WO2022208601A1 - 旅客搭乗橋 - Google Patents

旅客搭乗橋 Download PDF

Info

Publication number
WO2022208601A1
WO2022208601A1 PCT/JP2021/013257 JP2021013257W WO2022208601A1 WO 2022208601 A1 WO2022208601 A1 WO 2022208601A1 JP 2021013257 W JP2021013257 W JP 2021013257W WO 2022208601 A1 WO2022208601 A1 WO 2022208601A1
Authority
WO
WIPO (PCT)
Prior art keywords
cab
coordinates
calculated
target
reference point
Prior art date
Application number
PCT/JP2021/013257
Other languages
English (en)
French (fr)
Inventor
隆 國武
Original Assignee
新明和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新明和工業株式会社 filed Critical 新明和工業株式会社
Priority to PCT/JP2021/013257 priority Critical patent/WO2022208601A1/ja
Priority to JP2023509915A priority patent/JP7449448B2/ja
Priority to EP21933502.3A priority patent/EP4316994A1/en
Publication of WO2022208601A1 publication Critical patent/WO2022208601A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/30Ground or aircraft-carrier-deck installations for embarking or disembarking passengers
    • B64F1/305Bridges extending between terminal building and aircraft, e.g. telescopic, vertically adjustable
    • B64F1/3055Bridges extending between terminal building and aircraft, e.g. telescopic, vertically adjustable with hinged head interface between aircraft and passenger bridge

Definitions

  • the present invention relates to a passenger boarding bridge.
  • a passenger boarding bridge is known as a facility that serves as a pedestrian passageway for passengers between the airport terminal building and the aircraft.
  • the passenger boarding bridge consists of a rotunda connected to the terminal building and supported horizontally rotatably, a tunnel section connected to the rotunda at its base end and configured to extend and retract, and a rotatable section provided at the tip of the tunnel section to hold the aircraft. and a drive column provided as a support leg near the tip of the tunnel.
  • the drive column includes an elevating device that supports and vertically moves the tunnel section, and a traveling device that is provided below the elevating device and has a pair of traveling wheels. It has been proposed to automate the movement of such passenger boarding bridges (see Patent Documents 1 to 3, for example).
  • a camera is attached to the cab to photograph the boarding and alighting section of an aircraft, and when the cab is in a predetermined standby position, the horizontal position of the boarding and alighting section is based on the image of the boarding and alighting section captured by the camera. Information is calculated, based on this horizontal position information, a target position to which the cab is to be moved for mounting it on the boarding/alighting section is calculated, and the cab at the standby position is moved toward the target position. ing.
  • Patent Document 2 describes a configuration in which two cameras, first and second, are provided in a head portion (cab) that can be connected to the boarding gate of an aircraft. Then, when an input to start driving is made on the operation panel, the traveling drive section starts wheel traveling, and when the head section reaches several meters in front of the aircraft, the first feature of the aircraft is captured by the first and second cameras. Imaging of the part and the second characteristic part is started. Then, the position of the target point of the boarding gate of the aircraft is calculated using the captured images of the first and second cameras, the relative position and relative angle of the head part with respect to the boarding gate of the aircraft are calculated, and control correction is performed based on these. It describes calculating a quantity on the basis of which various drives are driven to move the head towards a target point on the aircraft.
  • Patent Document 3 describes a configuration in which two cameras, first and second, are installed in a terminal building to which a rotunda is connected. Then, when an input to start driving is made on the operation panel, the traveling drive section starts wheel traveling, and when the head section reaches several meters in front of the aircraft, the first feature of the aircraft is captured by the first and second cameras. Imaging of the part and the second characteristic part is started. Then, the position of the target point of the boarding gate of the aircraft is calculated using the captured images of the first and second cameras, the relative position and relative angle of the head part with respect to the boarding gate of the aircraft are calculated, and control correction is performed based on these. It describes calculating a quantity on the basis of which various drives are driven to move the head towards a target point on the aircraft.
  • Patent Document 3 since the first and second cameras are installed in a terminal building far away from the aircraft, it is possible to accurately calculate the relative position and relative angle of the head section with respect to the boarding gate of the aircraft. Therefore, it is considered difficult to accurately move the head portion (cab) to the target position.
  • the present invention was made to solve the above problems, and aims to provide a passenger boarding bridge that enables accurate movement of the cab to the target position.
  • a passenger boarding bridge is connected to a terminal building and has a rotunda that can rotate forward and backward about a vertical axis, and a base end that is connected to the rotunda so that it can be raised and lowered.
  • a tunnel portion configured to extend and contract in the longitudinal direction together with a tunnel portion; a cab rotatably provided at the tip of the tunnel portion;
  • a passenger boarding bridge comprising The control device is The position of each part of the aircraft and the passenger boarding bridge is configured to be expressed by position coordinates using a three-dimensional orthogonal coordinate system with a predetermined position as the origin, When the cab is at a predetermined standby position that is the starting point of movement, the first and second cameras photograph the boarding section, and the boarding section of the aircraft is based on the photographed image of the boarding section.
  • a first boarding/alighting position calculation process for calculating the position coordinates of the reference point of the Based on the positional coordinates of the reference point of the boarding/alighting section calculated by the first boarding/alighting section position calculation process, at the temporary stop position of the cab where the front end of the cab is positioned a predetermined distance ahead of the boarding/alighting section.
  • a cab stop position calculation process for calculating target position coordinates of a reference point of the tip of the cab; Based on the target position coordinates of the reference point of the cab at the pause position calculated by the cab stop position calculation process and a first desired rotation angle of the cab with respect to a specific horizontal direction at the pause position A first reverse motion for calculating the target position coordinates of the center point of the traveling device at the temporary stop position, the target length of the lifting device, and the target rotation angle of the cab with respect to the tunnel section by performing kinematic calculations.
  • Academic calculation processing a process of running the running device so that the center point of the running device is at the target position coordinates calculated by the first inverse kinematics calculation processing; A process of extending and contracting the lifting device so as to achieve the target length calculated by the kinematics calculation process; and a first moving process of moving the cab from the standby position to the temporary stop position by performing a process of driving the cab rotating device so as to achieve the rotation angle.
  • the position of each part of the aircraft and the passenger boarding bridge is represented by position coordinates using a three-dimensional orthogonal coordinate system, and the cab is in the standby position, and the image of the boarding and alighting part taken by the first and second cameras.
  • the position coordinates of the reference point of the boarding/alighting section of the aircraft are calculated, and based on this, the target position coordinates of the reference point of the tip of the cab at the temporary stop position are calculated.
  • the center point of the traveling device at the temporary stop position is calculated.
  • the target position coordinates, the target length of the lifting device, and the target rotation angle of the cab with respect to the tunnel section are calculated, and based on the calculation results, the travel device, the lifting device, and the cab rotation device are driven, and the cab is moved from the standby position to the temporary stop position. I am trying to move it to
  • the first and second cameras attached to the cab photograph the boarding and alighting section of the aircraft, and the position of the reference point of the boarding and alighting section is determined in absolute coordinates (using a three-dimensional orthogonal coordinate system). Based on these absolute coordinates, the target position coordinates of the reference point of the cab at the temporary stop position are calculated. Therefore, while the cab is moving from the standby position to the pause position, it is not necessary to calculate the position of the reference point of the boarding/alighting section of the aircraft. It is possible to accurately move to the position (pause position).
  • the target position coordinates of the reference point of the cab at the pause position and the specific horizontal direction at the pause position
  • a first desired angle of rotation of the cab coordinates in two horizontal directions of the center point of the cab in the parked position and a target of the cab relative to the tunnel section corresponding to the first desired angle of rotation.
  • the first desired rotation angle may be an angle between the specific horizontal direction and a horizontal direction orthogonal to the aircraft guidance line drawn on the apron in plan view.
  • any one of the first and second cameras is caused to photograph the boarding/alighting section, and the photographed image of the boarding/alighting section and the tip portion of the cab measured by the distance sensor are obtained.
  • a second boarding/alighting section position calculation process for calculating position coordinates of a reference point of the boarding/alighting section based on the distance to the aircraft; Based on the positional coordinates of the reference point of the boarding/alighting section calculated by the second boarding/alighting section position calculation process, the cab is installed at a mounting position of the cab where a tip portion of the cab is mounted on the boarding/alighting section.
  • cab mounting position calculation processing for calculating the target position coordinates of the reference point of Reverse movement based on target position coordinates of a reference point of the cab at the mounting position calculated by the cab mounting position calculation process and a second desired rotation angle of the cab with respect to the specific horizontal direction at the mounting position second inverse kinematics calculation for calculating the target position coordinates of the center point of the traveling device at the mounting position, the target length of the lifting device, and the target rotation angle of the cab with respect to the tunnel section by performing mathematical calculations processing; a process of running the running device so that the center point of the running device moves toward the target position coordinates calculated by the second inverse kinematics calculation processing; A process of extending and contracting the lifting device so that the target length calculated by the kinematics calculation process is achieved, and the rotation angle of the cab with respect to the tunnel section is the target calculated by the second inverse kinematics calculation process. and a second moving process of moving the cab from the temporary stop position to the mounting position by performing a
  • the boarding/alighting section photographed by either the first or second camera Based on the image and the distance between the tip of the cab and the aircraft measured by the distance sensor, the position coordinates of the reference point of the landing section of the aircraft are calculated, and based on this, the tip of the cab at the mounting position Calculate the target position coordinates of the reference point of .
  • the target position of the center point of the traveling device at the mounting position Calculate the coordinates, the target length of the lifting device, and the target rotation angle of the cab with respect to the tunnel section, and drive the traveling device, the lifting device, and the cab rotation device based on the calculation results to move the cab from the temporary stop position to the mounting position.
  • the position of the reference point of the landing section of the aircraft is calculated using absolute coordinates, and the target position coordinates of the reference point of the cab at the installation position are calculated based on these absolute coordinates. ing. Therefore, while the cab is moving from the temporary stop position to the mounting position, there is no need to calculate the position of the reference point of the boarding and alighting section of the aircraft. can be moved with high precision.
  • a distance sensor is used to measure the distance between the tip of the cab and the aircraft. can also be calculated with high accuracy. Therefore, it is possible to satisfactorily automatically attach the cab to the aircraft.
  • the second inverse kinematics calculation process includes target position coordinates of a reference point of the cab at the mounting position and coordinates of the cab relative to the specific horizontal direction at the mounting position. coordinates in two horizontal directions of the center point of the cab in the mounting position, and a target rotation angle of the cab with respect to the tunnel portion corresponding to the second desired rotation angle, using the second desired rotation angle of
  • a third calculation process for calculating the position coordinates of the perpendicular leg by assuming that the coordinate in the height direction of the leg of the perpendicular line is the same as the coordinate in the height direction of the reference point of the cab at the mounting position; 3. Calculate the target position coordinates of the center point of the traveling device at the mounting position and the target length of the lifting device by performing inverse kinematics calculation using the position coordinates of the foot on the perpendicular line calculated by the calculation process. and a fourth calculation process.
  • the second desired rotation angle may be an angle between the specific horizontal direction and a horizontal direction orthogonal to a tangent line extending horizontally to a portion of the aircraft on which the cab is mounted, in a plan view. .
  • the present invention has the configuration described above, and has the effect of being able to provide a passenger boarding bridge that enables accurate movement of the cab to the target position.
  • FIG. 1 is a schematic plan view showing an example of a passenger boarding bridge according to this embodiment.
  • FIG. 2 is a schematic side view of the passenger boarding bridge.
  • FIG. 3 is a side view showing an example of a state in which the cab is attached to the aircraft.
  • FIG. 4 is a front view (aircraft side) of the tip portion of the cab attached to the aircraft.
  • FIG. 5 is a diagram showing an example of a control panel and the like.
  • FIG. 6 is a flow chart showing an example of the operation when the passenger boarding bridge is installed.
  • FIG. 7 is a schematic diagram showing an example of an image captured by the camera when the cab is in the standby position.
  • FIG. 1 is a schematic plan view showing an example of a passenger boarding bridge according to this embodiment.
  • FIG. 2 is a schematic side view of the passenger boarding bridge.
  • FIG. 3 is a side view showing an example of a state in which the cab is attached to the aircraft.
  • FIG. 4 is
  • FIG. 8A is a diagram for explaining an example of the target position of the reference point of the cab at the temporary stop position with respect to the reference point of the landing section of the aircraft
  • FIG. 4 is a diagram for explaining an example of a target position of a reference point of a cab at a mounting position with respect to a point;
  • FIG. 1 is a schematic plan view showing an example of a passenger boarding bridge according to this embodiment.
  • FIG. 2 is the schematic which looked the passenger boarding bridge from the side.
  • FIG. 3 is a side view showing an example of a state in which the cab is attached to the aircraft.
  • FIG. 4 is a front view (aircraft side) of the tip portion of the cab attached to the aircraft.
  • FIG. 5 is a diagram showing an example of a control panel and the like.
  • This passenger boarding bridge 1 has a horizontally rotatable rotunda (base circular chamber) 4 connected to the entrance of a terminal building 2 of the airport, and a base end connected to the rotunda 4 so as to be able to be raised and retracted in the longitudinal direction.
  • a tunnel section 5 configured, a cab (tip circular chamber) 6 provided at the tip of the tunnel section 5 so as to be rotatable forward and backward, and a drive column 7 are provided.
  • the rotunda 4 is supported by a column 70 so as to rotate forward and backward around a rotation axis (vertical axis) CL1.
  • the tunnel section 5 forms a walking passageway for passengers, and is constructed so that a plurality of tubular tunnels 5a and 5b are telescopically fitted to each other so as to extend and contract in the longitudinal direction.
  • the tunnel section 5 configured by two tunnels 5a and 5b is illustrated here, the tunnel section 5 may be configured by two or more tunnels.
  • the base end of the tunnel portion 5 is connected to the rotunda 4 so as to be swingable (swingable up and down) about the horizontal rotation axis CL4 (FIG. 2), thereby being connected to the rotunda 4 so as to be able to rise and fall. It is
  • a drive column 7 is attached as a support leg to a portion near the tip of the tunnel portion 5 (tunnel 5b closest to the tip). Note that the drive column 7 may be attached to the cab 6 .
  • the drive column 7 is provided with an elevating device 8 that vertically moves (lifts) the cab 6 and the tunnel section 5 .
  • the lifting device 8 has, for example, a pair of struts which are telescopically fitted with two pillars, and the tunnel part 5 is supported by the pair of struts.
  • the elevating device 8 can elevate (move up and down) the tunnel section 5 by the extension and contraction of the pair of pillars. Thereby, the cab 6 and the tunnel portion 5 can swing vertically with the rotunda 4 as a base point.
  • the drive column 7 is provided with a traveling device 10 having two traveling wheels 9 (a right traveling wheel 9R and a left traveling wheel 9L) that can be independently rotated in forward and reverse directions below the lifting device 8. It is The traveling device 10 can travel forward (travel in the direction of arrow F) by driving the two traveling wheels 9 in the forward rotation direction, and travel backward (traveling in the direction opposite to the arrow F) by driving the two traveling wheels 9 in the reverse rotation direction. running) is possible. Further, the travel device 10 can rotate forward and backward around the rotation axis CL2 so that the steering angle can be changed within a range of -90 degrees to +90 degrees with respect to the expansion and contraction direction (longitudinal direction) of the tunnel portion 5.
  • the traveling device 10 travels on the apron, so that the tunnel section 5 can be rotated around the rotunda 4 and the tunnel section 5 can be expanded and contracted.
  • the cab 6 is provided at the tip of the tunnel portion 5, and is configured to be rotatable forward and backward about a rotation axis CL3 perpendicular to the floor surface of the cab 6 by a cab rotating device 6R (Fig. 5).
  • a bumper 62 is provided at the tip of the floor 61 of the cab 6 mounted on the aircraft 3, and the bumpers 62 are aligned in the left-right direction to form a bridge between the cab 6 and the aircraft 3.
  • a plurality of (two in this example) distance sensors 23 are attached as measuring means for measuring the distance between them.
  • the installation position of the distance sensor 23 can be changed as appropriate, and may be arranged on the floor 61 of the cab 6, for example.
  • first and second cameras 21 and 22 for photographing the boarding/alighting section (door 3a) of the aircraft 3 are installed at a recessed position in the tip portion of the cab 6 .
  • the first and second cameras 21 and 22 are preferably capable of adjusting (changing) the photographing direction with respect to the cab 6, and may be capable of adjusting the angle of view.
  • the second camera 222 is arranged above the first camera 21, but if these first and second cameras 21 and 22 are arranged apart from each other and the door 3a of the aircraft 3 can be photographed, The installation position may be changed as appropriate.
  • a closure 63 is provided at the tip of the cab 6 .
  • the closure 63 has a bellows portion that can be expanded and contracted in the longitudinal direction.
  • the cab 6 is mounted on the aircraft 3 and the bellows portion is expanded forward, so that the front end portion of the bellows portion can be used as the boarding/alighting portion (door) of the aircraft 3 . 3a) can be abutted around.
  • a level detection device 64 having an advanceable wheel 64A is arranged on, for example, the side wall of the cab 6 .
  • the level detection device 64 detects the amount of vertical movement of the aircraft 3 relative to the cab 6 when the aircraft 3 moves up and down due to boarding and alighting of passengers, loading and unloading of luggage, and the like. Equipment.
  • the wheel 64A advances and comes into contact with the fuselage surface of the aircraft 3 with optimum pressure, and when the aircraft 3 moves up and down, the wheel 64A rotates. Based on the rotation direction and rotation angle of the wheels 64A, the amount of vertical movement of the aircraft 3 is detected.
  • the control device 50 controls the lifting device 8 of the drive column 7 so that the cab 6 follows the vertical movement of the aircraft 3 .
  • the passenger boarding bridge 1 is equipped with a rotunda angle sensor 24 for detecting a rotation angle ⁇ r (FIG. 1) of the rotunda 4 and a rotation angle ⁇ c of the cab 6 with respect to the tunnel section 5 (FIG. 1). , a travel angle sensor 26 that detects the rotation angle (angle indicating the travel direction) ⁇ w (FIG. 1) of the travel device 10 with respect to the tunnel portion 5, and the amount of elevation of the elevator device 8.
  • An elevation sensor 27 for detecting the length of the tunnel portion 5 is provided at an appropriate position.
  • the tunnel portion 5 is inclined at the inclination angle ⁇ , and the tip portion of the cab 6 is oriented in the same direction as the extension direction of the tunnel portion 5 (when the rotation angle ⁇ c of the cab 6 is 0). )It is shown.
  • the elevating device 8 is attached to the tunnel portion 5 so that the elongating/contracting direction of the tunnel portion 5 and the elevating/lowering direction of the elevating device 8 are perpendicular to each other.
  • a control panel 31 as shown in FIG. 5 is provided inside the cab 6 .
  • the operation panel 31 includes various operation switches 33 for operating the elevation of the tunnel portion 5 and the cab 6 by the elevation device 8, rotation of the cab 6, and the like, as well as an operation lever 32 for operating the travel device 10 and a display.
  • a device 34 is provided.
  • the operating lever 32 is configured by a lever-shaped input device (joystick) having a degree of freedom in multiple directions.
  • An operation device 30 is configured by the operation lever 32 and various operation switches 33 . Note that the configuration of the operating device 30 can be changed as appropriate.
  • the control device 50 is connected to the operation panel 31 by an electric circuit, receives information such as operation commands based on the operation of the operation device 30, and receives output signals from the sensors 23 to 28. , controls the operation of the passenger boarding bridge 1 and outputs information displayed on the display device 34, and the like.
  • the control device 50 has an arithmetic processing section such as a CPU and a storage section such as ROM and RAM.
  • a control program for operating the passenger boarding bridge 1 and information necessary for the operation are stored in advance in the storage unit. 1 (operations of the traveling device 10, the lifting device 8, the cab rotating device 6R, etc.). Information stored during operation of the passenger boarding bridge 1 is also stored in the storage unit.
  • the control device 50 may be configured by a single control device that performs centralized control, or may be configured by a plurality of control devices that cooperate with each other and perform distributed control via the Internet or LAN.
  • the control device 50 is provided, for example, in the cab 6 or the tunnel 5b on the extreme tip side.
  • the control device 50 grasps the position (coordinates) of each part of the passenger boarding bridge 1 in real time using an XYZ orthogonal coordinate system as shown in FIG. That is, as absolute coordinates, the intersection of the rotation axis CL1 of the rotunda 4 and the plane of the apron EP (FIG. 2) is the origin (0, 0, 0), and the X, Y, and Z axes (vertically extending axes) to represent the position coordinates of each part of the passenger boarding bridge 1.
  • the X-coordinate value, Y-coordinate value, and Z-coordinate value of the position coordinates indicate distances (for example, units [mm]) from the origin (0, 0, 0), which is the position of the rotation axis CL1 of the rotunda 4 .
  • the X coordinate values are positive values on the right side of the origin (0, 0, 0) in FIG. 1 and negative values on the left side.
  • the positive direction of the Y coordinate value is the direction opposite to the terminal building 2 with respect to the origin (0,0,0), and the positive direction of the Z coordinate value is the upward direction from the origin (0,0,0).
  • the control device 50 expresses the position of each part of the aircraft 3 and the passenger boarding bridge 1 as position coordinates using the aforementioned three-dimensional orthogonal coordinate system (XYZ orthogonal coordinate system). Therefore, "positional coordinates" described below are three-dimensional positional coordinates.
  • “Ed” in FIG. 1 indicates the center line of the tunnel portion 5 (the center line extending in the longitudinal direction), and the rotation angle ⁇ r of the rotunda 4 detected by the rotunda angle sensor 24 described above is about the X axis in plan view. is the angle formed by the center line Ed of the tunnel portion 5 calculated counterclockwise, and is the rotation angle of the rotunda 4 with respect to a specific horizontal direction (the positive direction of the X axis). Further, the rotation angle ⁇ c of the cab 6 detected by the cab angle sensor 25 indicates the rotation angle of the cab 6 with respect to the center line Ed of the tunnel portion 5 . Further, the rotation angle ⁇ w of the travel device 10 detected by the travel angle sensor 26 indicates the rotation angle of the travel device 10 with respect to the center line Ed of the tunnel portion 5 in plan view.
  • the rotation angle ⁇ c of the cab 6 shown in FIG. 1 is the rotation angle of the cab 6 with respect to a specific horizontal direction (positive direction of the X-axis).
  • the rotation angle ⁇ c of the cab 6 may be referred to as the cab absolute angle ⁇ c
  • the rotation angle ⁇ c of the cab 6 may be referred to as the cab relative angle ⁇ c.
  • a straight line 100 indicates a straight line extending from the connection portion (CL4) between the rotunda 4 and the tunnel portion 5 in the direction of expansion and contraction of the tunnel portion 5, and from the center point P2 of the traveling device 10 (two traveling wheels 9).
  • the distance to the straight line 100 can be detected by the lifting sensor 27 as the length LA of the extendable lifting device 8 .
  • the control device 50 sets the distance LB (predetermined value) from the center point P1 of the cab 6 to the reference point 6P of the tip portion 6a, and the distance LC (predetermined value) from the center point P1 of the cab 6 to the tip of the tunnel portion 5.
  • the distance LD (predetermined value) from the tip of the tunnel portion 5 to the mounting position of the drive column 7, and the distance LR (predetermined value ), the height HR (predetermined value) of the connecting portion, the radius HW (predetermined value) of the running wheel 9, and the height difference LG between the reference point 6P and the straight line 100 are stored in advance in the storage unit.
  • the distance LE from the base end (connecting portion) of the tunnel portion 5 to the mounting position of the drive column 7 can be calculated by subtracting the distance LD from the length LF of the tunnel portion 5 detected by the tunnel length sensor 28 .
  • the distance LE that can be calculated using the detection value LF of the tunnel length sensor 28 and the length LA of the lifting device 8 detected by the lifting sensor 27 are determined, the distance from the center point of the rotunda 4 to the traveling device 10
  • the horizontal distance L2 to the center point P2 and the height of the center point P2 of the traveling device 10 are uniquely determined.
  • the horizontal distance L1 from the center point of the rotunda 4 to the center point P1 of the cab 6 and the height (Z coordinate value) of the center point P1 of the cab 6 are also uniquely determined.
  • the rotation angle ⁇ r of the rotunda 4 is determined, the XY coordinate values of the center point P2 of the travel device 10 and the center point P1 of the cab 6 are uniquely determined. As a result, the position coordinates of the center point P2 of the travel device 10 and the center point P1 of the cab 6 are uniquely determined. Furthermore, once the cab relative angle ⁇ c detected by the cab angle sensor 25 is determined, the position coordinates of the reference point 6P of the tip portion 6a of the cab 6 are uniquely determined.
  • the control device 50 sequentially acquires the detection value LF of the tunnel length sensor 28, the detection value LA of the elevation sensor 27, and the detection value ⁇ r of the rotunda angle sensor 24, and from these, based on forward kinematics, travels
  • the position coordinates of the center point P2 of the device 10 and the position coordinates of the center point P1 of the cab 6 can be calculated.
  • the control device 50 sequentially acquires the cab relative angle ⁇ c in addition to the detection values LF, LA, and ⁇ r described above, the position coordinates of the reference point 6P of the tip portion 6a of the cab 6 are also obtained based on forward kinematics. can be calculated.
  • the angle formed by the line segment connecting the reference point 6P and the center point P1 of the cab 6 and the center line Ed of the tunnel portion 5 is the cab relative angle ⁇ c.
  • a reference point 6P of the cab 6 is determined so that A straight line passing through the reference point 6P and the center point P1 of the cab 6 and a straight line along the tip portion 6a of the cab 6 are perpendicular to each other.
  • the passenger boarding bridge 1 waits at a predetermined standby position indicated by a two-dot chain line in FIG.
  • the normal stop position of the aircraft 3 is a predetermined position where the axis of the aircraft 3 is on the aircraft guidance line AL and in the extension direction of the aircraft guidance line AL.
  • the aircraft 3 is stopped aiming at the regular stop position, but the actual stop position is not always exactly the regular stop position.
  • the aircraft guidance line AL is drawn on the ground of the apron.
  • the angle ⁇ formed by the body guidance line AL with the X-axis is stored in advance in the storage unit of the control device 50 as a predetermined value.
  • the standby position of the passenger boarding bridge 1 is the starting position of movement when the passenger boarding bridge 1 is attached to the boarding/alighting section (door 3a) of the aircraft 3.
  • the cab 6 is moved from the standby position to the temporary stop position and then to the mounting position, whereby the cab 6 is mounted to the boarding/alighting section.
  • the cab 6 leaves the boarding/alighting section, it returns to the standby position and stops, and waits at the waiting position until the mounting operation to the boarding/alighting section of the next aircraft is started.
  • the position coordinates of the center point P2 of the traveling device 10 at the target standby position of the traveling device 10 are stored in the control device 50 in advance.
  • FIG. 6 is a flow chart showing an example of the operation when the cab 6 of the passenger boarding bridge 1 is attached to the aircraft 3. As shown in FIG. The operation of this passenger boarding bridge 1 is realized by the control of the control device 50 .
  • the "position coordinates" used in the following description also refer to three-dimensional position coordinates using a three-dimensional orthogonal coordinate system (XYZ orthogonal coordinate system).
  • the operator presses the automatic control start button (one of the operation switches 33) on the operation panel 31 to start the following automatic control.
  • the control device 50 When the above start button is pressed, the control device 50 performs the first boarding/alighting section position calculation processing in step S1.
  • the control device 50 first causes the first and second cameras 21 and 22 to photograph the boarding/alighting section (door 3a) of the aircraft 3 .
  • the cab rotating device 6R may be driven to adjust the imaging directions of the cameras 21 and 22 so that it is within the imaging field of view.
  • FIG. 7 is a schematic diagram showing an example of an image captured by the first camera 21 when the cab is in the standby position. In the aircraft 3, the contour portion of the door 3a is painted (painted portion 41) so that the door 3a can be visually recognized.
  • the x and y axes in the captured image A1 in FIG. 7 indicate the camera coordinate system.
  • the control device 50 acquires the captured image data of the two cameras 21 and 22, and based on these captured image data, the position coordinates of the reference point 3P of the door 3a of the aircraft 3 (the position in the XYZ orthogonal coordinate system) coordinates).
  • the door 3a and the reference point 3P of the door 3a can be detected based on the painted portion 41 of the contour of the door 3a, the shape of the reinforcing plate 3c, and the like.
  • the reference point 3P of the door 3a is the central portion of the door sill as shown in FIG. 7 (or may be the central portion of the upper end of the reinforcing plate 3c provided directly below the door 3a).
  • the control device 50 performs image processing from image data captured by the two cameras 21 and 22, detects the reference point 3P of the door 3a, and determines the direction of the reference point 3P of the door 3a as seen from the two cameras 21 and 22. Using the calculated two directions from the cameras 21 and 22, the mounting positions and mounting angles of the two cameras 21 and 22 with respect to the cab 6, and the position coordinates of the center point P1 of the cab 6 at the standby position, etc. , the position coordinates of the reference point 3P of the door 3a can be calculated.
  • control device 50 performs cab stop position calculation processing in step S2.
  • the control device 50 calculates the position coordinates (target position coordinates) of the target position of the predetermined reference point 6P of the tip portion 6a (bumper 62) of the cab 6 at the temporary stop position that is the first destination. .
  • FIG. 8(A) is a diagram showing an example of the target position of the reference point 6P of the cab 6 at the pause position.
  • the height of the target position of the reference point 6P of the cab 6 at the pause position is, for example, the same height as the reference point 3P of the door 3a.
  • the horizontal position of the target position of the reference point 6P is E1, which is a predetermined distance Da from the reference point 3P of the door 3a to the left side of the door 3a in the direction parallel to the fuselage guidance line AL, from this position E1, A position that is perpendicular to the airframe guidance line AL and moves away from the aircraft 3 by a predetermined distance Db (for example, 1000 mm).
  • Db for example, 1000 mm
  • step S3 the control device 50 calculates the target position coordinates of the reference point 6P of the cab 6 at the pause position calculated in step S2, and the coordinates of the cab 6 in the specific horizontal direction (X-axis positive direction) at the pause position
  • step S3 the control device 50 calculates the target position coordinates of the reference point 6P of the cab 6 at the pause position calculated in step S2, and the coordinates of the cab 6 in the specific horizontal direction (X-axis positive direction) at the pause position
  • ⁇ c1 the first desired rotation angle
  • the first desired rotation angle ( ⁇ c1) of the cab 6 with respect to the specific horizontal direction (X-axis positive direction) at the pause position is the desired value of the cab absolute angle ⁇ c at the pause position.
  • This desired value ( ⁇ c1) is the cab absolute angle ⁇ c at which the cab tip portion 6a is parallel to the airframe guide line AL in plan view. That is, the desired value ( ⁇ c1) of the cab absolute angle ⁇ c is the angle formed by the X-axis positive direction and the horizontal direction orthogonal to the aircraft guidance line AL in plan view.
  • the desired value ( ⁇ c1) of the cab absolute angle ⁇ c can be calculated as ( ⁇ +90) degrees.
  • step S31 it is preferable to perform step S31 and then step S32.
  • the target position coordinates of the reference point 6P of the cab 6 at the pause position, XY coordinates (coordinates in two horizontal directions) of the center point P1 of the cab 6 at the pause position and the first desired rotation angle ⁇ c1 are obtained using the first desired rotation angle ⁇ c1 of the cab 6 at the pause position.
  • a target value of the cab relative angle (target rotation angle of the cab) ⁇ c1 is approximately calculated.
  • the first desired rotation angle ⁇ c1 is calculated using the XY coordinates of the reference point 6P at the tip of the cab 6, the first desired rotation angle ⁇ c1, and the distance LB (predetermined value) between the center point P1 of the cab 6 and the reference point 6P.
  • XY coordinates of the center point P1 of the cab 6 are calculated.
  • the coordinates (XY coordinates) in two horizontal directions of the foot P11 of the perpendicular drawn from the reference point 6P of the cab 6 at the pause position to the center line Ed of the tunnel portion 5 are Assuming that the height direction coordinate (Z coordinate) of the perpendicular leg P11 is the same as the height direction coordinate (Z coordinate) of the reference point 6P of the cab 6 at the pause position, the position coordinate ( XYZ coordinates) are calculated. Note that the foot P11 of the perpendicular line is at the same height as the reference point 6P of the cab 6 even when the cab 6 is not in a horizontal state.
  • the XY coordinates of the above perpendicular leg P11 may be calculated, for example, as follows. First, the distance F1 between the center point P1 of the cab 6 and the perpendicular foot P11 is calculated. This distance F1 can be calculated using the distance LB between the center point P1 of the cab 6 and the reference point 6P and the target value ⁇ c1 of the cab relative angle. Next, using the distance F1 and the rotation angle ⁇ r1 of the rotunda 4, the difference in the X-axis direction and the difference in the Y-axis direction with respect to the center point P1 of the cab 6 are calculated. By adding to the X and Y coordinates of the point P1, the X and Y coordinates of the perpendicular foot P11 can be calculated.
  • inverse kinematics calculation is performed using the position coordinates of the perpendicular leg P11 calculated in the first calculation process to determine the center point P2 of the traveling device 10 at the pause position.
  • a target position coordinate and a target length LA1 of the lifting device 8 are calculated.
  • the perpendicular foot P11 and the center point P1 of the cab 6 are on the same plane perpendicular to the rotation axis CL3 of the cab 6 with a distance F1 in the expansion and contraction direction of the tunnel portion 5 .
  • step S3 the inverse kinematics calculation process of step S3 is performed by the calculation process of steps S31 and S32, but the present invention is not limited to this.
  • other methods such as convergence calculation may be used.
  • the control device 50 performs the first movement process in step S4.
  • the cab 6 is moved from the standby position to the temporary stop position. That is, the control device 50 causes the traveling device 10 to travel so that the center point P2 of the traveling device 10 becomes the target position coordinates calculated in step S3, and the length LA of the lifting device 8 is calculated in step S3.
  • the cab rotation device 6R is driven so that the cab relative angle ⁇ c becomes the target rotation angle ( ⁇ c1) calculated in step S3. 6 is moved from the standby position to the temporary stop position.
  • the control device 50 performs the cab rotation process of step S5 with the cab 6 at the temporary stop position.
  • the control device 50 controls that the distances between the tip portion 6a of the cab 6 and the aircraft 3 measured by the pair of distance sensors 23 are equal when the cab 6 is stopped at the pause position.
  • the cab rotating device 6R is driven so that That is, in a plan view, the tip portion 6a of the cab 6 is parallel to the tangential line TL extending horizontally on the surface of the portion of the aircraft 3 to which the cab 6 is attached (the door 3a and its vicinity).
  • the control device 50 performs the second boarding/alighting section position calculation process in step S6.
  • the control device 50 first causes one of the first and second cameras 21 and 22 (for example, the camera 21) to photograph the boarding/alighting section (door 3a) of the aircraft 3.
  • the control device 50 acquires the image data captured by the camera 21, the image data, the distance between the tip 6a of the cab 6 and the aircraft 3 measured by the distance sensor 23, and the distance to the cab 6.
  • the position coordinates (XYZ orthogonal position coordinates in the coordinate system).
  • the calculated positional coordinates of the reference point 3P of the door 3a use image data taken at a short distance, and the distance sensor 23 accurately measures the distance. High accuracy.
  • step S7 the control device 50 determines the mounting position of the cab 6 at which the tip portion 6a of the cab 6 is mounted on the door 3a based on the position coordinates of the reference point 3P of the door 3a calculated in step S6. , the target position coordinates of the reference point 6P of the cab 6 are calculated.
  • FIG. 8(B) is a diagram showing an example of the target position of the reference point 6P of the cab 6 at the mounting position.
  • the height of the target position of the reference point 6P of the cab 6 at the mounting position is, for example, a height lower than the reference point 3P of the door 3a by a predetermined distance (eg, 150 mm).
  • the horizontal position of the target position of the reference point 6P is E2, which is a predetermined distance Da along the tangential line TL from the reference point 3P of the door 3a in plan view to the left of the door 3a
  • the position E2 is further A position that is perpendicular to the tangential line TL and moves away from the aircraft 3 by a predetermined distance Dc (for example, 20 mm).
  • the tangent line TL is a tangent line extending horizontally on the surface of the portion of the aircraft 3 to which the cab 6 is mounted (the door 3a and its vicinity).
  • control device 50 performs the second inverse kinematics calculation process in step S8.
  • step S8 the control device 50 sets the target position coordinates of the reference point 6P of the cab 6 at the mounting position calculated in step S7, and the second coordinates of the cab 6 in the specific horizontal direction (X-axis positive direction) at the mounting position.
  • inverse kinematics calculation calculation based on inverse kinematics
  • ⁇ c2 desired rotation angle
  • the second desired rotation angle ( ⁇ c2) of the cab 6 with respect to the specific horizontal direction (X-axis positive direction) at the mounting position is the desired value of the cab absolute angle ⁇ c at the mounting position.
  • the desired value (.theta.c2) is the cab absolute angle .theta.c at which the cab tip portion 6a is parallel to the tangent line TL in plan view. That is, the desired value ( ⁇ c2) of the cab absolute angle ⁇ c is the angle between the positive direction of the X-axis and the horizontal direction perpendicular to the tangent line TL in plan view. At this moment, the tip portion 6a of the cab 6 is parallel to the tangential line TL due to the rotation processing of the cab 6 in step S5.
  • the desired value ( ⁇ c2) of the cab absolute angle ⁇ c can be calculated by adding the cab relative angle ⁇ c detected by the vehicle angle sensor 25 .
  • an angle corresponding to the deviation is further added and the above-mentioned A desired value ( ⁇ c2) may be calculated.
  • step S8 it is preferable to perform step S81 and then step S82.
  • step S81 In the third calculation process of step S81, first, assuming that the cab 6 is in a horizontal state (the rotation axis CL3 of the cab 6 is in a vertical state), the target position coordinates of the reference point 6P of the cab 6 at the mounting position and the mounting XY coordinates (coordinates in two horizontal directions) of the center point P1 of the cab 6 at the mounting position and the second desired rotation angle ⁇ c2 corresponding to the second desired rotation angle ⁇ c2. A target value of the angle (target rotation angle of the cab) ⁇ c2 is approximately calculated.
  • the second desired rotation angle ⁇ c2 is calculated using the XY coordinates of the reference point 6P at the tip of the cab 6, the second desired rotation angle ⁇ c2, and the distance LB (predetermined value) between the center point P1 of the cab 6 and the reference point 6P.
  • XY coordinates of the center point P1 of the cab 6 are calculated.
  • the coordinates (XY coordinates) in two horizontal directions of the foot P12 of the perpendicular line drawn from the reference point 6P of the cab 6 at the mounting position to the center line Ed of the tunnel portion 5 are calculated.
  • the height direction coordinate (Z coordinate) of the perpendicular leg P12 is the same as the height direction coordinate (Z coordinate) of the reference point 6P of the cab 6 at the mounting position
  • the position coordinate (XYZ coordinate) of the perpendicular leg P12 ) is calculated.
  • the foot P12 of the perpendicular line is at the same height as the reference point 6P of the cab 6 even when the cab 6 is not in the horizontal state.
  • the XY coordinates of the above perpendicular leg P12 may be calculated, for example, as follows. First, the distance F2 between the center point P1 of the cab 6 and the perpendicular foot P12 is calculated. This distance F2 can be calculated using the distance LB between the center point P1 of the cab 6 and the reference point 6P and the target value ⁇ c2 of the cab relative angle. Next, using the distance F2 and the rotation angle ⁇ r2 of the rotunda 4, the difference in the X-axis direction and the difference in the Y-axis direction with respect to the center point P1 of the cab 6 are calculated. By adding to the X and Y coordinates of the point P1, the X and Y coordinates of the perpendicular foot P12 can be calculated.
  • inverse kinematics calculation is performed using the position coordinates of the perpendicular leg P12 calculated in the third calculation process, so that the target center point P2 of the traveling device 10 at the mounting position
  • the position coordinates and the target length LA2 of the lifting device 8 are calculated.
  • the perpendicular foot P12 and the center point P1 of the cab 6 are on the same plane perpendicular to the rotation axis CL3 of the cab 6 with a distance F2 in the expansion and contraction direction of the tunnel portion 5 .
  • step S8 is performed by the calculation processes of steps S81 and S82, but the present invention is not limited to this.
  • other methods such as convergence calculation may be used.
  • the control device 50 performs the second movement process in step S9.
  • the cab 6 is moved from the temporary stop position to the mounting position.
  • the control device 50 extends and retracts the lifting device 8 so that the length LA of the lifting device 8 becomes the target length LA2 calculated in step S8, and the cab relative angle ⁇ c is calculated in step S8.
  • the cab rotation device 6R is driven so as to achieve the target rotation angle ( ⁇ c2).
  • the traveling device 10 is caused to travel so that the center point P2 of the traveling device 10 becomes the target position coordinates calculated in step S8.
  • the traveling apparatus 10 may be caused to travel so that the center point P2 thereof is directed toward the target position coordinates, and may be stopped when the center point P2 reaches the target position coordinates as described above.
  • the aircraft 3 may be stopped when the distance between the tip 6a of the cab 6 and the aircraft 3 measured by the distance sensor 23 reaches a predetermined distance.
  • the cab 6 is attached to the aircraft 3 .
  • control device 50 operates the level detection device 64 and deploys the closure 63 in step S10.
  • either the operation of the level detection device 64 or the deployment of the closure 63 may be performed first.
  • the process of step S10 may be performed based on the operator's operation.
  • the position of each part of the aircraft 3 and the passenger boarding bridge 1 is represented by position coordinates using a three-dimensional orthogonal coordinate system, and the cab 6 is in the standby position, and the images are taken by the first and second cameras 21 and 22.
  • the position coordinates of the reference point 3P of the boarding section of the aircraft 3 are calculated, and based on this, the target position coordinates of the reference point 6P of the tip portion 6a of the cab 6 at the temporary stop position are calculated.
  • the first and second cameras 21 and 22 attached to the cab 6 photograph the boarding/alighting section of the aircraft 3, and the position of the reference point 3P of the boarding/alighting section is determined by absolute coordinates (
  • the target position coordinates of the reference point 6P of the cab 6 at the temporary stop position are calculated based on the absolute coordinates. Therefore, it is not necessary to calculate the position of the reference point 3P of the boarding/alighting section of the aircraft 3 while the cab 6 is moving from the standby position to the temporary stop position. Therefore, it is possible to accurately move the cab 6 to the target position (temporary stop position).
  • the position coordinates of the reference point 3P of the boarding/alighting portion of the aircraft 3 are calculated, and , the target position coordinates of the reference point 6P of the tip portion 6a of the cab 6 at the mounting position are calculated.
  • the travel device 10 by performing inverse kinematics calculation based on the target position coordinates of the reference point 6P of the cab 6 at this mounting position and the orientation of the cab 6 (second desired rotation angle ⁇ c2), the travel device 10 at the mounting position
  • the target position coordinates of the center point P2, the target length LA2 of the lifting device 8, and the target value ⁇ c2 of the cab relative angle ⁇ c are calculated, and the travel device 10, the lifting device 8, and the cab rotating device 6R are driven based on the calculation results. to move the cab 6 from the temporary stop position to the mounting position.
  • the position of the reference point 3P of the boarding/alighting section of the aircraft 3 is calculated by the absolute coordinates, and based on the absolute coordinates, the target position of the reference point 6P of the cab 6 at the mounting position is calculated. I am trying to calculate the coordinates. Therefore, there is no need to calculate the position of the reference point 3P of the boarding/alighting section of the aircraft 3 while the cab 6 is moving from the temporary stop position to the mounting position. mounting position) can be performed with high accuracy.
  • the distance between the tip 6a of the cab 6 and the aircraft 3 is measured using the distance sensor 23, so the position coordinates of the reference point 3P of the boarding/alighting section can be calculated with high accuracy.
  • the mounting position of the cab 6 can also be calculated with high accuracy.
  • the present invention is useful as a passenger boarding bridge or the like that enables accurate movement of the cab to the target position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

キャブの目標位置への移動を精度良く行える旅客搭乗橋を提供する。本発明の旅客搭乗橋の一例は、航空機の乗降部を撮影する第1及び第2のカメラ及び制御装置等を備えた旅客搭乗橋であって、制御装置は、航空機(3)及び旅客搭乗橋(1)の各部の位置を、所定位置を原点とする3次元直交座標系を用いた位置座標で表現するよう構成されており、キャブ(6)が待機位置において、第1及び第2のカメラに撮影させた乗降部の画像に基づいて航空機(3)の乗降部の基準点の位置座標を算出し、これに基づいて、一時停止位置におけるキャブの先端部の基準点の目標位置座標を算出し、さらに逆運動学計算を行うことにより、一時停止位置における走行装置(10)の中心点の目標位置座標と昇降装置(8)の目標長さとトンネル部(5)に対するキャブ(6)の目標回転角度とを算出し、この算出結果に基づいてキャブ(6)を待機位置から一時停止位置へ移動させる。

Description

旅客搭乗橋
 本発明は、旅客搭乗橋に関する。
 空港のターミナルビルと航空機との間の乗客の歩行通路になる設備として、旅客搭乗橋が知られている。旅客搭乗橋は、ターミナルビルに接続されて水平回転自在に支持されたロタンダと、基端がロタンダに接続されて伸縮自在に構成されたトンネル部と、トンネル部の先端に回転自在に設けられ航空機の乗降部に装着されるキャブと、トンネル部の先端寄りに支持脚として設けられたドライブコラムとを備えている。ドライブコラムには、トンネル部を支持して上下移動させる昇降装置と、昇降装置の下部に設けられ一対の走行車輪を有する走行装置とを備えている。このような旅客搭乗橋の移動を自動化することが提案されている(例えば特許文献1~3参照)。
 例えば、特許文献1には、キャブに航空機の乗降部を撮影するカメラを取り付け、所定の待機位置にキャブがあるときに、カメラで撮影される乗降部の画像に基づいて当該乗降部の水平位置情報を算出し、この水平位置情報に基づいて、キャブを乗降部に装着するために移動させる移動先の目標位置を算出し、待機位置にあるキャブを目標位置に向かって移動させることが記載されている。
 また、特許文献2には、航空機の乗降口と接続可能なヘッド部(キャブ)に第1及び第2の2つのカメラを備えた構成が記載されている。そして、操作盤において駆動開始の入力が行われると、走行駆動部によって車輪走行が開始され、ヘッド部が航空機の数メートル手前まで到達したとき、第1及び第2カメラによる航空機の第1の特徴部及び第2の特徴部の撮像が開始される。そして、第1及び第2カメラの撮像画像を用いて航空機の乗降口の目標点の位置を算出し、航空機の乗降口に対するヘッド部の相対位置及び相対角度を算出し、これらに基づいて制御補正量を算出し、それに基づいて各種駆動部が駆動されて、ヘッド部を航空機の目標点に向けて移動させることが記載されている。
 また、特許文献3には、ロタンダが接続されるターミナルビルに第1及び第2の2つのカメラが設置された構成が記載されている。そして、操作盤において駆動開始の入力が行われると、走行駆動部によって車輪走行が開始され、ヘッド部が航空機の数メートル手前まで到達したとき、第1及び第2カメラによる航空機の第1の特徴部及び第2の特徴部の撮像が開始される。そして、第1及び第2カメラの撮像画像を用いて航空機の乗降口の目標点の位置を算出し、航空機の乗降口に対するヘッド部の相対位置及び相対角度を算出し、これらに基づいて制御補正量を算出し、それに基づいて各種駆動部が駆動されて、ヘッド部を航空機の目標点に向けて移動させることが記載されている。
特許第6720414号公報 特開2020-175727号公報 特開2020-175728号公報
 上記特許文献1の構成では、旅客搭乗橋の各部の位置を二次元座標系を用いて算出している。しかしながら、旅客搭乗橋はトンネル部が水平状態ではなく傾斜した状態で、キャブが航空機に装着される場合が多い。そのため、二次元座標系を用いて算出される各部の位置には誤差が含まれて正確ではないという問題があり、キャブの目標位置への移動を精度良く行うことは難しいと考えられる。
 また、特許文献2の構成では、航空機の乗降口に接近しながら、航空機の乗降口に対するヘッド部の相対位置及び相対角度を繰り返し算出して制御補正量を算出する必要がある。このため、ヘッド部を移動しながらヘッド部に設置された第1及び第2カメラで乗降口を撮影するが、旅客搭乗橋の移動による振動やたわみ等により、上記算出する相対位置及び相対角度には誤差が含まれて正確に算出することができないという問題があり、ヘッド部(キャブ)の目標位置への移動を精度良く行うことは難しいと考えられる。
 また、特許文献3の構成では、第1及び第2カメラが航空機から遠く離れたターミナルビルに設置されているため、航空機の乗降口に対するヘッド部の相対位置及び相対角度を正確に算出することができず、ヘッド部(キャブ)の目標位置への移動を精度良く行うことは難しいと考えられる。
 本発明は上記のような課題を解決するためになされたもので、キャブの目標位置への移動を精度良く行うことが可能になる旅客搭乗橋を提供することを目的としている。
 上記目的を達成するために、本発明のある態様に係る旅客搭乗橋は、ターミナルビルに接続され、鉛直軸線まわりに正逆回転自在なロタンダと、基端が前記ロタンダに俯仰自在に接続されるとともに長手方向に伸縮自在に構成されたトンネル部と、前記トンネル部の先端に回転自在に設けられたキャブと、前記トンネル部または前記キャブに取り付けられ、長手方向に伸縮動作することにより前記トンネル部または前記キャブを昇降させる昇降装置と、前記昇降装置の下方に取り付けられて地面を走行し、中心点を通る軸線まわりに正逆回転することにより走行方向を変更可能に構成された走行装置と、前記キャブを回転させるキャブ回転装置と、前記キャブに取り付けられ、航空機の乗降部を撮影する第1及び第2のカメラと、前記走行装置、前記昇降装置及び前記キャブ回転装置を制御する制御装置と、を備えた旅客搭乗橋であって、
 前記制御装置は、
 前記航空機及び前記旅客搭乗橋の各部の位置を、所定位置を原点とする3次元直交座標系を用いた位置座標で表現するよう構成されており、
 前記キャブが移動の起点となる所定の待機位置にあるときに、前記第1及び第2のカメラに前記乗降部を撮影させ、この撮影させた前記乗降部の画像に基づいて前記航空機の乗降部の基準点の位置座標を算出する第1の乗降部位置算出処理と、
 前記第1の乗降部位置算出処理により算出された前記乗降部の基準点の位置座標に基づいて、前記キャブの先端部が前記乗降部から所定距離前方の位置となる前記キャブの一時停止位置における前記キャブの先端部の基準点の目標位置座標を算出するキャブ停止位置算出処理と、
 前記キャブ停止位置算出処理により算出された前記一時停止位置における前記キャブの基準点の目標位置座標と、前記一時停止位置における特定の水平方向に対する前記キャブの第1の所望回転角度とに基づいて逆運動学計算を行うことにより、前記一時停止位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さと前記トンネル部に対する前記キャブの目標回転角度とを算出する第1の逆運動学計算処理と、
 前記走行装置の中心点が前記第1の逆運動学計算処理により算出された前記目標位置座標となるように前記走行装置を走行動作させる処理と、前記昇降装置の長さが前記第1の逆運動学計算処理により算出された前記目標長さとなるように前記昇降装置を伸縮動作させる処理と、前記トンネル部に対する前記キャブの回転角度が前記第1の逆運動学計算処理により算出された前記目標回転角度となるように前記キャブ回転装置を駆動させる処理とを実施することにより、前記キャブを前記待機位置から前記一時停止位置へ移動させる第1の移動処理と、を行うよう構成されている。
 この構成によれば、航空機及び旅客搭乗橋の各部の位置を3次元直交座標系を用いた位置座標で表現し、キャブが待機位置において、第1及び第2のカメラで撮影した乗降部の画像に基づいて航空機の乗降部の基準点の位置座標を算出し、これに基づいて、一時停止位置におけるキャブの先端部の基準点の目標位置座標を算出する。そして、この一時停止位置におけるキャブの基準点の目標位置座標とキャブの姿勢(第1の所望回転角度)とに基づいて逆運動学計算を行うことにより、一時停止位置における走行装置の中心点の目標位置座標と昇降装置の目標長さとトンネル部に対するキャブの目標回転角度とを算出し、この算出結果に基づいて走行装置、昇降装置及びキャブ回転装置を駆動させ、キャブを待機位置から一時停止位置へ移動させるようにしている。
 上記のように、キャブが待機位置において、キャブに取り付けた第1及び第2のカメラで航空機の乗降部を撮影し、その乗降部の基準点の位置を絶対座標(3次元直交座標系を用いた位置座標)によって算出し、この絶対座標に基づいて一時停止位置におけるキャブの基準点の目標位置座標を算出するようにしている。よって、キャブが待機位置から一時停止位置へ移動中に、航空機の乗降部の基準点の位置を算出する必要がないので、第1及び第2のカメラによる撮影を行う必要もなく、キャブの目標位置(一時停止位置)への移動を精度良く行うことが可能になる。
 前記第1の逆運動学計算処理は、前記キャブが水平状態であると仮定して、前記一時停止位置における前記キャブの基準点の目標位置座標と、前記一時停止位置における前記特定の水平方向に対する前記キャブの第1の所望回転角度とを用いて、前記一時停止位置における前記キャブの中心点の水平2方向における座標と、前記第1の所望回転角度に対応する前記トンネル部に対する前記キャブの目標回転角度とを近似的に算出した後、前記キャブが水平状態であると仮定して、前記一時停止位置における前記キャブの基準点から前記トンネル部の中心線に下した垂線の足の水平2方向における座標を算出し、前記垂線の足の高さ方向の座標を前記一時停止位置における前記キャブの基準点の高さ方向の座標と同一として、前記垂線の足の位置座標を算出する第1計算処理と、前記第1計算処理で算出した前記垂線の足の位置座標を用いて逆運動学計算を行うことにより、前記一時停止位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さとを算出する第2計算処理と、を有していてもよい。
 前記第1の所望回転角度は、平面視において、前記特定の水平方向と、エプロン上に描かれた機体誘導ラインと直交する水平方向とのなす角度であってもよい。
 水平方向に離れて前記キャブに取り付けられ、前記キャブの先端部と前記航空機との距離を計測する一対の距離センサを、さらに備え、
 前記制御装置は、さらに、
 前記キャブが前記一時停止位置で停止しているときに、前記一対の各々の距離センサにより計測される前記キャブの先端部と前記航空機との距離が等しくなるように前記キャブ回転装置を駆動させて前記キャブを回転させるキャブ回転処理と、
 前記キャブ回転処理の後、前記第1及び第2のいずれか一方のカメラに前記乗降部を撮影させ、この撮影させた前記乗降部の画像と、前記距離センサにより計測された前記キャブの先端部と前記航空機との距離とに基づいて、前記乗降部の基準点の位置座標を算出する第2の乗降部位置算出処理と、
 前記第2の乗降部位置算出処理により算出された前記乗降部の基準点の位置座標に基づいて、前記キャブの先端部が前記乗降部に装着される位置となる前記キャブの装着位置における前記キャブの基準点の目標位置座標を算出するキャブ装着位置算出処理と、
 前記キャブ装着位置算出処理により算出された前記装着位置における前記キャブの基準点の目標位置座標と、前記装着位置における前記特定の水平方向に対する前記キャブの第2の所望回転角度とに基づいて逆運動学計算を行うことにより、前記装着位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さと前記トンネル部に対する前記キャブの目標回転角度とを算出する第2の逆運動学計算処理と、
 前記走行装置の中心点が前記第2の逆運動学計算処理により算出された前記目標位置座標に向かうように前記走行装置を走行動作させる処理と、前記昇降装置の長さが前記第2の逆運動学計算処理により算出された前記目標長さとなるように前記昇降装置を伸縮動作させる処理と、前記トンネル部に対する前記キャブの回転角度が前記第2の逆運動学計算処理により算出された前記目標回転角度となるように前記キャブ回転装置を駆動させる処理とを実施することにより、前記キャブを前記一時停止位置から前記装着位置へ移動させる第2の移動処理と、を行うよう構成されていてもよい。
 この構成によれば、キャブが一時停止位置において、キャブの先端部と航空機との距離が等しくなるようにキャブを回転させた後、第1及び第2のいずれか一方のカメラで撮影した乗降部の画像と、距離センサにより計測されたキャブの先端部と航空機との距離とに基づいて、航空機の乗降部の基準点の位置座標を算出し、これに基づいて、装着位置におけるキャブの先端部の基準点の目標位置座標を算出する。そして、この装着位置におけるキャブの基準点の目標位置座標とキャブの姿勢(第2の所望回転角度)とに基づいて逆運動学計算を行うことにより、装着位置における走行装置の中心点の目標位置座標と昇降装置の目標長さとトンネル部に対するキャブの目標回転角度とを算出し、この算出結果に基づいて走行装置、昇降装置及びキャブ回転装置を駆動させ、キャブを一時停止位置から装着位置へ移動させるようにしている。
 上記のように、キャブが一時停止位置において、航空機の乗降部の基準点の位置を絶対座標によって算出し、この絶対座標に基づいて装着位置におけるキャブの基準点の目標位置座標を算出するようにしている。よって、キャブが一時停止位置から装着位置へ移動中に、航空機の乗降部の基準点の位置を算出する必要がないので、カメラによる撮影を行う必要もなく、キャブの目標位置(装着位置)への移動を精度良く行うことが可能になる。また、一時停止位置では、距離センサを用いてキャブの先端部と航空機との距離を計測しているので、乗降部の基準点の位置座標を高精度に算出することができ、キャブの装着位置も精度よく算出することができる。よって、キャブの航空機への自動装着を良好に行うことが可能になる。
 前記第2の逆運動学計算処理は、前記キャブが水平状態であると仮定して、前記装着位置における前記キャブの基準点の目標位置座標と、前記装着位置における前記特定の水平方向に対する前記キャブの第2の所望回転角度とを用いて、前記装着位置における前記キャブの中心点の水平2方向における座標と、前記第2の所望回転角度に対応する前記トンネル部に対する前記キャブの目標回転角度とを近似的に算出した後、前記キャブが水平状態であると仮定して、前記装着位置における前記キャブの基準点から前記トンネル部の中心線に下した垂線の足の水平2方向における座標を算出し、前記垂線の足の高さ方向の座標を前記装着位置における前記キャブの基準点の高さ方向の座標と同一として、前記垂線の足の位置座標を算出する第3計算処理と、前記第3計算処理で算出した前記垂線の足の位置座標を用いて逆運動学計算を行うことにより、前記装着位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さとを算出する第4計算処理と、を有していてもよい。
 前記第2の所望回転角度は、平面視において、前記特定の水平方向と、前記航空機の前記キャブが装着される部分の水平方向に延びる接線と直交する水平方向とのなす角度であってもよい。
 本発明は、以上に説明した構成を有し、キャブの目標位置への移動を精度良く行うことが可能になる旅客搭乗橋を提供することができるという効果を奏する。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
図1は、本実施形態に係る旅客搭乗橋の一例を示す概略平面図である。 図2は、旅客搭乗橋を側方から視た概略図である。 図3は、キャブを航空機に装着した状態の一例を示す側面図である。 図4は、航空機に装着されるキャブ先端部分を正面(航空機側)から視た図である。 図5は、操作盤等の一例を示す図である。 図6は、旅客搭乗橋の装着時の動作の一例を示すフローチャートである。 図7は、キャブが待機位置でのカメラの撮影画像の一例を示す概略図である。 図8(A)は、航空機の乗降部の基準点に対する一時停止位置におけるキャブの基準点の目標位置の一例を説明するための図であり、図8(B)は、航空機の乗降部の基準点に対する装着位置におけるキャブの基準点の目標位置の一例を説明するための図である。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状及び寸法比等については正確な表示ではない場合がある。また、本発明は、以下の実施形態に限定されない。
 (実施形態)
 図1は、本実施形態に係る旅客搭乗橋の一例を示す概略平面図である。また、図2は、旅客搭乗橋を側方から視た概略図である。図3は、キャブを航空機に装着した状態の一例を示す側面図である。図4は、航空機に装着されるキャブ先端部分を正面(航空機側)から視た図である。図5は、操作盤等の一例を示す図である。
 この旅客搭乗橋1は、空港のターミナルビル2の乗降口に接続された水平回転自在なロタンダ(基部円形室)4と、基端がロタンダ4に俯仰自在に接続されて長手方向に伸縮自在に構成されたトンネル部5と、トンネル部5の先端に正逆回転自在に設けられたキャブ(先端部円形室)6と、ドライブコラム7とを備えている。
 ロタンダ4は、支柱70によって回転軸(鉛直軸線)CL1の回りに正逆回転自在に支持されている。
 トンネル部5は、乗客の歩行通路を形成し、筒状体からなる複数のトンネル5a,5bが入れ子式に嵌合されて長手方向に伸縮自在に構成されている。なお、ここでは、2つのトンネル5a,5bによって構成されたトンネル部5が例示されているが、トンネル部5は2つ以上の複数のトンネルによって構成されていればよい。また、トンネル部5の基端部は、ロタンダ4に、水平回転軸CL4(図2)の回りに揺動自在(上下に揺動自在)に接続されることにより、ロタンダ4に俯仰自在に接続されている。
 また、トンネル部5の先端寄り部分(最も先端側のトンネル5b)には、支持脚としてドライブコラム7が取り付けられている。なお、ドライブコラム7は、キャブ6に取り付けられていてもよい。
 ドライブコラム7には、キャブ6及びトンネル部5を上下移動(昇降)させる昇降装置8が設けられている。昇降装置8は、例えば、2つの柱が入れ子式に嵌合されて伸縮可能に構成された一対の支柱部を有し、この一対の支柱部によってトンネル部5を支持している。この一対の支柱部の伸縮によって昇降装置8はトンネル部5を昇降(上下移動)させることができる。これにより、キャブ6及びトンネル部5は、ロタンダ4を基点として上下方向に揺動運動することができる。
 また、ドライブコラム7には、昇降装置8の下方に、個々に独立して正逆回転駆動可能である2つの走行車輪9(右側走行車輪9R及び左側走行車輪9L)を有する走行装置10が設けられている。走行装置10は、2つの走行車輪9の正回転駆動によって前進走行(矢印F方向への走行)が可能であり、2つの走行車輪9の逆回転駆動によって後進走行(矢印Fとは逆方向への走行)が可能に構成されている。また、走行装置10は、舵角がトンネル部5の伸縮方向(長手方向)に対して、-90度~+90度の範囲内で変更可能なように、回転軸CL2の回りに正逆回転が自在に構成され、走行方向を変更可能である。例えば、2つの走行車輪9を互いに逆方向に回転させることにより、その場において走行方向(走行車輪9の向き)を変更することもできる。走行装置10(走行車輪9)がエプロン上を走行することにより、トンネル部5をロタンダ4のまわりに回転させるとともにトンネル部5を伸縮させることができる。
 キャブ6は、トンネル部5の先端に設けられており、キャブ回転装置6R(図5)によってキャブ6の床面に垂直な回転軸線CL3の回りに正逆回転可能に構成されている。
 また、図3、図4に示すように、航空機3に装着されるキャブ6の床61の先端にはバンパー62が設けられ、このバンパー62の左右方向に並んで、キャブ6と航空機3との間の距離を計測する計測手段としての距離センサ23(例えばレーザー距離計)が複数(この例では2つ)取り付けられている。なお、距離センサ23の設置位置は、適宜変更可能であり、例えば、キャブ6の床61の上に配置されていてもよい。
 また、図4に示すように、キャブ6の先端部分の奥まった位置に航空機3の乗降部(ドア3a)を撮影するための第1,第2カメラ21,22が設置されている。この第1,第2カメラ21,22は、キャブ6に対して撮影方向を調整(変更)できるものが好ましく、画角を調整できるものであってもよい。本例では、第1カメラ21の上方に第2カメラ222が配置されているが、これらの第1,第2カメラ21,22は、互いに離れて配置されて航空機3のドア3aを撮影できれば、設置位置は適宜変更してもよい。
 また、キャブ6の先端部分には、クロージャ63が設けられている。クロージャ63は、前後方向に展開及び収縮可能な蛇腹部を備え、キャブ6を航空機3に装着して、蛇腹部を前方へ展開することにより、蛇腹部の前端部を航空機3の乗降部(ドア3a)の周囲に当接できる。
 また、キャブ6の例えば側壁には、前進可能なホイル64Aを有するレベル検知装置64が配置されている。レベル検知装置64は、キャブ6を航空機3に装着した後、乗客の乗降や荷物の積み下ろし等によって航空機3が上下動した場合に、キャブ6に対する航空機3の相対的な上下の移動量を検出する機器である。レベル検知装置64を作動させると、ホイル64Aが前進して航空機3の機体表面へ最適な圧力で当接し、航空機3が上下動するとホイル64Aが回転する。このホイル64Aの回転方向及び回転角度に基づいて、航空機3の上下の移動量を検出し、この移動量が所定量以上になると、この移動量を制御装置50へ出力する。制御装置50は、キャブ6が航空機3の上下動に追従移動するようにドライブコラム7の昇降装置8を制御する。
 さらに、図5に示すように、旅客搭乗橋1には、ロタンダ4の回転角度φr(図1)を検出するロタンダ用角度センサ24と、トンネル部5に対するキャブ6の回転角度φc(図1)を検出するキャブ用角度センサ25と、トンネル部5に対する走行装置10の回転角度(走行方向を示す角度)φw(図1)を検出する走行用角度センサ26と、昇降装置8の昇降量を検出する昇降センサ27と、距離計等で構成されトンネル部5の長さを検出するトンネル長さセンサ28とが、適宜な位置に設けられている。
 なお、図1では、トンネル部5が水平状態(図2の傾斜角度β=0の状態)で、キャブ6の先端部分が航空機3の方を向いた状態が示されている。一方、図2では、トンネル部5が傾斜角度βにて傾斜した状態で、キャブ6の先端部分がトンネル部5の伸長方向と同方向を向いた状態(キャブ6の回転角度φc=0の場合)が示されている。図2に示すように、旅客搭乗橋1は、トンネル部5の伸縮方向と昇降装置8の伸縮方向(昇降方向)とが直交するように、トンネル部5に昇降装置8が取り付けられている。
 そして、キャブ6の内部には、図5に示すような操作盤31が設けられている。操作盤31には、昇降装置8によるトンネル部5及びキャブ6の昇降や、キャブ6の回転等を操作するための各種操作スイッチ33の他、走行装置10を操作するための操作レバー32及び表示装置34が設けられている。操作レバー32は、多方向の自由度をもったレバー状入力装置(ジョイスティック)によって構成されている。操作レバー32及び各種操作スイッチ33によって操作装置30が構成されている。なお、操作装置30の構成は、適宜変更可能である。
 また、制御装置50は、操作盤31と相互に電気回路で接続され、操作装置30の操作に基づく動作指令等の情報が入力されるとともに、各センサ23~28の出力信号等が入力されて、旅客搭乗橋1の動作を制御するとともに、表示装置34に表示される情報等を出力する。
 なお、制御装置50には、CPU等の演算処理部と、ROM、RAM等の記憶部とを有している。記憶部には、旅客搭乗橋1を動作させるための制御プログラム及び当該動作に必要な情報が予め記憶されており、演算処理部が制御プログラムを実行することにより、制御装置50は、旅客搭乗橋1の各部の動作(走行装置10、昇降装置8及びキャブ回転装置6R等の動作)の制御等を行う。なお、旅客搭乗橋1の動作中に記憶される情報も記憶部に記憶される。制御装置50は、集中制御する単独の制御装置によって構成されていてもよいし、インターネットやLANを経由して互いに協働して分散制御する複数の制御装置によって構成されていてもよい。制御装置50は、例えば、キャブ6または最も先端側のトンネル5b等に設けられている。
 制御装置50は、図1に示すようなXYZ直交座標系を用いて、リアルタイムで旅客搭乗橋1の各部の位置(座標)を把握している。すなわち絶対座標として、ロタンダ4の回転軸CL1とエプロンEP(図2)の平面との交点を原点(0,0,0)にして、X軸、Y軸、Z軸(上下方向に延びる軸)をとり、旅客搭乗橋1の各部の位置座標をあらわす。この位置座標のX座標値、Y座標値、Z座標値は、それぞれ、ロタンダ4の回転軸CL1の位置である原点(0,0,0)からの距離(例えば単位〔mm〕)を示す。この例では、X座標値は図1において原点(0,0,0)より右側を正の値とし、左側を負の値とする。また、Y座標値は原点(0,0,0)に対しターミナルビル2と反対方向を正の方向とし、Z座標値は原点(0,0,0)より上方向を正の方向とする。
 制御装置50は、航空機3及び旅客搭乗橋1の各部の位置を、前述の3次元直交座標系(XYZ直交座標系)を用いた位置座標として表現する。よって、以下に記載する「位置座標」は、3次元位置座標のことである。
 図1における「Ed」はトンネル部5の中心線(長手方向に延びる中心線)を示し、前述のロタンダ用角度センサ24により検出されるロタンダ4の回転角度φrは、平面視において、X軸に対して反時計回りに計算されるトンネル部5の中心線Edがなす角度であり、特定の水平方向(X軸の正方向)に対するロタンダ4の回転角度である。また、キャブ用角度センサ25により検出されるキャブ6の回転角度φcは、トンネル部5の中心線Edに対してキャブ6の回転角度を示している。また、走行用角度センサ26により検出される走行装置10の回転角度φwは、平面視において、トンネル部5の中心線Edに対して走行装置10の回転角度を示している。
 また、図1に示すキャブ6の回転角度θcは、特定の水平方向(X軸の正方向)に対するキャブ6の回転角度である。以下、キャブ6の回転角度θcのことをキャブ絶対角度θcと言い、キャブ6の回転角度φcのことをキャブ相対角度φcと言う場合がある。トンネル部5が水平状態(図2の傾斜角度β=0)の場合には、θc=φc+φrである。
 図2において、直線100は、ロタンダ4とトンネル部5との接続部(CL4)からトンネル部5の伸縮方向に伸ばした直線を示し、走行装置10(2つの走行車輪9)の中心点P2から直線100までの距離を、伸縮可能な昇降装置8の長さLAとして昇降センサ27により検出することができる。
 制御装置50は、キャブ6の中心点P1から先端部6aの基準点6Pまでの距離LB(所定値)と、キャブ6の中心点P1からトンネル部5の先端までの距離LC(所定値)と、トンネル部5の先端からドライブコラム7の取付位置までの距離LD(所定値)と、ロタンダ4の中心点からトンネル部5の接続部(水平回転軸CL4の位置)までの距離LR(所定値)と、上記接続部の高さHR(所定値)と、走行車輪9の半径HW(所定値)と、基準点6Pと直線100との高低差LGとを予め記憶部に記憶している。トンネル部5の基端(上記接続部)からドライブコラム7の取付位置までの距離LEは、トンネル長さセンサ28で検出されるトンネル部5の長さLFから距離LDを減じることにより算出できる。
 ここで、トンネル長さセンサ28の検出値LFを用いて算出できる距離LEと、昇降センサ27により検出される昇降装置8の長さLAとが決まれば、ロタンダ4の中心点から走行装置10の中心点P2までの水平距離L2及び走行装置10の中心点P2の高さ(Z座標値=HWで一定)は一意に決まる。同様に、ロタンダ4の中心点からキャブ6の中心点P1までの水平距離L1及びキャブ6の中心点P1の高さ(Z座標値)も一意に決まる。さらに、ロタンダ4の回転角度φrが決まれば、走行装置10の中心点P2及びキャブ6の中心点P1の各XY座標値が一意に決まる。この結果、走行装置10の中心点P2及びキャブ6の中心点P1の位置座標が一意に決まる。さらに、キャブ用角度センサ25で検出されるキャブ相対角度φcが決まれば、キャブ6の先端部6aの基準点6Pの位置座標も一意に決まる。
 よって、制御装置50は、トンネル長さセンサ28の検出値LFと昇降センサ27の検出値LAとロタンダ用角度センサ24の検出値φrとを逐次取得し、これらから順運動学に基づいて、走行装置10の中心点P2の位置座標及びキャブ6の中心点P1の位置座標を算出することができる。また、制御装置50は、前述の検出値LF,LA、φrに加えてキャブ相対角度φcも逐次取得するので、順運動学に基づいて、キャブ6の先端部6aの基準点6Pの位置座標も算出することができる。なお、キャブ6を回転軸線CL3方向の上方から見て、キャブ6の基準点6Pと中心点P1とを結ぶ線分と、トンネル部5の中心線Edとのなす角度が、キャブ相対角度φcとなるように、キャブ6の基準点6Pが定められている。そして、キャブ6の基準点6Pと中心点P1とを通る直線と、キャブ6の先端部6aに沿った直線とが直交している。
 次に、旅客搭乗橋1の動作の一例について説明する。
航空機3がエプロンに到着していないときには、旅客搭乗橋1は図1の二点鎖線で示される所定の待機位置で待機している。航空機3の正規の停止位置は、航空機3の機軸が機体誘導ラインAL上で、かつ、機体誘導ラインALの延伸方向において定められた所定の位置である。航空機3は、正規の停止位置を目標にして停止されるが、実際の停止位置が正確に正規の停止位置になるとは限らない。なお、機体誘導ラインALは、エプロンの地面上に描かれている。また、機体誘導ラインALがX軸となす角度αは、所定値として、予め制御装置50の記憶部に記憶されている。
 旅客搭乗橋1の待機位置は、旅客搭乗橋1を航空機3の乗降部(ドア3a)に装着する際に移動の起点となる移動開始位置である。旅客搭乗橋1が航空機3の乗降部に装着される際には、キャブ6が待機位置から一時停止位置へ移動し、その後、装着位置へ移動することによりキャブ6が乗降部に装着される。そして、キャブ6が乗降部から離脱したときには待機位置に戻って停止し、次の航空機の乗降部への装着動作が開始されるまで、待機位置で待機している。なお、キャブ6が航空機3から離脱して待機位置へ戻る際に、走行装置10の目標とする待機位置における走行装置10の中心点P2の位置座標は、予め制御装置50に記憶されている。
 この旅客搭乗橋1では、航空機3に装着されるまでの動作が制御装置50による制御によって自動で行われる。この自動制御は、以下のようにして行われる。図6は、旅客搭乗橋1のキャブ6を航空機3へ装着する時の動作の一例を示すフローチャートである。この旅客搭乗橋1の動作は、制御装置50の制御によって実現される。なお、以下の説明で使用する「位置座標」も、3次元直交座標系(XYZ直交座標系)を用いた3次元位置座標のことである。
 旅客搭乗橋1(キャブ6)が待機位置において、オペレータが操作盤31の自動制御のスタートボタン(操作スイッチ33の一つ)を押すことにより、以下の自動制御が開始される。
 上記のスタートボタンが押されると、制御装置50は、ステップS1の第1の乗降部位置算出処理を行う。このステップS1では、制御装置50は、まず、第1,第2カメラ21,22に航空機3の乗降部(ドア3a)を撮影させる。ここで、航空機3の乗降部が撮影視野に入らない場合には、撮影視野に入るようにキャブ回転装置6Rを駆動してカメラ21,22の撮影方向等を調整させるようにしてもよい。図7は、キャブが待機位置での第1カメラ21の撮影画像の一例を示す概略図である。航空機3では、ドア3aが視認できるようにドア3aの輪郭部分にペイントが施されている(ペイント部分41)。図7の撮影画像A1におけるx及びy軸はカメラ座標系を示す。
 続いて、制御装置50は、2つのカメラ21,22の撮影画像データを取得し、これらの撮影画像データに基づいて、航空機3のドア3aの基準点3Pの位置座標(XYZ直交座標系における位置座標)を算出する。このとき、ドア3aの輪郭のペイント部分41や補強プレート3cの形状等に基づいてドア3a及びそのドア3aの基準点3Pを検出することができる。ドア3aの基準点3Pは、図7に示すようにドアシルの中央部である(またはドア3aの直下に設けられている補強プレート3cの上端中央部としてもよい)。
 制御装置50は、2つのカメラ21,22の撮影画像データから画像処理を行って、ドア3aの基準点3Pを検出し、2つのカメラ21,22から見たドア3aの基準点3Pの方向を算出し、この算出したカメラ21,22からの2つの方向と、キャブ6に対する2つのカメラ21,22の取付位置および取付角度と、待機位置におけるキャブ6の中心点P1の位置座標等を用いて、ドア3aの基準点3Pの位置座標を算出することができる。
 次に制御装置50は、ステップS2のキャブ停止位置算出処理を行う。このステップS2では、制御装置50は、最初の移動先となる一時停止位置におけるキャブ6の先端部6a(バンパー62)の所定の基準点6Pの目標位置の位置座標(目標位置座標)を算出する。
 図8(A)は、一時停止位置におけるキャブ6の基準点6Pの目標位置の一例を示す図である。一時停止位置におけるキャブ6の基準点6Pの目標位置の高さは、例えば、ドア3aの基準点3Pと同じ高さとする。また、基準点6Pの目標位置の水平位置は、ドア3aの基準点3Pから機体誘導ラインALと平行方向にドア3aの左側へ所定距離Da離れた位置をE1とすると、この位置E1から、さらに機体誘導ラインALと垂直方向であって航空機3から離れる方向へ所定距離Db(例えば1000mm)移動した位置とする。このようにして、一時停止位置におけるキャブ6の基準点6Pの目標位置座標を算出する。
 次に制御装置50は、ステップS3の第1の逆運動学計算処理を行う。このステップS3では、制御装置50は、ステップS2により算出された一時停止位置におけるキャブ6の基準点6Pの目標位置座標と、一時停止位置における特定の水平方向(X軸正方向)に対するキャブ6の第1の所望回転角度(θc1)とに基づいて逆運動学計算(逆運動学に基づく計算)を行うことにより、一時停止位置における走行装置10の中心点P2の目標位置座標と、昇降装置8の目標長さLA1(昇降装置8の長さLAの目標値)と、キャブ相対角度φcの目標値φc1とを算出する。ここで、一時停止位置における特定の水平方向(X軸正方向)に対するキャブ6の第1の所望回転角度(θc1)とは、一時停止位置におけるキャブ絶対角度θcの所望値である。この所望値(θc1)は、平面視において、キャブ先端部6aが機体誘導ラインALと平行になる状態のキャブ絶対角度θcとする。つまり、キャブ絶対角度θcの所望値(θc1)は、平面視において、X軸正方向と、機体誘導ラインALと直交する水平方向とのなす角度になる。ここで、機体誘導ラインALがX軸となす角度がα(所定値)であるので、キャブ絶対角度θcの所望値(θc1)は、(α+90)度として算出できる。
 このステップS3では、ステップS31を行ってからステップS32を行うことが好ましい。ステップS31の第1計算処理では、まず、キャブ6が水平状態(キャブ6の回転軸線CL3が垂直状態)であると仮定して、一時停止位置におけるキャブ6の基準点6Pの目標位置座標と、一時停止位置におけるキャブ6の第1の所望回転角度θc1とを用いて、一時停止位置におけるキャブ6の中心点P1のXY座標(水平2方向における座標)と、第1の所望回転角度θc1に対応するキャブ相対角度の目標値(キャブの目標回転角度)φc1とを近似的に算出する。
 ここでは、例えば、キャブ6の先端の基準点6PのXY座標と、第1の所望回転角度θc1と、キャブ6の中心点P1と基準点6Pとの距離LB(所定値)とを用いて、キャブ6の中心点P1のXY座標を算出する。
そして、キャブ6の中心点P1のXY座標からロタンダ4の回転角度φr1を算出し、キャブ相対角度の目標値φc1を、φc1=θc1-φr1として算出する。
 さらに、キャブ6が水平状態であると仮定して、一時停止位置におけるキャブ6の基準点6Pからトンネル部5の中心線Edに下した垂線の足P11の水平2方向における座標(XY座標)を算出し、垂線の足P11の高さ方向の座標(Z座標)を一時停止位置におけるキャブ6の基準点6Pの高さ方向の座標(Z座標)と同一として、垂線の足P11の位置座標(XYZ座標)を算出する。なお、上記の垂線の足P11は、キャブ6が水平状態でない場合もキャブ6の基準点6Pの高さと同じ高さになる。
 上記の垂線の足P11のXY座標は、例えば、次のようにして算出してもよい。まず、キャブ6の中心点P1と垂線の足P11との距離F1を算出する。この距離F1は、キャブ6の中心点P1と基準点6Pとの距離LBと、キャブ相対角度の目標値φc1とを用いて算出できる。つぎに、距離F1とロタンダ4の回転角度φr1とを用いて、キャブ6の中心点P1に対するX軸方向の差分及びY軸方向の差分を算出し、これらの差分のそれぞれを、キャブ6の中心点P1のX座標、Y座標に加えることにより、垂線の足P11のX座標、Y座標を算出することができる。
 次のステップS32の第2計算処理では、上記第1計算処理で算出した垂線の足P11の位置座標を用いて逆運動学計算を行うことにより、一時停止位置における走行装置10の中心点P2の目標位置座標と、昇降装置8の目標長さLA1とを算出する。なお、垂線の足P11とキャブ6の中心点P1とは、トンネル部5の伸縮方向に距離F1をとってキャブ6の回転軸線CL3と直交する同一平面内に存在する。
 なお、上記では、ステップS3の逆運動学計算処理をステップS31とステップS32の計算処理によって行うようにしたが、これに限らない。例えば、収束計算などの他の方法によって行うようにしてよい。
 次に制御装置50は、ステップS4の第1の移動処理を行う。この第1の移動処理では、キャブ6を待機位置から一時停止位置へ移動させる。つまり、制御装置50は、走行装置10の中心点P2がステップS3により算出された目標位置座標となるように走行装置10を走行動作させるとともに、昇降装置8の長さLAがステップS3により算出された目標長さLA1となるように昇降装置8を伸縮動作させるとともに、キャブ相対角度φcがステップS3により算出された目標回転角度(φc1)となるようにキャブ回転装置6Rを駆動させることにより、キャブ6を待機位置から一時停止位置へ移動させる。
 次に制御装置50は、キャブ6が一時停止位置において、ステップS5のキャブ回転処理を行う。このキャブ回転処理では、制御装置50は、キャブ6が一時停止位置で停止しているときに、一対の各々の距離センサ23で計測されるキャブ6の先端部6aと航空機3との距離が等しくなるようにキャブ回転装置6Rを駆動させる。つまり、平面視において、キャブ6の先端部6aを、航空機3のキャブ6が装着される部分(ドア3a及びその近傍部分)の表面の水平方向に延びる接線TLと平行にする。
 次に制御装置50は、ステップS6の第2の乗降部位置算出処理を行う。このステップS6では、制御装置50は、まず、第1,第2カメラ21,22のいずれか一方のカメラ(例えばカメラ21)に航空機3の乗降部(ドア3a)を撮影させる。続いて、制御装置50は、撮影したカメラ21の撮影画像データを取得し、この撮影画像データと、距離センサ23で計測されたキャブ6の先端部6aと航空機3との距離と、キャブ6に対する前記一方のカメラ(例えばカメラ21)の取付位置および取付角度と、一時停止位置におけるキャブ6の中心点P1の位置座標等に基づいて、航空機3のドア3aの基準点3Pの位置座標(XYZ直交座標系における位置座標)を算出する。ここで、算出したドア3aの基準点3Pの位置座標は、近距離で撮影した画像データを用いるとともに、距離センサ23により正確な距離が計測できているので、ステップS1で算出したものに比べて精度が高い。
 次に制御装置50は、ステップS7のキャブ装着位置算出処理を行う。このステップS7では、制御装置50は、ステップS6により算出されたドア3aの基準点3Pの位置座標に基づいて、キャブ6の先端部6aがドア3aに装着される位置となるキャブ6の装着位置におけるキャブ6の基準点6Pの目標位置座標を算出する。
 図8(B)は、装着位置におけるキャブ6の基準点6Pの目標位置の一例を示す図である。装着位置におけるキャブ6の基準点6Pの目標位置の高さは、例えば、ドア3aの基準点3Pよりも所定距離(例えば150mm)低い高さとする。また、基準点6Pの目標位置の水平位置は、平面視においてドア3aの基準点3Pから接線TLに沿ってドア3aの左側へ所定距離Da離れた位置をE2とすると、この位置E2から、さらに接線TLと垂直方向であって航空機3から離れる方向へ所定距離Dc(例えば20mm)移動した位置とする。このようにして、装着位置におけるキャブ6の基準点6Pの目標位置座標を算出する。上記接線TLは、航空機3のキャブ6が装着される部分(ドア3a及びその近傍部分)の表面の水平方向に延びる接線である。
 次に制御装置50は、ステップS8の第2の逆運動学計算処理を行う。このステップS8では、制御装置50は、ステップS7により算出された装着位置におけるキャブ6の基準点6Pの目標位置座標と、装着位置における特定の水平方向(X軸正方向)に対するキャブ6の第2の所望回転角度(θc2)とに基づいて逆運動学計算(逆運動学に基づく計算)を行うことにより、装着位置における走行装置10の中心点P2の目標位置座標と、昇降装置8の目標長さLA2(昇降装置8の長さLAの目標値)と、キャブ相対角度φcの目標値φc2とを算出する。ここで、装着位置における特定の水平方向(X軸正方向)に対するキャブ6の第2の所望回転角度(θc2)とは、装着位置におけるキャブ絶対角度θcの所望値である。この所望値(θc2)は、平面視において、キャブ先端部6aが上記接線TLと平行になる状態のキャブ絶対角度θcとする。つまり、キャブ絶対角度θcの所望値(θc2)は、平面視において、X軸正方向と、上記接線TLと直交する水平方向とのなす角度になる。現時点では、ステップS5のキャブ6の回転処理によって、キャブ6の先端部6aが接線TLと平行になっているので、現時点においてロタンダ用角度センサ24によって検出されるロタンダ4の回転角度φrと、キャブ用角度センサ25によって検出されるキャブ相対角度φcとを加算して、キャブ絶対角度θcの所望値(θc2)を算出できる。なお、ステップS5のキャブ6の回転処理において、停止誤差が発生し、キャブ6の先端部6aと接線TLとが平行からずれている場合には、そのずれに相当する角度をさらに加算して上記所望値(θc2)を算出するようにしてもよい。
 このステップS8では、ステップS81を行ってからステップS82を行うことが好ましい。ステップS81の第3計算処理では、まず、キャブ6が水平状態(キャブ6の回転軸線CL3が垂直状態)であると仮定して、装着位置におけるキャブ6の基準点6Pの目標位置座標と、装着位置におけるキャブ6の第2の所望回転角度θc2とを用いて、装着位置におけるキャブ6の中心点P1のXY座標(水平2方向における座標)と、第2の所望回転角度θc2に対応するキャブ相対角度の目標値(キャブの目標回転角度)φc2とを近似的に算出する。
 ここでは、例えば、キャブ6の先端の基準点6PのXY座標と、第2の所望回転角度θc2と、キャブ6の中心点P1と基準点6Pとの距離LB(所定値)とを用いて、キャブ6の中心点P1のXY座標を算出する。
そして、キャブ6の中心点P1のXY座標からロタンダ4の回転角度φr2を算出し、キャブ相対角度の目標値φc2を、φc2=θc2-φr2として算出する。
 さらに、キャブ6が水平状態であると仮定して、装着位置におけるキャブ6の基準点6Pからトンネル部5の中心線Edに下した垂線の足P12の水平2方向における座標(XY座標)を算出し、垂線の足P12の高さ方向の座標(Z座標)を装着位置におけるキャブ6の基準点6Pの高さ方向の座標(Z座標)と同一として、垂線の足P12の位置座標(XYZ座標)を算出する。なお、上記の垂線の足P12は、キャブ6が水平状態でない場合もキャブ6の基準点6Pの高さと同じ高さになる。
 上記の垂線の足P12のXY座標は、例えば、次のようにして算出してもよい。まず、キャブ6の中心点P1と垂線の足P12との距離F2を算出する。この距離F2は、キャブ6の中心点P1と基準点6Pとの距離LBと、キャブ相対角度の目標値φc2とを用いて算出できる。つぎに、距離F2とロタンダ4の回転角度φr2とを用いて、キャブ6の中心点P1に対するX軸方向の差分及びY軸方向の差分を算出し、これらの差分のそれぞれを、キャブ6の中心点P1のX座標、Y座標に加えることにより、垂線の足P12のX座標、Y座標を算出することができる。
 次のステップS82の第4計算処理では、上記第3計算処理で算出した垂線の足P12の位置座標を用いて逆運動学計算を行うことにより、装着位置における走行装置10の中心点P2の目標位置座標と、昇降装置8の目標長さLA2とを算出する。なお、垂線の足P12とキャブ6の中心点P1とは、トンネル部5の伸縮方向に距離F2をとってキャブ6の回転軸線CL3と直交する同一平面内に存在する。
 なお、上記では、ステップS8の逆運動学計算処理をステップS81とステップS82の計算処理によって行うようにしたが、これに限らない。例えば、収束計算などの他の方法によって行うようにしてよい。
 次に制御装置50は、ステップS9の第2の移動処理を行う。この第2の移動処理では、キャブ6を一時停止位置から装着位置へ移動させる。ここで、制御装置50は、例えば、昇降装置8の長さLAがステップS8により算出された目標長さLA2となるように昇降装置8を伸縮動作させ、キャブ相対角度φcがステップS8により算出された目標回転角度(φc2)となるようにキャブ回転装置6Rを駆動させる。その後、走行装置10の中心点P2がステップS8により算出された目標位置座標となるように走行装置10を走行動作させる。ここで、走行装置10は、その中心点P2が目標位置座標に向かうように走行動作させ、前述のように中心点P2が目標位置座標に到達した時点で停止させるようにしてもよいし、走行中に距離センサ23で計測されるキャブ6の先端部6aと航空機3との距離が所定距離になった時点で停止させるようにしてもよい。以上により、キャブ6が航空機3に装着される。
 次に制御装置50は、ステップS10で、レベル検知装置64を作動させるとともにクロージャ63を展開させる。ここで、レベル検知装置64の作動とクロージャ63の展開とはどちらが先に行われてもよい。なお、ステップS10の処理は、オペレータの操作に基づいて行われるようにしてもよい。
 本実施形態では、航空機3及び旅客搭乗橋1の各部の位置を3次元直交座標系を用いた位置座標で表現し、キャブ6が待機位置において、第1及び第2カメラ21,22で撮影した乗降部の画像に基づいて航空機3の乗降部の基準点3Pの位置座標を算出し、これに基づいて、一時停止位置におけるキャブ6の先端部6aの基準点6Pの目標位置座標を算出する。そして、この一時停止位置におけるキャブ6の基準点6Pの目標位置座標とキャブ6の姿勢(第1の所望回転角度θc1)とに基づいて逆運動学計算を行うことにより、一時停止位置における走行装置10の中心点P2の目標位置座標と昇降装置8の目標長さLA1とキャブ相対角度φcの目標値φc1とを算出し、この算出結果に基づいて走行装置10、昇降装置8及びキャブ回転装置6Rを駆動させ、キャブ6を待機位置から一時停止位置へ移動させるようにしている。
 上記のように、キャブ6が待機位置において、キャブ6に取り付けた第1及び第2のカメラ21,22で航空機3の乗降部を撮影し、その乗降部の基準点3Pの位置を絶対座標(3次元直交座標系を用いた位置座標)によって算出し、この絶対座標に基づいて一時停止位置におけるキャブ6の基準点6Pの目標位置座標を算出するようにしている。よって、キャブ6が待機位置から一時停止位置へ移動中に、航空機3の乗降部の基準点3Pの位置を算出する必要がないので、第1及び第2のカメラ21,22による撮影を行う必要もなく、キャブ6の目標位置(一時停止位置)への移動を精度良く行うことが可能になる。
 また、キャブ6が一時停止位置において、キャブ6の先端部6aと航空機3との距離が等しくなるようにキャブ6を回転させた後、第1及び第2カメラ21,22のいずれか一方のカメラで撮影した乗降部の画像と、距離センサ23により計測されたキャブ6の先端部6aと航空機3との距離とに基づいて、航空機3の乗降部の基準点3Pの位置座標を算出し、これに基づいて、装着位置におけるキャブ6の先端部6aの基準点6Pの目標位置座標を算出する。そして、この装着位置におけるキャブ6の基準点6Pの目標位置座標とキャブ6の姿勢(第2の所望回転角度θc2)とに基づいて逆運動学計算を行うことにより、装着位置における走行装置10の中心点P2の目標位置座標と昇降装置8の目標長さLA2とキャブ相対角度φcの目標値φc2とを算出し、この算出結果に基づいて走行装置10、昇降装置8及びキャブ回転装置6Rを駆動させ、キャブ6を一時停止位置から装着位置へ移動させるようにしている。
 上記のように、キャブ6が一時停止位置においても、航空機3の乗降部の基準点3Pの位置を絶対座標によって算出し、この絶対座標に基づいて装着位置におけるキャブ6の基準点6Pの目標位置座標を算出するようにしている。よって、キャブ6が一時停止位置から装着位置へ移動中に、航空機3の乗降部の基準点3Pの位置を算出する必要がないので、カメラによる撮影を行う必要もなく、キャブ6の目標位置(装着位置)への移動を精度良く行うことが可能になる。また、一時停止位置では、距離センサ23を用いてキャブ6の先端部6aと航空機3との距離を計測しているので、乗降部の基準点3Pの位置座標を高精度に算出することができ、キャブ6の装着位置も精度よく算出することができる。
 よって、キャブ6の航空機3への自動装着を良好に行うことが可能になる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明は、キャブの目標位置への移動を精度良く行うことが可能になる旅客搭乗橋等として有用である。
1 旅客搭乗橋
3 航空機
3a ドア
4 ロタンダ
5 トンネル部
6 キャブ
6R キャブ回転装置
8 昇降装置
10 走行装置
21 第1カメラ
22 第2カメラ
23 距離センサ
50 制御装置

Claims (6)

  1.  ターミナルビルに接続され、鉛直軸線まわりに正逆回転自在なロタンダと、
     基端が前記ロタンダに俯仰自在に接続されるとともに長手方向に伸縮自在に構成されたトンネル部と、
     前記トンネル部の先端に回転自在に設けられたキャブと、
     前記トンネル部または前記キャブに取り付けられ、長手方向に伸縮動作することにより前記トンネル部または前記キャブを昇降させる昇降装置と、
     前記昇降装置の下方に取り付けられて地面を走行し、中心点を通る軸線まわりに正逆回転することにより走行方向を変更可能に構成された走行装置と、
     前記キャブを回転させるキャブ回転装置と、
     前記キャブに取り付けられ、航空機の乗降部を撮影する第1及び第2のカメラと、
     前記走行装置、前記昇降装置及び前記キャブ回転装置を制御する制御装置と、
    を備えた旅客搭乗橋であって、
     前記制御装置は、
     前記航空機及び前記旅客搭乗橋の各部の位置を、所定位置を原点とする3次元直交座標系を用いた位置座標で表現するよう構成されており、
     前記キャブが移動の起点となる所定の待機位置にあるときに、前記第1及び第2のカメラに前記乗降部を撮影させ、この撮影させた前記乗降部の画像に基づいて前記航空機の乗降部の基準点の位置座標を算出する第1の乗降部位置算出処理と、
     前記第1の乗降部位置算出処理により算出された前記乗降部の基準点の位置座標に基づいて、前記キャブの先端部が前記乗降部から所定距離前方の位置となる前記キャブの一時停止位置における前記キャブの先端部の基準点の目標位置座標を算出するキャブ停止位置算出処理と、
     前記キャブ停止位置算出処理により算出された前記一時停止位置における前記キャブの基準点の目標位置座標と、前記一時停止位置における特定の水平方向に対する前記キャブの第1の所望回転角度とに基づいて逆運動学計算を行うことにより、前記一時停止位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さと前記トンネル部に対する前記キャブの目標回転角度とを算出する第1の逆運動学計算処理と、
     前記走行装置の中心点が前記第1の逆運動学計算処理により算出された前記目標位置座標となるように前記走行装置を走行動作させる処理と、前記昇降装置の長さが前記第1の逆運動学計算処理により算出された前記目標長さとなるように前記昇降装置を伸縮動作させる処理と、前記トンネル部に対する前記キャブの回転角度が前記第1の逆運動学計算処理により算出された前記目標回転角度となるように前記キャブ回転装置を駆動させる処理とを実施することにより、前記キャブを前記待機位置から前記一時停止位置へ移動させる第1の移動処理と、
     を行うよう構成された旅客搭乗橋。
  2.  前記第1の逆運動学計算処理は、
     前記キャブが水平状態であると仮定して、前記一時停止位置における前記キャブの基準点の目標位置座標と、前記一時停止位置における前記特定の水平方向に対する前記キャブの第1の所望回転角度とを用いて、前記一時停止位置における前記キャブの中心点の水平2方向における座標と、前記第1の所望回転角度に対応する前記トンネル部に対する前記キャブの目標回転角度とを近似的に算出した後、前記キャブが水平状態であると仮定して、前記一時停止位置における前記キャブの基準点から前記トンネル部の中心線に下した垂線の足の水平2方向における座標を算出し、前記垂線の足の高さ方向の座標を前記一時停止位置における前記キャブの基準点の高さ方向の座標と同一として、前記垂線の足の位置座標を算出する第1計算処理と、
     前記第1計算処理で算出した前記垂線の足の位置座標を用いて逆運動学計算を行うことにより、前記一時停止位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さとを算出する第2計算処理と、を有する、
     請求項1に記載の旅客搭乗橋。
  3.  前記第1の所望回転角度は、
     平面視において、前記特定の水平方向と、エプロン上に描かれた機体誘導ラインと直交する水平方向とのなす角度である、
     請求項1または2に記載の旅客搭乗橋。
  4.  水平方向に離れて前記キャブに取り付けられ、前記キャブの先端部と前記航空機との距離を計測する一対の距離センサを、さらに備え、
     前記制御装置は、さらに、
     前記キャブが前記一時停止位置で停止しているときに、前記一対の各々の距離センサにより計測される前記キャブの先端部と前記航空機との距離が等しくなるように前記キャブ回転装置を駆動させて前記キャブを回転させるキャブ回転処理と、
     前記キャブ回転処理の後、前記第1及び第2のいずれか一方のカメラに前記乗降部を撮影させ、この撮影させた前記乗降部の画像と、前記距離センサにより計測された前記キャブの先端部と前記航空機との距離とに基づいて、前記乗降部の基準点の位置座標を算出する第2の乗降部位置算出処理と、
     前記第2の乗降部位置算出処理により算出された前記乗降部の基準点の位置座標に基づいて、前記キャブの先端部が前記乗降部に装着される位置となる前記キャブの装着位置における前記キャブの基準点の目標位置座標を算出するキャブ装着位置算出処理と、
     前記キャブ装着位置算出処理により算出された前記装着位置における前記キャブの基準点の目標位置座標と、前記装着位置における前記特定の水平方向に対する前記キャブの第2の所望回転角度とに基づいて逆運動学計算を行うことにより、前記装着位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さと前記トンネル部に対する前記キャブの目標回転角度とを算出する第2の逆運動学計算処理と、
     前記走行装置の中心点が前記第2の逆運動学計算処理により算出された前記目標位置座標に向かうように前記走行装置を走行動作させる処理と、前記昇降装置の長さが前記第2の逆運動学計算処理により算出された前記目標長さとなるように前記昇降装置を伸縮動作させる処理と、前記トンネル部に対する前記キャブの回転角度が前記第2の逆運動学計算処理により算出された前記目標回転角度となるように前記キャブ回転装置を駆動させる処理とを実施することにより、前記キャブを前記一時停止位置から前記装着位置へ移動させる第2の移動処理と、を行うよう構成された、
     請求項1~3のいずれかに記載の旅客搭乗橋。
  5.  前記第2の逆運動学計算処理は、
     前記キャブが水平状態であると仮定して、前記装着位置における前記キャブの基準点の目標位置座標と、前記装着位置における前記特定の水平方向に対する前記キャブの第2の所望回転角度とを用いて、前記装着位置における前記キャブの中心点の水平2方向における座標と、前記第2の所望回転角度に対応する前記トンネル部に対する前記キャブの目標回転角度とを近似的に算出した後、前記キャブが水平状態であると仮定して、前記装着位置における前記キャブの基準点から前記トンネル部の中心線に下した垂線の足の水平2方向における座標を算出し、前記垂線の足の高さ方向の座標を前記装着位置における前記キャブの基準点の高さ方向の座標と同一として、前記垂線の足の位置座標を算出する第3計算処理と、
     前記第3計算処理で算出した前記垂線の足の位置座標を用いて逆運動学計算を行うことにより、前記装着位置における前記走行装置の中心点の目標位置座標と前記昇降装置の目標長さとを算出する第4計算処理と、を有する、
     請求項4に記載の旅客搭乗橋。
  6.  前記第2の所望回転角度は、
     平面視において、前記特定の水平方向と、前記航空機の前記キャブが装着される部分の水平方向に延びる接線と直交する水平方向とのなす角度である、
     請求項4または5に記載の旅客搭乗橋。
PCT/JP2021/013257 2021-03-29 2021-03-29 旅客搭乗橋 WO2022208601A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/013257 WO2022208601A1 (ja) 2021-03-29 2021-03-29 旅客搭乗橋
JP2023509915A JP7449448B2 (ja) 2021-03-29 2021-03-29 旅客搭乗橋
EP21933502.3A EP4316994A1 (en) 2021-03-29 2021-03-29 Passenger boarding bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013257 WO2022208601A1 (ja) 2021-03-29 2021-03-29 旅客搭乗橋

Publications (1)

Publication Number Publication Date
WO2022208601A1 true WO2022208601A1 (ja) 2022-10-06

Family

ID=83455712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013257 WO2022208601A1 (ja) 2021-03-29 2021-03-29 旅客搭乗橋

Country Status (3)

Country Link
EP (1) EP4316994A1 (ja)
JP (1) JP7449448B2 (ja)
WO (1) WO2022208601A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420414B2 (ja) 1987-05-02 1992-04-02 Neos Kk
JP2015174185A (ja) * 2014-03-14 2015-10-05 三菱重工業株式会社 ロボットのシミュレーション装置及び方法、制御装置、及びロボットシステム
JP2016013613A (ja) * 2014-06-11 2016-01-28 キヤノン株式会社 ロボット制御方法、ロボット装置、プログラム、記録媒体及び組立部品の製造方法
WO2020194933A1 (ja) * 2019-03-25 2020-10-01 新明和工業株式会社 旅客搭乗橋の走行制御方法
JP2020175727A (ja) 2019-04-16 2020-10-29 三菱重工交通機器エンジニアリング株式会社 ボーディングブリッジ及びその制御装置
JP2020175728A (ja) 2019-04-16 2020-10-29 三菱重工交通機器エンジニアリング株式会社 ボーディングブリッジの制御システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420414B2 (ja) 1987-05-02 1992-04-02 Neos Kk
JP2015174185A (ja) * 2014-03-14 2015-10-05 三菱重工業株式会社 ロボットのシミュレーション装置及び方法、制御装置、及びロボットシステム
JP2016013613A (ja) * 2014-06-11 2016-01-28 キヤノン株式会社 ロボット制御方法、ロボット装置、プログラム、記録媒体及び組立部品の製造方法
WO2020194933A1 (ja) * 2019-03-25 2020-10-01 新明和工業株式会社 旅客搭乗橋の走行制御方法
JP2020175727A (ja) 2019-04-16 2020-10-29 三菱重工交通機器エンジニアリング株式会社 ボーディングブリッジ及びその制御装置
JP2020175728A (ja) 2019-04-16 2020-10-29 三菱重工交通機器エンジニアリング株式会社 ボーディングブリッジの制御システム

Also Published As

Publication number Publication date
EP4316994A1 (en) 2024-02-07
JP7449448B2 (ja) 2024-03-13
JPWO2022208601A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US10875666B2 (en) Passenger boarding bridge
JP6678155B2 (ja) 表面処理システムの制御方法
WO2022208601A1 (ja) 旅客搭乗橋
JP6960022B2 (ja) 旅客搭乗橋
JP6744789B2 (ja) 旅客搭乗橋
JP7324800B2 (ja) 旅客搭乗橋の走行制御方法
CN113439058A (zh) 具有接近控制功能的飞机乘客登机桥
WO2022208655A1 (ja) 旅客搭乗橋
JP2020175727A (ja) ボーディングブリッジ及びその制御装置
JP7312213B2 (ja) 旅客搭乗橋
JP6770665B1 (ja) 旅客搭乗橋
JP6502570B1 (ja) ボーディングブリッジ及びボーディングブリッジ制御装置
JP7213212B2 (ja) 旅客搭乗橋
JP6845976B1 (ja) 旅客搭乗橋
JPWO2022208601A5 (ja)
JPH0565704A (ja) 高架橋点検装置
WO2023188547A1 (ja) 航空機の乗降部を検出するための検出システム
WO2023007770A1 (ja) 航空機の乗降部を検出するための検出システム
JP7374674B2 (ja) ボーディングブリッジ
JP7224905B2 (ja) ボーディングブリッジ
JP7122151B2 (ja) 高所作業車の安全装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11202305389U

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2021933502

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933502

Country of ref document: EP

Effective date: 20231030