WO2022206655A1 - 一种资源调度方法以及相关装置 - Google Patents

一种资源调度方法以及相关装置 Download PDF

Info

Publication number
WO2022206655A1
WO2022206655A1 PCT/CN2022/083279 CN2022083279W WO2022206655A1 WO 2022206655 A1 WO2022206655 A1 WO 2022206655A1 CN 2022083279 W CN2022083279 W CN 2022083279W WO 2022206655 A1 WO2022206655 A1 WO 2022206655A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
communication device
resource
field
harq process
Prior art date
Application number
PCT/CN2022/083279
Other languages
English (en)
French (fr)
Inventor
范巍巍
张鹏
张佳胤
汪少波
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206655A1 publication Critical patent/WO2022206655A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource scheduling method and related devices.
  • V2X communication can be regarded as an application scenario of device to device (D2D) communication.
  • D2D device to device
  • vehicles communicate directly with each other, and interactively obtain the driving status information and road conditions between vehicles in real time, so as to better assist vehicle driving and even realize automatic driving.
  • the cellular network includes: the fifth generation (5Generation, 5G) communication system.
  • Technology New Radio, NR
  • fourth generation (4Generation, 4G) communication systems at this time, the user to network interface-universal (Uu) of the cellular network realizes the indication of transmission resources between user nodes;
  • the other is resource scheduling independent of the cellular network.
  • the default configuration of the protocol or the terminal itself configures the transmission resources.
  • the network device supports the configuration of sidelink SL resources through downlink control signaling (Downlink Control Information, DCI) to perform data transmission of one transport block (Transmit Block, TB).
  • DCI Downlink Control Information
  • TB transport block
  • UE user equipment
  • an embodiment of the present application proposes a resource scheduling method, and the method is applied to an unlicensed frequency band, including:
  • the first communication device sends the first signaling to the second communication device; the first field in the first signaling is used to indicate the time between two adjacent transport blocks in the M transport blocks TB in sidelink transmission.
  • the slot interval T, wherein the side link is used for communication between the second communication device and the at least one third communication device, T is greater than or equal to 0, and M is an integer greater than 1.
  • M 3 as an example, that is, the first signaling indicates transport block 0, equal time slot intervals between transport block 1 and transport block 2.
  • the M value is carried by radio resource control (Radio Resource Control, RRC) signaling to configure the second communication device and/or the third communication device.
  • RRC Radio Resource Control
  • the first communication apparatus instructs data transmission of multiple transport blocks through one signaling (first signaling), so as to reduce the transmission delay of the second communication apparatus (terminal equipment).
  • the first communication device sends second signaling to the third communication device, where the second signaling is used to schedule the first resource, and the first resource is physical uplink sharing Communication resources in a channel (Physical Uplink Shared Channel, PUSCH), the first resource is used by at least one third communication device to send first data to the first communication device, and the first data is received by at least one third communication device through the second resource
  • the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH);
  • the first communication device broadcasts a third signaling, and the third signaling is used to indicate a deviation value between the first hybrid automatic repeat request (Hybrid Automatic Repeat request, HARQ) process identifier and the second HARQ process identifier, wherein the first HARQ process
  • the identifier is the HARQ process identifier corresponding to the second resource
  • the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the above method can solve the problem that the first communication device cannot determine which third communication devices (CUEs) to schedule at the uplink scheduling moment, so as to avoid the problem of waste of uplink resources due to some CUEs failing to correctly receive the first data .
  • CUEs third communication devices
  • the first communication apparatus receives first data at the first resource, and the first data comes from at least one third communication apparatus.
  • the first communication device receives the first data at the first resource, and the first data comes from at least one third communication device, that is, the first data is data uploaded by the CUE in the assisted communication scenario.
  • the second signaling is physical layer downlink control signaling DCI; the third signaling is physical layer downlink control signaling DCI.
  • the implementation flexibility of the scheme is improved.
  • the first field includes: a first subfield and a second subfield; the first subfield is used to indicate the adjacent N transmissions of the same transmission block The time slot interval T1 of two transmissions, where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate the time slot interval T between M transmission blocks, where T is greater than or equal to 0 .
  • the first signaling may support scheduling of one transport block or may support scheduling of multiple transport blocks, which improves the flexibility of use.
  • the first signaling is downlink control signaling DCI format 3_0
  • the first field is a time resource assignment field for time resource allocation.
  • the number of bits occupied by the first field in the first signaling is 5 or 9 bits.
  • the time resource allocation field is reinterpreted.
  • the first domain may also be another domain in the first signaling.
  • the "field” in this embodiment of the present application may also be referred to as a "field”, that is, the "first field” is equal to the "first field”.
  • the first signaling further includes a second field, where the second field is used to indicate a corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the second field only needs to indicate the smallest HARQ process identifier in the M transport blocks.
  • the second field is used to indicate that the HARQ process identifier is 0, and the smallest HARQ process identifier in the M transport blocks corresponds to the transport block.
  • the HARQ process identifiers corresponding to the other transport blocks are sequentially incremented on the basis of the HARQ process identifiers indicated in the second field.
  • the HARQ process identifier corresponding to transport block 1 is incremented on the basis of the HARQ process identifier (the HARQ process identifier corresponding to transport block 0) indicated in the second field, that is, the HARQ process identifier corresponding to transport block 1 is 1;
  • the HARQ process identifier corresponding to 2 is incremented on the basis of the HARQ process identifier corresponding to transport block 1, that is, the HARQ process identifier corresponding to transport block 2 is 2.
  • multiple HARQ process numbers are indicated by limited bits, which saves communication resources.
  • the HARQ process identifiers corresponding to the remaining transport blocks other than the transport block corresponding to the smallest HARQ process identifier in the M transport blocks, the HARQ process identifier indicated in the second field. increases sequentially on the basis of .
  • the first signaling is downlink control signaling DCI format 3_0
  • the second field is the hybrid automatic repeat request process number HARQ process number field.
  • the number of bits occupied by the second field in the first signaling is 4 bits.
  • the HARQ process number field of the HARQ process number is reinterpreted.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or retransmission identifier of the M transport blocks, and the third field Each bit corresponds to a HARQ process identifier of HARQ.
  • each bit in the third field corresponds to a HARQ process identifier in a one-to-one relationship according to a progressive relationship.
  • the transport blocks to be transmitted in the sidelink include transport block 0, transport block 1 and transport block 2.
  • the first bit in the third field corresponds to the HARQ process identifier of transport block 0, the second bit corresponds to the HARQ process identifier of transport block 1, and the third bit corresponds to the HARQ process identifier of transport block 2.
  • initial transmission or blind retransmission of multiple transport blocks can be indicated respectively, which improves the flexibility of resource configuration.
  • the first signaling is downlink control signaling DCI format 3_0
  • the third field is the new data indicator New data indicator field, the configuration index Configuration index field and/or The combination that fills the Padding field.
  • the first signaling is the physical layer downlink control signaling DCI format 3_0
  • the third field is the new data indication New data indicator field, the configuration index Configuration index field and/or a combination of padding fields.
  • the number of bits occupied by the New data indicator field in the first signaling is 1 bit
  • the number of bits occupied by the Configuration index field in the first signaling is 0 bits or 3 bits.
  • the combination of the new data indication New data indicator field, the configuration index Configuration index field and/or the padding field is reinterpreted.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of the Bandwidth part of the partial bandwidth where the M transport blocks are located.
  • the first signaling may be used to instruct the network device in which one or more BWPs to transmit data. That is, one or more BWPs of the network device are scheduled through the first signaling.
  • the first signaling is downlink control signaling DCI format 3_0
  • the fourth field is the Resource pool index field.
  • the fourth field is the Resource pool index field.
  • the Resource pool index field is reinterpreted.
  • the number of bits occupied by the Resource pool index field in the first signaling is Log 2 I, where I is configured by high-level signaling and originally refers to the resource pool configured by the base station in the BWP where the base station sends DCI format 3_0
  • the total number of BWPs in the embodiment of the present application refers to the total number of partial bandwidth BWPs preconfigured by the base station on which the base station sends the carrier (Component Carrier) where the DCI format 3_0 is located.
  • the value of M is indicated by the radio resource control signaling RRC.
  • the value of N is indicated by the radio control signaling RRC.
  • an embodiment of the present application proposes a resource scheduling method, and the method is applied to an unlicensed frequency band, including:
  • the second communication device receives the first signaling from the first communication device
  • the first field in the first signaling is used to indicate the time slot interval T between two adjacent transport blocks among the M transport blocks TB in sidelink transmission, where the sidelink is used for the second communication
  • T is greater than or equal to
  • M is an integer greater than 1.
  • M 3 as an example, that is, the first signaling indicates transport block 0, equal time slot intervals between transport block 1 and transport block 2.
  • the M value is carried by radio resource control (Radio Resource Control, RRC) signaling to configure the second communication device and/or the third communication device.
  • RRC Radio Resource Control
  • the first communication apparatus instructs data transmission of multiple transport blocks through one signaling (first signaling), so as to reduce the transmission delay of the second communication apparatus (terminal equipment).
  • the first field includes: a first subfield and a second subfield; the first subfield is used to indicate adjacent transmissions in N times of transmissions of the same transmission block The time slot interval T1 of two transmissions, where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate the time slot interval T between M transmission blocks, where T is greater than or equal to 0 .
  • the first signaling may support scheduling of one transport block or may support scheduling of multiple transport blocks, which improves the flexibility of use.
  • the first signaling is downlink control signaling DCI format 3_0
  • the first field is a time resource assignment field for time resource allocation.
  • the number of bits occupied by the first field in the first signaling is 5 or 9 bits.
  • the time resource allocation field is reinterpreted.
  • the first domain may also be another domain in the first signaling.
  • the "field” in this embodiment of the present application may also be referred to as a "field”, that is, the "first field” is equal to the "first field”.
  • the first signaling further includes a second field, where the second field is used to indicate the corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the second field only needs to indicate the smallest HARQ process identifier in the M transport blocks.
  • the second field is used to indicate that the HARQ process identifier is 0, and the smallest HARQ process identifier in the M transport blocks corresponds to the transport block.
  • the HARQ process identifiers corresponding to the other transport blocks are sequentially incremented on the basis of the HARQ process identifiers indicated in the second field.
  • the HARQ process identifier corresponding to transport block 1 is incremented on the basis of the HARQ process identifier (the HARQ process identifier corresponding to transport block 0) indicated in the second field, that is, the HARQ process identifier corresponding to transport block 1 is 1;
  • the HARQ process identifier corresponding to 2 is incremented on the basis of the HARQ process identifier corresponding to transport block 1, that is, the HARQ process identifier corresponding to transport block 2 is 2.
  • multiple HARQ process numbers are indicated by limited bits, which saves communication resources.
  • the HARQ process identifiers corresponding to the remaining transport blocks other than the transport block corresponding to the smallest HARQ process identifier in the M transport blocks, the HARQ process identifier indicated in the second field. increases sequentially on the basis of .
  • the first signaling is downlink control signaling DCI format 3_0
  • the second field is the hybrid automatic repeat request process number HARQ process number field.
  • the number of bits occupied by the second field in the first signaling is 4 bits.
  • the HARQ process number field of the HARQ process number is reinterpreted.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or the retransmission identifier of the M transport blocks, and the third field Each bit corresponds to a HARQ process identifier of HARQ.
  • each bit in the third field corresponds to a HARQ process identifier in a one-to-one relationship according to a progressive relationship.
  • the transport blocks to be transmitted in the sidelink include transport block 0, transport block 1 and transport block 2.
  • the first bit in the third field corresponds to the HARQ process identifier of transport block 0, the second bit corresponds to the HARQ process identifier of transport block 1, and the third bit corresponds to the HARQ process identifier of transport block 2.
  • initial transmission or blind retransmission of multiple transport blocks can be indicated respectively, which improves the flexibility of resource configuration.
  • the first signaling is downlink control signaling DCI format 3_0
  • the third field is the new data indicator New data indicator field, the configuration index Configuration index field and/or The combination that fills the Padding field.
  • the first signaling is the physical layer downlink control signaling DCI format 3_0
  • the third field is the new data indication New data indicator field, the configuration index Configuration index field and/or a combination of padding fields.
  • the number of bits occupied by the New data indicator field in the first signaling is 1 bit
  • the number of bits occupied by the Configuration index field in the first signaling is 0 bits or 3 bits.
  • the combination of the new data indication New data indicator field, the configuration index Configuration index field and/or the padding field is reinterpreted.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of the Bandwidth part of the partial bandwidth where the M transport blocks are located.
  • the first signaling may be used to instruct the network device in which one or more BWPs to transmit data. That is, one or more BWPs of the network device are scheduled through the first signaling.
  • the first signaling is downlink control signaling DCI format 3_0
  • the fourth field is the Resource pool index field.
  • the fourth field is the Resource pool index field.
  • the Resource pool index field is reinterpreted.
  • the number of bits occupied by the Resource pool index field in the first signaling is Log 2 I, where I is configured by high-level signaling and originally refers to the resource pool configured by the base station in the BWP where the base station sends DCI format 3_0
  • the total number of BWPs in the embodiment of the present application refers to the total number of partial bandwidth BWPs preconfigured by the base station on which the base station sends the carrier (Component Carrier) where the DCI format 3_0 is located.
  • the value of M is indicated by the radio resource control signaling RRC.
  • the N value is indicated by the radio control signaling RRC.
  • an embodiment of the present application proposes a resource scheduling method, and the method is applied to an unlicensed frequency band, including:
  • the third communication device receives the second signaling from the first communication device, the second signaling is used to schedule the first resource, the first resource is the communication resource in the physical uplink shared channel PUSCH, and at least one third communication device uses the first resource.
  • the resource sends first data to the first communication device, where the first data is data from the second communication device received by at least one third communication device through the second resource, and the second resource is the communication resource in the physical sideline shared channel PSSCH;
  • the third communication device receives third signaling from the first communication device, where the third signaling is used to indicate the deviation value between the first HARQ process identifier and the second HARQ process identifier, wherein the first HARQ process identifier is the HARQ process identifier corresponding to the second resource, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling;
  • the third communication apparatus sends the first data to the first communication apparatus according to the position of the first resource, and the position of the first resource is confirmed according to the first resource and the offset value.
  • the first communication apparatus sends the second signaling to the third communication apparatus, where the second signaling is used to schedule the first resource.
  • the first resource is a communication resource in a Physical Uplink Shared Channel (PUSCH)
  • the first resource is used for at least one third communication device to send first data to the first communication device
  • the first data is one or more
  • the data from the second communication device received by the third communication device through the second resource the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH), and the third communication device is the second communication device collaboration device.
  • PUSCH Physical Uplink Shared Channel
  • PSSCH Physical sidelink shared channel
  • the first communication device broadcasts the third signaling, that is, sends the third signaling to one or more third communication devices.
  • the third signaling is used to indicate the difference between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the HARQ process identifier corresponding to the second resource, and the second HARQ process identifier is The HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the first resource is a communication resource in the Physical Uplink Shared Channel (PUSCH), and the HARQ process identifier (ie the second HARQ process identifier) corresponding to the first resource is called the HARQ Process ID (UL);
  • the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH), and the HARQ process identifier (that is, the first HARQ process identifier) corresponding to the second resource is called the HARQ process ID (SL).
  • PUSCH Physical Uplink Shared Channel
  • PSSCH Physical sidelink shared channel
  • one or more third communication devices receive the third signaling, and the third communication device determines the position of the first resource according to the deviation value carried by the third signaling.
  • the location of the first resource refers to the time-frequency location of the first resource.
  • the first resource includes communication resources used by multiple third communication apparatuses.
  • different third communication apparatuses determine, according to the third signaling, part of the communication resources used by themselves among the first resources.
  • each third communication apparatus transmits the first data by using the corresponding first resource.
  • the above method can solve the problem that the first communication device cannot determine which third communication devices (CUEs) to schedule at the uplink scheduling moment, so as to avoid the problem of waste of uplink resources due to some CUEs failing to correctly receive the first data .
  • CUEs third communication devices
  • the method further includes: the third communication device receives the first data; the third communication device demodulates the first data; when the third communication device correctly demodulates the first data When the third communication device sends the first data to the first communication device.
  • the third communication device demodulates the first data. If the third communication device correctly demodulates the first data, the third communication device may send the first data to the first communication device through the first resource.
  • the first communication apparatus can not determine which third communication apparatuses (CUEs) to schedule at the uplink scheduling moment, so as to avoid the problem of waste of uplink resources due to some CUEs failing to receive the first data correctly.
  • CUEs third communication apparatuses
  • the second signaling is physical layer downlink control signaling DCI; and the third signaling is physical layer downlink control signaling DCI.
  • the implementation flexibility of the scheme is improved.
  • an embodiment of the present application proposes a resource scheduling method, including:
  • the first communication device sends the second signaling to the third communication device, and the second signaling is used to schedule the first resource, the first resource is the communication resource in the physical uplink shared channel PUSCH, and the first resource is used by the third communication device to send to the third communication device.
  • the first communication device sends the first data, the first data is the data received by the third communication device through the second resource, the first data is the data received from the second communication device by at least one third communication device through the second resource, the The second resource is the communication resource in the physical sideline shared channel PSSCH;
  • the first communication device broadcasts a third signaling, where the third signaling is used to indicate a deviation value between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier corresponds to the second resource.
  • the HARQ process identifier, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the first communication apparatus sends the second signaling to the third communication apparatus, where the second signaling is used to schedule the first resource.
  • the first resource is a communication resource in a Physical Uplink Shared Channel (PUSCH)
  • the first resource is used for at least one third communication device to send first data to the first communication device
  • the first data is one or more
  • the data from the second communication device received by the third communication device through the second resource the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH), and the third communication device is the second communication device collaboration device.
  • PUSCH Physical Uplink Shared Channel
  • PSSCH Physical sidelink shared channel
  • the first communication device broadcasts the third signaling, that is, sends the third signaling to one or more third communication devices.
  • the third signaling is used to indicate the difference between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the HARQ process identifier corresponding to the second resource, and the second HARQ process identifier is The HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the first resource is a communication resource in the Physical Uplink Shared Channel (PUSCH), and the HARQ process identifier (ie the second HARQ process identifier) corresponding to the first resource is called the HARQ Process ID (UL);
  • the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH), and the HARQ process identifier (that is, the first HARQ process identifier) corresponding to the second resource is called the HARQ process ID (SL).
  • PUSCH Physical Uplink Shared Channel
  • PSSCH Physical sidelink shared channel
  • one or more third communication devices receive the third signaling, and the third communication device determines the position of the first resource according to the deviation value carried by the third signaling.
  • the location of the first resource refers to the time-frequency location of the first resource.
  • the first resource includes communication resources used by multiple third communication apparatuses.
  • different third communication apparatuses determine, according to the third signaling, part of the communication resources used by themselves among the first resources.
  • each third communication apparatus transmits the first data by using the corresponding first resource.
  • the above method can solve the problem that the first communication device cannot determine which third communication devices (CUEs) to schedule at the uplink scheduling moment, so as to avoid the problem of waste of uplink resources due to some CUEs failing to correctly receive the first data .
  • CUEs third communication devices
  • the first communication apparatus receives the first data at the first resource, and the first data comes from the third communication apparatus.
  • the first communication device receives the first data at the first resource, and the first data comes from at least one third communication device, that is, the first data is data uploaded by the CUE in the assisted communication scenario.
  • the second signaling and the third signaling are downlink control signaling DCI.
  • the implementation flexibility of this scheme is improved.
  • an embodiment of the present application provides a communication device, including:
  • a transceiver module configured to send the first signaling to the second communication device
  • the first field in the first signaling is used to indicate the time slot interval T between two adjacent transport blocks among the M transport blocks TB in sidelink transmission, where the sidelink is used for the second communication
  • T is greater than or equal to
  • M is an integer greater than 1.
  • the communication apparatus is a network device, and the communication apparatus may further include a transceiver.
  • the communication apparatus is a chip, a chip system or a circuit configured in a network device.
  • the communication apparatus may further include a transceiver module, and the transceiver module may be an input and/or output on the chip, chip system or circuit. Interface, interface circuit, output circuit, input circuit, pin or related circuit, etc.
  • transceiver module further configured to send the second signaling to the third communication device
  • the second signaling is used to schedule the first resource, the first resource is the communication resource in the physical uplink shared channel PUSCH, the first resource is used for at least one third communication device to send the first data to the first communication device, and the first data is data received by at least one third communication device through a second resource, where the second resource is a communication resource in the physical sideline shared channel PSSCH;
  • the transceiver module is further configured to broadcast a third signaling, where the third signaling is used to indicate a deviation value between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the second resource The corresponding HARQ process identifier, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the transceiver module is further configured to receive first data at the first resource, where the first data comes from at least one third communication device.
  • the second signaling is physical layer downlink control signaling DCI;
  • the third signaling is physical layer downlink control signaling DCI.
  • the first field includes: a first subfield and a second subfield; the first subfield is used to indicate the time slot interval T1 of two adjacent transmissions in the N transmissions of the same transmission block , where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate the time slot interval T between M transport blocks, where T is greater than or equal to 0.
  • the first signaling is downlink control signaling DCI format 3_0
  • the first field is a time resource allocation field.
  • the first signaling further includes a second field, where the second field is used to indicate the corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the HARQ process identifiers corresponding to other transport blocks except the transport block corresponding to the smallest HARQ process identifier in the M transport blocks are sequentially incremented on the basis of the HARQ process identifier indicated by the second field.
  • the first signaling is downlink control signaling DCI format 3_0
  • the second field is the hybrid automatic repeat request process number field.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or retransmission identifier of the M transport blocks, and each bit in the third field is associated with a mixed automatic The retransmission request HARQ process identifiers correspond respectively.
  • the first signaling is downlink control signaling DCI format 3_0
  • the third field is a new data indication field
  • a combination of an index field and/or a padding field is configured.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of the partial bandwidth where the M transport blocks are located.
  • the first signaling is downlink control signaling DCI format 3_0
  • the fourth field is the resource pool index field.
  • the value of M is indicated by the radio resource control signaling RRC.
  • the value of N is indicated by the radio control signaling RRC.
  • an embodiment of the present application provides a communication device, including:
  • a transceiver module configured to receive the first signaling from the first communication device
  • the first field in the first signaling is used to indicate the time slot interval T between two adjacent transport blocks among the M transport blocks TB in sidelink transmission, where the sidelink is used for the second communication
  • T is greater than or equal to
  • M is an integer greater than 1.
  • the communication apparatus is a terminal device, and the communication apparatus may further include a transceiver.
  • the communication apparatus is a chip, a chip system or a circuit configured in the terminal device.
  • the communication apparatus may further include a transceiver module, and the transceiver module may be an input and/or output on the chip, chip system or circuit. Interface, interface circuit, output circuit, input circuit, pin or related circuit, etc.
  • the first field includes: a first subfield and a second subfield; the first subfield is used to indicate the time slot interval T1 of two adjacent transmissions in the N transmissions of the same transmission block , where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate the time slot interval T between M transport blocks, where T is greater than or equal to 0.
  • the first signaling is downlink control signaling DCI format 3_0
  • the first field is a time resource allocation field.
  • the first signaling further includes a second field, where the second field is used to indicate the corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the HARQ process identifiers corresponding to other transport blocks except the transport block corresponding to the smallest HARQ process identifier in the M transport blocks are sequentially incremented on the basis of the HARQ process identifier indicated by the second field.
  • the first signaling is downlink control signaling DCI format 3_0
  • the second field is the hybrid automatic repeat request process number field.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or retransmission identifier of the M transport blocks, and each bit in the third field is associated with a mixed automatic The retransmission request HARQ process identifiers correspond respectively.
  • the first signaling is downlink control signaling DCI format 3_0
  • the third field is a new data indication field
  • a combination of an index field and/or a padding field is configured.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of the partial bandwidth where the M transport blocks are located.
  • the first signaling is downlink control signaling DCI format 3_0
  • the fourth field is the resource pool index field.
  • the value of M is indicated by the radio resource control signaling RRC.
  • the value of N is indicated by the radio control signaling RRC.
  • an embodiment of the present application provides a communication device, including:
  • the transceiver module is used for receiving the second signaling from the first communication device, the second signaling is used for scheduling the first resource, the first resource is the communication resource in the physical uplink shared channel PUSCH, and at least one third communication device uses the first resource.
  • a resource sends first data to the first communication device, the first data is data received from the second communication device by at least one third communication device through the second resource, and the second resource is the communication resource in the physical sideline shared channel PSSCH ;
  • the transceiver module is further configured to receive third signaling from the first communication device, where the third signaling is used to indicate a deviation value between the first HARQ process identifier and the second HARQ process identifier, wherein the first HARQ process identifier
  • the process identifier is the HARQ process identifier corresponding to the second resource
  • the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling
  • a processing module configured to determine the position of the first resource according to the deviation value
  • the transceiver module is further configured to send the first data to the first communication device according to the position of the first resource, and the position of the first resource is confirmed according to the first resource and the deviation value.
  • the communication apparatus is a terminal device, and the processing module may be a processor.
  • the communication device may further include a transceiver.
  • the communication device is a chip, a chip system or a circuit configured in a terminal device.
  • the processing module may be a processor, a processing circuit or a logic circuit, or the like.
  • the communication device may further include a transceiver module, which may be an input and/or output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit.
  • a transceiver module further configured to receive the first data
  • a processing module further used for demodulating the first data
  • the transceiver module is further configured to send the first data to the first communication device when the third communication device correctly demodulates the first data.
  • the second signaling is physical layer downlink control signaling DCI;
  • the third signaling is physical layer downlink control signaling DCI.
  • an embodiment of the present application provides a communication device, including:
  • a transceiver module configured to send a second signaling to the third communication device, the second signaling is used to schedule the first resource, the first resource is the communication resource in the physical uplink shared channel PUSCH, and the first resource is used for the third communication device sending first data to the first communication device, where the first data is data received by the third communication device through the second resource, and the first data is data from the second communication device received by at least one third communication device through the second resource,
  • the second resource is the communication resource in the physical sideline shared channel PSSCH;
  • the transceiver module is further configured to broadcast a third signaling, where the third signaling is used to indicate a deviation value between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the second resource The corresponding HARQ process identifier, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the communication apparatus is a network device, and the communication apparatus may include a transceiver.
  • the communication apparatus is a chip, a chip system or a circuit configured in a network device.
  • the communication device further includes a transceiver module, which can be an input and/or output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc. on the chip, chip system or circuit.
  • the transceiver module is further configured to receive first data at the first resource, where the first data comes from a third communication device.
  • the second signaling and the third signaling are downlink control signaling DCI.
  • an embodiment of the present application provides a communication device, where the communication device can implement the functions performed by the communication device in the methods involved in the first, second, third, or fourth aspects.
  • the communication device includes a processor, a memory, a receiver connected to the processor and a transmitter connected to the processor; the memory is used for storing program codes and transmitting the program codes to the processor; the processor is used for Drive the receiver and the transmitter to execute the method according to the first, second, third, or fourth aspects above according to the instructions in the program code; the receiver and the transmitter are respectively connected to the processor to execute the methods of the above-mentioned aspects. Operation of the communication device in the method. Specifically, the transmitter can perform the operation of sending, and the receiver can perform the operation of receiving.
  • the receiver and the transmitter can be a radio frequency circuit, and the radio frequency circuit can receive and send messages through an antenna; the receiver and the transmitter can also be a communication interface, and the processor and the communication interface are connected through a bus, and the processing The server implements receiving or sending messages through this communication interface.
  • an embodiment of the present application provides a communication apparatus.
  • the communication apparatus may include an entity such as a network device or a chip.
  • the communication apparatus includes: a processor and a memory; the memory is used for storing instructions; the processor is used for executing the memory
  • the instruction in causes the communication device to perform the method of any one of the aforementioned first aspect or second aspect or third aspect or fourth aspect.
  • embodiments of the present application provide a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the first aspect or the first aspect described above. Any possible implementation manner of the second aspect, the third aspect or the fourth aspect.
  • an embodiment of the present application provides a computer program product (or computer program) that stores one or more computer-executable instructions.
  • the processor executes the aforementioned first Any possible implementation of the aspect or the second aspect or the third aspect or the fourth aspect.
  • a thirteenth aspect provides a communication apparatus (for example, the communication apparatus may be a chip or a chip system), the communication apparatus includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a fourteenth aspect provides a chip that includes a processor and a communication interface for communicating with modules other than the chip shown, the processor for running a computer program or instructions such that a computer in which the chip is installed
  • An apparatus may perform the method of any of the above aspects.
  • the technical effect brought by any one of the design methods from the third aspect to the fourteenth aspect can refer to the technical effects brought by the different design methods in the first aspect, the second aspect, the third aspect or the fourth aspect. , and will not be repeated here.
  • a fifteenth aspect provides a communication system including the communication device of the above aspect.
  • FIG. 1 shows a schematic diagram of a communication system to which a method for sending sidelink resources provided by an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of a hardware structure of a communication device in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication mode of a dynamic scheduling mode in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a collaborative communication process involved in an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a resource scheduling method proposed by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a resource scheduling method proposed by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a time slot interval involved in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a time slot interval involved in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a time slot interval involved in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a time slot interval involved in an embodiment of the application.
  • FIG. 11 is a schematic diagram of a time slot interval involved in an embodiment of the application.
  • FIG. 12 is a schematic diagram of a time slot interval involved in an embodiment of the application.
  • FIG. 13 is a schematic diagram of a time slot interval involved in an embodiment of the application.
  • FIG. 14 is a schematic diagram of a time slot interval involved in an embodiment of the application.
  • FIG. 15 is a schematic diagram of communication resources involved in the embodiment of the application.
  • 16 is a schematic diagram of a HARQ process identifier in an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an embodiment of a communication device in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an embodiment of a communication device in an embodiment of the present application.
  • FIG. 19 is a schematic diagram of an embodiment of a communication device in an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an embodiment of a communication apparatus in an embodiment of the present application.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • FIG. 1 shows a communication system to which a method for sending sidelink resources provided by an embodiment of the present application is applied.
  • the communication system includes: one or more network devices (for example, as shown in FIG. 1 ) the network device 10), one or more terminals (such as the first terminal 11, the second terminal 12, and the third terminal 13 shown in FIG. 1).
  • the first terminal 11 communicates with the network device 10
  • the first terminal 11 communicates with the second terminal 12
  • the second terminal 12 and the third terminal 13 communicate.
  • the second terminal 12 and the third terminal 13 may also communicate with the network device 10 .
  • the communication system shown in FIG. 1 may further include: a core network.
  • the network device 10 can be connected to the core network.
  • the core network can be a 4G core network (for example, an evolved packet core (EPC)) or a 5G core network (5G core, 5GC), or a core network in various future communication systems, and roadside units ( road side unit, RSU).
  • the RSU can also provide various service information and data network access for each terminal in the system. For example, taking the terminal as a vehicle as an example, for example, the RSU can also provide each terminal in the system with non-stop charging, in-vehicle Entertainment and other functions have greatly improved traffic intelligence.
  • the network device 10 may be an evolved base station (evolved Node B, eNB or eNodeB) in a 4G system.
  • the first terminal 11 is a terminal that can transmit information with the eNB.
  • the eNB accesses the EPC network through the S1 interface.
  • the network device 10 may be the next generation node B (gNB) in the NR system, and the first terminal 11 is a terminal that can transmit information with the gNB.
  • the gNB accesses the 5GC through the NG interface.
  • the network device 10 may also be a 3rd generation partnership project (3rd generation partnership project, 3GPP) protocol base station, or may be a non-3GPP protocol base station.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • 3GPP 3rd generation partnership project
  • the transmission link between the network device 10 and the first terminal 11 may be a user to network interface-universal (Uu) link.
  • the transmission link between the first terminal 11 and the second terminal 12 may be a side link.
  • the Uu link is used to transmit the Uu service (information or data) sent by the network device 10 to the first terminal 11 .
  • the first terminal 11 and the second terminal 12 may transmit a vehicle-to-everything (Vehicle to everything, V2X) service to each other on the side link.
  • the first terminal 11 can transmit an uplink (Uplink, UL) Uu service to the network device 10 on the Uu link, and can also receive a downlink (Downlink, DL) Uu service sent by the network device 10 on the Uu link.
  • Uplink, UL uplink
  • Downlink Downlink
  • DL downlink
  • the interface through which the first terminal 11 and the second terminal 12 communicate through direct connection may be the interface 1 .
  • interface 1 can be called a PC5 interface, and adopts a dedicated frequency band (such as 5.9GHz) for the Internet of Vehicles.
  • the interface between the first terminal 11 and the network device 10 may be referred to as interface 2 (eg, Uu interface), and adopts a cellular network frequency band (eg, 1.8 GHz).
  • the PC5 interface is generally used in V2X, or D2D and other scenarios where direct communication between devices can be performed.
  • the names of the above-mentioned interface 1 and interface 2 are only examples, and the names of interface 1 and interface 2 are not limited in this embodiment of the present application.
  • FIG. 1 describes a cooperative communication scenario, in which the first terminal 11 is used as source user equipment (source UE, SUE), and the second terminal 12 and the third terminal 13 are used as cooperative user equipment (cooperation UE, CUE).
  • the phase 1 is that the data packets from the SUE are distributed to the CUE through the sidelink;
  • the phase 2 is that the CUE and the SUE perform cooperative transmission.
  • the foregoing network device 10 is referred to as a first communication device; the foregoing first terminal 11 is referred to as a second communication device, and the second terminal 12 and/or the third terminal 13 are collectively referred to as a third communication device communication device.
  • the second communication device and the third communication device are terminal equipment, or a chip system in the terminal equipment, or a chip system integrated with the function of the terminal equipment, or a chip or circuit configured in the terminal equipment, or an integrated Chips or circuits with terminal equipment functions, etc.
  • the terminal equipment may also be referred to as user equipment (user equipment, UE).
  • the terminal device involved in the embodiments of the present application as a device with a wireless transceiver function, can communicate with one or more core networks (core networks, CN) via a network device.
  • core networks core networks
  • a terminal device may also be referred to as an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless network device, user agent, or user device, and the like.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone (smart phone), a mobile phone (mobile phone), a wireless local loop (WLL) station, personal digital assistant (PDA), which can be a wireless communication-capable handheld device, computing device or other device connected to a wireless modem, in-vehicle device, wearable device, drone device or Internet of Things, car Terminals in networking, fifth generation (5G) networks, and any form of terminals in future networks, relay user equipment, or future evolved public land mobile networks (PLMN) A terminal, etc., where the relay user equipment may be, for example, a 5G home gateway (residential gateway, RG).
  • SIP session initiation protocol
  • PDA personal digital assistant
  • 5G fifth generation
  • PLMN public land mobile networks
  • the terminal device can be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving (self driving), telemedicine Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • WLAN wireless terminal in industrial control
  • self-driving self driving
  • telemedicine Wireless terminals in remote medical wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
  • This embodiment of the present application does not limit this.
  • the first communication device is a network device, or a chip system in the network device, or a chip system integrated with the network device function, or a chip or circuit configured in the network device, or a chip or circuit integrated with the network device function.
  • the network device can be regarded as a sub-network of the operator's network, and is the implementation system between the service node and the terminal device in the operator's network.
  • the terminal device To access the operator's network, the terminal device first passes through the network device, and then can be connected to the service node of the operator's network through the network device.
  • the network device in the embodiments of the present application is a device that provides a wireless communication function for a terminal device, and may also be referred to as a (radio) access network ((R)AN).
  • Network equipment includes but is not limited to: next generation node base station (gNB) in 5G system, evolved node B (evolved node B, eNB) in long term evolution (LTE), wireless network Controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), base band unit (BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), small base station equipment (pico), mobile switching center, or Network equipment in the future network, etc.
  • gNB next generation node base station
  • eNB evolved node B
  • LTE long term evolution
  • RNC wireless network Controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node
  • the resource scheduling method provided in this application can be applied to various communication systems, for example, the Internet of Things (IoT), the narrowband internet of things (NB-IoT), the long term evolution (long term evolution) evolution, LTE), it can also be a fifth generation (5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (NR) system, and a new communication system that will appear in future communication development. Wait.
  • the 5G communication system of the present application may include at least one of a non-standalone (NSA) 5G communication system and an independent (standalone, SA) 5G communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • embodiments of the present application may also be applicable to other future-oriented communication technologies, such as 6G and the like.
  • the network architecture and service scenarios described in this application are for the purpose of illustrating the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. appears, the technical solutions provided in this application are also applicable to similar technical problems.
  • FIG. 2 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • the communication device may be a possible implementation manner of the first communication device, the second communication device, or the third communication device in the embodiment of the present application.
  • the communication apparatus includes at least a processor 204 , a memory 203 , and a transceiver 202 , and the memory 203 is further configured to store instructions 2031 and data 2032 .
  • the communication device may further include an antenna 206 , an I/O (input/output, Input/Output) interface 210 and a bus 212 .
  • the transceiver 202 further includes a transmitter 2021 and a receiver 2022.
  • the processor 204 , the transceiver 202 , the memory 203 and the I/O interface 210 are communicatively connected to each other through the bus 212 , and the antenna 206 is connected to the transceiver 202 .
  • the processor 204 can be a general-purpose processor, such as, but not limited to, a central processing unit (Central Processing Unit, CPU), or can be a special-purpose processor, such as, but not limited to, a digital signal processor (Digital Signal Processor, DSP), application Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA), etc.
  • the processor 204 may also be a neural network processing unit (NPU).
  • the processor 204 may also be a combination of multiple processors.
  • the processor 204 may be configured to execute the relevant steps of the method for generating the key identifier in the subsequent method embodiments.
  • the processor 204 may be a processor specially designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 2031 stored in the memory 203, the processor 204 Data 2032 may be used in performing the steps and/or operations described above.
  • the transceiver 202 includes a transmitter 2021 and a receiver 2022 .
  • the transmitter 2021 is used to transmit signals through the antenna 206 .
  • the receiver 2022 is used to receive signals through at least one of the antennas 206 .
  • the transmitter 2021 may be specifically configured to be executed by at least one antenna among the antennas 206.
  • the resource scheduling method in the subsequent method embodiments is applied to the first communication device, When the second communication device or the third communication device is used, the operation performed by the receiving module or the sending module in the first communication device, the second communication device or the third communication device.
  • the transceiver 202 is configured to support the communication device to perform the aforementioned receiving function and sending function.
  • a processor with processing capabilities is considered processor 204 .
  • the receiver 2022 may also be called an input port, a receiving circuit, and the like, and the transmitter 2021 may be called a transmitter or a transmitting circuit, and the like.
  • the processor 204 may be configured to execute the instructions stored in the memory 203 to control the transceiver 202 to receive messages and/or send messages, so as to complete the function of the communication device in the method embodiment of the present application.
  • the function of the transceiver 202 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • receiving a message by the transceiver 202 may be understood as an input message by the transceiver 202
  • sending a message by the transceiver 202 may be understood as an output message by the transceiver 202 .
  • the memory 203 may be various types of storage media, such as random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), and Programmable ROM (Programmable ROM, PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM), Flash memory, optical memory and registers, etc.
  • the memory 203 is specifically used to store the instructions 2031 and the data 2032, and the processor 204 can perform the steps and/or operations described in the method embodiments of the present application by reading and executing the instructions 2031 stored in the memory 203.
  • Data 2032 may be used during the operations and/or steps of a method embodiment.
  • the communication apparatus may further include an I/O interface 210, and the I/O interface 210 is used for receiving instructions and/or data from peripheral devices, and outputting instructions and/or data to peripheral devices.
  • I/O interface 210 is used for receiving instructions and/or data from peripheral devices, and outputting instructions and/or data to peripheral devices.
  • V2X communication can be regarded as an application scenario of device to device (D2D) communication.
  • D2D device to device
  • the sidelink can also be widely used in other communication technologies or scenarios, such as: Long Term Evolution Technology-Vehicle Communication (LTE-V), IoT gateway scenarios, industrial control, time-frequency monitoring and analysis, VR panorama etc., not limited here.
  • LTE-V Long Term Evolution Technology-Vehicle Communication
  • IoT gateway scenarios industrial control, time-frequency monitoring and analysis, VR panorama etc., not limited here.
  • V2X communication when resources are transmitted through the sidelink, two modes can be included:
  • the first mode is a resource scheduling method based on network equipment (such as a base station) scheduling.
  • Terminal equipment in V2X (such as a vehicle or other mobile equipment) is based on the scheduling information of the network equipment on the scheduled time-frequency resources. Transmit sidelink communication signals.
  • the first communication mode can also be divided into two scheduling modes, one of which is called a dynamic grant mode.
  • FIG. 3 is a schematic diagram of a communication mode of a dynamic scheduling mode in an embodiment of the present application.
  • the network device sends downlink control signaling (Downlink Control Information, DCI) through the PDCCH to indicate the frequency domain and time domain resources for the terminal device to perform sidelink transmission.
  • DCI Downlink Control Information
  • the downlink control signaling adopts DCI format 3_0.
  • the dynamic scheduling mode supports scheduling one transmission block at a time.
  • the transmission of the transmission block can be composed of the initial transmission and several blind retransmissions.
  • the initial transmission refers to the first transmission (transmission block)
  • the blind retransmission Transmission refers to the retransmission performed by the network device before the demodulation feedback of the initial transmission is obtained.
  • the number of blind retransmissions is indicated by high-layer signaling, for example: high-layer signaling "sl-MaxNumPerReserve".
  • the selectable value (also referred to as the size of the signaling) of the high-layer signaling "sl-MaxNumPerReserve" is ⁇ 2,3 ⁇ , where the value of 2 indicates that 1 initial transmission and 1 blind retransmission are indicated. A value of 3 indicates 1 initial transmission and 2 blind retransmissions.
  • the other is called pre-configured (configured grant) scheduling method.
  • the network device semi-statically configures periodic frequency domain and time domain resources for sidelink transmission through RRC signaling.
  • the semi-statically configured resource scheduling method has The advantage of saving signaling overhead is suitable for communication scenarios of periodic services.
  • the pre-configured resource scheduling method only supports scheduling one transmission block at a time.
  • the time domain position of the sidelink transmission is indicated by the time resource assignment (Time resource assignment) field therein, the number of bits occupied by this field in the DCI and the The size of the high-level signaling "sl-MaxNumPerReserve” is related.
  • the size of the Time resource assignment field is 5 bits; when the high-level signaling "sl-MaxNumPerReserve” is set to When the value is 3, the Time resource assignment field occupies 9 bits.
  • the time domain resources occupied by initial transmission and blind retransmission in the dynamic scheduling mode in the first mode are scheduled in units of time slots, and the time slot interval before initial transmission and blind retransmission supports more flexible configuration.
  • N sl-MaxNumPerReserve
  • the time slot interval between the initial transmission and the first blind retransmission is t 1
  • the time slot interval between the second blind retransmission and the first blind retransmission is t 2
  • Time resource The value carried by the assignment field is represented as "TRIV”
  • the acquisition method of t 1 and t 2 is shown in the following pseudo code:
  • the second mode is a resource scheduling method in which the V2X terminal device autonomously selects the time-frequency resources required for V2X communication in the V2X communication resource pool preconfigured by the network device or protocol.
  • the V2X terminal user equipment can obtain the situation that the resources of other user equipment occupy the resource pool by decoding the side link control information (SCI) of other user equipment or by measuring the energy of the side link signal.
  • SCI side link control information
  • the unoccupied time-frequency domain resources are selected based on the principle of collision avoidance.
  • the second communication mode may be applied to scenarios without network coverage or partial network coverage.
  • the physical side link control channel (PSCCH) is used to transmit control information in V2X communication
  • the physical side link shared channel (PSSCH) is used to transmit V2X communication. data information.
  • FIG. 4 is a schematic diagram of a collaborative communication process involved in an embodiment of the present application. Because some terminal equipments are far away from network equipments, they cannot communicate with network equipments normally due to the limitation of transmit power. A terminal device that is closer to the network device can assist a terminal device that is far away from the network device to perform relay transmission, and the above process is called cooperative communication of multiple terminal devices.
  • the network device configures sidelink resources through downlink control signaling format 3 (DCI format 3_0) to perform data transmission of one transport block (Transmit Block, TB).
  • DCI format 3_0 downlink control signaling format 3
  • the network device After receiving the Hybrid Automatic Repeat request-acknowledgement (HARQ-ACK), the network device sends uplink resource scheduling signaling to the terminal device (including one SUE and one or more CUEs), indicating them The data of the transport block is cooperatively sent to the network device.
  • the current downlink control signaling DCI format 3_0 only supports the scheduling of sidelink data transmission of one TB.
  • the SUE performs Listen Before Talk (LBT) before sending the sidelink signal. If the LBT fails, the sidelink resources scheduled by the network equipment will be unavailable. It will increase the transmission delay of the cooperative communication of the terminal equipment.
  • LBT Listen Before Talk
  • An embodiment of the present application proposes a resource scheduling method, in which a first communication device sends a first signaling to a second communication device, where the first signaling is used to indicate one of multiple transmission blocks scheduled at a time in sidelink transmission time, the time slot interval between two adjacent transmission blocks, and the sidelink transmission refers to the communication between the second communication device and its cooperating third communication device.
  • Data transmission of multiple TBs is indicated by one signaling, so as to reduce the number of times of sending downlink control signaling of the first communication device and reduce the delay of the entire cooperative transmission.
  • FIG. 5 is a schematic flowchart of a resource scheduling method provided by an embodiment of the present application.
  • a resource scheduling method proposed by an embodiment of the present application includes:
  • the first communication device sends first signaling to the second communication device, where a first field (field) in the first signaling is used to indicate two adjacent transmissions in the M transport blocks TB in sidelink transmission
  • the time slot interval T between blocks, M is an integer greater than 1.
  • the first signaling includes in addition to the first field.
  • the first signaling may further include one or more fields among the second field, the third field and the fourth field, and the respective fields will be described below. It can be understood that, only the first domain may be included in the first signaling.
  • the first communication device sends first signaling to the second communication device, where the first field in the first signaling is used to indicate the time between two adjacent transport blocks in the M transport blocks TB in sidelink transmission.
  • a gap interval T wherein the sidelink is used for communication between the second communication device and at least one third communication device, T is greater than or equal to 0, M is an integer greater than 1, and the third communication device is the second communication device.
  • the M value is carried by radio resource control (Radio Resource Control, RRC) signaling to configure the second communication device and/or the third communication device.
  • RRC Radio Resource Control
  • the first signaling is physical layer downlink control signaling DCI.
  • the first signaling is DCI format 3_0 as an example for description. It can be understood that the first signaling may be a new DCI after reinterpretation of the current DCI format 3_0, and the first signaling is also It can be a newly designed DCI, which is not limited here.
  • the selection range of T may be in various situations.
  • the following description is made with reference to the accompanying drawings.
  • T refer to the time slot interval between the end time of the previous transmission block and the start time of the next transmission block.
  • the previous transmission block and the latter transmission block are different transmission blocks, for example : Transport block 0 and transport block 1.
  • the "different" here can be understood as different data before encoding carried by the transport block.
  • FIG. 7 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between the three transport blocks, namely transport block 0, transport block 1 and transport block 2 . Then T refers to the time slot interval between the end time of transport block 0 and the start time of transport block 1.
  • T refer to the time slot interval between the start time of the previous transmission block and the start time of the latter transmission block, and the former transmission block and the latter transmission block are different transmission blocks, For example: transport block 0 and transport block 1.
  • the "different" here can be understood as different data before encoding carried by the transport block.
  • FIG. 8 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between the three transport blocks, namely transport block 0, transport block 1 and transport block 2 . Then T refers to the time slot interval between the start time of transport block 0 and the start time of transport block 1.
  • T refer to the time slot interval between the start time of the previous transmission block and the end time of the next transmission block.
  • the previous transmission block and the latter transmission block are different transmission blocks, for example : Transport block 0 and transport block 1.
  • FIG. 9 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between the three transport blocks, namely transport block 0, transport block 1 and transport block 2 . Then T refers to the time slot interval between the start time of transmission block 0 and the end time of transmission block 1.
  • T refer to the time slot interval between the end time of the previous transmission block and the end time of the next transmission block.
  • the previous transmission block and the latter transmission block are different transmission blocks, for example: Transport block 0 and transport block 1.
  • FIG. 10 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between the three transport blocks, namely transport block 0, transport block 1 and transport block 2 . Then T refers to the time slot interval between the end time of transport block 0 and the end time of transport block 1.
  • the first domain includes: a first subdomain and a second subdomain
  • the first subfield is used to indicate the time slot interval T1 of two adjacent transmissions in the N transmissions of the same transmission block, where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate M The time slot interval T between transport blocks, where T is greater than or equal to zero.
  • the first signaling may support scheduling of one transport block or may support scheduling of multiple transport blocks, which improves the flexibility of use.
  • the M and/or N values are configured to the second communication apparatus and/or the third communication apparatus by radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the selection range of T and the selection range of T1 can be in various situations.
  • the following description is made with reference to the accompanying drawings. It should be noted that, the selection range of T and the selection range of T1 exemplarily illustrated in the following figures can be combined with each other, which is not limited here.
  • T refers to the time slot interval between the end time of the previous transmission block and the start time of the next transmission block.
  • the previous transmission block and the latter transmission block are different transmission blocks, for example : Transport block 0 and transport block 1.
  • T1 refers to the time slot interval between the end time of the previous transmission and the start time of the next transmission in N times of transmission of the same transmission block.
  • FIG. 11 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between two transport blocks, namely transport block 0 and transport block 1.
  • T refers to the time slot interval between the end time of transport block 0 and the start time of transport block 1.
  • T1 refers to the time slot interval between two adjacent transmissions in the N transmissions of the same transmission block (take transmission block 0 as an example), for example: the end time of the nth transmission of transmission block 0 is the same as that of transmission block 0.
  • T refers to the time slot interval between the start time of the previous transmission block and the start time of the latter transmission block, and the former transmission block and the latter transmission block are different transmission blocks, For example: transport block 0 and transport block 1.
  • T1 refers to the time slot interval between the start time of the previous transmission and the start time of the next transmission in N times of transmission of the same transmission block.
  • FIG. 12 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between two transport blocks, namely transport block 0 and transport block 1.
  • T refers to the time slot interval between the start time of transport block 0 and the start time of transport block 1.
  • T1 refers to the time slot interval between two adjacent transmissions in N transmissions of the same transmission block (take transmission block 0 as an example), for example: the start time of the nth transmission of transmission block 0 is different from the transmission block 0.
  • T refers to the time slot interval between the start time of the previous transmission block and the end time of the next transmission block.
  • the previous transmission block and the latter transmission block are different transmission blocks, for example : Transport block 0 and transport block 1.
  • T1 refers to the time slot interval between the start time of the previous transmission and the end time of the next transmission in N times of transmission of the same transmission block.
  • FIG. 13 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between two transport blocks, namely transport block 0 and transport block 1. Then T refers to the time slot interval between the start time of transmission block 0 and the end time of transmission block 1.
  • T1 refers to the time slot interval of two adjacent transmissions in the N transmissions of the same transmission block (take transmission block 0 as an example), for example: the start time of the nth transmission of transmission block 0 is different from the transmission block 0.
  • T refers to the time slot interval between the end time of the previous transmission block and the end time of the next transmission block.
  • the previous transmission block and the latter transmission block are different transmission blocks, for example: Transport block 0 and transport block 1.
  • T1 refers to the time slot interval between the end time of the previous transmission and the end time of the next transmission in N times of transmission of the same transmission block.
  • FIG. 14 is a schematic diagram of a time slot interval involved in an embodiment of the present application. Taking the first signaling as DCI format 3_0 as an example, the first signaling indicates the time slot interval between two adjacent transport blocks between two transport blocks, namely transport block 0 and transport block 1. Then T refers to the time slot interval between the end time of transport block 0 and the end time of transport block 1.
  • T1 refers to the time slot interval between two adjacent transmissions in the N transmissions of the same transmission block (take transmission block 0 as an example), for example: the end time of the nth transmission of transmission block 0 is the same as that of transmission block 0.
  • the first field is a time resource assignment field for time resource allocation, and the number of bits occupied by the first field in the first signaling is 5 or 9 bits.
  • the time resource allocation field is reinterpreted.
  • the first domain may also be another domain in the first signaling.
  • the "field” in this embodiment of the present application may also be referred to as a "field", that is, the "first field” is equal to the "first field”.
  • the first signaling further includes a second field, where the second field is used to indicate a corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the second field only needs to indicate the smallest HARQ process identifier in the M transport blocks.
  • the second field is used to indicate that the HARQ process identifier is 0, and the smallest HARQ process identifier in the M transport blocks corresponds to the transport block.
  • the HARQ process identifiers corresponding to the other transport blocks are sequentially incremented on the basis of the HARQ process identifiers indicated in the second field.
  • the HARQ process identifier corresponding to transport block 1 is incremented on the basis of the HARQ process identifier (the HARQ process identifier corresponding to transport block 0) indicated by the second field, that is, the HARQ process identifier corresponding to transport block 1 is 1;
  • the HARQ process identifier corresponding to 2 is incremented on the basis of the HARQ process identifier corresponding to transport block 1, that is, the HARQ process identifier corresponding to transport block 2 is 2.
  • the second field is the HARQ process number field
  • the number of bits occupied by the second field in the first signaling is 4 bits.
  • the HARQ process number field of the HARQ process number is reinterpreted. With limited bits, multiple HARQ process numbers are indicated for HARQ process numbers, which saves communication resources.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or retransmission identifier of the M transport blocks, and each bit in the third field is associated with a mixed automatic The retransmission request HARQ process identifiers correspond respectively.
  • each bit in the third field corresponds to a HARQ process identifier in a one-to-one relationship according to a progressive relationship.
  • the transport blocks to be transmitted in the sidelink include transport block 0, transport block 1 and transport block 2.
  • the first bit in the third field corresponds to the HARQ process identifier of transport block 0
  • the second bit corresponds to the HARQ process identifier of transport block 1
  • the third bit corresponds to the HARQ process identifier of transport block 2.
  • the first signaling is the physical layer downlink control signaling DCI format 3_0
  • the third field is the new data indication New data indicator field, the configuration index Configuration index field and/or the combination of the padding field.
  • the number of bits occupied by the New data indicator field in the first signaling is 1 bit
  • the number of bits occupied by the Configuration index field in the first signaling is 0 bits or 3 bits.
  • the combination of the new data indication New data indicator field, the configuration index Configuration index field and/or the padding field is reinterpreted.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of a partial bandwidth (Bandwidth part, BWP) occupied by the M transport blocks.
  • BWP Bandwidth part
  • the first signaling may be used to instruct the network device in which one or more BWPs to transmit data. That is, one or more BWPs of the network device are scheduled through the first signaling.
  • the fourth field is the Resource pool index field.
  • the Resource pool index field is reinterpreted.
  • the number of bits occupied by the Resource pool index field in the first signaling is Log 2 I, where I is configured by high-level signaling and originally refers to the resource pool configured by the base station in the BWP where the base station sends DCI format 3_0
  • the total number of BWPs in the embodiment of the present application refers to the total number of partial bandwidth BWPs preconfigured by the base station on which the base station sends the carrier (Component Carrier) where the DCI format 3_0 is located.
  • steps 502-505 may also be included.
  • the first communication apparatus sends second signaling to the third communication apparatus, where the second signaling is used to schedule the first resource.
  • the first communication device sends the second signaling to the third communication device, and the second signaling is used to schedule the first resource.
  • the first resource is a communication resource in a Physical Uplink Shared Channel (PUSCH)
  • the first resource is used for at least one third communication device to send first data to the first communication device
  • the first data is one or more
  • the data from the second communication device received by the third communication device through the second resource, the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH), and the third communication device is the second communication device collaboration device.
  • PUSCH Physical Uplink Shared Channel
  • the first communication apparatus sends a third signaling to the third communication apparatus, where the third signaling is used to indicate a deviation value between the first HARQ process identifier and the second HARQ process identifier of the first hybrid automatic repeat request.
  • the first communication device broadcasts the third signaling, that is, sends the third signaling to one or more third communication devices.
  • the third signaling is used to indicate the difference between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the HARQ process identifier corresponding to the second resource, and the second HARQ process identifier is The HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the first resource is a communication resource in the Physical Uplink Shared Channel (PUSCH), and the HARQ process identifier (ie the second HARQ process identifier) corresponding to the first resource is called the HARQ Process ID (UL);
  • the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH), and the HARQ process identifier (that is, the first HARQ process identifier) corresponding to the second resource is called the HARQ process ID (SL).
  • PUSCH Physical Uplink Shared Channel
  • PSSCH Physical sidelink shared channel
  • the deviation value between the first HARQ process identifier and the second HARQ process identifier is referred to as P in this embodiment of the present application, that is:
  • HARQ Process ID(UL) HARQ Process ID(SL)+P.
  • the third signaling is used to indicate the value of P, and the absolute value of P is an integer greater than or equal to 0 and less than K, where K is the maximum number of HARQ processes configured on the network side.
  • FIG. 16 is a schematic diagram of a HARQ process identifier in an embodiment of the present application.
  • the third signaling is physical layer downlink control signaling DCI.
  • step 504 is executed.
  • step 502 may be performed first, then step 503, and then step 504 may be performed after performing step 503; or step 503 may be performed first, then step 502, and then step 504 may be performed after performing step 502.
  • the third communication apparatus determines the first resource according to the deviation value.
  • one or more third communication devices receive the third signaling, and the third communication device determines the position of the first resource according to the deviation value carried by the third signaling.
  • the location of the first resource refers to the time-frequency location of the first resource.
  • the first resource includes communication resources used by multiple third communication apparatuses.
  • different third communication apparatuses determine, according to the third signaling, part of the communication resources used by themselves among the first resources.
  • each third communication apparatus transmits the first data by using the corresponding first resource.
  • the third communication device sends the first data to the first communication device using the first resource.
  • the third communication device demodulates the first data. If the third communication device correctly demodulates the first data, the third communication device may send the first data to the first communication device through the first resource.
  • the first communication apparatus can not determine which third communication apparatuses (CUEs) to schedule at the uplink scheduling moment, so as to avoid the problem of waste of uplink resources due to some CUEs failing to receive the first data correctly.
  • CUEs third communication apparatuses
  • the first communication apparatus instructs data transmission of multiple transport blocks through one signaling (first signaling), so as to reduce the transmission delay of the second communication apparatus (terminal equipment).
  • An embodiment of the present application also proposes a resource scheduling method. Please refer to FIG. 6 , which is a schematic flowchart of a resource scheduling method proposed by an embodiment of the present application.
  • a resource scheduling method proposed by an embodiment of the present application includes:
  • the first communication apparatus sends second signaling to the third communication apparatus, where the second signaling is used to schedule the first resource.
  • the first communication device sends the second signaling to the third communication device, and the second signaling is used to schedule the first resource.
  • FIG. 15 is a schematic diagram of the embodiment of the present application. Schematic diagram of communication resources.
  • the first resource is a communication resource in a Physical Uplink Shared Channel (PUSCH)
  • the first resource is used for at least one third communication device to send first data to the first communication device
  • the first data is one or more
  • the second resource is the communication resource in the physical layer sidelink shared channel (Physical sidelink shared channel, PSSCH)
  • the third communication device is the second communication device collaboration device.
  • the second signaling is physical layer downlink control signaling DCI.
  • the second signaling is DCI format 3_0 as an example for description. It can be understood that the second signaling may be a new DCI after the current DCI format 3_0 is reinterpreted, and the second signaling is also It can be a new DCI, which is not limited here.
  • the first communication apparatus sends a third signaling to the third communication apparatus, where the third signaling is used to indicate a deviation value between the first HARQ process identifier of the HARQ process request and the second HARQ process identifier.
  • step 602 is similar to the aforementioned step 503, and is not repeated here.
  • the third communication apparatus determines the first resource according to the deviation value.
  • step 603 is similar to the aforementioned step 504, and is not repeated here.
  • the third communication device sends the first data to the first communication device using the first resource.
  • step 604 is similar to the foregoing step 505, and details are not described here.
  • the above method can solve the problem that the first communication device cannot determine which third communication devices (CUEs) to schedule at the uplink scheduling moment, so as to avoid the problem of waste of uplink resources due to some CUEs failing to correctly receive the first data .
  • CUEs third communication devices
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one transceiver module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 17 is a schematic diagram of an embodiment of the communication device in the embodiment of the present application.
  • the communication apparatus can be deployed in the network equipment, and the communication apparatus includes:
  • a transceiver module 1701 configured to send a first signaling to a second communication device
  • the first field in the first signaling is used to indicate the time slot interval T between two adjacent transport blocks among the M transport blocks TB in sidelink transmission, where the sidelink is used for the second communication
  • T is greater than or equal to
  • M is an integer greater than 1.
  • the communication apparatus is a network device, and the communication apparatus may further include a transceiver.
  • the communication apparatus is a chip, a chip system or a circuit configured in a network device.
  • the communication apparatus may further include a transceiver module 1701, and the transceiver module 1701 may be an input and/or on the chip, a chip system or a circuit. Or output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc.
  • the transceiver module 1701 is further configured to send the second signaling to the third communication device,
  • the second signaling is used to schedule the first resource, the first resource is the communication resource in the physical uplink shared channel PUSCH, the first resource is used for at least one third communication device to send the first data to the first communication device, and the first data is data received by at least one third communication device through a second resource, where the second resource is a communication resource in the physical sideline shared channel PSSCH;
  • the transceiver module 1701 is further configured to broadcast third signaling, where the third signaling is used to indicate the deviation value between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the second HARQ process identifier.
  • the HARQ process identifier corresponding to the resource, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the transceiver module 1701 is further configured to receive first data at the first resource, where the first data comes from at least one third communication device.
  • the second signaling is physical layer downlink control signaling DCI;
  • the third signaling is physical layer downlink control signaling DCI.
  • the first field includes: a first subfield and a second subfield; the first subfield is used to indicate the time slot interval T1 of two adjacent transmissions in the N transmissions of the same transmission block , where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate the time slot interval T between M transport blocks, where T is greater than or equal to 0.
  • the first signaling is downlink control signaling DCI format 3_0
  • the first field is a time resource allocation field.
  • the first signaling further includes a second field, where the second field is used to indicate the corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the HARQ process identifiers corresponding to other transport blocks except the transport block corresponding to the smallest HARQ process identifier in the M transport blocks are sequentially incremented on the basis of the HARQ process identifier indicated by the second field.
  • the first signaling is downlink control signaling DCI format 3_0
  • the second field is the hybrid automatic repeat request process number field.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or retransmission identifier of the M transport blocks, and each bit in the third field is associated with a mixed automatic The retransmission request HARQ process identifiers correspond respectively.
  • the first signaling is downlink control signaling DCI format 3_0
  • the third field is a new data indication field
  • a combination of an index field and/or a padding field is configured.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of the partial bandwidth where the M transport blocks are located.
  • the first signaling is downlink control signaling DCI format 3_0
  • the fourth field is the resource pool index field.
  • the value of M is indicated by the radio resource control signaling RRC.
  • the value of N is indicated by the radio control signaling RRC.
  • FIG. 18 is a schematic diagram of another embodiment of the communication device in the embodiment of the present application.
  • the communication apparatus can be deployed in the terminal equipment, and the communication apparatus includes:
  • the first field in the first signaling is used to indicate the time slot interval T between two adjacent transport blocks among the M transport blocks TB in sidelink transmission, where the sidelink is used for the second communication
  • T is greater than or equal to
  • M is an integer greater than 1.
  • the communication apparatus is a terminal device, and the communication apparatus may further include a transceiver.
  • the communication apparatus is a chip, a chip system or a circuit configured in the terminal device.
  • the communication apparatus may further include a transceiver module 1801, and the transceiver module 1801 may be an input and/or on the chip, a chip system or a circuit. Or output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc.
  • the first field includes: a first subfield and a second subfield; the first subfield is used to indicate the time slot interval T1 of two adjacent transmissions in the N transmissions of the same transmission block , where T1 is greater than or equal to 0, and N is an integer greater than 0; the second subfield is used to indicate the time slot interval T between M transport blocks, where T is greater than or equal to 0.
  • the first signaling is downlink control signaling DCI format 3_0
  • the first field is a time resource allocation field.
  • the first signaling further includes a second field, where the second field is used to indicate the corresponding minimum hybrid automatic repeat request HARQ process identifier in the M transport blocks.
  • the HARQ process identifiers corresponding to other transport blocks except the transport block corresponding to the smallest HARQ process identifier in the M transport blocks are sequentially incremented on the basis of the HARQ process identifier indicated by the second field.
  • the first signaling is downlink control signaling DCI format 3_0
  • the second field is the hybrid automatic repeat request process number field.
  • the first signaling further includes a third field, where the third field is used to indicate the initial transmission identifier or retransmission identifier of the M transport blocks, and each bit in the third field is associated with a mixed automatic The retransmission request HARQ process identifiers correspond respectively.
  • the first signaling is downlink control signaling DCI format 3_0
  • the third field is a new data indication field
  • a combination of an index field and/or a padding field is configured.
  • the first signaling further includes a fourth field, where the fourth field is used to indicate an index of the partial bandwidth where the M transport blocks are located.
  • the first signaling is downlink control signaling DCI format 3_0
  • the fourth field is the resource pool index field.
  • the value of M is indicated by the radio resource control signaling RRC.
  • the value of N is indicated by the radio control signaling RRC.
  • FIG. 19 is a schematic diagram of another embodiment of the communication device according to the embodiment of the present application.
  • the communication apparatus can be deployed in the terminal equipment, and the communication apparatus includes:
  • Transceiver module 1901 configured to receive second signaling from the first communication device, the second signaling is used to schedule first resources, the first resources are the communication resources in the physical uplink shared channel PUSCH, and at least one third communication device uses The first resource sends first data to the first communication device, the first data is data from the second communication device received by at least one third communication device through the second resource, and the second resource is the communication in the physical sideline shared channel PSSCH resource;
  • the transceiver module 1901 is further configured to receive third signaling from the first communication device, where the third signaling is used to indicate the deviation value between the first HARQ process identifier and the second HARQ process identifier, wherein the first HARQ process identifier is The HARQ process identifier is the HARQ process identifier corresponding to the second resource, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling;
  • a processing module 1902 configured to determine the location of the first resource according to the deviation value
  • the transceiver module 1901 is further configured to send the first data to the first communication device according to the position of the first resource, and the position of the first resource is confirmed according to the first resource and the deviation value.
  • the communication apparatus is a terminal device, and the processing module 1902 may be a processor.
  • the communication device may further include a transceiver.
  • the communication device is a chip, a chip system or a circuit configured in a terminal device.
  • the processing module 1902 may be a processor, processing circuit or logic circuit, or the like.
  • the communication device may further include a transceiver module 1901, and the transceiver module 1901 may be an input and/or output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc. on the chip, chip system or circuit.
  • the transceiver module 1901 is further configured to receive the first data
  • a processing module 1902 further configured to demodulate the first data
  • the transceiver module 1901 is further configured to send the first data to the first communication device when the third communication device correctly demodulates the first data.
  • the second signaling is physical layer downlink control signaling DCI;
  • the third signaling is physical layer downlink control signaling DCI.
  • FIG. 20 is a schematic diagram of another embodiment of the communication device in the embodiment of the present application.
  • the communication apparatus can be deployed in the network equipment, and the communication apparatus includes:
  • Transceiver module 2001 configured to send a second signaling to a third communication device, the second signaling is used to schedule a first resource, the first resource is a communication resource in a physical uplink shared channel PUSCH, and the first resource is used for a third communication
  • the device sends first data to the first communication device, where the first data is data received by the third communication device through the second resource, and the first data is data received from the second communication device by at least one third communication device through the second resource , the second resource is the communication resource in the physical sideline shared channel PSSCH;
  • the transceiver module 2001 is further configured to broadcast a third signaling, where the third signaling is used to indicate a deviation value between the first HARQ process identifier and the second HARQ process identifier, where the first HARQ process identifier is the second HARQ process identifier.
  • the HARQ process identifier corresponding to the resource, and the second HARQ process identifier is the HARQ process identifier corresponding to the first resource scheduled by the first signaling.
  • the communication apparatus is a network device, and the communication apparatus may include a transceiver.
  • the communication apparatus is a chip, a chip system or a circuit configured in a network device.
  • the communication device further includes a transceiver module 2001, which can be an input and/or output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit.
  • the transceiver module 2001 is further configured to receive first data at the first resource, where the first data comes from a third communication device.
  • the second signaling and the third signaling are downlink control signaling DCI.
  • the communication device in the foregoing embodiment may be a network device, or may be a chip applied in the network device, or other combined devices or components that can implement the functions of the foregoing network device.
  • the receiving module and the transmitting module may be transceivers, the transceiver may include an antenna and a radio frequency circuit, etc., and the processing module may be a processor, such as a baseband chip.
  • the receiving module and the sending module may be radio frequency units, and the processing module may be a processor.
  • the receiving module may be an input port of the system-on-chip
  • the sending module may be an output interface of the system-on-chip
  • the processing module may be a processor of the system-on-chip, such as a central processing unit (CPU) .
  • CPU central processing unit
  • An embodiment of the present application further provides a processing apparatus, where the processing apparatus includes a processor and an interface; the processor is configured to execute the resource scheduling method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, The processor may be a general-purpose processor, and is implemented by reading software codes stored in a memory, which may be integrated in the processor, or located outside the processor, and exists independently.
  • the hardware processing circuit can be composed of discrete hardware components or an integrated circuit. In order to reduce power consumption and reduce size, it is usually implemented in the form of integrated circuits.
  • the hardware processing circuit may include ASIC (application-specific integrated circuit, application-specific integrated circuit), or PLD (programmable logic device, programmable logic device); wherein, PLD may include FPGA (field programmable gate array, field programmable gate array) , CPLD (complex programmable logic device, complex programmable logic device) and so on.
  • These hardware processing circuits can be a single semiconductor chip packaged separately (such as packaged into an ASIC); they can also be integrated with other circuits (such as CPU, DSP) and packaged into a semiconductor chip, for example, can be formed on a silicon substrate
  • a variety of hardware circuits and CPUs are individually packaged into a chip, which is also called SoC, or circuits and CPUs for implementing FPGA functions can also be formed on a silicon substrate and individually enclosed into a single chip. Also known as SoPC (system on a programmable chip, programmable system on a chip).
  • the present application also provides a communication system including one or more of the aforementioned communication devices.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to control the communication apparatus to execute any one of the implementations shown in the foregoing method embodiments.
  • An embodiment of the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code runs on a computer, the computer can execute any one of the implementations shown in the foregoing method embodiments.
  • An embodiment of the present application further provides a chip system, including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the chip executes any one of the implementations shown in the foregoing method embodiments. Way.
  • Embodiments of the present application further provide a chip system, including a processor, where the processor is configured to call and run a computer program, so that the chip executes any one of the implementations shown in the foregoing method embodiments.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be A physical unit, which can be located in one place or distributed over multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, which may be specifically implemented as one or more communication buses or signal lines.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products are stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device execute the methods described in the various embodiments of the present application.
  • a readable storage medium such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website, computer, communication device, computing equipment or data center to another website site, computer, communication device, computing device, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) transmission.
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be stored by a computer, or a data storage device such as a communication device, a data center, or the like that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented as a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , which includes several instructions for causing a computer device (which may be a personal computer, a server, or a communication device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种资源调度方法,该方法可以应用于涉及侧行链路的通信系统中,例如车辆对其他设备V2X系统中。该方法应用于非授权频段,该方法包括:第一通信装置向第二通信装置发送第一信令;第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。本申请实施例中,第一通信装置通过一个信令(第一信令)指示多个传输块的数据传输,以降低第二通信装置(终端设备)的传输时延。

Description

一种资源调度方法以及相关装置
本申请要求于2021年03月31日提交中国国家知识产权局、申请号为202110352343.4、发明名称为“一种资源调度方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源调度方法以及相关装置。
背景技术
侧行链路(sidelink)技术是指一种允许终端设备与终端设备之间进行直接交互的技术,例如,车联网一种常见的侧行链路的应用场景,车辆对其他设备(vehicle to everything,V2X)通信是车联网中实现环境感知、信息交互的重要关键技术,这里的其他设备可以是其他车辆、基础设施、移动终端设备等。V2X通信可以看成是设备到设备(device to device,D2D)通信的一种应用场景。例如,车辆和车辆之间直接进行通信,实时地交互获取车辆之间的行车状态信息以及路面情况,从而更好地辅助车辆驾驶甚至实现自动驾驶。
V2X通信技术支持的资源调度的分为两种:一种是基于蜂窝网络覆盖的场景,蜂窝网络包括:第五代(5Generation,5G)通信系统,第五代通信系统也称为新无线接入技术(New Radio,NR)和第四代(4Generation,4G)通信系统,此时由蜂窝网络的用户网络通用接口(user to network interface-universal,Uu)实现用户节点之间的传输资源的指示;另一种是独立于蜂窝网络的资源调度,在无网络部署的区域通过协议默认配置或终端自己配置传输资源。
目前,在基于蜂窝网覆盖的场景下,网络设备支持通过下行控制信令(Downlink Control Information,DCI)配置侧行链路SL资源进行一个传输块(Transmit Block,TB)的数据传输。而对于多个TB的数据传输场景,则使用多条DCI信令进行配置,因此,用户设备(user equipment,UE)存在传输时延大等问题。
发明内容
第一方面,本申请实施例提出一种资源调度方法,方法应用于非授权频段,包括:
第一通信装置向第二通信装置发送第一信令;第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
例如:M=3为例,即第一信令指示传输块0,传输块1和传输块2之间的相等时隙间隔。传输块0与传输块1之间的时隙间隔T=3,传输块1与传输块2之间的时隙间隔T=3。
其中M值由无线资源控制(Radio Resource Control,RRC)信令携带,以对第二通信装置和/或第三通信装置进行配置。
本申请实施例中,第一通信装置通过一个信令(第一信令)指示多个传输块的数据传输,以降低第二通信装置(终端设备)的传输时延。
结合第一方面,在第一方面的一种可能实现方式中,第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为至少一个第三通信装置通过第二资源接收的数据,第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源;
第一通信装置广播第三信令,第三信令用于指示第一混合自动重传请求(Hybrid Automatic Repeat request,HARQ)进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
本申请实施例中,通过上述方式,可以解决第一通信装置在上行调度时刻无法确定调度哪些第三通信装置(CUE),以避免由于部分CUE没有正确接收第一数据而导致上行资源浪费的问题。
结合第一方面,在第一方面的一种可能实现方式中,第一通信装置在第一资源接收第一数据,第一数据来自至少一个第三通信装置。本申请实施例中,第一通信装置在第一资源接收第一数据,该第一数据来自至少一个第三通信装置,即该第一数据为协助通信场景中CUE上传的数据。
结合第一方面,在第一方面的一种可能实现方式中,第二信令为物理层下行控制信令DCI;第三信令为物理层下行控制信令DCI。提升了方案的实现灵活性。
结合第一方面,在第一方面的一种可能实现方式中,第一域包括:第一子域和第二子域;第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
本申请实施例中,第一信令可以支持调度一个传输块,也可以支持调度多个传输块,提升了使用灵活性。
结合第一方面,在第一方面的一种可能实现方式中,当N等于1时,第一子域无效。具体的,当第一信令指示的同一传输块仅传输1次时,即N=1时,第一子域无效。因为第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,当该同一传输块仅传输1次,则不存在T1。即第一子域无效。需要说明的是,第一子域无效也可以称为第一子域保留(reserved)。以降低对信令的改动,减小通信资源开销。
结合第一方面,在第一方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第一域为时间资源分配time resource assignment域。
本申请实施例中,第一域在第一信令中占用的比特数为5或9比特。具体的,本申请实施例中对时间资源分配域进行重解读。需要说明的是,第一域还可以是第一信令中的其它域。本申请实施例中的“域”也可以称为“字段”,即“第一域”等于“第一字段”。
结合第一方面,在第一方面的一种可能实现方式中,第一信令还包括第二域,第二域用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。示例性的,M=3为例,侧行链路中待传输的传输块有传输块0,传输块1和传输块2。假设传输块0对应的HARQ 进程标识=0,传输块1对应的HARQ进程标识=1,传输块2对应的HARQ进程标识=2。第二域仅需指示M个传输块中对应的最小的HARQ进程标识,本实现方式中,第二域用于指示的HARQ进程标识为0,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。示例性的,传输块1对应的HARQ进程标识在第二域指示的HARQ进程标识(传输块0对应的HARQ进程标识)的基础上递增,即传输块1对应的HARQ进程标识为1;传输块2对应的HARQ进程标识在传输块1对应的HARQ进程标识的基础上递增,即传输块2对应的HARQ进程标识为2。
本申请实施例中,通过有限的比特位,指示多个混合自动重传请求进程编号HARQ process number,节约了通信资源。
结合第一方面,在第一方面的一种可能实现方式中,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。
结合第一方面,在第一方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第二域为混合自动重传请求进程编号HARQ process number域。
本申请实施例中,第二域在第一信令中占用的比特数为4比特。具体的,本申请实施例中对混合自动重传请求进程编号HARQ process number域进行重解读。
结合第一方面,在第一方面的一种可能实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
可选的,第三域中每一个比特位与一个HARQ进程标识按照递进关系一一对应。示例性的,M=3为例,侧行链路中待传输的传输块有传输块0,传输块1和传输块2。第三域中第一个比特位对应传输块0的HARQ进程标识,第二个比特位对应传输块1的HARQ进程标识,第三个比特位对应传输块2的HARQ进程标识。通过第一信令,可以分别指示多个传输块的初传或盲重传,提升了资源配置的灵活性。
结合第一方面,在第一方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第三域为新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合。具体的,第一信令为物理层下行控制信令DCI format 3_0,第三域为新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合。其中,新数据指示New data indicator域在第一信令中占用的比特数为1比特,配置索引Configuration index域在第一信令中占用的比特数为0比特或3比特。具体的,本申请实施例中对新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合进行重解读。
结合第一方面,在第一方面的一种可能实现方式中,第一信令还包括第四域,第四域用于指示M个传输块所在的部分带宽Bandwidth part的索引。示例性的,一个网络设备配置了多个激活的BWP时,则可以通过第一信令指示网络设备在哪一个或多个BWP中传输数据。即通过第一信令调度网络设备的一个或多个BWP。
结合第一方面,在第一方面的一种可能实现方式中,第一信令为下行控制信令DCI  format 3_0,第四域为资源池索引Resource pool index域。具体的,第四域为资源池索引Resource pool index域。具体的,本申请实施例中对资源池索引Resource pool index域进行重解读。该资源池索引Resource pool index域在第一信令中占用的比特数为Log 2I,其中,I由高层信令配置,原先指的是基站发送DCI format 3_0所在BWP中的基站配置的资源池的总个数,本申请实施例中I指的是基站发送DCI format 3_0所在载波(Component Carrier)的基站预配置的部分带宽BWP的总个数。
结合第一方面,在第一方面的一种可能实现方式中,M值由无线资源控制信令RRC指示。
结合第一方面,在第一方面的一种可能实现方式中,N值由无线控制信令RRC指示。
第二方面,本申请实施例提出一种资源调度方法,方法应用于非授权频段,包括:
第二通信装置接收来自第一通信装置的第一信令;
第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
例如:M=3为例,即第一信令指示传输块0,传输块1和传输块2之间的相等时隙间隔。传输块0与传输块1之间的时隙间隔T=3,传输块1与传输块2之间的时隙间隔T=3。
其中M值由无线资源控制(Radio Resource Control,RRC)信令携带,以对第二通信装置和/或第三通信装置进行配置。
本申请实施例中,第一通信装置通过一个信令(第一信令)指示多个传输块的数据传输,以降低第二通信装置(终端设备)的传输时延。
结合第二方面,在第二方面的一种可能实现方式中,第一域包括:第一子域和第二子域;第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
本申请实施例中,第一信令可以支持调度一个传输块,也可以支持调度多个传输块,提升了使用灵活性。
结合第二方面,在第二方面的一种可能实现方式中,当N等于1时,第一子域无效。具体的,当第一信令指示的同一传输块仅传输1次时,即N=1时,第一子域无效。因为第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,当该同一传输块仅传输1次,则不存在T1。即第一子域无效。需要说明的是,第一子域无效也可以称为第一子域保留(reserved)。以降低对信令的改动,减小通信资源开销。
结合第二方面,在第二方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第一域为时间资源分配time resource assignment域。
本申请实施例中,第一域在第一信令中占用的比特数为5或9比特。具体的,本申请实施例中对时间资源分配域进行重解读。需要说明的是,第一域还可以是第一信令中的其它域。本申请实施例中的“域”也可以称为“字段”,即“第一域”等于“第一字段”。
结合第二方面,在第二方面的一种可能实现方式中,第一信令还包括第二域,第二域 用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。示例性的,M=3为例,侧行链路中待传输的传输块有传输块0,传输块1和传输块2。假设传输块0对应的HARQ进程标识=0,传输块1对应的HARQ进程标识=1,传输块2对应的HARQ进程标识=2。第二域仅需指示M个传输块中对应的最小的HARQ进程标识,本实现方式中,第二域用于指示的HARQ进程标识为0,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。示例性的,传输块1对应的HARQ进程标识在第二域指示的HARQ进程标识(传输块0对应的HARQ进程标识)的基础上递增,即传输块1对应的HARQ进程标识为1;传输块2对应的HARQ进程标识在传输块1对应的HARQ进程标识的基础上递增,即传输块2对应的HARQ进程标识为2。
本申请实施例中,通过有限的比特位,指示多个混合自动重传请求进程编号HARQ process number,节约了通信资源。
结合第二方面,在第二方面的一种可能实现方式中,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。
结合第二方面,在第二方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第二域为混合自动重传请求进程编号HARQ process number域。
本申请实施例中,第二域在第一信令中占用的比特数为4比特。具体的,本申请实施例中对混合自动重传请求进程编号HARQ process number域进行重解读。
结合第二方面,在第二方面的一种可能实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
可选的,第三域中每一个比特位与一个HARQ进程标识按照递进关系一一对应。示例性的,M=3为例,侧行链路中待传输的传输块有传输块0,传输块1和传输块2。第三域中第一个比特位对应传输块0的HARQ进程标识,第二个比特位对应传输块1的HARQ进程标识,第三个比特位对应传输块2的HARQ进程标识。通过第一信令,可以分别指示多个传输块的初传或盲重传,提升了资源配置的灵活性。
结合第二方面,在第二方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第三域为新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合。具体的,第一信令为物理层下行控制信令DCI format 3_0,第三域为新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合。其中,新数据指示New data indicator域在第一信令中占用的比特数为1比特,配置索引Configuration index域在第一信令中占用的比特数为0比特或3比特。具体的,本申请实施例中对新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合进行重解读。
结合第二方面,在第二方面的一种可能实现方式中,第一信令还包括第四域,第四域用于指示M个传输块所在的部分带宽Bandwidth part的索引。示例性的,一个网络设备配置了多个激活的BWP时,则可以通过第一信令指示网络设备在哪一个或多个BWP中传输数 据。即通过第一信令调度网络设备的一个或多个BWP。
结合第二方面,在第二方面的一种可能实现方式中,第一信令为下行控制信令DCI format 3_0,第四域为资源池索引Resource pool index域。具体的,第四域为资源池索引Resource pool index域。具体的,本申请实施例中对资源池索引Resource pool index域进行重解读。该资源池索引Resource pool index域在第一信令中占用的比特数为Log 2I,其中,I由高层信令配置,原先指的是基站发送DCI format 3_0所在BWP中的基站配置的资源池的总个数,本申请实施例中I指的是基站发送DCI format 3_0所在载波(Component Carrier)的基站预配置的部分带宽BWP的总个数。
结合第二方面,在第二方面的一种可能实现方式中,M值由无线资源控制信令RRC指示。
结合第二方面,在第二方面的一种可能实现方式中,N值由无线控制信令RRC指示。
第三方面,本申请实施例提出一种资源调度方法,方法应用于非授权频段,包括:
第三通信装置接收来自第一通信装置的第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,至少一个第三通信装置使用第一资源向第一通信装置发送第一数据,第一数据为至少一个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
第三通信装置接收来自第一通信装置的第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识;
第三通信装置根据第一资源的位置向第一通信装置发送第一数据,第一资源的位置根据第一资源和偏差值确认。
具体的,第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源。第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为一个或多个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第三通信装置为第二通信装置的协作设备。
第一通信装置广播第三信令,即向一个或多个第三通信装置发送第三信令。第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
具体的,第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源对应的HARQ进程标识(即第二HARQ进程标识)称为HARQ Process ID(UL);第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第二资源对应的HARQ进程标识(即第一HARQ进程标识)称为HARQ process ID(SL)。
第一通信装置广播第三信令后,一个或多个第三通信装置接收第三信令,第三通信装置根据该第三信令携带的偏差值确定第一资源的位置。该第一资源的位置指的是第一资源的时频位置。具体的,根据该第三信令携带的第一HARQ进程标识与第二HARQ进程标识的偏差值,以及自身(第三通信装置)通过第二资源接收的来自第二通信装置的第一数据,确定第一资源。即根据偏差值和第一HARQ进程标识,确定第二HARQ进程标识。
一种可能的实现方式中,第一资源包括多个第三通信装置使用的通信资源。首先,不同的第三通信装置根据第三信令确定第一资源中自身使用的部分通信资源。其次,各个第三通信装置使用对应的第一资源发送第一数据。
本申请实施例中,通过上述方式,可以解决第一通信装置在上行调度时刻无法确定调度哪些第三通信装置(CUE),以避免由于部分CUE没有正确接收第一数据而导致上行资源浪费的问题。
结合第三方面,在第三方面的一种可能实现方式中,还包括:第三通信装置接收第一数据;第三通信装置解调第一数据;当第三通信装置正确解调第一数据时,第三通信装置向第一通信装置发送第一数据。
其中,一个或多个第三通信装置接收来自第二通信装置的第一数据后,第三通信装置解调该第一数据。若第三通信装置正确解调该第一数据,第三通信装置可以通过第一资源向第一通信装置发送第一数据。通过上述方式,可以解决第一通信装置在上行调度时刻无法确定调度哪些第三通信装置(CUE),以避免由于部分CUE没有正确接收第一数据而导致上行资源浪费的问题。
结合第三方面,在第三方面的一种可能实现方式中,第二信令为物理层下行控制信令DCI;第三信令为物理层下行控制信令DCI。提升了方案的实现灵活性。
第四方面,本申请实施例提出一种资源调度方法,包括:
第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,第一资源用于第三通信装置向第一通信装置发送第一数据,第一数据为第三通信装置通过第二资源接收的数据,第一数据为至少一个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
第一通信装置广播第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
具体的,第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源。第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为一个或多个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第三通信装置为第二通信装置的协作设备。
第一通信装置广播第三信令,即向一个或多个第三通信装置发送第三信令。第三信令 用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
具体的,第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源对应的HARQ进程标识(即第二HARQ进程标识)称为HARQ Process ID(UL);第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第二资源对应的HARQ进程标识(即第一HARQ进程标识)称为HARQ process ID(SL)。
第一通信装置广播第三信令后,一个或多个第三通信装置接收第三信令,第三通信装置根据该第三信令携带的偏差值确定第一资源的位置。该第一资源的位置指的是第一资源的时频位置。具体的,根据该第三信令携带的第一HARQ进程标识与第二HARQ进程标识的偏差值,以及自身(第三通信装置)通过第二资源接收的来自第二通信装置的第一数据,确定第一资源。即根据偏差值和第一HARQ进程标识,确定第二HARQ进程标识。
一种可能的实现方式中,第一资源包括多个第三通信装置使用的通信资源。首先,不同的第三通信装置根据第三信令确定第一资源中自身使用的部分通信资源。其次,各个第三通信装置使用对应的第一资源发送第一数据。
本申请实施例中,通过上述方式,可以解决第一通信装置在上行调度时刻无法确定调度哪些第三通信装置(CUE),以避免由于部分CUE没有正确接收第一数据而导致上行资源浪费的问题。
结合第四方面,在第四方面的一种可能实现方式中,第一通信装置在第一资源接收第一数据,第一数据来自第三通信装置。本申请实施例中,第一通信装置在第一资源接收第一数据,该第一数据来自至少一个第三通信装置,即该第一数据为协助通信场景中CUE上传的数据。
结合第四方面,在第四方面的一种可能实现方式中,第二信令和第三信令为下行控制信令DCI。提升了本方案的实现灵活性。
第五方面,本申请实施例提出一种通信装置,包括:
收发模块,用于向第二通信装置发送第一信令;
第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
在一种实现方式中,该通信装置为网络设备,通信装置还可以包括收发器。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片、芯片系统或电路通信装置还可以包括收发模块,收发模块可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,
收发模块,还用于向第三通信装置发送第二信令,
第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,第 一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为至少一个第三通信装置通过第二资源接收的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
收发模块,还用于广播第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
在一种可能的实现方式中,
收发模块,还用于在第一资源接收第一数据,第一数据来自至少一个第三通信装置。
在一种可能的实现方式中,第二信令为物理层下行控制信令DCI;第三信令为物理层下行控制信令DCI。
在一种可能的实现方式中,第一域包括:第一子域和第二子域;第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
在一种可能的实现方式中,当N等于1时,第一子域无效。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第一域为时间资源分配域。
在一种可能的实现方式中,第一信令还包括第二域,第二域用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。
在一种可能的实现方式中,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第二域为混合自动重传请求进程编号域。
在一种可能的实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第三域为新数据指示域,配置索引域和/或填充域的组合。
在一种可能的实现方式中,第一信令还包括第四域,第四域用于指示M个传输块所在的部分带宽的索引。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第四域为资源池索引域。
在一种可能的实现方式中,M值由无线资源控制信令RRC指示。
在一种可能的实现方式中,N值由无线控制信令RRC指示。
第六方面,本申请实施例提出一种通信装置,包括:
收发模块,用于接收来自第一通信装置的第一信令;
第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
在一种实现方式中,该通信装置为终端设备,通信装置还可以包括收发器。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片、芯片系统或电路通信装置还可以包括收发模块,收发模块可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,第一域包括:第一子域和第二子域;第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
在一种可能的实现方式中,当N等于1时,第一子域无效。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第一域为时间资源分配域。
在一种可能的实现方式中,第一信令还包括第二域,第二域用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。
在一种可能的实现方式中,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第二域为混合自动重传请求进程编号域。
在一种可能的实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第三域为新数据指示域,配置索引域和/或填充域的组合。
在一种可能的实现方式中,第一信令还包括第四域,第四域用于指示M个传输块所在的部分带宽的索引。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第四域为资源池索引域。
在一种可能的实现方式中,M值由无线资源控制信令RRC指示。
在一种可能的实现方式中,N值由无线控制信令RRC指示。
第七方面,本申请实施例提出一种通信装置,包括:
收发模块,用于接收来自第一通信装置的第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,至少一个第三通信装置使用第一资源向第一通信装置发送第一数据,第一数据为至少一个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
收发模块,还用于接收来自第一通信装置的第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识;
处理模块,用于根据偏差值确定第一资源的位置;
收发模块,还用于根据第一资源的位置向第一通信装置发送第一数据,第一资源的位置根据第一资源和偏差值确认。
在一种实现方式中,该通信装置为终端设备,处理模块可以是处理器。可选的,通信装置还可以包括收发器。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片、芯片系统或电路。处理模块可以是处理器、处理电路或逻辑电路等。可选的,通信装置还可以包括收发模块,收发模块可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,
收发模块,还用于接收第一数据;
处理模块,还用于解调第一数据;
收发模块,还用于当第三通信装置正确解调第一数据时,收发模块向第一通信装置发送第一数据。
在一种可能的实现方式中,第二信令为物理层下行控制信令DCI;第三信令为物理层下行控制信令DCI。
第八方面,本申请实施例提出一种通信装置,包括:
收发模块,用于向第三通信装置发送第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,第一资源用于第三通信装置向第一通信装置发送第一数据,第一数据为第三通信装置通过第二资源接收的数据,第一数据为至少一个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
收发模块,还用于广播第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
在一种实现方式中,该通信装置为网络设备,通信装置可以包括收发器。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片、芯片系统或电路。通信装置还包括收发模块,收发模块可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,收发模块,还用于在第一资源接收第一数据,第一数据来自第三通信装置。
在一种可能的实现方式中,第二信令和第三信令为下行控制信令DCI。
第九方面,本申请实施例提供了一种通信装置,该通信装置可以实现上述第一、第二、第三或第四方面所涉及方法中通信装置所执行的功能。该通信装置包括处理器、存储器以及与该处理器连接的接收器和与该处理器连接的发射器;该存储器用于存储程序代码,并将该程序代码传输给该处理器;该处理器用于根据该程序代码中的指令驱动该接收器和该发射器执行如上述第一、二、三、或四方面该的方法;接收器和发射器分别与该处理器连接,以执行上述各个方面的该的方法中通信装置的操作。具体地,发射器可以进行发送的 操作,接收器可以进行接收的操作。可选的,该接收器与发射器可以是射频电路,该射频电路通过天线实现接收与发送消息;该接收器与发射器还可以是通信接口,处理器与该通信接口通过总线连接,该处理器通过该通信接口实现接收或发送消息。
第十方面,本申请实施例提供一种通信装置,该通信装置可以包括网络设备或者芯片等实体,该通信装置包括:处理器,存储器;该存储器用于存储指令;该处理器用于执行该存储器中的该指令,使得该通信装置执行如前述第一方面或第二方面或第三方面或第四方面中任一项的方法。
第十一方面,本申请实施例提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,当该计算机执行指令被处理器执行时,该处理器执行如前述第一方面或第二方面或第三方面或第四方面中任意一种可能的实现方式。
第十二方面,本申请实施例提供一种存储一个或多个计算机执行指令的计算机程序产品(或称计算机程序),当该计算机执行指令被该处理器执行时,该处理器执行前述第一方面或第二方面或第三方面或第四方面中任意一种可能的实现方式。
第十三方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供了一种芯片,该芯片包括处理器和通信接口,该通信接口用于与所示芯片之外的模块通信,该处理器用于运行计算机程序或指令,使得安装该芯片的装置可以执行上述任一方面的方法。
其中,第三方面至第十四方面中任一种设计方式所带来的技术效果可参见上述第一方面、第二方面、第三方面或第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十五方面,提供一种通信系统,该通信系统包括上述方面的通信装置。
附图说明
图1示出了本申请实施例提供的一种发送侧行链路资源的方法所应用的通信系统示意图;
图2为本申请实施例中通信装置的硬件结构示意图;
图3为本申请实施例中动态调度模式的通信模式示意图;
图4为本申请实施例中涉及的一种协作通信流程示意图;
图5为本申请实施例提出的一种资源调度方法的流程示意图;
图6为本申请实施例提出的一种资源调度方法的流程示意图;
图7为本申请实施例中涉及的一种时隙间隔示意图;
图8为本申请实施例中涉及的一种时隙间隔示意图;
图9为本申请实施例中涉及的一种时隙间隔示意图;
图10为本申请实施例中涉及的一种时隙间隔示意图;
图11为本申请实施例中涉及的一种时隙间隔示意图;
图12为本申请实施例中涉及的一种时隙间隔示意图;
图13为本申请实施例中涉及的一种时隙间隔示意图;
图14为本申请实施例中涉及的一种时隙间隔示意图;
图15为本申请实施例中涉及的通信资源示意图;
图16为本申请实施例中HARQ进程标识的示意图;
图17为本申请实施例中通信装置的一种实施例示意图;
图18为本申请实施例中通信装置的一种实施例示意图;
图19为本申请实施例中通信装置的一种实施例示意图;
图20为本申请实施例中通信装置的一种实施例示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
首先,介绍本方案的一些应用场景。如图1所示,图1示出了本申请实施例提供的一种发送侧行链路资源的方法所应用的通信系统,该通信系统包括:一个或多个网络设备(比如图1所示的网络设备10)、一个或多个终端(比如图1所示的第一终端11,第二终端12、第三终端13)。
其中,第一终端11与网络设备10通信,第一终端11和第二终端12、第二终端12和第三终端13进行通信。当然,第二终端12和第三终端13也可以和网络设备10通信。
需要说明的是,图1所示的通信系统还可以包括:核心网。网络设备10可以与该核心网连接。核心网可以是4G核心网(例如,核心分组网演进(evolved packet core,EPC))或者5G核心网(5G core,5GC)、或未来的各种通信系统中的核心网,以及路侧单元(road side unit,RSU)。RSU还可以为该系统中的各个终端提供各类服务信息和数据网络的接入,例如,以终端为车辆为例,例如,RSU还可以为该系统中的各个终端提供不停车收费、车内娱乐等功能都极大的提高了交通智能化。
以核心网可以是4G核心网为例,网络设备10可以为4G系统中的演进型基站(evolved Node B,eNB或eNodeB)。第一终端11为可以与eNB进行信息传输的终端。eNB通过S1接口接入EPC网。
以核心网可以5G核心网为例,网络设备10可以为NR系统中的下一代节点B(the next generation node B,gNB),第一终端11为可以与gNB进行信息传输的终端。gNB通过NG接口接入5GC。
当然,网络设备10还可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)协议基站,或者可以为非3GPP协议基站。
其中,网络设备10与第一终端11之间具有的传输链路可以为用户网络通用接口(user to network interface-universal,Uu)链路。第一终端11与第二终端12之间具有的传输链路可以为侧行链路(side link)。Uu链路用于传输网络设备10向第一终端11发送的Uu业务(信息或数据)。
第一终端11与第二终端12可以在side link上彼此传输车用无线通信技术(Vehicle to everything,V2X)业务。第一终端11可以在Uu链路上向网络设备10传输上行(Uplink,UL)Uu业务,也可以在Uu链路上接收网络设备10发送的下行(Downlink,DL)Uu业务。
其中,第一终端11与第二终端12通过直连通信的接口可以为接口1。例如接口1可以称为PC5接口,采用车联网专用频段(如5.9GHz)。第一终端11与网络设备10之间的接口可以称为接口2(例如,Uu接口),采用蜂窝网频段(如1.8GHz)。PC5接口一般用于V2X,或者D2D等可以在设备间进行直联通信的场景。上述接口1、接口2的名称仅是个示例,本申请实施例对接口1、接口2的名称不作限定。
具体的,图1描述了一种协作通信场景,其中,第一终端11作为源用户设备(source UE,SUE),第二终端12和第三终端13作为协作用户设备(cooperation UE,CUE)。其中,阶段1为来自SUE的数据包通过侧行链路分发至CUE;阶段2为CUE和SUE进行协作发送。
在本申请实施例中,可以理解的是,上述网络设备10称为第一通信装置;上述第一终端11称为第二通信装置,第二终端12和/或第三终端13统称为第三通信装置。
本申请实施例中,第二通信装置与第三通信装置为终端设备,或终端设备中的芯片系统,或者集成有终端设备功能的芯片系统,或者配置于终端设备中的芯片或电路,或者集成有终端设备功能的芯片或电路等。其中,终端设备也可以称为用户设备(user equipment,UE)。本申请实施例中所涉及的终端设备作为一种具有无线收发功能的设备,可以经网络设备与一个或多个核心网(core network,CN)进行通信。终端设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置等。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA),可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设 备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(fifth generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对此并不限定。
第一通信装置为网络设备,或网络设备中的芯片系统,或者集成有网络设备功能的芯片系统,或者配置于网络设备中的芯片或电路,或者集成有网络设备功能的芯片或电路等。其中,网络设备可以看作是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过网络设备,进而可通过网络设备与运营商网络的业务节点连接。本申请实施例中的网络设备,是一种为终端设备提供无线通信功能的设备,也可以称为(无线)接入网((radio)access network,(R)AN)。网络设备包括但不限于:5G系统中的下一代基站节点(next generation node base station,gNB)、长期演进(long term evolution,LTE)中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心,或者未来网络中的网络设备等。采用不同无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同。
本申请提供的资源调度方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统以及未来通信发展中出现的新的通信系统等。本申请的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其他网络。
此外,本申请实施例还可以适用于面向未来的其他通信技术,例如6G等。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例中通信装置的硬件结构示意图。该通信装置可以是本申请实施例 中第一通信装置、第二通信装置或第三通信装置的一种可能的实现方式。如图2所示,通信装置至少包括处理器204,存储器203,和收发器202,存储器203进一步用于存储指令2031和数据2032。可选的,该通信装置还可以包括天线206,I/O(输入/输出,Input/Output)接口210和总线212。收发器202进一步包括发射器2021和接收器2022。此外,处理器204,收发器202,存储器203和I/O接口210通过总线212彼此通信连接,天线206与收发器202相连。
处理器204可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP),应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。该处理器204还可以是神经网络处理单元(neural processing unit,NPU)。此外,处理器204还可以是多个处理器的组合。特别的,在本申请实施例提供的技术方案中,处理器204可以用于执行,后续方法实施例中密钥标识的生成方法的相关步骤。处理器204可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器203中存储的指令2031来执行上述步骤和/或操作的处理器,处理器204在执行上述步骤和/或操作的过程中可能用到数据2032。
收发器202包括发射器2021和接收器2022,在一种可选的实现方式中,发射器2021用于通过天线206发送信号。接收器2022用于通过天线206之中的至少一根天线接收信号。特别的,在本申请实施例提供的技术方案中,发射器2021具体可以用于通过天线206之中的至少一根天线执行,例如,后续方法实施例中资源调度方法应用于第一通信装置、第二通信装置或第三通信装置时,第一通信装置、第二通信装置或第三通信装置中接收模块或发送模块所执行的操作。
在本申请实施例中,收发器202用于支持通信装置执行前述的接收功能和发送功能。将具有处理功能的处理器视为处理器204。接收器2022也可以称为输入口、接收电路等,发射器2021可以称为发射器或者发射电路等。
处理器204可用于执行该存储器203存储的指令,以控制收发器202接收消息和/或发送消息,完成本申请方法实施例中通信装置的功能。作为一种实现方式,收发器202的功能可以考虑通过收发电路或者收发的专用芯片实现。本申请实施例中,收发器202接收消息可以理解为收发器202输入消息,收发器202发送消息可以理解为收发器202输出消息。
存储器203可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),非易失性RAM(Non-Volatile RAM,NVRAM),可编程ROM(Programmable ROM,PROM),可擦除PROM(Erasable PROM,EPROM),电可擦除PROM(Electrically Erasable PROM,EEPROM),闪存,光存储器和寄存器等。存储器203具体用于存储指令2031和数据2032,处理器204可以通过读取并执行存储器203中存储的指令2031,来执行本申请方法实施例中所述的步骤和/或操作,在执行本申请方法实施例中操作和/或步骤的过程中可能用到数据2032。
可选的,该通信装置还可以包括I/O接口210,该I/O接口210用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
下面介绍本申请实施例的方法部分,首先介绍本申请实施例中涉及的一些概念:
(1)、侧行链路(side link,SL):
侧行链路技术是指一种允许终端设备与终端设备之间进行直接交互的技术,例如,车联网一种常见的侧行链路的应用场景,车辆对其他设备(vehicle to everything,V2X)通信是车联网中实现环境感知、信息交互的重要关键技术,这里的其他设备可以是其他车辆、基础设施、移动终端设备等。V2X通信可以看成是设备到设备(device to device,D2D)通信的一种应用场景。例如,车辆和车辆之间直接进行通信,实时地交互获取车辆之间的行车状态信息以及路面情况,从而更好地辅助车辆驾驶甚至实现自动驾驶。
需要说明的是,侧行链路还可以广泛地应用于其它通信技术或场景,例如:长期演进技术-车辆通信(LTE-V)、IOT网关场景、工业控制、时频监控及分析、VR全景等,此处不作限制。
在V2X通信中,通过侧行链路进行资源传输时,可以包括两种模式:
第一模式(Mode 1)是基于网络设备(例如基站)调度的资源调度方式,V2X中的终端设备(例如可以是车辆或者其他移动设备)根据网络设备的调度信息在被调度的时频资源上发送侧行链路通信信号。第一通信模式也可以分为两种调度方式,其中一种被称为动态调度(dynamic grant)方式。为了便于理解,请参阅图3,图3为本申请实施例中动态调度模式的通信模式示意图。网络设备通过PDCCH发送下行控制信令(Downlink Control Information,DCI),来指示终端设备进行侧行链路传输的频域和时域资源,例如:该下行控制信令采用DCI format 3_0。动态调度模式支持一次调度一个传输块,该传输块的传输可以由初传和若干个次盲重传(blind retransmission)组成,其中,初传指的是第一次传输(传输块),盲重传指的是网络设备在没有得到初传的解调反馈前进行的再次传输。盲重传的个数由高层信令指示,例如:高层信令“sl-MaxNumPerReserve”来指示。高层信令“sl-MaxNumPerReserve”的可选取值(也称为信令的大小)为{2,3},其中,取值为2时表示指示1个初传和1个盲重传,取值为3时表示指示1个初传和2个盲重传。另一种被称为预配置(configured grant)调度方式,网络设备通过RRC信令半静态配置周期性的用于侧行链路传输的频域和时域资源,半静态配置的资源调度方式具有节省信令开销的好处,适用于周期性业务的通信场景,和动态调度方式一样,预配置的资源调度方式也仅支持一次调度一个传输块。
第一模式中的动态调度方式下,在DCI format 3_0中,侧行链路传输的时域位置通过其中的时间资源分配(Time resource assignment)域来指示,该域在DCI中占用的比特数和高层信令“sl-MaxNumPerReserve”的大小有关,当高层信令“sl-MaxNumPerReserve”取值为2时,Time resource assignment域的大小为5比特(bits);当高层信令“sl-MaxNumPerReserve”取值为3时,Time resource assignment域占用9比特。
第一模式中动态调度方式中初传和盲重传所占用的时域资源的都是按照时隙为单位进行调度的,初传和盲重传之前的时隙间隔支持较为灵活的配置,假设N=sl-MaxNumPerReserve,初传和第一个盲重传之间的时隙间隔为t 1,第二个盲重传和第一个盲重传之间的时隙间隔为t 2,Time resource assignment域携带的值表示为“TRIV”,t 1和t 2 的获取方式如下伪代码所示:
Figure PCTCN2022083279-appb-000001
Figure PCTCN2022083279-appb-000002
其中当N=2,1≤t 1≤31;当N=3,1≤t 1≤30,t 1<t 2≤31。
第二模式(Mode 2)是V2X终端设备在网络设备或协议预先配置的V2X通信资源池内自主选择V2X通信所需的时频资源的资源调度方式。例如,V2X终端用户设备可以通过译码其他用户设备的侧行链路控制信息(side link control information,SCI)或者根据测量侧行链路信号能量来获取其他用户设备资源占用该资源池的情况,基于冲突避免的原则来选择未被占用的时频域资源。第二通信模式可以应用于没有网络覆盖的或者部分网络覆盖的场景下。
在V2X通信系统中,物理侧行控制信道(physical side link control channel,PSCCH)用于传输V2X通信中的控制信息,物理侧行共享信道(physical side link shared channel,PSSCH)用于传输V2X通信中的数据信息。
(2)、多个终端设备的协作通信:
请参阅图4,图4为本申请实施例中涉及的一种协作通信流程示意图。由于某些终端设备与网络设备的距离较远,受限于发射功率,不能与网络设备正常通信。距离网络设备较近的终端设备可以协助距离网络设备较远的终端设备进行中继传输,上述过程称为多个终端设备的协作通信。网络设备通过下行控制信令格式3(DCI format 3_0)配置侧行链路资源进行一个传输块(Transmit Block,TB)的数据传输。网络设备收到混合自动重传请求-确认应答(Hybrid Automatic Repeat request-acknowledgement,HARQ-ACK)后,再发送上行资源调度信令给终端设备(包括一个SUE和一个或多个CUE),指示它们协作发送该传输块的数据给网络设备。目前的下行控制信令DCI format 3_0只支持调度一个TB的侧行链路数据传输,在上行数据传输量大的情况下,会重复多次上述的过程,从而导致UE协作通信过程的时延加大;特别在非授权频段中,SUE在发送侧行链路信号前进行先听后 说(Listen Before Talk,LBT),若LBT失败会导致该网络设备调度的侧行链路资源不可用,更会加大终端设备协作通信的传输的时延。在多个终端设备的协作通信场景下,由于需要使用多条信令进行配置,造成时延较大的技术缺陷。
本申请实施例提出一种资源调度方法,第一通信装置向第二通信装置发送第一信令,该第一信令用于指示侧行链路传输中单次被调度的多个传输块之间,相邻的两个传输块之间的时隙间隔,该侧行链路传输是指第二通信装置与其协作的第三通信装置之间的通信。通过一个信令来指示多个TB的数据传输,以减少第一通信装置的下行控制信令的发送次数,降低整个协作传输的时延。
具体的,请参阅图5,图5为本申请实施例提出的一种资源调度方法的流程示意图。本申请实施例提出的一种资源调度方法包括:
501.第一通信装置向第二通信装置发送第一信令,第一信令中的第一域(field)用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,M为大于1的整数。
示例性地,第一信令除了包括第一域。第一信令还可以包括第二域,第三域和第四域中的一个或多个域,下面分别对各个域进行描述。可以理解的是,第一信令中可以只包括第一域。
第一域:
第一通信装置向第二通信装置发送第一信令,第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,该侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数,第三通信装置为第二通信装置的协作设备。
其中M值由无线资源控制(Radio Resource Control,RRC)信令携带,以对第二通信装置和/或第三通信装置进行配置。
示例性地,该M个传输块之间相邻的两个传输块之间的时隙间隔是相同的,例如:M=3为例,即第一信令指示传输块0,传输块1和传输块2之间的相等时隙间隔。传输块0与传输块1之间的时隙间隔T=3,传输块1与传输块2之间的时隙间隔T=3。
在一种可能的实现方式中,该第一信令为物理层下行控制信令DCI。本申请实施例中,以第一信令为DCI format 3_0为例进行说明,可以理解的是,该第一信令可以是当前DCI format 3_0进行重解读后的新DCI,该第一信令也可以是新设计的DCI,此处不作限制。
具体的,T的选取范围可以有多种情况,为了便于理解,下面结合附图进行描述。
(A)、T指的是前一个传输块的结束时刻,与后一个传输块的起始时刻之间的时隙间隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。需要说明的是,这里的“不同”可以理解为传输块携带的编码前的数据不同。请参阅图7,图7为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示3个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0,传输块1和传输块2。则T指的是传输块0的结束时刻,与传输块1的起始时刻之间的时隙间隔。
(B)、T指的是前一个传输块的起始时刻,与后一个传输块的起始时刻之间的时隙间 隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。需要说明的是,这里的“不同”可以理解为传输块携带的编码前的数据不同。请参阅图8,图8为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示3个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0,传输块1和传输块2。则T指的是传输块0的起始时刻,与传输块1的起始时刻之间的时隙间隔。
(C)、T指的是前一个传输块的起始时刻,与后一个传输块的结束时刻之间的时隙间隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。请参阅图9,图9为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示3个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0,传输块1和传输块2。则T指的是传输块0的起始时刻,与传输块1的结束时刻之间的时隙间隔。
(D)、T指的是前一个传输块的结束时刻,与后一个传输块的结束时刻之间的时隙间隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。请参阅图10,图10为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示3个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0,传输块1和传输块2。则T指的是传输块0的结束时刻,与传输块1的结束时刻之间的时隙间隔。
在一种可选的实现方式中,第一域包括:第一子域和第二子域;
第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
第一信令可以支持调度一个传输块,也可以支持调度多个传输块,提升了使用灵活性。
在一种可选的实现方式中,M和/或N值由无线资源控制(Radio Resource Control,RRC)信令向第二通信装置和/或第三通信装置进行配置。
具体的,T的选取范围,T1的选取范围可以有多种情况,为了便于理解,下面结合附图进行描述。需要说明的是,以下各个附图中示例性地说明的T的选取范围与T1的选取范围,可以相互组合,此处不作限制。
(AA)、T指的是前一个传输块的结束时刻,与后一个传输块的起始时刻之间的时隙间隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。T1指的是同一个传输块在N次传输中,前一次传输的结束时刻,与后一次传输的起始时刻之间的时隙间隔。请参阅图11,图11为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示两个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0和传输块1。则T指的是传输块0的结束时刻,与传输块1的起始时刻之间的时隙间隔。T1指的是同一个传输块(以传输块0为例)的N次传输中相邻的两次传输的时隙间隔,例如:传输块0的第n次传输的结束时刻,与传输块0的第n+1次传输的起始时刻之间的时隙间隔,其中,n为大于或等于1的整数。
(BB)、T指的是前一个传输块的起始时刻,与后一个传输块的起始时刻之间的时隙间 隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。T1指的是同一个传输块在N次传输中,前一次传输的起始时刻,与后一次传输的起始时刻之间的时隙间隔。请参阅图12,图12为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示两个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0和传输块1。则T指的是传输块0的起始时刻,与传输块1的起始时刻之间的时隙间隔。T1指的是同一个传输块(以传输块0为例)的N次传输中相邻的两次传输的时隙间隔,例如:传输块0的第n次传输的起始时刻,与传输块0的第n+1次传输的起始时刻之间的时隙间隔,其中,n为大于或等于1的整数。
(CC)、T指的是前一个传输块的起始时刻,与后一个传输块的结束时刻之间的时隙间隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。T1指的是同一个传输块在N次传输中,前一次传输的起始时刻,与后一次传输的结束时刻之间的时隙间隔。请参阅图13,图13为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示两个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0和传输块1。则T指的是传输块0的起始时刻,与传输块1的结束时刻之间的时隙间隔。T1指的是同一个传输块(以传输块0为例)的N次传输中相邻的两次传输的时隙间隔,例如:传输块0的第n次传输的起始时刻,与传输块0的第n+1次传输的结束时刻之间的时隙间隔,其中,n为大于或等于1的整数。
(DD)、T指的是前一个传输块的结束时刻,与后一个传输块的结束时刻之间的时隙间隔,该前一个传输块与该后一个传输块为不同的传输块,例如:传输块0与传输块1。T1指的是同一个传输块在N次传输中,前一次传输的结束时刻,与后一次传输的结束时刻之间的时隙间隔。请参阅图14,图14为本申请实施例中涉及的一种时隙间隔示意图。以第一信令为DCI format 3_0为例,该第一信令指示两个传输块之间相邻的两个传输块之间的时隙间隔,即传输块0和传输块1。则T指的是传输块0的结束时刻,与传输块1的结束时刻之间的时隙间隔。T1指的是同一个传输块(以传输块0为例)的N次传输中相邻的两次传输的时隙间隔,例如:传输块0的第n次传输的结束时刻,与传输块0的第n+1次传输的结束时刻之间的时隙间隔,其中,n为大于或等于1的整数。
在一种可能的实现方式中,当第一信令指示的同一传输块仅传输1次时,即N=1时,第一子域无效。因为第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,当该同一传输块仅传输1次,则不存在T1。即第一子域无效。需要说明的是,第一子域无效也可以称为第一子域保留(reserved)。
在一种可能的实现方式中,第一域为时间资源分配time resource assignment域,第一域在第一信令中占用的比特数为5或9比特。具体的,本申请实施例中对时间资源分配域进行重解读。需要说明的是,第一域还可以是第一信令中的其它域。本申请实施例中的“域”也可以称为“字段”,即“第一域”等于“第一字段”。
第二域:
在一种可能的实现方式中,第一信令还包括第二域,第二域用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。示例性的,M=3为例,侧行链路中待传输的传 输块有传输块0,传输块1和传输块2。假设传输块0对应的HARQ进程标识=0,传输块1对应的HARQ进程标识=1,传输块2对应的HARQ进程标识=2。第二域仅需指示M个传输块中对应的最小的HARQ进程标识,本实现方式中,第二域用于指示的HARQ进程标识为0,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。示例性的,传输块1对应的HARQ进程标识在第二域指示的HARQ进程标识(传输块0对应的HARQ进程标识)的基础上递增,即传输块1对应的HARQ进程标识为1;传输块2对应的HARQ进程标识在传输块1对应的HARQ进程标识的基础上递增,即传输块2对应的HARQ进程标识为2。
在一种可能的实现方式中,第二域为混合自动重传请求进程编号HARQ process number域,第二域在第一信令中占用的比特数为4比特。具体的,本申请实施例中对混合自动重传请求进程编号HARQ process number域进行重解读。通过有限的比特位,指示多个混合自动重传请求进程编号HARQ process number,节约了通信资源。
第三域:
在一种可能的实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。可选的,第三域中每一个比特位与一个HARQ进程标识按照递进关系一一对应。示例性的,M=3为例,侧行链路中待传输的传输块有传输块0,传输块1和传输块2。第三域中第一个比特位对应传输块0的HARQ进程标识,第二个比特位对应传输块1的HARQ进程标识,第三个比特位对应传输块2的HARQ进程标识。通过第一信令,可以分别指示多个传输块的初传或盲重传,提升了资源配置的灵活性。
在一种可能的实现方式中,第一信令为物理层下行控制信令DCI format 3_0,第三域为新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合。其中,新数据指示New data indicator域在第一信令中占用的比特数为1比特,配置索引Configuration index域在第一信令中占用的比特数为0比特或3比特。具体的,本申请实施例中对新数据指示New data indicator域,配置索引Configuration index域和/或填充Padding域的组合进行重解读。
第四域:
在一种可能的实现方式中,第一信令还包括第四域,第四域用于指示M个传输块占用的部分带宽(Bandwidth part,BWP)的索引。示例性的,一个网络设备配置了多个激活的BWP时,则可以通过第一信令指示网络设备在哪一个或多个BWP中传输数据。即通过第一信令调度网络设备的一个或多个BWP。
在一种可能的实现方式中,第四域为资源池索引Resource pool index域。具体的,本申请实施例中对资源池索引Resource pool index域进行重解读。该资源池索引Resource pool index域在第一信令中占用的比特数为Log 2I,其中,I由高层信令配置,原先指的是基站发送DCI format 3_0所在BWP中的基站配置的资源池的总个数,本申请实施例中I指的是基站发送DCI format 3_0所在载波(Component Carrier)的基站预配置的部分带宽BWP的总个数。
可选地,请参照图1,步骤501结束后,还可以包括步骤502-505。
502.第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源。
其中,第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源,为了便于理解,请参阅图15,图15为本申请实施例中涉及的通信资源示意图。第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为一个或多个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第三通信装置为第二通信装置的协作设备。
503.第一通信装置向第三通信装置发送第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值。
其中,第一通信装置广播第三信令,即向一个或多个第三通信装置发送第三信令。第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
具体的,第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源对应的HARQ进程标识(即第二HARQ进程标识)称为HARQ Process ID(UL);第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第二资源对应的HARQ进程标识(即第一HARQ进程标识)称为HARQ process ID(SL)。
第一HARQ进程标识与第二HARQ进程标识的偏差值在本申请实施例中称为P,即:
HARQ Process ID(UL)=HARQ Process ID(SL)+P。第三信令用于指示该P值,P的绝对值为大于或等于0,且小于K的整数,K为网络侧配置的最大HARQ进程个数。
为了便于理解,示例性的,请参阅图16,图16为本申请实施例中HARQ进程标识的示意图。第二资源上传输的传输块与第一HARQ进程标识之间的关系为:传输块0对应HARQ Process ID(UL)=0;传输块1对应HARQ Process ID(UL)=1;传输块2对应HARQ Process ID(UL)=2。第一资源上传输的传输块与第二HARQ进程标识之间的关系为:传输块0对应HARQ Process ID(SL)=P;传输块1对应HARQ Process ID(SL)=P+1;传输块2对应HARQ Process ID(SL)=P+2。
一种可能的实现方式中,第三信令为物理层下行控制信令DCI。例如,第三信令为新的DCI format 2_x,x>=7。
步骤503后执行步骤504。
在不同的实施方式中,步骤502与步骤503之间的执行顺序可以不同。换句话说,既可以先执行步骤502,再执行步骤503,此时执行完步骤503后执行步骤504;也可以先执行步骤503,再执行步骤502,此时执行完步骤502后执行步骤504。
504.第三通信装置根据该偏差值确定第一资源。
其中,当第一通信装置广播第三信令后,一个或多个第三通信装置接收第三信令,第 三通信装置根据该第三信令携带的偏差值确定第一资源的位置。该第一资源的位置指的是第一资源的时频位置。具体的,根据该第三信令携带的第一HARQ进程标识与第二HARQ进程标识的偏差值,以及自身(第三通信装置)通过第二资源接收的来自第二通信装置的第一数据,确定第一资源。即根据偏差值和第一HARQ进程标识,确定第二HARQ进程标识。
一种可能的实现方式中,第一资源包括多个第三通信装置使用的通信资源。首先,不同的第三通信装置根据第三信令确定第一资源中自身使用的部分通信资源。其次,各个第三通信装置使用对应的第一资源发送第一数据。
505.第三通信装置使用第一资源向第一通信装置发送第一数据。
其中,一个或多个第三通信装置接收来自第二通信装置的第一数据后,第三通信装置解调该第一数据。若第三通信装置正确解调该第一数据,第三通信装置可以通过第一资源向第一通信装置发送第一数据。通过上述方式,可以解决第一通信装置在上行调度时刻无法确定调度哪些第三通信装置(CUE),以避免由于部分CUE没有正确接收第一数据而导致上行资源浪费的问题。
本申请实施例中,第一通信装置通过一个信令(第一信令)指示多个传输块的数据传输,以降低第二通信装置(终端设备)的传输时延。
本申请实施例还提出了一种资源调度方法,请参阅图6,图6为本申请实施例提出的一种资源调度方法的流程示意图。本申请实施例提出的一种资源调度方法包括:
601.第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源。
本实施例中,第一通信装置向第三通信装置发送第二信令,第二信令用于调度第一资源,为了便于理解,请参阅图15,图15为本申请实施例中涉及的通信资源示意图。第一资源为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的通信资源,第一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为一个或多个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理层侧行共享信道(Physical sidelink shared channel,PSSCH)中的通信资源,第三通信装置为第二通信装置的协作设备。
在一种可能的实现方式中,该第二信令为物理层下行控制信令DCI。本申请实施例中,以第二信令为DCI format 3_0为例进行说明,可以理解的是,该第二信令可以是当前DCI format 3_0进行重解读后的新DCI,该第二信令也可以是新的DCI,此处不作限制。
602.第一通信装置向第三通信装置发送第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值。
其中,步骤602与前述步骤503类似,此处不作赘述。
603.第三通信装置根据该偏差值确定第一资源。
其中,步骤603与前述步骤504类似,此处不作赘述。
604.第三通信装置使用第一资源向第一通信装置发送第一数据。
本实施例其中,步骤604与前述步骤505类似,此处不作赘述。
本申请实施例中,通过上述方式,可以解决第一通信装置在上行调度时刻无法确定调度哪些第三通信装置(CUE),以避免由于部分CUE没有正确接收第一数据而导致上行资源 浪费的问题。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个收发模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面对本申请中的通信装置进行详细描述,请参阅图17,图17为本申请实施例中通信装置的一种实施例示意图。通信装置可以部署于网络设备中,通信装置包括:
收发模块1701,用于向第二通信装置发送第一信令;
第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
在一种实现方式中,该通信装置为网络设备,通信装置还可以包括收发器。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片、芯片系统或电路通信装置还可以包括收发模块1701,收发模块1701可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,
收发模块1701,还用于向第三通信装置发送第二信令,
第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,第一资源用于至少一个第三通信装置向第一通信装置发送第一数据,第一数据为至少一个第三通信装置通过第二资源接收的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
收发模块1701,还用于广播第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
在一种可能的实现方式中,
收发模块1701,还用于在第一资源接收第一数据,第一数据来自至少一个第三通信装置。
在一种可能的实现方式中,第二信令为物理层下行控制信令DCI;第三信令为物理层下行控制信令DCI。
在一种可能的实现方式中,第一域包括:第一子域和第二子域;第一子域用于指示同 一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
在一种可能的实现方式中,当N等于1时,第一子域无效。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第一域为时间资源分配域。
在一种可能的实现方式中,第一信令还包括第二域,第二域用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。
在一种可能的实现方式中,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第二域为混合自动重传请求进程编号域。
在一种可能的实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第三域为新数据指示域,配置索引域和/或填充域的组合。
在一种可能的实现方式中,第一信令还包括第四域,第四域用于指示M个传输块所在的部分带宽的索引。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第四域为资源池索引域。
在一种可能的实现方式中,M值由无线资源控制信令RRC指示。
在一种可能的实现方式中,N值由无线控制信令RRC指示。
请参阅图18,图18为本申请实施例中通信装置的又一种实施例示意图。通信装置可以部署于终端设备中,通信装置包括:
收发模块1801,用于接收来自第一通信装置的第一信令;
第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,侧行链路用于第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
在一种实现方式中,该通信装置为终端设备,通信装置还可以包括收发器。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片、芯片系统或电路通信装置还可以包括收发模块1801,收发模块1801可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,第一域包括:第一子域和第二子域;第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;第二子域用于指示M个传输块之间的时隙间隔T,其中,T大于或等于0。
在一种可能的实现方式中,当N等于1时,第一子域无效。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第一域为时间 资源分配域。
在一种可能的实现方式中,第一信令还包括第二域,第二域用于指示M个传输块中的对应最小混合自动重传请求HARQ进程标识。
在一种可能的实现方式中,M个传输块中最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在第二域指示的HARQ进程标识的基础上依次递增。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第二域为混合自动重传请求进程编号域。
在一种可能的实现方式中,第一信令还包括第三域,第三域用于指示M个传输块的初传标识或重传标识,第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第三域为新数据指示域,配置索引域和/或填充域的组合。
在一种可能的实现方式中,第一信令还包括第四域,第四域用于指示M个传输块所在的部分带宽的索引。
在一种可能的实现方式中,第一信令为下行控制信令DCI format 3_0,第四域为资源池索引域。
在一种可能的实现方式中,M值由无线资源控制信令RRC指示。
在一种可能的实现方式中,N值由无线控制信令RRC指示。
请参阅图19,图19为本申请实施例中通信装置的又一种实施例示意图。通信装置可以部署于终端设备中,通信装置包括:
收发模块1901,用于接收来自第一通信装置的第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,至少一个第三通信装置使用第一资源向第一通信装置发送第一数据,第一数据为至少一个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
收发模块1901,还用于接收来自第一通信装置的第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识;
处理模块1902,用于根据偏差值确定第一资源的位置;
收发模块1901,还用于根据第一资源的位置向第一通信装置发送第一数据,第一资源的位置根据第一资源和偏差值确认。
在一种实现方式中,该通信装置为终端设备,处理模块1902可以是处理器。可选的,通信装置还可以包括收发器。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片、芯片系统或电路。处理模块1902可以是处理器、处理电路或逻辑电路等。可选的,通信装置还可以包括收发模块1901,收发模块1901可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,
收发模块1901,还用于接收第一数据;
处理模块1902,还用于解调第一数据;
收发模块1901,还用于当第三通信装置正确解调第一数据时,收发模块1901向第一通信装置发送第一数据。
在一种可能的实现方式中,第二信令为物理层下行控制信令DCI;第三信令为物理层下行控制信令DCI。
请参阅图20,图20为本申请实施例中通信装置的又一种实施例示意图。通信装置可以部署于网络设备中,通信装置包括:
收发模块2001,用于向第三通信装置发送第二信令,第二信令用于调度第一资源,第一资源为物理上行共享信道PUSCH中的通信资源,第一资源用于第三通信装置向第一通信装置发送第一数据,第一数据为第三通信装置通过第二资源接收的数据,第一数据为至少一个第三通信装置通过第二资源接收的来自第二通信装置的数据,第二资源为物理侧行共享信道PSSCH中的通信资源;
收发模块2001,还用于广播第三信令,第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,第一HARQ进程标识为第二资源对应的HARQ进程标识,第二HARQ进程标识为第一信令调度的第一资源对应的HARQ进程标识。
在一种实现方式中,该通信装置为网络设备,通信装置可以包括收发器。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片、芯片系统或电路。通信装置还包括收发模块2001,收发模块2001可以是该芯片、芯片系统或电路上的输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,收发模块2001,还用于在第一资源接收第一数据,第一数据来自第三通信装置。
在一种可能的实现方式中,第二信令和第三信令为下行控制信令DCI。
上述实施例中的通信装置,可以是网络设备,也可以是应用于网络设备中的芯片或者其他可实现上述网络设备功能的组合器件、部件等。当通信装置是网络设备时,接收模块与发送模块可以是收发器,该收发器可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当通信装置是具有上述网络设备功能的部件时,接收模块与发送模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,接收模块可以是芯片系统的输入端口,发送模块可以是芯片系统的输出接口、处理模块可以是芯片系统的处理器,例如:中央处理器(central processing unit,CPU)。
上述通信装置的具体实现方式以及带来的有益效果,均可以参考图5-图16对应的各个方法实施例中的叙述,此处不再一一赘述。
本申请实施例还提供了一种处理装置,处理装置包括处理器和接口;该处理器,用于执行上述任一方法实施例的资源调度方法。
应理解,上述处理装置可以是一个芯片,该处理器可以通过硬件实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现 时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
其中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括ASIC(application-specific integrated circuit,专用集成电路),或者PLD(programmable logic device,可编程逻辑器件);其中,PLD又可包括FPGA(field programmable gate array,现场可编程门阵列)、CPLD(complex programmable logic device,复杂可编程逻辑器件)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为SoPC(system on a programmable chip,可编程片上系统)。
本申请还提供一种通信系统,其包括前述一种或多种通信装置。
本申请实施例还提供的一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机控制通信装置执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供的一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括处理器,处理器用于调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中, 如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、通信装置、计算设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、通信装置、计算设备或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的通信装置、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元 上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者通信装置等)执行本申请各个实施例方法的全部或部分步骤。

Claims (39)

  1. 一种资源调度方法,其特征在于,所述方法应用于非授权频段,包括:
    第一通信装置向第二通信装置发送第一信令;
    所述第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,所述侧行链路用于所述第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第三通信装置发送第二信令,
    所述第二信令用于调度第一资源,所述第一资源为物理上行共享信道PUSCH中的通信资源,所述第一资源用于至少一个所述第三通信装置向所述第一通信装置发送第一数据,所述第一数据为所述至少一个第三通信装置通过第二资源接收的数据,所述第二资源为物理侧行共享信道PSSCH中的通信资源;
    所述第一通信装置广播第三信令,所述第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,所述第一HARQ进程标识为所述第二资源对应的HARQ进程标识,所述第二HARQ进程标识为所述第一信令调度的所述第一资源对应的HARQ进程标识。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置在所述第一资源接收所述第一数据,所述第一数据来自至少一个所述第三通信装置。
  4. 根据权利要求2-3中任一项所述的方法,其特征在于,
    所述第二信令为物理层下行控制信令DCI;
    所述第三信令为物理层下行控制信令DCI。
  5. 一种资源调度方法,其特征在于,所述方法应用于非授权频段,包括:
    第二通信装置接收来自第一通信装置的第一信令;
    所述第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,所述侧行链路用于所述第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一域包括:第一子域和第二子域;
    所述第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;
    所述第二子域用于指示所述M个传输块之间的时隙间隔T,其中,T大于或等于0。
  7. 根据权利要求6所述的方法,其特征在于,当N等于1时,所述第一子域无效。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一信令还包括第二域,所述第二域用于指示所述M个传输块中的对应最小混合自动重传请求HARQ进程标识。
  9. 根据权利要求8所述的方法,其特征在于,所述M个传输块中所述最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在所述第二域指示的HARQ进程标 识的基础上依次递增。
  10. 根据权利要求8-9中任一项所述的方法,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第二域为混合自动重传请求进程编号域。
  11. 根据权利要求1-10所述的方法,其特征在于,所述第一信令还包括第三域,所述第三域用于指示所述M个传输块的初传标识或重传标识,所述第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第三域为新数据指示域,配置索引域和/或填充域的组合。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述第一信令还包括第四域,所述第四域用于指示所述M个传输块所在的部分带宽的索引。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第四域为资源池索引域。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述M值由无线资源控制信令RRC指示。
  16. 根据权利要求6-15中任一项所述的方法,其特征在于,所述N值由无线控制信令RRC指示。
  17. 一种通信装置,其特征在于,包括:
    收发模块,用于向第二通信装置发送第一信令;
    所述第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,所述侧行链路用于所述第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述收发模块,还用于向所述第三通信装置发送第二信令,
    所述第二信令用于调度第一资源,所述第一资源为物理上行共享信道PUSCH中的通信资源,所述第一资源用于至少一个所述第三通信装置向所述第一通信装置发送第一数据,所述第一数据为所述至少一个第三通信装置通过第二资源接收的数据,所述第二资源为物理侧行共享信道PSSCH中的通信资源;
    所述收发模块,还用于广播第三信令,所述第三信令用于指示第一混合自动重传请求HARQ进程标识与第二HARQ进程标识的偏差值,其中,所述第一HARQ进程标识为所述第二资源对应的HARQ进程标识,所述第二HARQ进程标识为所述第一信令调度的所述第一资源对应的HARQ进程标识。
  19. 根据权利要求18所述的通信装置,其特征在于,
    所述收发模块,还用于在所述第一资源接收所述第一数据,所述第一数据来自至少一个所述第三通信装置。
  20. 根据权利要求18-19中任一项所述的通信装置,其特征在于,
    所述第二信令为物理层下行控制信令DCI;
    所述第三信令为物理层下行控制信令DCI。
  21. 一种通信装置,其特征在于,包括:
    收发模块用于接收来自第一通信装置的第一信令;
    所述第一信令中的第一域用于指示侧行链路传输中M个传输块TB中相邻的两个传输块之间的时隙间隔T,其中,所述侧行链路用于所述第二通信装置与至少一个第三通信装置之间的通信,T大于或等于0,M为大于1的整数。
  22. 根据权利要求17-21中任一项所述的通信装置,其特征在于,所述第一域包括:第一子域和第二子域;
    所述第一子域用于指示同一传输块的N次传输中相邻的两次传输的时隙间隔T1,其中,T1大于或等于0,N为大于0的整数;
    所述第二子域用于指示所述M个传输块之间的时隙间隔T,其中,T大于或等于0。
  23. 根据权利要求22所述的通信装置,其特征在于,当N等于1时,所述第一子域无效。
  24. 根据权利要求22-23中任一项所述的通信装置,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第一域为时间资源分配域。
  25. 根据权利要求17-24中任一项所述的通信装置,其特征在于,所述第一信令还包括第二域,所述第二域用于指示所述M个传输块中的对应最小混合自动重传请求HARQ进程标识。
  26. 根据权利要求25所述的通信装置,其特征在于,所述M个传输块中所述最小HARQ进程标识对应的传输块之外其余传输块对应的HARQ进程标识,在所述第二域指示的HARQ进程标识的基础上依次递增。
  27. 根据权利要求25-26中任一项所述的通信装置,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第二域为混合自动重传请求进程编号域。
  28. 根据权利要求17-27所述的通信装置,其特征在于,所述第一信令还包括第三域,所述第三域用于指示所述M个传输块的初传标识或重传标识,所述第三域中每一个比特位与一个混合自动重传请求HARQ进程标识分别对应。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第三域为新数据指示域,配置索引域和/或填充域的组合。
  30. 根据权利要求17-29中任一项所述的通信装置,其特征在于,所述第一信令还包括第四域,所述第四域用于指示所述M个传输块所在的部分带宽的索引。
  31. 根据权利要求30所述的通信装置,其特征在于,所述第一信令为下行控制信令DCI format 3_0,所述第四域为资源池索引域。
  32. 根据权利要求17-31中任一项所述的通信装置,其特征在于,所述M值由无线资源控制信令RRC指示。
  33. 根据权利要求22-32中任一项所述的通信装置,其特征在于,所述N值由无线控制信令RRC指示。
  34. 根据权利要求17-33中任一项所述的通信装置,其特征在于,所述收发模块为收发器。
  35. 一种通信装置,其特征在于,所述通信装置包括:至少一个处理器;
    所述至少一个处理器,用于执行存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-16中任一项所述的方法。
  36. 一种通信装置,其特征在于,所述通信装置包括:至少一个处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述至少一个处理器,用于执行存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-16中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质具有程序指令,当所述程序指令被直接或者间接执行时,使得如权利要求1-16中任一所述的方法被实现。
  38. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-16中任一项所述的方法。
  39. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,所述处理器用于执行存储器中存储的计算机程序或指令,当所述计算机程序或所述指令在所述至少一个处理器中执行时,使得如权利要求1-16中任一所述的方法被实现。
PCT/CN2022/083279 2021-03-31 2022-03-28 一种资源调度方法以及相关装置 WO2022206655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352343.4A CN115150770A (zh) 2021-03-31 2021-03-31 一种资源调度方法以及相关装置
CN202110352343.4 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022206655A1 true WO2022206655A1 (zh) 2022-10-06

Family

ID=83404865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083279 WO2022206655A1 (zh) 2021-03-31 2022-03-28 一种资源调度方法以及相关装置

Country Status (2)

Country Link
CN (1) CN115150770A (zh)
WO (1) WO2022206655A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568148A (zh) * 2008-04-24 2009-10-28 中兴通讯股份有限公司 为ue分配连续授权资源及在该资源上发送数据的方法
WO2020024114A1 (zh) * 2018-07-31 2020-02-06 北京小米移动软件有限公司 传输块处理方法、装置、电子设备和计算机可读存储介质
CN110830184A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
TW202110231A (zh) * 2019-08-16 2021-03-01 美商高通公司 用於經由單個下行鏈路控制資訊訊息排程的多個傳輸區塊的附隨和等時線決定

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568148A (zh) * 2008-04-24 2009-10-28 中兴通讯股份有限公司 为ue分配连续授权资源及在该资源上发送数据的方法
WO2020024114A1 (zh) * 2018-07-31 2020-02-06 北京小米移动软件有限公司 传输块处理方法、装置、电子设备和计算机可读存储介质
CN110830184A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
TW202110231A (zh) * 2019-08-16 2021-03-01 美商高通公司 用於經由單個下行鏈路控制資訊訊息排程的多個傳輸區塊的附隨和等時線決定

Also Published As

Publication number Publication date
CN115150770A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US10057747B2 (en) 5G MB connectivity acknowledgement aggregation
JP2022111242A (ja) 通信装置、通信方法および集積回路
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN115943587A (zh) 在非许可侧行链路上的覆盖内网络控制的卸载
CN113890706B (zh) 一种信息发送、接收方法及装置
US11985720B2 (en) Synchronizing multi-link communications in a wireless local area network (WLAN)
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
US20180092117A1 (en) Triggering scheme for waking up and scheduling uplink transmission of iot devices
WO2015190779A1 (ko) 무선랜 시스템에서 상향링크 다중 사용자 전송 방법 및 이를 위한 장치
CN114902590B (zh) 用于多链路块确收(ba)的方法和装置
KR20160079837A (ko) 혼합 포맷을 사용하는 무선 통신을 위한 방법들 및 장치
CN112075116B (zh) 针对非对称的全双工无线局域网(wlan)的全双工时机发现和传输
CN110166179A (zh) 指示方法,网络设备及用户设备
US20180124778A1 (en) Back-to-back uplink transmissions from multiple stations
CN116671243A (zh) 侧链路中继通信的方法和装置
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
US20230209518A1 (en) Communication method and apparatus
WO2022206655A1 (zh) 一种资源调度方法以及相关装置
TW202320566A (zh) 受限目標喚醒時間(r-twt)服務時段的協調式排程及訊號傳遞
WO2021235792A1 (ko) 무선 통신 시스템에서 sidelink harq 재전송 절차를 처리하기 위한 장치 및 방법
WO2021056366A1 (zh) 信息传输方法及装置
KR20200050820A (ko) Nr v2x 시스템에서 harq 피드백 송수신 방법 및 그 장치
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
CN115580380B (zh) 无线通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778837

Country of ref document: EP

Kind code of ref document: A1