WO2022206952A1 - 设备停车方法、装置、起重机、电子设备及可读介质 - Google Patents

设备停车方法、装置、起重机、电子设备及可读介质 Download PDF

Info

Publication number
WO2022206952A1
WO2022206952A1 PCT/CN2022/084802 CN2022084802W WO2022206952A1 WO 2022206952 A1 WO2022206952 A1 WO 2022206952A1 CN 2022084802 W CN2022084802 W CN 2022084802W WO 2022206952 A1 WO2022206952 A1 WO 2022206952A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
handle
offset information
position offset
hoisting
Prior art date
Application number
PCT/CN2022/084802
Other languages
English (en)
French (fr)
Inventor
欧彪
付玲
于晓颖
龙文堃
何强
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Priority to EP22779132.4A priority Critical patent/EP4317047A1/en
Publication of WO2022206952A1 publication Critical patent/WO2022206952A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/24Operating devices
    • B66D5/26Operating devices pneumatic or hydraulic
    • B66D5/28Operating devices pneumatic or hydraulic specially adapted for winding gear, e.g. in mining hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/46Control devices non-automatic electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/085Servomotor systems incorporating electrically operated control means using a data bus, e.g. "CANBUS"

Definitions

  • the present application relates to the field of crane control, and in particular, to a device parking method and device with a hoisting mechanism, a crane, an electronic device and a computer-readable medium.
  • the equipment that controls the hoisting mechanism through the handle to lift the object can include truck cranes, tower cranes, gantry cranes, rotary drilling drills, etc. They are an indispensable and important product in the field of construction machinery because of their flexible operation methods and easy operation. Simple and efficient, it is widely used in infrastructure, rescue, urban construction and other industries.
  • the hoisting speed of the crane is affected by the opening of the hoisting handle operated by the driver.
  • the hoist speed will decelerate to zero, and the hoist brake will be engaged during the deceleration process to prevent heavy objects from slipping down.
  • the hoisting mechanism quickly decelerates to zero, and the brake is quickly put in and the power transmission is locked.
  • the crane deceleration process requires the operator to reasonably grasp the deceleration time of the crane to avoid damage to the crane caused by long-term impact.
  • the driver needs to realize the emergency stop of the crane through the emergency stop button.
  • the controller will directly put into use the brake after receiving the signal of the emergency stop button to realize fast stop.
  • the driver cannot control the deceleration time through the operating handle, but must press a specific emergency stop button to stop, which requires a high reaction speed of the driver.
  • the controller on the crane does not judge the running speed of the motor when the brake is put in, but directly performs the braking operation. This method is also likely to cause severe braking shock, which may cause the crane to overturn and lift. Severe accidents such as broken arms.
  • the present application provides an equipment parking method, device, crane, electronic device and computer readable medium with a hoisting mechanism, which can achieve the purpose of rapid parking control only through the hoisting handle of the equipment, when emergency parking is required. , reducing the requirements for the driver's reaction time and increasing the safety of the equipment.
  • a method for parking equipment with a hoisting mechanism includes: acquiring position offset information of a hoist handle of the equipment in real time; when the position offset information satisfies a trigger condition, according to the position offset information Generate a displacement change rate; compare the displacement change rate with a preset threshold to generate a parking control command; control the bodywork system of the equipment to decelerate and stop according to the parking control command.
  • the method further includes: generating a preset threshold value based on the motor torque characteristic of the device and the relationship between the displacement change rate of the hoisting handle.
  • the preset threshold value includes a first threshold value and a second threshold value; generating the preset threshold value based on the motor torque characteristic of the device and the relationship of the displacement change rate of the hoisting handle includes: according to the motor torque characteristic of the device
  • the first threshold value is generated according to the displacement change rate of the speed of the hoist handle in a normal state; the second threshold value is generated according to the displacement change rate when the hoist handle is automatically returned.
  • acquiring the position offset information of the hoisting handle of the device in real time includes: acquiring the position offset information through a displacement sensor disposed on the hoisting handle of the device.
  • the position offset information satisfies the triggering condition, including: calculating the displacement ratio of the hoisting handle according to the position offset information; triggering the precondition when the displacement ratio is greater than the displacement threshold, and before the When the condition is set and the displacement ratio is reduced to 0, it is determined that the trigger condition is met, and the deceleration stop function is triggered.
  • generating the displacement change rate according to the position offset information includes: acquiring multiple pieces of position offset information; and generating the displacement change rate according to the multiple pieces of position offset information.
  • acquiring multiple pieces of position offset information includes: acquiring multiple frames of signals of a displacement sensor through a CAN network to generate multiple pieces of position offset information.
  • generating the displacement change rate according to the plurality of position offset information includes: fitting the plurality of position offset information based on the least squares method to generate the displacement change rate.
  • comparing the displacement change rate with a preset threshold to generate a parking control command includes: when the displacement change rate is less than or equal to a first threshold, generating a normal parking control command; when the displacement changes When the speed is greater than the first threshold and less than the second threshold, a throwing handle parking control command is generated; when the displacement change rate is greater than or equal to the second threshold, a quick parking control command is generated.
  • controlling the bodywork system of the device to perform deceleration parking according to the parking control instruction includes: under the normal parking control instruction, generating a target speed curve based on the position offset information; Under the control command, the target speed curve is generated based on the preset information; under the fast stop control command, the target speed curve is generated based on the maximum deceleration capability of the motor of the device; the control device stops according to the target speed curve.
  • an equipment parking device with a hoisting mechanism comprising: a position module configured to acquire position offset information of a hoist handle of the equipment in real time; When the displacement information meets the trigger condition, the displacement change rate is generated according to the position offset information; the instruction module is configured to compare the displacement change rate with a preset threshold to generate a parking control instruction; the control module is configured to control the parking control instruction according to the The bodywork system of the equipment decelerates to stop.
  • a threshold value module configured to generate a preset threshold value based on the motor torque characteristic of the device and the relationship between the displacement change rate of the hoisting handle.
  • the preset threshold value includes a first threshold value and a second threshold value; the threshold value module is further configured to generate according to the displacement change rate of the motor of the device following the speed of the hoisting handle in a normal state The first threshold value; the second threshold value is generated according to the displacement change rate during the automatic return of the hoisting handle.
  • the position module is further configured to acquire position offset information through a displacement sensor provided on the hoisting handle of the device.
  • the calculation module includes: a condition unit configured to calculate the displacement ratio of the hoisting handle according to the position offset information; trigger the precondition when the displacement ratio is greater than the displacement threshold, and meet the When the preconditions are met and the displacement ratio is reduced to 0, it is determined that the trigger conditions are met, and the deceleration stop function is triggered.
  • the calculation module includes: a rate unit, configured to acquire a plurality of position offset information; and generate a displacement change rate according to the plurality of position offset information.
  • the rate unit is further configured to acquire multi-frame signals of the displacement sensor through the CAN network to generate a plurality of position offset information.
  • the rate unit is further configured to fit the plurality of position offset information based on the least squares method to generate the displacement rate of change.
  • the instruction module includes: a first instruction unit configured to generate a normal parking control instruction when the displacement rate of change is less than or equal to a first threshold; a second instruction unit configured to When the displacement rate of change is greater than the first threshold and less than the second threshold, a handle-throwing parking control instruction is generated; the third instruction unit is configured to generate a quick parking control instruction when the displacement rate of change is greater than or equal to the second threshold.
  • the control module includes: a first speed unit configured to generate a target speed curve based on position offset information under a normal parking control command; a second speed unit configured to Under the throwing handle parking control command, a target speed curve is generated based on preset information; the third speed unit is configured to generate a target speed curve based on the maximum deceleration capability of the motor under the fast parking control command; the control unit is configured as The control device stops according to the target speed curve.
  • a crane includes a boarding controller, and the boarding controller can implement the above-mentioned equipment parking method with a hoisting mechanism.
  • an electronic device comprising: one or more processors; a storage device configured to store one or more programs; when the one or more programs are processed by one or more The processor executes such that the one or more processors implement the method as above.
  • a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, implements the above method.
  • the position offset information of the hoisting handle of the equipment is acquired in real time; when the position offset information satisfies the trigger condition, according to the position offset
  • the displacement information is used to generate the displacement change rate; the displacement change rate is compared with the preset threshold value to generate the parking control command; the method of controlling the crane's bodywork system to decelerate and stop according to the parking control command can achieve rapid parking control only through the hoisting handle of the crane
  • the purpose is to reduce the requirements for the driver's reaction time and increase the safety of the equipment when an emergency stop is required.
  • the control method of the present application enriches the functions of the hoisting handle, and not only can
  • the hoist acceleration and deceleration control can also realize the purpose of quick stop control by pushing the handle quickly.
  • the driver can first rely on the quick operation of the hoist handle to achieve rapid deceleration and stop, without the driver "releasing the handle and then pressing the emergency stop button", reducing the driver's response time requirements.
  • a variable deceleration control method is proposed in the case of rapid parking.
  • This The control method of rapid deceleration ensures that the deceleration is continuously reduced.
  • the brake is applied again, which can ensure the rapid stop of the crane hoisting and avoid the braking shock caused by the emergency stop;
  • FIG. 1 is a system block diagram of an equipment parking method and device with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for parking equipment with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a device parking method with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for parking equipment with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a device parking method with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for parking equipment with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a device parking method with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a device parking method with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 9 is a block diagram of an equipment parking device with a hoisting mechanism according to an embodiment of the present application.
  • FIG. 10 is a block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 11 is a block diagram of a computer-readable medium according to an embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this application will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar parts, and thus their repeated descriptions will be omitted.
  • the present application proposes a method and device for parking equipment with a hoisting mechanism, which can be applied to the top-mounted drive system of a new energy vehicle crane based on the direct drive of the motor.
  • the controller judges the driver's operation intention and issues control commands, and performs deceleration and parking through the motor controller, the motor and the hydraulic brake.
  • the driver's operation intention judgment in the deceleration parking control includes the parking intention and the deceleration intention judgment.
  • the parking intention is judged by the displacement of the hoisting operation handle, and the deceleration intention is judged by the displacement change rate of the handle when the driver operates the handle to the neutral position.
  • the boarding controller determines that it is a deceleration stop control, and according to the change rate of the hoist handle displacement, the driver's deceleration intention is divided into three categories: normal parking, throwing the handle to park, and fast parking.
  • the "quick stop” in the deceleration intention in this application is different from the emergency stop in that: the emergency stop is that after pressing the emergency stop button, the brake is directly put into deceleration (regardless of the current mechanism speed), and this process has a serious impact; the quick stop function
  • the drive system can actively decelerate and control the deceleration to change continuously to reduce the deceleration impact of the crane; only when the drive system is abnormal and cannot meet the deceleration requirements, the boarding controller will issue an emergency stop command. Control the braking system to perform an emergency stop.
  • FIG. 1 is a system block diagram of an equipment parking method and device with a hoisting mechanism according to an embodiment of the present application.
  • the present application can mainly use the hoist control system for the electric drive operation of the truck crane with the on-board controller and the motor controller as the core.
  • the system architecture 10 may include a hoisting control handle 101 , a boarding controller 102 , a motor controller 103 , a permanent magnet synchronous motor 104 , a reducer 105 , a solenoid valve 106 , a hydraulic brake 107 , and a hoisting drum Institution 108.
  • the boarding controller 102 and the hoisting control handle 101 can communicate through the CAN bus, and are responsible for receiving, analyzing and sending the displacement signal of the handle 101, and the boarding control 10 outputs the control opening or closing command through the hard wire to control the hydraulic brake 107; permanent magnet
  • the synchronous motor 104 is connected with the motor controller 103 and the reducer 105, and is responsible for executing the motor deceleration control command sent by the motor controller 103; the motor controller 103 detects the permanent magnet synchronous motor in real time through the encoder installed on the permanent magnet synchronous motor 104 104 The current running speed is fed back to the boarding controller 102; the permanent magnet synchronous motor 104 is used as a direct drive unit for the movement of the mechanism, and the output shaft will drive the reducer 105 and the hoisting and reel mechanism 108 to work to realize the braking force output of the mechanism.
  • the relationship between the displacement of the hoisting control handle (also referred to as the handle) 101 and the working state of the hoisting mechanism is: the hoisting control handle 101 is in the neutral position (that is, the handle displacement is 0), and the target speed curve of the permanent magnet synchronous motor 104 is zero, the hoisting mechanism does not operate; when the hoisting control handle 101 is pushed forward (that is, the handle displacement is negative), the target speed curve of the permanent magnet synchronous motor 104 is negative, and the hoisting mechanism goes down; when the hoisting control handle 101 is pushed back (that is, the handle displacement is positive), the target speed curve of the permanent magnet synchronous motor 104 is positive, and the hoisting mechanism goes down.
  • the boarding controller 102 can obtain, for example, the position offset information of the hoisting handle 101 of the crane in real time; when the position offset information satisfies the trigger condition, the boarding controller 102 can, for example, generate a displacement change rate according to the position offset information; The controller 102 may, for example, compare the displacement change rate with a preset threshold to generate a parking control command; the boarding controller 102 controls the bodywork system of the crane to decelerate and stop according to the parking control command.
  • the equipment parking method with a hoisting mechanism provided in the embodiment of the present application may be executed by the boarding controller 102 , and correspondingly, the equipment parking device with a hoisting mechanism may be provided in the boarding controller 102 .
  • the motor controller 103 , the permanent magnet synchronous motor 104 , the reducer 105 , the solenoid valve 106 , the hydraulic brake 107 , the hoisting drum mechanism 108 and other components work directly or indirectly according to the instructions issued by the boarding controller 102 .
  • the present application proposes a method for directly realizing rapid parking by operating a handle, determining the driver's parking intention according to the position of the handle, and judging the driver's deceleration intention according to the displacement and displacement change rate of the handle. Perform a quick stop.
  • the rapid braking method in the present application first decelerates according to a relatively large deceleration, and when the speed of the hoisting motor is close to zero, the continuous change of the deceleration is ensured to be reduced to avoid deceleration shocks.
  • the present application adopts a control system in which the boarding controller issues commands to the motor controller and the brake, decouples the brake and the driver, and can realize a complex control algorithm.
  • FIG. 2 is a flowchart of a method for parking equipment with a hoisting mechanism according to an embodiment of the present application.
  • the equipment parking method 20 with a hoisting mechanism includes at least steps S202 to S208.
  • the position offset information of the hoisting handle of the device is acquired in real time.
  • the position offset information can be acquired, for example, by a displacement sensor provided on the hoist handle of the crane.
  • the displacement change rate is generated according to the position offset information.
  • the displacement ratio of the hoisting handle can be calculated through the position offset information; the precondition is triggered when the displacement ratio is greater than the displacement threshold, and when the precondition is satisfied and the displacement ratio is reduced to 0, it is determined that the trigger condition is satisfied and the deceleration is triggered. Parking function.
  • the displacement ratio is the percentage of the angle of handle displacement in the total controllable range of the handle, and the displacement threshold is the threshold value of the displacement ratio when the parking control condition is judged.
  • the driver's operating handle displacement x and displacement change rate k can be used as the driver's parking and deceleration intention judgment variables.
  • the boarding controller judges that the driver has the intention to stop, and executes the judgment of the driver's deceleration intention (the value of k is larger, it is considered that the driver needs to stop quickly, the value of k If it is smaller, it is considered that the driver needs to stop at a slow speed), plan the control curve of deceleration and stop, and execute deceleration and stop control.
  • state variables can be defined: the precondition variable m, the parking condition variable n, both m and n are Boolean type variables, and the default value is 0.
  • generating the displacement change rate according to the position offset information includes: acquiring multiple pieces of position offset information; and generating the displacement change rate according to the multiple pieces of position offset information.
  • multiple frames of signals of the displacement sensor may be acquired through a CAN network to generate a plurality of position offset information. It is also possible, for example, to fit the plurality of position offset information based on the least squares method to generate the displacement rate of change.
  • the bodywork controller obtains the five frames of signals before the deceleration stop function is triggered through the CAN network ⁇ (x 1 , t 1 ), (x 2 , t 2 ), (x 3 ,t 3 ),(x 4 ,t 4 ),(x 5 ,t 5 ) ⁇ , using the least squares method to fit the five-frame handle displacement signal as a linear function:
  • the displacement change rate is compared with a preset threshold to generate a parking control command. For example, when the displacement change rate is less than or equal to the first threshold, a normal parking control command is generated; when the displacement change rate is greater than the first threshold and less than the second threshold, a throw handle parking control command is generated; when the displacement change rate is greater than or equal to the second When the threshold is reached, a quick stop control command is generated.
  • the generation process of the first threshold value and the second threshold value will be described in detail in the embodiment corresponding to FIG. 4 .
  • the first threshold value and the second threshold value can be pre-stored in the on-board controller, and can be directly called out for comparison when needed. That's it.
  • the bodywork system of the equipment is controlled to decelerate and stop according to the stop control instruction.
  • target speed curves are generated according to different strategies, and the jacks are controlled to stop according to the target speed curves. The specific content will be described in detail in the embodiment corresponding to FIG. 6 .
  • the position offset information of the hoist handle of the crane is obtained in real time; when the position offset information meets the trigger condition, the displacement change rate is generated according to the position offset information; the displacement change rate and The preset thresholds are compared to generate the parking control command; the method of controlling the crane's bodywork system to decelerate and stop according to the parking control command can achieve the purpose of rapid parking control only through the hoisting handle of the crane.
  • the driver's reaction time is required to increase the safety of the crane.
  • Fig. 4 is a flow chart of a method for parking equipment with a hoisting mechanism according to another exemplary embodiment.
  • the process 40 shown in FIG. 4 is a detailed description of “generating a preset threshold based on the relationship between the motor torque characteristics of the equipment and the displacement change rate of the hoisting handle”.
  • the preset threshold value may include a first threshold value and a second threshold value, and the displacement change rate of the handle can be divided into three different intervals according to the first threshold value and the second threshold value, and then different parking spaces can be determined according to the characteristics of the different intervals. method.
  • the first threshold is the upper limit of deceleration at which the speed of the mechanism can normally follow the target speed of the handle in a normal speed regulation process
  • the second threshold is the automatic return rate of the handle when the operating handle is quickly released when the handle is open. Please see the description below for details.
  • a preset threshold is generated based on the relationship between the motor torque characteristic of the device and the displacement change rate of the hoisting handle.
  • the winch control principle is as follows: the driver operates the winch handle, and the boarding controller receives the handle displacement signal to obtain the target speed of the motor according to the signal look-up table (each position of the handle has a pre-stored target speed corresponding to it) , and query the target acceleration of the motor according to the target speed and the actual speed of the motor.
  • the bodywork controller sends the target speed and acceleration to the motor controller, the motor controller performs speed regulation according to the target speed and acceleration, and sends the actual motor speed to the bodywork controller.
  • the first threshold and the second threshold are respectively determined.
  • a first threshold value is generated according to the displacement change rate of the motor of the device following the speed of the hoisting handle in a normal state. More specifically, the first threshold is the upper limit of deceleration at which the speed of the mechanism can normally follow the target speed of the handle in a normal speed regulation process.
  • a second threshold value is generated according to the displacement change rate during the automatic return of the hoisting handle. More specifically, the second threshold is the automatic return rate of the handle when the operating handle is quickly released in the open state of the handle.
  • three different intervals corresponding to the displacement change rate may be divided according to the first threshold and the second threshold.
  • the deceleration intention is divided into three types according to the speed of the driver operating the handle, as shown in Figure 5: 1 normal stop, 2 throw the handle to stop, and 3 fast stop.
  • the first threshold is k 1
  • the second threshold is k 2 , where k 1 is the upper limit of deceleration at which the speed of the mechanism can normally follow the target speed of the handle in the normal speed regulation process, and k 2 is when the handle is quickly released when the handle is open.
  • Handle automatic return rate is the upper limit of deceleration at which the speed of the mechanism can normally follow the target speed of the handle in the normal speed regulation process
  • the driver operates the handle to control the crane to decelerate.
  • the deceleration intention is divided into the following ways: k ⁇ k 1 is the "normal stop” intention (area 1), and the deceleration process speed follows the target speed converted by the driver's operation handle to decelerate ;k 1 ⁇ k ⁇ k 2 is the intention of “throwing the handle to stop” (area 2), the handle displacement speed in this state exceeds the maximum deceleration in the normal speed regulation stage, but the speed at which the handle returns to the neutral position is less than the speed at which the handle automatically returns to the center; k>k 2 is the intention of "quick stop” (area 3), the driver quickly pushes the operating handle to the neutral position to perform emergency deceleration.
  • Fig. 6 is a flow chart of a method for parking equipment with a hoisting mechanism according to another exemplary embodiment.
  • the flow 60 shown in FIG. 6 is a detailed description of S208 “controlling the bodywork system of the crane to decelerate and stop according to the stop control instruction” in the flow shown in FIG. 2 .
  • the displacement change rate is compared with a preset threshold to generate a parking control command.
  • a target velocity profile is generated based on the position offset information.
  • the deceleration stop process does not define a specific deceleration, and the motor speed directly follows the target speed of the handle. After the speed of the target speed curve in this process decelerates to 0, the brake is put into use.
  • a target speed profile is generated based on preset information.
  • the brake input speed that is, v 2 (t) ⁇ v b
  • the brake is put into use. According to the actual vehicle debugging of the mechanism characteristics, the best a b and v b are calibrated to ensure that a b is as large as possible and that there is no impact during the deceleration process.
  • a target speed profile is generated based on the maximum deceleration capability of the motor of the device.
  • the motor follows the speed curve v 3 (t) and the deceleration curve a 3 (t) to perform deceleration, and the deceleration process includes a stage of rapid and uniform deceleration with deceleration a rd , A variable deceleration phase in which the deceleration gradually decreases.
  • the initial value of the deceleration curve a 3 (t) is changed to a rd , and the deceleration value is first maintained during the deceleration process; when the actual speed of the mechanism is lower than v vd , the deceleration begins to decrease continuously; when the target deceleration decreases to a When b , the brake is engaged.
  • the initial value a rd definition of the above deceleration curve a 3 (t) can be designed according to the maximum deceleration capability of the motor. At this time, the motor will decelerate according to the external characteristics of the motor.
  • the acceleration of gravity determines the deceleration value of the hoisting mechanism when it goes up and when the hoisting mechanism goes down.
  • the deceleration curve v 2 ( t ) has debugged the braking input deceleration a b and the braking input speed v b without impact.
  • the J value can be determined from historical empirical values. It is worth mentioning that an excessively large J value will cause a deceleration shock; an excessively small J value will cause the vehicle to stop too slowly.
  • the deceleration change rate can be debugged by the following methods: first, use a smaller J value to test whether there is no impact when the mechanism decelerates and stop; after ensuring that the mechanism has no impact, adjust the J value appropriately before doing the test. Repeat the above process until the test is over when the mechanism has an impact, and select a value slightly smaller than the J value when the impact occurs as the design J value.
  • FIG. 9 is a block diagram of an equipment parking device with a hoisting mechanism according to an embodiment of the present application.
  • the equipment parking device 90 with a hoisting mechanism includes: a position module 902 , a calculation module 904 , an instruction module 906 , a control module 908 , and a threshold value module 910 .
  • the position module 902 is configured to acquire the position offset information of the hoisting handle of the device in real time; the position module is also configured to acquire the position offset information through a displacement sensor provided on the hoisting handle of the device.
  • the calculation module 904 is configured to generate a displacement change rate according to the position offset information when the position offset information satisfies the trigger condition; the calculation module includes: a condition unit, configured to calculate the displacement ratio of the hoisting handle through the position offset information; When the displacement ratio is greater than the displacement threshold, the precondition is triggered. When the precondition is satisfied and the displacement ratio is reduced to 0, it is determined that the trigger condition is satisfied, and the deceleration stop function is triggered.
  • the rate unit is configured to acquire a plurality of position offset information; and generate a displacement change rate according to the plurality of position offset information.
  • the rate unit is further configured to acquire multi-frame signals of the displacement sensor through the CAN network to generate a plurality of position offset information.
  • the rate unit is further configured to fit the plurality of position offset information based on a least squares method to generate a displacement rate of change.
  • the instruction module 906 is configured to compare the displacement rate of change with a preset threshold to generate a parking control instruction; the instruction module, including: a first instruction unit, is configured to generate a normal parking control when the displacement rate of change is less than or equal to the first threshold an instruction; a second instruction unit, configured to generate a throw handle parking control instruction when the displacement rate of change is greater than the first threshold and less than the second threshold; and a third instruction unit, configured to when the displacement rate of change is greater than or equal to the second threshold , to generate a quick stop control command.
  • the control module 908 is configured to control the bodywork system of the equipment to decelerate to stop according to the stop control command.
  • the control module includes: a first speed unit configured to generate a target speed curve based on the position offset information under a normal parking control command; a second speed unit configured to generate a target speed curve based on the preset information under the throw handle parking control command A target speed curve is generated; a third speed unit is configured to generate a target speed curve based on the maximum deceleration capability of the motor of the device under the quick stop control command; the control unit is configured to control the device to stop according to the target speed curve.
  • the threshold value module 910 is configured to generate a preset threshold value based on the relationship between the motor torque characteristics of the device and the displacement rate of change of the hoist handle.
  • the preset threshold value includes a first threshold value and a second threshold value; the threshold value module is also configured to generate a first threshold value according to the displacement change rate of the motor of the device following the speed of the hoisting handle in a normal state; according to the automatic return of the hoisting handle The rate of change of displacement at time generates a second threshold.
  • the position offset information of the hoisting handle of the crane is acquired in real time; when the position offset information satisfies the trigger condition, the displacement change rate is generated according to the position offset information; the displacement change rate and The preset thresholds are compared to generate the parking control command; the method of controlling the crane's bodywork system to decelerate and stop according to the parking control command can achieve the purpose of rapid parking control only through the hoisting handle of the crane.
  • the driver's reaction time is required to increase the safety of the crane.
  • the present application also provides a crane, the crane includes: a boarding controller, and the boarding controller realizes the following functions: obtaining the position offset information of the hoisting handle of the crane in real time; The displacement information is used to generate the displacement change rate; the displacement change rate is compared with the preset threshold to generate the parking control command; the upper loading system of the crane is controlled to decelerate and stop according to the parking control command.
  • FIG. 10 is a block diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 1000 according to this embodiment of the present application is described below with reference to FIG. 10 .
  • the electronic device 1000 shown in FIG. 10 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • electronic device 1000 takes the form of a general-purpose computing device.
  • Components of the electronic device 1000 may include, but are not limited to, at least one processing unit 1010, at least one storage unit 1020, a bus 1030 connecting different system components (including the storage unit 1020 and the processing unit 1010), a display unit 1040, and the like.
  • the storage unit stores program codes, which can be executed by the processing unit 1010, so that the processing unit 1010 executes the steps described in this specification according to various exemplary embodiments of the present application.
  • the processing unit 1010 may perform the steps shown in FIG. 2 , FIG. 4 , and FIG. 6 .
  • the storage unit 1020 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 10201 and/or a cache storage unit 10202 , and may further include a read only storage unit (ROM) 10203 .
  • RAM random access storage unit
  • ROM read only storage unit
  • the storage unit 1020 may also include a program/utility 10204 having a set (at least one) of program modules 10205 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, An implementation of a network environment may be included in each or some combination of these examples.
  • the bus 1030 may be representative of one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
  • the electronic device 1000 may also communicate with one or more external devices 1000' (eg, keyboards, pointing devices, Bluetooth devices, etc.) to enable the user to communicate with the device with which the electronic device 1000 interacts, and/or the electronic device 1000 to communicate with a or any device (eg, router, modem, etc.) that communicates with other computing devices. Such communication may occur through input/output (I/O) interface 1050 . Also, the electronic device 1000 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through the network adapter 1060 . The network adapter 1060 may communicate with other modules of the electronic device 1000 through the bus 1030 . It should be appreciated that, although not shown, other hardware and/or software modules may be used in conjunction with electronic device 1000, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives and data backup storage systems.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software combined with necessary hardware. Therefore, as shown in FIG. 11, the technical solution according to the embodiment of the present application can be embodied in the form of a software product, and the software product can be stored in a non-volatile storage medium (which can be a CD-ROM, a U disk, a mobile hard disk, etc.). etc.) or on the network, including several instructions to cause a computing device (which may be a personal computer, a server, or a network device, etc.) to execute the above-mentioned method according to the embodiment of the present application.
  • a computing device which may be a personal computer, a server, or a network device, etc.
  • a software product may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections having one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium may include a data signal propagated in baseband or as part of a carrier wave with readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable storage medium can also be any readable medium other than a readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • Program code embodied on a readable storage medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present application may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming Language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
  • LAN local area network
  • WAN wide area network
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by a device, the computer-readable medium realizes the following functions: obtaining the position offset information of the hoisting handle of the crane in real time; When the position offset information satisfies the triggering condition, the displacement change rate is generated according to the position offset information; the displacement change rate is compared with the preset threshold to generate the parking control command; the bodywork system of the crane is controlled to decelerate and stop according to the parking control command.
  • modules may be distributed in the apparatus according to the description of the embodiment, and corresponding changes may also be made in one or more apparatuses that are uniquely different from this embodiment.
  • the modules in the foregoing embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software combined with necessary hardware. Therefore, the technical solutions according to the embodiments of the present application may be embodied in the form of software products, and the software products may be stored in a non-volatile storage medium (which may be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a mobile terminal, or a network device, etc.) to execute the method according to the embodiment of the present application.
  • a computing device which may be a personal computer, a server, a mobile terminal, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质。设备停车方法包括:实时获取设备的卷扬手柄(101)的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制设备的上装系统进行减速停车。通过上述设置,能够仅通过设备的卷扬手柄达到快速停车控制的目的,在需要进行紧急停车时,降低对驾驶员的反应时间的要求,增加设备的安全性。

Description

设备停车方法、装置、起重机、电子设备及可读介质
相关申请的交叉引用
本申请要求2021年04月01日提交的中国专利申请202110357890.1的权益,该申请的内容通过引用被合并于本文。
技术领域
本申请涉及起重机控制领域,具体而言,涉及一种具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质。
背景技术
通过手柄控制卷扬机构进而提升物体的设备可包括汽车起重机、塔式起重机、门式起重机、旋挖钻等等,他们是工程机械领域不可或缺的一类重要产品,因其作业方式灵活,操作简单又高效,在基建、救援、城市建设等行业应用广泛。
不失一般性,以起重机为例进行说明,起重机的卷扬速度受驾驶员操作卷扬手柄的开度影响,卷扬手柄开度越大则卷扬速度越快,卷扬手柄开度越小则速度越小。驾驶员操作卷扬手柄至中位时,卷扬速度减速为零,并在减速过程卷扬制动器投入,以防止重物下溜。当驾驶员快速松开操作卷扬手柄时,卷扬机构迅速减速为零,制动器迅速投入并锁止动力传动,制动器过早的投入减速,将引起机构的抖动或强烈冲击。起重机减速过程要求操作员合理的把握起重机的减速时间,以避免长期的冲击对起重机造成损坏。
现有的起重机制动控制方法中,驾驶员需要通过紧急停车按钮实现起重机的紧急停车。在紧急停车时,控制器收到紧急停车按钮信号后制动器便直接投入使用,实现快速停车。在这种方式中,驾驶员无法通过操作手柄控制减速时间,而必须按下一个特定紧急停车按钮才能进行停车,这种停车方式对驾驶员的反应速度要求很高。而且,为实现快速停车的目的,起重机上的控制器不判断制动器投入时电机的运转速度,而直接进行制动操作,这种方式也容易造成剧烈的制动冲击,可能导致起重机翻车、起重臂断裂等严重事故。
因此,需要一种新的具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质。
在所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本申请提供一种具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质,能够仅通过设备的卷扬手柄达到快速停车控制的目的,在需要进行紧急停车时,降低对驾驶员的反应时间的要求,增加设备的安全性。
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。
根据本申请的一方面,提出一种具有卷扬机构的设备停车方法,该方法包括:实时获取设备的卷扬手柄的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制设备的上装系统进行减速停车。
在本申请的一种示例性实施例中,还包括:基于设备的电机扭矩特性和卷扬手柄的位移变化速率关系生成预设阈值。
在本申请的一种示例性实施例中,预设阈值包括第一阈值和第二阈值;基于设备的电机扭矩特性和卷扬 手柄的位移变化速率关系生成预设阈值,包括:根据设备的电机在正常状态下跟随卷扬手柄的速度的位移变化速率生成第一阈值;根据卷扬手柄的自动回位时的位移变化速率生成第二阈值。
在本申请的一种示例性实施例中,实时获取设备的卷扬手柄的位置偏移信息,包括:通过设置在设备的卷扬手柄上的位移传感器获取位置偏移信息。
在本申请的一种示例性实施例中,位置偏移信息满足触发条件,包括:通过位置偏移信息计算卷扬手柄的位移比率;在位移比率大于位移阈值时触发前置条件,在满足前置条件且位移比率减小到0时,确定满足触发条件,并触发减速停车功能。
在本申请的一种示例性实施例中,根据位置偏移信息生成位移变化速率,包括:获取多个位置偏移信息;根据多个位置偏移信息生成位移变化速率。
在本申请的一种示例性实施例中,获取多个位置偏移信息,包括:通过CAN网络获取位移传感器的多帧信号以生成多个位置偏移信息。
在本申请的一种示例性实施例中,根据多个位置偏移信息生成位移变化速率,包括:基于最小二乘法对多个位置偏移信息进行拟合以生成位移变化速率。
在本申请的一种示例性实施例中,将位移变化速率和预设阈值进行对比以生成停车控制指令,包括:在位移变化速率小于等于第一阈值时,生成正常停车控制指令;在位移变化速率大于第一阈值且小于第二阈值时,生成扔手柄停车控制指令;在位移变化速率大于等于第二阈值时,生成快速停车控制指令。
在本申请的一种示例性实施例中,根据停车控制指令控制设备的上装系统进行减速停车,包括:在正常停车控制指令下,基于位置偏移信息生成目标速度曲线;在扔手柄停车控制指令下,基于预设信息生成目标速度曲线;在快速停车控制指令下,基于设备的电机最大减速能力生成目标速度曲线;控制设备按照目标速度曲线进行停车。
根据本申请的一方面,提出一种具有卷扬机构的设备停车装置,该装置包括:位置模块,被配置为实时获取设备的卷扬手柄的位置偏移信息;计算模块,被配置为在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;指令模块,被配置为将位移变化速率和预设阈值进行对比以生成停车控制指令;控制模块,被配置为根据停车控制指令控制设备的上装系统进行减速停车。
在本申请的一种示例性实施例中,还包括:阈值模块,被配置为基于设备的电机扭矩特性和卷扬手柄的位移变化速率关系生成预设阈值。
在本申请的一种示例性实施例中,预设阈值包括第一阈值和第二阈值;阈值模块,还被配置为根据设备的电机在正常状态下跟随卷扬手柄的速度的位移变化速率生成第一阈值;根据卷扬手柄的自动回位时的位移变化速率生成第二阈值。
在本申请的一种示例性实施例中,位置模块,还被配置为通过设置在设备的卷扬手柄上的位移传感器获取位置偏移信息。
在本申请的一种示例性实施例中,计算模块,包括:条件单元,被配置为通过位置偏移信息计算卷扬手柄的位移比率;在位移比率大于位移阈值时触发前置条件,在满足前置条件且位移比率减小到0时,确定满足触发条件,并触发减速停车功能。
在本申请的一种示例性实施例中,计算模块,包括:速率单元,被配置为获取多个位置偏移信息;根据多个位置偏移信息生成位移变化速率。
在本申请的一种示例性实施例中,速率单元,还被配置为通过CAN网络获取位移传感器的多帧信号以生成多个位置偏移信息。
在本申请的一种示例性实施例中,速率单元,还被配置为基于最小二乘法对多个位置偏移信息进行拟合 以生成位移变化速率。
在本申请的一种示例性实施例中,指令模块,包括:第一指令单元,被配置为在位移变化速率小于等于第一阈值时,生成正常停车控制指令;第二指令单元,被配置为在位移变化速率大于第一阈值且小于第二阈值时,生成扔手柄停车控制指令;第三指令单元,被配置为在位移变化速率大于等于第二阈值时,生成快速停车控制指令。
在本申请的一种示例性实施例中,控制模块,包括:第一速度单元,被配置为在正常停车控制指令下,基于位置偏移信息生成目标速度曲线;第二速度单元,被配置为在扔手柄停车控制指令下,基于预设信息生成目标速度曲线;第三速度单元,被配置为在快速停车控制指令下,基于设备的电机最大减速能力生成目标速度曲线;控制单元,被配置为控制设备按照目标速度曲线进行停车。
根据本申请的一方面,提出一种起重机,该起重机包括上车控制器,所述上车控制器可实现上文中的具有卷扬机构的设备停车方法。
根据本申请的一方面,提出一种电子设备,该电子设备包括:一个或多个处理器;存储装置,被配置为存储一个或多个程序;当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如上文的方法。
根据本申请的一方面,提出一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如上文中的方法。
根据本申请的具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质,实时获取设备的卷扬手柄的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制起重机的上装系统进行减速停车的方式,能够仅通过起重机的卷扬手柄达到快速停车控制的目的,在需要进行紧急停车时,降低对驾驶员的反应时间的要求,增加设备的安全性。
根据本申请的具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质,相比传统的汽车起重机控制方法,本申请的控制方法丰富了卷扬手柄的功能,不仅可常规的卷扬加减速控制,也可以实现快推手柄达到快速停车控制的目的。在存在紧急停车需求时,驾驶员可以优先依靠快速操作卷扬手柄实现快速减速停车,无需驾驶员“松手柄再按下紧急停车按钮”,降低对驾驶员的反应时间要求。
根据本申请的具有卷扬机构的设备停车方法、装置、起重机、电子设备及计算机可读介质,在快速停车情况下提出了一种变减速控制方法,与现有的紧急停车控制相比,这种快速减速的控制方法保证减速度连续减小,在减速度足够小的情况下再投入制动器,可在保证起重机卷扬快速停止的同时避免紧急停车导致的制动冲击;
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
通过参照附图详细描述其示例实施例,本申请的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例示出的一种具有卷扬机构的设备停车方法及装置的系统框图。
图2是本申请一实施例示出的一种具有卷扬机构的设备停车方法的流程图。
图3是本申请一实施例示出的一种具有卷扬机构的设备停车方法的示意图。
图4是本申请一实施例示出的一种具有卷扬机构的设备停车方法的流程图。
图5是本申请一实施例示出的一种具有卷扬机构的设备停车方法的示意图。
图6是本申请一实施例示出的一种具有卷扬机构的设备停车方法的流程图。
图7是本申请一实施例示出的一种具有卷扬机构的设备停车方法的示意图。
图8是本申请一实施例示出的一种具有卷扬机构的设备停车方法的示意图。
图9是本申请一实施例示出的一种具有卷扬机构的设备停车装置的框图。
图10是本申请一实施例示出的一种电子设备的框图。
图11是本申请一实施例示出的一种计算机可读介质的框图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、起重机、实现或者操作以避免模糊本申请的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应理解,虽然本文中可能使用术语第一、第二、第三等来描述各种组件,但这些组件不应受这些术语限制。这些术语乃用以区分一组件与另一组件。因此,下文论述的第一组件可称为第二组件而不偏离本申请概念的教示。如本文中所使用,术语“及/或”包括相关联的列出项目中的任一个及一或多者的所有组合。
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本申请所必须的,因此不能用于限制本申请的保护范围。
有鉴于现有技术中存在的技术缺陷,本申请提出一种具有卷扬机构的设备停车方法及装置,可应用于基于电机直接驱动的新能源汽车起重机上装驱动系统,本申请中的控制方法通过上装控制器判断驾驶员操作意图并下发控制指令,通过电机控制器、电机和液压制动器执行减速停车。
减速停车控制中的驾驶员操作意图判断包括停车意图和减速意图判断,停车意图通过卷扬操作手柄位移进行判断,减速意图通过驾驶员操作手柄至中位时手柄的位移变化速率进行判断。卷扬手柄回位至中位时,上车控制器判断为减速停车控制,并根据卷扬手柄位移变化速率,将驾驶员的减速意图分为:正常停车、扔手柄停车、快速停车三类。
本申请中减速意图中的“快速停车”区别于紧急停车的方面为:紧急停车为按下紧急停车按钮后,制动器直接投入减速(不考虑当前机构速度),该过程存在严重冲击;快速停车功能要求驱动系统仍然可正常工作时,通过驱动系统主动减速,并控制减速度变化连续,降低起重机减速冲击;只有在驱动系统异常无法满足减速要求时,上车控制器才会下发紧急停车指令,控制制动系统执行紧急停车。
下面借助于具体地实施例,对本申请的内容进行详细描述。
图1是本申请一实施例示出的一种具有卷扬机构的设备停车方法及装置的系统框图。本申请可主要通过 上车控制器、电机控制器为核心的汽车起重机电驱作业卷扬控制系统。如图1所示,系统架构10可以包括卷扬控制手柄101、上车控制器102、电机控制器103,永磁同步电机104、减速机105、电磁阀106、液压制动器107、卷扬卷筒机构108。
上车控制器102与卷扬控制手柄101可通过CAN总线进行通信,负责手柄101位移信号接收、解析、发送,上车控制10通过硬线输出控制打开或关闭指令以控制液压制动器107;永磁同步电机104与电机控制器103、减速机105相连接,负责执行电机控制器103发送的电机减速控制命令;电机控制器103通过安装在永磁同步电机104上的编码器实时检测永磁同步电机104当前运行速度,并反馈至上车控制器102;永磁同步电机104作为机构运动的直接驱动单元,输出轴将带动减速机105、卷扬卷筒机构108工作,实现机构的制动力输出。
其中,卷扬控制手柄(也可简称为手柄)101的位移与卷扬机构工作状态的关系为:卷扬控制手柄101位于中位(即手柄位移为0),永磁同步电机104的目标速度曲线为零,卷扬机构不运行;当卷扬控制手柄101往前推(即手柄位移为负),永磁同步电机104的目标速度曲线为负,卷扬机构下行;当卷扬控制手柄101往后推(即手柄位移为正),永磁同步电机104的目标速度曲线为正,卷扬机构下行。
上车控制器102可例如实时获取起重机的卷扬手柄101的位置偏移信息;在位置偏移信息满足触发条件时,上车控制器102可例如根据位置偏移信息生成位移变化速率;上车控制器102可例如将位移变化速率和预设阈值进行对比以生成停车控制指令;上车控制器102根据停车控制指令控制起重机的上装系统进行减速停车。
需要说明的是,本申请实施例所提供的具有卷扬机构的设备停车方法可以由上车控制器102执行,相应地,具有卷扬机构的设备停车装置可以设置于上车控制器102中。电机控制器103,永磁同步电机104、减速机105、电磁阀106、液压制动器107、卷扬卷筒机构108等部件直接或间接的根据上车控制器102发出的指令进行工作。
本申请提出一种通过操作手柄直接实现快速停车的方法,根据手柄位置判断驾驶员停车意图,根据手柄的位移、位移变化速率的方法判断驾驶员减速意图,停车意图下手柄位移变化速率较大时执行快速停车。
本申请中的快速制动方法,先按照较大的减速度进行减速,在卷扬电机速度接近零时,确保减速度连续变化的减小,避免减速冲击。
本申请采用上车控制器向电机控制器、制动器下发指令的控制系统,解耦了制动器和驱动器,可实现复杂的控制算法。
图2是本申请一实施例示出的一种具有卷扬机构的设备停车方法的流程图。具有卷扬机构的设备停车方法20至少包括步骤S202至S208。
如图2所示,在S202中,实时获取设备的卷扬手柄的位置偏移信息。可例如,通过设置在起重机的卷扬手柄上的位移传感器获取位置偏移信息。
在S204中,在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率。可例如,通过位置偏移信息计算卷扬手柄的位移比率;在位移比率大于位移阈值时触发前置条件,在满足前置条件且位移比率减小到0时,确定满足触发条件,并触发减速停车功能。其中,位移比率为手柄位移的角度占总手柄可控范围的百分比,位移阈值判断停车控制条件时位移比率的阈值。
可通过驾驶员操作手柄位移x、位移变化速率k作为驾驶员的停车和减速意图判断变量。在卷扬手柄被拨动至中位时(x=0),上车控制器判断驾驶员有停车意图,执行驾驶员的减速意图判断(k值较大则认为驾驶员需要快速停车,k值较小则认为驾驶员需要慢速停车),规划减速停车控制曲线,执行减速及停车控制。
为方便判断驾驶员的停车意图,可定义状态变量:前置条件变量m,停车条件变量n,m和n均为布尔 类型变量,默认值均为0。在一个具体地实施例中,减速、停车意图判断的触发条件为:在手柄位移比率大于5%(位移阈值)时,触发前置条件m=1;在手柄位移减小为0%且m=1时,触发停车条件n=1,进入减速停车控制,前置条件置零(m=0);还可例如,在电机实际速度减为0后,将停车条件重新置零n=0。
其中,根据位置偏移信息生成位移变化速率,包括:获取多个位置偏移信息;根据多个位置偏移信息生成位移变化速率。
可例如,通过CAN网络获取位移传感器的多帧信号以生成多个位置偏移信息。还可例如,基于最小二乘法对多个位置偏移信息进行拟合以生成位移变化速率。
如图3所示,减速停车功能触发后(n=1),上装控制器通过CAN网络获取减速停车功能触发之前的五帧信号{(x 1,t 1),(x 2,t 2),(x 3,t 3),(x 4,t 4),(x 5,t 5)},采用最小二乘法拟合五帧手柄位移信号为线性函数:
x=kt+b
其中b为函数截距,t为时间。
减速过程的手柄位移变化速率的求解公式如下:
Figure PCTCN2022084802-appb-000001
在S206中,将位移变化速率和预设阈值进行对比以生成停车控制指令。可例如,在位移变化速率小于等于第一阈值时,生成正常停车控制指令;在位移变化速率大于第一阈值且小于第二阈值时,生成扔手柄停车控制指令;在位移变化速率大于等于第二阈值时,生成快速停车控制指令。
第一阈值和第二阈值的生成过程将在图4对应的实施例中进行详细描述,第一阈值和第二阈值可预先存储在上车控制器中,在需要的时候直接调出进行比对即可。
在S208中,根据停车控制指令控制设备的上装系统进行减速停车。在不同的变化速率的情况下,根据不同的策略生成目标速度曲线,控制起重器按照目标速度曲线进行停车,具体内容将在图6对应的实施例中进行详细描述。
根据本申请的具有卷扬机构的设备停车方法,实时获取起重机的卷扬手柄的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制起重机的上装系统进行减速停车的方式,能够仅通过起重机的卷扬手柄达到快速停车控制的目的,在需要进行紧急停车时,降低对驾驶员的反应时间的要求,增加起重机的安全性。
应清楚地理解,本申请描述了如何形成和使用特定示例,但本申请的原理不限于这些示例的任何细节。相反,基于本申请公开的内容的教导,这些原理能够应用于许多其它实施例。
图4是根据另一示例性实施例示出的一种具有卷扬机构的设备停车方法的流程图。图4所示的流程40是“基于设备的电机扭矩特性和卷扬手柄的位移变化速率关系生成预设阈值”的详细描述。其中,预设阈值可包括第一阈值和第二阈值,通过第一阈值和第二阈值可将手柄的位移变化速率划分为三个不同的区间,进而根据不同的区间中的特点确定不同的停车方法。更具体地,第一阈值为正常调速过程机构速度可正常跟随手柄目标速度的减速度上限;第二阈值为手柄打开状态下快速松开操作手柄时手柄自动回位速率。具体内容请见下文描 述。
如图4所示,在S402中,基于设备的电机扭矩特性和卷扬手柄的位移变化速率关系生成预设阈值。
卷扬控制原理为:驾驶员操作卷扬手柄,上车控制器接收到手柄位移信号后根据该信号查表获取电机目标速度(手柄的每个位置均有个预存的目标速度与之相对应),并根据此目标速度和电机实际速度查询电机的目标加速度。上装控制器将该目标速度和加速度发送给电机控制器,电机控制器按照该目标速度和加速度执行调速,并将电机实际速度发送给上装控制器。
当根据手柄位移查询的目标速度变化速率大于目标加速度时,电机实际速度将无法实时跟随手柄目标速度。根据上述原理,分别确定第一阈值和第二阈值。
在S404中,根据设备的电机在正常状态下跟随卷扬手柄的速度的位移变化速率生成第一阈值。更具体地,第一阈值为正常调速过程机构速度可正常跟随手柄目标速度的减速度上限。
在S406中,根据卷扬手柄的自动回位时的位移变化速率生成第二阈值。更具体地,第二阈值为手柄打开状态下快速松开操作手柄时手柄自动回位速率。
更具体地,在一个实施例中,可根据第一阈值和第二阈值划分出位移变化速率对应的三个不同的区间。对应于根据驾驶员操作手柄的快慢将减速意图分为三种类型,如图5所示:①正常停车、②扔手柄停车、③快速停车。其中,第一阈值为k 1、第二阈值为k 2,其中k 1为正常调速过程机构速度可正常跟随手柄目标速度的减速度上限,k 2为手柄打开状态下快速松开操作手柄时手柄自动回位速率。
驾驶员操作手柄控制起重机减速,根据手柄速度变化速率k将减速意图划分方式包括:k<k 1为“正常停车”意图(区域①),减速过程速度跟随驾驶员操作手柄换算的目标速度进行减速;k 1<k<k 2为“扔手柄停车”意图(区域②),该状态手柄位移速度超过正常调速阶段最大减速度,但手柄回至中位的速度小于手柄自动归中的速度;k>k 2为“快速停车”意图(区域③),驾驶员快速推动操作手柄至中位,执行紧急减速。
图6是根据另一示例性实施例示出的一种具有卷扬机构的设备停车方法的流程图。图6所示的流程60是对图2所示的流程中S208“根据停车控制指令控制起重机的上装系统进行减速停车”的详细描述。
如图6所示,在S602中,将位移变化速率和预设阈值进行对比以生成停车控制指令。
在S604中,在位移变化速率小于等于第一阈值时,生成正常停车控制指令。
在S606中,在位移变化速率大于第一阈值且小于第二阈值时,生成扔手柄停车控制指令。
在S608中,在位移变化速率大于等于第二阈值时,生成快速停车控制指令。
操作手柄回到中位,若手柄位移变化较慢(图7(a),电机速度可实时跟随手柄目标速度)则电机按照手柄目标速度跟随减速,减速度为手柄目标速度的变化速率,电机实际速度到零后制动器投入;若手柄位移变化较快(图7(b),电机速度无法实时跟随手柄目标速度,手柄回到中位后电机仍处于减速状态),则手柄目标速度曲线的速度减到零后,上车控制器根据减速停车的控制曲线执行减速,速度达到制动投入速度后制动器投入。
在S610中,基于位置偏移信息生成目标速度曲线。判定为“正常停车”时,减速停车过程不定义特定减速度,电机速度直接跟随手柄目标速度行驶,该过程目标速度曲线的速度减速为0后,制动器投入使用。
在S612中,基于预设信息生成目标速度曲线。判定为“扔手柄停车”时,如图8所示,电机速度跟随均匀减速曲线v 2(t)减速,减速度值设定为a 2(t),a 2(t)=a b。当机构实际速度低于制动器投入速度,即v 2(t)<v b时,制动器投入使用。根据机构特性实车调试,标定出最佳a b和v b,保证a b尽可能大的同时确保减速过程无冲 击。
在S614中,基于设备的电机最大减速能力生成目标速度曲线。判定为“快速停车”时,如图8所示,电机跟随速度曲线v 3(t)、减速度曲线a 3(t)执行减速,该减速过程包括以减速度a rd快速匀减速的阶段,减速度逐渐减小的变减速阶段。减速度曲线a 3(t)的初始值化为a rd,减速过程先维持该减速度值;当机构实际速度低于v vd时,减速度开始连续减小;待目标减速度减小至a b时,制动器投入。
以上减速度曲线a 3(t)的初始值a rd定义可按照电机最大减速能力进行设计,这时候电机将按照电机的外特性进行减速。
更具体地,可通过当前速度下电机可提供的最大扭矩、卷扬减速机的速比、卷扬滚筒半径、当前卷扬滚筒上缠绕钢丝绳层数、钢丝绳直径、钢丝绳倍率、卷扬负载质量和重力加速度分别确定卷扬机构上行和卷扬机构下行时的减速度数值。减速曲线v 2(t)已经调试出无冲击的制动投入减速度a b及制动投入速度v b,通过调整v 3(t)曲线中减速度变化速率(J)及变减速开始时刻的速度v vd,可保证减速度a 3(t)=a b时,速度v 3(t)=v b,此时制动器投入使用便能确保“快速停车”控制没有冲击。因此减速过程各个控制变量需满足的条件为:
Figure PCTCN2022084802-appb-000002
可通过历史经验值确定J值。值得一提的是,过大的J值,会导致减速冲击;过小的J值,会导致停车过慢。无设计经验时减速度变化速率可通过如下方法进行调试:首先采用较小的J值,实车测试机构减速停车时是否无冲击;确保机构无冲击后,适度调大J值再做测试。重复以上过程,待机构出现冲击时测试结束,选取比出现冲击时的J略小的值作为设计J值。
在S616中,控制设备的上装系统按照目标速度曲线停车。
本领域技术人员可以理解实现上述实施例的全部或部分步骤被实现为由CPU执行的计算机程序。在该计算机程序被CPU执行时,执行本申请提供的上述方法所限定的上述功能。的程序可以存储于一种计算机可读存储介质中,该存储介质可以是只读存储器,磁盘或光盘等。
此外,需要注意的是,上述附图仅是根据本申请示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图9是本申请一实施例示出的一种具有卷扬机构的设备停车装置的框图。如图9所示,具有卷扬机构的设备停车装置90包括:位置模块902,计算模块904,指令模块906,控制模块908,阈值模块910。
位置模块902被配置为实时获取设备的卷扬手柄的位置偏移信息;位置模块,还被配置为通过设置在设备的卷扬手柄上的位移传感器获取位置偏移信息。
计算模块904被配置为在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;计算模块,包括:条件单元,被配置为通过位置偏移信息计算卷扬手柄的位移比率;在位移比率大于位移阈值时触发前置条件,在满足前置条件且位移比率减小到0时,确定满足触发条件,并触发减速停车功能。速率单元,被配置为获取多个位置偏移信息;根据多个位置偏移信息生成位移变化速率。
速率单元,还被配置为通过CAN网络获取位移传感器的多帧信号以生成多个位置偏移信息。速率单元,还被配置为基于最小二乘法对多个位置偏移信息进行拟合以生成位移变化速率。
指令模块906被配置为将位移变化速率和预设阈值进行对比以生成停车控制指令;指令模块,包括:第一指令单元,被配置为在位移变化速率小于等于第一阈值时,生成正常停车控制指令;第二指令单元,被配置为在位移变化速率大于第一阈值且小于第二阈值时,生成扔手柄停车控制指令;第三指令单元,被配置为在位移变化速率大于等于第二阈值时,生成快速停车控制指令。
控制模块908被配置为根据停车控制指令控制设备的上装系统进行减速停车。控制模块,包括:第一速度单元,被配置为在正常停车控制指令下,基于位置偏移信息生成目标速度曲线;第二速度单元,被配置为在扔手柄停车控制指令下,基于预设信息生成目标速度曲线;第三速度单元,被配置为在快速停车控制指令下,基于设备的电机最大减速能力生成目标速度曲线;控制单元,被配置为控制设备按照目标速度曲线进行停车。
阈值模块910被配置为基于设备的电机扭矩特性和卷扬手柄的位移变化速率关系生成预设阈值。预设阈值包括第一阈值和第二阈值;阈值模块,还被配置为根据设备的电机在正常状态下跟随卷扬手柄的速度的位移变化速率生成第一阈值;根据卷扬手柄的自动回位时的位移变化速率生成第二阈值。
根据本申请的具有卷扬机构的设备停车装置,实时获取起重机的卷扬手柄的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制起重机的上装系统进行减速停车的方式,能够仅通过起重机的卷扬手柄达到快速停车控制的目的,在需要进行紧急停车时,降低对驾驶员的反应时间的要求,增加起重机的安全性。
本申请还提供一种起重机,起重机包括:上车控制器,上车控制器实现如下功能:实时获取起重机的卷扬手柄的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制起重机的上装系统进行减速停车。
图10是本申请一实施例示出的一种电子设备的框图。
下面参照图10来描述根据本申请的这种实施方式的电子设备1000。图10显示的电子设备1000仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图10所示,电子设备1000以通用计算设备的形式表现。电子设备1000的组件可以包括但不限于:至少一个处理单元1010、至少一个存储单元1020、连接不同系统组件(包括存储单元1020和处理单元1010)的总线1030、显示单元1040等。
其中,存储单元存储有程序代码,程序代码可以被处理单元1010执行,使得处理单元1010执行本说明书中描述的根据本申请各种示例性实施方式的步骤。例如,处理单元1010可以执行如图2,图4,图6中所示的步骤。
存储单元1020可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)10201和/或高速缓存存储单元10202,还可以进一步包括只读存储单元(ROM)10203。
存储单元1020还可以包括具有一组(至少一个)程序模块10205的程序/实用工具10204,这样的程序模块10205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线1030可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、 图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备1000也可以与一个或多个外部设备1000’(例如键盘、指向设备、蓝牙设备等)通信,使得用户能与该电子设备1000交互的设备通信,和/或该电子设备1000能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口1050进行。并且,电子设备1000还可以通过网络适配器1060与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器1060可以通过总线1030与电子设备1000的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备1000使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,如图11所示,根据本申请实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行根据本申请实施方式的上述方法。
软件产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体地例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现如下功能:实时获取起重机的卷扬手柄的位置偏移信息;在位置偏移信息满足触发条件时,根据位置偏移信息生成位移变化速率;将位移变化速率和预设阈值进行对比以生成停车控制指令;根据停车控制指令控制起重机的上装系统进行减速停车。
本领域技术人员可以理解上述各模块可以按照实施例的描述分布于装置中,也可以进行相应变化唯一不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
通过以上的实施例的描述,本领域的技术人员易于理解,这里描述的示例实施例可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本申请实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本申请实 施例的方法。
以上具体地示出和描述了本申请的示例性实施例。应可理解的是,本申请不限于这里描述的详细结构、设置方式或实现方法;相反,本申请意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (14)

  1. 一种具有卷扬机构的设备停车方法,包括:
    实时获取设备的卷扬机构中卷扬手柄的位置偏移信息;
    通过所述位置偏移信息计算所述卷扬手柄的位移比率;
    在所述位移比率大于位移阈值时触发前置条件,在满足前置条件且所述位移比率减小到0的情况下,触发减速停车功能;
    根据所述位置偏移信息生成位移变化速率;
    将所述位移变化速率和预设阈值进行对比以生成停车控制指令;以及
    根据所述停车控制指令控制所述设备的上装系统进行减速停车。
  2. 根据权利要求1所述的方法,还包括:
    基于所述设备的电机扭矩特性和所述卷扬手柄的位移变化速率关系生成所述预设阈值。
  3. 根据权利要求2所述的方法,其中,所述预设阈值包括第一阈值和第二阈值;
    基于所述设备的电机扭矩特性和所述卷扬手柄的位移变化速率关系生成所述预设阈值,包括:
    根据所述设备的电机在正常状态下跟随所述卷扬手柄的速度的位移变化速率生成所述第一阈值;
    根据所述卷扬手柄的自动回位时的位移变化速率生成所述第二阈值。
  4. 根据权利要求1所述的方法,其中所述实时获取设备的卷扬手柄的位置偏移信息,包括:
    通过设置在所述设备的卷扬手柄上的位移传感器获取所述位置偏移信息。
  5. 根据权利要求4所述的方法,其中根据所述位置偏移信息生成位移变化速率,包括:
    获取多个位置偏移信息;
    根据所述多个位置偏移信息生成所述位移变化速率。
  6. 根据权利要求5所述的方法,其中所述获取多个位置偏移信息,包括:
    通过CAN网络获取所述位移传感器的多帧信号以生成所述多个位置偏移信息。
  7. 根据权利要求5所述的方法,其中根据所述多个位置偏移信息生成所述位移变化速率,包括:
    基于最小二乘法对所述多个位置偏移信息进行拟合以生成所述位移变化速率。
  8. 根据权利要求3所述的方法,其中将所述位移变化速率和预设阈值进行对比以生成停车控制指令,包括:
    在所述位移变化速率小于等于所述第一阈值的情况下,生成正常停车控制指令;
    在所述位移变化速率大于所述第一阈值且小于所述第二阈值的情况下,生成扔手柄停车控制指令;
    在所述位移变化速率大于等于所述第二阈值的情况下,生成快速停车控制指令。
  9. 根据权利要求8所述的方法,其中根据所述停车控制指令控制所述设备的上装系统进行减速停车,包括:
    在正常停车控制指令下,基于所述位置偏移信息生成目标速度曲线;
    在扔手柄停车控制指令下,基于预设信息生成目标速度曲线;
    在快速停车控制指令下,基于所述设备的电机最大减速能力生成目标速度曲线;
    控制所述设备按照所述目标速度曲线进行停车。
  10. 一种具有卷扬机构的设备停车装置,包括:
    位置模块,被配置为实时获取设备的卷扬机构中卷扬手柄的位置偏移信息;
    计算模块,被配置为通过所述位置偏移信息计算所述卷扬手柄的位移比率;在所述位移比率大于位移阈值时触发前置条件,在满足前置条件且所述位移比率减小到0时,触发减速停车功能,根据所述位置偏移信息生成位移变化速率;
    指令模块,被配置为将所述位移变化速率和预设阈值进行对比以生成停车控制指令;以及
    控制模块,被配置为根据所述停车控制指令控制所述设备的上装系统进行减速停车。
  11. 根据权利要求10所述的装置,还包括:
    阈值模块,被配置为基于所述设备的电机扭矩特性和所述卷扬手柄的位移变化速率关系生成所述预设阈值。
  12. 一种起重机,所述起重机包括:
    上车控制器,所述上车控制器实现如权利要求1-9中任一所述的方法。
  13. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,被配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-9中任一所述的方法。
  14. 一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1-9中任一所述的方法。
PCT/CN2022/084802 2021-04-01 2022-04-01 设备停车方法、装置、起重机、电子设备及可读介质 WO2022206952A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22779132.4A EP4317047A1 (en) 2021-04-01 2022-04-01 Method and apparatus for stopping device, and crane, electronic device and readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110357890.1A CN113023612B (zh) 2021-04-01 2021-04-01 设备停车方法、装置、起重机、电子设备及可读介质
CN202110357890.1 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022206952A1 true WO2022206952A1 (zh) 2022-10-06

Family

ID=76453974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084802 WO2022206952A1 (zh) 2021-04-01 2022-04-01 设备停车方法、装置、起重机、电子设备及可读介质

Country Status (3)

Country Link
EP (1) EP4317047A1 (zh)
CN (1) CN113023612B (zh)
WO (1) WO2022206952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023612B (zh) * 2021-04-01 2022-03-01 中联重科股份有限公司 设备停车方法、装置、起重机、电子设备及可读介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236769A (ja) * 1997-02-28 1998-09-08 Fuji Electric Co Ltd クレーンの制御方法
CN101439828A (zh) * 2008-12-12 2009-05-27 太原重工股份有限公司 一种带有卷筒锁定装置的起升机构
CN106516986A (zh) * 2016-12-14 2017-03-22 中联重科股份有限公司 起重机卷扬下放速度液压控制设备、方法、系统及起重机
WO2017209269A1 (ja) * 2016-06-03 2017-12-07 株式会社神戸製鋼所 電動ウインチ装置
CN108025707A (zh) * 2015-09-21 2018-05-11 克诺尔商用车制动系统有限公司 用于使商用车减速的方法
CN111267612A (zh) * 2020-02-18 2020-06-12 潍柴动力股份有限公司 油门开度信号的调整方法、装置、设备、存储介质及系统
CN113023612A (zh) * 2021-04-01 2021-06-25 中联重科股份有限公司 设备停车方法、装置、起重机、电子设备及可读介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3612247A1 (de) * 1986-04-11 1987-10-15 Haacon Hebetech Gmbh Seilwinde, insbesondere fuer eine betaetigung mittels handkurbel
CN201105960Y (zh) * 2007-10-24 2008-08-27 饶建明 一种安全型电动卷扬机
CN101898733A (zh) * 2010-07-26 2010-12-01 上海三一科技有限公司 一种卷扬机自由落体下放的电液控制系统
CN202029833U (zh) * 2011-01-14 2011-11-09 北汽福田汽车股份有限公司 驻车制动操纵手柄总成及汽车
CN103010963A (zh) * 2012-11-14 2013-04-03 上海市建筑科学研究院(集团)有限公司 一种臂架型起重机的辅助驾驶方法及其系统
CN103613040A (zh) * 2013-12-12 2014-03-05 李玲玲 一种绞车手动刹车装置
CN206900468U (zh) * 2017-06-22 2018-01-19 山推工程机械股份有限公司 一种新型电控转向制动系统
CN111424638B (zh) * 2020-03-31 2021-09-07 杭叉集团股份有限公司 一种强夯机自动刹车方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236769A (ja) * 1997-02-28 1998-09-08 Fuji Electric Co Ltd クレーンの制御方法
CN101439828A (zh) * 2008-12-12 2009-05-27 太原重工股份有限公司 一种带有卷筒锁定装置的起升机构
CN108025707A (zh) * 2015-09-21 2018-05-11 克诺尔商用车制动系统有限公司 用于使商用车减速的方法
WO2017209269A1 (ja) * 2016-06-03 2017-12-07 株式会社神戸製鋼所 電動ウインチ装置
CN106516986A (zh) * 2016-12-14 2017-03-22 中联重科股份有限公司 起重机卷扬下放速度液压控制设备、方法、系统及起重机
CN111267612A (zh) * 2020-02-18 2020-06-12 潍柴动力股份有限公司 油门开度信号的调整方法、装置、设备、存储介质及系统
CN113023612A (zh) * 2021-04-01 2021-06-25 中联重科股份有限公司 设备停车方法、装置、起重机、电子设备及可读介质

Also Published As

Publication number Publication date
CN113023612B (zh) 2022-03-01
EP4317047A1 (en) 2024-02-07
CN113023612A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
EP3072845B1 (en) Electric winch device
WO2022206952A1 (zh) 设备停车方法、装置、起重机、电子设备及可读介质
US10087057B2 (en) Braking apparatus for electric winch
CN103264970B (zh) 基于自学习的塔式起重机危险状态回转控制方法
US20130245899A1 (en) Swing control system for hybrid construction machine
WO2023035715A1 (zh) 用于塔机的控制方法及装置、处理器和云管理平台
CN103939507A (zh) 一种对制动器的制动能力进行检测的方法和设备
CN105253775A (zh) 一种塔机顶升配平控制系统、方法、装置及塔式起重机
KR20210070245A (ko) 차량 제동 방법, 장치 및 차량 제어 장치
TWI529117B (zh) 電梯安全故障即時檢出系統及其方法
CN104444913B (zh) 一种起重机的制动方法及装置
US20240182276A1 (en) Method and apparatus for stopping device, and crane, electronic device and readable medium
CN203582303U (zh) 一种外转子永磁同步电机驱动的起重机控制系统
CN113023607B (zh) 速度控制方法、装置、起重机、电子设备及可读介质
CN105302052B (zh) 一种矿用提升机电控装置系统及控制方法
CN201890732U (zh) 臂架型起重力矩限制器
CN113548542B (zh) 一种起重设备的电缆收放缆控制方法、装置以及系统
CN202785315U (zh) 起重机大车
CN114987476A (zh) 一种自适应巡航工况下的减速度控制系统、方法、设备及存储介质
CN106647385B (zh) 一种功率平衡控制设备、方法、系统及工程机械
CN115818448B (zh) 电动起重机上车功率分配方法及装置、电动起重机
CN203529839U (zh) 卷扬二次起升防下滑控制系统
CN105152019A (zh) 一种车间用吊车定位系统
JP2016166511A (ja) ショベル
CN110103724A (zh) 一种具备制动功能的电驱动系统的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022779132

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779132

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18552498

Country of ref document: US