WO2022206613A1 - 一种相位校正方法和通信装置 - Google Patents

一种相位校正方法和通信装置 Download PDF

Info

Publication number
WO2022206613A1
WO2022206613A1 PCT/CN2022/083113 CN2022083113W WO2022206613A1 WO 2022206613 A1 WO2022206613 A1 WO 2022206613A1 CN 2022083113 W CN2022083113 W CN 2022083113W WO 2022206613 A1 WO2022206613 A1 WO 2022206613A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase error
channel
terminal
channels
signal
Prior art date
Application number
PCT/CN2022/083113
Other languages
English (en)
French (fr)
Inventor
黄昱淋
徐明涛
胥恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237031248A priority Critical patent/KR20230145169A/ko
Priority to JP2023559108A priority patent/JP2024511505A/ja
Priority to EP22778795.9A priority patent/EP4287523A1/en
Publication of WO2022206613A1 publication Critical patent/WO2022206613A1/zh
Priority to US18/452,583 priority patent/US20230396296A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • H04B17/22Monitoring; Testing of receivers for calibration; for correcting measurements for calibration of the receiver components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present application relates to the field of communication, and more particularly, to a phase correction method and a communication device.
  • the indoor sub-system can effectively improve the communication quality in the building, improve the indoor signal coverage, and provide users with high-quality indoor communication.
  • LTE long term evolution
  • 5G 5th generation
  • DAS distributed antenna system
  • the present application provides a phase correction method and a communication device, which can realize phase correction between multiple channels before combining by means of correction, thereby helping to enhance the transmit power of the room division system, thereby enhancing the coverage of the room division system.
  • the present application provides a phase correction method, the method includes: a network device sends a first signal to a terminal, the first signal is combined after passing through N channels of the network device and sent to a terminal, N is an integer greater than 1; the network device receives first indication information from the terminal, where the first indication information is used to indicate the first precoding matrix determined according to the first signal; the network The device determines, according to the first precoding matrix, a first phase error between the N channels; the network device determines, according to the first phase error, the phases of some or all of the N channels. Correction.
  • the channel here may be a radio frequency channel, which may be located in a radio frequency device of a network device, for example, located in a remote radio unit (remote radio unit, RRU).
  • RRU remote radio unit
  • N channels are channels that need to be phase-corrected.
  • N channels are channel 1-channel 4, channel 1 is used as a reference, the phase error of channel 2 relative to channel 1 is 0, the phase error of channel 3 relative to channel 1 is B, and the phase error of channel 4 relative to channel 1 is C , the phase of channel 3 and channel 4 of the 4 channels needs to be corrected at this time.
  • the first phase error between the N channels may include a phase error of one of the N channels relative to another of the N channels.
  • the phase of one channel may be selected as a reference
  • the first phase error between the N channels may be the phase error of the N ⁇ 1 channels relative to the reference channel.
  • the N channels are channel 1 to channel 4, channel 1 is used as a reference
  • the first phase error between the four channels may include the phase error of channel 2 relative to channel 1, the phase error of channel 3 relative to channel 1, and the phase error of channel 4 Relative to the phase error of channel 1, or channel 3 as a reference
  • the first phase error between the four channels includes the phase error of channel 1 relative to channel 3, the phase error of channel 2 relative to channel 3, and the phase error of channel 4 relative to channel 3 phase error, etc.
  • the phase of a certain channel may not be selected as a unified reference, and the first phase error between N channels may be the phase error of N ⁇ 1 channels relative to different channels.
  • the N channels are channel 1 to channel 4, and the first phase error between the four channels may include the phase error of channel 2 relative to channel 1, the phase error of channel 3 relative to channel 2, and the phase error of channel 4 relative to channel 3. phase error.
  • the first phase error between the N channels may include a phase error of some channels relative to one channel, and a phase error of some channels relative to another channel.
  • the N channels are channel 1 to channel 4, and the first phase error between the four channels includes the phase error of channel 2 relative to channel 1, the phase error of channel 3 relative to channel 1, and the phase error of channel 4 relative to channel 2 error etc.
  • a phase value may also be selected as a reference, and the phase value may not be the phase of the N channels.
  • the first phase error between the N channels may include that the N channels are respectively relative to the The phase error of the referenced phase value.
  • the N channels are channel 1-channel 4, and the phase value used as a reference may be R, and the phases of R and the four channels are different.
  • the first phase error between the four channels may include channel 1 The phase error relative to R, the phase error of channel 2 relative to R, the phase error of channel 3 relative to R, and the phase error of channel 4 relative to R, etc.
  • the first phase error between the N channels can directly or indirectly determine the phase error between any two channels between the N channels.
  • the network device compensates the phases of some or all of the N channels according to the first phase error, so that the phases of the N channels are consistent, so as to realize the compensation of some or all of the N channels.
  • phase correction For example, N channels are channel 1-channel 4, channel 1 is used as a reference, the phase of channel 1 is A, the phase error of channel 2 relative to channel 1 is 0, the phase error of channel 3 relative to channel 1 is B, and the phase error of channel 4 relative to channel 1 is B. If the phase error of channel 1 is C, the network device can compensate the phase of channel 3 by B and the phase of channel 4 by C, so that the phases of the four channels are all A.
  • the network device may directly correct the phases of some or all of the N channels according to the first phase error, or may perform further processing on the first phase error, for example, obtain according to the first phase error other phase errors, and then the phases of some or all of the N channels are corrected according to the other phase errors. That is, the phase value used by the network device to perform the phase correction is related to the first phase error.
  • using the terminal air interface feedback to realize the soft correction of the phases of the multiple channels to be combined of the network equipment can ensure that the phases of the multiple channels to be combined are consistent, so that the multiple channels can be combined by combining multiple channels. way to increase the transmit power, thereby enhancing the coverage of the indoor sub-system. Moreover, compared to directly increasing the transmit power or performing correction network modifications, it helps to reduce costs.
  • the number of ports of the first precoding matrix is M, and M is an integer greater than or equal to N.
  • the terminal can feed back a precoding matrix with higher precision, thereby helping to improve the precision of phase estimation.
  • the rank of the first precoding matrix is 1.
  • the terminal When the rank is 1, it is helpful for the terminal to determine the best signal flow, thereby improving the accuracy of signal estimation, so as to select a more matched precoding matrix and improve the accuracy of phase estimation.
  • the method further includes: the network device sends second indication information to the terminal, the second indication information It is used to indicate that the terminal feeds back a precoding matrix with a rank of 1 and/or indicates that the terminal feeds back a precoding matrix with the number of ports being M.
  • the method further includes: the network device sends a second signal to the terminal through the N channels, the first After passing through the N channels, the two signals are combined and sent to the terminal; the network device receives third indication information from the terminal, where the third indication information is used to indicate the signal determined according to the second signal. a second precoding matrix; the network device determines a second phase error between the N channels according to the second precoding matrix; the network device determines a second phase error between the N channels according to the first phase error Correcting the phases of some or all of the channels includes: the network device correcting the phases of some or all of the N channels according to the first phase error and the second phase error.
  • the first signal is weighted by a first weighting matrix before passing through the N channels, and the first signal is weighted by a first weighting matrix.
  • a weighting matrix includes weighting values corresponding to the N channels respectively;
  • the second signal is weighted by a second weighting matrix before passing through the N channels, and the second weighting matrix includes the N channels and the weighted values of some channels in the N channels in the second weighting matrix are phase rotated by a preset angle relative to the weighted values of the partial channels in the first weighting matrix.
  • the N is 2, the N channels include a first channel and a second channel, and the first weighting matrix is the same as the weighted value of the first channel in the second weighting matrix, the weighted value of the second channel in the second weighting matrix is phased by a preset angle with respect to the weighted value of the first channel in the first weighting matrix rotate.
  • the method further includes: if the first phase error is equal to the second phase error, the network device determines the phase to be corrected error, the phase error to be corrected is the difference between the first phase error and one-half of the preset angle; the network device, according to the first phase error and the second phase error, corrects the Correcting the phases of some or all of the N channels includes: the network device correcting the phases of the first channel and/or the second channel according to the phase error to be corrected.
  • the method further includes: if the first phase error is equal to the difference between the second phase error and twice the preset angle and, the network device determines the phase error to be corrected, and the phase error to be corrected is the sum of the first phase error and the half of the preset angle; the network device determines the phase error according to the first phase error and the second phase error, correcting the phases of some or all of the N channels includes: the network device, according to the phase error to be corrected, corrects the first channel and/or the first channel and/or the first channel The phase of the two channels is corrected.
  • the preset angle is related to the number of horizontal-dimensional beams and a beam encryption multiple.
  • the preset angle is related to the horizontal dimension beam number N1 and the beam encryption multiple O1.
  • N1 is 4
  • O1 is 4
  • the first signal is combined and subjected to power amplification by a power amplifier, it is transmitted to the terminal by the antenna .
  • the first signal is a channel state information-reference signal (channel state information-reference signal, CSI-RS).
  • CSI-RS channel state information-reference signal
  • the present application provides a phase correction method, the method comprising: a terminal receiving a first signal from a network device, the first signal being combined into the network device after passing through N channels of the network device The terminal receives, N is an integer greater than 1; the terminal determines a first precoding matrix according to the first signal, and the first precoding matrix is used to correct the phase of some or all of the N channels ; the terminal sends first indication information to the network device, where the first indication information is used to indicate the first precoding matrix.
  • the air interface feedback of the terminal can be used to realize the soft correction of the phases between multiple channels before combining. Moreover, compared to directly increasing the transmit power or performing correction network modifications, it helps to reduce costs.
  • the number of ports of the first precoding matrix is M, and M is an integer greater than or equal to N.
  • the terminal can feed back a precoding matrix with higher precision, thereby helping to improve the precision of phase estimation.
  • the rank of the first precoding matrix is 1.
  • the terminal When the rank is 1, it is helpful for the terminal to determine the best signal flow, thereby improving the accuracy of signal estimation, so as to select a more matched precoding matrix and improve the accuracy of phase estimation.
  • the method further includes: the terminal receiving second indication information from the network device, the second indication The information is used to indicate that the terminal feeds back a precoding matrix with a rank of 1 and/or indicates that the terminal feeds back a precoding matrix with the number of ports being M.
  • the present application provides a communication device, the device includes: a transceiver unit and a processing unit; the transceiver unit is configured to send a first signal to a terminal, where the first signal passes through the communication device.
  • the N channels are combined and then sent to the terminal, where N is an integer greater than 1;
  • the transceiver unit is further configured to receive first indication information from the terminal, where the first indication information is used to indicate that according to the a first precoding matrix determined by the first signal;
  • the processing unit is configured to determine the first phase error between the N channels according to the first precoding matrix; the processing unit is further configured to determine the first phase error between the N channels according to the first precoding matrix
  • the phases of some or all of the N channels are corrected.
  • the number of ports of the first precoding matrix is M, and M is an integer greater than or equal to N.
  • the transceiver unit is further configured to send second indication information to the terminal, where the second indication information is used for Indicates that the terminal feeds back a precoding matrix whose number of ports is M.
  • the rank of the first precoding matrix is 1.
  • the transceiver unit is further configured to send second indication information to the terminal, where the second indication information is used for Instruct the terminal to feed back a precoding matrix of rank 1.
  • the transceiver unit is further configured to send a second signal to the terminal through the N channels, where the second signal After passing through the N channels, it is combined and sent to the terminal; the transceiver unit is further configured to receive third indication information from the terminal, where the third indication information is used to indicate that the signal is based on the second signal the determined second precoding matrix; the processing unit is further configured to determine the second phase error between the N channels according to the second precoding matrix; the processing unit is specifically configured to determine the second phase error between the N channels according to the second precoding matrix; The first phase error and the second phase error correct the phases of some or all of the N channels.
  • the first signal is weighted by a first weighting matrix before passing through the N channels, and the first signal is weighted by a first weighting matrix.
  • a weighting matrix includes weighting values corresponding to the N channels respectively;
  • the second signal is weighted by a second weighting matrix before passing through the N channels, and the second weighting matrix includes the N channels and the weighted values of some channels in the N channels in the second weighting matrix are phase rotated by a preset angle relative to the weighted values of the partial channels in the first weighting matrix .
  • the N is 2, the N channels include the first channel and the second channel, and the The weighting value of the first channel in the first weighting matrix and the second weighting matrix are the same, and the weighting value of the second channel in the second weighting matrix is pre-prepared with respect to the weighting value of the first channel in the first weighting matrix. Set the phase rotation of the angle.
  • the processing unit is further configured to determine the phase error to be corrected if the first phase error is equal to the second phase error,
  • the phase error to be corrected is the difference between the first phase error and one-half of the preset angle; the processing unit is specifically configured to, according to the phase error to be corrected, perform a The phase of the channel and/or the second channel is corrected.
  • the processing unit is further configured to, if the first phase error is equal to the second phase error and twice the preset The sum of the angles is used to determine the phase error to be corrected, and the phase error to be corrected is the sum of the first phase error and one-half of the preset angle; the processing unit is specifically configured to For the phase error to be corrected, the phase of the first channel and/or the second channel is corrected.
  • the preset angle is related to the number of horizontal-dimensional beams and the beam encryption multiple.
  • the first signal is combined by a power amplifier for power amplification, and then transmitted by the antenna to the terminal .
  • the first signal is a channel state information reference signal CSI-RS.
  • the apparatus includes means for performing the method in the first aspect or any possible implementation of the first aspect described above.
  • the device is a communication device corresponding to the first aspect, and can also achieve the beneficial effects brought by the first aspect or any possible implementation manner of the first aspect.
  • the present application provides a communication apparatus, the apparatus includes: a transceiver unit and a processing unit; the transceiver unit is configured to receive a first signal from a network device, and the first signal passes through the network device The N channels of the N channels are combined and received by the terminal, where N is an integer greater than 1; the processing unit is configured to determine a first precoding matrix according to the first signal, and the first precoding matrix uses for correcting the phases of some or all of the N channels; the transceiver unit is further configured to send first indication information to the network device, where the first indication information is used to indicate the first encoding matrix.
  • the number of ports of the first precoding matrix is M, and M is an integer greater than or equal to N.
  • the transceiver unit is further configured to receive second indication information from the network device, the second indication information It is used to indicate that the terminal feeds back a precoding matrix whose number of ports is M.
  • the rank of the first precoding matrix is 1.
  • the transceiver unit is further configured to receive second indication information from the network device, the second indication information It is used to instruct the terminal to feed back a precoding matrix with a rank of 1.
  • the apparatus comprises means for performing the method of the second aspect or any possible implementation of the second aspect above.
  • the device is a communication device corresponding to the second aspect, and can also achieve the beneficial effects brought by the second aspect or any possible implementation manner of the second aspect.
  • the present application provides a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementations of the first aspect above.
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • the apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the apparatus is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the present application provides a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any of the possible implementations of the second aspect above.
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • the device is a terminal.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in the terminal.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the present application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and output a signal through the output circuit, so that the processor executes any one of the possible implementations of the first aspect or the second aspect. Methods.
  • the above-mentioned processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • the present application provides a communication device including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter, so as to perform the method in any one of the possible implementations of the first aspect or the second aspect .
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • the relevant data interaction process such as sending indication information, may be a process of outputting indication information from the processor, and receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processing can be output to the transmitter, and the input data received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the device in the above-mentioned eighth aspect may be a chip, and the processor may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software , the processor may be a general-purpose processor, and is implemented by reading software codes stored in a memory, which may be integrated in the processor or located outside the processor and exist independently.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the above-mentioned first aspect or the second aspect is realized.
  • the present application provides a computer program product comprising instructions that, when executed, implement the method of any possible implementation of any of the first or second aspects.
  • the present application provides a communication system, where the communication system includes any of the foregoing communication devices.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied.
  • Figure 2 is a schematic diagram of a DAS system in which 4T4R RRUs are combined into 2 channels.
  • FIG. 3 is a schematic flowchart of the phase correction method provided by the present application.
  • FIG. 4 is a schematic flowchart of another phase correction method provided by the present application.
  • FIG. 5 is an example of a phase correction method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the accuracy of phase error estimation and the accuracy of spatial phase division.
  • FIG. 7 is another example of the phase correction method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the phase error estimation accuracy of two measurement feedbacks.
  • FIG. 9 is a schematic structural diagram of a possible communication apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a possible communication apparatus provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: 5G mobile communication system, new radio access technology (NR) system, LTE system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), or worldwide interoperability for microwave access (WiMAX) communication system.
  • the mobile communication system may include a non-standalone (NSA, NSA) and/or an independent network (standalone, SA).
  • the technical solutions provided in this application can be applied to future communication systems, such as the sixth generation mobile communication system. This application does not limit this.
  • the technical solutions provided in this application can also be applied to machine type communication (MTC), Long Term Evolution-machine (LTE-M), and device-to-device (D2D) networks.
  • M2M Machine to Machine
  • IoT Internet of Things
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle to X vehicle to X
  • V2X vehicle and vehicle Infrastructure
  • V2I vehicle to pedestrian
  • V2N vehicle to network
  • FIG. 1 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may further include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a, 120b, 120c, 120d, 120e, 120f in FIG. 1 ) , 120g, 120h, 120i, and 120j).
  • the terminal is connected to the wireless access network device in a wireless way, and the wireless access network device is connected to the core network in a wireless or wired way.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminals and terminals and wireless access network devices and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved NodeB (eNodeB), a transmission reception point (TRP), and a next generation NodeB (gNB) in the 5G mobile communication system , the next generation base station in the 6th generation (6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, It may be a centralized unit (central unit, CU), a distributed unit (distributed unit, DU), an RRU or a baseband unit (baseband unit, BBU), etc.
  • the radio access network device may be a macro base station (110a in FIG.
  • the radio access network devices are collectively described as base stations below.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed in the air on aircraft, balloons, and satellites. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or drone 120i in FIG. 1 may be configured as a mobile base station, for those terminals 120j accessing the radio access network 100 through 120i, the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station.
  • both the base station and the terminal may be collectively referred to as communication devices, 110a and 110b in FIG. 1 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 1 may be referred to as communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals and terminals can be carried out through licensed spectrum, through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time;
  • the frequency spectrum below gigahertz (GHz) is used for communication, the frequency spectrum above 6GHz can also be used for communication, and the frequency spectrum below 6GHz and the frequency spectrum above 6GHz can be used for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the function of the base station may also be performed by a module (eg, a chip) in the base station, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here may be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal can also be performed by a module (such as a chip or a modem) in the terminal, and can also be performed by a device including the terminal functions.
  • the technical solution provided in this application is suitable for a wireless communication scenario in which the NR FDD system and the terminal support the Type I codebook under the Release15/16 protocol.
  • the indoor coverage system can effectively improve the communication quality in the building, improve the indoor signal coverage, and provide users with high-quality indoor communication.
  • DAS digital indoor system
  • DIS digital indoor system
  • DAS the traditional DAS room distribution technology focuses on solving the problem of indoor signal coverage, but does not fully consider the capacity and user experience.
  • new services such as ultra-high-definition video, virtual reality, and Internet of Things communications have put forward requirements for larger bandwidth, higher capacity, and lower latency for mobile networks.
  • DAS systems have been difficult to effectively solve new Demand challenges for interior solutions.
  • the DIS system compared with the DAS system, the DIS system is an innovative indoor coverage solution for large and medium-sized indoor coverage scenarios. It mainly uses optical fibers and network cables to transmit digital signals, which can support higher frequency bands and facilitate the smooth transition to 5G. In addition, its features of easy deployment, high performance, easy operation and maintenance, and scalability can effectively deal with the dual challenges of coverage and capacity.
  • the 5G RRU source is directly integrated into the existing LTE DAS network, since the 5G bandwidth is much larger, compared with the LTE room system, the 5G room system covers The difference will be more than 3dB, so it is necessary to enhance the power of the 5G indoor distribution system to achieve the same coverage as the LTE indoor distribution system.
  • One possible way to enhance the power of the 5G indoor distribution system is to use a combiner to combine multiple RRU channels to increase the power. Before combining different channels of the RRU, it is necessary to perform phase correction on the different channels, otherwise power superposition cannot be achieved.
  • the phase correction methods of different channels of the RRU depend on hardware correction, and the hardware correction network is relatively complex, and currently only some RRUs (for example, 8T8R RRU and above modules) have hardware correction networks, and RRUs without hardware correction networks (for example, , 4T4R RRU and 2T2R RRU modules) cannot achieve phase correction between different channels.
  • RRU without the hardware calibration network is directly modified for the calibration network, a high cost of modification will be incurred.
  • the present application provides a phase correction method, which helps to enhance the transmit power of the room sub-system, thereby enhancing the coverage of the room sub-system.
  • the terminal air interface feedback can be used to realize the soft correction of the phases of the multiple channels that are combined in the network device, so that the phases of the multiple channels to be combined can be ensured to be consistent, so that the multiple channels can be combined. Combined way to increase the transmit power, thereby enhancing the coverage of the indoor sub-system.
  • FIG. 2 is a schematic diagram of a DAS system with a combining function. It should be noted that FIG. 2 only takes the 4T4R RRU combination as 2 channels as an example, and the specific values or names therein do not limit the technical solution of the present application.
  • the RRU can be used to convert the received digital signal into a radio frequency signal, send the radio frequency signal to the antenna device, or receive the radio frequency signal from the antenna device, convert the radio frequency signal into a digital signal, and transmit it to the baseband control unit (Fig. 2 is not shown).
  • An RRU may include multiple radio frequency channels, such as radio frequency channels 1, 2, 3, and 4.
  • the multiple radio frequency channels can be respectively received and/or transmitted to implement multiple receiving and multiple sending of the RRU.
  • the 4T4R RRU shown in FIG. 4 may include 4 radio frequency channels, and the 4 radio frequency channels may perform reception and/or transmission to implement 4 transmissions and 4 receptions of the RRU.
  • the radio frequency channel here may refer to the circuit channel in the RRU, such as the circuit channel in the transceiver, the circuit channel may include one or more electronic devices, multiple radio frequency channels may share the circuit channel, or each radio frequency channel may share the circuit channel. Channels all include individual circuit channels.
  • the radio frequency channel here may refer to a logical channel in the RRU, in which the conversion of the baseband signal and the radio frequency signal can be completed.
  • the combiner can be used to combine the received radio frequency signals, and send the combined radio frequency signals to the antenna. It should be noted that the combiner may be set independently of the RRU, or may be integrated in the RRU, which is not specifically limited in this application.
  • the antenna can transmit the received radio frequency signal or receive the external radio frequency signal and transmit it to the RRU.
  • the 4T4R RRU can be combined into 2 channels through the combiner, wherein the RF signal of channel 1 and the RF signal of channel 2 are combined into one signal at the combiner and sent out through antenna 1, channel 3
  • the RF signal of channel 4 and the RF signal of channel 4 are combined into one signal by the combiner and sent out through the antenna 2.
  • the RRU can be connected to the BBU, and the phase correction method provided in this application can be executed in the BBU.
  • phase correction method provided by the present application will be described below.
  • FIG. 3 is a schematic flowchart of the phase correction method provided by the present application.
  • the method shown in FIG. 3 may be performed by the base station and the terminal, or may be performed by a module or unit (eg, a circuit, a chip, or a system on chip (SOC), etc.) in the base station and the terminal.
  • a module or unit eg, a circuit, a chip, or a system on chip (SOC), etc.
  • SOC system on chip
  • Step 201 the base station sends a first signal to the terminal.
  • the first signal is used to determine the first precoding matrix.
  • the first signal is combined after passing through N channels and sent to the terminal.
  • the first signal is combined after passing through N channels, and then transmitted to the terminal by an antenna, where N is an integer greater than 1.
  • the N channels are the N channels that need to be combined, and the N channels can be the radio frequency channels shown in FIG. 2 .
  • the first signal is transmitted to the terminal by an antenna.
  • the first signal is a downlink reference signal.
  • the first signal is CSI-RS.
  • the first signal will be affected by the phase error during the transmission process, so that there is a phase error between the signals of the N channels included in the first signal.
  • the first signal is weighted by a first weighting matrix before passing through the N channels, where the first weighting matrix includes N weighting values, and the N weighting values may correspond to the N channels one-to-one.
  • the first weighting matrix may further include M-N zeros, where M is an integer greater than or equal to N.
  • the base station processes M channels of downlink reference signal sequences according to the first weighting matrix to obtain the first sequence to be sent, and further, the base station generates the first signal according to the first sequence to be sent, wherein the first weighting matrix is
  • the valid signals actually included in the first sequence to be sent are N channels.
  • the base station processes the M*1 downlink reference signal sequence according to the 1*M matrix to obtain the first sequence to be sent. Since only N weighting values are valid in the 1*M matrix, the first sequence to be sent is actually The valid signals included above are N channels.
  • Step 202 after receiving the first signal, the terminal determines a first precoding matrix according to the first signal.
  • the first precoding matrix is used to correct the phases of some or all of the above N channels.
  • the terminal performs channel estimation according to the first signal, and then according to the estimation result, selects the first precoding matrix that best matches the estimation result from the pre-stored precoding matrix set.
  • Step 203 the terminal sends first indication information to the base station.
  • the first indication information may be used to indicate the first precoding matrix.
  • the first indication information may be a precoding matrix indicator (precoding matrix indicator, PMI), and the terminal may feed back the index of the first precoding matrix to the base station through the PMI.
  • PMI precoding matrix indicator
  • the first precoding matrix is a precoding matrix with M ports, where M is an integer greater than or equal to N. If M is greater than N, the number of ports of the precoding matrix fed back by the terminal is greater than the number of channels of the transmitted signal. In other words, the terminal can feed back a precoding matrix with higher precision, thereby helping to improve the precision of phase estimation.
  • the first precoding matrix is a rank 1 precoding matrix.
  • the rank is 1, it is helpful for the terminal to determine the best signal flow, thereby improving the accuracy of signal estimation, so as to select a more matched precoding matrix and improve the accuracy of phase estimation.
  • the first precoding matrix is a precoding matrix with a rank of 1 and a port number of M, where M is an integer greater than or equal to N. That is to say, the terminal can feed back a more accurate and high-precision precoding matrix, thereby helping to improve the precision of the phase estimation.
  • the rank and/or the number of ports of the precoding matrix fed back by the terminal may be predetermined, for example, predefined in a protocol.
  • the rank and/or the number of ports of the precoding matrix fed back by the terminal may also be determined by an indication of the base station.
  • step 204 may also be performed.
  • Step 204 the base station sends second indication information to the terminal.
  • the terminal receives the second indication information from the base station.
  • the second indication information is used to indicate that the terminal feeds back a precoding matrix with a rank of 1, or indicates that the terminal feeds back a precoding matrix with M ports, or indicates that the terminal feeds back a precoding matrix with a rank of 1 and M ports.
  • the second indication information may be broadcast information.
  • the rank and/or the number of ports of the precoding matrix fed back by the terminal may also be determined by the terminal.
  • Step 204 is optional and may occur before step 202, and the present application does not limit the sequence between step 201 and step 204.
  • Step 205 after receiving the first indication information, the base station determines the first phase error between the N channels according to the first precoding matrix indicated by the first indication information.
  • the base station determines the first precoding matrix according to the received first indication information, and further determines the first phase error between the N channels according to the first precoding matrix.
  • the base station selects the target precoding matrix according to the index in the PMI, and then estimates the first phase error between the N channels before combining according to the target precoding matrix.
  • the target precoding matrix is a precoding matrix determined by the base station.
  • the target precoding matrix may be the first precoding matrix indicated by the PMI. Specifically, after receiving the PMI, the base station searches for the corresponding first precoding matrix from the same set of precoding matrices as the terminal according to the index in the PMI. .
  • the target precoding matrix may also be other precoding matrices related to the first precoding matrix, for example, a precoding matrix that is close to or similar to the first precoding matrix.
  • a precoding matrix that is close to or similar to the first precoding matrix.
  • the first phase error between the N channels may include a phase error of one channel of the N channels relative to another channel of the N channels.
  • the phase of one channel may be selected as a reference
  • the first phase error between the N channels may be the phase error of the N ⁇ 1 channels relative to the reference channel.
  • the N channels are channel 1 to channel 4, channel 1 is used as a reference
  • the first phase error between the four channels may include the phase error of channel 2 relative to channel 1, the phase error of channel 3 relative to channel 1, and the phase error of channel 4 Relative to the phase error of channel 1, or channel 3 as a reference
  • the first phase error between the four channels includes the phase error of channel 1 relative to channel 3, the phase error of channel 2 relative to channel 3, and the phase error of channel 4 relative to channel 3 phase error, etc.
  • the phase of a certain channel may not be selected as a unified reference, and the first phase error between N channels may be the phase error of N ⁇ 1 channels relative to different channels.
  • the N channels are channel 1 to channel 4, and the first phase error between the four channels may include the phase error of channel 2 relative to channel 1, the phase error of channel 3 relative to channel 2, and the phase error of channel 4 relative to channel 3. phase error.
  • the first phase error between the N channels may include a phase error of some channels relative to one channel, and a phase error of some channels relative to another channel.
  • the N channels are channel 1 to channel 4, and the first phase error between the four channels includes the phase error of channel 2 relative to channel 1, the phase error of channel 3 relative to channel 1, and the phase error of channel 4 relative to channel 2 error etc.
  • a phase value may also be selected as a reference, and the phase value may not be the phase of the N channels.
  • the first phase error between the N channels may include that the N channels are respectively relative to the The phase error of the referenced phase value.
  • the N channels are channel 1-channel 4, and the phase value used as a reference may be R, and the phases of R and the four channels are different.
  • the first phase error between the four channels may include channel 1 The phase error relative to R, the phase error of channel 2 relative to R, the phase error of channel 3 relative to R, and the phase error of channel 4 relative to R, etc.
  • the first phase error between the N channels can directly or indirectly determine the phase error between any two channels between the N channels.
  • Step 206 the base station corrects the phases of some or all of the N channels according to the first phase error.
  • N channels are channels that need to be phase-corrected.
  • N channels are channel 1-channel 4, channel 1 is used as a reference, the phase error of channel 2 relative to channel 1 is 0, the phase error of channel 3 relative to channel 1 is B, and the phase error of channel 4 relative to channel 1 is C , the phase of channel 3 and channel 4 of the 4 channels needs to be corrected at this time.
  • the base station compensates the phases of some or all of the N channels according to the first phase error, so that the phases of the N channels are consistent, so as to realize the phase compensation of some or all of the N channels. 's correction.
  • N channels are channel 1-channel 4, channel 1 is used as a reference, the phase of channel 1 is A, the phase error of channel 2 relative to channel 1 is 0, the phase error of channel 3 relative to channel 1 is B, and the phase error of channel 4 relative to channel 1 is B. If the phase error of channel 1 is C, the base station can compensate the phase of channel 3 by B and the phase of channel 4 by C, so that the phases of the four channels are all A.
  • the base station may directly correct the phases of some or all of the N channels according to the first phase error, or may perform further processing on the first phase error, such as obtaining other phase errors according to the first phase error. , and then correct the phases of some or all of the N channels according to the other phase errors, which is not limited in this application.
  • the air interface feedback of the terminal can be used to realize the soft correction of the phases between multiple channels before combining. And, compared to directly increasing the transmit power, it helps to reduce costs.
  • phase error estimation accuracy can be further improved by performing multiple phase estimations until the accuracy requirements are met, thereby realizing the pre-combination channel of the NR room-dividing DAS system. Phase correction.
  • FIG. 4 is a schematic flowchart of another phase correction method provided by the present application.
  • the method shown in FIG. 4 may be performed by the base station and the terminal, and may also be performed by modules or units (eg, circuits, chips, or systems on a chip, etc.) in the base station and the terminal.
  • modules or units eg, circuits, chips, or systems on a chip, etc.
  • the technical solution of the present application is described below by taking the execution subject as a base station and a terminal as an example.
  • the method in FIG. 4 may include at least some of the following.
  • Step 301 the base station sends a first signal to the terminal.
  • Step 302 after receiving the first signal, the terminal determines a first precoding matrix according to the first signal.
  • the first precoding matrix in this embodiment is a precoding matrix with the number of ports being M, where M is an integer greater than or equal to N.
  • the first precoding matrix is a rank 1 precoding matrix.
  • the first precoding matrix is a precoding matrix with a rank of 1 and a port number of M, where M is an integer greater than or equal to N.
  • the rank and/or the number of ports of the precoding matrix fed back by the terminal may be predetermined, for example, predefined in a protocol.
  • the rank and/or the number of ports of the precoding matrix fed back by the terminal may also be determined by the base station's instruction.
  • step 310 may also be performed, and step 310 and step 206 may be cross-referenced and citations, which will not be repeated here.
  • the rank and/or the number of ports of the precoding matrix fed back by the terminal may also be determined by the terminal.
  • Step 303 the terminal sends first indication information to the base station.
  • Step 304 After receiving the first indication information, the base station determines the first phase errors of the N channels according to the first precoding matrix indicated by the first indication information.
  • Steps 301-304 and steps 201-204 can be referred to and referenced to each other, and will not be repeated here.
  • Step 305 the base station sends a second signal to the terminal.
  • the second signal is used to determine the second precoding matrix.
  • the second signal is combined after passing through N channels and sent to the terminal.
  • the second signal is combined after passing through N channels, and then transmitted to the terminal by an antenna, where N is an integer greater than 1.
  • the N channels are the N channels that need to be combined, and the N channels can be the radio frequency channels shown in FIG. 2 .
  • the second signal is transmitted to the terminal by an antenna.
  • the second signal is a downlink reference signal.
  • the second signal is CSI-RS.
  • the second signal will be affected by the phase error during the transmission process, so that there is a phase error between the signals of the N channels included in the second signal.
  • Step 306 after receiving the second signal, the terminal determines a second precoding matrix according to the second signal.
  • the second precoding matrix is used to correct the phase of some or all of the above N channels.
  • the terminal performs channel estimation according to the second signal, and then selects a second precoding matrix that best matches the estimation result from a pre-stored set of precoding matrices according to the estimation result.
  • the second precoding matrix in this embodiment is a precoding matrix with the number of ports being M, where M is an integer greater than or equal to N.
  • the second precoding matrix is a rank 1 precoding matrix.
  • the second precoding matrix is a precoding matrix with a rank of 1 and a port number of M, where M is an integer greater than or equal to N.
  • Step 307 the terminal sends third indication information to the base station.
  • the third indication information may be used to indicate the second precoding matrix.
  • the third indication information may be PMI, and the terminal may feed back the index of the second precoding matrix to the base station through the PMI.
  • Step 308 After receiving the third indication information, the base station determines N-1 second phase errors according to the second precoding matrix indicated by the third indication information.
  • FIG. 3 only shows two measurement feedback processes, in fact, more measurement feedback processes may be performed between the base station and the terminal to meet the accuracy requirements of the phase estimation.
  • Step 309 the base station corrects the phases of some or all of the N channels according to the phase errors determined respectively in the multiple measurement feedback processes.
  • the base station corrects the phases of some or all of the N channels according to the first phase error and the second phase error.
  • the first signal before passing through N channels, the first signal is weighted by a first weighting matrix, the second signal is weighted by a second weighting matrix, and the first weighting matrix includes the N channels respectively.
  • the second weighting matrix includes weighting values corresponding to the N channels respectively.
  • the second weighting matrix and the first weighting matrix may be the same or different.
  • the weighted values of some channels in the second weighting matrix may be set to be phase rotated by a preset angle relative to the weighted values of the same channel of the first weighting matrix.
  • the N channels include the first channel and the second channel, the weighting value of the first channel in the first weighting matrix and the second weighting matrix are the same, and the weighting value of the second channel in the second weighting matrix is relatively
  • the weighted value of the first channel of a weighting matrix is phase rotated by a preset angle.
  • the preset angle is related to the horizontal dimension beam number N1 and the beam encryption multiple O1.
  • N1 is 4
  • O1 is 4
  • step 309 is described in detail by taking N as 2 and performing two measurement feedbacks as an example, and the N channels include a first channel and a second channel.
  • the base station may perform a phase rotation based on the first phase in the following manner error and the second phase error, determine the phase error to be corrected, and compensate the phase error between the first channel and the second channel according to the phase error to be corrected, so as to realize the phase correction of the first channel and the second channel, wherein , the phase error to be corrected is the final estimation result of the phase error between the first channel and the second channel:
  • the base station determines that the phase error to be corrected is the difference between the first phase error and a half preset angle
  • the base station determines that the phase error to be corrected is the sum of the first phase error and one-half of the preset angle
  • the base station determines that the phase error estimation fails.
  • the base station and the terminal may perform the above steps 301-308 again.
  • the base station determines the phase error to be corrected according to the first phase error and the second phase error, and corrects the phases of some or all of the N channels according to the phase error to be corrected.
  • the base station can Phase error, ..., the nth phase error determines the phase error to be corrected, and corrects the phase of some or all of the N channels according to the phase error to be corrected, where n is an integer greater than 2.
  • phase error to be corrected Satisfy As an example, the phase error to be corrected Satisfy:
  • n is the nth phase error determined in the nth measurement feedback process
  • ⁇ n-1 is the phase error estimation result determined according to the previous n-1 measurement feedback process
  • is the preset angle
  • N1 horizontal dimension beam number, O1 is the beam encryption multiple
  • n is an integer greater than 2.
  • phase rotation angle ⁇ n of the weighted value of the second channel in the nth weighting matrix relative to the weighted value of the second channel in the first weighting matrix satisfies:
  • ⁇ n-2 is the phase error estimation result determined according to the first n-2 measurement feedback process; The angle by which the weighted value is phase rotated relative to the weighted value of the second channel in the first weighting matrix.
  • N is an integer greater than 2, that is, three or more channels need to be phase-corrected
  • the two channels can be measured in the first feedback process by measuring The first phase error obtained in is compared with the nth phase error obtained by the two channels in the nth information measurement feedback process to determine the phase errors to be corrected of the two channels.
  • the N channels include channel 1, channel 2 and channel 3, assuming that channel 1 is used as a reference, after the first measurement and feedback process, the first phase error between the three channels is obtained.
  • the first phase error will include The first phase error between channel 2 and channel 1, and the first phase error between channel 3 and channel 1, after the second measurement feedback process, the second phase error between channel 2 and channel 1, and the second phase error between channel 3 and channel 1 are obtained.
  • the phase error to be corrected between channel 2 and channel 1 can be determined by comparing the first phase error between channel 2 and channel 1 and the second phase error between channel 2 and channel 1. The comparison of the first phase error of 1 with the second phase error of channel 3 and channel 1 determines the phase error between channel 3 and channel 1 to be corrected.
  • the base station may use the average value of multiple phase errors obtained from multiple measurements as the difference between the phase errors between the first channel and the second channel. Final measurement result.
  • the estimation accuracy of the phase error can be improved by performing multiple measurement feedbacks until the accuracy requirements are met, thereby realizing the phase correction of the channels before combining the NR room-dividing DAS systems.
  • the phase error between channel 1 and channel 2 is corrected, the terminal feedback rank is 1, and the number of ports is
  • the precoding matrix of 8 is taken as an example for description.
  • FIG. 5 is an example of a phase correction method provided by an embodiment of the present application.
  • Step 501 the base station sends second indication information to the terminal.
  • the second indication information is used to instruct the terminal to feed back a precoding matrix with a rank of 1 and a port number of 8.
  • the base station may send the second indication information to the terminal through higher layer signaling or physical layer signaling.
  • the base station may send the second indication information to the terminal through RRC signaling, MAC signaling, or DCI.
  • Step 502 the base station generates a first signal according to the weighting matrix W CSI-RS and CSI-RS sequence.
  • the weighting matrix W CSI-RS here may correspond to the first matrix in step 201 , and the CSI-RS sequence may correspond to the downlink reference signal sequence in step 201 .
  • the base station sets the weighting matrix of the CSI-RS with 8 ports as:
  • W CSI-RS [1 1 0 0 0 0 0 0]
  • W CSI-RS is a 1 ⁇ 8 matrix, 1 represents 1 antenna, 8 represents 8 ports, and the channel corresponding to the item valued as 1 in W CSI-RS is the channel of the transmitted signal.
  • the transmission The channels of the signal are channel 1 and channel 2.
  • the first signal can be expressed as:
  • represents the matrix dot product
  • x n (t) is the transmitted signal of the nth port
  • the transmitted signals are all CSI-RS
  • the signals between the ports are code-division multiplexed, which are orthogonal to each other
  • n is a positive integer greater than 0 and less than 9.
  • Step 503 the base station sends a first signal to the terminal.
  • the first signal is combined after passing through channel 1 and channel 2, and is transmitted to the terminal by antenna 1.
  • the first signal will be affected by the phase error between channel 1 and channel 2 during the transmission process, and the actual transmitted signal (ie, the actual first signal) of antenna 1 can be Expressed as:
  • represents the matrix dot product
  • x n (t) is the transmitted signal of the nth port, and the signal code division multiplexing between the ports is orthogonal to each other, and n is a positive integer greater than 0 and less than 9
  • W err is the phase error matrix, which can be expressed as:
  • Step 504 after receiving the first signal from the base station, the terminal determines the phase error matrix W err according to the first signal and the CSI-RS sequence.
  • the terminal can use the locally stored CSI-RS sequence pair Perform analysis to get the phase error matrix.
  • the terminal analyzes the first signal according to the following formula, and determines the phase error matrix:
  • the terminal obtains the demodulation vector That is, the terminal determines the phase error matrix
  • Step 505 the terminal selects a precoding matrix W feedback that matches the phase error matrix W err determined in step 504 .
  • the terminal determines that the set of precoding matrices is the set of precoding matrices corresponding to the rank of 1 and the number of ports of 8, and then the terminal selects the precoding matrix set corresponding to the rank of 1 and the number of ports to 8.
  • Step 506 the terminal sends the PMI to the base station.
  • the PMI is used to indicate the precoding matrix selected in step 505 .
  • the index of the precoding matrix is carried in the PMI.
  • Step 507 after receiving the PMI from the incoming terminal, the base station determines the phase error between channel 1 and channel 2 according to the PMI.
  • the base station determines the precoding matrix according to the index of the precoding matrix indicated by the PMI, and further determines the phase error between channel 1 and channel 2 according to the precoding matrix. Assuming that the base station determines that the precoding matrix fed back by the terminal is W feedback , the phase error between channel 1 and channel 2 can be estimated as:
  • Step 508 the base station compensates the phase error between the channel 1 and the channel 2 according to the phase error determined in the step 507, so as to realize the correction of the phase between the channel 1 and the channel 2.
  • the base station may set In this way, the actual subsequent signal sent by the base station can be expressed as:
  • step 501 and step 204 can refer to each other
  • step 503 and step 201 can refer to each other
  • steps 504 and 505 and step 202 can refer to each other
  • step 506 and step 203 can refer to each other
  • step 507 and step 205 can refer to each other.
  • step 508 and step 206 may refer to each other.
  • Example 1 using the terminal air interface PMI feedback to achieve soft correction of the inter-channel phase before combining is helpful to reduce costs compared to directly increasing the transmit power.
  • the estimation accuracy of the phase error is related to the accuracy of the spatial phase division.
  • the phase accuracy of the protocol codebook spatial division is ⁇ 360/N1/O1/2, where N1 is the number of horizontal beams and O1 is the beam encryption multiple.
  • N1 is the number of horizontal beams
  • O1 is the beam encryption multiple.
  • the spatial phase is divided into 4 intervals, the 4 intervals correspond to 4 phase discrete values one-to-one, and the 4 phase discrete values correspond to 4 different precoding matrices, and the 4 intervals correspond to in beam 1-beam 4.
  • the base station instructs the terminal to feed back the PMI whose rank is 1 and the number of ports is 8. In this case, N1 is 4 and O1 is 4. Therefore, in Example 1, the base station uses the PMI fed back by the terminal to achieve ⁇ Compared with the 2-port terminal codebook feedback, the initial phase error estimation within 11.25° accuracy can greatly improve the initial phase error estimation accuracy.
  • the terminal feedback rank is 1, and the number of ports is 8.
  • the precoding matrix is described as an example.
  • FIG. 7 is another example of the phase correction method provided by the embodiment of the present application.
  • Step 701 the base station sends second indication information to the terminal.
  • the second indication information is used to instruct the terminal to feed back a precoding matrix with a rank of 1 and a port number of 8.
  • the base station may send the second indication information to the terminal through higher layer signaling or physical layer signaling.
  • the base station may send the second indication information to the terminal through RRC signaling, MAC signaling, or DCI.
  • Step 702 the base station according to the first weighting matrix and the CSI-RS sequence to generate the first signal.
  • the weighting matrix here It may correspond to the first weighting matrix in FIG. 4
  • the CSI-RS sequence may correspond to the downlink reference signal sequence in FIG. 4 .
  • Step 703 the base station sends a first signal to the terminal.
  • Step 704 after receiving the first signal from the base station, the terminal determines the first phase error matrix according to the first signal and the CSI-RS sequence
  • Step 705 the terminal selects the first phase error matrix determined in step 704 matching first precoding matrix
  • Step 706 the terminal sends the first PMI to the base station.
  • Step 707 after receiving the first PMI from the incoming terminal, the base station determines the first phase error between channel 1 and channel 2 according to the first PMI
  • Steps 702-707 and steps 502-507 can be referred to and referenced to each other, and will not be repeated here.
  • Step 708 the base station according to the second weighting matrix and the CSI-RS sequence to generate a second signal.
  • the weighting matrix here may correspond to the second weighting matrix in FIG. 4 .
  • the base station sets the second weighting matrix of the CSI-RS whose port number is 8 as:
  • the phase of the weighted value of channel 2 in the second weighting matrix is rotated by 11.25° relative to the phase of the weighted value of channel 2 in the first weighting matrix, that is, the preset angle is 11.25°.
  • the second signal can be expressed as:
  • represents the matrix dot product
  • x n (t) is the transmitted signal of the nth port
  • the transmitted signals are all CSI-RS
  • the signals between the ports are code-division multiplexed, which are orthogonal to each other
  • n is a positive integer greater than 0 and less than 9.
  • Step 709 the base station sends the second signal to the terminal.
  • the second signal is combined after passing through channel 1 and channel 2, and is transmitted to the terminal by antenna 1.
  • the second signal will be affected by the phase error between channel 1 and channel 2 during the transmission process, and the actual transmitted signal of antenna 1 (ie, the actual second signal) can be Expressed as:
  • represents the matrix dot product
  • x n (t) is the transmitted signal of the nth port, and the signal code division multiplexing between the ports is orthogonal to each other, and n is a positive integer greater than 0 and less than 9
  • phase error matrix which can be expressed as:
  • Step 710 after receiving the second signal from the base station, the terminal determines the second phase error matrix according to the second signal and the CSI-RS sequence
  • the terminal can use the locally stored CSI-RS sequence pair Perform analysis to get the phase error matrix.
  • the terminal analyzes the second signal according to the following formula, and determines the second phase error matrix:
  • the terminal obtains the demodulation vector That is, the terminal determines the phase error matrix
  • Step 711 the terminal selects the second phase error matrix determined in step 710 matched second precoding matrix
  • the terminal determines, according to the rank and the number of ports indicated by the second indication information in step 701, that the set of precoding matrices is a set of precoding matrices corresponding to rank 1 and port number 8, and then the terminal selects a set of precoding matrices corresponding to a rank of 1 and a port number of 8.
  • Step 712 the terminal sends the second PMI to the base station.
  • the second PMI is used to indicate the second precoding matrix selected in step 711 .
  • the PMI carries the index of the second precoding matrix.
  • Step 713 after receiving the second PMI from the incoming terminal, the base station determines the second phase error between channel 1 and channel 2 according to the second PMI
  • the base station determines the second precoding matrix according to the index of the precoding matrix indicated by the second PMI, and further determines the second phase error between channel 1 and channel 2 according to the second precoding matrix.
  • the base station determines that the precoding matrix fed back by the terminal is Then the phase error between channel 1 and channel 2 can be estimated as:
  • Step 714 Perform phase correction according to the phase errors determined respectively in the multiple measurement feedback processes.
  • the base station determines the final phase error estimation result according to multiple phase errors obtained in the feedback process of multiple measurements, and calculates the phase error between channel 1 and channel 2 according to the final phase error estimation result. Compensation to achieve phase correction between channel 1 and channel 2.
  • the base station compensates the phase error between channel 1 and channel 2 according to the first phase error and the second phase error, so as to realize the phase correction of channel 1 and channel 2.
  • the base station determines the final estimation result of the two feedback measurements according to the first phase error and the second phase error, and compensates the phase error between channel 1 and channel 2 according to the final estimation result.
  • is 11.25°.
  • the base station determines the final estimation result like
  • the base station determines the final estimation result like neither equals does not mean Then this measurement fails, and steps 702-713 are performed again. Then the base station according to The phase error between channel 1 and channel 2 is compensated to realize the phase correction between channel 1 and channel 2.
  • the base station can determine that the real phase error falls within the interval of [first discrete value -45°, first discrete value +45°].
  • the base station sets the phase rotation of the weighted value of channel 2 in the second weighting matrix by 45°, that is, the phase difference between channel 1 and channel 2 is the sum of the true phase error and 45°.
  • the base station can determine that the phase difference between channel 1 and channel 2 falls within [first discrete value, first discrete value+45° ], that is, the real phase error falls within the interval of [first discrete value-45°, first discrete value]. If in the second measurement feedback process, the terminal feeds back the precoding matrix corresponding to beam 2, the base station can determine that the phase difference between channel 1 and channel 2 falls within [the first discrete value + 45°, the first discrete value + 90°], that is, the real phase error falls within the interval of [first discrete value, first discrete value+45°]. In this way, the estimation accuracy of the phase error can be doubled, and so on. In theory, after n times of measurement feedback, the estimation accuracy of the phase error can be improved by 2 n-1 times.
  • the phase estimation error accuracy is further improved by multiple measurement feedbacks.
  • the base station instructs the terminal to feed back a PMI whose rank is 1 and the number of ports is 8, theoretically, after n times of measurement feedback, the phase error estimation accuracy is ⁇ 22.5° ⁇ 2 -n .
  • the phase estimation accuracy after the second-measurement feedback is ⁇ 5.625°, which can be doubled compared to the ⁇ 11.25° that can be achieved by one measurement in Example 1.
  • step 701 and step 310 can refer to each other
  • step 703 and step 301 can refer to each other
  • steps 704 and 705 and step 302 can refer to each other
  • step 706 and step 303 can refer to each other
  • step 707 and step 304 can refer to each other.
  • step 709 and step 305 can refer to each other
  • steps 710 and 711 and step 306 can refer to each other
  • step 712 and step 307 can refer to each other
  • step 713 and step 308 can refer to each other
  • step 714 and step 309 can refer to each other.
  • the base station and the terminal include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal or the base station in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the terminal 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, or 120j as shown in FIG. 1, or may be as shown in FIG. 1
  • the base station may also be a module (such as a chip) applied to a terminal or a base station.
  • the communication device 800 includes a processing unit 810 and a transceiver unit 820 .
  • the communication apparatus 800 is configured to implement the functions of the terminal or the base station in the method embodiment shown in FIG. 3 , FIG. 4 , FIG. 5 or FIG. 7 .
  • the transceiver unit 820 is used for the base station to send the first signal to the terminal; and for receiving the first indication information from the terminal.
  • the processing unit 810 is configured to determine the first phase error between the N channels according to the first precoding matrix indicated by the first indication information; and correct the phases of some or all of the N channels according to the first phase error.
  • the transceiver unit 820 is further configured to send the second indication information to the terminal.
  • the transceiver unit 820 is configured to receive the first signal from the base station.
  • the processing unit 810 is configured to determine a first precoding matrix according to the first signal.
  • the transceiver unit 820 is further configured to send the first indication information to the base station.
  • the transceiver unit 820 is further configured to receive third indication information from the base station.
  • the transceiver unit 820 is used for sending the first signal to the terminal; and for receiving the first indication information from the terminal.
  • the processing unit 810 is configured to determine the first phase error between the N channels according to the first precoding matrix indicated by the first indication information.
  • the transceiver unit 820 is further configured to send a second signal to the terminal; and configured to receive third indication information from the terminal.
  • the processing unit 810 is further configured to determine the second phase error between the N channels according to the second precoding matrix indicated by the third indication information.
  • the processing unit 810 is further configured to correct the phases of some or all of the N channels according to the first phase error and the second phase error.
  • the transceiver unit 820 is further configured to send the second indication information to the terminal.
  • the transceiver unit 820 is configured to receive the first signal from the base station.
  • the processing unit 810 is configured to determine a first precoding matrix according to the first signal.
  • the transceiver unit 820 is further configured to send the first indication information to the base station.
  • the transceiver unit 820 is further configured to receive the second signal from the base station.
  • the processing unit 810 is further configured to determine a second precoding matrix according to the second signal.
  • the transceiver unit 820 is further configured to send third indication information to the base station.
  • the transceiver unit 820 is further configured to receive second indication information from the base station.
  • the transceiver unit 820 is configured to send the second indication information to the terminal.
  • the processing unit 810 is configured to generate the first signal according to the weighting matrix W CSI-RS and the CSI-RS sequence.
  • the transceiver unit 820 is further configured to send the first signal to the terminal.
  • the transceiver unit 820 is further configured to receive the PMI from the terminal.
  • the processing unit 810 is further configured to determine the phase error between channel 1 and channel 2 according to the PMI after receiving the PMI from the incoming terminal.
  • the processing unit 810 is further configured to compensate the phase error between channel 1 and channel 2 according to the determined phase error.
  • the transceiver unit 820 is configured to receive the second indication information from the base station and to receive the first signal from the base station.
  • the processing unit 810 is configured to determine the phase error matrix W err according to the first signal and the CSI-RS sequence.
  • the processing unit 810 is further configured to select a precoding matrix W feedback that matches the phase error matrix W err .
  • the transceiver unit 820 is further configured to send the PMI to the base station.
  • the transceiver unit 820 is configured to send the second indication information to the terminal.
  • the processing unit 810 is configured to generate a first signal according to the first weighting matrix W CSI-RS1 and the CSI-RS sequence.
  • the transceiver unit 820 is further configured to send the first signal to the terminal.
  • the transceiver unit 820 is further configured to receive the first PMI from the terminal.
  • the processing unit 810 is further configured to determine the first phase error between channel 1 and channel 2 according to the first PMI.
  • the processing unit 810 is further configured to generate a second signal according to the second weighting matrix W CSI-RS2 and the CSI-RS sequence.
  • the transceiver unit 820 is further configured to send a second signal to the terminal.
  • the transceiver unit 820 is further configured to receive the second PMI from the terminal.
  • the processing unit 810 is further configured to determine the second phase error between the channel 1 and the channel 2 according to the second PMI
  • the processing unit 810 is further configured to compensate the phase error between the channel 1 and the channel 2 according to the first phase error and the second phase error.
  • the transceiver unit 820 is configured to receive the second indication information from the base station and to receive the first signal from the base station.
  • the processing unit 810 is configured to determine the first phase error matrix according to the first signal and the CSI-RS sequence
  • the processing unit 810 is also used for selecting and the first phase error matrix matching first precoding matrix
  • the transceiver unit 820 is further configured to send the first PMI to the base station.
  • the transceiver unit 820 is further configured to receive the second signal from the base station.
  • the processing unit 810 is further configured to determine a second phase error matrix according to the second signal and the CSI-RS sequence
  • the processing unit 810 is further configured to select and match the second phase error matrix The second precoding matrix of
  • the transceiver unit 820 is further configured to send the second PMI to the base station.
  • processing unit 810 and the transceiver unit 820 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 3 to FIG. 7 , and details are not repeated here.
  • the communication apparatus 900 includes a processor 910 and an interface circuit 920 .
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 can be a transceiver or an input-output interface.
  • the communication apparatus 900 may further include a memory 930 for storing instructions executed by the processor 910 or input data required by the processor 910 to execute the instructions or data generated after the processor 910 executes the instructions.
  • the processor 910 is used to implement the functions of the above-mentioned processing unit 810
  • the interface circuit 920 is used to implement the functions of the above-mentioned transceiver unit 820 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as radio frequency modules or antennas) in the terminal device, and the information is sent by the base station to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules or antennas) ) to send information, the information is sent by the terminal device to the base station.
  • modules such as radio frequency modules or antennas
  • the base station chip When the above communication device is a chip applied to a base station, the base station chip implements the functions of the base station in the above method embodiments.
  • the base station chip receives information from other modules (such as radio frequency modules or antennas) in the base station, and the information is sent by the terminal device to the base station; or, the base station chip sends information to other modules in the base station (such as radio frequency modules or antennas), This information is sent by the base station to the terminal device.
  • modules such as radio frequency modules or antennas
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the base station or in the terminal equipment.
  • the processor and the storage medium may also exist in the base station or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种相位校正方法和通信装置,在该相位校正方法中,网络设备向终端发送下行参考信号,终端根据接收到的下行参考信号确定预编码矩阵并反馈给网络设备,网络设备根据终端反馈的预编码矩阵估计网络设备多个通道之间的相位误差,并根据得到的相位误差对多个通道的相位进行校正。在上述技术方案中,可以利用终端空口反馈实现网络设备的被合路的多个通道的相位的软校正,从而可以保证被合路的多个通道的相位一致,从而可以实现通过将多个通道进行合路的方式来提高发射功率,从而增强室分系统的覆盖。

Description

一种相位校正方法和通信装置
本申请要求于2021年04月02日提交中国国家知识产权局、申请号为202110362397.9、申请名称为“一种相位校正方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种相位校正方法和通信装置。
背景技术
在建筑物内,来自宏站的信号衰减严重,无法提供足够的覆盖,终端通信质量会严重受损。此种情形下,可以通过室分系统有效地改善建筑物内的通信质量,提升室内的信号覆盖,向用户提供高质量的室内通信。
随着第五代(5th generation,5G)通信系统的大规模建设,需要考虑长期演进(long term evolution,LTE)系统室分系统向5G室分系统的过渡问题,其中5G室分系统合入现有LTE室分系统的覆盖问题更是亟待解决。以LTE分布式天线系统(distributed antenna system,DAS)2.3G向5G DAS 2.6G演进为例,若将5G室分系统的信源直接合入现有LTE DAS网络,由于5G带宽要大得多,相比于LTE室分系统,5G室分系统覆盖会差3dB以上,不能实现与LTE室分系统同覆盖。
发明内容
本申请提供一种相位校正方法和通信装置,可以通过校正方式实现合路前的多个通道间的相位校正,从而有助于增强室分系统的发射功率,从而增强室分系统的覆盖。
第一方面,本申请提供了一种相位校正方法,所述方法包括:网络设备向终端发送第一信号,所述第一信号在经过所述网络设备的N个通道后被合路后发送至终端,N为大于1的整数;所述网络设备接收来自所述终端的第一指示信息,所述第一指示信息用于指示根据所述第一信号确定的第一预编码矩阵;所述网络设备根据所述第一预编码矩阵,确定所述N个通道之间的第一相位误差;所述网络设备根据所述第一相位误差,对所述N个通道中部分或全部通道的相位进行校正。
这里的通道可以是射频通道,可以位于网络设备的射频装置中,例如,位于射频拉远单元(remote radio unit,RRU)中。
N个通道中部分或全部通道为需要进行相位校正的通道。例如,N个通道为通道1-通道4,通道1作为参考,通道2相对通道1的相位误差为0,通道3相对通道1的相位误差为B,通道4相对于通道1的相位误差为C,则此时需要对4个通道中的通道3和通道4的相位进行校正。
N个通道之间的第一相位误差可以包括N个通道中的一个通道相对于N个通道中的 另一个通道的相位误差。
作为一种示例,可以选择一个通道的相位作为参考,N个通道之间的第一相位误差可以是N-1个通道相对作为参考的通道的相位误差。例如,N个通道为通道1-通道4,通道1作为参考,4个通道之间的第一相位误差可以包括通道2相对通道1的相位误差、通道3相对通道1的相位误差、和通道4相对于通道1的相位误差,或者通道3作为参考,4个通道之间的第一相位误差包括通道1相对通道3的相位误差、通道2相对通道3的相位误差、和通道4相对于通道3的相位误差等。
作为另一种示例,可以不选择某一个通道的相位作为统一的参考,N个通道之间的第一相位误差可以是N-1个通道相对不同的通道的相位误差。例如,N个通道为通道1-通道4,4个通道之间的第一相位误差可以包括通道2相对通道1的相位误差、通道3相对通道2的相位误差、和通道4相对于通道3的相位误差。
作为又一个示例,可以结合上述两种示例,N个通道之间的第一相位误差可以包括部分通道相对一个通道的相位误差,和部分通道相对另一个通道的相位误差。例如,N个通道为通道1-通道4,4个通道之间的第一相位误差包括通道2相对通道1的相位误差、通道3相对通道1的相位误差、和通道4相对于通道2的相位误差等。
作为再一种示例,还可以选择一个相位值作为参考,该相位值可以不是N个通道的相位,在此情况下,N个通道之间的第一相位误差可以包括N个通道分别相对于作为参考的相位值的相位误差。例如,N个通道为通道1-通道4,作为参考的相位值可以为R,R与4个通道的相位均不同,在此情况下,4个通道之间的第一相位误差可以包括通道1相对于R的相位误差,通道2相对R的相位误差、通道3相对R的相位误差、和通道4相对于R的相位误差等。
由上述多种示例可知,N个通道之间的第一相位误差可以直接或者间接地确定N个通道之间任两个通道之间的相位误差。
在一些实现方式中,网络设备根据第一相位误差,对N个通道中部分或全部通道的相位进行补偿,以使得N个通道的相位保持一致,从而实现对N个通道中部分或全部通道的相位的校正。例如,N个通道为通道1-通道4,通道1作为参考,通道1的相位为A,通道2相对通道1的相位误差为0,通道3相对通道1的相位误差为B,通道4相对于通道1的相位误差为C,则网络设备可以对通道3的相位补偿B,对通道4的相位补偿C,使得4个通道的相位均为A。
在本申请中,网络设备可以直接根据第一相位误差对N个通道中部分或全部通道的相位进行校正,或者也可以对第一相位误差进行进一步的处理,例如根据所述第一相位误差得到其他的相位误差,然后根据该其他的相位误差对N个通道中部分或全部通道的相位进行校正。也就是说,网络设备进行相位校正所采用的相位值与第一相位误差相关。
在上述技术方案中,利用终端空口反馈实现网络设备的被合路的多个通道的相位的软校正,可以保证被合路的多个通道的相位一致,从而可以实现通过将多个通道进行合路的方式来提高发射功率,从而增强室分系统的覆盖。并且,相比于直接提高发射功率或进行校正网络改造,有助于降低成本。
结合第一方面,在一种可能的实现方式中,所述第一预编码矩阵的端口数为M,所述M为大于或者等于N的整数。
若M大于N,终端反馈的预编码矩阵的端口数大于发射信号的通道数,换句话说,终端可以反馈精度更高的预编码矩阵,从而有助于提高相位估计的精度。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一预编码矩阵的秩为1。
当秩为1时,有助于终端确定最好的信号流,从而提高信号估计的准确性,以便选择更匹配的预编码矩阵,提高相位估计的准确性。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述终端反馈秩为1的预编码矩阵和/或指示终端反馈端口数为M的预编码矩阵。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述网络设备通过所述N个通道向终端发送第二信号,所述第二信号在经过所述N个通道后被合路后发送至终端;所述网络设备接收来自所述终端的第三指示信息,所述第三指示信息用于指示根据所述第二信号确定的第二预编码矩阵;所述网络设备根据所述第二预编码矩阵,确定所述N个通道之间的第二相位误差;所述网络设备根据所述第一相位误差,对所述N个通道中部分或全部通道的相位进行校正包括:所述网络设备根据所述第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正。
通过上述技术方案可以进行多次测量反馈来提高相位误差估计精度,直至满足精度要求,从而实现NR室分系统合路前通道相位校正。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一信号在经过所述N个通道之前是经过第一加权矩阵进行加权的,所述第一加权矩阵包括所述N个通道分别对应的加权值;所述第二信号在经过所述N个通道之前是经过第二加权矩阵进行加权的,所述第二加权矩阵包括所述N个通道分别对应的加权值;且所述第二加权矩阵中所述N个通道中部分通道的加权值相对于所述第一加权矩阵中所述部分通道的加权值进行了预设角度的相位旋转。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述N为2,所述N个通道包括第一通道和第二通道,所述第一加权矩阵和所述第二加权矩阵中第一通道的加权值相同,所述第二加权矩阵中第二通道的加权值相对所述第一加权矩阵中第一通道的加权值进行了预设角度的相位旋转。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:若第一相位误差等于第二相位误差,所述网络设备确定待校正的相位误差,所述待校正的相位误差为所述第一相位误差与二分之一的所述预设角度之差;所述网络设备根据所述第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正包括:所述网络设备根据所述待校正的相位误差,对所述第一通道和/或所述第二通道的相位进行校正。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:若第一相位误差等于第二相位误差与两倍的所述预设角度之和,所述网络设备确定待校正的相位误差,所述待校正的相位误差为所述第一相位误差与二分之一的所述预设角度之和;所述网络设备根据第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正包括:所述网络设备根据所述待校正的相位误差,对所述第一 通道和/或所述第二通道的相位进行校正。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述预设角度与水平维波束数和波束加密倍数相关。
可选地,预设角度与水平维波束数N1和波束加密倍数O1相关。
例如,当终端反馈端口数为8的预编码矩阵时,N1为4,O1为4,预设角度可以为360/N1/O1/2=11.25°。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一信号被合路后经过功率放大器进行功率放大后,由所述天线发射至所述终端。
这样,有助于提高第一信号的信号质量,从而提高相位估计的准确性。
结合第一方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一信号为信道状态信息参考信号(channel state information-reference signal,CSI-RS)。
第二方面,本申请提供了一种相位校正方法,所述方法包括:终端接收来自网络设备的第一信号,所述第一信号在经过所述网络设备的N个通道后被合路由所述终端接收,N为大于1的整数;所述终端根据所述第一信号确定第一预编码矩阵,所述第一预编码矩阵用于对所述N个通道中部分或全部通道的相位进行校正;所述终端向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一预编码矩阵。
在上述技术方案中,可以利用终端空口反馈实现合路前多个通道间相位的软校正。并且,相比于直接提高发射功率或进行校正网络改造,有助于降低成本。
结合第二方面,在一种可能的实现方式中,所述第一预编码矩阵的端口数为M,所述M为大于或者等于N的整数。
若M大于N,终端反馈的预编码矩阵的端口数大于发射信号的通道数,换句话说,终端可以反馈精度更高的预编码矩阵,从而有助于提高相位估计的精度。
结合第二方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一预编码矩阵的秩为1。
当秩为1时,有助于终端确定最好的信号流,从而提高信号估计的准确性,以便选择更匹配的预编码矩阵,提高相位估计的准确性。
结合第二方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述终端接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述终端反馈秩为1的预编码矩阵和/或指示所述终端反馈端口数为M的预编码矩阵。
第三方面,本申请提供了一种通信装置,所述装置包括:收发单元和处理单元;所述收发单元,用于向终端发送第一信号,所述第一信号在经过所述通信装置的N个通道后被合路后发送至终端,N为大于1的整数;所述收发单元,还用于接收来自所述终端的第一指示信息,所述第一指示信息用于指示根据所述第一信号确定的第一预编码矩阵;所述处理单元,用于根据所述第一预编码矩阵,确定所述N个通道之间的第一相位误差;所述处理单元,还用于根据所述第一相位误差,对所述N个通道中部分或全部通道的相位进行校正。
结合第三方面,在一种可能的实现方式中,所述第一预编码矩阵的端口数为M,所述M为大于或者等于N的整数。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述收发 单元,还用于向所述终端发送第二指示信息,所述第二指示信息用于指示所述终端反馈端口数为M的预编码矩阵。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一预编码矩阵的秩为1。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述收发单元,还用于向所述终端发送第二指示信息,所述第二指示信息用于指示所述终端反馈秩为1的预编码矩阵。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述收发单元,还用于通过所述N个通道向终端发送第二信号,所述第二信号在经过所述N个通道后被合路后发送至终端;所述收发单元,还用于接收来自所述终端的第三指示信息,所述第三指示信息用于指示根据所述第二信号确定的第二预编码矩阵;所述处理单元,还用于根据所述第二预编码矩阵,确定所述N个通道之间的第二相位误差;所述处理单元,具体用于根据所述第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一信号在经过所述N个通道之前是经过第一加权矩阵进行加权的,所述第一加权矩阵包括所述N个通道分别对应的加权值;所述第二信号在经过所述N个通道之前是经过第二加权矩阵进行加权的,所述第二加权矩阵包括所述N个通道分别对应的加权值;且所述第二加权矩阵中的所述N个通道中部分通道的加权值相对于所述第一加权矩阵中所述部分通道的加权值进行了预设角度的相位旋转。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述N为2,所述N个通道包括所述第一通道和所述第二通道,所述第一加权矩阵和所述第二加权矩阵中第一通道的加权值相同,所述第二加权矩阵中第二通道的加权值相对所述第一加权矩阵中第一通道的加权值进行了预设角度的相位旋转。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述处理单元,还用于若第一相位误差等于第二相位误差,确定待校正的相位误差,所述待校正的相位误差为所述第一相位误差与二分之一的所述预设角度之差;所述处理单元,具体用于根据所述待校正的相位误差,对所述第一通道和/或所述第二通道的相位进行校正。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述处理单元,还用于若第一相位误差等于第二相位误差与两倍的所述预设角度之和,确定待校正的相位误差,所述待校正的相位误差为所述第一相位误差与二分之一的所述预设角度之和;所述处理单元,具体用于根据所述待校正的相位误差,对所述第一通道和/或所述第二通道的相位进行校正。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述预设角度与水平维波束数和波束加密倍数相关。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一信号被合路后经过功率放大器进行功率放大后,由所述天线发射至所述终端。
结合第三方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一信号为信道状态信息参考信号CSI-RS。
该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块。该装置是与第一方面对应的通信装置,也可以达到如第一方面或第一方面的任意可能的实现方式所带来的有益效果。第四方面,本申请提供了一种通信装置,所述装置包括:收发单元和处理单元;所述收发单元,用于接收来自网络设备的第一信号,所述第一信号经过所述网络设备的N个通道后被合路后由所述终端接收,N为大于1的整数;所述处理单元,用于根据所述第一信号确定第一预编码矩阵,所述第一预编码矩阵用于对所述N个通道中部分或全部通道的相位进行校正;所述收发单元,还用于向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一预编码矩阵。
结合第四方面,在一种可能的实现方式中,所述第一预编码矩阵的端口数为M,所述M为大于或者等于N的整数。
结合第四方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述收发单元,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述终端反馈端口数为M的预编码矩阵。
结合第四方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述第一预编码矩阵的秩为1。
结合第四方面或其任意一种可能的实现方式,在另一种可能的实现方式中,所述收发单元,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述终端反馈秩为1的预编码矩阵。
该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。该装置是与第二方面对应的通信装置,也可以达到如第二方面或第二方面的任意可能的实现方式所带来的有益效果。
第五方面,本申请提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于网络设备中的芯片。当该装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,本申请提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为终端。当该装置为终端时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于终端中的芯片。当该装置为配置于终端中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,本申请提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路输出信号,使得所述处理器执行上述第一方面或第二方面中任一方面中的任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,本申请提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面中任一方面中的任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第二方面中任一方面中的任意可能的实现方式中的方法。
第十方面,本申请提供了一种计算机程序产品,包含指令,当该指令被运行时,实现第一方面或第二方面中任一方面中的任意可能的实现方式中的方法。
第十一方面,本申请提供了一种通信系统,该通信系统包括上述任意一种通信装置。
附图说明
图1是本申请的实施例应用的通信系统的架构示意图。
图2是4T4R RRU合路为2通道的DAS系统的示意图。
图3是本申请提供的相位校正方法的示意性流程图。
图4是本申请提供的另一相位校正方法的示意性流程图。
图5是本申请实施例提供的相位校正方法的一个示例。
图6是相位误差估计精度与空域相位划分的精度的示意图。
图7是本申请实施例提供的相位校正方法的另一个示例。
图8是两次测量反馈的相位误差估计精度的示意图。
图9是本申请的实施例提供的可能的通信装置的结构示意图。
图10是本申请的实施例提供的可能的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:5G移动通信系统、新无线接入技术(new radio access technology,NR)系统、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、或者全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统。其中,移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。或者,本申请提供的技术方案可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-todevice,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a、120b、120c、120d、120e、120f、120g、120h、120i、和120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的 模块或单元,例如,可以是集中式单元(central unit,CU)、分布式单元(distributed unit,DU)、RRU或基带单元(baseband unit,BBU)等。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文将无线接入网设备统一描述为基站。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
需要指出的是,优选地,本申请提供的技术方案适用于NR FDD系统、终端支持Release15/16协议下Type I码本的无线通信场景。
在建筑物内,来自宏站的信号衰减严重,无法提供足够的覆盖,终端通信质量会严重受损。此种情形下,可以通过室内覆盖系统有效地改善建筑物内的通信质量,提升室内的信号覆盖,向用户提供高质量的室内通信。
目前,主要存在两种室分系统,分别是DAS和室内数字系统(digital indoor system,DIS)。
1)DAS,传统DAS室分技术着眼于解决室内信号覆盖问题,未充分考虑容量与用户体验。然而,随着移动通信的高速发展,超高清视频、虚拟现实、物联网通信等新业务对移动网络提出了更大带宽、更高容量和更低时延的要求,DAS系统已经难以有效解决新需求对室内解决方案的挑战。
2)DIS,相比于DAS系统,DIS系统作为针对大中型室内覆盖场景的创新室内覆盖解决方案,其主要采用光纤和网线传输数字信号,能够支持更高频段,有利于实现向5G的平滑过渡,此外,其易部署、高性能、易运维、可扩容的特点能够有效应对覆盖和容量的双重挑战。
虽然DIS系统凭借其诸多优点,其室内部署占比逐渐提升,但是受限于现有DAS存量约束,未来很长一段时间,DAS系统仍将是室分覆盖的主流部署方式,而随着5G通信系统的大规模建设,需要考虑LTE DAS向5G DAS的过渡问题,其中5G DAS合入现有LTE DAS的覆盖问题更是亟待解决。以LTE DAS 2.3G向5G DAS 2.6G演进为例,若将5G RRU信源直接合入现有LTE DAS网络,由于5G带宽要大得多,相比于LTE室分系统,5G室分系统覆盖会差3dB以上,因此需要增强5G室分系统的功率以实现与LTE室分系统同覆盖。
增强5G室分系统的功率的一种可能的方式为:利用合路器对RRU多通道进行合路以提高功率。在对RRU的不同通道进行合路前,需要对不同通道进行相位校正,否则无法实现功率叠加。目前,RRU的不同通道的相位校正方法赖于硬件校正,硬件校正网络较为复杂,并且目前仅有部分RRU(例如,8T8R RRU及以上模块)具备硬件校正网络,不具备硬件校正网络的RRU(例如,4T4R RRU和2T2R RRU模块)则无法实现不同通道间的相位校正。而若直接对不具备硬件校正网络的RRU进行校正网络改造,则会产生高昂的改造费用。
针对上述问题,本申请提供了一种相位校正方法,有助于增强室分系统的发射功率,从而增强室分系统的覆盖。在本申请中,可以利用终端空口反馈实现网络设备的被合路的多个通道的相位的软校正,从而可以保证被合路的多个通道的相位一致,从而可以实现通过将多个通道进行合路的方式来提高发射功率,从而增强室分系统的覆盖。
图2是具有合路功能的DAS系统的示意图。需要说明的是,图2仅以4T4R RRU合路为2通道为例,其中的具体数值或名称对本申请的技术方案不构成限定。
其中,RRU可以用于将接收到的数字信号转换成射频信号,将射频信号发送至天线装置,或者从天线装置接收射频信号,并将射频信号转换成数字信号,并传送至基带控制单元(图2中未示出)。RRU可以包括多个射频通道,例如射频通道1、2、3和4。该多个射频通道可以分别进行接收和/或发送以实现RRU的多收多发。例如,图4所示的4T4R的RRU可以包括4个射频通道,该4个射频通道可以进行接收和/或发送以实现RRU的4发4收。需要说明的是,这里射频通道可以指RRU中的电路通道,例如收发器中的电路通道,该电路通道可以包括一个或者多个电子器件,多个射频通道可以共用电路通道,也可以每个射频通道都包括单独的电路通道。或者,这里的射频通道可以指RRU中的逻辑通道,该逻辑通道中可以完成基带信号与射频信号的转换。合路器可以用于将接收到的射频信号进行合路,并将合路后的射频信号发送至天线。需要说明的是,合路器可以独立于RRU单独设置,也可以集成在RRU中,对此本申请不作具体限定。天线可以将接收到的 射频信号发射出去或者接收外界的射频信号并传送至RRU。
如图2所示,通过合路器可以实现将4T4R RRU合路为2通道,其中,通道1的射频信号和通道2的射频信号在合路器合为一路信号通过天线1发送出去,通道3的射频信号和通道4的射频信号在合路器合为一路信号通过天线2发送出去。
需要指出的是,RRU可以与BBU连接,本申请提供的相位校正方法可以在BBU中执行。
下面对本申请提供的相位校正方法进行描述。
图3是本申请提供的相位校正方法的示意性流程图。图3所示的方法可以由基站和终端来执行,也可以由基站和终端中的模块或单元(例如,电路、芯片或片上系统(system on chip,SOC)等)来执行。下面以执行主体为基站和终端为例对本申请的技术方案进行描述。图3中的方法可以包括以下内容的至少部分内容。
步骤201,基站向终端发送第一信号。
其中,第一信号用于确定第一预编码矩阵。第一信号经过N个通道后被合路,并被发送给终端,例如第一信号经过N个通道后被合路,然后由天线发射至终端,N为大于1的整数。N个通道为需要合路的N个通道,N个通道可以为图2中所示的射频通道。
可选地,第一信号被合路后经过功率放大器进行功率放大后,由天线发射至终端。
可选地,第一信号为下行参考信号。例如,第一信号为CSI-RS。
若N个通道之间存在相位误差,则第一信号在发射过程中会受到相位误差的影响,使得第一信号所包括的N个通道的信号之间存在相位误差。
在一些实现方式中,第一信号在经过N个通道之前是经过第一加权矩阵进行加权的,其中,第一加权矩阵包括N个加权值,N个加权值可以一一对应于N个通道。
可选地,第一加权矩阵还可以包括M-N个0,M为大于或者等于N的整数。示例性地,基站根据第一加权矩阵对M路下行参考信号序列进行处理,得到第一待发送序列,进一步地,基站根据第一待发送序列,生成第一信号,其中,第一加权矩阵用于对M路下行参考信号序列进行处理,使得第一待发送序列中实际上包括的有效信号为N路。例如,基站根据1*M的矩阵对M*1的下行参考信号序列进行处理,得到第一待发送序列,由于1*M的矩阵中仅有N个加权值有效,使得第一待发送序列实际上包括的有效信号为N路。
步骤202,在接收到第一信号之后,终端根据第一信号确定第一预编码矩阵。
其中,第一预编码矩阵用于对上述N个通道中部分或全部通道的相位进行校正。
在一些实现方式中,终端根据第一信号进行信道估计,再根据估计结果,从预先存储的预编码矩阵集合中选取出与估计结果最匹配的第一预编码矩阵。
步骤203,终端向基站发送第一指示信息。
其中,第一指示信息可以用于指示第一预编码矩阵。
在一些实现方式中,第一指示信息可以为预编码矩阵指示(precoding matrix indicator,PMI),终端可以将第一预编码矩阵的索引通过PMI反馈给基站。
可选地,第一预编码矩阵为端口数为M的预编码矩阵,M为大于或者等于N的整数。若M大于N,终端反馈的预编码矩阵的端口数大于发射信号的通道数,换句话说,终端可以反馈精度更高的预编码矩阵,从而有助于提高相位估计的精度。
可选地,第一预编码矩阵为秩为1的预编码矩阵。当秩为1时,有助于终端确定最好 的信号流,从而提高信号估计的准确性,以便选择更匹配的预编码矩阵,提高相位估计的准确性。
可选地,第一预编码矩阵为秩为1、端口数为M的预编码矩阵,M为大于或者等于N的整数。也就是说,终端可以反馈更准确、更高精度的预编码矩阵,从而有助于提高相位估计的精度。
可选地,终端反馈的预编码矩阵的秩和/或端口数可以是预定的,例如,在协议中预定义。
可选地,终端反馈的预编码矩阵的秩和/或端口数也可以是基站的指示确定。在此情况下,在步骤202之前,还可以执行步骤204。
步骤204,基站向终端发送第二指示信息。
相应地,终端接收来基站的第二指示信息。
其中,第二指示信息用于指示终端反馈秩为1的预编码矩阵,或者指示终端反馈端口数为M的预编码矩阵,或者指示终端反馈秩为1、端口数为M的预编码矩阵。可选地,第二指示信息可以为广播信息。
可选地,终端反馈的预编码矩阵的秩和/或端口数也可以是终端确定。
步骤204是可选的,可以发生在步骤202之前,本申请对步骤201和步骤204之间的顺序不做限定。
步骤205,在接收到第一指示信息后,基站根据第一指示信息指示的第一预编码矩阵,确定N个通道之间的第一相位误差。
在一些实现方式中,基站根据接收到的第一指示信息,确定第一预编码矩阵,进一步地,根据第一预编码矩阵确定N个通道之间的第一相位误差。以第一指示信息为PMI例,基站根据PMI中的索引,选择目标预编码矩阵,再根据目标预编码矩阵估计出合路前N个通道之间的第一相位误差。其中,目标预编码矩阵是基站确定的预编码矩阵。目标预编码矩阵可以为PMI指示的第一预编码矩阵,具体地,基站在接收到PMI后,根据PMI中的索引,从与终端相同的预编码矩阵集合中查找出相应的第一预编码矩阵。目标预编码矩阵也可以是与第一预编码矩阵相关的其他预编码矩阵,例如与第一预编码矩阵相近或相似的预编码矩阵。下文将以目标预编码矩阵为第一预编码矩阵为例对本申请的技术方案进行描述。
在本申请的实施例中,N个通道之间的第一相位误差可以包括N个通道中的一个通道相对于N个通道中的另一个通道的相位误差。
作为一种示例,可以选择一个通道的相位作为参考,N个通道之间的第一相位误差可以是N-1个通道相对作为参考的通道的相位误差。例如,N个通道为通道1-通道4,通道1作为参考,4个通道之间的第一相位误差可以包括通道2相对通道1的相位误差、通道3相对通道1的相位误差、和通道4相对于通道1的相位误差,或者通道3作为参考,4个通道之间的第一相位误差包括通道1相对通道3的相位误差、通道2相对通道3的相位误差、和通道4相对于通道3的相位误差等。
作为另一种示例,可以不选择某一个通道的相位作为统一的参考,N个通道之间的第一相位误差可以是N-1个通道相对不同的通道的相位误差。例如,N个通道为通道1-通道4,4个通道之间的第一相位误差可以包括通道2相对通道1的相位误差、通道3相对通 道2的相位误差、和通道4相对于通道3的相位误差。
作为又一个示例,可以结合上述两种示例,N个通道之间的第一相位误差可以包括部分通道相对一个通道的相位误差,和部分通道相对另一个通道的相位误差。例如,N个通道为通道1-通道4,4个通道之间的第一相位误差包括通道2相对通道1的相位误差、通道3相对通道1的相位误差、和通道4相对于通道2的相位误差等。
作为再一种示例,还可以选择一个相位值作为参考,该相位值可以不是N个通道的相位,在此情况下,N个通道之间的第一相位误差可以包括N个通道分别相对于作为参考的相位值的相位误差。例如,N个通道为通道1-通道4,作为参考的相位值可以为R,R与4个通道的相位均不同,在此情况下,4个通道之间的第一相位误差可以包括通道1相对于R的相位误差,通道2相对R的相位误差、通道3相对R的相位误差、和通道4相对于R的相位误差等。
由上述多种示例可知,N个通道之间的第一相位误差可以直接或者间接地确定N个通道之间任两个通道之间的相位误差。
步骤206,基站根据第一相位误差,对N个通道中部分或全部通道的相位进行校正。
其中,N个通道中部分或全部通道为需要进行相位校正的通道。例如,N个通道为通道1-通道4,通道1作为参考,通道2相对通道1的相位误差为0,通道3相对通道1的相位误差为B,通道4相对于通道1的相位误差为C,则此时需要对4个通道中的通道3和通道4的相位进行校正。
在一些实现方式中,基站根据第一相位误差,对N个通道中部分或全部通道的相位进行补偿,以使得N个通道的相位保持一致,从而实现对N个通道中部分或全部通道的相位的校正。例如,N个通道为通道1-通道4,通道1作为参考,通道1的相位为A,通道2相对通道1的相位误差为0,通道3相对通道1的相位误差为B,通道4相对于通道1的相位误差为C,则基站可以对通道3的相位补偿B,对通道4的相位补偿C,使得4个通道的相位均为A。
需要说明的是,基站可以直接根据第一相位误差对N个通道中部分或全部通道的相位进行校正,或者可以对第一相位误差进行进一步的处理,例如根据第一相位误差得到其他的相位误差,然后根据该其他的相位误差对N个通道中部分或全部通道的相位进行校正,本申请不予限制。
通过本申请的技术方案,可以利用终端空口反馈实现合路前多个通道间相位的软校正。并且,相比于直接提高发射功率,有助于降低成本。
上文为单次相位误差估计,在本申请的另一些实施例中,还可以通过进行多次相位估计进一步提高相位误差估计精度,直至满足精度要求,从而实现NR室分DAS系统合路前通道相位校正。下面对这些实施例进行详细描述。
图4是本申请提供的另一相位校正方法的示意性流程图。同样,图4所示的方法可以由基站和终端来执行,也可以由基站和终端中的模块或单元(例如,电路、芯片或片上系统等)来执行。下面以执行主体为基站和终端为例对本申请的技术方案进行描述。图是4中的方法可以包括以下内容的至少部分内容。
步骤301,基站向终端发送第一信号。
步骤302,在接收到第一信号之后,终端根据第一信号确定第一预编码矩阵。
可选地,本实施例的第一预编码矩阵为端口数为M的预编码矩阵,M为大于或者等于N的整数。可选地,第一预编码矩阵为秩为1的预编码矩阵。可选地,第一预编码矩阵为秩为1、端口数为M的预编码矩阵,M为大于或者等于N的整数。
可选地,终端反馈的预编码矩阵的秩和/或端口数可以是预定的,例如,在协议中预定义。可选地,终端反馈的预编码矩阵的秩和/或端口数也可以是基站的指示确定,在此情况下,在步骤302之前,还可以执行步骤310,步骤310可以与步骤206相互参考和引用,在此不再赘述。可选地,终端反馈的预编码矩阵的秩和/或端口数也可以是终端确定。
步骤303,终端向基站发送第一指示信息。
步骤304,在接收到第一指示信息后,基站根据第一指示信息指示的第一预编码矩阵,确定N个通道的第一相位误差。
步骤301-304可以与步骤201-204相互参考和引用,在此不再赘述。
步骤305,基站向终端发送第二信号。
其中,第二信号用于确定第二预编码矩阵。第二信号经过N个通道后被合路,并被发送给终端,例如第二信号经过N个通道后被合路,然后由天线发射至终端,N为大于1的整数。N个通道为需要合路的N个通道,N个通道可以为图2中所示的射频通道。
可选地,第二信号被合路后经过功率放大器进行功率放大后,由天线发射至终端。
可选地,第二信号为下行参考信号。例如,第二信号为CSI-RS。
若N个通道之间存在相位误差,则第二信号在发射过程中会受到相位误差的影响,使得第二信号所包括的N个通道的信号之间存在相位误差。
步骤306,在接收到第二信号之后,终端根据第二信号确定第二预编码矩阵。
其中,第二预编码矩阵用于对上述N个通道中部分或全部通道的相位进行校正。
在一些实现方式中,终端根据第二信号进行信道估计,再根据估计结果,从预先存储的预编码矩阵集合中选取出与估计结果最匹配的第二预编码矩阵。
可选地,本实施例的第二预编码矩阵为端口数为M的预编码矩阵,M为大于或者等于N的整数。可选地,第二预编码矩阵为秩为1的预编码矩阵。可选地,第二预编码矩阵为秩为1、端口数为M的预编码矩阵,M为大于或者等于N的整数。
步骤307,终端向基站发送第三指示信息。
其中,第三指示信息可以用于指示第二预编码矩阵。
在一些实现方式中,第三指示信息可以为PMI,终端可以将第二预编码矩阵的索引通过PMI反馈给基站。
步骤308,在接收到第三指示信息后,基站根据第三指示信息指示的第二预编码矩阵,确定N-1个第二相位误差。
需要说明的是,图3仅示出了两次测量反馈过程,实际上,基站和终端之间可以进行更多次测量反馈过程,以满足相位估计的精度要求。
对于测量反馈过程的更详细的描述可以参考图3中的相关描述,在此不再赘述。
步骤309,基站根据多次测量反馈过程分别确定的相位误差,对N个通道中部分或全部通道的相位进行校正。
以进行两次测量反馈过程为例,基站根据第一相位误差和第二相位误差,对N个通道中部分或全部通道的相位进行校正。
在本实施例中,在经过N个通道之前,第一信号是经过第一加权矩阵进行加权的,第二信号是经过第二加权矩阵进行加权的,第一加权矩阵包括所述N个通道分别对应的加权值,第二加权矩阵包括所述N个通道分别对应的加权值。其中,第二加权矩阵与第一加权矩阵可以相同,也可以不同。
若第二加权矩阵与第一加权矩阵不同,可以设置第二加权矩阵中的部分通道的加权值相对于第一加权矩阵的相同通道的加权值进行预设角度的相位旋转。
以N为2为例,N个通道包括第一通道和第二通道,第一加权矩阵和第二加权矩阵中第一通道的加权值相同,第二加权矩阵的第二通道的加权值相对第一加权矩阵的第一通道的加权值进行了预设角度的相位旋转。
可选地,预设角度与水平维波束数N1和波束加密倍数O1相关。例如,当终端反馈端口数为8的预编码矩阵时,N1为4,O1为4,预设角度可以为360/N1/O1/2=11.25°。
下面以N为2、以及进行两次测量反馈为例,对步骤309进行详细描述,N个通道包括第一通道和第二通道。
在一些实现方式中,若第二加权矩阵中的第二通道的加权值相对第一加权矩阵的第一通道的加权值进行了预设角度的相位旋转,基站可以按照以下方式,基于第一相位误差和第二相位误差,确定待校正的相位误差,并根据待校正的相位误差,对第一通道和第二通道间的相位误差进行补偿,实现第一通道和第二通道的相位校正,其中,待校正的相位误差为第一通道和第二通道之间的相位误差的最终估计结果:
1)若第一相位误差等于第二相位误差,基站确定待校正的相位误差为第一相位误差与二分之一的预设角度之差;
2)若第一相位误差等于第二相位误差与两倍的预设角度之和,基站确定待校正的相位误差为第一相位误差与二分之一的预设角度之和;
3)若第一相位误差既不等于第二相位误差,也不等于第二相位误差与两倍的预设角度之和,基站确定相位误差估计失败。可选地,基站和终端可以重新执行上述步骤301-308。
上面描述了基站根据第一相位误差和第二相位误差确定待校正的相位误差,并根据待校正的相位误差对N个通道中部分或全部通道的相位进行校正。
若基站和终端在上述两次测量反馈过程的基础上,继续执行第三次测量反馈过程、第四次测量反馈过程、…、第n次测量反馈过程,基站可以根据第一相位误差、第二相位误差、…、第n相位误差确定待校正的相位误差,并根据待校正的相位误差对N个通道中部分或全部通道的相位进行校正,n为大于2的整数。
作为一个示例,待校正的相位误差
Figure PCTCN2022083113-appb-000001
满足:
1)若
Figure PCTCN2022083113-appb-000002
等于
Figure PCTCN2022083113-appb-000003
基站确定
Figure PCTCN2022083113-appb-000004
2)若
Figure PCTCN2022083113-appb-000005
等于
Figure PCTCN2022083113-appb-000006
基站确定
Figure PCTCN2022083113-appb-000007
3)若
Figure PCTCN2022083113-appb-000008
既不等于
Figure PCTCN2022083113-appb-000009
也不等于
Figure PCTCN2022083113-appb-000010
则本次测量失败,重新执行步骤n次测量反馈过程。
其中,
Figure PCTCN2022083113-appb-000011
为第n次测量反馈过程中确定的第n相位误差;Δβ n-1为根据前n-1次测量反馈过程确定的相位误差估计结果;α为预设角度,且
Figure PCTCN2022083113-appb-000012
N1水平维波束数, O1为波束加密倍数;n为大于2的整数。
在第n次测量反馈过程中,第n加权矩阵中第二通道的加权值相对于第一加权矩阵中第二通道的加权值相位旋转的角度θ n满足:
1)若
Figure PCTCN2022083113-appb-000013
2)若
Figure PCTCN2022083113-appb-000014
其中,Δβ n-2为根据前n-2次测量反馈过程确定的相位误差估计结果;θ n-1为在第n-1次测量反馈过程中,第n-1加权矩阵中第二通道的加权值相对于第一加权矩阵中第二通道的加权值相位旋转的角度。
需要说明的是,在一种可能的实现方式中,若N为大于2的整数,即需要对3个或3个以上的通道进行相位校正,可以通过将两个通道在第一次测量反馈过程中的得到第一相位误差与该两个通道在第n息测量反馈过程中得到的第n相位误差进行比较,来确定该两个通道的待校正的相位误差。例如,若N个通道包括通道1、通道2和通道3,假设以通道1为参考,在第一次测量反馈过程后,得到3个通道之间的第一相位误差,第一相位误差会包括通道2与通道1的第一相位误差、以及通道3与通道1的第一相位误差,在第二次测量反馈过程后,得到通道2与通道1的第二相位误差、通道3与通道1的第二相位误差,可以通过将通道2与通道1的第一相位误差与通道2与通道1的第二相位误差比较确定通道2与通道1之间待校正的相位误差,通过将通道3与通道1的第一相位误差与通道3与通道1的第二相位误差比较确定通道3与通道1之间待校正的相位误差。
在另一些实现方式中,若第一加权矩阵与第二加权矩阵相同,基站可以将多次测量范阔得到的多个相位误差的平均值作为第一通道和第二通道之间的相位误差的最终测量结果。
这样,本实施例可以通过进行多次测量反馈来提高相位误差估计精度,直至满足精度要求,从而实现NR室分DAS系统合路前通道相位校正。
下面结合具体的例子对本申请的技术方案进行描述。
示例1
在本示例中,基于图2所示的4T4R RRU合路为2通道的DAS系统,以校正通道1和通道2之间的相位误差、终端反馈秩(rank)为1、端口(port)数为8的预编码矩阵为例进行描述。
图5是本申请实施例提供的相位校正方法的一个示例。
步骤501,基站向终端发送第二指示信息。
其中,第二指示信息用于指示终端反馈rank为1、端口数为8的预编码矩阵。
示例性地,基站可以通过高层信令或物理层信令向终端发送第二指示信息。例如,基站可以通过RRC信令、MAC信令或DCI等向终端发送第二指示信息。
步骤502,基站根据加权矩阵W CSI-RS和CSI-RS序列,生成第一信号。
这里的加权矩阵W CSI-RS可以对应于步骤201中的第一矩阵,CSI-RS序列可以对应于步骤201中的下行参考信号序列。
示例性地,基站设置端口数为8的CSI-RS的加权矩阵为:
W CSI-RS=[1 1 0 0 0 0 0 0]
其中,W CSI-RS为1×8的矩阵,1表示1个天线,8表示8个端口,W CSI-RS中取值为1的项对应的通道为发射信号的通道,在本示例中发射信号的通道为通道1和通道2。
在此情况下,第一信号可以表示为:
Figure PCTCN2022083113-appb-000015
其中,“·”表示矩阵点乘;x n(t)为第n个端口的发射信号,发射信号均为CSI-RS,且各端口之间的信号码分复用,两两正交,n为大于0且小于9正整数。
步骤503,基站向终端发送第一信号。
其中,第一信号经过通道1和通道2后被合路,且由天线1发射至终端。
若通道1和通道2之间存在相位误差,则第一信号在发射过程中会受到通道1和通道2之间的相位误差的影响,天线1实际的发射信号(即实际的第一信号)可以表示为:
Figure PCTCN2022083113-appb-000016
其中,“·”表示矩阵点乘;x n(t)为第n个端口的发射信号,且各端口之间的信号码分复用,两两正交,n为大于0且小于9正整数;W err为相位误差矩阵,可以表示为:
Figure PCTCN2022083113-appb-000017
其中,
Figure PCTCN2022083113-appb-000018
为通道1和通道2之间实际的相位误差。
步骤504,在接收到来自基站的第一信号后,终端根据第一信号和CSI-RS序列,确定相位误差矩阵W err
假设终端接收到的信号为
Figure PCTCN2022083113-appb-000019
终端可以根据本地保存的CSI-RS序列对
Figure PCTCN2022083113-appb-000020
进行解析,得到相位误差矩阵。
示例性地,终端根据以下公式对第一信号进行解析,确定相位误差矩阵:
Figure PCTCN2022083113-appb-000021
其中,“*”表示复数共轭。根据上述公式,终端得出解调矢量
Figure PCTCN2022083113-appb-000022
即终端确定相位误差矩阵
Figure PCTCN2022083113-appb-000023
步骤505,终端选择与步骤504中的确定的相位误差矩阵W err匹配的预编码矩阵W feedback
示例性地,终端根据步骤501的第二指示信息指示的秩和端口数,确定预编码矩阵集合为秩为1、端口数为8对应的预编码矩阵集合,进而终端从预编码聚合中选择与相位误 差矩阵内积最大的预编码矩阵。也就是说,终端选择的预编码矩阵为与相位误差矩阵内积最大、rank=1且端口数为8的预编码矩阵。
步骤506,终端向基站发送PMI。
其中,PMI用于指示步骤505中选择的预编码矩阵。
示例性地,PMI中携带该预编码矩阵的索引。
步骤507,在接收到来终端的PMI之后,基站根据PMI确定通道1和通道2之间的相位误差。
示例性地,基站根据PMI指示的预编码矩阵的索引,确定预编码矩阵,进一步根据预编码矩阵,确定通道1和通道2之间的相位误差。假设基站确定终端反馈的预编码矩阵为W feedback,则通道1和通道2之间的相位误差可以估计为:
Figure PCTCN2022083113-appb-000024
其中,W feedback(m)表示W feedback的第m个元素,m=1或2;arg{·}表示取复数相位。
步骤508,基站根据步骤507中确定的相位误差,对通道1和通道2之间的相位误差进行补偿,实现通道1和通道2之间的相位的校正。
示例性地,基站可以设置
Figure PCTCN2022083113-appb-000025
这样基站后续实际发出的信号可以表示为:
Figure PCTCN2022083113-appb-000026
若终端反馈的预编码矩阵足够精确,
Figure PCTCN2022083113-appb-000027
可以接近
Figure PCTCN2022083113-appb-000028
从而实现通道1和通道2之间的相位的校正。
需要说明的是,本申请不限定基站执行步骤501的时刻,只要在步骤504之前即可。还需要说明的是,步骤501与步骤204可以互相参考,步骤503和步骤201可以互相参考,步骤504和505与步骤202可以互相参考,步骤506和步骤203可以互相参考,步骤507和步骤205可以互相参考,步骤508和步骤206可以互相参考。
在示例1中,利用终端空口PMI反馈实现合路前通道间相位的软校正,相比于直接提高发射功率,有助于降低成本。相位误差估计精度与空域相位划分的精度相关,协议码本空域划分相位精度为±360/N1/O1/2,其中N1为水平维波束数,O1为波束加密倍数。为了描述理解,以空域相位划分为4个区间(即N1*O1=4)为例对相位误差估计精度与空域相位划分的精度的关系进行描述。如图6所示,空域相位被划分为4个区间,4个区间一一对应于4个相位离散值,而4个相位离散值对应于4个不同的预编码矩阵,且4个区间分别对应于波束1-波束4。若与相位误差矩阵匹配的预编码矩阵为波束1对应的预编码矩阵,则基站可以确定真实相位误差落在第一离散值±360/4/2的区间内,即可以实现精度为±360/4/2=±45°的相位误差估计。在示例1中,基站指示终端反馈rank为1、端口数为8的PMI,在此情况下,N1为4,O1为4,因此,在示例1中,基站利用终端反馈的PMI,可以实现±11.25°精度内的初始相位误差估计,相比于2端口的终端码本反馈,可以大大提高初始相位误差估计精度。
示例2
在本示例中,同样基于图2所示的4T4R RRU合路为2通道的DAS系统,以校正通道1和通道2之间的相位误差、终端反馈rank为1、端口(port)数为8的预编码矩阵为例进行描述。
图7是本申请实施例提供的相位校正方法的另一个示例。
步骤701,基站向终端发送第二指示信息。
其中,第二指示信息用于指示终端反馈rank为1、端口数为8的预编码矩阵。
示例性地,基站可以通过高层信令或物理层信令向终端发送第二指示信息。例如,基站可以通过RRC信令、MAC信令或DCI等向终端发送第二指示信息。
1)第一次测量反馈:步骤702-707
步骤702,基站根据第一加权矩阵
Figure PCTCN2022083113-appb-000029
和CSI-RS序列,生成第一信号。
这里的加权矩阵
Figure PCTCN2022083113-appb-000030
可以对应于图4中的第一加权矩阵,CSI-RS序列可以对应于图4中的下行参考信号序列。
步骤703,基站向终端发送第一信号。
步骤704,在接收到来自基站的第一信号后,终端根据第一信号和CSI-RS序列,确定第一相位误差矩阵
Figure PCTCN2022083113-appb-000031
步骤705,终端选择与步骤704中的确定的第一相位误差矩阵
Figure PCTCN2022083113-appb-000032
匹配的第一预编码矩阵
Figure PCTCN2022083113-appb-000033
步骤706,终端向基站发送第一PMI。
步骤707,在接收到来终端的第一PMI之后,基站根据第一PMI确定通道1和通道2之间的第一相位误差
Figure PCTCN2022083113-appb-000034
步骤702-707与步骤502-507可以相互参考和引用,在此不再赘述。
2)第二次测量反馈:步骤708-713
步骤708,基站根据第二加权矩阵
Figure PCTCN2022083113-appb-000035
和CSI-RS序列,生成第二信号。
这里的加权矩阵
Figure PCTCN2022083113-appb-000036
可以对应于图4中的第二加权矩阵。
示例性地,基站设置端口数为8的CSI-RS的第二加权矩阵为:
Figure PCTCN2022083113-appb-000037
其中,第二加权矩阵中通道2的加权值相对于第一加权矩阵中通道2的加权值的相位旋转了11.25°,即预设角度为11.25°。
在此情况下,第二信号可以表示为:
Figure PCTCN2022083113-appb-000038
其中,“·”表示矩阵点乘;x n(t)为第n个端口的发射信号,发射信号均为CSI-RS,且各端口之间的信号码分复用,两两正交,n为大于0且小于9正整数。
步骤709,基站向终端发送第二信号。
其中,第二信号经过通道1和通道2后被合路,且由天线1发射至终端。
若通道1和通道2之间存在相位误差,则第二信号在发射过程中会受到通道1和通道2之间的相位误差的影响,天线1实际的发射信号(即实际的第二信号)可以表示为:
Figure PCTCN2022083113-appb-000039
其中,“·”表示矩阵点乘;x n(t)为第n个端口的发射信号,且各端口之间的信号码分复用,两两正交,n为大于0且小于9正整数;
Figure PCTCN2022083113-appb-000040
为相位误差矩阵,可以表示为:
Figure PCTCN2022083113-appb-000041
其中,
Figure PCTCN2022083113-appb-000042
为通道1和通道2之间实际的相位误差。
步骤710,在接收到来自基站的第二信号后,终端根据第二信号和CSI-RS序列,确定第二相位误差矩阵
Figure PCTCN2022083113-appb-000043
假设终端接收到的信号为
Figure PCTCN2022083113-appb-000044
终端可以根据本地保存的CSI-RS序列对
Figure PCTCN2022083113-appb-000045
进行解析,得到相位误差矩阵。
示例性地,终端根据以下公式对第二信号进行解析,确定第二相位误差矩阵:
Figure PCTCN2022083113-appb-000046
其中,“*”表示复数共轭。
根据上述公式,终端得出解调矢量
Figure PCTCN2022083113-appb-000047
即终端确定相位误差矩阵
Figure PCTCN2022083113-appb-000048
步骤711,终端选择与步骤710中的确定的第二相位误差矩阵
Figure PCTCN2022083113-appb-000049
匹配的第二预编码矩阵
Figure PCTCN2022083113-appb-000050
示例性地,终端根据步骤701的第二指示信息指示的秩和端口数,确定预编码矩阵集合为秩为1、端口数为8对应的预编码矩阵集合,进而终端从预编码聚合中选择与相位误差矩阵W err2内积最大的预编码矩阵。也就是说,终端选择的第二预编码矩阵为与相位误差矩阵W err2内积最大、rank=1、端口数为8的预编码矩阵。
步骤712,终端向基站发送第二PMI。
其中,第二PMI用于指示步骤711中选择的第二预编码矩阵。
示例性地,PMI中携带第二预编码矩阵的索引。
步骤713,在接收到来终端的第二PMI之后,基站根据第二PMI确定通道1和通道2之间的第二相位误差
Figure PCTCN2022083113-appb-000051
示例性地,基站根据第二PMI指示的预编码矩阵的索引,确定第二预编码矩阵,进一步根据第二预编码矩阵,确定通道1和通道2之间的第二相位误差。假设基站确定终端反馈的预编码矩阵为
Figure PCTCN2022083113-appb-000052
则通道1和通道2之间的相位误差可以估计为:
Figure PCTCN2022083113-appb-000053
其中,
Figure PCTCN2022083113-appb-000054
表示
Figure PCTCN2022083113-appb-000055
的第m个元素,m=1或2;arg{·}表示取复数相位。
需要说明的是,图7中仅示出了两次测量反馈过程,实际上,根据实际所需的相位误差估计精度,可以进行两次以上的测量反馈过程。在后续的测量反馈(例如,第三次测量反馈、第四次测量反馈等)过程中,通过合理设置加权矩阵,可以实现更高精度的相位误差估计。
步骤714,根据多次测量反馈过程分别确定的相位误差,进行相位校正。
在一些实现方式中,基站根据多次测量反馈过程中得到的多个相位误差,确定最终的相位误差估计结果,并根据最终的相位误差估计结果,对通道1和通道2之间的相位误差进行补偿,实现通道1和通道2之间的相位的校正。
以进行两次测量反馈过程为例,基站根据第一相位误差和第二相位误差,对通道1和通道2之间的相位误差进行补偿,实现通道1和通道2的相位的校正。
示例性地,基站根据第一相位误差和第二相位误差,确定两次反馈测量的最终估计结果,并根据最终估计结果,对通道1和通道2之间的相位误差进行补偿。在本示例中,α为11.25°。
例如,若
Figure PCTCN2022083113-appb-000056
基站确定最终估计结果
Figure PCTCN2022083113-appb-000057
Figure PCTCN2022083113-appb-000058
基站确定最终估计结果
Figure PCTCN2022083113-appb-000059
Figure PCTCN2022083113-appb-000060
既不等于
Figure PCTCN2022083113-appb-000061
也不等于
Figure PCTCN2022083113-appb-000062
则本次测量失败,重新执行步骤702-713。然后基站根据
Figure PCTCN2022083113-appb-000063
对通道1和通道2之间的相位误差进行补偿,实现通道1和通道2之间的相位的校正。
结合图8对多次测量的相位误差估计精度进行描述。图8仍然以空域相位划分为4个区间(即N1*O1=4)为例进行描述,对于4个区间可以参考上文的相关描述,在此不再赘述。若在第一次测量反馈过程中,终端反馈波束1对应的预编码矩阵,则基站可以确定真实相位误差落在[第一离散值-45°,第一离散值+45°]的区间内。在第二次测量反馈过程中,基站设置第二加权矩阵中通道2的加权值的相位旋转45°,即通道1与通道2之间的相位差为真实相位误差与45°之和。若在第二次测量反馈过程中,终端仍反馈波束1对应的预编码矩阵,则基站可以确定通道1与通道2之间的相位差落在[第一离散值,第一离散值+45°]的区间内,即真实相位误差落在[第一离散值-45°,第一离散值]的区间内。若在第二次测量反馈过程中,终端反馈波束2对应的预编码矩阵,则基站可以确定通道1与通道2之间的相位差落在[第一离散值+45°,第一离散值+90°]的区间内,即真实相位误差落在[第一离散值,第一离散值+45°]的区间内。这样,可以将相位误差估计精度提高一倍,以此类推,理论上,经过n次测量反馈,相位误差估计精度可以提高2 n-1倍。
在示例2中,通过多次测量反馈进一步提升相位估计误差精度。针对基站指示终端反馈rank为1、端口数为8的PMI的情况,理论上,经过n次测量反馈,相位误差估计精度为±22.5°·2 -n。以进行两次测量反馈过程为例,经过二次测量反馈后的相位估计精度为±5.625°,相比于示例1中的一次测量可达到的精度±11.25°,精度可以提高一倍。
需要说明的是,本申请不限定基站执行步骤701的时刻,只要在步骤704之前即可。还需要说明的是,步骤701与步骤310可以互相参考,步骤703和步骤301可以互相参考,步骤704和705与步骤302可以互相参考,步骤706和步骤303可以互相参考,步骤707和步骤304可以互相参考,步骤709和步骤305可以互相参考,步骤710和711和步骤306可以互相参考,步骤712和步骤307可以互相参考,步骤713和步骤308可以互相参考,步骤714和步骤309可以互相参考。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a、120b、120c、120d、120e、120f、120g、120h、120i、或120j,也可以是如图1所示的基站,还可以是应用于终端或基站的模块(如芯片)。
如图8所示,通信装置800包括处理单元810和收发单元820。通信装置800用于实现上述图3、图4、图5或图7中所示的方法实施例中终端或基站的功能。
当通信装置800用于实现图3所示的方法实施例中基站的功能时:
收发单元820用于基站向终端发送第一信号;用于接收来自终端的第一指示信息。
处理单元810用于根据第一指示信息指示的第一预编码矩阵,确定N个通道之间的第一相位误差;根据第一相位误差,对N个通道中部分或全部通道的相位进行校正。
可选地,收发单元820还用于向终端发送第二指示信息。
当通信装置800用于实现图3所示的方法实施例中终端的功能时:
收发单元820用于接收来自基站的第一信号。
处理单元810用于根据第一信号,确定第一预编码矩阵。
收发单元820还用于向基站发送第一指示信息。
可选地,收发单元820还用于接收来自基站的第三指示信息。
当通信装置800用于实现图4所示的方法实施例中基站的功能时:
收发单元820用于向终端发送第一信号;用于接收来自终端的第一指示信息。
处理单元810用于根据第一指示信息指示的第一预编码矩阵,确定N个通道之间的第一相位误差。
收发单元820还用于向终端发送第二信号;用于接收来自终端的第三指示信息。
处理单元810还用于根据第三指示信息指示的第二预编码矩阵,确定N个通道之间的第二相位误差。
处理单元810还用于根据第一相位误差和第二相位误差,对N个通道中部分或全部通道的相位进行校正。
可选地,收发单元820还用于向终端发送第二指示信息。
当通信装置800用于实现图4所示的方法实施例中终端的功能时:
收发单元820用于接收来自基站的第一信号。
处理单元810用于根据第一信号,确定第一预编码矩阵。
收发单元820还用于向基站发送第一指示信息。
收发单元820还用于接收来自基站的第二信号。
处理单元810还用于根据第二信号,确定第二预编码矩阵。
收发单元820还用于向基站发送第三指示信息。
可选地,收发单元820还用于接收来自基站的第二指示信息。
当通信装置800用于实现图5所示的方法实施例中基站的功能时:
收发单元820用于向终端发送第二指示信息。
处理单元810用于根据加权矩阵W CSI-RS和CSI-RS序列,生成第一信号。
收发单元820还用于向终端发送第一信号。
收发单元820还用于接收来自终端的PMI。
处理单元810还用于在接收到来终端的PMI之后,根据PMI确定通道1和通道2之间的相位误差。
处理单元810还用于根据确定的相位误差,对通道1和通道2之间的相位误差进行补偿。
当通信装置800用于实现图5所示的方法实施例中终端的功能时:
收发单元820用于接收来自基站的第二指示信息;用于接收来自基站的第一信号。
处理单元810用于根据第一信号和CSI-RS序列,确定相位误差矩阵W err
处理单元810还用于选择与相位误差矩阵W err匹配的预编码矩阵W feedback
收发单元820还用于向基站发送PMI。
当通信装置800用于实现图7所示的方法实施例中基站的功能时:
收发单元820用于向终端发送第二指示信息。
处理单元810用于根据第一加权矩阵W CSI-RS1和CSI-RS序列,生成第一信号。
收发单元820还用于向终端发送第一信号。
收发单元820还用于接收来自终端的第一PMI。
处理单元810还用于根据第一PMI确定通道1和通道2之间的第一相位误差。
处理单元810还用于根据第二加权矩阵W CSI-RS2和CSI-RS序列,生成第二信号。
收发单元820还用于向终端发送第二信号。
收发单元820还用于接收来自终端的第二PMI。
处理单元810还用于根据第二PMI确定通道1和通道2之间的第二相位误差
Figure PCTCN2022083113-appb-000064
处理单元810还用于根据第一相位误差和第二相位误差,对通道1和通道2之间的相位误差进行补偿。
当通信装置800用于实现图7所示的方法实施例中终端的功能时:
收发单元820用于接收来自基站的第二指示信息;用于接收来自基站的第一信号。
处理单元810用于根据第一信号和CSI-RS序列,确定第一相位误差矩阵
Figure PCTCN2022083113-appb-000065
处理单元810还用于选择与第一相位误差矩阵
Figure PCTCN2022083113-appb-000066
匹配的第一预编码矩阵
Figure PCTCN2022083113-appb-000067
收发单元820还用于向基站发送第一PMI。
收发单元820还用于接收来自基站的第二信号。
处理单元810还用于根据第二信号和CSI-RS序列,确定第二相位误差矩阵
Figure PCTCN2022083113-appb-000068
处理单元810还用于选择与第二相位误差矩阵匹配
Figure PCTCN2022083113-appb-000069
的第二预编码矩阵
Figure PCTCN2022083113-appb-000070
收发单元820还用于向基站发送第二PMI。
有关上述处理单元810和收发单元820更详细的描述可以直接参考图3至图7所示的方法实施例中相关描述直接得到,这里不加赘述。
如图9所示,通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选地,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当通信装置900用于实现图3至图7所示的方法时,处理器910用于实现上述处理单元810的功能,接口电路920用于实现上述收发单元820的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给基站的。
当上述通信装置为应用于基站的芯片时,该基站芯片实现上述方法实施例中基站的功能。该基站芯片从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给基站的;或者,该基站芯片向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。应理解,上述为举例说明,上文的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据上文所给出的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种相位校正方法,其特征在于,所述方法包括:
    网络设备向终端发送第一信号,所述第一信号在经过所述网络设备的N个通道后被合路后发送至终端,N为大于1的整数;
    所述网络设备接收来自所述终端的第一指示信息,所述第一指示信息用于指示根据所述第一信号确定的第一预编码矩阵;
    所述网络设备根据所述第一预编码矩阵,确定所述N个通道之间的第一相位误差;
    所述网络设备根据所述第一相位误差,对所述N个通道中部分或全部通道的相位进行校正。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预编码矩阵的端口数为M,所述M为大于或者等于N的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述终端反馈端口数为M的预编码矩阵。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一预编码矩阵的秩为1。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述终端反馈秩为1的预编码矩阵。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过所述N个通道向终端发送第二信号,所述第二信号在经过所述N个通道后被合路后发送至所述终端;
    所述网络设备接收来自所述终端的第三指示信息,所述第三指示信息用于指示根据所述第二信号确定的第二预编码矩阵;
    所述网络设备根据所述第二预编码矩阵,确定所述N个通道之间的第二相位误差;
    所述网络设备根据所述第一相位误差,对所述N个通道中部分或全部通道的相位进行校正包括:
    所述网络设备根据所述第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正。
  7. 根据权利要求6所述的方法,其特征在于,所述第一信号在经过所述N个通道之前,是经过第一加权矩阵进行加权的,所述第一加权矩阵包括所述N个通道分别对应的加权值;
    所述第二信号在经过所述N个通道之前,是经过第二加权矩阵进行加权的,所述第二加权矩阵包括所述N个通道分别对应的加权值;且
    所述第二加权矩阵中所述N个通道中部分通道的加权值相对于所述第一加权矩阵中所述部分通道的加权值进行了预设角度的相位旋转。
  8. 根据权利要求7所述的方法,其特征在于,所述N为2,所述N个通道包括第一 通道和第二通道,所述第一加权矩阵和所述第二加权矩阵中第一通道的加权值相同,所述第二加权矩阵中第二通道的加权值相对所述第一加权矩阵中第一通道的加权值进行了预设角度的相位旋转。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    若第一相位误差等于第二相位误差,所述网络设备确定待校正的相位误差,所述待校正的相位误差为所述第一相位误差与二分之一的所述预设角度之差;
    所述网络设备根据所述第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正包括:
    所述网络设备根据所述待校正的相位误差,对所述第一通道和/或所述第二通道的相位进行校正。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    若第一相位误差等于第二相位误差与两倍的所述预设角度之和,所述网络设备确定待校正的相位误差,所述待校正的相位误差为所述第一相位误差与二分之一的所述预设角度之和;
    所述网络设备根据第一相位误差和所述第二相位误差,对所述N个通道中部分或全部通道的相位进行校正包括:
    所述网络设备根据所述待校正的相位误差,对所述第一通道和/或所述第二通道的相位进行校正。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述预设角度与水平维波束数和波束加密倍数相关。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一信号被合路后经过功率放大器进行功率放大后,由所述天线发射至所述终端。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一信号为信道状态信息参考信号CSI-RS。
  14. 一种相位校正方法,其特征在于,所述方法包括:
    终端接收来自网络设备的第一信号,所述第一信号在经过所述网络设备的N个通道后被合路由所述终端接收,N为大于1的整数;
    所述终端根据所述第一信号确定第一预编码矩阵,所述第一预编码矩阵用于对所述N个通道中部分或全部通道的相位进行校正;
    所述终端向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一预编码矩阵。
  15. 根据权利要求14所述的方法,其特征在于,所述第一预编码矩阵的端口数为M,所述M为大于或者等于N的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述终端反馈端口数为M的预编码矩阵。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述第一预编码矩阵的秩为1。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述终端反馈秩为1的预编码矩阵。
  19. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法,或者用于实现如权利要求14至18中任一项所述的方法。
  20. 一种芯片,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序以实现如权利要求1至13中任一项所述的方法,或者实现如权利要求14至18中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法,或者实现如权利要求14至18中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,实现如权利要求1至13中任一项所述的方法,或者实现如权利要求14至18中任一项所述的方法。
PCT/CN2022/083113 2021-04-02 2022-03-25 一种相位校正方法和通信装置 WO2022206613A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237031248A KR20230145169A (ko) 2021-04-02 2022-03-25 위상 보정 방법 및 통신 장치
JP2023559108A JP2024511505A (ja) 2021-04-02 2022-03-25 位相補正方法および通信装置
EP22778795.9A EP4287523A1 (en) 2021-04-02 2022-03-25 Phase correction method and communication apparatus
US18/452,583 US20230396296A1 (en) 2021-04-02 2023-08-21 Phase correction method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110362397.9A CN115189731A (zh) 2021-04-02 2021-04-02 一种相位校正方法和通信装置
CN202110362397.9 2021-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/452,583 Continuation US20230396296A1 (en) 2021-04-02 2023-08-21 Phase correction method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022206613A1 true WO2022206613A1 (zh) 2022-10-06

Family

ID=83458057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083113 WO2022206613A1 (zh) 2021-04-02 2022-03-25 一种相位校正方法和通信装置

Country Status (6)

Country Link
US (1) US20230396296A1 (zh)
EP (1) EP4287523A1 (zh)
JP (1) JP2024511505A (zh)
KR (1) KR20230145169A (zh)
CN (1) CN115189731A (zh)
WO (1) WO2022206613A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002410A1 (en) * 2004-04-02 2011-01-06 Antonio Forenza System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
CN103039018A (zh) * 2010-07-05 2013-04-10 株式会社泛泰 传送设备及其通信方法、以及接收设备及其通信方法
CN107888250A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 相位噪声补偿参考信号的传输方法、估计方法及通信设备
CN108023624A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种预编码矩阵指示方法、装置和系统
WO2020174967A1 (ja) * 2019-02-26 2020-09-03 シャープ株式会社 基地局装置、端末装置および通信方法
CN112073097A (zh) * 2020-08-20 2020-12-11 东南大学 混合波束成形接收阵列自校准装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002410A1 (en) * 2004-04-02 2011-01-06 Antonio Forenza System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
CN103039018A (zh) * 2010-07-05 2013-04-10 株式会社泛泰 传送设备及其通信方法、以及接收设备及其通信方法
CN107888250A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 相位噪声补偿参考信号的传输方法、估计方法及通信设备
CN108023624A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种预编码矩阵指示方法、装置和系统
WO2020174967A1 (ja) * 2019-02-26 2020-09-03 シャープ株式会社 基地局装置、端末装置および通信方法
CN112073097A (zh) * 2020-08-20 2020-12-11 东南大学 混合波束成形接收阵列自校准装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "DL Codebook design for multi-panel structured MIMO in NR", 3GPP DRAFT; R1-1701691, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 6 February 2017 (2017-02-06), XP051220566 *
VIVO: "Further discussion and evaluation on MTRP CSI and partial reciprocity", 3GPP DRAFT; R1-2007650, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), XP051946459 *

Also Published As

Publication number Publication date
EP4287523A1 (en) 2023-12-06
KR20230145169A (ko) 2023-10-17
CN115189731A (zh) 2022-10-14
US20230396296A1 (en) 2023-12-07
JP2024511505A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
US11546020B2 (en) Communication method, communications apparatus, network device, and terminal
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
EP2643988B1 (en) Multi-layer beamforming with partial channel state information
CN110313134A (zh) 电子设备、通信装置和信号处理方法
WO2018095305A1 (zh) 一种波束训练方法及装置
WO2018171604A1 (zh) 信息的传输方法和设备
US20190123991A1 (en) Systems and Methods for a Sounding Frame in an IEEE 802.11AX Compliant Network
WO2020020283A1 (zh) 信号处理的方法和装置
US20230379115A1 (en) Co-Existence between Positioning Beams and Radio Communication Beams
US11075674B2 (en) Method, system and apparatus
WO2022117046A1 (zh) 一种通信方法、装置、芯片、存储介质及程序产品
WO2020088549A1 (zh) 一种天线校正方法及装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2022206613A1 (zh) 一种相位校正方法和通信装置
WO2018099190A1 (zh) 一种数据传输方法、接收机及发射机
US11956039B2 (en) Method and network device for beam vector selection
WO2021062806A1 (zh) 信道测量的方法和通信装置
WO2021053370A1 (en) Pmi distance (pmid) assisted mu-mimo transmission
WO2024016837A1 (zh) 一种通信方法及装置
WO2023159575A1 (zh) 通信方法、终端设备及网络设备
WO2023024943A1 (zh) 一种通信方法以及装置
WO2022204970A1 (zh) 一种参考信号的传输方法、装置及设备
WO2024065810A1 (en) Method for uplink sounding reference signal precoder selection for interference suppression
WO2024016118A1 (zh) 通信系统、终端设备及网络设备
WO2023082775A1 (zh) 参考信号的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022778795

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778795

Country of ref document: EP

Effective date: 20230829

ENP Entry into the national phase

Ref document number: 20237031248

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031248

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023559108

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE