WO2022206718A1 - 一种可吸收血管支架及其制备方法 - Google Patents

一种可吸收血管支架及其制备方法 Download PDF

Info

Publication number
WO2022206718A1
WO2022206718A1 PCT/CN2022/083529 CN2022083529W WO2022206718A1 WO 2022206718 A1 WO2022206718 A1 WO 2022206718A1 CN 2022083529 W CN2022083529 W CN 2022083529W WO 2022206718 A1 WO2022206718 A1 WO 2022206718A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdo
monofilament
yarn
titanium
core
Prior art date
Application number
PCT/CN2022/083529
Other languages
English (en)
French (fr)
Inventor
孙锟
孙晶
黄臻
李超婧
陈笋
白凯
赵鹏军
王富军
王璐
Original Assignee
上海交通大学医学院附属新华医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学医学院附属新华医院 filed Critical 上海交通大学医学院附属新华医院
Publication of WO2022206718A1 publication Critical patent/WO2022206718A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses

Definitions

  • the invention relates to the technical field of lumen stents, in particular to an absorbable vascular stent and a preparation method thereof.
  • Congenital vascular stenosis disease in children is mostly aortic valve stenosis, which is more common in males, with great harm and high incidence, accounting for about the sixth in the incidence of congenital heart disease, which can cause developmental disorders, fatigue, and difficulty breathing. , fainting precordial pain, heart failure and other symptoms.
  • Implantation of vascular stents in the diseased segment of large arteries to support the stenotic and occluded blood vessels, maintain smooth blood flow, restore blood pressure, and reduce the incidence of complications are the main goals of the treatment of congenital vascular stenotic diseases.
  • the stents clinically used for the treatment of congenital vascular stenosis are all metal stents.
  • permanent metal stents are implanted into congenital stenotic vessels with growth ability, they will hinder their continued growth and cause restenosis, while degradable metal stents Scaffolding materials such as Mg have too fast degradation rate in vivo, Fe has poor diamagnetic properties, and too long degradation time limit its development.
  • degradable polymer vascular stents Due to its excellent flexibility, biocompatibility, moderate degradability and mechanical support, degradable polymer vascular stents make it a promising treatment for children with congenital vascular stenosis. While the blood vessels are repaired and healed, they are slowly degraded into safe and non-toxic small molecular substances, which are excreted together with metabolic wastes, and have the potential to solve the problem of long-term restenosis after permanent metal stent implantation.
  • the materials of degradable polymer vascular stents that are more researched are mostly high molecular polymers, including polyurethane, polylactic acid, polyglycolide, polylactide, polydioxanone, polycaprolactone, etc.
  • these polymer degradable vascular stents have problems such as insufficient radial support performance, mismatch between degradation time and vascular repair and healing time, etc., which limit their clinical application and development, such as weak fatigue performance of polyurethane vascular stents and insufficient long-term oxidation.
  • the degradation time of polylactic acid (about 2 years) does not match the vascular repair and healing cycle (about 6 months), and the degradation products are acidic, which can easily lead to inflammatory reactions, and the degradation time of polydioxanone is too fast.
  • degradable vascular stents In addition, most of the current research on degradable vascular stents focuses on the treatment of coronary stenotic diseases.
  • the diameter of such stents is less than 4 mm, while the related research on degradable vascular stents for infant aortas with a diameter of 6 to 9 mm There are very few; therefore, it is necessary to design a degradable polymer vascular stent for patients with congenital vascular stenotic diseases, with mechanical enhancement and degradation time matching with vascular repair and healing, in order to improve the existing degradable vascular stents problem, and further improve the possibility of its entry into clinical application.
  • the thermal bonding PPDO/PCL sheath-core structure braided yarn is prepared by referring to the thermal bonding process in the non-woven field to limit the slippage and rotation of some interwoven points in the braided structure, so as not to significantly change the stent wall thickness.
  • the mechanical properties of the stent are improved under the following conditions, and the thermally bonded PPDO/PCL skin-core structure braided yarn and PPDO monofilament are used to form a vascular stent embryo tube, and then heat-setting treatment is performed to obtain a structurally stable PPDO/PCL braided self-enhancing vascular stent.
  • the degradation rate of the degradable stents prepared in this way is still relatively fast, and the mechanical support properties of the vascular stents are lost in only 4 to 5 months, which cannot completely match the healing time of the blood vessels, resulting in the inability to complete the surface of the vascular stents. Endothelialization, leading to thrombosis and intimal hyperplasia in severe cases. Therefore, it is of great significance to develop a degradable polymer vascular stent that can regulate the degradation rate so that the degradation time of the degradable stent matches the vascular healing time.
  • the present invention provides an absorbable vascular stent with a regulated degradation rate and a preparation method thereof
  • one aspect of the present invention provides an absorbable vascular stent
  • the vascular stent is formed by interweaving a core-spun yarn and a titanium-infiltrated PPDO monofilament, the interwoven points of the core-spun yarn are fixed by welding, and the wrapping
  • the core yarn of the core yarn is titanium-impregnated PPDO monofilament
  • the shell yarn is PCL multifilament
  • the sheath yarn completely covers the core yarn
  • the titanium-impregnated PPDO monofilament includes a titanium dioxide film covering the surface of the PPDO monofilament base.
  • the thickness of the titanium dioxide film is 10 -8 m to 3 ⁇ 10 -8 m.
  • titanium dioxide film is plated layer by layer on the surface of the PPDO monofilament substrate in the form of a single atomic film.
  • the present invention also provides a method for preparing an absorbable vascular stent, comprising the following steps:
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are intertwined with each other in opposite directions and covered on the surface of the mold to form a braided blood vessel stent embryo tube;
  • the embryo tube of the braided vascular stent is placed under a high temperature and a standard atmospheric pressure environment, so that the core spun yarns in contact with each other are bonded and fixed at the interweaving point, and the PCL shell yarn at the non-interleaving point completely covers the titanium PPDO monofilament core yarn , After cooling, the titanium permeable PPDO/PCL braided vascular stent was obtained.
  • the heating temperature of the ALD reactor is 70°C-80°C, and the deposition cycle is 200-600.
  • the ALD chamber is heated to the deposition temperature before deposition.
  • the mold is a mold with the same diameter as the desired vascular stent.
  • the placement temperature of the embryo tube of the braided blood vessel stent is 70-100° C., and the placement time is 30 min-1 h.
  • the weaving angle is 50-70°.
  • a preparation method of an absorbable vascular stent capable of regulating the degradation rate of the present invention adopts atomic layer deposition technology to infiltrate titanium into PPDO monofilament, and use a small amount of metal titanium ions to improve the degradation performance;
  • a preparation method of an absorbable vascular stent with adjustable degradation rate of the present invention adopts atomic layer deposition technology, and metal titanium is plated on the surface of PPDO monofilament substrate layer by layer in the form of a single atomic film, and By changing the number of deposition cycles, the thickness of TiO2 deposition on the surface of the monofilament can be adjusted: the more the number of deposition cycles, the thicker the deposition thickness of TiO2 on the surface of the monofilament;
  • the PPDO monofilament treated with titanium infiltrate has greater crystallinity and more orderliness than the untreated PPDO monofilament.
  • Microcrystals limit the entry of water molecules into the amorphous region, thereby limiting the hydrolysis of ester bonds and ether bonds in PPDO, and delaying the degradation rate, so it can achieve the purpose of regulating the degradation rate of vascular stents, and finally achieve 6 after stent implantation.
  • the lumen remained unobstructed and dimensionally stable around the month, while the blood vessels healed and repaired well.
  • FIG. 1 is a schematic diagram of an absorbable vascular stent.
  • FIG. 1 is a schematic diagram of a titanium-infiltrated PPDO/PCL braided vascular stent.
  • an absorbable vascular stent in this embodiment is formed by interlacing core-spun yarn and titanium-infiltrated PPDO monofilament, and the interlacing points of the core-spun yarn are fixed by welding.
  • the core yarn of the core-spun yarn is a titanium-impregnated PPDO monofilament
  • the shell yarn is a PCL multifilament
  • the shell yarn is completely covered with the core yarn
  • the titanium-impregnated PPDO monofilament includes a titanium dioxide film that is covered on the surface of the PPDO monofilament substrate.
  • the thickness of the titanium dioxide film is 10 -8 m to 3 ⁇ 10 -8 m.
  • the titanium dioxide film is plated layer by layer on the surface of the PPDO monofilament substrate in the form of a single atomic film.
  • a method for an absorbable vascular stent capable of regulating the degradation rate the specific steps are as follows:
  • the process of a single deposition cycle is: maintained at a pressure of 0.1 Torr for 1 h, using high-purity nitrogen (99.999%) and ordinary nitrogen (99.9%) as the carrier gas and purge gas of the ALD process, titanium isopropoxide and H2O
  • the carrier gas is alternately pulsed into the ALD reactor; when the carrier gas is alternately pulsed, the pulse time of titanium isopropoxide and H2O are both 1s; after the pulse, each precursor is kept in the chamber for 40s to make PPDO
  • the monofilament substrate was fully exposed to the precursor vapor, and then the reaction chamber was purged with ordinary nitrogen at a flow rate of 20 sccm for 60 s;
  • the surface of the prepared titanium-infiltrated PPDO monofilament has a TiO2 film with a uniform deposition structure; the thickness of the TiO2 film is 2 ⁇ 10-8m, and is plated on the surface of the PPDO monofilament substrate layer by layer in the form of a monoatomic film;
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are interwoven in opposite directions (the braiding angle is 68°) and covered on the surface of the mold (the same as the inner diameter of the desired blood vessel stent) to form a braided blood vessel stent embryo tube;
  • the obtained absorbable vascular stent (titanium-infiltrating PPDO/PCL braided vascular stent) with adjustable degradation rate is shown in Figure 1.
  • the absorbable vascular stent was degraded in a water bath environment of deionized water at 37 °C, and 70% yarn The rupture occurred on day 182.
  • a method for an absorbable vascular stent capable of regulating the degradation rate the specific steps are as follows:
  • the process of a single deposition cycle is: maintained at a pressure of 0.1 Torr for 1 h, using high-purity nitrogen (99.999%) and ordinary nitrogen (99.9%) as the carrier gas and purge gas of the ALD process, titanium isopropoxide and H2O
  • the carrier gas is alternately pulsed into the ALD reactor; when the carrier gas is alternately pulsed, the pulse time of titanium isopropoxide and H2O are both 1s; after the pulse, each precursor is kept in the chamber for 40s to make PPDO
  • the monofilament substrate was fully exposed to the precursor vapor, and then the reaction chamber was purged with ordinary nitrogen at a flow rate of 20 sccm for 60 s;
  • the surface of the prepared titanium-infiltrated PPDO monofilament has a TiO2 film with a uniform deposition structure; the thickness of the TiO2 film is 10-8m, and is plated on the surface of the PPDO monofilament substrate layer by layer in the form of a monoatomic film;
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are interwoven in opposite directions (the braiding angle is 50°) and covered on the surface of the mold (the same as the inner diameter of the desired blood vessel stent) to form a braided blood vessel stent embryo tube;
  • the prepared absorbable vascular stent (titanium-infiltrated PPDO/PCL braided vascular stent) with adjustable degradation rate was degraded in a water bath environment of deionized water at 37°C, and 70% of the yarns broke on the 170th day.
  • a method for an absorbable vascular stent capable of regulating the degradation rate the specific steps are as follows:
  • the process of a single deposition cycle is: maintained at a pressure of 0.1 Torr for 1 h, using high-purity nitrogen (99.999%) and ordinary nitrogen (99.9%) as the carrier gas and purge gas of the ALD process, titanium isopropoxide and H2O
  • the carrier gas is alternately pulsed into the ALD reactor; when the carrier gas is alternately pulsed, the pulse time of titanium isopropoxide and H2O are both 1s; after the pulse, each precursor is kept in the chamber for 40s to make PPDO
  • the monofilament substrate was fully exposed to the precursor vapor, and then the reaction chamber was purged with ordinary nitrogen at a flow rate of 20 sccm for 60 s;
  • the surface of the prepared titanium-infiltrated PPDO monofilament has a TiO2 film with a uniform deposition structure; the thickness of the TiO2 film is 3 ⁇ 10-8m, and is plated on the surface of the PPDO monofilament substrate layer by layer in the form of a monoatomic film;
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are interwoven in opposite directions (the braiding angle is 70°) and covered on the surface of the mold (the same as the inner diameter of the desired blood vessel stent) to form a braided blood vessel stent embryo tube;
  • the prepared absorbable vascular stent (titanium infiltrated PPDO/PCL braided vascular stent) with adjustable degradation rate was degraded in a water bath environment of deionized water at 37°C, and 70% of the yarns broke on the 195th day.
  • a method for an absorbable vascular stent capable of regulating the degradation rate the specific steps are as follows:
  • the process of a single deposition cycle is as follows: maintained at a pressure of 0.1 Torr for 1 h, using high-purity nitrogen (99.999%) and ordinary nitrogen (99.9%) as the carrier gas and purge gas of the ALD process, titanium tetrachloride and H2O
  • the carrier gas is alternately pulsed into the ALD reactor; when the carrier gas is alternately pulsed, the pulse time of titanium tetrachloride and H2O is both 1s; after the pulse, each precursor is kept in the chamber for 40s to make PPDO
  • the monofilament substrate was fully exposed to the precursor vapor, and then the reaction chamber was purged with ordinary nitrogen at a flow rate of 20 sccm for 60 s;
  • the surface of the prepared titanium-infiltrated PPDO monofilament has a TiO2 film with a uniform deposition structure; the thickness of the TiO2 film is 2.5 ⁇ 10-8m, and is plated on the surface of the PPDO monofilament substrate layer by layer in the form of a monoatomic film;
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are interwoven in opposite directions (the braiding angle is 60°) and covered on the surface of the mold (the same as the inner diameter of the desired blood vessel stent) to form a braided blood vessel stent embryo tube;
  • the prepared absorbable vascular stent (titanium infiltrated PPDO/PCL braided vascular stent) with adjustable degradation rate was degraded in a water bath environment of deionized water at 37°C, and 70% of the yarns broke on the 189th day.
  • a method for an absorbable vascular stent capable of regulating the degradation rate the specific steps are as follows:
  • the process of a single deposition cycle is as follows: maintained at a pressure of 0.1 Torr for 1 h, using high-purity nitrogen (99.999%) and ordinary nitrogen (99.9%) as the carrier gas and purge gas of the ALD process, titanium tetrachloride and H2O
  • the carrier gas is alternately pulsed into the ALD reactor; when the carrier gas is alternately pulsed, the pulse time of titanium tetrachloride and H2O is both 1s; after the pulse, each precursor is kept in the chamber for 40s to make PPDO
  • the monofilament substrate was fully exposed to the precursor vapor, and then the reaction chamber was purged with ordinary nitrogen at a flow rate of 20 sccm for 60 s;
  • the surface of the prepared titanium-infiltrated PPDO monofilament has a TiO2 film with a uniform deposition structure; the thickness of the TiO2 film is 2 ⁇ 10-8m, and is plated on the surface of the PPDO monofilament substrate layer by layer in the form of a monoatomic film;
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are interwoven in opposite directions (the braiding angle is 65°) and covered on the surface of the mold (the same as the inner diameter of the desired blood vessel stent) to form a braided blood vessel stent embryo tube;
  • the prepared absorbable vascular stent (titanium infiltrated PPDO/PCL braided vascular stent) with adjustable degradation rate was degraded in a water bath environment of deionized water at 37°C, and 70% of the yarns broke on the 183rd day.
  • a method for an absorbable vascular stent capable of regulating the degradation rate the specific steps are as follows:
  • the process of a single deposition cycle is as follows: maintained at a pressure of 0.1 Torr for 1 h, using high-purity nitrogen (99.999%) and ordinary nitrogen (99.9%) as the carrier gas and purge gas of the ALD process, titanium tetrachloride and H2O
  • the carrier gas is alternately pulsed into the ALD reactor; when the carrier gas is alternately pulsed, the pulse time of titanium tetrachloride and H2O is both 1s; after the pulse, each precursor is kept in the chamber for 40s to make PPDO
  • the monofilament substrate was fully exposed to the precursor vapor, and then the reaction chamber was purged with ordinary nitrogen at a flow rate of 20 sccm for 60 s;
  • the surface of the prepared titanium-infiltrated PPDO monofilament has a TiO2 film with a uniform deposition structure; the thickness of the TiO2 film is 2.75 ⁇ 10-8m, and is plated on the surface of the PPDO monofilament substrate layer by layer in the form of a monoatomic film;
  • the core-spun yarn and the titanium-infiltrated PPDO monofilament are interwoven in opposite directions (the braiding angle is 55°) and covered on the surface of the mold (the same as the inner diameter of the desired blood vessel stent) to form a braided blood vessel stent embryo tube;
  • the prepared absorbable vascular stent (titanium infiltrated PPDO/PCL braided vascular stent) with adjustable degradation rate was degraded in a water bath environment of deionized water at 37°C, and 70% of the yarns broke on the 192nd day.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种可吸收血管支架及其制备方法,采用原子层沉积技术在PPDO单丝上沉积结构均匀的TiO2薄膜得到渗钛PPDO单丝;再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织并包覆在模具表面形成编织血管支架胚管,最后高温放置使互相接触的包芯纱在交织点处粘结,制得可吸收血管支架,支架在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第170~195天,通过对单丝表面TiO2沉积厚度的调控,实现血管支架植入后6个月左右管腔保持畅通和尺寸稳定。

Description

一种可吸收血管支架及其制备方法 技术领域
本发明涉及管腔支架技术领域,具体涉及一种可吸收血管支架及其制备方法。
背景技术
小儿先天性血管狭窄性疾病多为主动脉瓣狭窄,其多发于男性,危害性大且发病率高,约占先天性心脏病发病率的第6位,会造成发育障碍、易疲劳、呼吸困难、昏厥心前区疼痛、心力衰竭等症状。在大动脉病变段植入血管支架来支撑狭窄闭塞段血管,保持血流通畅,恢复血压以及减少并发症的发生几率是治疗先天性血管狭窄性疾病的主要目的。
目前临床上用于治疗先天性血管狭窄性疾病的支架均为金属支架,但由于永久性金属支架植入具有生长能力的先天性狭窄血管后会阻碍其继续生长而造成再次狭窄,而可降解金属支架材料如Mg存在体内降解速率过快、Fe存在抗磁性能差、降解时间过长等问题限制了其发展。
可降解聚合物血管支架由于其优异的柔顺性、生物相容性、适度的可降解性和力学支撑性,使其成为治疗小儿先天性血管狭窄性疾病极具前景的治疗方法,此外还能在血管修复愈合的同时缓慢降解为安全无毒的小分子物质,随代谢废物一起排出体外,具有解决永久性金属支架植入后远期再狭窄问题的潜能。目前研究较多的可降解聚合物血管支架的材料多为高分子多聚物,包括聚氨酯、聚乳酸、聚乙交酯、聚丙交酯、聚对二氧环己酮、聚己内酯等等,但这些聚合 物可降解血管支架又存在着径向支撑性能不足,降解时间与血管修复愈合时间不匹配等问题,限制了其临床应用和发展,如聚氨酯血管支架疲劳性能较弱及长期氧化不足、聚乳酸降解时间(约2年)与血管修复愈合周期(约6个月)不匹配及降解产物为酸性易导致炎症反应、聚对二氧环己酮降解时间过快等等。
除此之外,目前对于可降解血管支架的研究大多集中在冠状动脉狭窄性疾病治疗上,这类支架的直径小于4mm,而针对直径为6~9mm婴幼儿大动脉的可降解血管支架的相关研究少之又少;因此,需要设计一种面向先天性血管狭窄性疾病患者的可降解聚合物血管支架,具备力学增强性和与血管修复愈合相匹配的降解时间,以改善现有可降解血管支架的问题,并进一步提高其进入临床应用的可能性。
专利CN108066048B中通过借鉴非织造领域中热粘合工艺,制备热粘合PPDO/PCL皮芯结构编织纱来限制编织结构中部分交织点的滑移和转动,以在不显著改变支架壁厚的前提下提高支架的机械性能,并将热粘合PPDO/PCL皮芯结构编织纱与PPDO单丝组成血管支架胚管,然后经过热定型处理,得到结构稳定的PPDO/PCL编织自增强型血管支架。然而,这种方式制备的可降解支架的降解速率仍然较快,仅在4~5个月内就失去了作为血管支架的力学支撑性能,与血管愈合时间不能完全匹配,导致血管支架表面无法完成内皮化,严重时导致血栓形成和内膜增生。因此,开发一种能够调控降解速率,从而使可降解支架的降解时间与血管愈合时间相匹配的可降解聚合物血管支架具有重要意义。
发明内容
为解决现有技术中存在的可吸收血管支架降解时间不可控的问题,本发明提供一种可调控降解速率的可吸收血管支架及其制备方法
为了达到上述目的,本发明一方面提供一种可吸收血管支架,所述血管支架由包芯纱和渗钛PPDO单丝交织而成,所述包芯纱的交织点通过熔接固定,所述包芯纱的芯纱为渗钛PPDO单丝,壳纱为PCL复丝,且壳纱对芯纱完全包覆,所述渗钛PPDO单丝包括覆盖于PPDO单丝基底表面上的二氧化钛薄膜。
进一步的,所述二氧化钛薄膜的厚度为10 -8m~3×10 -8m。
进一步的,所述二氧化钛薄膜为以单原子膜的形式一层一层地镀在PPDO单丝基底表面。
另一方面,本发明还提供一种可吸收血管支架的制备方法,包括以下步骤:
将PPDO单丝放入ALD反应器中进行TiO2沉积,获得渗钛PPDO单丝;
以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织并包覆在模具表面形成编织血管支架胚管;
将编织血管支架胚管在高温和一个标准大气压环境下放置,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
进一步的,所述ALD反应器的加热温度为70℃-80℃,所述沉积周期为200-600个。
进一步的,所述单个沉淀周期的过程为:
在0.1Torr的压力下保持1h,用高纯氮和普通氮气作为ALD过程的载气和吹扫气体,将异丙醇钛或四氯化钛和H 2O作为前驱体源通过载气交替脉冲进入 ALD反应器中;其中,载气交替脉冲时,异丙醇钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s。
进一步的,沉积前将ALD腔室加热到沉积时的温度。
进一步的,所述模具为与所需血管支架直径相同的模具。
进一步的,所述编织血管支架胚管的放置温度为70~100℃,所述放置时间为30min~1h。
进一步的,所述将包芯纱和渗钛PPDO单丝沿相反方向相互交织时,编织角为50~70°。
本发明的有益之处在于:
(1)本发明的一种可调控降解速率的可吸收血管支架的制备方法,采用原子层沉积技术,将钛渗透到PPDO单丝中,用少量的金属钛离子改善降解性能;
(2)本发明的一种可调控降解速率的可吸收血管支架的制备方法,采用原子层沉积技术,将金属钛以单原子膜的形式一层一层地镀在PPDO单丝基底表面,并改变沉积周期循环次数,可以实现对单丝表面TiO2沉积厚度的调控:沉积周期循环次数越多,单丝表面TiO2沉积厚度越厚;
(3)本发明的一种可调控降解速率的可吸收血管支架,在降解过程中,经过渗钛处理的PPDO单丝比未经处理的PPDO单丝结晶度更大,具有更多的有序微晶,限制了水分子进入非晶区,从而限制了PPDO中酯键和醚键的水解,延缓了降解速率,故可以达到调控血管支架降解速率的目的,最终实现血管支架植入后6个月左右管腔保持畅通和尺寸稳定,与此同时血管愈合修复良好。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种可吸收血管支架的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
实施例一
图1为渗钛PPDO/PCL编织血管支架的示意图。如图1所示,本实施例的一种可吸收血管支架由包芯纱和渗钛PPDO单丝交织而成,包芯纱的交织点通过熔接固定。包芯纱的芯纱为渗钛PPDO单丝,壳纱为PCL复丝,且壳纱对芯 纱完全包覆,所述渗钛PPDO单丝包括覆盖于PPDO单丝基底表面上的二氧化钛薄膜。
优选的,二氧化钛薄膜的厚度为10 -8m~3×10 -8m。
优选的,所述二氧化钛薄膜为以单原子膜的形式一层一层地镀在PPDO单丝基底表面。
实施例二
一种可调控降解速率的可吸收血管支架的方法,具体步骤如下:
(1)先将ALD腔室加热到70℃,再将PPDO单丝放入ALD反应器中进行TiO2沉积,且沉积400个沉积周期,制得渗钛PPDO单丝;
其中单个沉积周期的过程为:在0.1Torr的压力下保持1h,用高纯氮(99.999%)和普通氮气(99.9%)作为ALD过程的载气和吹扫气体,将异丙醇钛和H2O作为前驱体源通过载气交替脉冲进入ALD反应器中;其中,载气交替脉冲时,异丙醇钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s;
制得的渗钛PPDO单丝表面具有沉积结构均匀的TiO2薄膜;TiO2薄膜厚度为2×10-8m,且是以单原子膜的形式一层一层地镀在PPDO单丝基底表面;
(2)再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
(3)然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织(编织角为68°)并包覆在模具(与所需血管支架的内径相同)表面形成编织血管支架胚管;
(4)最后将编织血管支架胚管在90℃和一个标准大气压环境下放置1h,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
制得的可调控降解速率的可吸收血管支架(渗钛PPDO/PCL编织血管支架)如图1所示,可吸收血管支架在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第182天。
实施例三
一种可调控降解速率的可吸收血管支架的方法,具体步骤如下:
(1)先将ALD腔室加热到80℃,再将PPDO单丝放入ALD反应器中进行TiO2沉积,且沉积200个沉积周期,制得渗钛PPDO单丝;
其中单个沉积周期的过程为:在0.1Torr的压力下保持1h,用高纯氮(99.999%)和普通氮气(99.9%)作为ALD过程的载气和吹扫气体,将异丙醇钛和H2O作为前驱体源通过载气交替脉冲进入ALD反应器中;其中,载气交替脉冲时,异丙醇钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s;
制得的渗钛PPDO单丝表面具有沉积结构均匀的TiO2薄膜;TiO2薄膜厚度为10-8m,且是以单原子膜的形式一层一层地镀在PPDO单丝基底表面;
(2)再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
(3)然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织(编织角为50°)并包覆在模具(与所需血管支架的内径相同)表面形成编织血管支架胚管;
(4)最后将编织血管支架胚管在100℃和一个标准大气压环境下放置50min,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
制得的可调控降解速率的可吸收血管支架(渗钛PPDO/PCL编织血管支架)在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第170天。
实施例四
一种可调控降解速率的可吸收血管支架的方法,具体步骤如下:
(1)先将ALD腔室加热到72℃,再将PPDO单丝放入ALD反应器中进行TiO2沉积,且沉积600个沉积周期,制得渗钛PPDO单丝;
其中单个沉积周期的过程为:在0.1Torr的压力下保持1h,用高纯氮(99.999%)和普通氮气(99.9%)作为ALD过程的载气和吹扫气体,将异丙醇钛和H2O作为前驱体源通过载气交替脉冲进入ALD反应器中;其中,载气交替脉冲时,异丙醇钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s;
制得的渗钛PPDO单丝表面具有沉积结构均匀的TiO2薄膜;TiO2薄膜厚度为3×10-8m,且是以单原子膜的形式一层一层地镀在PPDO单丝基底表面;
(2)再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
(3)然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织(编织角为70°)并包覆在模具(与所需血管支架的内径相同)表面形成编织血管支架胚管;
(4)最后将编织血管支架胚管在70℃和一个标准大气压环境下放置45min,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
制得的可调控降解速率的可吸收血管支架(渗钛PPDO/PCL编织血管支架)在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第195天。
实施例五
一种可调控降解速率的可吸收血管支架的方法,具体步骤如下:
(1)先将ALD腔室加热到78℃,再将PPDO单丝放入ALD反应器中进行TiO2沉积,且沉积500个沉积周期,制得渗钛PPDO单丝;
其中单个沉积周期的过程为:在0.1Torr的压力下保持1h,用高纯氮(99.999%)和普通氮气(99.9%)作为ALD过程的载气和吹扫气体,将四氯化钛和H2O作为前驱体源通过载气交替脉冲进入ALD反应器中;其中,载气交替脉冲时,四氯化钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s;
制得的渗钛PPDO单丝表面具有沉积结构均匀的TiO2薄膜;TiO2薄膜厚度为2.5×10-8m,且是以单原子膜的形式一层一层地镀在PPDO单丝基底表面;
(2)再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
(3)然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织(编织角为60°)并包覆在模具(与所需血管支架的内径相同)表面形成编织血管支架胚管;
(4)最后将编织血管支架胚管在75℃和一个标准大气压环境下放置40min,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
制得的可调控降解速率的可吸收血管支架(渗钛PPDO/PCL编织血管支架)在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第189天。
实施例六
一种可调控降解速率的可吸收血管支架的方法,具体步骤如下:
(1)先将ALD腔室加热到76℃,再将PPDO单丝放入ALD反应器中进行TiO2沉积,且沉积400个沉积周期,制得渗钛PPDO单丝;
其中单个沉积周期的过程为:在0.1Torr的压力下保持1h,用高纯氮(99.999%)和普通氮气(99.9%)作为ALD过程的载气和吹扫气体,将四氯化钛和H2O作为前驱体源通过载气交替脉冲进入ALD反应器中;其中,载气交替脉冲时,四氯化钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s;
制得的渗钛PPDO单丝表面具有沉积结构均匀的TiO2薄膜;TiO2薄膜厚度为2×10-8m,且是以单原子膜的形式一层一层地镀在PPDO单丝基底表面;
(2)再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
(3)然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织(编织角为65°)并包覆在模具(与所需血管支架的内径相同)表面形成编织血管支架胚管;
(4)最后将编织血管支架胚管在80℃和一个标准大气压环境下放置35min,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
制得的可调控降解速率的可吸收血管支架(渗钛PPDO/PCL编织血管支架)在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第183天。
实施例七
一种可调控降解速率的可吸收血管支架的方法,具体步骤如下:
(1)先将ALD腔室加热到74℃,再将PPDO单丝放入ALD反应器中进行TiO2沉积,且沉积550个沉积周期,制得渗钛PPDO单丝;
其中单个沉积周期的过程为:在0.1Torr的压力下保持1h,用高纯氮(99.999%)和普通氮气(99.9%)作为ALD过程的载气和吹扫气体,将四氯化钛和H2O作为前驱体源通过载气交替脉冲进入ALD反应器中;其中,载气交替脉冲时,四氯化钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s;
制得的渗钛PPDO单丝表面具有沉积结构均匀的TiO2薄膜;TiO2薄膜厚度为2.75×10-8m,且是以单原子膜的形式一层一层地镀在PPDO单丝基底表面;
(2)再以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
(3)然后分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织(编织角为55°)并包覆在模具(与所需血管支架的内径相同)表面形成编织血管支架胚管;
(4)最后将编织血管支架胚管在85℃和一个标准大气压环境下放置30min,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
制得的可调控降解速率的可吸收血管支架(渗钛PPDO/PCL编织血管支架)在37℃的去离子水的水浴环境下进行降解,70%纱线的断裂发生在第192天。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可吸收血管支架,其特征在于,所述血管支架由包芯纱和渗钛PPDO单丝交织而成,所述包芯纱的交织点通过熔接固定,所述包芯纱的芯纱为渗钛PPDO单丝,壳纱为PCL复丝,且壳纱对芯纱完全包覆,所述渗钛PPDO单丝包括覆盖于PPDO单丝基底表面上的二氧化钛薄膜。
  2. 如权利要求1所述的一种可吸收血管支架,其特征在于,所述二氧化钛薄膜的厚度为10 -8m~3×10 -8m。
  3. 如权利要求1所述的一种可吸收血管支架,其特征在于,所述二氧化钛薄膜为以单原子膜的形式一层一层地镀在PPDO单丝基底表面。
  4. 一种可吸收血管支架的制备方法,其特征在于,包括以下步骤:
    将PPDO单丝放入ALD反应器中进行TiO2沉积,获得渗钛PPDO单丝;
    以渗钛PPDO单丝为芯纱,以PCL复丝为壳纱,形成壳纱对芯纱完全包覆的包芯纱;
    分别将包芯纱和渗钛PPDO单丝沿相反方向相互交织并包覆在模具表面形成编织血管支架胚管;
    将编织血管支架胚管在高温和一个标准大气压环境下放置,使得相互接触的包芯纱在交织点处粘结固定,非交织点处PCL壳纱对渗钛PPDO单丝芯纱的完全包覆,经冷却,制得渗钛PPDO/PCL编织血管支架。
  5. 如权利要求4所述的一种可吸收血管支架的制备方法,其特征在于,所述ALD反应器的加热温度为70℃-80℃,所述沉积周期为200-600个。
  6. 如权利要求5所述的一种可吸收血管支架的制备方法,其特征在于,所述单个沉淀周期的过程为:
    在0.1Torr的压力下保持1h,用高纯氮和普通氮气作为ALD过程的载气和吹扫气体,将异丙醇钛或四氯化钛和H 2O作为前驱体源通过载气交替脉冲进入 ALD反应器中;其中,载气交替脉冲时,异丙醇钛和H2O的脉冲时间均为1s;脉冲后将各前驱体在腔室中保持40s使PPDO单丝基底充分暴露在前驱体蒸汽中,随后用普通氮气以20sccm的流速吹扫反应腔室60s。
  7. 如权利要求4所述的一种可吸收血管支架的制备方法,其特征在于,还包括:沉积前将ALD腔室加热到沉积时的温度。
  8. 如权利要求4所述的一种可吸收血管支架的制备方法,其特征在于,所述模具为与所需血管支架直径相同的模具。
  9. 如权利要求4所述的一种可吸收血管支架的制备方法,其特征在于,所述编织血管支架胚管的放置温度为70~100℃,所述放置时间为30min~1h。
  10. 如权利要求4所述的一种可吸收血管支架的制备方法,其特征在于,所述将包芯纱和渗钛PPDO单丝沿相反方向相互交织时,编织角为50~70°。
PCT/CN2022/083529 2021-04-01 2022-03-29 一种可吸收血管支架及其制备方法 WO2022206718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110355683.2 2021-04-01
CN202110355683.2A CN113230004B (zh) 2021-04-01 2021-04-01 一种可吸收血管支架及其制备方法

Publications (1)

Publication Number Publication Date
WO2022206718A1 true WO2022206718A1 (zh) 2022-10-06

Family

ID=77130923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083529 WO2022206718A1 (zh) 2021-04-01 2022-03-29 一种可吸收血管支架及其制备方法

Country Status (2)

Country Link
CN (1) CN113230004B (zh)
WO (1) WO2022206718A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113230004B (zh) * 2021-04-01 2023-07-28 上海交通大学医学院附属新华医院 一种可吸收血管支架及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485900A (zh) * 2008-12-23 2009-07-22 天津理工大学 一种可降解Mg-Zn-Zr合金血管内支架及其综合处理工艺
US20090304774A1 (en) * 2008-05-14 2009-12-10 Xinhua Liang Implantable devices having ceramic coating applied via an atomic layer deposition method
US20160129162A1 (en) * 2014-11-06 2016-05-12 Medtronic Vascular, Inc. Protected Magnesium Alloys for Bioresorbable Stents
CN107820416A (zh) * 2017-08-17 2018-03-20 鼎科医疗技术(苏州)有限公司 可降解金属支架及其制造方法
CN108066048A (zh) * 2017-12-20 2018-05-25 东华大学 热粘合复合结构可降解管腔支架及其制备方法和应用
CN113230004A (zh) * 2021-04-01 2021-08-10 上海交通大学医学院附属新华医院 一种可吸收血管支架及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2202387A1 (en) * 1994-10-11 1996-04-25 Barry C. Arkles Conformal titanium-based films and method for their preparation
DE102005053247A1 (de) * 2005-11-08 2007-05-16 Martin Fricke Implantat, insbesondere Stent, und Verfahren zum Herstellen eines solchen Implantats
US20130053938A1 (en) * 2008-01-18 2013-02-28 Metascape Llc Surface protective and release matrices
CN101864562A (zh) * 2010-07-07 2010-10-20 南京大学 利用ald技术在金属医疗器械上制备氧化物表面的方法
US20220072198A1 (en) * 2019-01-10 2022-03-10 Northeastern University Titanium Dioxide Coatings for Medical Devices Made by Atomic Layer Deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304774A1 (en) * 2008-05-14 2009-12-10 Xinhua Liang Implantable devices having ceramic coating applied via an atomic layer deposition method
CN101485900A (zh) * 2008-12-23 2009-07-22 天津理工大学 一种可降解Mg-Zn-Zr合金血管内支架及其综合处理工艺
US20160129162A1 (en) * 2014-11-06 2016-05-12 Medtronic Vascular, Inc. Protected Magnesium Alloys for Bioresorbable Stents
CN107820416A (zh) * 2017-08-17 2018-03-20 鼎科医疗技术(苏州)有限公司 可降解金属支架及其制造方法
CN108066048A (zh) * 2017-12-20 2018-05-25 东华大学 热粘合复合结构可降解管腔支架及其制备方法和应用
CN113230004A (zh) * 2021-04-01 2021-08-10 上海交通大学医学院附属新华医院 一种可吸收血管支架及其制备方法

Also Published As

Publication number Publication date
CN113230004A (zh) 2021-08-10
CN113230004B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2022206718A1 (zh) 一种可吸收血管支架及其制备方法
US5980564A (en) Bioabsorbable implantable endoprosthesis with reservoir
KR100795106B1 (ko) 치열 교정용 와이어 및 그 제조 방법
CN103142335B (zh) 一种热塑性可降解纤维编织支架及其制备方法
CN104689379B (zh) 一种编织型一体成型血管覆膜支架及其制备方法
JP2005514155A (ja) ステントおよびその製造方法(変形形態)
CN105220451B (zh) 具有抗菌及促矿化功能涂层的聚对苯二甲酸乙二醇酯编织材料的制备方法
US20140035183A1 (en) Method for the production of a body implant and body implant
CN104720941A (zh) 管道支架及其制备方法
CN204411042U (zh) 一种用于治疗冠脉穿孔的生物可吸收膜覆膜支架
CN113577401B (zh) 一种长效抗菌抗狭窄功能尿道支架及其制备方法
CN110585475A (zh) 一种光控抗菌可降解锌合金缝合线材料及其制备方法
CN108295316A (zh) 一种肠道支架及其制作方法
CN112641545A (zh) 一种食管放疗支架及其制备方法
CN112826988B (zh) 一种可定向降解自脱落镁金属胆道支架及其制备方法
CN210990958U (zh) 一种分层可降解聚合物支架
JP6506403B2 (ja) Ippプラークの切除後のインプラントのための吸収かつ生体適合可能なpgaの移植片
CN102160830A (zh) 一种双层复合管道支架及其制造方法
CN210228409U (zh) 一种新型的可降解支架
CN112870456A (zh) 心血管植入器械耐磨损涂层及其制备方法
CN2280525Y (zh) 腔管内复膜涂药支撑网管
CN100400012C (zh) 生物陶瓷封堵器及其制作方法
CN111773440A (zh) 一种基于类酶催化反应的抗凝血材料
WO2019136769A1 (zh) 类金刚石膜的制备方法
TW201536363A (zh) 適用於醫療植入物之鎂合金及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778900

Country of ref document: EP

Kind code of ref document: A1