the outer edge portion 56BD.
  • the blue light-emitting element 54B can make the carriers injected into the blue light-emitting layer 56B efficiently contribute to light emission in the main light-emitting section 56BL, thereby improving light emission efficiency in the main light-emitting section 56BL.
  • the blue light emitting element 54B includes an outer edge portion 56BD with low luminous efficiency at the outer edge of the main light emitting portion 56BL. Therefore, the blue light emitting element 54B can reduce the emission intensity in the vicinity of the boundary with other light emitting elements. Therefore, the display device 2 including the blue light emitting element 54B can reduce color mixture between sub-pixels and improve display quality.
  • a protective layer 60 is formed on the main light emitting layer 58B.
  • the protective layer 60 can protect the primary light emitting layer 58B from the remover used to remove the resist layer 42, reducing degradation of the blue light emitting material.
  • the protective layer 60 is an insulating layer containing the insulating material 28 . Therefore, in the main light-emitting portion 56BL in which the protective layer 60 is provided at a position in contact with the end face of the main light-emitting layer 58B on the cathode 18 side, electrons in the main light-emitting layer 58B are excess is reduced. Therefore, the blue light emitting element 54B according to this embodiment improves the luminous efficiency of the blue light emitting layer 56B.
  • the method of forming the red light emitting element 54R and the green light emitting element 54G according to the present embodiment can be executed only by changing the formation position of each light emitting material and each light emitting layer 56 in the method of forming the blue light emitting element 54B. Therefore, the method of forming the red light emitting element 54R and the green light emitting element 54G according to this embodiment also has the same effect as the method of forming the blue light emitting element 54B.
  • coordination compounds of quantum dots can be used to improve the luminous efficiency of light-emitting devices. It turns out that it should be reduced as much as possible.
  • the current flowing through the light-emitting element is composed of (1) a component following the Shockley equation, (2) an ohmic component, and (3) a nonlinear component, among which (2) an ohmic component and ( 3) It was found that the nonlinear component is a reactive current that does not contribute to radiative recombination. In particular, the nonlinear component accounts for most of the reactive current, and it has been found that suppressing this nonlinear component can improve the luminous efficiency (EQE (External Quantum Efficiency)).
  • EQE Extra Quantum Efficiency
  • the nonlinear component of the current flowing through this light-emitting device is conducted through the coordination compounds connecting adjacent quantum dots and the separated surplus coordination compounds. Therefore, in order to improve the luminous efficiency, the coordination compound of the quantum dots in the light emitting device should be reduced as much as possible.
  • a coordination compound is necessary to inactivate the defects that exist on the quantum dot surface and become carrier traps and non-radiative centers, and to disperse the quantum dots in the solvent. Therefore, in order to improve the emission characteristics of the light-emitting device, it is necessary to solve the trade-off regarding the amount of the coordination compound.
  • FIG. 23 is a schematic diagram of quantum dots 103 included in the light-emitting layer 102 of the light-emitting device 101 according to Embodiment 1.
  • FIG. 23 is a schematic diagram of quantum dots 103 included in the light-emitting layer 102 of the light-emitting device 101 according to Embodiment 1.
  • the light-emitting layer 102 includes quantum dots 103 , halogen elements 104 , and ligands 105 (coordination compound) that can be coordinated to the quantum dots 103 .
  • the ligand 105 is a compound having one or more n (n is plural) or less carbon-hydrogen bonds, or an element that can essentially have 4 or more coordination, and a heteroatom is bound to any two-coordinated position. Including compounds having n chain structures.
  • the mass ratio between ligand 105 and quantum dot 103 is 0.5 or less, and may be 5/(10 ⁇ n) or less.
  • the halogen element 104 inactivates the surface defects 106 of the quantum dots 103 .
  • the halogen element 104 preferably exists near the surface of the quantum dot 103 .
  • the halogen element 104 present near the surface of the quantum dot 103 can deactivate the defects 106 on the surface of the quantum dot 103 . Since the mass ratio between the ligands 105 and the quantum dots 103 is 0.5 or less, the mass ratio of the ligands 105 is reduced while maintaining the dispersibility of the quantum dots 103 in the solvent. Reactive current flowing through the As a result, the external quantum efficiency of quantum dots 103 can be improved.
  • the halogen element 104 may have a density of 10 15 cm ⁇ 3 or more and 10 20 cm ⁇ 3 or less.
  • the defects 106 on the surface of the quantum dots 103 can be inactivated by the halogen element 104 having a density of 10 15 cm ⁇ 3 or more and 10 20 cm ⁇ 3 or less. Since the mass ratio between the ligands 105 and the quantum dots 103 is 0.5 or less, the mass ratio of the ligands 105 is reduced while maintaining the dispersibility of the quantum dots 103 in the solvent. Reactive current flowing through the As a result, the external quantum efficiency of quantum dots 103 can be improved.
  • FIG. 24 is a graph showing typical electrical characteristics of light-emitting elements and their analysis results.
  • the electrical characteristics shown in FIG. 24 are the current injected into the quantum dot according to exp(E) according to the Shockley equation, the leakage current which flows in a small amount according to Ohm's law proportional to the voltage, and the n-th power of the voltage (n is 1 can be decomposed into reactive currents proportional to
  • the reactive current which is proportional to the n-th power of the voltage
  • the space-charge-limited current which is proportional to the square of the voltage and the -3 power of the layer thickness, or the current, which is proportional to higher powers of the voltage.
  • the first means to improve the EQE of QLED Quantum dot Light Emitting Diode is to reduce the amount of ligand 105 .
  • a crystalline defect 106 exists on the surface of the quantum dot 103, and if the defect 106 is active, the defect 106 inhibits carrier injection into the quantum dot 103 and radiative recombination. Conventionally, this defect 106 is inactivated by coordinating the ligand 105 to the quantum dot 103 so as not to affect carrier injection and radiative recombination. It is also the cause of reactive current that does not contribute to light emission. In addition, since the ligand 105 is necessary for dispersing the quantum dots 103 in the solvent of the quantum dot colloidal solution, the amount of the ligand 105 has been reduced so far due to the requirements for manufacturing light emitting devices such as coating and printing of the quantum dot colloidal solution. It was difficult to let
  • the halogen element 104 is introduced in order to solve the contradictory factors of the reduction of the reactive current regarding the ligand 105 and the manufacturing requirements. Then, as shown in FIG. 23, regarding the functions of deactivation and dispersibility of the defects 106 concentrated in the ligand 105, the function of deactivation of the defects 106 is separated into the halogen element 104, and the quantum dot colloid solution The solvent dispersibility function of is separated into the ligand 105 . As a result, both the inactivation of the defects 106 and the dispersibility of the quantum dot colloidal solution in the solvent are achieved.
  • the defects 106 on the surface of the quantum dots 103 are deactivated using the halogen element 104 .
  • the halogen element 104 for example, in the production of the quantum dots 103, a trace amount of an appropriate halogen compound may be added after forming the shell. Alternatively, a halogen compound may be added when the ligand 105 is coordinated to the quantum dot 103 .
  • the halogen element 104 is a group 7 element of the periodic table, and if it acquires one electron, it becomes a closed shell and stabilizes. It is easy to selectively bind to pores.
  • the K-shell, L-shell, M-shell, and N-shell are sequentially closed in the order of F, Cl, Br, and I.
  • Br, Cl, and F tend to bond to shell defects in that order. Therefore, although it depends on the shell material, generally F is the most strongly bonded and stable, and is suitable for the configuration of this embodiment.
  • the halogen element 104 preferably contains F.
  • the defects 106 can be deactivated by the halogen element 104 that has the highest effect of deactivating the defects 106 on the surface of the quantum dots 103 .
  • the halogen element 104 preferably contains at least one of Cl, Br, and I. Halogen elements 104 of at least one of Cl, Br, and I can deactivate defects 106 on the surface of quantum dots 103 .
  • group II-VI compounds such as ZnS, which constitute the shell of the core/shell type quantum dot 103, are likely to cause defects due to lack of group VI elements such as S, and group III-V compounds such as AlAs and AlN have As, V group elements such as N are likely to be removed.
  • Halogen element 104 is suitable for inactivating these vacancies.
  • the defects 106 on the surface of the quantum dots 103 have an areal density of 10 10 cm ⁇ 2 to 10 14 cm ⁇ 2 corresponding to a bulk defect density of 10 15 cm ⁇ 3 to 10 21 cm ⁇ 3 per volume; Desirably, the volume density of the halogen element 104 required to passivate the surface defects 106 is on the order of 10 15 cm ⁇ 3 to 10 21 cm ⁇ 3 . This volume density range leaves room for ligands 105 to coordinate and can passivate surface defects 106 sufficiently to improve QLED performance. If the density of the halogen element 104 is lower than the above range, the defect 106 on the surface of the quantum dot 103 cannot be sufficiently deactivated, which is not preferable.
  • FIG. 26 is a schematic diagram of halogen density, quantum dot levels, and carrier injection.
  • the density of the halogen element 104 is higher than the above range, it is not preferable because it reaches a level that can be said to be the composition of the shell material of the quantum dots 103 .
  • the halogen element 104 constitutes the composition of the compound that constitutes the quantum dot 103
  • the p-orbital energy of the halogen element 104 is large, and as shown in FIG.
  • the halogen element 104 is included in the composition, the level shifts in the direction of deepening, and the conduction band level also shifts in the direction of deepening accordingly.
  • the barrier for injecting holes into the quantum dots 103 is high, and the barrier for injecting electrons is low. It is not preferable because it lowers it.
  • the halogen element 104 is captured by the defects 106 on the shell surface, acquires electrons, and is stabilized.
  • ligands 105 are coordinated to defects 106 that are not inactivated by halogen elements 104 on the surface of quantum dots 103, and dispersed in a solvent such as octane to form a quantum dot colloidal solution. Complete.
  • the ligand 105 has at least one or more n (n is a plurality of 50 or less) or less carbon-hydrogen bonds, or has a heteroatom at any two-coordinated position of an element that can essentially have four-coordinated is preferably a compound having a chain structure in which
  • the mass ratio between the ligand 105 and the quantum dot 103 is preferably 1/(10 ⁇ n) or more and 5/(10 ⁇ n) or less. , 1/(10 ⁇ n) or more and 3/(10 ⁇ n) or less. If it is less than this range, problems such as aggregation and precipitation occur when the quantum dots 103 are dispersed in the solvent, which is not preferable. Conversely, if the thickness exceeds this range, the ineffective current that does not contribute to light emission increases when the light emitting layer 102 of the QLED is used, which is not preferable.
  • the above mass ratio can be measured, for example, by the following measuring method.
  • the mass of each component can be quantified.
  • the molecular structure of each component can be identified by analyzing the mass spectrum. Also, if TD-GC/MS (Thermal Desorption Gas Chromatography Mass Spectrometry) is used, components and mass spectrometry taking into consideration the volatilization temperature of molecules and the binding energy with quantum dots can be obtained.
  • TD-GC/MS Thermal Desorption Gas Chromatography Mass Spectrometry
  • the ligand 105 preferably contains a compound having 3 or more carbon-hydrogen bonds or a compound having a chain structure of 3 or more.
  • a compound having 3 or more carbon-hydrogen bonds or a compound having a chain structure of 3 or more can appropriately maintain the distance between the quantum dots 103, and the energy due to resonance between adjacent quantum dots 103 Transfer (FRET, Fluorescence resonance energy transfer) can be suppressed. If the number is two or less, the adjacent quantum dots 103 are too close to each other, resulting in large FRET.
  • FRET Fluorescence resonance energy transfer
  • FIG. 28 is a schematic diagram of quantum dots 103 according to still another comparative example. Since the halogen element 104 is present near the surface of the quantum dot 103, the defect 106 of the quantum dot 103 can be deactivated. However, since the ligand 105 does not exist, the quantum dots 103 cannot be dispersed in the solvent, and the light-emitting device cannot be manufactured.
  • FIG. 29 is a flowchart showing a method for producing a quantum dot colloidal solution in which quantum dots 103 are dispersed in a solvent according to Embodiment 1.
  • FIG. 30 is a graph showing the procedure for producing the quantum dot colloidal solution.
  • the raw material of the core/shell type quantum dots 103, the raw material of the halogen element 104, etc. are adjusted (step S1). Then, the raw material of the solvent for dispersing the quantum dots 103 is adjusted (step S2). Next, the raw material of the adjusted solvent is put into the reactor (step S3). After that, an inert gas such as Ar is sealed in the reactor (step S4).
  • step S5 the reactor is heated to 300°C to liquefy the raw material of the solvent.
  • step S6 the raw material for quantum dots 103 is injected into the reaction furnace by a high-pressure injector (step S6). After that, the material of the quantum dots 103 is decomposed to generate nuclei (step S7).
  • step S8 the temperature of the reactor is lowered to 200°C at 400°C/min.
  • step S9 the core of the quantum dot 103 grows at 10 nm/200 minutes and diethyl Cd is consumed (step S9).
  • step S10 After that, the temperature of the reactor is lowered to 100°C at 30°C/sec (step S10). Then, heat treatment is performed for one hour (step S11).
  • step S12 the reactor is heated to 200°C (step S12).
  • step S13 the raw material for the shell of the quantum dots 103 is injected and the diethyl Zn is consumed (step S13).
  • step S14 the shell grows at 10 nm/200 minutes (step S14).
  • step S15 a raw material of the halogen element 104 is injected and held for 1 to 5 minutes (step S15).
  • step S16 After that, the temperature of the reactor is lowered to 100 degrees at 30 degrees Celsius/second (step S16). Then, heat treatment is performed for one hour (step S17).
  • the method for producing this quantum dot colloidal solution includes a step of adding a halogen element 104 to the vicinity of the surface of the quantum dot 103, a ligand 105 on the surface of the quantum dot 103, and a mass ratio of the ligand 105 to the quantum dot 103 of 0.5. and a step of dispersing the quantum dots 103 to which the halogen element 104 is added and the ligand 105 is coordinated in a solvent to obtain a quantum dot colloidal solution.
  • the halogen element 104 added near the surface of the quantum dot 103 can deactivate the defect 106 on the surface of the quantum dot 103 . Since the mass ratio between the ligand 105 and the quantum dots 103 is 0.5 or less, the dispersibility of the quantum dots 103 in the solvent can be maintained.
  • FIG. 31 is a cross-sectional view of the light-emitting layer 102, hole-transporting layer 107, and electron-transporting layer 108 formed in the light-emitting element 101 according to Embodiment 1.
  • FIG. 31 is a cross-sectional view of the light-emitting layer 102, hole-transporting layer 107, and electron-transporting layer 108 formed in the light-emitting element 101 according to Embodiment 1.
  • the light emitting element 101 includes a light emitting layer 102, a hole transport layer 107 (first charge transport layer) in contact with the light emitting layer 102, and an electron transport layer 108 ( second charge transport layer).
  • the light-emitting layer 102 includes quantum dots 103 , halogen elements 104 , ligands 105 that can be coordinated to the quantum dots 103 , and an insulating material 112 .
  • the ligand 105 is a compound having one or more n (n is plural) or less carbon-hydrogen bonds, or an element that can essentially have 4 or more coordination, and a heteroatom is bound to any two-coordinated position. Including compounds having n chain structures.
  • the mass ratio between ligand 105 and quantum dot 103 is 0.5 or less.
  • the light emitting device 101 further includes an insulating layer 109 formed between the light emitting layer 102 and the electron transport layer 108 .
  • Insulating layer 109 includes insulating material 112 .
  • the light-emitting layer 102 is adjacent to the electron-transporting layer 108 via the insulating material 112 on the side facing the electron-transporting layer 108 . Since the hole-transporting layer 107 is in contact with the light-emitting layer 102, charge injection from the hole-transporting layer 107 to the light-emitting layer 102 is not hindered, and charge injection from the electron-transporting layer 108 to the light-emitting layer 102 is suppressed by the insulating material 112. . As a result, the external quantum efficiency of quantum dots 103 can be further improved.
  • the insulating layer 109 is amorphous and preferably contains at least one of a glass-based material, a tetrafluoroethylene-based material, and a silicone-based material.
  • the insulating layer 109 which is amorphous and contains at least one of a glass-based material, a tetrafluoroethylene-based material, and a silicone-based material suppresses charge injection from the electron transport layer 108 to the light-emitting layer 102 .
  • the insulating layer 109 preferably has a light transmittance of 80% or more in the visible light range.
  • the insulating layer 109 having a light transmittance of 80% or more in the visible light region suppresses charge injection from the electron-transporting layer 108 to the light-emitting layer 102 .
  • the insulating layer 109 preferably contains an ether-based, perfluoro-based, or hydrocarbon-based solvent. Suppression of charge injection from the electron-transporting layer 108 to the light-emitting layer 102 is reinforced by the ether-based, perfluoro-based, or hydrocarbon-based solvent.
  • the thickness of the insulating layer 109 is preferably 5 nm or less.
  • the thickness of the insulating layer 109 is 5 nm or less, so that the tunnel current flowing through the quantum dots 103 is maintained.
  • the laminated structure that exerts more effect is, as shown in FIG. It is desirable that the hole-transporting layer 107 and the light-emitting layer 102 are in contact, and secondly, that the electron-transporting layer 108 and the light-emitting layer 102 are not in contact in order to suppress electron injection. This is done in consideration of suppression of the reactive current that does not contribute to light emission, and in consideration of the fact that QLEDs with conventional configurations generally have an excessive number of electrons and have a significantly poor carrier balance.
  • the first layer structure maintains hole injection equal to or greater than that of the conventional structure, and the second structure suppresses electron injection.
  • an insulating layer 109 made of an inorganic, organic or metal oxide may be provided at the interface between the electron transport layer 108 and the light-emitting layer 102, with a thickness of 2 nm to 5 nm. Since the reactive current depends on the -3 power of the layer thickness as well as on the surplus ligands, even a slight increase in the total thickness of the current-transporting layers will have a large effect. For example, if the total thickness of the light emitting layer 102 and the insulating layer 109 is increased by 10%, the reactive current is reduced by 30%.
  • the insulating layer 109 having a thickness exceeding 5 nm is not preferable because it suppresses the tunneling of the current flowing through the quantum dots 103 .
  • the above effects can be further enhanced by removing excess ligands 105A in the light-emitting layer 102.
  • the surplus ligand 105A means a ligand that is not coordinated to the surface of the quantum dot 103 and randomly distributed in the light-emitting layer 102 .
  • the ligand 105 coordinated to the quantum dot 103 is reduced even in the colloidal solution state by the structure of this embodiment, since the bond between the ligand 105 and the quantum dot 103 is not so strong, it is difficult to form the light emitting layer 102.
  • Residual ligands 105A are generated in the light-emitting layer 102 by dissociation due to viscous resistance and thermal energy during curing.
  • FIG. 32 is a cross-sectional view of the light-emitting device 101 in which surplus ligands 105A are discharged from the light-emitting layer 102.
  • FIG. 32 is a cross-sectional view of the light-emitting device 101 in which surplus ligands 105A are discharged from the light-emitting layer 102.
  • the method for manufacturing the light-emitting element 101 according to the present embodiment uses the quantum dot colloidal solution manufactured by the method for manufacturing the quantum dot colloidal solution according to the present embodiment to form the light-emitting layer 102 on the hole transport layer 107. applying a solvent to the luminescent layer 102 to remove excess ligands 105A after the film-forming step; and heat-treating the luminescent layer 102 from which the excess ligands 105A have been removed.
  • the halogen element 104 added near the surface of the quantum dot 103 can deactivate the defect 106 on the surface of the quantum dot 103 . Since the mass ratio between the ligand 105 and the quantum dot 103 is 0.5 or less and the surplus ligand 105A is removed, the reactive current flowing through the ligand 105 can be reduced. As a result, the external quantum efficiency of quantum dots 103 can be improved.
  • FIG. 33 is a graph showing the characteristics of the light emitting element 101.
  • FIG. FIG. 34 is a graph showing other characteristics of the light emitting element 101.
  • FIG. FIG. 35 is a cross-sectional view of a light-emitting layer 102, a hole-transporting layer 107, and an electron-transporting layer 108 formed in a light-emitting device according to Comparative Example.
  • FIG. 36 is a graph showing the characteristics of the light emitting device.
  • FIG. 37 is a graph showing other characteristics of the light emitting device.
  • FIG. 38 is a graph showing characteristics of a light-emitting device including quantum dots 103 according to another comparative example.
  • FIG. 39 is a graph showing other characteristics of the light emitting device.
  • the quantum dots 103 according to the other comparative example described above with reference to FIG. 27 have less ligands 105, so the reactive current is relatively less as shown in FIG.
  • the halogen element 104 does not exist near the surface of the quantum dot 103, most of the defects 106 of the quantum dot 103 are in an active state.
  • the slope of the current with respect to the applied voltage is small and the n value is large.
  • the EQE is low.
  • FIG. 40 is a diagram for explaining the halogen element 104 present near the surface of the quantum dot 103 according to Embodiment 1.
  • FIG. 40 is a diagram for explaining the halogen element 104 present near the surface of the quantum dot 103 according to Embodiment 1.
  • Quantum dot 103 then includes core 111 and shell 110 formed around core 111 .
  • Defects 106 on the surface of quantum dots 103 can be deactivated by halogen elements 104 present at positions where the distance from the surface of quantum dots 103 is equal to or less than the distance corresponding to the thickness of shell 110 .
  • FIG. 41 is a graph explaining the details of the electrical characteristics of the light emitting element 101 according to Embodiment 1.
  • FIG. FIG. 42 is a graph explaining the details of the electrical characteristics of the light-emitting element according to the comparative example.
  • FIG. 43 is a graph illustrating details of electrical characteristics of a light-emitting element according to another comparative example.
  • Diode current density J D Diode current density J D , reactive current density J r , and leakage current density J l are expressed by the following equations.
  • V Voltage [V] applied to the light emitting element
  • I 0 reverse saturation current [mA]
  • q elementary charge [C]
  • n diode coefficient
  • k Boltzmann constant [J/K]
  • T temperature [K]
  • k r first reactive current density coefficient [mA ⁇ V ⁇ nr /cm 2 ] (typically proportional to dielectric constant and carrier mobility of medium and thickness ⁇ 3 )
  • nr second reactive current density factor (typically 2)
  • R l shunt resistance of the light emitting element (typically 1 M ⁇ or more); is.
  • J 0 , k r , nr, and R 1 are determined so as to reproduce the voltage-current density characteristics of the light emitting device. Normally, the shunt resistance is sufficiently high, and the leakage current density is on the order of ⁇ A/cm 2 . ).
  • the diode current density J D represents the current density flowing through the light emitting layer 2 of the QLED and injected into the quantum dots 103, and is a component that contributes to light emission.
  • the reactive current density J r represents the current density that flows through the light emitting layer 102 of the QLED but flows through the ligands 105 that are continuous in the thickness direction of the light emitting layer 102 and is not injected into the quantum dots 103 .
  • This reactive current density Jr component does not contribute to light emission.
  • the light-emitting device 101 including the quantum dots 103 according to the embodiment shown in FIG. 23 includes the quantum dots 103 according to the comparative example described above with reference to FIGS. Compared to the light-emitting element 101, the slope of the current density with respect to the applied voltage increased and the reactive current decreased.
  • methanol is dropped and spun to discharge the surplus ligand 105A, thereby reducing the surplus ligand 105A by 30%. As shown in FIG. It showed a higher EQE than device 101.
  • the ligand density was quantified by TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry).
  • the light-emitting device 101 shown in FIG. 31 has less ligand 105 than the light-emitting device including the quantum dots according to the comparative example described above in FIG. 25, the reactive current is reduced and the EQE is improved as shown in FIGS. It is
  • the configuration of the quantum dot 103, the halogen element 104, the ligand 105, and the like of the light emitting device 101 according to this embodiment can be specified, for example, as follows.
  • Particle size, shape and elemental analysis were performed using SEM (Scanning Electron Microscope), TEM, EDS (Energy Dispersive X-ray Spectroscopy), STEM (Scanning Transmission Electron Microscope).
  • SEM Sccanning Electron Microscope
  • TEM TEM
  • EDS Electronic X-ray Spectroscopy
  • STEM STEM
  • a type transmission electron microscope can be used, and components such as Cd, Se, Zn, and S can be detected and confirmed by an image.
  • Elemental analysis of the main components can be performed by XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy) (atomic%), chemical analysis (mg / ml), and components such as Cd, Se, Zn, S can be detected and confirmed by the spectrum waveform.
  • XPS X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy
  • chemical analysis mg / ml
  • components such as Cd, Se, Zn, S can be detected and confirmed by the spectrum waveform.
  • the ligand 105 can be detected by TD-GC/MS (thermal desorption-gas chromatograph-mass spectrometer) and confirmed by spectral waveform.
  • TD-GC/MS thermal desorption-gas chromatograph-mass spectrometer
  • XPS can detect the binding state of Cd
  • TOF-SIMS can detect trace components of CdS and SO.
  • Hydrocarbons, alkylamides, fatty acid esters, alkylphosphines, and alkylamines were detected as organic impurities in the dispersion by GC/MS (gas chromatography mass spectrometry) and LC/MS (liquid chromatography mass spectrometry). can be confirmed by the spectrum waveform.
  • the particle size distribution of the dispersion liquid can be detected by SP-ICP-MS (single particle inductively coupled plasma mass spectrometry).
  • the light absorption properties of the dispersion can be analyzed with a spectrophotometer.
  • the present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光素子(6R、6G、6B)は、アノード(10)と、発光層(14)と、カソード(18)とを、この順に配置して備える。発光層は、複数の量子ドット(26B)と、絶縁材(28)とを含む。発光層のアノードの側の端面部(14BA)における量子ドットと、発光層のアノードの側の端面(14EA)との間隔(14DA)の平均値は、発光層のカソードの側の端面部(14BC)における量子ドットと、発光層のカソードの側の端面(14EC)との間隔(14DC)の平均値よりも小さい。また、表示デバイス(2)は、発光素子をサブ画素(SPR、SPG、SPB)ごとに区画するバンク20を備える。発光層は、発光材料を含む主発光部と、基板(4)の平面視において、主発光領域を囲う位置に配置され、かつ、発光材料が失活した失活材料を含む外縁部とを含む。バンクは、側面に順テーパー面(20S)を有し、該順テーパー面において、外縁部と接する。

Description

発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液
 本発明は、発光素子、および、当該発光素子を複数備えた表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液に関する。
 特許文献1は、量子ドット(半導体ナノ粒子)を含む発光層を備えた発光素子において、リーク電流を低減するために、当該量子ドットの間に充填物質を形成する技術を開示する。
 表面にハロゲン元素を結合させた量子ドットと、この量子ドットに配位可能な配位化合物とを含む発光素子が知られている(特許文献2)。この量子ドットの表面にはフッ化物アニオンが結合されており、量子ドットに含まれるZnに対するフッ化物アニオンのモル比は0.1~0.5であり、このフッ化物アニオンのモル比は量子ドットに対して組成と言える程度に達している。この量子ドットの表面に結合させたフッ化物アニオンにより、量子ドット表面の欠陥を不活性化させることができる。
 In及びPを含有するコアと1層以上のシェルとを有するコア/シェル型の量子ドットと、この量子ドットに配位可能な配位化合物と、コア/シェルの界面又はシェルの内部に存在するハロゲン元素とを含む発光素子が知られている(特許文献3)。この量子ドットのコアに含まれるInに対するハロゲン元素のモル比は0.80~15.00であり、このハロゲン元素のモル比は量子ドットに対して組成と言える程度に達している。
 量子ドット発光層と正孔輸送層と電子輸送層とを備え、正孔輸送層と量子ドット発光層との間の界面に存在する量子ドットの表面に有する有機リガンドの分布と、電子輸送層と量子ドット発光層との間の界面に存在する量子ドットの表面に有する有機リガンドの分布とが異なる発光素子が知られている(特許文献4)。このため、この量子ドットのリガンド密度に、量子ドット発光層の厚さ方向に沿った分布が設けられる。
日本国特開2007-95685号 日本国特開第2020-180278号公報 国際公開第2020/250663号パンフレット 日本国特許第5175259号明細書
 発明者は、より発光素子の特性を改善する、当該発光素子、および表示デバイスの構成を見出した。
 特許文献2に記載の発光素子は発光素子の表面に結合させたフッ化物アニオンにより、量子ドット表面の欠陥を不活性化させることができる。そして、特許文献2は、量子ドットの配位化合物が減少すると、ルミネッセンスが低下し、従って、デバイスが劣化するとの見解を示している。
 特許文献3に記載の発光素子のハロゲン元素は、量子ドットのコア/シェルの界面又はシェルの内部に存在するので、量子ドット表面の欠陥を不活性化させることができない。
 特許文献4に記載の発光素子は、量子ドットのリガンド密度が量子ドット発光層の厚さ方向に沿って分布を有するが、ハロゲン元素を開示しておらず、量子ドット表面の欠陥を不活性化させることができない。
 本願発明の一態様は、発光効率を高めることができる発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液を提供することにある。
 本開示の一態様に係る発光素子は、アノードと、発光層と、カソードとを、この順に配置して備え、前記発光層は、複数の量子ドットと、絶縁材とを含み、前記発光層の前記アノードの側の端面部における前記量子ドットと、前記発光層の前記アノードの側の端面との間隔の平均値は、前記発光層の前記カソードの側の端面部における前記量子ドットと、前記発光層の前記カソードの側の端面との間隔の平均値よりも小さい。
 また、本開示の他の一態様に係る発光素子の製造方法は、アノードと、発光層と、カソードとを、この順に配置して備えた発光素子の製造方法であって、前記アノードを形成するアノード形成工程と、複数の量子ドットと、絶縁材とを含む前記発光層を形成する発光層形成工程と、前記カソードを形成するカソード形成工程とを含み、前記発光層形成工程が、複数の前記量子ドットを含む量子ドット材料層を成膜する量子ドット材料層成膜工程と、前記絶縁材を含む絶縁材層を成膜する絶縁材層成膜工程と、を含み、前記発光層の前記アノードの側の端面部における前記量子ドットと、前記発光層の前記アノードの側の端面との間隔の平均値は、前記発光層の前記カソードの側の端面部における前記量子ドットと、前記発光層の前記カソードの側の端面との間隔の平均値よりも小さい。
 また、本開示の他の一態様に係る表示デバイスは、基板と、該基板上にサブ画素ごとに配置された複数の発光素子と、前記発光素子を前記サブ画素ごとに区画するバンクとを備えた表示デバイスであって、前記発光素子のそれぞれは、アノードと、発光層と、カソードとを、それぞれこの順に配置して備え、前記発光層は、発光材料を含む主発光部と、前記基板の平面視において、前記主発光部を囲う位置に配置され、かつ、前記発光材料が失活した失活材料を含む外縁部とを含み、前記バンクは、側面に順テーパー面を有し、該順テーパー面において、前記外縁部と接する。
 また、本開示の他の一態様に係る表示デバイスの製造方法は、基板上に、アノードと、発光層と、カソードとを、それぞれこの順に配置して備えた、複数の発光素子を、サブ画素ごとに形成する表示デバイスの製造方法であって、前記基板上に、前記発光素子を前記サブ画素ごとに区画し、前記発光層と接するバンクを形成するバンク形成工程と、前記発光層の発光材料を含む発光材料層を成膜する材料層成膜工程と、前記発光材料層の上層に保護層を成膜する保護層成膜工程と、前記発光材料層および保護層のドライエッチング、またはウェットエッチングにより、前記発光材料層および保護層を前記サブ画素ごとにパターニングし、前記発光層を形成するパターニング工程とをこの順に含み、前記バンクの、前記発光層と接する面が、順テーパー面である。
 上記課題を解決するために本願発明の一態様に係る発光素子は、発光層を備える発光素子であって、前記発光層が、量子ドットと、ハロゲン元素と、前記量子ドットに配位可能な配位化合物とを含み、前記配位化合物が、一個以上n個(nは複数)以下の炭素-水素結合を有する化合物、又は、本質的に4以上の配位を取り得る元素の任意の2配位の位置に異種元素が結合したn個の鎖状構造を有する化合物を含み、前記配位化合物と前記量子ドットとの質量比、すなわち「前記配位化合物の所定体積中の質量」/「前記量子ドットの所定体積中の質量」が、0.5以下である。
 上記課題を解決するために本願発明の一態様に係る量子ドットコロイド溶液の製造方法は、量子ドットの表面近傍にハロゲン元素を付加する工程と、前記量子ドットの表面に配位化合物を、前記配位化合物と前記量子ドットとの質量比が、0.5以下となるように配位させる工程と、前記ハロゲン元素が付加されて前記配位化合物が配位された量子ドットを溶媒に分散させて量子ドットコロイド溶液を得る工程とを包含する。
 上記課題を解決するために本願発明の一態様に係る発光素子の製造方法は、本願発明の一態様に係る量子ドットコロイド溶液の製造方法により製造された量子ドットコロイド溶液を用いて、第1電荷輸送層上に量子ドット層を製膜する工程と、前記製膜する工程の後に、前記量子ドット層に溶媒を塗布して余剰リガンドを除去する工程と、前記余剰リガンドを除去した量子ドット層を熱処理する工程とを包含する。
 上記課題を解決するために本願発明の一態様に係る量子ドットコロイド溶液は、量子ドットと、ハロゲン元素と、前記量子ドットに配位可能な配位化合物と、前記量子ドット、前記ハロゲン元素、及び前記配位化合物が分散された溶媒とを備え、前記配位化合物が、一個以上n個(nは複数)以下の炭素-水素結合を有する化合物、又は、本質的に4以上の配位を取り得る元素の任意の2配位の位置に異種元素が結合したn個の鎖状構造を有する化合物を含み、前記配位化合物と前記量子ドットとの質量比が、0.5以下である。
 本願発明の一態様によれば、発光素子の特性を改善し、また、当該発光素子を備える表示装置の表示品位または寿命を改善することができる。
 本願発明の一態様によれば、発光効率を高めることができる発光素子、量子ドットコロイド溶液の製造方法、発光素子の製造方法、及び、量子ドットコロイド溶液を提供することができる。
ことができる。
実施形態1に係る表示デバイスの側断面を示す概略図、および当該側断面を、発光層の近傍において拡大した概略図である。 実施形態1に係る表示デバイスの平面視における概略図である。 実施形態1に係る表示デバイスの平面視において、ある画素の近傍を拡大した概略図である。 実施形態1に係る表示デバイスの側断面を、バンクおよび発光層の近傍において拡大した概略図である。 実施形態1に係る発光素子が実現する、無効電流を低減する機構について、比較形態に係る発光素子との比較により示すための概略図である。 比較形態に係る発光素子の、無効電流と外部量子効率との関係を示すグラフである。 実施形態1に係る表示デバイスの製造方法について説明するためのフローチャートである。 実施形態1に係る発光素子の発光層の形成方法について説明するためのフローチャートである。 実施形態1に係る発光素子の発光層の形成方法について説明するための概略工程断面図である。 実施形態2に係る表示デバイスの側断面を、発光層の近傍において拡大した概略図である。 実施形態2に係る発光素子の発光層の形成方法について説明するためのフローチャートである。 実施形態2に係る発光素子の発光層の形成方法について説明するための概略工程断面図である。 実施形態3に係る表示デバイスの側断面を、発光層の近傍において拡大した概略図である。 実施形態1および実施形態3に係る発光素子の特性を、比較形態に係る発光素子の特性と比較して評価するためのグラフである。 実施形態3に係る発光素子の発光層の形成方法について説明するためのフローチャートである。 実施形態4に係る表示デバイスの側断面を、発光層の近傍において拡大した概略図である。 実施形態4に係る発光素子の発光層の形成方法について説明するためのフローチャートである。 実施形態5に係る表示デバイスの平面視において、ある画素の近傍を拡大した概略図である。 実施形態5に係る表示デバイスの側断面を示す概略図である。 実施形態5に係る表示デバイスの側断面を、バンクおよび発光層の近傍において拡大した概略図である。 実施形態5に係る発光素子の発光層の形成方法について説明するためのフローチャートである。 実施形態5に係る発光素子の発光層の形成方法について説明するための概略工程断面図である。 実施形態6に係る発光素子の発光層に含まれる量子ドットの模式図である。 発光素子の典型的な電気特性とその解析結果を示すグラフである。 比較例に係る量子ドットの模式図である。 ハロゲン密度と量子ドットの準位及びキャリア注入の模式図 他の比較例に係る量子ドットの模式図である。 さらに他の比較例に係る量子ドットの模式図である。 実施形態6に係る量子ドットが溶媒に分散された量子ドットコロイド溶液の製造方法を示すフローチャートである。 上記量子ドットコロイド溶液の製造手順を示すグラフである。 実施形態6に係る発光素子に形成された発光層、正孔輸送層、及び電子輸送層の断面図である。 上記発光層から余剰リガンドを排出した発光素子の断面図である。 上記発光素子の特性を示すグラフである。 上記発光素子の他の特性を示すグラフである。 比較例に係る発光素子に形成された発光層、正孔輸送層、及び電子輸送層の断面図である。 上記発光素子の特性を示すグラフである。 上記発光素子の他の特性を示すグラフである。 上記他の比較例に係る量子ドットを含む発光素子の特性を示すグラフである。 上記発光素子の他の特性を示すグラフである。 実施形態6に係る量子ドットの表面の近傍に存在するハロゲン元素を説明するための図である。 実施形態6に係る発光素子の電気特性の詳細を説明するグラフである。 比較例に係る発光素子の電気特性の詳細を説明するグラフである。 他の比較例に係る発光素子の電気特性の詳細を説明するグラフである。 実施形態6に係る発光素子と比較例に係る発光素子との他の特性を示すグラフである。 上記余剰リガンドを排出した発光素子の特性を示すグラフである。 上記発光素子の他の特性を示すグラフである。 比較例に係る発光素子の特性を示すグラフである。 比較例に係る発光素子の他の特性を示すグラフである。 他の比較例に係る発光素子の特性を示すグラフである。 他の比較例に係る発光素子の他の特性を示すグラフである。
 〔実施形態1〕
 <表示デバイスの概要>
 図2は、本実施形態に係る表示デバイス2の、後述する基板4の平面視における概略図である。図2に示すように、本実施形態に係る表示デバイス2は、後述する各サブ画素からの発光を取り出すことにより表示を行う表示領域DAと、当該表示領域DAの周囲を囲う額縁領域NAとを備える。額縁領域NAにおいては、表示デバイス2の各発光素子を駆動するための信号が入力される端子Tが形成されている。
 図3は、図2に示す概略図の、表示領域DAの一部領域である、領域Aについて拡大して示す図である。図1は、本実施形態に係る表示デバイス2の概略断面図、および、当該断面の一部領域を拡大して示す概略図である。図1に示す表示デバイス2の概略断面図は、図3における、B-C線矢視断面図である。図1に示す表示デバイス2の概略拡大図は、図1に示す領域Dについての拡大した図である。なお、図3においては、後に詳述する画素およびサブ画素についてより明確に図示するために、後に詳述する封止層8、電子輸送層16、およびカソード18の図示を省略している。
 平面視において表示領域DAと重畳する位置において、本実施形態に係る表示デバイス2は複数の画素を備える。また、各画素は、複数のサブ画素を備える。図1に示す表示デバイス2の概略断面図および図3には、表示デバイス2が備える複数の画素のうち、画素Pについて示している。特に、画素Pは、赤色サブ画素SPRと、緑色サブ画素SPGと、青色サブ画素SPBとを備える。
 本実施形態に係る表示デバイス2は、例えば、図1に示すように、基板4と、基板4上の発光素子層6と、発光素子層6を覆う封止層8とを備える。
 例えば、基板4は、PETフィルム等を含む、可撓性を有するフィルム基板上に、図示しないTFT(Thin Film Transistor:薄膜トランジスタ)を形成した構造を有する。さらに、基板4上には、可撓性を有する発光素子層6および封止層8が形成される。この場合、本実施形態に係る表示デバイス2は、基板4または封止層8の少なくとも一方を内側として折り曲げることが可能である、フレキシブルの表示デバイスを実現する。しかしながら、本実施形態に係る表示デバイス2は、これに限られず、硬直な基板4、発光素子層6、または封止層8を備えていてもよい。
 なお、本明細書においては、後に詳述する、発光素子層6の発光層14からアノード10への方向を「下方向」、発光層14からカソード18への方向を「上方向」として記載する。
 <発光素子>
 発光素子層6は、基板4側から順に、アノード10と、正孔輸送層12と、発光層14と、電子輸送層16と、カソード18とを備える。換言すれば、発光素子層6は、発光層14を、アノード10とカソード18との二電極間に備える。基板4の上層に形成された発光素子層6のアノード10は、上述したサブ画素ごとに島状に形成され、基板4のTFTのそれぞれと電気的に接続されている。
 本実施形態において、発光素子層6は、発光素子を複数備え、特に、サブ画素のそれぞれに1つずつ発光素子を備える。本実施形態においては、例えば、発光素子層6は、発光素子として、赤色サブ画素SPRに赤色発光素子6Rを、緑色サブ画素SPGに緑色発光素子6Gを、青色サブ画素SPBに青色発光素子6Bをそれぞれ備える。以降、本明細書において、特段の説明がない限り、『発光素子』とは、発光素子層6が含む、赤色発光素子6R、緑色発光素子6G、および、青色発光素子6Bの何れかを指す。
 ここで、アノード10、正孔輸送層12、および発光層14のそれぞれは、サブ画素ごとに個別に形成されている。特に、本実施形態においては、アノード10は、赤色発光素子6R用のアノード10R、緑色発光素子6G用のアノード10G、および青色発光素子6B用のアノード10Bを含む。また、正孔輸送層12は、赤色発光素子6R用の正孔輸送層12R、緑色発光素子6G用の正孔輸送層12G、および青色発光素子6B用の正孔輸送層12Bを含む。さらに、発光層14は、赤色光を発する赤色発光層14R、緑色光を発する緑色発光層14G、および青色光を発する青色発光層14Bを含む。一方、電子輸送層16、およびカソード18は、複数のサブ画素に対し共通に形成されている。
 したがって、本実施形態において、赤色発光素子6Rは、アノード10Rと、正孔輸送層12Rと、赤色発光層14Rと、電子輸送層16と、カソード18とからなる。また、緑色発光素子6Gは、アノード10Gと、正孔輸送層12Gと、緑色発光層14Gと、電子輸送層16と、カソード18とからなる。さらに、青色発光素子6Bは、アノード10Bと、正孔輸送層12Gと、青色発光層14Bと、電子輸送層16と、カソード18とからなる。
 ここで、青色光とは、例えば、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。また、赤色光とは、例えば、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 なお、本実施形態に係る発光素子層6は、上記構成に限られず、アノード10およびカソード18の間に、さらに追加の層を備えていてもよい。例えば、発光素子層6は、アノード10と正孔輸送層12との間に、正孔注入層をさらに備えていてもよい。また、発光素子層6は、電子輸送層16とカソード18との間に、電子注入層をさらに備えていてもよい。
 アノード10およびカソード18は導電性材料を含み、発光層14と電気的に接続されている。アノード10はサブ画素ごとに島状に形成された画素電極であり、カソード18は複数のサブ画素に対し共通に形成された共通電極である。例えば、アノード10とカソード18とのうち、表示デバイス2の表示面に近い電極は半透明電極であり、他方は反射電極である。
 正孔輸送層12は、正孔輸送性を有する材料を含み、アノード10から注入された正孔を、発光層14へ輸送する機能を有する。正孔輸送層12は、発光層14からアノード10への電子の輸送を阻害する機能を有していてもよい。電子輸送層16は、電子輸送性を有する材料を含み、カソード18から注入された電子を、発光層14へ輸送する機能を有する。電子輸送層16は、発光層14からカソード18への正孔の輸送を阻害する機能を有していてもよい。正孔輸送層12および電子輸送層16は、各発光層14からの光の少なくとも一部を透過する。
 発光層14は、アノード10から正孔輸送層12を介して輸送された正孔と、カソード18から電子輸送層16を介して輸送された電子との再結合が発生することにより、光を発する層である。発光層14は、発光体として、後述する量子ドット材料を備える。このため、本実施形態に係る各発光素子は、QLED(Quantum dot Light-Emitting Diode)素子である。
 なお、本実施形態に係る表示デバイス2は、基板4側にアノード10を備えた発光素子を備えるが、これに限られない。例えば、本実施形態に係る表示デバイス2が備える発光素子層6は、基板4側から順に、カソード18、電子輸送層16、発光層14、正孔輸送層12、および、アノード10を、積層して備えていてもよい。この場合、カソード18はサブ画素ごとに島状に形成された画素電極であり、アノード10は複数のサブ画素に対し共通に形成された共通電極である。また、電子輸送層16はサブ画素ごとに形成されていてもよく、正孔輸送層12は、複数のサブ画素に対し共通に形成されていてもよい。
 <バンクおよび封止層>
 本実施形態に係る表示デバイス2は、さらに、基板4の上面に、バンク20を備える。バンク20は、例えば、ポリイミドを含む塗布可能な樹脂材料を含み、平面視において、互いに隣接するサブ画素の境界を跨ぐ位置に形成される。このため、バンク20により、発光素子層6は、赤色発光素子6R、緑色発光素子6G、および青色発光素子6Bに区画される。なお、バンク20は、図1に示すように、アノード10のそれぞれの周囲端部を覆う位置に形成されていてもよい。
 例えば、バンク20は、塗布可能な感光性樹脂を含む。特に、本実施形態において、バンク20は、ポジ型の感光性樹脂を含んでいる。バンク20は、それぞれ側面20Sを有する。ここで、バンク20は、基板4側から封止層8側に向かって、平面視における面積が、おおよそ次第に小さくなるように形成される。このため、側面20Sの法線方向のうち、バンク20の内部側へ向かう方向は、バンク20が形成されている面である基板4の上面の平面方向よりも、封止層8から基板4に向かう方向となる。
 ある特定部材が側面を有し、当該特定部材がある特定面上に形成される場合に、当該側面の外表面側と、当該特定面とのなす角度が鈍角であるとする。この場合、本明細書においては、当該側面を順テーパー面であるとする。例えば、上底の面積に比べて下底の面積が大きい正四角錐台において、当該正四角錐台の側面は全て順テーパー面となる。
 本実施形態において、バンク20は基板4の上面に形成される。また、バンク20の側面20Sの外表面側と基板4の上面とがなす角度は鈍角となる。したがって、バンク20の側面20Sは順テーパー面である。ゆえに、本実施形態において、各発光素子の発光層が順テーパー面を側面に有するバンク20によって区画されることから、当該発光層は、順テーパー面である側面20Sと接触する。
 封止層8は、発光素子層6およびバンク20を覆い、表示デバイス2が備える各発光素子を封止する。封止層8は、表示デバイス2の封止層8側の外部から、水分等を含む異物が発光素子層6等に浸透することを低減する。封止層は、例えば、無機材料からなる無機封止膜と、有機材料からなる有機封止膜との積層構造を有していてもよい。無機封止膜は、例えば、CVDにより形成され、酸化ケイ素膜、窒化ケイ素膜、あるいは酸窒化ケイ素膜、またはこれらの積層膜により構成される。有機封止膜は、例えば、ポリイミド等を含む塗布可能な樹脂材料により構成される。
 <量子ドットおよび絶縁材>
 本実施形態に係る発光層14について、図1に示す発光層14の近傍の概略拡大図を参照して、より詳細に説明する。当該概略拡大図は、特に、本実施形態に係る表示デバイス2の青色発光素子6Bの青色発光層14Bの近傍について示す概略拡大図である。ここで、特に言及しない限り、本実施形態に係る赤色発光層14R、および緑色発光層14Gは、後述する青色量子ドットを除き、青色発光層14Bと同一の構成を備える。なお、図1の概略拡大図は、青色発光層14Bのうち、後述する主発光部14BLの部分を拡大して示す拡大図である。
 なお、本明細書において、量子ドットとは、最外殻の最大幅が100nm以下の粒子を指す。量子ドットの形状は、上記最大幅を満たす範囲であればよく、特に制約されず、球状の立体形状、換言すれば、断面形状が円形となるものに限定されるものではない。量子ドットは、例えば、断面形状が多角形のもの、棒状の立体形状を有するもの、枝状の立体形状を有するもの、または、最外表面に凹凸を有す立体形状を有するものでもよく、または、それらの形状を組合せた形状を有してもよい。
 図1の青色発光層14Bの近傍について示す概略拡大図に示すように、青色発光層14Bは、正孔輸送層12Bの側、換言すれば、アノード10の側から、青色量子ドット層22Bと、絶縁層24とを、この順に配置して含む。青色量子ドット層22Bは、複数の青色量子ドット26Bと、絶縁材28と、複数の配位子30とを含む。絶縁層24は、絶縁材28を含む。特に、絶縁層24は、青色量子ドット層22Bが含む材料のうちでは、絶縁材28のみを含む。なお、絶縁層24は、完全に均一な膜厚を有する層でなくともよく、例えば、何れかの表面に凹凸を含む等、他の位置と比較して厚みが異なる部分を有していてもよい。
 青色量子ドット26Bは、青色発光層14Bに注入された正孔および電子の再結合により、青色光を発する半導体ナノ粒子である。青色量子ドット26Bは、例えば、発光に寄与する材料を含むコアと、該コアの周囲を覆うシェルとを含む、コア/シェル構造を有していてもよい。青色量子ドット26Bは、青色光を発する半導体ナノ粒子であれば、材料は特に問わず、従来公知の量子ドットに使用される材料を備えていてもよい。
 青色量子ドット層22Bは、青色量子ドット26Bに配位可能な第1化合物として、配位子30を含む。配位子30は、例えば、少なくとも青色量子ドット26Bと配位結合可能な配位性官能基を、炭素鎖の一端に備える化合物である。本実施形態において、配位子30は、青色量子ドット26Bと配位結合する結合配位子32を結合化合物として、さらに、青色量子ドット26Bと配位結合せず、絶縁材28中に分散する余剰配位子34を余剰化合物として含む。青色量子ドット26Bとの配位結合の有無を除き、結合配位子32と余剰配位子34とは、同一の構成を備えていてもよい。配位子30は、青色量子ドット26Bの凝集の低減、または、青色量子ドット26Bの外表面の保護等の機能を有する。配位子30は、例えば、量子ドットに配位可能な従来公知の配位子の材料と同一の材料を含んでいてもよい。
 一般に、量子ドットと配位結合により結合している配位子は、当該配位結合により量子ドットに拘束されるため、量子ドットと結合していない、同じ分子量の配位子と比較して、
拡散係数が小さくなる。これは、量子ドットと結合する配位子が、量子ドットと結合していない、同じ分子量の配位子と比較して、自由エネルギーが低いことと対応する。したがって、本実施形態において、余剰配位子34は、分子量に対する自由エネルギーが結合配位子32よりも高い配位子であるともいえる。
 絶縁材28は、青色量子ドット26Bの材料、および配位子30の材料と比較して、電気抵抗率が高く、かつ、キャリア移動度の低い材料からなる。青色量子ドット層22Bが含む絶縁材28は、青色量子ドット26Bの間を充填する。また、本実施形態において、絶縁層24が含む絶縁材28と青色量子ドット層22Bが含む絶縁材28とは、同一の材料であってもよく、また、連続であっても、別体であってもよい。
 <発光層の端面および当該端面近傍の構造>
 絶縁材28は、青色発光層14Bの、アノード10の側の端面14EAと、カソード18の側の端面14ECとを構成する。このため、本実施形態において、正孔輸送層12Bは、端面14EAと接し、電子輸送層16は、端面14ECと接する。
 ここで、青色量子ドット層22Bは、端面14EAの近傍に、アノード10の側の端面部14BAを有し、端面14ECの近傍に、カソード18の側の端面部14BCを有する。端面部14BAと端面部14BCとには、それぞれ、複数の青色量子ドット26Bおよび配位子30が位置する。
 なお、本実施形態において、端面部14BAは、例えば、青色発光層14Bのうち、端面14EAから、当該端面14EAに対し最近接の20個の青色量子ドット26Bが位置する部分までを指す。また、端面部14BCは、例えば、青色発光層14Bのうち、端面14ECから、当該端面14ECに対し最近接の20個の青色量子ドット26Bが位置する部分までを指す。
 端面部14BAに位置する青色量子ドット26Bに配位する結合配位子32、または、当該青色量子ドット26Bの周囲に位置する余剰配位子34の少なくとも一つは、青色量子ドット層22Bのアノード10の側の端面と接する。したがって、端面部14BAに位置する配位子30の少なくとも一つは、端面14EAと接する。
 端面部14BCに位置する青色量子ドット26Bに配位する結合配位子32、または、当該青色量子ドット26Bの周囲に位置する余剰配位子34の少なくとも一つは、青色量子ドット層22Bのカソード18の側の端面と接する。したがって、端面部14BCに位置する配位子30の少なくとも一つは、絶縁層24を介して端面14ECと隣接する。
 なお、図1においては、端面部14BAに位置する配位子30の一部が、青色量子ドット層22Bのアノード10の側の端面と接し、端面部14BCに位置する配位子30の一部が、青色量子ドット層22Bのカソード18の側の端面と接するようすを示す。しかしながら、これに限られず、青色量子ドット層22Bのアノード10の側の端面には、端面部14BAに位置する青色量子ドット26Bの少なくとも一つが接していてもよい。また、青色量子ドット層22Bのカソード18の側の端面には、端面部14BCに位置する青色量子ドット26Bの少なくとも一つが接していてもよい。
 ここで、端面部14BAにおける青色量子ドット26Bと、端面14EAとの間隔の平均値を、間隔14DAとおき、端面部14BCにおける青色量子ドット26Bと、端面14ECとの間隔の平均値を、間隔14DCとおく。例えば、青色発光層14Bの何れかの表面の法線方向に沿って、青色発光層14Bを任意の断面にて切断した切断面を仮定する。この場合、本実施形態において、間隔14DAは、当該切断面上における、端面14EAと、当該端面14EAに対向する青色量子ドット26Bのうち互いに近接する20個の青色量子ドット26Bとの間隔の平均値とする。また、間隔14DCは、上記切断面上における、端面14ECと、当該端面14ECに対向する青色量子ドット26Bのうち互いに近接する20個の青色量子ドット26Bとの間隔の平均値とする。なお、本明細書において、青色量子ドット26Bと、端面14EAと端面14ECとの何れかの端面との間隔とは、上述した切断面上における、青色量子ドット26Bの外周と上記端面との最短距離のこととする。
 本実施形態において、青色量子ドット層22Bのアノード10の側の端面は、端面14EAと同一であり、正孔輸送層12Bと接する。一方、青色量子ドット層22Bのカソード18の側の端面は、絶縁層24のために端面14EAとは離れている。このため、間隔14DAは、間隔14DCよりも小さくなる。
 本実施形態に係る赤色発光層14R、および緑色発光層14Gは、青色量子ドット26Bに代えて、それぞれ、赤色光を発する赤色量子ドット、および緑色光を発する緑色量子ドットを備える点を除き、青色発光層14Bと同一の構成を備える。例えば、コア/シェル構造の量子ドットは、コアの粒径を制御することにより、発する光の波長を制御できる。したがって、赤色量子ドット、および、緑色量子ドットは、例えば、コアの粒径を除いて、青色量子ドット26Bと同一の構成を有していてもよい。
 <主発光部および外縁部>
 図3に示すように、本実施形態に係る赤色発光層14Rは、主発光部14RLと、外縁部14RDとを含む。また、本実施形態に係る緑色発光層14Gは、主発光部14GLと、外縁部14GDとを含む。さらに、本実施形態に係る青色発光層14Bは、主発光部14BLと、外縁部14BDとを含む。外縁部14RD、外縁部14GD、および外縁部14BDは、それぞれ、基板4の平面視において、主発光部14RL、主発光部14GL、および主発光部14BLを囲う位置に配置されている。
 本実施形態に係る発光層14の主発光部および外縁部について、図4に示すバンク20と発光層14との界面近傍の概略拡大図を参照して、より詳細に説明する。当該概略拡大図は、特に、本実施形態に係る表示デバイス2の青色発光素子6Bの青色発光層14Bと、バンク20との界面近傍について示す概略拡大図であり、図1に示す領域Eを拡大して示す図である。ここで、特に言及しない限り、材料を除き、主発光部14RL、および主発光部14GLは、主発光部14BLと同一の構成を備え、外縁部14RD、および外縁部14GDは、外縁部14BDと同一の構成を備える。
 主発光部14BLは、上述した青色量子ドット層22Bと絶縁層24とを含む。このため、主発光部14BLは、青色発光層14Bが含む発光材料である青色量子ドット26Bを含む。一方、外縁部14BDは、失活層22BDを含み、絶縁層24を含まない。失活層22BDは、バンク20の側面20Sと接し、周囲よりも膜厚の薄い、薄膜部22BTを介して、主発光部14BLの青色量子ドット層22Bと連続している。
 ただし、失活層22BDは、主発光部14BLと連続していなくともよく、別体として形成されていてもよい。換言すれば、主発光部14BLと外縁部14BDとの間には、青色発光層14Bが形成されず、主発光部14BLと外縁部14BDとは、電子輸送層16によって分断されていてもよい。
 失活層22BDは、青色量子ドット26Bが、酸化、水分浸透、または物理的損傷等によって失活した材料を含む。このため、失活層22BDは、青色量子ドット層22Bと比較して、発光効率が低い。当該点を除いて、失活層22BDは、青色量子ドット層22Bと同一の構成を備えていてもよい。なお、本実施形態に係る外縁部14RD、および外縁部14GDは、それぞれ、赤色量子ドットが失活した材料を含む失活層、および、緑色量子ドットが失活した材料を含む失活層を備える点を除き、外縁部14BDと同一の構成を備える。失活層22BDが奏する効果については、失活層22BDの形成方法と併せて、後に詳述する。
 <無効電流>
 本実施形態に係る青色発光素子6Bが奏する効果について、比較形態に係る青色発光素子6BAとの比較により説明する。図5は、本実施形態に係る青色発光素子6Bを、比較形態に係る青色発光素子6BAと併せて示す図であり、図1に示す青色発光素子6Bの青色発光層14Bの近傍の概略拡大図と対応する位置を拡大して示す概略図である。
 比較形態に係る青色発光素子6BAは、青色発光層14Bが、絶縁層24を備えていない。このため、比較形態に係る青色量子ドット層22Bのカソード18の側の端面14ECは、電子輸送層16と接する。また、比較形態に係る青色量子ドット層22Bは、絶縁材28を含まない。以上を除き、比較形態に係る青色発光素子6BAは、本実施形態に係る青色発光素子6Bと同一の構成を備える。
 比較形態に係る青色発光素子6BAを駆動し、アノード10とカソード18との間に電位差をかけると、図5に示すように、青色発光層14Bには、主電流MCと無効電流WCとが流れる。主電流MCは、主に青色量子ドット26Bを介して流れる一方、無効電流WCは、主に青色量子ドット26Bの周囲の結合配位子32または余剰配位子34を介して流れる。
 一般に、量子ドットを介して流れない無効電流は、当該量子ドットにキャリアを輸送する機構に寄与しないため、量子ドットの発光に寄与しない。また、青色発光素子6BAの全体を流れる総電流TCは、主電流MCと無効電流WCとの合計値である。ここで、総電流TCは、青色発光素子6BAの電極間の電位差が一定である限り大きく変化しない。また、青色発光素子6BAの消費電力は、総電流TCに依存する。
 したがって、無効電流WCが主電流MCと比較して高い場合、青色量子ドット26Bの発光に寄与しない電流が増加するために、青色発光素子6BAの発光効率が低減する。これに伴い、青色発光素子6BAが消費する電力に対する、青色発光素子6BAから取り出される発光の強度が低減する。
 また、発光素子を流れる総電流に対し、無効電流の割合が高い場合、発光素子の外部量子効率が低下する。図6のグラフは、総電流に対する無効電流の割合と、比較形態に係る発光素子の外部量子効率との関係を示すグラフである。図6のグラフは、横軸に総電流に対する無効電流の割合(単位:パーセント)、縦軸に発光素子の外部量子効率(単位:パーセント)をとる。図6は、青色発光素子6BAと同一の構成を備える複数の発光素子を製造し、当該発光素子を駆動して、総電流、無効電流、および外部量子効率を測定し、それぞれをプロットしたデータを示す。
 図6に示す点線は、図6にプロットされたデータから割り出された近似曲線である。当該近似曲線から明らかであるように、総電流に対する無効電流の割合が高い場合、発光素子の外部量子効率は低下している。
 一部の発光素子は、総電流に対する無効電流の割合が低く、外部量子効率が向上しているが、このような発光素子は、当該発光素子の製造段階における製造誤差によって偶然製造されたものである。このため、比較形態においては、外部量子効率の高い発光素子を確実に製造することは困難である。実際に、図6から明らかであるように、総電流に対する無効電流の割合が低く、外部量子効率が高い発光素子の製造数は、総電流に対する無効電流の割合が高く、外部量子効率が低い発光素子の製造数と比較して極端に少ない。
 ここで、一般に、配位子30を介して流れる無効電流WCは、配位子30内および配位子30間を、主にホッピング伝導によって流れる。このため、発光層を流れる無効電流WCの主な成分は、量子ドットを除く材料のキャリア移動度および誘電率と、印加電圧とに比例し、発光層の膜厚に反比例する。
 発光素子の発光層における誘電率は、材料を置換しても大きく変えることは難しい。また、発光層に印加する電圧は、発光素子から取り出される光の強度にも依存するため、印加電圧を低減することは困難である。また、発光層の膜厚を過度に厚くすると、発光素子全体の抵抗の上昇につながる。したがって、発光層を流れる無効電流の低減のためには、量子ドットを除く材料のキャリア移動度を低減することが重要である。
 本実施形態に係る青色発光素子6Bが備える青色発光層14Bは、絶縁材28を含む。絶縁材28のキャリア移動度は、配位子30のキャリア移動度よりも低い。このため、本実施形態に係る青色発光層14Bは、青色量子ドット26Bを介さず、配位子30を介して流れる無効電流WCを低減することができる。これに伴い、総電流TCに対する無効電流WCの割合が低下するため、総電流TCに対する主電流MCの割合が向上する。したがって、本実施形態に係る青色発光素子6Bは、外部量子効率を改善し、発光効率を改善する。
 特に、本実施形態に係る青色発光素子6Bが備える青色発光層14Bは、青色量子ドット26Bの間を充填する絶縁材28を含む。このため、本実施形態に係る青色発光層14Bは、青色量子ドット26Bの周囲を流れる無効電流WCを、より効率的に低減することができる。
 <発光素子が奏するその他の効果>
 また、本実施形態において、青色発光層14Bの間隔14DAは、間隔14DCと比較して小さい。このため、間隔14DAと間隔14DCとが等しい場合と比較して、電子輸送層16から青色量子ドット26Bへの電子注入の効率は低下する。このため、正孔輸送層12Bから青色量子ドット26Bへの正孔注入の効率は、電子輸送層16から青色量子ドット26Bへの電子注入の効率と比較して相対的に増加する。
 一般に、量子ドットを発光材料として含む電界キャリア注入型の発光素子は、発光層への正孔の注入効率と比較して、発光層への電子の注入効率が高く、当該発光素子の駆動時には、発光層における電子過多が生じる場合がある。発光層における電子過多が生じた場合には、失活過程であるオージェ電子の生成等に伴い、発光素子の発光効率の低下、および、発光層の発光材料の失活が生じる場合がある。
 本実施形態に係る青色発光素子6Bは、比較形態に係る青色発光素子6BAと比較して、青色発光層14Bへの電子の注入効率に対する正孔の注入効率が高い。このため、青色発光素子6Bは、青色発光層14Bにおける電子過多を低減し、発光効率をさらに改善する。
 特に、青色発光層14Bは、青色量子ドット26Bおよび配位子30を含まず、絶縁材28を含む絶縁層24を、青色量子ドット層22Bのカソード18の側に備える。このため、青色発光素子6Bは、間隔14DAが間隔14DCと比較して小さい構造を、より簡素かつ確実に構成できる。
 また、青色発光素子6Bの端面14EAの側の、端面部14BAに位置する青色量子ドット26Bおよび配位子30の少なくとも一つは、正孔輸送層12Bと接する。一方、青色発光素子6Bの端面14ECの側の、端面部14BCに位置する青色量子ドット26Bおよび配位子30の少なくとも一つは、絶縁層24により、電子輸送層16と離れている。このため、青色発光素子6Bは、配位子30を介して電子輸送層16から青色量子ドット26Bへ電子が注入されることを、さらに低減する。
 本実施形態において、例えば、絶縁材28のキャリア移動度は、10-6cm/V・sec未満である。例えば、一般に配位子30に用いられる有機材料のキャリア移動度は、10-6cm/V・sec程度である。このため、上記構成により、絶縁材28は、配位子30よりも低い移動度を達成し、効率的に青色発光層14Bにおける無効電流WCの発生を低減する。
 本実施形態において、例えば、絶縁材28は、可視光域において、80%以上の光透過率を有する。上記構成により、絶縁材28は、青色量子ドット26Bからの光を阻害しにくくなる。したがって、上記構成により、絶縁材28は、青色発光素子6Bからの光の取り出し効率の低下を抑制する。
 本実施形態において、例えば、絶縁層24の厚み24Dは、2nm以上、かつ、5nm以下である。厚み24Dが2nm以上であることにより、より容易かつ確実に、連続膜として絶縁層24の成膜を行うことができる。厚み24Dが5nm以下であることにより、電子輸送層16から青色量子ドット層22Bへの電子の注入が、絶縁層24における電子のトンネリングによって実現する。このため、厚み24Dが5nm以下であることにより、絶縁層24は、青色発光素子6Bの全体の抵抗値の上昇を抑制する。
 赤色発光素子6R、および緑色発光素子6Gのそれぞれは、各発光層が含む量子ドットの種類を除き、青色発光素子6Bと同一の構成を備えている。したがって、赤色発光素子6R、および緑色発光素子6Gのそれぞれについても、青色発光素子6Bが奏する効果と同一の効果を奏する。
 発光効率がより改善した赤色発光素子6R、緑色発光素子6G、および青色発光素子6Bを、サブ画素ごとに備えた表示デバイス2は、より消費電力を低減する。さらに、表示デバイス2は、同じ発光強度を各発光素子から得るために、各発光素子に印加する電圧を低下させることができ、各発光素子の寿命をより改善する。
 <表示デバイスの製造方法>
 本実施形態に係る表示デバイス2の製造方法について、図7を参照して詳説する。図7は、本実施形態に係る表示デバイス2の製造方法について説明するためのフローチャートである。
 本実施形態に係る表示デバイス2の製造方法において、はじめに、基板4を形成する(ステップS2)。基板4は、例えば、硬直なガラス基板上に、フィルム基材と、当該フィルム基材上のTFTとを形成した後、フィルム基材からガラス基板を剥離することにより形成してもよい。上述したガラス基板の剥離は、後述する発光素子層6および封止層8の形成後に実行してもよい。あるいは、基板4は、例えば、硬直なガラス基板上に直接TFTを形成することにより形成してもよい。
 次いで、基板4上にアノード10を形成する(ステップS4)。アノード10は、例えば、金属材料の薄膜をスパッタ法等により製膜した後、フォトレジストを用いたドライエッチングまたはウェットエッチングにより、当該薄膜のパターニングを行うことにより実行してもよい。これにより、基板4に、サブ画素ごとに島状に形成された、アノード10R、アノード10G、およびアノード10Bが得られる。
 次いで、バンク20を形成する(ステップS6)。ステップS6においては、ポジ型の感光性樹脂のフォトリソグラフィにより、バンク20を形成する。具体的には、例えば、基板4およびアノード10の上面に、バンク20の材料となるポジ型の感光性樹脂を塗布する。次いで、塗布した感光性樹脂の上方に、各サブ画素に対応する位置に透光部を有したフォトマスクを設置して、フォトマスク越しに紫外光等を照射する。次いで、紫外光を照射した感光性樹脂を、適切な現像液によって洗浄する。これにより、基板4上の各サブ画素に対応する位置の間に、バンク20を形成する。
 一般に、フォトマスクと露光対象との距離が離れる程、フォトマスクの平面視における露光面積および露光強度は低下する傾向にある。このため、ポジ型の感光性樹脂を用いたフォトリソグラフィによってバンク20を形成した場合、バンク20は、基板4側から上方に向かって次第に小さく形成される。したがって、ステップS6において、ポジ型の感光性樹脂の塗布、露光、および現像により、バンク20を形成することにより、順テーパー面である側面20Sを有するバンク20を形成できる。
 次いで、正孔輸送層12を形成する(ステップS8)。正孔輸送層12は、例えば、正孔輸送性を有する材料を塗布した後、フォトレジストを用いたドライエッチングまたはウェットエッチングにより、当該薄膜のパターニングを行うことにより実行してもよい。これにより、アノード10上に、サブ画素ごとに島状に形成された、正孔輸送層12R、正孔輸送層12G、および正孔輸送層12Bが得られる。
 <発光層の形成方法>
 次いで、発光層14を形成する(ステップS10)。発光層14の形成方法については、さらに、図8および図9を参照して、さらに詳細に説明する。以下、本実施形態を含む、各実施形態における発光層14の形成方法は、青色発光層14Bの形成方法を代表して説明する。図8は、本実施形態に係る発光層14の形成方法について説明するためのフローチャートである。図9は、本実施形態に係る発光層14の形成工程における、青色サブ画素SPBに位置するバンク20の側面20Sの近傍の工程断面図を示す。なお、図9を含む、本明細書に示す各工程断面図は、特に説明のない限り、何れも図4に示す断面と対応する位置における断面を示す。
 はじめに、青色量子ドット26Bを含む材料を、正孔輸送層12Bおよびバンク20の上層の全面に成膜することにより、青色量子ドット材料層36Bを成膜する(ステップS10-2)。換言すれば、ステップS10-2においては、青色量子ドット材料層36Bを、青色サブ画素SPBのみならず、赤色サブ画素SPR、および緑色サブ画素SPGに対しても成膜する。このため、青色量子ドット材料層36Bの成膜は、バンク20の側面20S上に対しても実行する。
 青色量子ドット材料層36Bの成膜は、コータを用いた塗布法等を用いて、青色量子ドット26Bを含む溶液を塗布することにより実行してもよい。当該溶液は、青色量子ドット26B、当該青色量子ドット26Bが分散する溶媒、および、溶媒中の青色量子ドット26Bの分散性を向上させるための配位子30を含んでいてもよい。
 次いで、絶縁材28を含む材料を、青色量子ドット材料層36B上に成膜することにより、絶縁材層38を成膜する(ステップS10-4)。絶縁材層38の成膜は、例えば、コータを用いた塗布法等を用いて、絶縁材28を含む溶液を塗布することにより実行してもよい。なお、絶縁材層38についても、青色量子ドット材料層36Bの上面の全面に成膜される。このため、絶縁材層38の上面には、バンク20の側面20Sの傾斜を反映した傾斜面38Sが、青色サブ画素SPBの周囲に形成される。
 ここで、例えば、絶縁材28は、アモルファス材料を含んでいてもよい。この場合、絶縁材層38の成膜は、絶縁材28の適切な溶媒による希釈と、当該希釈した溶液の塗布とにより実行できる。また、絶縁材28がアモルファス材料を含むことにより、後工程において、絶縁材層38への加熱処理等を実行し、絶縁材28が含むアモルファス材料の硬化を行うことにより、絶縁材28を含む安定した層を形成することが可能である。
 例えば、絶縁材28は、SOGを含む、ガラス系材料を含んでいてもよい。この場合、絶縁材28を含む溶液は、溶媒として、ジエチルエーテル、ジオキソラン、ジオキサン、テトラヒドロフラン等を含む、エーテル系溶媒を含んでいてもよい。
 また、例えば、絶縁材28は、PTFE(サイトップ)を含む、テトラフルオロエチレン系材料を含んでいてもよい。この場合、絶縁材28を含む溶液は、溶媒として、フルオラスアルコール類、フルオラスエーテル類、フルオラスヘキサン等を含む、パーフルオロ系溶媒を含んでいてもよい。
 他に、例えば、絶縁材28は、ジメチルシリコーンを含む、シリコーン系材料を含んでいてもよい。この場合、絶縁材28を含む溶液は、溶媒として、トルエン、キシレン等を含む、炭化水素系溶媒を含んでいてもよい。
 上記構成により、絶縁材28を適切な溶媒に溶解させることができるため、絶縁材層38の成膜をより容易に実行できる。なお、絶縁材28は、上述した材料のうち、複数の材料を含んでいてもよい。
 次いで、青色量子ドット材料層36B上に絶縁材層38が位置する状態を維持することにより、絶縁材層38が含む絶縁材28の一部を、青色量子ドット材料層36B中に浸透させる(ステップS10-6)。ステップS10-6は、ステップS10-4に次いで、基板4を30分程度静置することにより実行してもよい。これにより、絶縁材層38の直下に、青色量子ドット26Bと絶縁材28とを含む混合層40Bが形成される。
 次いで、絶縁材層38の上層に、レジスト層42を形成する(ステップS10-8)。ここで、レジスト層42は、青色発光層14Bが形成される青色サブ画素SPBと、基板4の平面視において重なる位置に、島状に形成する。レジスト層42の形成は、例えば、感光性樹脂を含むレジスト層の材料の塗布と、フォトリソグラフィによる当該材料のパターニングとによって実行してもよい。
 上述の通り、レジスト層42の形成を、材料の塗布および当該材料のパターニングによって実行する場合、レジスト層42の材料は、バンク20の側面20Sに沿って形成された、絶縁材層38の傾斜面38S上においても成膜される。また、成膜されたレジスト層42の材料のパターニングを実行することにより、レジスト層42の材料は、傾斜面38Sと隣接する位置においても残存する。
 ここで、レジスト層42のうち、傾斜面38Sと隣接する位置に形成された部分は、メニスカス効果により、傾斜面38Sを這い上がる。このため、ステップS10-8においては、傾斜面38S上においても、レジスト層42の外縁部42Mが薄く形成される。したがって、ステップS10-8の実行後、基板4の平面視において、バンク20の側面20Sと重なる位置において、絶縁材層38および混合層40Bが、レジスト層42のうち、比較的薄い外縁部42Mによって覆われる。
 次いで、適切なエッチング方法により、絶縁材層38および混合層40Bのエッチングを行い、絶縁材層38および混合層40Bのパターニングを実行する(ステップS10-10)。レジスト層42は、絶縁材層38および混合層40Bのエッチングに対し耐性を有する材料を含む。このため、ステップS10-10においては、基板4の平面視において、レジスト層42から露出した絶縁材層38およびその下層の混合層40Bのみがエッチングされる。これにより、青色サブ画素SPBごとに、島状の混合層40Bおよび絶縁材層38が形成され、それぞれ、青色量子ドット層22Bおよび絶縁層24となる。
 絶縁材層38および混合層40Bのエッチングは、ドライエッチング、またはウェットエッチングにより実行される。例えば、絶縁材層38および混合層40Bのエッチングは、適切なエッチング材によって、レジスト層42から露出した絶縁材層38および混合層40Bを除去することにより実行される。
 例えば、絶縁材28がSOGを含む場合、絶縁材層38は、フッ酸、バッファードフッ酸等を含むエッチング材により除去できる。また、絶縁材28がPTFEまたはジメチルシリコーンを含む場合、絶縁材層38は、O、またはOプラズマによるアッシング、あるいは、RIE(反応性イオンエッチング)等により除去できる。上記構成により、より確実に、絶縁材層38および混合層40Bのエッチングを実行することができる。
 ここで、レジスト層42は、ステップS10-8完了時において、青色サブ画素SPBの周囲に位置する、絶縁材層38の傾斜面38S上においても、外縁部42Mとして薄く形成されている。このため、基板4の平面視において、外縁部42Mと重なる位置における絶縁材層38および混合層40Bのエッチングは、レジスト層42から露出した絶縁材層38および混合層40Bのエッチングよりも弱く実行される。
 したがって、ステップS10-10の実行により、バンク20の側面20S上には、混合層40Bの一部がエッチングされずに残存する。ただし、基板4の平面視において、外縁部42Mと重なる位置における絶縁材層38および混合層40Bのエッチングにより、当該位置における絶縁材層38は除去され、混合層40Bはエッチング材にさらされる。
 特に、ステップS10-10におけるエッチングを、ドライエッチング、またはウェットエッチングにより実行するとする。この場合には、バンク20の側面20S上に残存し、かつ、エッチング材にさらされた混合層40Bが含む青色量子ドット26Bは、酸化等により劣化し失活する。このため、ステップS10-10の完了時には、バンク20の側面20S上に、青色量子ドット層22Bよりも膜厚が薄く、かつ、失活した青色量子ドット26Bを含む失活層22BDが形成される。なお、ステップS10-10の完了時において、青色量子ドット層22Bと失活層22BDとの境界には、周囲よりも膜厚の薄い、薄膜部22BTが形成されてもよい。
 次いで、適切なリムーバにより、残存したレジスト層42を洗浄することにより、絶縁材層38上からレジスト層42を除去する(ステップS10-12)。これにより、青色量子ドット層22Bおよび絶縁層24を含む主発光部14BLと、失活層22BDを含む外縁部14BDとが得られる。
 以上により、青色発光層14Bの形成工程が完了する。なお、ステップS10-6以降、絶縁材層38の熱処理等により、絶縁材層38中の溶媒の揮発および絶縁材28が含むアモルファス材料の硬化処理を行ってもよい。この場合、青色発光層14Bには、絶縁材層38が含む溶媒を由来とする化合物が、第2化合物として残存してもよい。
 赤色発光層14R、および緑色発光層14Gは、上述した青色発光層14Bの形成工程の一部を変更して実行することにより形成してもよい。例えば、赤色発光層14R、および緑色発光層14Gの形成工程においては、青色発光層14Bの形成工程において、青色量子ドット材料層36Bが含む青色量子ドット26Bを、それぞれ、赤色量子ドット、および緑色量子ドットに変更する。また、赤色発光層14R、および緑色発光層14Gの形成工程においては、上述したステップS10-8において、レジスト層42を形成する位置を、基板4の平面視において、それぞれ、赤色サブ画素SPR、および緑色サブ画素SPGと重なる位置に変更する。以上により、本実施形態に係る発光層14の形成工程が実行できる。
 <残部の形成方法>
 発光層14の形成工程に次いで、電子輸送層16を形成する(ステップS12)。電子輸送層16は、例えば、電子輸送性を有する材料を塗布することにより、各サブ画素に対し共通に形成してもよい。次いで、電子輸送層16上にカソード18を形成する(ステップS14)。カソード18は、例えば、金属材料の薄膜をスパッタ法等により、各サブ画素に対し共通に成膜することにより形成してもよい。以上により、発光素子層6の形成が完了する。
 次いで、封止層8を形成する(ステップS16)。封止層8が有機封止膜を含む場合、当該有機封止膜の形成は、有機封止材料の塗布により実行してもよい。また、封止層8が無機封止膜を含む場合、当該無機封止膜は、CVD法等により成膜してもよい。これにより、発光素子層6を封止する封止層8が形成され、表示デバイス2の製造が完了する。
 <製造方法が奏する効果>
 本実施形態に係る青色発光素子6Bの形成方法においては、例えば、青色量子ドット材料層36Bの上層に絶縁材層38を形成し、当該絶縁材層38中の絶縁材28の一部を、青色量子ドット材料層36Bに浸透させる、浸透工程を備える。当該浸透工程において、青色量子ドット材料層36Bに浸透させる絶縁材28は、絶縁材層38中の絶縁材28の一部であるため、青色量子ドット材料層36Bの上層には絶縁材層38が残存する。したがって、上記青色発光素子6Bの形成方法により、青色量子ドット層22Bと絶縁層24とを積層して含む青色発光素子6Bが得られる。ゆえに、上記形成方法により、間隔14DAが間隔14DCよりも小さい青色発光素子6Bを、容易に形成することができる。
 また、上述した浸透工程により、本実施形態に係る表示デバイス2の製造方法は、青色量子ドット26Bと絶縁材28とを混合した材料を別途塗布する工程が必要としない。このため、青色量子ドット材料層36Bの材料には、青色量子ドット26Bを分散させるためにより適切な溶媒を選択することが可能である。
 さらに、上述した浸透工程によって、アノード10の側からカソード18の側にかけて、次第に絶縁材28の濃度が高くなる混合層40Bを、容易に形成することができる。上記製造方法によって製造された青色量子ドット層22Bを含む青色発光素子6Bは、カソード18の側からの電子注入の効率に対し、アノード10の側からの正孔注入の効率をより効率的に向上させることができる。
 例えば、青色発光層14Bを、青色発光素子6Bの積層方向における中央位置から、アノード10の側の部分とカソード18の側の部分との2つに分割したとする。上述した浸透工程を含む青色発光層14Bの形成方法により、青色発光層14Bの上記中央位置から、カソード18の側の部分が、アノード10の側の部分よりも、絶縁材28の平均濃度が高くなるように、青色発光層14Bを形成できる。
 また、青色発光層14Bを、青色発光素子6Bの積層方向において、アノード10の側から、第1部分、当該第1部分よりもカソード18の側に位置する第2部分、および、当該第2部分よりもカソード18の側に位置する第3部分に3等分したとする。特に、第1部分は端面14EAを含み、第3部分は端面14ECを含む。上述した浸透工程を含む青色発光層14Bの形成方法により、第1部分、第2部分、および第3部分の順に、絶縁材28の平均濃度が高くなるように、青色発光層14Bを形成できる。
 あるいは、上述した浸透工程を含む青色発光層14Bの形成方法により、アノード10の側からカソード18の側にかけて、次第に絶縁材28の平均濃度が高くなるように、青色発光層14Bを形成できる。
 例えば、青色発光層14Bの何れかの表面の法線方向に沿って、青色発光層14Bを任意の断面にて切断した切断面を仮定する。この場合、当該切断面上において、単位面積当たりの絶縁材28の個数を算出する。これにより、当該単位面積当たりの絶縁材28の個数を比較することにより、青色発光層14Bが含む絶縁材28の平均濃度の大小関係を測定してもよい。
 また、上記測定が困難である場合には、絶縁材28の分子の観測、および、当該絶縁材28分子の濃度を直接観測する手法として、TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry)法を用いてもよい。TOF-SIMS法は、測定対象における、一辺がマイクロmオーダーの微小領域をスパッタし、飛び出した物質の飛行時間により、当該物質の質量を決定する方法である。当該方法にて検出した質量をデータベースと比較することにより、物質の種類を特定することができる。TOF-SIMS法を用いることにより、原子のオーダーから巨大分子のオーダーまで、物質の種類および質量を直接定量することができる。
 また、上記方法の他に、GCMS(Gas Chromatography Mass Spectrometry)法を用いて、絶縁材28の分子、および当該絶縁材28分子の濃度を観察することができる。GCMS法は、分析対象物をガスクロマトグラフと質量分析により定性、定量分析する方法である。あるいは、上記方法による測定が困難である場合には、EDX(Energy Dispersive X-ray Spectroscopy)法を用いてもよい。
 上記方法のうち、測定結果の比較方法を明記していない方法における、測定結果の比較は、次のような方法にて実施してもよい。例えば、青色発光層14Bを任意の断面にて切断した切断面上において、一定の測定範囲における絶縁材28の組成として含まれる特定の元素の検出量を測定する。また、比較については、上記切断面上における、青色発光層14Bの表面の法線に平行な、任意の線分上において、上記測定を適宜実施する。これにより、適宜比較すべき範囲の上記線分上の平均検出量の大小関係を比較することにより、青色発光層14Bが含む絶縁材28の平均濃度の大小関係としてもよい。なお、上記測定方法が優先するものの、上記測定方法により測定が困難である場合には、他の方法により測定してもよい。
 本実施形態に係るステップS10-4において成膜する絶縁材層38は、テトラフルオロエチレン系材料を含む絶縁材28と、パーフルオロ系溶媒とを含んでいてもよい。この場合、本実施形態に係るステップS10-2において成膜する青色量子ドット材料層36Bは、パーフルオロ系溶媒に可溶な配位子30を含んでいてもよい。この場合、青色量子ドット26Bを含むコロイド溶液である青色量子ドット材料層36Bと、パーフルオロ系溶媒を含む絶縁材層38との混合が促進する。ゆえに、上記構成により、本実施形態に係るステップS10-6における浸透工程をより効果的に実行できる。
 本実施形態に係るステップS10-8において、混合層40Bの上層には、絶縁材層38が形成されている。このため、絶縁材層38は、レジスト層42のパターニングに使用される現像液から、混合層40Bを保護することができ、青色量子ドット26Bの劣化を低減する。
 また、本実施形態に係るステップS10-10においては、絶縁材層38および混合層40Bのパターニングを、ドライエッチングまたはウェットエッチングにより実行する。このため、ステップS10-10により、レジスト層42の外縁部42Mに覆われた位置においては、失活した青色量子ドット26Bを含む失活層22BD、および、当該失活層22BDを含む外縁部14BDが形成される。
 このため、上記形成方法により形成された青色発光素子6Bが含む外縁部14BDは、含む青色量子ドット26Bが失活しているため、発光効率が極端に低下している。したがって、上記形成方法により青色発光素子6Bを形成することにより、外縁部14BDが異常発光することを低減できる。
 ゆえに、当該青色発光素子6Bは、青色発光層14Bに注入されたキャリアを、主発光部14BLにおける発光に効率的に寄与させることができ、主発光部14BLにおける発光効率を改善する。また、青色発光素子6Bは、主発光部14BLの外縁に、発光効率の低い外縁部14BDを含む。このため、青色発光素子6Bは、他の発光素子との境界付近における発光強度を低くすることができる。ゆえに、当該青色発光素子6Bを含む表示デバイス2は、サブ画素間における混色を低減でき、表示品位を改善する。
 さらに、本実施形態に係るステップS10-12において、青色量子ドット層22Bの上層には、絶縁層24が形成されている。このため、絶縁層24は、レジスト層42の除去に使用されるリムーバから、青色量子ドット層22Bを保護することができ、青色量子ドット26Bの劣化を低減する。
 なお、本実施形態に係るステップS10-10の完了後、パターニングされた青色量子ドット層22Bの一部が、メニスカス効果により、失活層22BDの上面を這い上がることが考えられる。この場合においても、外縁部14BDには、既に失活した青色量子ドット26Bを含む失活層22BDが形成されているため、外縁部14BDは、以前として、主発光部14BLに対し、発光効率が十分に低減する。
 本実施形態に係る赤色発光素子6R、および緑色発光素子6Gの形成方法は、青色発光素子6Bの形成方法のうち、各量子ドットの材料および各発光層14の形成位置を変更するのみにて実行できる。したがって、本実施形態に係る赤色発光素子6R、および緑色発光素子6Gの形成方法についても、青色発光素子6Bの形成方法と同一の効果を奏する。
 〔実施形態2〕
 <絶縁材を含まない量子ドット層>
 図10は、本実施形態に係る表示デバイス2の概略断面の一部領域を拡大して示す概略図であり、図1に示す表示デバイス2の概略拡大図と対応する位置についての拡大した図である。本実施形態に係る表示デバイス2は、前実施形態に係る表示デバイス2と比較して、赤色発光素子6R、緑色発光素子6G、および青色発光素子6Bに代えて、それぞれ、赤色発光素子44R、緑色発光素子44G、および青色発光素子44Bを備える。当該点を除き、本実施形態に係る表示デバイス2は、前実施形態に係る表示デバイス2と同一の構成を備える。
 本実施形態に係る青色発光素子44Bは、前実施形態に係る青色発光素子6Bと比較して、青色発光層14Bが、さらに、青色量子ドット26Bと配位子30とを含む青色量子ドット層46Bを、アノード10の側に備える。特に、青色量子ドット層46Bは、青色量子ドット層22Bが含む材料のうちでは、絶縁材28を含まない。
 なお、青色量子ドット層46Bは、青色発光層14Bの、アノード10の側の端面14EAを形成し、正孔輸送層12Bと接する。このため、本実施形態における端面部14BAは、端面14EAから、青色量子ドット層46Bが含む青色量子ドット26Bのうち、端面14EAに対し最近接の20個の青色量子ドット26Bが位置する部分までを指す。
 上記点を除き、本実施形態に係る青色発光素子44Bは、前実施形態に係る青色発光素子6Bと同一の構成を備える。例えば、本実施形態において、青色量子ドット層46Bは、青色量子ドット26Bの間に絶縁材28を含まない。一方で、本実施形態に係る青色発光素子44Bは、前実施形態に係る青色発光素子6Bと同じく、絶縁材28を含む絶縁層24を、青色量子ドット層46Bのカソード18の側に備える。また、本実施形態において、間隔14DAは、間隔14DCよりも小さくなる。
 以上より、青色発光素子44Bは、前実施形態において説明した理由と同一の理由から、青色発光層14Bにおける無効電流の発生、および電子過多の発生を低減する。ゆえに、青色発光素子44Bは、発光効率を改善し、寿命を長期化する。
 また、青色発光素子44Bは、絶縁材28を含まない青色量子ドット層46Bを、青色発光層14Bのアノード10の側に備える。特に、青色量子ドット層46Bは、青色量子ドット層22Bが備える材料のうちでは、青色量子ドット26Bと配位子30とのみを含む。このため、青色発光素子44Bは、無効電流の低減と電子過多の低減とを実現しつつ、配位子30等を介した、アノード10の側からの正孔注入の効率をさらに向上させることができる。
 さらに、本実施形態に係る赤色発光素子44R、および緑色発光素子44Gは、青色発光素子44Bと比較して、発光層14が備える量子ドットの発光色を除き、同一の構成を備える。したがって、赤色発光素子44R、および緑色発光素子44Gのそれぞれについても、青色発光素子44Bが奏する効果と同一の効果を奏する。
 <混合層の成膜工程>
 本実施形態に係る表示デバイス2は、前実施形態に係る表示デバイス2の製造方法のうち、発光層の形成工程のみを変更した製造方法により製造できる。本実施形態に係る発光層14の形成方法について、図11および図12を参照して、さらに詳細に説明する。図11は、本実施形態に係る発光層14の形成方法について説明するためのフローチャートである。図12は、本実施形態に係る発光層14の形成工程における、青色サブ画素SPBに位置するバンク20の側面20Sの近傍の工程断面図を示す。
 本実施形態に係る青色発光層14Bの形成工程においては、はじめに、前実施形態に係るステップS10-2と同一の手法により、青色量子ドット材料層36Bを成膜する。ここで、本実施形態に係るステップS10-2においては、青色量子ドット層46Bの膜厚を考慮し、前実施形態に係るステップS10-2と比較して、青色量子ドット材料層36Bをより薄く成膜してもよい。
 次いで、青色量子ドット材料層36B上に、青色量子ドット26Bと絶縁材28とを混合した材料を塗布して、混合層40Bを成膜する(ステップS10-14)。混合層40Bは、さらに、配位子30を含んでいてもよく、また、絶縁材28が可溶である溶媒を含んでいてもよい。
 なお、本実施形態に係る混合層40Bは、前実施形態に係る混合層40Bと同一の材料を含んでいてもよい。ただし、本実施形態に係る混合層40Bは、青色量子ドット26Bと絶縁材28とを混合した溶液から成膜されているため、前実施形態に係る混合層40Bと比較して、絶縁材28の濃度がより均一となる。
 次いで、前実施形態に係るステップS10-4と同一の手法により、混合層40B上に、絶縁材層38を成膜する。本実施形態においても、絶縁材層38の上面には、バンク20の側面20Sの傾斜を反映した傾斜面38Sが、青色サブ画素SPBの周囲に形成される。
 次いで、前実施形態に係るステップS10-8と同一の手法により、絶縁材層38の上層に、青色サブ画素SPBごとに、レジスト層42を形成する。本実施形態においても、レジスト層42のうち、傾斜面38Sと隣接する位置に形成された部分は、メニスカス効果により、傾斜面38Sを這い上がる。したがって、ステップS10-8の実行後、基板4の平面視において、バンク20の側面20Sと重なる位置において、絶縁材層38および混合層40Bが、レジスト層42のうち、比較的薄い外縁部42Mによって覆われる。
 次いで、適切なエッチング方法により、青色量子ドット材料層36B、絶縁材層38、および混合層40Bのエッチングを行い、青色量子ドット材料層36B、絶縁材層38、および混合層40Bのパターニングを実行する(ステップS10-16)。青色量子ドット材料層36Bは、絶縁材層38、および混合層40Bのエッチングが可能なエッチング材によって、エッチングすることができる。したがって、ステップS10-16は、青色量子ドット材料層36Bをさらにパターニングする点を除き、前実施形態に係るステップS10-10と同一の方法によって実行できる。これにより、青色サブ画素SPBごとに、島状の青色量子ドット材料層36B、混合層40B、および絶縁材層38が形成され、それぞれ、青色量子ドット層46B、青色量子ドット層22B、および絶縁層24となる。
 本実施形態においても、レジスト層42は、ステップS10-8完了時において、青色サブ画素SPBの周囲に位置する、絶縁材層38の傾斜面38S上においても、外縁部42Mとして薄く形成されている。このため、ステップS10-16の実行により、バンク20の側面20S上には、青色量子ドット材料層36Bおよび混合層40Bのそれぞれの一部がエッチングされずに残存する。ただし、当該位置における青色量子ドット材料層36Bおよび混合層40Bは、前実施形態において説明した事情と同一の事情から、エッチング材にさらされる。
 特に、ステップS10-16におけるエッチングを、ドライエッチング、またはウェットエッチングにより実行するとする。この場合には、バンク20の側面20S上に残存し、かつ、エッチング材にさらされた青色量子ドット材料層36Bおよび混合層40Bが含む青色量子ドット26Bは、酸化等により劣化し失活する。このため、ステップS10-16の完了時には、バンク20の側面20S上に、失活層46BDと、失活層22BDとが、バンク20の側からこの順に形成される。なお、失活層46BDは、青色量子ドット材料層36Bの青色量子ドット26Bが失活して形成され、失活層22BDは、混合層40Bの青色量子ドット26Bが失活して形成される。
 次いで、前実施形態に係るステップS10-12と同一の手法により、絶縁材層38上からレジスト層42を除去する。これにより、青色量子ドット層46B、青色量子ドット層22B、および絶縁層24を含む主発光部14BLと、失活層46BDおよび失活層22BDを含む外縁部14BDとが得られる。
 赤色発光層14R、および緑色発光層14Gは、上述した青色発光層14Bの形成工程の一部を、前実施形態において説明した方法に沿って変更し、実行することにより形成してもよい。以上により、本実施形態に係る発光層14の形成工程が実行できる。
 本実施形態に係る青色発光素子6Bの形成方法においては、ステップS10-14において、青色量子ドット26Bと絶縁材28とを混合した溶液から混合層40Bを成膜する。このため、当該形成方法により、絶縁材28の濃度をより均一とした青色量子ドット層22Bを形成でき、より安定して無効電流を低減する青色発光層14Bを形成できる。
 また、上記形成方法においては、ステップS10-2において、絶縁材28を含まない青色量子ドット材料層36Bを成膜する。このため、当該形成方法においては、絶縁材28を含まない青色量子ドット層46Bを、青色発光層14Bのアノード10の側に、より確実に形成することができる。加えて、上記形成方法は、当該青色量子ドット材料層36Bに絶縁材28を浸透させる工程を含まない。このため、本実施形態においては、前実施形態における浸透工程を省略して、上記形成方法をより簡素化できる。
 本実施形態に係るステップS10-14において成膜する混合層40Bは、テトラフルオロエチレン系材料を含む絶縁材28と、パーフルオロ系溶媒と、当該パーフルオロ系溶媒に可溶な配位子30とを含んでいてもよい。この場合、コロイドである青色量子ドット26B、パーフルオロ系溶媒に可溶の絶縁材28、および、同じくパーフルオロ系溶媒可溶の配位子30との混合が促進する。ゆえに、上記構成により、本実施形態に係るステップS10-14において、混合層40Bの成膜に用いる溶液の混合がより促進し、より均一な混合層40Bを成膜することができる。
 〔実施形態3〕
 <余剰配位子を低減した量子ドット層>
 図13は、本実施形態に係る表示デバイス2の概略断面の一部領域を拡大して示す概略図であり、図1に示す表示デバイス2の概略拡大図と対応する位置についての拡大した図である。本実施形態に係る表示デバイス2は、実施形態1に係る表示デバイス2と比較して、赤色発光素子6R、緑色発光素子6G、および青色発光素子6Bに代えて、それぞれ、赤色発光素子48R、緑色発光素子48G、および青色発光素子48Bを備える。当該点を除き、本実施形態に係る表示デバイス2は、実施形態1に係る表示デバイス2と同一の構成を備える。
 本実施形態に係る青色発光素子48Bは、実施形態1に係る青色発光素子6Bと比較して、青色発光層14Bの青色量子ドット層22Bが含む配位子30のうち、余剰配位子34の濃度が低い。具体的には、本実施形態に係る青色量子ドット層22Bが含む余剰配位子34の個数は、実施形態1に係る青色量子ドット層22Bが含む余剰配位子34の個数と比較して少ない。例えば、本実施形態において、青色量子ドット層22Bが含む結合配位子32に対する、青色量子ドット層22Bが含む余剰配位子34の割合は低い。上記点を除き、本実施形態に係る青色発光素子48Bは、実施形態1に係る青色発光素子6Bと同一の構成を備える。
 青色発光素子48Bは、実施形態1において説明した理由と同一の理由から、青色発光層14Bにおける無効電流の発生、および電子過多の発生を低減する。ゆえに、青色発光素子48Bは、発光効率を改善し、寿命を長期化する。
 また、本実施形態に係る青色量子ドット層22Bが含む余剰配位子34の濃度は、前述した各実施形態に係る青色量子ドット層22Bが含む余剰配位子34の濃度よりも低い。余剰配位子34は、結合配位子32と比較して、最近接の青色量子ドット26Bとの間隔の平均値が長い。このため、余剰配位子34は、結合配位子32と比較して、青色量子ドット26Bへのキャリアの注入よりも、青色量子ドット26Bの間におけるキャリアの輸送に寄与しやすく、ひいては、無効電流の発生により強く寄与する。したがって、青色発光素子48Bの青色発光層14Bは、無効電流の発生に主に寄与する余剰配位子34の濃度を低減し、青色発光素子48Bにおける無効電流の発生をより効果的に低減する。
 ここで、余剰配位子34の、炭素原子、ハロゲン原子、III族原子、IV族原子、V族原子、およびVI族原子と、水素鎖との総数をnとする。この場合、全ての配位子30の個数に対する、余剰配位子34の個数の割合は、1/(2n)以下であってもよい。この場合、青色発光層14Bは、青色発光素子48Bにおける無効電流の発生をより効果的に低減する。また、全ての配位子30の個数に対する、余剰配位子34の個数の割合が、3/(10n)以下である場合、青色発光層14Bは、青色発光素子48Bにおける無効電流の発生をさらに効果的に低減する。
 青色発光層14B中の配位子30に対する、余剰配位子34の個数の割合は、例えば、DOSY(Diffusion Orderd SpectroscopY)法を用いて測定してもよい。DOSY法は、複数種の分子を含む混合物に対し、各分子の分子量と、磁場勾配に対する拡散係数とをマッピングする組成分析方法である。
 配位子30に対しDOSY法を適用した場合、余剰配位子34の分子量に対する拡散係数の測定値は、結合配位子32の分子量に対する拡散係数の測定値よりも高くなる。したがって、青色発光層14Bに対する、DOSY法によるマッピングによって得られた、分子量-拡散定数マップ上のピークの積分強度を算出することにより、結合配位子32と余剰配位子34との濃度比を算出できる。
 あるいは、青色発光層14B中の配位子30に対する、余剰配位子34の個数の割合は、例えば、TD-GC/MS(Thermal Desorption-Gas Chromatograph/Mass Spectrometer)法を用いて測定してもよい。TD-GC/MS法は、熱源を有するプローブによって試料表面を局所加熱し、揮発した成分を吸着材によって吸着し、当該成分に対する気相クロマトグラフと質量分析とを行う組成分析方法である。
 配位子30に対しTD-GC/MS法を適用した場合、余剰配位子34の分子量に対する揮発温度の測定値は、結合配位子32の分子量に対する揮発温度の測定値よりも低くなる。これは、余剰配位子34の揮発温度が、結合配位子32の配位結合形成のために消費されるエネルギーに相当する温度だけ低下することに伴う。したがって、青色発光層14Bに対するTD-GC/MS法によって得られた、分子量に対する揮発温度の違いから、結合配位子32と余剰配位子34とを個別に質量分析することにより、結合配位子32と余剰配位子34との濃度比を算出できる。
 上述した分析方法により、結合配位子32と余剰配位子34との濃度比から、青色発光層14Bにおける、全ての配位子30の個数に対する余剰配位子34の個数の割合を算出できる。なお、上述した分析方法を表示デバイス2に適用する場合、一部の発光素子が備える発光層14について分析を行い、測定結果を各発光素子が備える発光層14に適用させてもよい。特に、TD-GC/MS法は、プローブによる局所加熱が可能であるため、単一の発光素子が備える発光層14に対する分析が可能である。
 <発光素子の特性の比較>
 図14を参照して、比較形態に係る青色発光素子6BA、実施形態1に係る青色発光素子6B、および、本実施形態に係る青色発光素子48Bの、それぞれの特性を比較して評価する。図14に示すグラフは、各形態に係る青色発光素子の特性を示すグラフである。
 比較形態に係る青色発光素子6BAの特性は、グラフGA1およびグラフGA2に示す。実施形態1に係る青色発光素子6Bの特性は、グラフG1およびグラフG2に示す。本実施形態に係る青色発光素子48Bの特性は、グラフG3およびグラフG4に示す。
 グラフGA1、グラフG1、およびグラフG3は、それぞれ、各形態に係る青色発光素子の印加電圧-電流特性を示し、横軸に印加電圧をとり、縦軸に電流値の対数をとる。グラフGA1、グラフG1、およびグラフG3において、実線は各形態に係る青色発光素子の特性の測定値を示し、破線は理想的なダイオードの特性を示す。
 理想的なダイオードの特性と、実際の発光素子の特性との差異は、当該発光素子において、発光に寄与しない無効電流が発生することにより生じる。換言すれば、理想的なダイオードの電流値と、実際の発光素子の電流値との差は、当該発光素子に生じた無効電流の大きさを示す。
 グラフGA1、グラフG1、およびグラフG3において、理想的なダイオードの電流値と、各形態に係る青色発光素子の電流値との差を、一点鎖線にて示す。換言すれば、グラフGA1、グラフG1、およびグラフG3において、一点鎖線は、各形態に係る青色発光素子に生じた無効電流の値を示す。
 図14においては、グラフGA1、グラフG1、およびグラフG3における、無効電流の電流値がおおよそ飽和する印加電圧における、それぞれの無効電流の値を、点線にて比較する。グラフGA1とグラフG1との比較から明らかであるように、実施形態1に係る青色発光素子6Bは、比較形態に係る青色発光素子6BAと比較して、無効電流が低減している。さらに、グラフG1とグラフG3との比較から明らかであるように、本実施形態に係る青色発光素子48Bは、実施形態1に係る青色発光素子6Bと比較して、無効電流がさらに低減している。
 グラフGA2、グラフG2、およびグラフG4は、それぞれ、各形態に係る青色発光素子に流れる電流値に対する外部量子効率の値を示し、横軸に電流値をとり、縦軸に外部量子効率をとる。図14においては、グラフGA2、グラフG2、およびグラフG4における、外部量子効率の最大値を、点線にて比較する。一般に、発光素子の外部量子効率は、当該発光素子の発光効率に比例する。
 グラフGA2とグラフG2との比較から明らかであるように、実施形態1に係る青色発光素子6Bは、比較形態に係る青色発光素子6BAと比較して、外部量子効率の最大値が上昇している。さらに、グラフG2とグラフG4との比較から明らかであるように、本実施形態に係る青色発光素子48Bは、実施形態1に係る青色発光素子6Bと比較して、外部量子効率の最大値がさらに上昇している。
 以上より、実施形態1に係る青色発光素子6Bは、比較形態に係る青色発光素子6BAと比較して、無効電流を低減し、かつ、発光効率を向上させる。さらに、本実施形態に係る青色発光素子48Bは、実施形態1に係る青色発光素子6Bと比較して、無効電流をさらに低減し、かつ、発光効率をさらに向上させる。
 なお、本実施形態に係る赤色発光素子48R、および緑色発光素子48Gは、青色発光素子48Bと比較して、発光層14が備える量子ドットの発光色を除き、同一の構成を備える。したがって、赤色発光素子48R、および緑色発光素子48Gのそれぞれについても、青色発光素子48Bが奏する効果と同一の効果を奏する。
 <余剰配位子の除去方法>
 本実施形態に係る表示デバイス2は、実施形態1に係る表示デバイス2の製造方法のうち、発光層の形成工程のみを変更した製造方法により製造できる。本実施形態に係る発光層14の形成方法について、図15を参照して、さらに詳細に説明する。図15は、本実施形態に係る発光層14の形成方法について説明するためのフローチャートである。
 本実施形態に係る青色発光層14Bの形成工程においては、ステップS10-2に先立って、青色量子ドット材料層36Bの成膜に使用する青色量子ドット溶液から、余剰配位子34の除去を行う(ステップS10-18)。
 ステップS10-18においては、例えば、青色量子ドット溶液を遠心分離機にかける。これにより、青色量子ドット溶液を、遠心分離によって、青色量子ドット26Bおよび結合配位子32を含む溶液と、余剰配位子34を含む溶液とに分離する。ここで、青色量子ドット26Bおよび結合配位子32を含む溶液のみを抽出することにより、余剰配位子34の濃度が低下した青色量子ドット溶液が得られる。
 次いで、実施形態1に係るステップS10-2と同一の手法により、青色量子ドット材料層36Bを成膜する。ここで、青色量子ドット材料層36Bは、前述したステップS10-18の実行により、余剰配位子34の濃度が低下した青色量子ドット26Bの溶液を用いて成膜を行う。
 次いで、成膜した青色量子ドット材料層36Bに対する、洗浄液の滴下を行う(ステップS10-20)。洗浄液は、例えば、アルコール類、または、エーテル類等を含んでいてもよく、配位子30の溶解性が高い溶媒を含んでいてもよい。これにより、青色量子ドット材料層36B中の余剰配位子34の少なくとも一部は、洗浄液中に遊離する。
 次いで、洗浄液の滴下を行った青色量子ドット材料層36Bからの、当該洗浄液の除去を行う(ステップS10-22)。ステップS10-22は、例えば、青色量子ドット材料層36Bを基板4ごと傾斜させて、青色量子ドット材料層36Bから洗浄液を流動させることにより実施してもよい。ステップS10-22により、青色量子ドット材料層36Bからの洗浄液の除去に伴い、当該洗浄液と余剰配位子34との間の粘性抵抗により、洗浄液中に遊離した余剰配位子34が併せて除去される。
 ナノスケールの大きさを有する余剰配位子34を洗浄液にて洗浄する上記工程においては、サイズ効果により、余剰配位子34の慣性に対し、洗浄液の粘性が顕著に作用する。このため、余剰配位子34と洗浄液との間の粘性抵抗が効率的に働き、洗浄液中に余剰配位子34が効果的に遊離する。また、余剰配位子34の側鎖が多いほど、余剰配位子34と洗浄液との間の粘性抵抗がより強く作用するため、当該余剰配位子34は洗浄液によってより効率よく排出される。なお、有する側鎖が少なく、洗浄液との間の粘性抵抗が比較的低い余剰配位子34を除去する場合には、上述した洗浄工程を複数回繰り返してもよい。
 ステップS10-22以降、実施形態1に係るステップS10-4からステップS10-12を順に実行することにより、本実施形態に係る青色発光層14Bが得られる。赤色発光層14R、および緑色発光層14Gは、上述した青色発光層14Bの形成工程の一部を、実施形態1において説明した方法に沿って変更し、実行することにより形成してもよい。以上により、本実施形態に係る発光層14の形成工程が実行できる。
 本実施形態に係る青色発光素子6Bの形成方法は、青色量子ドット材料層36Bから余剰配位子34を低減する工程を含む。よって、当該形成方法により、余剰配位子34の濃度を低減した青色量子ドット層22Bを形成することができる。本実施形態に係る青色発光素子6Bの形成方法においては、ステップS10-18、ステップS10-20、およびステップS10-22の、何れも実行する例を説明したが、これに限られない。例えば、ステップS10-18と、ステップS10-20、およびステップS10-22との、何れかを実行することにより、青色量子ドット層22B余剰配位子34の濃度を低減することができる。
 なお、ステップS10-18、およびステップS10-22において、青色量子ドット26Bから結合配位子32が一部離脱し、青色量子ドット26Bの溶液から除去されることが考えられる。この場合、結合配位子32が一部離脱した青色量子ドット26Bに対し、新たに余剰配位子34が配位結合を形成し、結合配位子32となる。このように、結合配位子32と余剰配位子34とは互いに平衡状態にあるため、上記工程において、結合配位子32の一部が除去された場合においても、結果として、余剰配位子34の低減に寄与する。
 また、本実施形態に係るステップS10-18、ステップS10-20、およびステップS10-22は、前実施形態に係る青色量子ドット材料層36Bに対して適用してもよく、加えて、前実施形態に係る混合層40Bに対して適用してもよい。例えば、前実施形態において、ステップS10-14に先立ち、混合層40Bの成膜に使用する溶液から、余剰配位子34を除去してもよい。さらに、前実施形態において、ステップS10-14に次いで、混合層40Bへの洗浄液の滴下と、当該混合層40Bからの洗浄液の除去とを実行してもよい。これにより、前実施形態に係る青色発光素子6Bの形成方法により、余剰配位子34の濃度を低減した青色量子ドット層22Bおよび青色量子ドット層46Bを形成することができる。
 〔実施形態4〕
 <量子ドット層と絶縁層との積層構造>
 図16は、本実施形態に係る表示デバイス2の概略断面の一部領域を拡大して示す概略図であり、図1に示す表示デバイス2の概略拡大図と対応する位置についての拡大した図である。本実施形態に係る表示デバイス2は、実施形態1に係る表示デバイス2と比較して、赤色発光素子6R、緑色発光素子6G、および青色発光素子6Bに代えて、それぞれ、赤色発光素子50R、緑色発光素子50G、および青色発光素子50Bを備える。当該点を除き、本実施形態に係る表示デバイス2は、実施形態1に係る表示デバイス2と同一の構成を備える。
 本実施形態に係る青色発光素子50Bは、実施形態1に係る青色発光素子6Bと比較して、青色発光層14Bが、青色量子ドット層46Bと絶縁層24とを、交互に積層して、かつ、複数層ずつ含む点において、構成が異なる。本実施形態に係る青色量子ドット層46Bは、実施形態2に係る青色量子ドット層46Bと同一の構成を備えていてもよい。また、本実施形態に係る絶縁層24は、前述した各実施形態に係る絶縁層24と同一の構成を備えていてもよい。
 なお、図16には、青色発光層14Bが、青色量子ドット層46Bと絶縁層24とを、それぞれ3層ずつ備えるように図示を行っているが、これに限られない。例えば、青色発光層14Bが、青色量子ドット層46Bと絶縁層24とを、2層ずつ備えていてもよく、あるいは、4層以上ずつ備えていてもよい。また、各絶縁層24の厚み24Dは、少なくとも2層において同一であってもよく、それぞれが異なっていてもよい。
 特に、本実施形態に係る青色発光層14Bは、アノード10の側の端面14EAを、最もアノード10の側に位置する青色量子ドット層46Bの、アノード10の側の端面が形成するように、青色量子ドット層46Bを備える。さらに、青色発光層14Bは、カソード18の側の端面14ECを、最もカソード18の側に位置する絶縁層24の、カソード18の側の端面が形成するように、絶縁層24を備える。このため、本実施形態においても、間隔14DAは、間隔14DCよりも小さい。
 上記点を除き、本実施形態に係る青色発光素子50Bは、実施形態1に係る青色発光素子6Bと同一の構成を備える。
 青色発光素子50Bは、実施形態1において説明した理由と同一の理由から、青色発光層14Bにおける無効電流の発生、および電子過多の発生を低減する。ゆえに、青色発光素子50Bは、発光効率を改善し、寿命を長期化する。
 さらに、本実施形態に係る青色発光層14Bは、2層の青色量子ドット層46Bの間においても絶縁層24を備えている。このため、青色発光層14Bは、ある青色量子ドット層46Bから、他の青色量子ドット層46Bへ伝搬する無効電流を低減することができる。したがって、本実施形態に係る青色発光素子50Bは、青色発光層14Bにおける無効電流の発生を、さらに低減できる。
 なお、本実施形態においては、青色発光層14Bが、絶縁材28を含まない青色量子ドット層46Bを複数層含む例を説明したが、これに限られない。例えば、本実施形態に係る青色発光層14Bは、青色量子ドット層46Bに代えて、前述の各実施形態にて説明した、絶縁材28を含む青色量子ドット層22Bを、複数層含んでいてもよい。当該構成により、青色発光素子50Bは、青色量子ドット26Bの間を伝搬する無効電流を、さらに効率的に低減することができる。
 さらに、本実施形態に係る赤色発光素子50R、および緑色発光素子50Gは、青色発光素子50Bと比較して、発光層14が備える量子ドットの発光色を除き、同一の構成を備える。したがって、赤色発光素子50R、および緑色発光素子50Gのそれぞれについても、青色発光素子50Bが奏する効果と同一の効果を奏する。
 <成膜工程の反復>
 本実施形態に係る表示デバイス2は、実施形態1に係る表示デバイス2の製造方法のうち、発光層の形成工程のみを変更した製造方法により製造できる。本実施形態に係る発光層14の形成方法について、図17を参照して、さらに詳細に説明する。図17は、本実施形態に係る発光層14の形成方法について説明するためのフローチャートである。
 本実施形態に係る青色発光層14Bの形成工程においては、はじめに、実施形態1に係るステップS10-2とステップS10-4とを、交互に、かつ、複数回ずつ実行し、青色量子ドット材料層36Bと絶縁材層38との積層構造を得る。このため、一組のステップS10-2とステップS10-4とを実行する度に、青色量子ドット材料層36Bと絶縁材層38とが含む絶縁材28の硬化工程を実施してもよい。
 本実施形態においては、形成する青色量子ドット層46Bと絶縁層24との層数に合わせて、ステップS10-2とステップS10-4との実行回数を決定する。規定回数のステップS10-2とステップS10-4との実行が完了した後は、実施形態1に係るステップS10-8からステップS10-12を、順次実行する。本実施形態に係るステップS10-10においては、複数の青色量子ドット材料層36Bと絶縁材層38とを一度にパターニングしてもよい。
 以上により、本実施形態に係る青色発光層14Bが得られる。赤色発光層14R、および緑色発光層14Gは、上述した青色発光層14Bの形成工程の一部を、実施形態1において説明した方法に沿って変更し、実行することにより形成してもよい。以上により、本実施形態に係る発光層14の形成工程が実行できる。
 本実施形態に係る青色発光層14Bの形成工程は、混合層40Bを形成する工程を含まない。例えば、当該形成工程は、青色量子ドット材料層36Bに絶縁材層38の絶縁材28の一部を浸透させる工程を含まず、また、青色量子ドット26Bと絶縁材28とを含む溶液から混合層40Bを成膜する工程を含まない。このため、本実施形態に係る青色発光層14Bの形成工程により、より簡素に青色発光層14Bを形成できる。
 ただし、本実施形態に係る青色発光層14Bの形成工程は、上述した各工程に限られない。例えば、上述した青色発光層14Bの形成工程において、一組のステップS10-2とステップS10-4とを実行する度に、絶縁材層38中の絶縁材28の一部を青色量子ドット材料層36Bに浸透させる浸透工程を実行してもよい。当該浸透工程は、実施形態1に係るステップS10-6と同一の手法により実行してもよい。当該形成工程により、絶縁材28を含む青色量子ドット層22Bを複数含む青色発光層14Bを形成できる。
 〔実施形態5〕
 <発光素子の別形態>
 図18は、本実施形態に係る表示デバイス52の表示領域DAの一部領域の概略拡大図であり、図3に示す概略拡大図と対応する位置について拡大して示す図である。図19は、本実施形態に係る表示デバイス2の概略断面図であり、図18における、F-G線矢視断面図である。図20は、本実施形態に係る表示デバイス2の断面の概略拡大図であり、図19に示す領域Hについての拡大した図である。なお、図18においては、図3と同じく、封止層8、電子輸送層16、およびカソード18の図示を省略している。
 本実施形態に係る表示デバイス52は、前述した各実施形態に係る表示デバイス2と比較して、発光素子層6に代えて、発光素子層54を備える点においてのみ、構成が異なる。発光素子層54は、前述した各実施形態に係る発光素子層6と比較して、発光層14に代えて、発光層56を備える点においてのみ、構成が異なる。
 本実施形態において、発光素子層54は、発光素子として、赤色サブ画素SPRに赤色発光素子54Rを、緑色サブ画素SPGに緑色発光素子54Gを、青色サブ画素SPBに青色発光素子54Bをそれぞれ備える。
 本実施形態においても、発光層56は、サブ画素ごとに個別に形成されている。特に、本実施形態において、発光層56は、赤色光を発する赤色発光層56R、緑色光を発する緑色発光層56G、および青色光を発する青色発光層56Bを含む。
 したがって、本実施形態において、赤色発光素子54Rは、アノード10Rと、正孔輸送層12Rと、赤色発光層56Rと、電子輸送層16と、カソード18とからなる。また、緑色発光素子54Gは、アノード10Gと、正孔輸送層12Gと、緑色発光層56Gと、電子輸送層16と、カソード18とからなる。さらに、青色発光素子54Bは、アノード10Bと、正孔輸送層12Gと、青色発光層56Bと、電子輸送層16と、カソード18とからなる。
 発光層56は、発光層14と同じく、アノード10から正孔輸送層12を介して輸送された正孔と、カソード18から電子輸送層16を介して輸送された電子との再結合が発生することにより、光を発する層である。ただし、発光層56は、発光体として、量子ドット材料の他、蛍光材料、りん光材料等を備えていてもよく、また、無機材料の他、有機材料を備えていてもよい。このため、本実施形態に係る各発光素子は、QLED素子であってもよく、OLED(Organic Light-Emitting Diode)素子であってもよい。
 発光素子層54は、基板4上に形成されたバンク20により、赤色発光素子54R、緑色発光素子54G、および青色発光素子54Bに区画される。また、赤色発光層56R、緑色発光層56G、および青色発光層56Bは、バンク20の側面20Sと接触する。
 図18に示すように、本実施形態に係る赤色発光層56Rは、主発光部56RLと、外縁部56RDとを含む。また、本実施形態に係る緑色発光層56Gは、主発光部56GLと、外縁部56GDとを含む。さらに、本実施形態に係る青色発光層56Bは、主発光部56BLと、外縁部56BDとを含む。外縁部56RD、外縁部56GD、および外縁部56BDは、それぞれ、基板4の平面視において、主発光部56RL、主発光部56GL、および主発光部56BLを囲う位置に配置されている。このため、外縁部56RD、外縁部56GD、および外縁部56BDのそれぞれは、バンク20の側面20Sと接触する。
 <主発光層および保護層>
 本実施形態に係る発光層56の主発光部および外縁部について、図20に示すバンク20と発光層56との界面近傍の概略拡大図を参照して、より詳細に説明する。図20は、特に、本実施形態に係る表示デバイス2の青色発光素子54Bの青色発光層56Bと、バンク20との界面近傍について示す概略拡大図であり、図19に示す領域Hを拡大して示す図である。ここで、特に言及しない限り、材料を除き、主発光部56RL、および主発光部56GLは、主発光部56BLと同一の構成を備え、外縁部56RD、および外縁部56GDは、外縁部56BDと同一の構成を備える。
 主発光部56BLは、青色発光層56Bが備える青色発光材料を含む主発光層58Bと、当該主発光層58Bの上面を覆う保護層60とを、基板4の側から順に含む。保護層60は、例えば、上述した絶縁材28を含んでいてもよく、絶縁層24と同一の構成を備えていてもよい。保護層60が絶縁材28を含む場合、保護層60は絶縁性を有する絶縁層である。ただしこれに限られず、例えば、保護層60は、無機材料等、少なくとも、主発光層58Bが含む発光材料よりも化学的に安定な材料を含む層である。なお、本実施形態に係る主発光部56RL、および主発光部56GLは、それぞれ、赤色発光材料を含む発光材料層、および、緑色発光材料を含む発光材料層を備える点を除き、主発光部56BLと同一の構成を備える。
 一方、外縁部56BDは、失活層58BDを含み、保護層60を含まない。失活層58BDは、バンク20の側面20Sと接し、周囲よりも膜厚の薄い、薄膜部58BTを介して、主発光部56BLの主発光層58Bと連続している。
 ただし、失活層58BDは、主発光部56BLと連続していなくともよく、別体として形成されていてもよい。換言すれば、主発光部56BLと外縁部56BDとの間には、青色発光層56Bが形成されず、主発光部56BLと外縁部56BDとは、電子輸送層16によって分断されていてもよい。
 失活層58BDは、主発光層58Bが含む発光材料が、酸化、水分浸透、または物理的損傷等によって失活した材料を含む。このため、失活層58BDは、主発光層58Bと比較して、発光効率が低い。当該点を除いて、失活層58BDは、主発光層58Bと同一の構成を備えていてもよい。なお、本実施形態に係る外縁部56RD、および外縁部56GDは、それぞれ、赤色発光材料が失活した材料を含む失活層、および、緑色発光材料が失活した材料を含む失活層を備える点を除き、外縁部56BDと同一の構成を備える。
 <発光材料層および保護層の形成方法>
 本実施形態に係る表示デバイス52は、前術の各実施形態に係る表示デバイス2の製造方法のうち、発光層の形成工程のみを変更した製造方法により製造できる。本実施形態に係る発光層56の形成方法について、図21および図22を参照して、さらに詳細に説明する。以下、本実施形態における発光層56の形成方法は、青色発光層56Bの形成方法を代表して説明する。図21は、本実施形態に係る発光層56の形成方法について説明するためのフローチャートである。図22は、本実施形態に係る発光層56の形成工程における、青色サブ画素SPBに位置するバンク20の側面20Sの近傍の工程断面図を示す。なお、図22に示す各工程断面図は、図20に示す断面と対応する位置における断面を示す。
 本実施形態に係る青色発光層56Bの形成工程においては、はじめに、正孔輸送層12Bおよびバンク20の上層の全面に、青色発光材料を含む薄膜を成膜することにより、発光材料層62Bを成膜する(ステップS10-24)。換言すれば、ステップS10-24においては、発光材料層62Bを、青色サブ画素SPBのみならず、赤色サブ画素SPR、および緑色サブ画素SPGに対しても成膜する。このため、発光材料層62Bの成膜は、バンク20の側面20S上に対しても実行する。
 次いで、保護層60を含む材料を、発光材料層62B上に成膜することにより、保護層64を成膜する(ステップS10-26)。保護層64についても、発光材料層62Bの上面の全面に成膜される。このため、保護層64の上面には、バンク20の側面20Sの傾斜を反映した傾斜面64Sが、青色サブ画素SPBの周囲に形成される。
 なお、発光材料層62Bおよび保護層64の成膜は、例えば、コータを用いた塗布法等を用いて、絶縁材28を含む溶液を塗布することにより実行してもよい。他に、発光材料層62Bおよび保護層64の成膜は、例えば、蒸着法、電着法等を用いて実行してもよい。
 次いで、前術の各実施形態に係るステップS10-8と同一の手法により、保護層64の上層に、青色サブ画素SPBごとに、レジスト層42を形成する。本実施形態においても、レジスト層42のうち、傾斜面64Sと隣接する位置に形成された部分は、メニスカス効果により、傾斜面64Sを這い上がる。したがって、ステップS10-8の実行後、基板4の平面視において、バンク20の側面20Sと重なる位置において、発光材料層62Bおよび保護層64が、レジスト層42のうち、比較的薄い外縁部42Mによって覆われる。
 次いで、適切なエッチング方法により、発光材料層62B、および保護層64のエッチングを行い、発光材料層62B、および保護層64のパターニングを実行する(ステップS10-28)。発光材料層62B、および保護層64のエッチングは、例えば、前述の各実施形態に係るステップS10-10において用いられるエッチング材を使用して実施してもよい。これにより、青色サブ画素SPBごとに、島状の発光材料層62B、および保護層64が形成され、それぞれ、主発光層58B、および保護層60となる。
 本実施形態においても、レジスト層42は、ステップS10-8完了時において、青色サブ画素SPBの周囲に位置する、保護層64の傾斜面64S上においても、外縁部42Mとして薄く形成されている。このため、ステップS10-28の実行により、バンク20の側面20S上には、発光材料層62Bの一部がエッチングされずに残存する。ただし、当該位置における発光材料層62Bは、実施形態1において説明した事情と同一の事情から、エッチング材にさらされる。
 特に、ステップS10-28におけるエッチングを、ドライエッチング、またはウェットエッチングにより実行するとする。この場合には、バンク20の側面20S上に残存し、かつ、エッチング材にさらされた発光材料層62Bが含む青色発光材料は、酸化等により劣化し失活する。このため、ステップS10-28の完了時には、バンク20の側面20S上に、失活層58BDが形成される。
 次いで、前実施形態に係るステップS10-12と同一の手法により、保護層64上からレジスト層42を除去する。これにより、主発光層58B、および保護層60を含む主発光部56BLと、失活層58BDを含む外縁部56BDとが得られ、青色発光層56Bの形成工程が完了する。
 赤色発光層56R、および緑色発光層56Gは、上述した青色発光層56Bの形成工程の一部を変更して実行することにより形成してもよい。例えば、赤色発光層56R、および緑色発光層56Gの形成工程においては、青色発光層56Bの形成工程において、発光材料層62Bが含む青色発光材料を、それぞれ、赤色発光材料、および緑色発光材料に変更する。また、赤色発光層56R、および緑色発光層56Gの形成工程においては、上述したステップS10-8において、レジスト層42を形成する位置を、基板4の平面視において、それぞれ、赤色サブ画素SPR、および緑色サブ画素SPGと重なる位置に変更する。以上により、本実施形態に係る発光層56の形成工程が実行できる。
 本実施形態に係るステップS10-8において、発光材料層62Bの上層には、保護層64が形成されている。このため、保護層64が含む材料が、上記現像液との接触により劣化した場合においても、保護層64は、発光材料層62Bと上記現像液との接触を低減できる。また、保護層64は、発光材料層62Bが含む発光材料と比較して、化学的に安定な材料を含んでいてもよい。この場合、レジスト層42のパターニングに使用される現像液が保護層64に接触した場合においても、保護層64の劣化は、当該現像液が発光材料層62Bに接触した場合における発光材料層62Bの発光材料の劣化と比較して低減する。したがって、保護層64は、レジスト層42のパターニングに使用される現像液から、発光材料層62Bを保護することができ、当該発光材料層62Bが含む青色発光材料の劣化を低減する。
 また、本実施形態に係るステップS10-28においては、発光材料層62Bおよび保護層64のパターニングを、ドライエッチングまたはウェットエッチングにより実行する。このため、ステップS10-28により、レジスト層42の外縁部42Mに覆われた位置においては、失活した青色発光材料を含む失活層58BD、および、当該失活層58BDを含む外縁部56BDが形成される。
 このため、上記形成方法により形成された青色発光素子54Bが含む外縁部56BDは、含む青色発光材料が失活しているため、発光効率が極端に低下している。したがって、上記形成方法により青色発光素子54Bを形成することにより、外縁部56BDが異常発光することを低減できる。
 ゆえに、当該青色発光素子54Bは、青色発光層56Bに注入されたキャリアを、主発光部56BLにおける発光に効率的に寄与させることができ、主発光部56BLにおける発光効率を改善する。また、青色発光素子54Bは、主発光部56BLの外縁に、発光効率の低い外縁部56BDを含む。このため、青色発光素子54Bは、他の発光素子との境界付近における発光強度を低くすることができる。ゆえに、当該青色発光素子54Bを含む表示デバイス2は、サブ画素間における混色を低減でき、表示品位を改善する。
 さらに、本実施形態に係るステップS10-12において、主発光層58Bの上層には、保護層60が形成されている。このため、保護層60は、レジスト層42の除去に使用されるリムーバから、主発光層58Bを保護することができ、青色発光材料の劣化を低減する。
 なお、本実施形態に係る保護層60は、絶縁材28を含む絶縁層である。このため、当該保護層60を、主発光層58Bのカソード18の側の端面と接する位置に備えた主発光部56BLにおいては、前述した各実施形態において説明した事情から、主発光層58Bにおける電子過多が低減する。したがって、本実施形態に係る青色発光素子54Bは、青色発光層56Bの発光効率を改善する。
 本実施形態に係る赤色発光素子54R、および緑色発光素子54Gの形成方法は、青色発光素子54Bの形成方法のうち、各発光材料および各発光層56の形成位置を変更するのみにて実行できる。したがって、本実施形態に係る赤色発光素子54R、および緑色発光素子54Gの形成方法についても、青色発光素子54Bの形成方法と同一の効果を奏する。
 (実施形態6)
 特許文献2は、量子ドットの配位化合物が減少すると、ルミネッセンスが低下し、従って、デバイスが劣化するとの見解を示している。
 しかしながら、本発明者らが量子ドットを含む発光素子の電気特性及び発光特性を詳細に解析したところによれば、発光素子の発光効率を改善するためには、量子ドットの配位化合物は可能な限り減少させなければならないことが判明した。
 即ち、発光素子を流れる電流は、(1)ショックレー方程式に従う成分、(2)オーム性成分、及び、(3)非線形成分から構成されており、これらの中で(2)オーム性成分及び(3)非線形成分が発光再結合に寄与しない無効電流であることが判明した。特に、非線形成分は、無効電流の大部分を占めており、この非線形成分を抑制することで発光効率(EQE(External Quantum Efficiency、外部量子効率))を改善できることが判明した。この発光素子を流れる電流の非線形成分は、隣接する量子ドット間をつなぐ配位化合物や分離した余剰配位化合物を通って伝導するものである。従って、発光効率を改善するためには、発光素子中の量子ドットの配位化合物を可能な限り減少させなければならない。
 一方、量子ドット表面に存在してキャリアトラップ及び非発光中心となる欠陥を不活性化して量子ドットを溶媒に分散させるためには配位化合物が必要である。このため、発光素子の発光特性を向上させるためには、配位化合物の量の多少に関するトレードオフを解決する必要がある。
 特許文献2に記載の見解のように量子ドットの配位化合物が減少されないと、隣接する量子ドット間をつなぐ配位化合物や分離した余剰配位化合物を通って伝導する電流の非線形成分を含む無効電流を減少させることができないので、発光素子の発光効率を改善することができない。
 図23は実施形態1に係る発光素子101の発光層102に含まれる量子ドット103の模式図である。
 発光層102(量子ドット層)は、量子ドット103と、ハロゲン元素104と、量子ドット103に配位可能なリガンド105(配位化合物)とを含む。リガンド105は、一個以上n個(nは複数)以下の炭素-水素結合を有する化合物、又は、本質的に4以上の配位を取り得る元素の任意の2配位の位置に異種元素が結合したn個の鎖状構造を有する化合物を含む。リガンド105と量子ドット103との質量比は、0.5以下であり、5/(10×n)以下であってもよい。
 ハロゲン元素104は、量子ドット103の表面の欠陥106を不活性化する。
 ハロゲン元素104は、量子ドット103の表面の近傍に存在することが好ましい。量子ドット103の表面の近傍に存在するハロゲン元素104により、量子ドット103の表面の欠陥106を不活性化することができる。そして、リガンド105と量子ドット103との間の質量比が、0.5以下であるので、量子ドット103の溶媒への分散性を維持しながらリガンド105の質量比を減らして、リガンド105を通って流れる無効電流を減少させることができる。この結果、量子ドット103の外部量子効率を向上させることができる。
 ハロゲン元素104は、1015cm-3以上1020cm-3以下の密度を有してもよい。密度が1015cm-3以上1020cm-3以下であるハロゲン元素104により、量子ドット103の表面の欠陥106を不活性化することができる。そして、リガンド105と量子ドット103との間の質量比が、0.5以下であるので、量子ドット103の溶媒への分散性を維持しながらリガンド105の質量比を減らして、リガンド105を通って流れる無効電流を減少させることができる。この結果、量子ドット103の外部量子効率を向上させることができる。
 図24は発光素子の典型的な電気特性とその解析結果を示すグラフである。
 図24に示される電気特性は、ショックレー方程式によってexp(E)に従い量子ドットに注入される電流、電圧に比例するオームの法則に従い微量に流れるリーク電流、及び、電圧のn乗(nは1以外の実数または整数)に比例する無効電流に分解できる。ここで、電圧のn乗に比例する無効電流は、ほとんどの場合、電圧の2乗と層厚の-3乗に比例する空間電荷制限電流、又は、さらに高次の電圧の冪に比例する電流であることがわかった。この空間電荷制限電流の根源は、量子ドット103に配位したリガンド105、若しくは、量子ドット103から分離したリガンド105が、互いに隣接する量子ドット103を結び付けることに起因する。このことから、QLED(量子ドット発光ダイオード、Quantum dot Light Emitting Diode)のEQEを改善する第一の手段は、リガンド105の量を減らすことである。
 図25は比較例に係る量子ドット103の模式図である。
 量子ドット103の表面には結晶状の欠陥106が存在し、この欠陥106が活性であれば量子ドット103へのキャリア注入と発光再結合とを欠陥106が阻害する。従来、この欠陥106は、リガンド105を量子ドット103に配位させることでキャリア注入及び発光再結合に影響を与えないように不活性化させているが、前述した通り、リガンド105は量子ドット103の発光に寄与しない無効電流を生じる原因でもある。また、リガンド105は量子ドット103を量子ドットコロイド溶液の溶媒に分散させるために必要であるため、量子ドットコロイド溶液の塗布や印刷等、発光素子の製造上の要請から、これまでリガンド105を減少させることが困難であった。
 本実施形態は、リガンド105に関する無効電流の減少と製造上の要請という相反する要因を解決するために、ハロゲン元素104を導入する。そして、図23に示すように、リガンド105に集約していた欠陥106の不活性化と分散性との機能について、欠陥106の不活性化の機能をハロゲン元素104に分離し、量子ドットコロイド溶液の溶媒への分散性の機能をリガンド105に分離する。これにより、欠陥106の不活性化と量子ドットコロイド溶液の溶媒への分散性とを両立させる。
 本実施形態の構成は、第一に、量子ドット103の表面の欠陥106を、ハロゲン元素104を用いて不活性化させる。ハロゲン元素104は、例えば、量子ドット103の製造において、シェルを形成した後に適当なハロゲン化合物を微量に添加すればよい。または、量子ドット103にリガンド105を配位させる際にハロゲン化合物を添加しても良い。ハロゲン元素104は、周期表の7族元素であり、電子を1個獲得すれば閉殻となって安定化するため、量子ドット103の表面を構成するシェルから離脱したVI族またはV族元素の空孔に選択的に結合し易い。また、ハロゲン元素104は、F、Cl、Br、Iの順にK殻、L殻、M殻、N殻が順次閉殻となるので、この順に内殻遮蔽が強く、イオン半径が大きくなり、I、Br、Cl、Fの順にシェルの欠陥に結合し易い傾向にある。従って、シェル材料にもよるが、一般にはFが最も強く結合し、かつ安定であるため、本実施形態の構成に適する。
 このように、ハロゲン元素104はFを含むことが好ましい。量子ドット103の表面の欠陥106を不活性化する作用が最も高いハロゲン元素104により、欠陥106を不活性化することができる。
 ハロゲン元素104は、Cl、Br、及びIのうちの少なくとも一つを含むことが好ましい。Cl、Br、及びIのうちの少なくとも一つのハロゲン元素104により、量子ドット103の表面の欠陥106を不活性化することができる。
 一般に、コア/シェル型の量子ドット103のシェルを構成するZnS等のII-VI族化合物はS等のVI族元素抜けにより欠陥を生じやすく、AlAsやAlN等のIII-V族化合物はAs、N等のV族元素抜けを生じ易い。ハロゲン元素104はこれら空孔を不活性化するのに適している。
 量子ドット103の表面の欠陥106は、バルク状態の体積当たりの欠陥密度1015cm-3~1021cm-3に対応して1010cm-2から1014cm-2の面密度であり、表面の欠陥106を不活性化するために必要とされるハロゲン元素104の体積密度は1015cm-3~1021cm-3のオーダーが望ましい。この体積密度の範囲であれば、リガンド105が配位する余地を残し、QLEDの特性を改善するために十分な程度に表面の欠陥106を不活性化することができる。ハロゲン元素104の密度が上記範囲よりも低密度度であれば、量子ドット103の表面の欠陥106を十分に不活性化できず、好ましくない。
 図26はハロゲン密度と量子ドットの準位及びキャリア注入の模式図である。
 逆に、ハロゲン元素104の密度が上記範囲よりも高密度の場合は、量子ドット103のシェル材料に対して組成と言える程度に達するため好ましくない。ハロゲン元素104が量子ドット103を構成する化合物の組成を構成する場合、ハロゲン元素104のp軌道のエネルギーが大きいことにより、図26に示すように、構成元素のp軌道からなる価電子帯は、ハロゲン元素104を組成として含む場合に準位が深くなる方向にシフトし、連動して伝導帯準位も深くなる方向にシフトする。この場合、量子ドット103へ正孔を注入する際の障壁が高く、電子を注入する際の障壁が低くなるため、量子ドット103のキャリアバランスが電子過剰の方向に変化して、QLEDのEQEを低下させるため好ましくない。
 このように、ハロゲン元素104は、シェル表面の欠陥106に捉えられ、電子を獲得して安定化する結果、リガンド105を配位させることなく表面の欠陥106を不活性化する。次に、従来と同じ手法により、量子ドット103の表面のハロゲン元素104により不活性化されていない欠陥106にリガンド105を配位させてオクタン等の溶媒に分散させれば、量子ドットコロイド溶液が完成する。
 リガンド105は、少なくとも一個以上n個(nは50以下の複数)以下の炭素-水素結合を有するか、又は、本質的に4配位を取り得る元素の任意の2配位の位置に異種元素が結合した鎖状構造を有する化合物であることが望ましい。
 炭素-水素結合を含む鎖状構造の数をnとすれば、リガンド105と量子ドット103の質量比が、1/(10×n)以上、5/(10×n)以下であることが好ましく、1/(10×n)以上、3/(10×n)以下であることがより好ましい。この範囲未満では、量子ドット103を溶媒に分散させる上で凝集や沈殿等の問題を生じるので好ましくない。逆にこの範囲を超える場合は、QLEDの発光層102とした際に、発光に寄与しない無効電流が増加するので好ましくない。
 上記質量比は、例えば、以下の測定方法により測定することができる。
 分子構造,分子量を定性的に分析し、各分子の質量を定量できれば良いので、GC/MS(Gas Chromatography Mass Spectrometry)を用いてTIC(Total Ion Chromatogram)の各成分のピーク信号を積分して面積を求めれば成分ごとの質量を定量することができる。各成分の分子構造は、マススペクトルを解析することで同定することができる。また、TD-GC/MS(Thermal Desorption Gas Chromatography Mass Spectrometry)を用いれば、分子の揮発温度、量子ドットとの結合エネルギーを加味した成分及び質量分析がてきる。
 リガンド105は、3個以上の炭素-水素結合を有する化合物、又は、3個以上の鎖状構造を有する化合物を含むことが好ましい。3個以上の炭素-水素結合を有する化合物、又は、3個以上の鎖状構造を有する化合物により、量子ドット103間の距離を適切に保つことができ、隣接する量子ドット103間の共鳴によるエネルギー移動(FRET、Fluorescence resonance energy transfer(蛍光共鳴エネルギー移動))を抑制することができる。2個以下であると、隣接する量子ドット103が接近しすぎてFRETが大きくなる。
 リガンド105は、無機化合物、有機化合物、又はパーフロロ化合物を含むことが好ましい。無機化合物、有機化合物、又はパーフロロ化合物により、量子ドット103の溶媒への分散性を維持しながらリガンド105の質量比を減らして、リガンド105を通って流れる無効電流を減少させることができる。
 図27は他の比較例に係る量子ドット103の模式図である。リガンド105と量子ドット103との間の質量比は、0.5以下である。このため、量子ドット103の溶媒への分散性を維持しながら、リガンド105を通って流れる無効電流が減少する。しかしながら、量子ドット103の表面の近傍にハロゲン元素104が存在しないので、量子ドット103の大部分の欠陥106は活性状態となっている。このため、この量子ドット103により発光素子を構成すると、無効電流は低減できるが、量子ドット103へのキャリア注入状態が悪化してEQEが低下する。
 図28はさらに他の比較例に係る量子ドット103の模式図である。量子ドット103の表面の近傍にハロゲン元素104が存在するので、量子ドット103の欠陥106は非活性状態とすることができる。しかしながら、リガンド105が存在しないので、量子ドット103を溶媒に分散させることができず、発光素子を製造することができない。
 図29は実施形態1に係る量子ドット103が溶媒に分散された量子ドットコロイド溶液の製造方法を示すフローチャートである。図30は上記量子ドットコロイド溶液の製造手順を示すグラフである。
 まず、コア/シェル型の量子ドット103の原料、ハロゲン元素104の原料等を調整する(ステップS1)。そして、量子ドット103を分散させる溶媒の原料を調整する(ステップS2)。次に、調整された溶媒の原料を反応炉へ投入する(ステップS3)。その後、Ar等の不活性ガスを反応炉に封入する(ステップS4)。
 そして、300℃に反応炉を昇温して溶媒の原料を液化させる(ステップS5)。次に、量子ドット103の原料を高圧インジェクタにより反応炉に注入する(ステップS6)。その後、量子ドット103の原料が分解して核が生成される(ステップS7)。
 そして、400℃/分で反応炉を200℃へ降温する(ステップS8)。次に、10nm/200分で量子ドット103のコアが成長し、ジエチルCdが消費される(ステップS9)。
 その後、30℃/秒で反応炉を100℃へ降温する(ステップS10)。そして、熱処理を1時間実行する(ステップS11)。
 次に、反応炉を200℃へ昇温する(ステップS12)。その後、量子ドット103のシェルの原料を注入し、ジエチルZnが消費される(ステップS13)。そして、シェルが10nm/200分で成長する(ステップS14)。次に、ハロゲン元素104の原料を注入し、1分から5分保持する(ステップS15)。
 その後、30℃/秒で反応炉を100度へ降温する(ステップS16)。そして、熱処理を1時間実行する(ステップS17)。
 この量子ドットコロイド溶液の製造方法は、量子ドット103の表面近傍にハロゲン元素104を付加する工程と、量子ドット103の表面にリガンド105を、リガンド105と量子ドット103との質量比が、0.5以下となるように配位させる工程と、ハロゲン元素104が付加されてリガンド105が配位された量子ドット103を溶媒に分散させて量子ドットコロイド溶液を得る工程とを包含する。
 量子ドット103の表面の近傍に付加されたハロゲン元素104により、量子ドット103の表面の欠陥106を不活性化することができる。そして、リガンド105と量子ドット103との質量比が、0.5以下であるので、量子ドット103の溶媒への分散性を維持することができる。
 図31は実施形態1に係る発光素子101に形成された発光層102、正孔輸送層107、及び電子輸送層108の断面図である。
 発光素子101は、発光層102と、発光層102に接する正孔輸送層107(第1電荷輸送層)と、発光層102の正孔輸送層107と反対側に形成された電子輸送層108(第2電荷輸送層)とを備える。
 発光層102は、量子ドット103と、ハロゲン元素104と、量子ドット103に配位可能なリガンド105と、絶縁材112とを含む。リガンド105は、一個以上n個(nは複数)以下の炭素-水素結合を有する化合物、又は、本質的に4以上の配位を取り得る元素の任意の2配位の位置に異種元素が結合したn個の鎖状構造を有する化合物を含む。リガンド105と量子ドット103との質量比は、0.5以下である。
 発光素子101は、発光層102と電子輸送層108との間に形成された絶縁層109をさらに含む。絶縁層109は絶縁材112を含む。
 発光層102は、電子輸送層108に面した側で絶縁材112を介して電子輸送層108に隣接する。正孔輸送層107が発光層102に接するので正孔輸送層107から発光層102への電荷注入が阻害されず、電子輸送層108から発光層102への電荷注入が絶縁材112により抑制される。この結果、量子ドット103の外部量子効率をさらに改善することができる。
 電子輸送層108から発光層102への電荷注入が、発光層102と電子輸送層108との間に形成された絶縁層109により抑制される。この結果、量子ドット103の外部量子効率をさらに改善することができる。
 絶縁層109は、アモルファス状であって、ガラス系材料、テトラフルオロエチレン系材料、及びシリコーン系材料のうちの少なくとも一つを含むことが好ましい。アモルファス状であって、ガラス系材料、テトラフルオロエチレン系材料、及びシリコーン系材料のうちの少なくとも一つを含む絶縁層109により、電子輸送層108から発光層102への電荷注入が抑制される。
 絶縁層109は、可視光域で80%以上の光透過率を有することが好ましい。可視光域で80%以上の光透過率を有する絶縁層109により、電子輸送層108から発光層102への電荷注入が抑制される。
 絶縁層109は、エーテル系またはパーフルオロ系または炭化水素系溶媒を含むことが好ましい。エーテル系またはパーフルオロ系または炭化水素系溶媒により、電子輸送層108から発光層102への電荷注入の抑制が補強される。
 絶縁層109の厚さは5nm以下であることが好ましい。絶縁層109の厚さが5nm以下であることにより、量子ドット103に流れるトンネル電流が維持される。
 図23に示すように構成された量子ドット103をQLEDの発光層102に用いる際、より効果を発揮する積層構造は、図31に示すように、第一に、正孔注入を阻害しないために正孔輸送層107と発光層102とが接し、第二に、電子注入を抑制するために電子輸送層108と発光層102とが接しないことが望ましい。発光に寄与しない上記無効電流の抑制を考慮し、及び、従来構成のQLEDが一般に電子過多であり、キャリアバランスが著しく悪い点を考慮したものである。
 上記第一の層構成により従来構造と同等以上の正孔注入を維持し、上記第二の構成により、電子注入を抑制する。電子の注入に対しては、電子輸送層108と発光層102との間の界面に、無機または有機または金属酸化物からなる絶縁層109を設け、その厚さを2nmから5nmとすればよい。無効電流は、余剰リガンドの他、層厚の-3乗に依存するため、わずかでも電流を輸送する層の総厚さを増加すれば大きな効果が得られる。例えば発光層102と絶縁層109との総厚さが10%増加すれば、無効電流は30%低減する。厚み5nmを超える絶縁層109は、量子ドット103に流れる電流がトンネルすることを抑制するため好ましくない。
 上記効果は、発光層102中の余剰リガンド105Aを除去することでさらに増強できる。ここで余剰リガンド105Aとは、量子ドット103の表面に配位しておらず、発光層102中にランダムに分布したリガンドを意味する。本実施形態の構成により量子ドット103に配位したリガンド105はコロイド溶液の状態でも低減しているが、リガンド105と量子ドット103との結合はさほど強くないため、発光層102を形成する際の粘性抵抗や、硬化の際の熱エネルギーにより解離して、発光層102中に余剰リガンド105Aを生じる。
 図32は発光層102から余剰リガンド105Aを排出した発光素子101の断面図である。
 余剰リガンド105Aが発光層102の層厚方向に沿って互いに接すれば、余剰リガンド105Aを通して層厚方向に無効電流が流れるため、EQEが低下する。そこで、発光層102を製膜した後、例えばアルコール類、エーテル類を滴下して余剰リガンド105Aを発光層102から排出させることによって、無効電流をさらに抑制できる。この構成を図32に示す。
 以上の構成で無効電流を抑制すれば、EQE向上に加えて、熱損失も低減することができ、通電による発光素子101の熱劣化や、電荷輸送により有機材料の劣化を抑制し、高い信頼性を実現できる。
 本実施形態に係る発光素子101の製造方法は、本実施形態に係る量子ドットコロイド溶液の製造方法により製造された量子ドットコロイド溶液を用いて、正孔輸送層107上に発光層102を製膜する工程と、前記製膜する工程の後に、発光層102に溶媒を塗布して余剰リガンド105Aを除去する工程と、余剰リガンド105Aを除去した発光層102を熱処理する工程とを包含する。
 量子ドット103の表面の近傍に付加されたハロゲン元素104により、量子ドット103の表面の欠陥106を不活性化することができる。そして、リガンド105と量子ドット103との質量比が、0.5以下であり、且つ、余剰リガンド105Aが除去されるので、リガンド105を通って流れる無効電流を減少させることができる。この結果、量子ドット103の外部量子効率を向上させることができる。
 図33は発光素子101の特性を示すグラフである。図34は発光素子101の他の特性を示すグラフである。図35は比較例に係る発光素子に形成された発光層102、正孔輸送層107、及び電子輸送層108の断面図である。図36は上記発光素子の特性を示すグラフである。図37は上記発光素子の他の特性を示すグラフである。
 比較例に係る発光素子の発光層102は、図25で前述した量子ドットと、余剰リガンド105Aとを含む。図36に示すように、比較例に係る発光素子は、印加電圧に対する電流の傾きが増大してn値が減少しており、そして、量子ドット103の外の余剰リガンド105Aを通って電流が流れるので、無効電流が大きい。
 これに対して、図31に示す発光素子101は、リガンド105と量子ドット103との質量比が、0.5以下であるので、図33に示すように、発光素子101への印加電圧に対する電流の傾きが増大してn値が減少しており、且つ、発光層102を流れる電流に含まれる無効電流が低減されている。そして、図34に示すように、発光素子101のEQEが、図37に示す比較例に係るEQEよりも改善されている。
 図38は他の比較例に係る量子ドット103を含む発光素子の特性を示すグラフである。図39は上記発光素子の他の特性を示すグラフである。
 図27で前述した他の比較例に係る量子ドット103は、リガンド105が少ないので、図38に示すように、無効電流は比較的少ない。しかしながら、量子ドット103の表面の近傍にハロゲン元素104が存在しないので量子ドット103の大部分の欠陥106は活性状態となっているため。図38に示すように、印加電圧に対する電流の傾きが小さく、n値が大きい。そして、図39に示すように、EQEが低い。
 図40は実施形態1に係る量子ドット103の表面の近傍に存在するハロゲン元素104を説明するための図である。
 ハロゲン元素104(図23)は、量子ドット103の表面の近傍に存在する。そして、量子ドット103は、コア111と、コア111の周りに形成されるシェル110とを含む。
 ハロゲン元素104と量子ドット103の表面との間の距離は、シェル110の厚さに対応する距離以下である。即ち、ハロゲン元素104が量子ドット103の表面の近傍に存在するとは、量子ドット103の断面の半径方向に沿ってシェル110の厚さの1/2に相当する距離だけシェル110の表面から内側に離れた位置から、シェル110の表面を通って、シェル110の厚さの1/2に相当する距離だけシェル110の表面から外側に離れた位置の間の範囲にハロゲン元素104が存在することを意味するものとする。
 この場合、量子ドット103の断面TEM(透過電子顕微鏡、Transmission Electron Microscope)像(高解像度像)をEDX(エネルギー分散型X線分析、Energy dispersive X-ray spectroscopy)で分析したとき、図40に示すように、上記範囲にハロゲン元素104からのEDX信号のピークが存在する。
 量子ドット103の表面との距離がシェル110の厚さに対応する距離以下である位置に存在するハロゲン元素104により量子ドット103の表面の欠陥106を不活性化することができる。
 図41は実施形態1に係る発光素子101の電気特性の詳細を説明するグラフである。図42は比較例に係る発光素子の電気特性の詳細を説明するグラフである。図43は他の比較例に係る発光素子の電気特性の詳細を説明するグラフである。
 ダイオード電流密度J、無効電流密度J、及びリーク電流密度Jは以下の式により表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、
V:発光素子に印加する電圧[V]、
S:画素面積(=電流を注入する面積)[cm]、
:逆飽和電流[mA]、
q:素電荷[C]、
n:ダイオード係数、
k:ボルツマン定数[J/K]、
T:温度[K]、
:第1無効電流密度係数[mA・V-nr/cm](典型的には媒体の誘電率とキャリア移動度と厚さ-3に比例する)、
nr:第2無効電流密度係数(典型的には2である)、
:発光素子のシャント抵抗(典型的には1MΩ以上である)、
である。
 発光素子の電圧-電流密度特性を再現するように上記J、k、nr、及びRを決定する。通常、シャント抵抗は十分に高く、リーク電流密度は、μA/cmのオーダーであるため、発光特性に影響しない(層間または電極間が短絡した場合は大きなリーク電流が流れ、発光特性に影響する)。
 ダイオード電流密度Jは、QLEDの発光層2を流れ、かつ量子ドット103に注入される電流密度を表し、発光に寄与する成分である。
 無効電流密度JはQLEDの発光層102を流れるが、発光層102の厚さ方向に連なるリガンド105を介して流れ、量子ドット103に注入されない電流密度を表す。この無効電流密度Jの成分は発光に寄与しない。
 図41、図42、及び図43に示すように、図23に示す実施形態に係る量子ドット103を備えた発光素子101は、図25及び図27で前述した比較例に係る量子ドット103を備えた発光素子101よりも、印加電圧に対する電流密度の傾きが増大し、且つ、無効電流が減少した。
 図44は実施形態1に係る発光素子101と比較例に係る発光素子101との他の特性を示すグラフである。
 発光層102を形成した後、メタノールを滴下し、スピンして余剰リガンド105Aを排出して余剰リガンド105Aを30%低減した発光素子101は、図44に示すように、余剰リガンド105Aを排出しない発光素子101よりも高いEQEを示した。なお、リガンド密度はTOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry、飛行時間型二次イオン質量分析法)により定量した。
 図45は余剰リガンド105Aを排出した発光素子101の特性を示すグラフである。図46は上記発光素子101の他の特性を示すグラフである。図47は比較例に係る発光素子101の特性を示すグラフである。図48は比較例に係る発光素子101の他の特性を示すグラフである。図49は他の比較例に係る発光素子101の他の特性を示すグラフである。
 図31に示す発光素子101は、図25で前述した比較例に係る量子ドットを含む発光素子よりもリガンド105が少ないので、図49及び図50に示すように、無効電流が減少しEQEが改善されている。
 そして、図32に示す余剰リガンド105Aを排出した発光素子101は、図45及び図46に示すように、無効電流がさらに減少しEQEがさらに改善されている。
Figure JPOXMLDOC01-appb-T000004
 本実施形態に係る発光素子101の量子ドット103、ハロゲン元素104、及びリガンド105等に係る構成は、例えば、以下のようにして特定することができる。
 粒子のサイズ、形状、元素分析は、SEM(Scanning Electron Microscope、走査型電子顕微鏡)、TEM、EDS(Energy Dispersive X-ray Spectroscopy、エネルギー分散型X線分光法)、STEM(Scanning Transmission Electron Microscope、走査型透過電子顕微鏡)により実施することができ、Cd、Se、Zn、S等の成分を検出して画像により確認することができる。
 主成分の元素分析は、XPS(X-ray Photoelectron Spectroscopy、X線光電子分光法)(atomic%)、化学分析(mg/ml)により実施することができ、Cd、Se、Zn、S等の成分を検出してスペクトル波形により確認することができる。
 リガンド105は、TD-GC/MS(加熱脱離-ガスクロマトグラフ質量分析計)により検出してスペクトル波形により確認することができる。
 粒子表面の結合状態は、XPSによりCdの結合状態を検出することができ、TOF-SIMSによりCdS、SOの微量成分を検出することができる。
 分散液の有機不純物は、GC/MS(ガスクロマトグラフィー質量分析法)、LC/MS(液体クロマトグラフィー質量分析法)により、炭化水素、アルキルアミド、脂肪酸エステル、アルキルホスフィン、及びアルキルアミンを検出してスペクトル波形により確認することができる。
 分散液の粒度分布は、SP-ICP-MS(シングルパーティクル誘導結合プラズマ質量分析法)により、Cdの粒度分布を検出することができる。
 分散液の光吸収特性は、分光光度計により分析することができる。
 本実施形態によれば、量子ドット103の表面の欠陥を不活性化させながら、発光効率を改善することができ、且つ、発光層102を製膜するための溶媒に量子ドット103を分散させやすくすることができる発光素子、量子ドットコロイド溶液の製造方法、発光素子の製造方法、及び、量子ドットコロイド溶液を提供することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 2、52    表示デバイス
 4       基板
 6、54    発光素子層
 6B、54B  青色発光素子(発光素子)
 10      アノード
 14、56   発光層
 18      カソード
 20      バンク
 22B、46B 青色量子ドット層(量子ドット層)
 24      絶縁層
 26B     青色量子ドット(量子ドット)
 28      絶縁材
 30      配位子(第1化合物)
 36B     青色量子ドット材料層(量子ドット材料層)
 38      絶縁材層
 40B     混合層
 42      レジスト層
 58B     主発光層
 60、64   保護層
 62B     発光材料層
 101 発光素子
 102 発光層(量子ドット層)
 103 量子ドット
 104 ハロゲン元素
 105 リガンド(配位化合物)
 106 欠陥
 107 正孔輸送層(第1電荷輸送層)
 108 電子輸送層(第2電荷輸送層)
 109 絶縁層
 110 シェル
 111 コア
 112 絶縁材

Claims (46)

  1.  アノードと、発光層と、カソードとを、この順に配置して備え、
     前記発光層は、複数の量子ドットと、絶縁材とを含み、
     前記発光層の前記アノードの側の端面部における前記量子ドットと、前記発光層の前記アノードの側の端面との間隔の平均値は、前記発光層の前記カソードの側の端面部における前記量子ドットと、前記発光層の前記カソードの側の端面との間隔の平均値よりも小さい発光素子。
  2.  前記発光層を、前記アノードの側の端面を含む第1部分と、該第1部分よりも前記カソードの側に位置する第2部分と、該第2部分よりもさらに前記カソードの側に位置し、前記カソードの側の端面を含む第3部分とに、前記発光素子の積層方向において3等分した場合、前記第1部分、前記第2部分、および前記第3部分の順に、前記絶縁材の平均濃度が高くなる請求項1に記載の発光素子。
  3.  前記発光層は、さらに、少なくとも一つの前記量子ドットに配位可能な第1化合物を複数備え、
     前記量子ドットまたは前記第1化合物の少なくとも一つが、前記アノードの側の端面に接し、
     前記量子ドットまたは前記第1化合物の少なくとも一つが、前記絶縁材を介して、前記カソードの側の端面と隣接する請求項1または2に記載の発光素子。
  4.  前記絶縁材のキャリア移動度が、10-6cm/V・sec未満である請求項1から3の何れか1項に記載の発光素子。
  5.  前記絶縁材がアモルファス材料を含む請求項1から4の何れか1項に記載の発光素子。
  6.  前記絶縁材が、ガラス系材料、テトラフルオロエチレン系材料、およびシリコーン系材料のうち、少なくとも何れか一つを含む請求項5に記載の発光素子。
  7.  前記発光層が、エーテル系溶媒、パーフルオロ系溶媒、および炭化水素系溶媒のうち、少なくとも何れか一つの溶媒を由来とする化合物を含む請求項6に記載の発光素子。
  8.  前記絶縁材が、テトラフルオロエチレン系材料を含み、
     前記発光層が、少なくとも一つの前記量子ドットに配位可能な第1化合物と、パーフルオロ系溶媒を含む溶媒を由来とする第2化合物とを備え、
     前記第1化合物が、パーフルオロ系溶媒に可溶である請求項1または2に記載の発光素子。
  9.  前記第1化合物は、結合化合物と、分子量に対する自由エネルギーが前記結合化合物よりも高い余剰化合物とを含み、
     前記余剰化合物の、炭素原子、ハロゲン原子、III族原子、IV族原子、V族原子、およびVI族原子と、水素鎖との総数をnとした場合、全ての前記第1化合物の個数に対する前記余剰化合物の個数の割合が、1/(2n)以下である請求項3または8に記載の発光素子。
  10.  前記絶縁材が、可視光域において、80%以上の光透過率を有する請求項1から9の何れか1項に記載の発光素子。
  11.  前記発光層は絶縁層を含み、
     該絶縁層は、前記発光層の前記カソードの側の端面を形成し、かつ、前記絶縁材を含む請求項1から10の何れか1項に記載の発光素子。
  12.  前記絶縁層の厚みが5nm以下である請求項11に記載の発光素子。
  13.  前記発光層は、少なくとも前記量子ドットを含み、かつ、前記発光層の前記アノードの側の端面を形成する量子ドット層を含み、
     前記発光層が、前記量子ドット層と前記絶縁層とを、交互かつ複数層ずつ含む請求項11または12に記載の発光素子。
  14.  請求項1から13の何れか1項に記載の発光素子を複数備えた表示デバイス。
  15.  アノードと、発光層と、カソードとを、この順に配置して備えた発光素子の製造方法であって、
     前記アノードを形成するアノード形成工程と、
     複数の量子ドットと、絶縁材とを含む前記発光層を形成する発光層形成工程と、
     前記カソードを形成するカソード形成工程とを含み、
     前記発光層形成工程が、
      複数の前記量子ドットを含む量子ドット材料層を成膜する量子ドット材料層成膜工程と、
      前記絶縁材を含む絶縁材層を成膜する絶縁材層成膜工程と、を含み、
     前記発光層の前記アノードの側の端面部における前記量子ドットと、前記発光層の前記アノードの側の端面との間隔の平均値は、前記発光層の前記カソードの側の端面部における前記量子ドットと、前記発光層の前記カソードの側の端面との間隔の平均値よりも小さい発光素子の製造方法。
  16.  アノードと、発光層と、カソードとを、この順に配置して備えた発光素子の製造方法であって、
     前記アノードを形成するアノード形成工程と、
     複数の量子ドットと、絶縁材とを含む前記発光層を形成する発光層形成工程と、
     前記カソードを形成するカソード形成工程とをこの順に含み、
     前記発光層形成工程が、
      複数の前記量子ドットを含む量子ドット材料層を成膜する量子ドット材料層成膜工程と、
      前記絶縁材を含む絶縁材層を成膜する絶縁材層成膜工程と、
     を含み、
     前記発光層形成工程において、前記量子ドット材料層成膜工程の後に前記絶縁材層成膜工程を実行し、
     前記絶縁材層成膜工程において、前記量子ドット材料層の上層に前記絶縁材層を成膜し、
     前記発光層形成工程が、前記絶縁材層成膜工程の後に、前記絶縁材層中の前記絶縁材の一部を前記量子ドット材料層中に浸透させる浸透工程をさらに含む発光素子の製造方法。
  17.  前記発光層形成工程が、前記量子ドットと前記絶縁材とを含む混合層を成膜する混合層成膜工程をさらに含む請求項15または16に記載の発光素子の製造方法。
  18.  前記量子ドット材料層成膜工程が、前記量子ドットと、少なくとも一つの前記量子ドットに配位可能な第1化合物とを含む量子ドット溶液を塗布して、前記量子ドット材料層を成膜する塗布工程を含む請求項15から17の何れか1項に記載の発光素子の製造方法。
  19.  前記量子ドット材料層成膜工程が、さらに、前記塗布工程に先立って、前記量子ドット溶液を遠心分離して、前記量子ドット溶液が含む前記第1化合物の濃度を低減する遠心分離工程をさらに含む請求項18に記載の発光素子の製造方法。
  20.  前記量子ドット材料層成膜工程が、さらに、前記塗布工程の後に、アルコール類およびエーテル類の少なくとも一方を含む洗浄液を前記量子ドット材料層に滴下する滴下工程と、該滴下工程の後に、前記洗浄液を前記量子ドット材料層から除去することにより、前記量子ドット材料層が含む前記第1化合物の少なくとも一つを併せて除去する除去工程とをさらに含む請求項18または19に記載の発光素子の製造方法。
  21.  請求項15から20の何れか1項に記載の発光素子の製造方法によって、基板上に、複数の発光素子を、サブ画素ごとに形成する表示デバイスの製造方法であって、
     前記発光層形成工程が、前記絶縁材層成膜工程の後に、前記量子ドット材料層と前記絶縁材層とを、前記サブ画素ごとにパターニングするパターニング工程をさらに含む表示デバイスの製造方法。
  22.  前記発光層形成工程に先立って、前記基板上に、前記発光層を前記サブ画素ごとに区画するバンクを形成するバンク形成工程をさらに含み、
     前記バンクの、前記発光層と接する面が、順テーパー面であり、
     前記パターニング工程において、前記量子ドット材料層と前記絶縁材層とのドライエッチング、またはウェットエッチングにより、前記量子ドット材料層と前記絶縁材層とを、前記サブ画素ごとにパターニングする請求項21に記載の表示デバイスの製造方法。
  23.  前記パターニング工程において、前記量子ドット材料層と前記絶縁材層との、O、または、Oプラズマを使用したドライエッチングにより、前記量子ドット材料層と前記絶縁材層とを、前記サブ画素ごとにパターニングする請求項21または22に記載の表示デバイスの製造方法。
  24.  基板と、該基板上にサブ画素ごとに配置された複数の発光素子と、前記発光素子を前記サブ画素ごとに区画するバンクとを備えた表示デバイスであって、
     前記発光素子のそれぞれは、アノードと、発光層と、カソードとを、それぞれこの順に配置して備え、
     前記発光層は、発光材料を含む主発光部と、前記基板の平面視において、前記主発光部を囲う位置に配置され、かつ、前記発光材料が失活した失活材料を含む外縁部とを含み、
     前記バンクは、側面に順テーパー面を有し、該順テーパー面において、前記外縁部と接する表示デバイス。
  25.  前記主発光部は、前記発光材料を含む主発光層と、前記主発光層と前記カソードの側において接する絶縁層とを備えた請求項24に記載の表示デバイス。
  26.  基板上に、アノードと、発光層と、カソードとを、それぞれこの順に配置して備えた、複数の発光素子を、サブ画素ごとに形成する表示デバイスの製造方法であって、
     前記基板上に、前記発光素子を前記サブ画素ごとに区画し、前記発光層と接するバンクを形成するバンク形成工程と、
     前記発光層の発光材料を含む発光材料層を成膜する材料層成膜工程と、
     前記発光材料層の上層に保護層を成膜する保護層成膜工程と、
     前記発光材料層および保護層のドライエッチング、またはウェットエッチングにより、前記発光材料層および保護層を前記サブ画素ごとにパターニングし、前記発光層を形成するパターニング工程とをこの順に含み、
     前記バンクの、前記発光層と接する面が、順テーパー面である表示デバイスの製造方法。
  27.  発光層を備える発光素子であって、
     前記発光層が、量子ドットと、
     ハロゲン元素と、
     前記量子ドットに配位可能な配位化合物とを含み、
     前記配位化合物が、一個以上n個(nは複数)以下の炭素-水素結合を有する化合物、又は、本質的に4以上の配位を取り得る元素の任意の2配位の位置に異種元素が結合したn個の鎖状構造を有する化合物を含み、
     前記配位化合物と前記量子ドットとの質量比が、0.5以下である発光素子。
  28.  前記ハロゲン元素が、前記量子ドットの表面の近傍に存在する請求項27に記載の発光素子。
  29.  前記ハロゲン元素が、1015cm-3以上1020cm-3以下の密度を有する請求項27に記載の発光素子。
  30.  前記量子ドットが、コアと前記コアの周りに形成されるシェルとを含み、
     前記ハロゲン元素と前記量子ドットの表面との間の距離が、前記シェルの厚さに対応する距離以下である請求項28に記載の発光素子。
  31.  前記発光層に接する第1電荷輸送層と、
     前記発光層の前記第1電荷輸送層と反対側に形成された第2電荷輸送層とをさらに備え、
     前記発光層が、前記第2電荷輸送層に面した側で絶縁材を介して前記第2電荷輸送層に隣接する請求項27から30の何れか一項に記載の発光素子。
  32.  前記配位化合物が、3個以上の炭素-水素結合を有する化合物、又は、3個以上の鎖状構造を有する化合物を含む請求項27から31の何れか一項に記載の発光素子。
  33.  前記第1電荷輸送層が前記発光層に正孔を輸送するための正孔輸送層であり、
     前記第2電荷輸送層が前記発光層に電子を輸送するための電子輸送層である請求項31に記載の発光素子。
  34.  前記ハロゲン元素がFを含む請求項1から33の何れか一項に記載の発光素子。
  35.  前記ハロゲン元素が、Cl、Br、及びIのうちの少なくとも一つを含む請求項1から34の何れか一項に記載の発光素子。
  36.  前記配位化合物が、無機化合物、有機化合物、又はパーフロロ化合物を含む請求項1から35の何れか一項に記載の発光素子。
  37.  前記発光層と前記第2電荷輸送層との間に形成された絶縁層をさらに含む請求項31に記載の発光素子。
  38.  前記絶縁層が、アモルファス状であって、ガラス系材料、テトラフルオロエチレン系材料、及びシリコーン系材料のうちの少なくとも一つを含む請求項37に記載の発光素子。
  39.  前記絶縁層が、可視光域で80%以上の光透過率を有する請求項37又は38に記載の発光素子。
  40.  前記絶縁層が、エーテル系またはパーフルオロ系または炭化水素系溶媒を含む請求項37から39の何れか一項に記載の発光素子。
  41.  前記絶縁層の厚さが5nm以下である請求項37から40の何れか一項に記載の発光素子。
  42.  量子ドットの表面近傍にハロゲン元素を付加する工程と、
     前記量子ドットの表面に配位化合物を、前記配位化合物と前記量子ドットとの質量比が、0.5以下となるように配位させる工程と、
     前記ハロゲン元素が付加されて前記配位化合物が配位された量子ドットを溶媒に分散させて量子ドットコロイド溶液を得る工程とを包含する量子ドットコロイド溶液の製造方法。
  43.  請求項42に記載の量子ドットコロイド溶液の製造方法により製造された量子ドットコロイド溶液を用いて、第1電荷輸送層上に量子ドット層を製膜する工程と、
     前記製膜する工程の後に、前記量子ドット層に溶媒を塗布して余剰リガンドを除去する工程と、
     前記余剰リガンドを除去した量子ドット層を熱処理する工程とを包含する発光素子の製造方法。
  44.  量子ドットと、
     ハロゲン元素と、
     前記量子ドットに配位可能な配位化合物と、
     前記量子ドット、前記ハロゲン元素、及び前記配位化合物が分散された溶媒とを備え、
     前記配位化合物が、一個以上n個(nは複数)以下の炭素-水素結合を有する化合物、又は、本質的に4以上の配位を取り得る元素の任意の2配位の位置に異種元素が結合したn個の鎖状構造を有する化合物を含み、
     前記配位化合物と前記量子ドットとの質量比が、0.5以下である量子ドットコロイド溶液。
  45.  前記ハロゲン元素が、前記量子ドットの表面の近傍に存在する請求項44に記載の量子ドットコロイド溶液。
  46.  前記ハロゲン元素が、1015cm-3以上1020cm-3以下の密度を有する請求項44に記載の量子ドットコロイド溶液。
PCT/JP2021/024286 2021-03-30 2021-06-28 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液 WO2022208917A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/279,573 US20240141227A1 (en) 2021-03-30 2021-06-28 Light-emitting element, display device, method for manufacturing light-emitting element, method for manufacturing display device, method for manufacturing quantum dot colloidal solution, and quantum dot colloidal solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/013457 2021-03-30
PCT/JP2021/013457 WO2022208641A1 (ja) 2021-03-30 2021-03-30 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2022208917A1 true WO2022208917A1 (ja) 2022-10-06

Family

ID=83455716

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/013457 WO2022208641A1 (ja) 2021-03-30 2021-03-30 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法
PCT/JP2021/024286 WO2022208917A1 (ja) 2021-03-30 2021-06-28 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013457 WO2022208641A1 (ja) 2021-03-30 2021-03-30 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法

Country Status (2)

Country Link
US (2) US20240188317A1 (ja)
WO (2) WO2022208641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024209525A1 (ja) * 2023-04-04 2024-10-10 シャープディスプレイテクノロジー株式会社 表示装置および表示装置の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095685A (ja) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd 間隙を持たない半導体ナノ結晶層を含む発光素子およびその製造方法
JP2008166127A (ja) * 2006-12-28 2008-07-17 Canon Inc 有機elディスプレイ用基板
JP2010532794A (ja) * 2007-06-25 2010-10-14 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
KR101350257B1 (ko) * 2012-08-28 2014-01-16 연세대학교 산학협력단 형광 박막의 제조방법, 이로써 제조된 형광 박막 및 그를 포함하는 디스플레이 장치
WO2016047483A1 (ja) * 2014-09-26 2016-03-31 東レ株式会社 有機el表示装置
WO2017010398A1 (ja) * 2015-07-16 2017-01-19 ソニー株式会社 光電変換素子および光電変換素子の製造方法ならびに撮像装置
US20170244061A1 (en) * 2016-12-28 2017-08-24 Shanghai Tianma AM-OLED Co., Ltd. Display panel and display apparatus
JP2018153915A (ja) * 2017-03-17 2018-10-04 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 有機配位子を有する量子ドット及びその用途
CN110707219A (zh) * 2019-10-14 2020-01-17 合肥乐凯科技产业有限公司 一种有机-无机钙钛矿量子点膜及其制备方法
WO2020054764A1 (ja) * 2018-09-12 2020-03-19 Nsマテリアルズ株式会社 赤外線センサ及びその製造方法
JP2020525985A (ja) * 2017-06-28 2020-08-27 武漢華星光電半導体顕示技術有限公司Wuhan China Star Optoelectronics Semiconductor Disolay Technology Co.,Ltd 材料性能検査装置及びその製造方法
JP2020161476A (ja) * 2019-03-26 2020-10-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 発光素子、その製造方法、及びそれを含む表示装置
WO2021044558A1 (ja) * 2019-09-04 2021-03-11 シャープ株式会社 発光素子、発光デバイス、発光素子の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095685A (ja) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd 間隙を持たない半導体ナノ結晶層を含む発光素子およびその製造方法
JP2008166127A (ja) * 2006-12-28 2008-07-17 Canon Inc 有機elディスプレイ用基板
JP2010532794A (ja) * 2007-06-25 2010-10-14 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
KR101350257B1 (ko) * 2012-08-28 2014-01-16 연세대학교 산학협력단 형광 박막의 제조방법, 이로써 제조된 형광 박막 및 그를 포함하는 디스플레이 장치
WO2016047483A1 (ja) * 2014-09-26 2016-03-31 東レ株式会社 有機el表示装置
WO2017010398A1 (ja) * 2015-07-16 2017-01-19 ソニー株式会社 光電変換素子および光電変換素子の製造方法ならびに撮像装置
US20170244061A1 (en) * 2016-12-28 2017-08-24 Shanghai Tianma AM-OLED Co., Ltd. Display panel and display apparatus
JP2018153915A (ja) * 2017-03-17 2018-10-04 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 有機配位子を有する量子ドット及びその用途
JP2020525985A (ja) * 2017-06-28 2020-08-27 武漢華星光電半導体顕示技術有限公司Wuhan China Star Optoelectronics Semiconductor Disolay Technology Co.,Ltd 材料性能検査装置及びその製造方法
WO2020054764A1 (ja) * 2018-09-12 2020-03-19 Nsマテリアルズ株式会社 赤外線センサ及びその製造方法
JP2020161476A (ja) * 2019-03-26 2020-10-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 発光素子、その製造方法、及びそれを含む表示装置
WO2021044558A1 (ja) * 2019-09-04 2021-03-11 シャープ株式会社 発光素子、発光デバイス、発光素子の製造方法
CN110707219A (zh) * 2019-10-14 2020-01-17 合肥乐凯科技产业有限公司 一种有机-无机钙钛矿量子点膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024209525A1 (ja) * 2023-04-04 2024-10-10 シャープディスプレイテクノロジー株式会社 表示装置および表示装置の製造方法

Also Published As

Publication number Publication date
WO2022208641A1 (ja) 2022-10-06
US20240188317A1 (en) 2024-06-06
US20240141227A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US10700304B2 (en) Device including a conductive coating disposed over emissive regions and method therefor
US11696472B2 (en) Organic EL display apparatus and manufacturing method therefor
CN100365836C (zh) 纳米丝发光器件及其制造方法
CN102165593B (zh) 显示装置及其制造方法
CN105378552B (zh) 包括超小型发光二极管的显示器及其制造方法
US9209311B2 (en) Thin film transistor and method for manufacturing the same
US20080237611A1 (en) Electroluminescent device having improved contrast
JP2010526420A (ja) 電力の分配が改善されたエレクトロルミネッセンス・デバイス
US20130200780A1 (en) Organic light emitting display devices and methods of manufacturing organic light emitting display devices
US20050206300A1 (en) Light-emitting device using a three-dimension percolated layer, and manufacturing process thereof
WO2021044558A1 (ja) 発光素子、発光デバイス、発光素子の製造方法
Yang et al. Color-tunable ZnO/GaN heterojunction LEDs achieved by coupling with Ag nanowire surface plasmons
US11152442B2 (en) Organic electroluminescent (EL) display device with comb-shaped source and drain electrodes and manufacturing method therefor
Cho et al. Highly Efficient Deep Blue Cd‐Free Quantum Dot Light‐Emitting Diodes by ap‐Type Doped Emissive Layer
DE112004002976T5 (de) Organisches lichtemittierendes Element, Herstellungsverfahren hierfür und Anzeigevorrichtung
WO2022208917A1 (ja) 発光素子、表示デバイス、発光素子の製造方法、表示デバイスの製造方法、量子ドットコロイド溶液の製造方法、及び、量子ドットコロイド溶液
CN116762487A (zh) 发光元件、显示设备、发光元件的制造方法
US20210273189A1 (en) Light-emitting device, method for manufacturing light-emitting device, and apparatus for manufacturing light-emitting device
KR102438632B1 (ko) 표시장치 및 표시장치의 제조방법
US20230337455A1 (en) Light-emitting element, light-emitting device, method for manufacturing light-emitting element, and method for driving light-emitting element
JP4532892B2 (ja) 有機el素子及び有機el表示装置
JP4603780B2 (ja) 発光素子の製造方法
US20220131049A1 (en) Method for manufacturing light-emitting device
WO2023026348A1 (ja) 発光素子および発光装置並びに発光素子の製造方法
WO2023152972A1 (ja) 発光デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18279573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP