WO2022205953A1 - 温度校准电路、校准方法、传感器、电子设备及芯片 - Google Patents

温度校准电路、校准方法、传感器、电子设备及芯片 Download PDF

Info

Publication number
WO2022205953A1
WO2022205953A1 PCT/CN2021/132694 CN2021132694W WO2022205953A1 WO 2022205953 A1 WO2022205953 A1 WO 2022205953A1 CN 2021132694 W CN2021132694 W CN 2021132694W WO 2022205953 A1 WO2022205953 A1 WO 2022205953A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature detection
signal
detection signal
module
Prior art date
Application number
PCT/CN2021/132694
Other languages
English (en)
French (fr)
Inventor
朱志鹏
杨超
张聪
Original Assignee
上海艾为微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海艾为微电子技术有限公司 filed Critical 上海艾为微电子技术有限公司
Publication of WO2022205953A1 publication Critical patent/WO2022205953A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Definitions

  • the invention relates to the field of integrated circuits, in particular to a temperature calibration circuit, a calibration method, a sensor, an electronic device and a chip.
  • integrated circuits are mainly made of semiconductor materials such as silicon, germanium, selenium, etc., and temperature will affect the performance of these semiconductor materials. It is very necessary to conduct temperature detection on integrated circuits to ensure normal operation of integrated circuits.
  • the temperature detection of the integrated circuit is realized by the temperature detection circuit, and the temperature detection circuit of the same batch of chips will use the same temperature-voltage curve for detection.
  • the voltage values output by the temperature detection circuit may be different, that is, there is an offset (in the vertical direction).
  • the offset Vos1 or Vos2) voltage, and the offset voltage is not fixed, and the offset voltage will also affect the temperature detection accuracy and accuracy.
  • the purpose of the present invention is to provide a temperature calibration circuit, a calibration method, a sensor, an electronic device and a chip.
  • the present invention provides a temperature calibration circuit
  • the temperature calibration circuit includes at least:
  • selecting a module respectively acquiring the temperature detection signal and the temperature reference signal under the same ambient temperature, and selecting the temperature detection signal or the temperature reference signal to output;
  • an analog-to-digital conversion module connected to the output end of the selection module, and converting the analog signal output by the selection module into a digital signal
  • a data storage module connected to the output end of the analog-to-digital conversion module, for storing the digital signals of the temperature detection signal and the temperature reference signal;
  • a calculation module connected to the output end of the data storage module, determines a voltage value based on the digital signal of the temperature detection signal, determines a temperature value based on the digital signal of the temperature reference signal, and determines the temperature value according to the voltage value, the temperature value and the temperature coefficient of the temperature sensor to obtain the linear equation between the voltage value of the temperature detection signal and the ambient temperature.
  • the selection module includes a first switch and a second switch; a first end of the first switch receives the temperature detection signal, and a first end of the second switch receives the temperature reference signal, so The second end of the first switch is connected to the second end of the second switch and is connected to the input end of the analog-to-digital conversion module.
  • the data storage module is a power-down non-erasable storage module
  • the computing module is implemented by a host computer.
  • the present invention also provides a temperature sensor, the temperature sensor at least includes:
  • a temperature detection circuit which generates a temperature detection signal based on the ambient temperature
  • the above-mentioned temperature calibration circuit is connected to the output end of the temperature detection circuit, and based on the temperature detection signal, the temperature reference signal and the temperature coefficient of the temperature detection circuit at the same ambient temperature, the output voltage of the temperature detection circuit and the temperature detection circuit are obtained. A linear equation of the ambient temperature is obtained, and temperatures corresponding to the temperature detection signals at different temperatures are obtained based on the linear equation.
  • the temperature detection circuit includes a temperature detection module and a gain amplification module; the temperature detection module generates two negative temperature coefficient voltages; the gain amplification module is connected to the output end of the temperature detection module for amplifying The difference between the two negative temperature coefficient voltages obtains the temperature detection signal, and the temperature detection signal has a positive temperature coefficient.
  • the temperature detection module includes a first bipolar transistor, a second bipolar transistor, a first current source and a second current source; the first current source and the first bipolar transistor are connected in series in sequence. Between the power supply and the ground, the second current source and the second bipolar transistor are connected in series between the power supply and the ground in sequence, and the collectors and bases of the first bipolar transistor and the second bipolar transistor When short-circuited, the base-emitter voltages of the first bipolar transistor and the second bipolar transistor are negative temperature coefficient voltages.
  • the present invention provides a temperature calibration method, the temperature calibration method includes:
  • the temperatures corresponding to the temperature detection signals at different temperatures are obtained based on the straight line equation.
  • the obtaining of the temperature detection signal and the temperature reference signal under the same ambient temperature includes:
  • the temperature detection signal and the temperature reference signal under the same ambient temperature are sequentially acquired, and the temperature detection signal and the temperature reference signal are respectively converted into digital signals and then stored.
  • the temperature coefficient of the temperature sensor satisfies the following relationship:
  • K is the temperature coefficient
  • N is the ratio of the current density acting on the two negative temperature coefficient voltages
  • M is the magnification of the positive temperature coefficient voltage
  • VT is the temperature coefficient voltage
  • T is the temperature.
  • the present invention provides an electronic device, the electronic device at least includes:
  • a temperature detection device which generates a temperature reference signal based on the ambient temperature
  • the above temperature sensor is connected to the output end of the temperature detection device, wherein the temperature detection circuit generates a temperature detection signal based on the ambient temperature, and the temperature calibration circuit calculates the linear equation between the output voltage of the temperature detection circuit and the ambient temperature, and based on The linear equation obtains temperatures corresponding to the temperature detection signals at different temperatures.
  • the present invention provides a chip, the chip at least includes:
  • the processor is configured to run the computer execution instructions to execute the above temperature calibration method.
  • the memory is further configured to store digital signals of the temperature detection signal and the temperature reference signal.
  • the temperature calibration circuit, calibration method, sensor, electronic device and chip of the present invention have the following beneficial effects:
  • the temperature calibration circuit, calibration method, sensor, electronic device and chip of the present invention determine the temperature-voltage curve unique to the circuit through the voltage value of the temperature detection signal at the same temperature, the reference temperature and the temperature coefficient of the temperature sensor, and based on the temperature - The voltage curve determines the temperature corresponding to the temperature detection signal at different temperatures, which improves the temperature detection precision and accuracy; at the same time, the calibration circuit of the invention has a simple structure, the calibration method is easy to operate, and has universality.
  • Fig. 1 shows the principle schematic diagram of temperature detection in the prior art that there is an imbalance
  • FIG. 2 is a schematic structural diagram of a temperature calibration circuit of the present invention
  • FIG. 3 is a schematic structural diagram of a temperature sensor of the present invention.
  • Fig. 5 shows the principle schematic diagram of the temperature calibration method of the present invention
  • FIG. 6 is a schematic diagram showing the structure of the chip of the present invention.
  • 1-temperature sensor 11-temperature calibration circuit; 111-selection module; 112-analog-to-digital conversion module; 113-data storage module; 114-calculation module; 12-temperature detection circuit; 121-temperature detection module; 122-gain amplification module; 2-temperature detection device; 3-processor; 4-memory.
  • this embodiment provides a temperature calibration circuit 11 , and the temperature calibration circuit 11 includes at least:
  • a selection module 111 an analog-to-digital conversion module 112 , a data storage module 113 and a calculation module 114 .
  • the selection module 111 respectively acquires the temperature detection signal Vtem and the temperature reference signal Vref under the same ambient temperature, and selects the temperature detection signal Vtem or the temperature reference signal Vref to output.
  • the selection module 111 includes a first switch PH1 and a second switch PH2.
  • the first end of the first switch PH1 receives the temperature detection signal Vtem
  • the first end of the second switch PH2 receives the temperature reference signal Vref
  • the second end of the first switch PH1 is connected to the first end of the first switch PH1.
  • the second ends of the two switches PH2 are connected to the input end of the analog-to-digital conversion module 12 .
  • the first switch PH1 and the second switch PH2 are not turned on at the same time.
  • the analog-to-digital conversion module 112 is connected to the output end of the selection module 111 , and converts the analog signal output by the selection module 111 into a digital signal.
  • the digital signal of the temperature detection signal Vtem is CODE1
  • the digital signal of the temperature reference signal Vref is CODE2.
  • the number of bits of the analog-to-digital conversion module 112 can be set as required, which will not be repeated here. Any circuit structure capable of realizing analog-to-digital conversion is applicable to the present invention.
  • the data storage module 113 is connected to the output end of the analog-to-digital conversion module 112 for storing the digital signals of the temperature detection signal Vtem and the temperature reference signal Vref.
  • the data storage module 113 is a power-down non-erasable storage module, including but not limited to a flash memory (Flash).
  • the digital signal CODE1 of the temperature detection signal Vtem is stored in the first storage area DATA1 of the data storage module 113
  • the digital signal CODE2 of the temperature reference signal Vref is stored in the second storage area of the data storage module 113 in the storage area DATA2.
  • the calculation module 114 is connected to the output end of the data storage module 113 , and determines the voltage value based on the digital signal CODE1 of the temperature detection signal Vtem, and determines the voltage value based on the digital signal CODE2 of the temperature reference signal Vref temperature value, and according to the voltage value, the temperature value and the temperature coefficient K of the temperature sensor, the linear equation between the voltage value of the temperature detection signal and the ambient temperature is obtained.
  • the calculation module 114 reads the digital signal CODE1 of the temperature detection signal Vtem from the storage module 113 and determines the voltage value; reads the digital signal of the temperature reference signal Vref from the storage module 113 signal CODE2, and obtain the corresponding temperature value through the index; the temperature coefficient K of the temperature sensor is built in the calculation module 114, and the temperature coefficient K is determined by the device parameter of the circuit that detects the temperature detection signal Vtem. After the temperature circuit is determined, the temperature coefficient K is determined as a fixed value; a point can be obtained in the temperature-voltage coordinate system based on the voltage value and the temperature value, and then the temperature coefficient K can be used as the slope to determine the The linear equation between the voltage value of the temperature detection signal and the ambient temperature.
  • the calculation module 114 is implemented by a host computer; in actual use, any device that can obtain a temperature-voltage characteristic curve based on a voltage value, a temperature value and a temperature coefficient is applicable. example is limited.
  • the linear equation between the voltage value and the ambient temperature is the temperature-voltage characteristic curve unique to the circuit that detects the temperature detection signal, and the temperature-voltage characteristic curve can be used to determine the corresponding temperature detection signal at different temperatures. Therefore, the accuracy and accuracy of temperature detection are greatly improved.
  • this embodiment provides a temperature sensor 1, and the temperature sensor 1 includes at least:
  • Temperature detection circuit 12 and temperature calibration circuit 11 are Temperature detection circuit 12 and temperature calibration circuit 11 .
  • the temperature detection circuit 12 generates a temperature detection signal Vtem based on the ambient temperature.
  • the temperature detection circuit 12 includes a temperature detection module 121 and a gain amplification module 122 .
  • the temperature detection module 121 generates two negative temperature coefficient voltages.
  • the gain amplification module 122 is connected to the output end of the temperature detection module 121, and is used for amplifying the difference between the two negative temperature coefficient voltages to obtain the temperature detection signal Vtem, and the temperature detection signal Vtem has a positive temperature coefficient .
  • the temperature detection module 121 includes a first bipolar transistor M1, a second bipolar transistor M2, a first current source I1 and a second current source I2, the first current source I1 and the first bipolar transistor M2.
  • the bipolar transistor M1 is connected in series between the power supply VDD and the ground GND in sequence
  • the second current source I2 and the second bipolar transistor M2 are connected in series between the power supply VDD and the ground GND in sequence
  • the first bipolar transistor M1 and The collector and base of the second bipolar transistor M2 are short-circuited
  • the base-emitter voltages of the first bipolar transistor M1 and the second bipolar transistor M2 are respectively a negative temperature coefficient voltage.
  • the area of the first bipolar transistor M1 and the second bipolar transistor M2 is the same, and the magnitude of the current provided by the first current source I1 is N times the magnitude of the current provided by the second current source I2 ( are N*I and I), respectively, and N is a number greater than 1.
  • the first bipolar transistor M1 and the second bipolar transistor M2 are PNP transistors.
  • the collector and base of the first bipolar transistor M1 are grounded to GND, the emitter is connected to the power supply VDD via the first current source I1, and the emitter of the first bipolar transistor M1 outputs a first base-emitter
  • the collector and base of the second bipolar transistor M2 are grounded to GND, the emitter is connected to the power supply voltage VDD via the second current source I2, and the emitter of the second bipolar transistor M2 outputs the first Two base-emitter voltages Vbe2.
  • the first bipolar transistor M1 and the second bipolar transistor M2 can be NPN transistors, and the specific connection relationship is adaptively adjusted, which will not be repeated here.
  • the non-inverting input terminal of the gain amplifying module 122 receives the first base-emitter voltage Vbe1, and the inverting input terminal receives the second base-emitter voltage Vbe2, and the calculated difference and amplify the output.
  • the amplification factor of the gain amplification module 122 is set to M, where M is a number greater than or equal to 1.
  • thermo-related voltages include but are not limited to positive temperature coefficient voltages and negative temperature coefficient voltages.
  • the temperature calibration circuit 11 is connected to the output end of the temperature detection circuit 12 and is based on the temperature detection signal Vtem, the temperature reference signal Vref and the temperature of the temperature detection circuit 12 at the same ambient temperature.
  • the coefficient K obtains the linear equation of the output voltage of the temperature detection circuit 12 and the ambient temperature, and based on the linear equation, the temperature corresponding to the temperature detection signal Vtem at different temperatures is obtained.
  • the temperature calibration circuit 11 obtains the temperature detection signal Vtem output by the temperature detection circuit 12, and combines the temperature reference signal Vref and the temperature coefficient K to calibrate the temperature-voltage curve of the temperature detection circuit 12; specific structure Please refer to Embodiment 1 for details, which will not be repeated here. After the temperature-voltage curve is determined, the ambient temperature corresponding to the output voltage of the temperature detection circuit 12 can be found on the temperature-voltage curve.
  • the temperature sensor 1 is usually integrated inside the chip as a functional module circuit with a simple structure, and the temperature detection signal Vtem output by the temperature detection circuit 12 is accurate with the temperature change (that is, the slope K is accurate); The calibration of the temperature calibration circuit 11 is used to realize the detection of the absolute temperature.
  • this embodiment provides an electronic device, and the electronic device includes:
  • Temperature sensor 1 and temperature detection device 2 are examples of sensors 1 and temperature detection device 2 .
  • the temperature detection device 2 generates a temperature reference signal Vref based on the ambient temperature.
  • the temperature detection device 2 is provided outside the temperature sensor 1 to detect the ambient temperature, and the signal detected by the temperature detection device 2 is provided to the temperature sensor 1 as a temperature reference signal Vref.
  • the temperature detection device 2 may use an external temperature detection chip to detect the absolute temperature of the environment, including but not limited to high-precision commercial temperature detection chips, which will not be described in detail here.
  • the temperature sensor 1 is connected to the output end of the temperature detection device 2, and is used to obtain a linear equation between the output voltage of the temperature detection circuit 12 and the ambient temperature, and based on the linear equation to obtain and The temperature corresponding to the temperature detection signal Vtem at different temperatures.
  • the structure and principle of the temperature sensor 1 may refer to Embodiment 1 and Embodiment 2, which will not be repeated here.
  • This embodiment provides a temperature calibration method, and the temperature calibration method includes:
  • the temperature calibration method is implemented based on the electronic device of the third embodiment, and specifically includes the following steps:
  • the steps of acquiring the temperature detection signal Vtem and the temperature reference signal Vref do not have a necessary sequence, and the sequence may be changed or performed simultaneously.
  • two signals are selected by switches to perform analog-to-digital conversion, and two-way analog-to-digital conversion modules need to be provided during simultaneous execution, which will not be described in detail here.
  • the temperature coefficient K of the temperature sensor 1 is determined based on the device parameters of the temperature detection circuit 12 .
  • Is1 is the saturation current of the first bipolar transistor M1
  • Is2 is the saturation current of the second bipolar transistor M2
  • V T is the temperature coefficient voltage
  • N is the ratio of the current densities of the two bipolar transistors that generate the positive temperature coefficient voltage (or the ratio of the current densities acting on the two negative temperature coefficient voltages)
  • the temperature coefficient of the temperature sensor 1 can be determined based on the structure and parameters of the temperature detection circuit 12 , and is not limited to this embodiment.
  • the corresponding temperature T1 can be obtained; when the temperature detection signal Vtem is equal to V2, the corresponding temperature T2 can be obtained.
  • this embodiment provides a chip, where the chip includes: a processor 3 and a memory 4 .
  • the memory 4 is used for storing computer execution instructions.
  • the processor 3 is configured to run the computer-executed instructions to execute the temperature calibration method of the fourth embodiment.
  • the memory 4 is further configured to store digital signals of the temperature detection signal Vtem and the temperature reference signal Vref.
  • the present invention provides a temperature calibration circuit, a calibration method, a sensor, an electronic device and a chip, including: a selection module, which respectively obtains a temperature detection signal and a temperature reference signal under the same ambient temperature, and selects the temperature detection signal or the temperature reference signal output; an analog-to-digital conversion module, connected to the output end of the selection module, to convert the analog signal output by the selection module into a digital signal; a data storage module, connected to the analog-to-digital conversion module.
  • a calculation module connected to the output end of the data storage module, determines a voltage value based on the digital signal of the temperature detection signal, The temperature value is determined by the digital signal of the temperature reference signal, and the linear equation between the voltage value of the temperature detection signal and the ambient temperature is obtained according to the voltage value, the temperature value and the temperature coefficient of the temperature sensor.
  • the temperature calibration circuit, calibration method, sensor, electronic device and chip of the present invention determine the temperature-voltage curve unique to the circuit through the voltage value of the temperature detection signal at the same temperature, the reference temperature and the temperature coefficient of the temperature sensor, and based on the temperature - The voltage curve determines the temperature corresponding to the temperature detection signal at different temperatures, which improves the temperature detection precision and accuracy; at the same time, the calibration circuit of the invention has a simple structure, the calibration method is easy to operate, and has universality. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种温度校准电路(11)、校准方法、传感器(1)、电子设备及芯片,温度校准电路(11)包括:选择模块(111),分别获取同一环境温度下的温度检测信号及温度基准信号,并择一输出;模数转换模块(112),将选择模块(111)输出的模拟信号转换为数字信号;数据存储模块(113),用于存储温度检测信号及温度基准信号的数字信号;计算模块(114),基于温度检测信号的数字信号确定电压值,基于温度基准信号的数字信号确定温度值,并根据电压值、温度值及温度传感器(1)的温度系数得到温度检测信号的电压值与环境温度的直线方程。通过同一温度下温度检测信号的电压值、基准温度及温度系数确定温度-电压曲线,并基于该温度-电压曲线确定不同温度下温度检测信号对应的温度,提高了温度检测精度及准确性。

Description

温度校准电路、校准方法、传感器、电子设备及芯片
本申请要求于2021年04月01日提交中国专利局、申请号为202110353292.7、发明名称为“温度校准电路、校准方法、传感器、电子设备及芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及集成电路领域,特别是涉及一种温度校准电路、校准方法、传感器、电子设备及芯片。
背景技术
集成电路的发展日新月异,仅仅在其开发后半个世纪,集成电路变得无处不在,现代计算、交流、制造和交通系统,包括互联网,全都依赖于集成电路的存在。集成电路主要由硅、锗、硒等半导体材料制备而成,而温度会影响这些半导体材料的性能,对集成电路进行温度检测以确保集成电路正常工作是非常必要的。
现有技术中通过温度检测电路实现对集成电路的温度检测,同一批次芯片的温度检测电路会采用同一温度-电压曲线进行检测。但是实际应用中,半导体器件会存在工艺误差,如图1所示,不同的芯片在相同的温度环境(23℃)下,其温度检测电路输出的电压值可能不同,即存在失调(垂直方向上的偏移Vos1或Vos2)电压,且该失调电压不固定,而且失调电压还会对温度检测精度和准确性产生影响。
因此,如何获取每颗芯片自身特有的温度-电压曲线,消除温度-电压曲线的工艺偏差,提高温度检测的精度和准确性,已成为本领域技术人员亟待解决的问题之一。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种温度校准电路、校准方法、传感器、电子设备及芯片。
为实现上述目的及其他相关目的,本发明提供一种温度校准电路,所述温度校准电路至少包括:
选择模块,分别获取同一环境温度下的温度检测信号及温度基准信号,选 择所述温度检测信号或所述温度基准信号输出;
模数转换模块,连接于所述选择模块的输出端,将所述选择模块输出的模拟信号转换为数字信号;
数据存储模块,连接于所述模数转换模块的输出端,用于存储所述温度检测信号及所述温度基准信号的数字信号;
计算模块,连接于所述数据存储模块的输出端,基于所述温度检测信号的数字信号确定电压值,基于所述温度基准信号的数字信号确定温度值,并根据所述电压值、所述温度值及温度传感器的温度系数得到温度检测信号的电压值与环境温度的直线方程。
可选地,所述选择模块包括第一开关及第二开关;所述第一开关的第一端接收所述温度检测信号,所述第二开关的第一端接收所述温度基准信号,所述第一开关的第二端与所述第二开关的第二端相连并连接所述模数转换模块的输入端。
可选地,所述数据存储模块为掉电不可擦除存储模块
可选地,所述计算模块采用上位机实现。
为实现上述目的及其他相关目的,本发明还提供一种温度传感器,所述温度传感器至少包括:
温度检测电路,基于环境温度产生温度检测信号;
上述温度校准电路,连接于所述温度检测电路的输出端,基于同一环境温度下的所述温度检测信号、温度基准信号及所述温度检测电路的温度系数得到所述温度检测电路的输出电压与环境温度的直线方程,并基于所述直线方程获取与不同温度下的所述温度检测信号对应的温度。
可选地,所述温度检测电路包括温度检测模块及增益放大模块;所述温度检测模块产生两个负温度系数电压;所述增益放大模块连接于所述温度检测模块的输出端,用于放大所述两个负温度系数电压的差值得到所述温度检测信号,所述温度检测信号具有正温度系数。
更可选地,所述温度检测模块包括第一双极晶体管、第二双极晶体管、第一电流源及第二电流源;所述第一电流源与所述第一双极晶体管依次串联在电源和地之间,所述第二电流源与所述第二双极晶体管依次串联在电源和地之 间,所述第一双极晶体管及所述第二双极晶体管的集电极和基极短接,所述第一双极晶体管及所述第二双极晶体管的基极-发射极电压为负温度系数电压。
为实现上述目的及其他相关目的,本发明提供一种温度校准方法,所述温度校准方法包括:
获取同一环境温度下的温度检测信号及温度基准信号;
获取所述温度基准信号对应的温度值,并基于所述温度值、所述温度检测信号的电压值及温度传感器的温度系数得到温度检测信号的电压值与环境温度的直线方程;
基于所述直线方程获取与不同温度下的所述温度检测信号对应的温度。
可选地,所述获取同一环境温度下的温度检测信号及温度基准信号,包括:
依次获取同一环境温度下的温度检测信号及温度基准信号,并将所述温度检测信号及所述温度基准信号分别转换为数字信号后存储。
可选地,所述温度传感器的温度系数满足如下关系式:
Figure PCTCN2021132694-appb-000001
其中,K为所述温度系数,N为作用于两个负温度系数电压的电流密度的比值,M为正温度系数电压的放大倍数,V T为温度系数电压,T为温度。
为实现上述目的及其他相关目的,本发明提供一种电子设备,所述电子设备至少包括:
温度检测装置,基于环境温度产生温度基准信号;
上述温度传感器,连接于所述温度检测装置的输出端,其中,温度检测电路基于环境温度产生温度检测信号,温度校准电路计算得到所述温度检测电路的输出电压与环境温度的直线方程,并基于所述直线方程获取与不同温度下的所述温度检测信号对应的温度。
为实现上述目的及其他相关目的,本发明提供一种芯片,所述芯片至少包括:
存储器,用于存储计算机执行指令;
处理器,用于运行所述计算机执行指令,执行上述温度校准方法。
可选地,所述存储器还用于存储所述温度检测信号及所述温度基准信号的数字信号。
如上所述,本发明的温度校准电路、校准方法、传感器、电子设备及芯片,具有以下有益效果:
本发明的温度校准电路、校准方法、传感器、电子设备及芯片通过同一温度下温度检测信号的电压值、基准温度及该温度传感器的温度系数确定该电路特有的温度-电压曲线,并基于该温度-电压曲线确定不同温度下温度检测信号对应的温度,提高了温度检测精度及准确性;同时本发明的校准电路结构简单,校准方法易操作,具有普适性。
附图说明
图1显示为现有技术中的温度检测存在失调的原理示意图;
图2显示为本发明的温度校准电路的结构示意图;
图3显示为本发明的温度传感器的结构示意图;
图4显示为本发明的电子设备的结构示意图;
图5显示为本发明的温度校准方法的原理示意图;
图6显示为本发明的芯片的结构示意图。
元件标号说明
1-温度传感器;11-温度校准电路;111-选择模块;112-模数转换模块;113-数据存储模块;114-计算模块;12-温度检测电路;121-温度检测模块;122-增益放大模块;2-温度检测装置;3-处理器;4-存储器。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图2~图6。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
如图2所示,本实施例提供一种温度校准电路11,所述温度校准电路11至少包括:
选择模块111、模数转换模块112、数据存储模块113及计算模块114。
如图2所示,所述选择模块111分别获取同一环境温度下的温度检测信号Vtem及温度基准信号Vref,选择所述温度检测信号Vtem或所述温度基准信号Vref输出。
具体地,在本实施例中,所述选择模块111包括第一开关PH1及第二开关PH2。所述第一开关PH1的第一端接收所述温度检测信号Vtem,所述第二开关PH2的第一端接收所述温度基准信号Vref,所述第一开关PH1的第二端与所述第二开关PH2的第二端相连并连接所述模数转换模块12的输入端。其中,所述第一开关PH1与所述第二开关PH2不同时导通。
如图2所示,所述模数转换模块112连接于所述选择模块111的输出端,将所述选择模块111输出的模拟信号转换为数字信号。
具体地,在本实施例中,所述温度检测信号Vtem的数字信号为CODE1,所述温度基准信号Vref的数字信号为CODE2。可根据需要设定所述模数转换模块112的位数,在此不一一赘述,任意能实现模数转换的电路结构均适用于本发明。
如图2所示,所述数据存储模块113连接于所述模数转换模块112的输出端,用于存储所述温度检测信号Vtem及所述温度基准信号Vref的数字信号。
具体地,在本实施例中,所述数据存储模块113为掉电不可擦除存储模块,包括但不限于闪存(Flash)。作为示例,所述温度检测信号Vtem的数字信号CODE1存储于所述数据存储模块113的第一存储区域DATA1中,所述温度基准信号Vref的数字信号CODE2存储于所述数据存储模块113的第二存储区域DATA2中。
如图2所示,所述计算模块114连接于所述数据存储模块113的输出端,基于所述温度检测信号Vtem的数字信号CODE1确定电压值,基于所述温度基准信号Vref的数字信号CODE2确定温度值,并根据所述电压值、所述温度值及温度传感器的温度系数K得到所述温度检测信号的电压值与环境温度的直线方程。
具体地,所述计算模块114从所述存储模块113中读取所述温度检测信号Vtem的数字信号CODE1,并确定电压值;从所述存储模块113中读取所述温度基准信号Vref的数字信号CODE2,并通过索引得到对应的温度值;所述计算模块114中内置有温度传感器的温度系数K,所述温度系数K由检测得到所述温度检测信号Vtem的电路的器件参数确定,当检测温度的电路确定后所述温度系数K即确定为固定值;基于所述电压值和温度值可在温度-电压坐标系中得到一个点,再以所述温度系数K为斜率,即可确定所述温度检测信号的电压值与环境温度的直线方程。
具体地,在本实施例中,所述计算模块114采用上位机实现;在实际使用中,任意可基于电压值、温度值及温度系数得到温度-电压特性曲线的装置均适用,不以本实施例为限。
需要说明的是,该电压值与环境温度的直线方程为检测得到所述温度检测信号的电路特有的温度-电压特性曲线,利用该温度-电压特性曲线即可确定不同温度下温度检测信号对应的温度,因此温度检测精度及准确性大大提高。
实施例二
如图3所示,本实施例提供一种温度传感器1,所述温度传感器1至少包括:
温度检测电路12及温度校准电路11。
如图3所示,所述温度检测电路12基于环境温度产生温度检测信号Vtem。
具体地,在本实施例中,所述温度检测电路12包括温度检测模块121及增益放大模块122。所述温度检测模块121产生两个负温度系数电压。所述增益放大模块122连接于所述温度检测模块121的输出端,用于放大所述两个负温度系数电压的差值得到所述温度检测信号Vtem,所述温度检测信号Vtem具有正温度系数。
更具体地,所述温度检测模块121包括第一双极晶体管M1、第二双极晶体管M2、第一电流源I1及第二电流源I2,所述第一电流源I1与所述第一双极晶体管M1依次串联在电源VDD和地GND之间,所述第二电流源I2与所述第二双极晶体管M2依次串联在电源VDD和地GND之间,所述第一双极 晶体管M1及所述第二双极晶体管M2的集电极和基极短接,所述第一双极晶体管M1及所述第二双极晶体管M2的基极-发射极电压分别为一负温度系数电压。其中,所述第一双极晶体管M1与所述第二双极晶体管M2的面积相同,所述第一电流源I1提供的电流大小为所述第二电流源I2提供的电流大小的N倍(分别为N*I及I),N为大于1的数。作为示例,所述第一双极晶体管M1及所述第二双极晶体管M2为PNP三极管。所述第一双极晶体管M1的集电极和基极接地GND,发射极经由所述第一电流源I1连接电源VDD,且所述第一双极晶体管M1的发射极输出第一基极-发射极电压Vbe1;所述第二双极晶体管M2的集电极和基极接地GND,发射极经由所述第二电流源I2连接电源电压VDD,且所述第二双极晶体管M2的发射极输出第二基极-发射极电压Vbe2。在实际使用中,所述第一双极晶体管M1及所述第二双极晶体管M2可采用NPN三极管,具体连接关系适应性调整,在此不一一赘述。
更具体地,所述增益放大模块122的正相输入端接收所述第一基极-发射极电压Vbe1,反相输入端接收所述第二基极-发射极电压Vbe2,计算得到两者的差值并放大输出。所述增益放大模块122的放大倍数设定为M,其中,M为大于等于1的数。
需要说明的是,任意可得到与温度有关的电压的电路结构均适用于本发明,所述与温度有关的电压包括但不限于正温度系数电压及负温度系数电压。
如图3所示,所述温度校准电路11连接于所述温度检测电路12的输出端,基于同一环境温度下的所述温度检测信号Vtem、温度基准信号Vref及所述温度检测电路12的温度系数K得到所述温度检测电路12的输出电压与环境温度的直线方程,并基于所述直线方程获取与不同温度下的所述温度检测信号Vtem对应的温度。
具体地,所述温度校准电路11获取所述温度检测电路12输出的温度检测信号Vtem,并结合温度基准信号Vref及温度系数K对所述温度检测电路12的温度-电压曲线进行校准;具体结构详见实施例一,在此不一一赘述。温度-电压曲线确定后,可在温度-电压曲线上找到所述温度检测电路12的输出电压对应的环境温度。
需要说明的是,所述温度传感器1通常作为一个功能模块电路集成在芯片 内部,结构简单,所述温度检测电路12输出的温度检测信号Vtem随温度变化准确(即斜率K精确);需要通过所述温度校准电路11的校准来实现对绝对温度的检测。
实施例三
如图4所示,本实施例提供一种电子设备,所述电子设备包括:
温度传感器1及温度检测装置2。
如图4所示,所述温度检测装置2基于环境温度产生温度基准信号Vref。
具体地,所述温度检测装置2设置于所述温度传感器1外部,对环境温度进行检测,所述温度检测装置2检测到的信号作为温度基准信号Vref提供给所述温度传感器1。所述温度检测装置2可采用外部的温度检测芯片,对环境的绝对温度进行检测,包括但不限于高精度的商用温度检测芯片,在此不一一赘述。
如图4所示,所述温度传感器1连接于所述温度检测装置2的输出端,用于得到所述温度检测电路12的输出电压与环境温度的直线方程,并基于所述直线方程获取与不同温度下的所述温度检测信号Vtem对应的温度。
具体地,所述温度传感器1的结构及原理可参见实施例一、实施例二,在此不一一赘述。
实施例四
本实施例提供一种温度校准方法,所述温度校准方法包括:
1)获取同一环境温度下的温度检测信号Vtem及温度基准信号Vref。
2)获取所述温度基准信号Vref对应的温度值,并基于所述温度值、所述温度检测信号Vtem的电压值及温度传感器的温度系数K得到温度检测信号的电压值与环境温度的直线方程。
3)基于所述直线方程获取与不同温度下的所述温度检测信号Vtem对应的温度。
如图4所示,作为示例,所述温度校准方法基于实施例三的电子设备实现,具体包括以下步骤:
1)断开所述第二开关PH2、闭合所述第一开关PH1,获取当前环境温度下同一环境温度下的温度检测信号Vtem,将所述温度检测信号Vtem转换为数字信号CODE1并存储。然后断开所述第一开关PH1、闭合所述第二开关PH2,获取同一环境温度下的温度基准信号Vref,将所述温度基准信号Vref转换为数字信号CODE2并存储。
需要说明的是,获取所述温度检测信号Vtem及所述温度基准信号Vref的步骤不存在必然的先后顺序,可调换顺序,也可同时执行。分步执行时通过开关分别选通两个信号进行模数转换,同时执行时需提供两路模数转换模块,在此不一一赘述。
2)读取所述温度检测信号Vtem的数字信号CODE1的码值,确定所述温度检测信号Vtem的电压值;读取所述温度基准信号Vref的数字信号CODE2的码值,通过索引所述温度检测装置2的规格参数可知所述温度基准信号Vref的数字信号CODE2对应一个温度值T,该温度值即为环境温度;获取所述温度传感器1的温度系数K。基于所述电压值和温度值可在温度-电压坐标系中得到一个点,再以所述温度系数K为斜率,即可确定所述温度检测信号的电压值V与环境温度TEMP的直线方程,如图5所示,该直线方程为当前温度传感器1特有的。
更具体地,所述温度传感器1的温度系数K基于所述温度检测电路12的器件参数确定。在本实施例中,所述第一电流源I1的电流满足:N*I=I s1*e [Vbe1/(n*V T )],所述第二电流源I2的电流满足:I=I s2*e [Vbe2/(n*V T )];其中,Is1为所述第一双极晶体管M1的饱和电流;Is2为所述第二双极晶体管M2的饱和电流;V T为温度系数电压;N为产生正温度系数电压的两个双极晶体管的电流密度的比值(或者说是作用于两个负温度系数电压的电流密度的比值);n为常数,对于一双极器件,n=1。由于所述第一双极晶体管M1与所述第二双极晶体管M2的面积相等,因此I s1=I s2,则Vbe1-Vbe2=V T*lnN,Vtem=M*(Vbe1-Vbe2)=M*V T*lnN,其中,M为所述增益放大模块122的放大倍数,V T的温度系数为0.087mV/℃,则简化得到Vtem=K*T+V0;T为温度,V0为常数;K为温度系数,满足如下关系式:
Figure PCTCN2021132694-appb-000002
假设M=10,N=10,则Vtem的温度系数(即斜率)K=2mV/℃。
需要说明的是,所述温度传感器1的温度系数可基于温度检测电路12的结构及参数确定,不以本实施例为限。
3)发送温度检测指令,闭合所述第一开关PH1,断开所述第二开关PH2,获取当前环境温度下的温度检测信号Vtem,并读取其数字信号,通过确定的直线方程求出对应的温度。
具体地,如图5所示,当所述温度检测信号Vtem等于V1时,可得到对应的温度T1;当所述温度检测信号Vtem等于V2时,可得到对应的温度T2。
实施例五
如图6所示,本实施例提供一种芯片,所述芯片包括:处理器3及存储器4。
如图6所示,所述存储器4用于存储计算机执行指令。
如图6所示,所述处理器3用于运行所述计算机执行指令,以执行实施例四的温度校准方法。
如图6所示,作为本发明的另一种实现方式,所述存储器4还用于存储所述温度检测信号Vtem及所述温度基准信号Vref的数字信号。
综上所述,本发明提供一种温度校准电路、校准方法、传感器、电子设备及芯片,包括:选择模块,分别获取同一环境温度下的温度检测信号及温度基准信号,选择所述温度检测信号或所述温度基准信号输出;模数转换模块,连接于所述选择模块的输出端,将所述选择模块输出的模拟信号转换为数字信号;数据存储模块,连接于所述模数转换模块的输出端,用于存储所述温度检测信号及所述温度基准信号的数字信号;计算模块,连接于所述数据存储模块的输出端,基于所述温度检测信号的数字信号确定电压值,基于所述温度基准信号的数字信号确定温度值,并根据所述电压值、所述温度值及温度传感器的温度系数得到温度检测信号的电压值与环境温度的直线方程。本发明的温度校准电路、校准方法、传感器、电子设备及芯片通过同一温度下温度检测信号的电压值、基准温度及该温度传感器的温度系数确定该电路特有的温度-电压曲 线,并基于该温度-电压曲线确定不同温度下温度检测信号对应的温度,提高了温度检测精度及准确性;同时本发明的校准电路结构简单,校准方法易操作,具有普适性。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (13)

  1. 一种温度校准电路,其特征在于,所述温度校准电路至少包括:
    选择模块,分别获取同一环境温度下的温度检测信号及温度基准信号,选择所述温度检测信号或所述温度基准信号输出;
    模数转换模块,连接于所述选择模块的输出端,将所述选择模块输出的模拟信号转换为数字信号;
    数据存储模块,连接于所述模数转换模块的输出端,用于存储所述温度检测信号及所述温度基准信号的数字信号;
    计算模块,连接于所述数据存储模块的输出端,基于所述温度检测信号的数字信号确定电压值,基于所述温度基准信号的数字信号确定温度值,并根据所述电压值、所述温度值及温度传感器的温度系数得到温度检测信号的电压值与环境温度的直线方程。
  2. 根据权利要求1所述的温度校准电路,其特征在于,所述选择模块包括第一开关及第二开关;所述第一开关的第一端接收所述温度检测信号,所述第二开关的第一端接收所述温度基准信号,所述第一开关的第二端与所述第二开关的第二端相连并连接所述模数转换模块的输入端。
  3. 根据权利要求1所述的温度校准电路,其特征在于,所述数据存储模块为掉电不可擦除存储模块。
  4. 根据权利要求1所述的温度校准电路,其特征在于,所述计算模块采用上位机实现。
  5. 一种温度传感器,其特征在于,所述温度传感器至少包括:
    温度检测电路,基于环境温度产生温度检测信号;
    如权利要求1-4任意一项所述的温度校准电路,连接于所述温度检测电路的输出端,基于同一环境温度下的所述温度检测信号、温度基准信号及所述温度检测电路的温度系数得到所述温度检测电路的输出电压与环境温度的直线方程,并基于所述直线方程获取与不同温度下的所述温度检测信号对应的温度。
  6. 根据权利要求5所述的温度传感器,其特征在于,所述温度检测电路 包括温度检测模块及增益放大模块;所述温度检测模块产生两个负温度系数电压;所述增益放大模块连接于所述温度检测模块的输出端,用于放大所述两个负温度系数电压的差值得到所述温度检测信号,所述温度检测信号具有正温度系数。
  7. 根据权利要求6所述的温度传感器,其特征在于,所述温度检测模块包括第一双极晶体管、第二双极晶体管、第一电流源及第二电流源;所述第一电流源与所述第一双极晶体管依次串联在电源和地之间,所述第二电流源与所述第二双极晶体管依次串联在电源和地之间,所述第一双极晶体管及所述第二双极晶体管的集电极和基极短接,所述第一双极晶体管及所述第二双极晶体管的基极-发射极电压为负温度系数电压。
  8. 一种温度校准方法,其特征在于,所述温度校准方法包括:
    获取同一环境温度下的温度检测信号及温度基准信号;
    获取所述温度基准信号对应的温度值,并基于所述温度值、所述温度检测信号的电压值及温度传感器的温度系数得到温度检测信号的电压值与环境温度的直线方程;
    基于所述直线方程获取与不同温度下的所述温度检测信号对应的温度。
  9. 根据权利要求8所述的温度校准方法,其特征在于:所述获取同一环境温度下的温度检测信号及温度基准信号,包括:
    依次获取同一环境温度下的温度检测信号及温度基准信号,并将所述温度检测信号及所述温度基准信号分别转换为数字信号后存储。
  10. 根据权利要求8所述的温度校准方法,其特征在于:所述温度传感器的温度系数满足如下关系式:
    Figure PCTCN2021132694-appb-100001
    其中,K为所述温度系数,N为作用于两个负温度系数电压的电流密度的比值,M为正温度系数电压的放大倍数,V T为温度系数电压,T为温度。
  11. 一种电子设备,其特征在于,所述电子设备至少包括:
    温度检测装置,基于环境温度产生温度基准信号;
    如权利要求5-7任意一项所述的温度传感器,连接于所述温度检测装置的输出端,其中,温度检测电路基于环境温度产生温度检测信号,温度校准电路 计算得到所述温度检测电路的输出电压与环境温度的直线方程,并基于所述直线方程获取与不同温度下的所述温度检测信号对应的温度。
  12. 一种芯片,其特征在于,所述芯片至少包括:
    存储器,用于存储计算机执行指令;
    处理器,用于运行所述计算机执行指令,执行如权利要求8-10任意一项所述的温度校准方法。
  13. 根据权利要求12所述的芯片,其特征在于,所述存储器还用于存储所述温度检测信号及所述温度基准信号的数字信号。
PCT/CN2021/132694 2021-04-01 2021-11-24 温度校准电路、校准方法、传感器、电子设备及芯片 WO2022205953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110353292.7A CN112732002B (zh) 2021-04-01 2021-04-01 温度校准电路、校准方法、传感器、电子设备及芯片
CN202110353292.7 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022205953A1 true WO2022205953A1 (zh) 2022-10-06

Family

ID=75596272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132694 WO2022205953A1 (zh) 2021-04-01 2021-11-24 温度校准电路、校准方法、传感器、电子设备及芯片

Country Status (2)

Country Link
CN (1) CN112732002B (zh)
WO (1) WO2022205953A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112732002B (zh) * 2021-04-01 2021-07-16 上海艾为微电子技术有限公司 温度校准电路、校准方法、传感器、电子设备及芯片
CN114415777A (zh) * 2021-12-30 2022-04-29 北京无线电计量测试研究所 一种补偿c场电流减少铷钟温度系数的方法和电路
CN114636484B (zh) * 2022-05-09 2022-08-23 深圳市航顺芯片技术研发有限公司 数字温度传感器、芯片温度检测系统和芯片温度检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175347A (zh) * 2011-02-15 2011-09-07 钜泉光电科技(上海)股份有限公司 温度传感器的校准方法及其系统
CN102589734A (zh) * 2012-01-31 2012-07-18 钜泉光电科技(上海)股份有限公司 温度传感器
CN104515611A (zh) * 2013-09-29 2015-04-15 中兴通讯股份有限公司 一种感温电路及温度传感器
CN107255529A (zh) * 2017-06-19 2017-10-17 武汉科技大学 一种高精度温度传感器
CN107560747A (zh) * 2017-09-26 2018-01-09 珠海格力电器股份有限公司 一种温度检测方法及其装置、集成电路
CN108007594A (zh) * 2016-10-31 2018-05-08 深圳市中兴微电子技术有限公司 一种温度检测电路和方法
DE102017104434B3 (de) * 2017-03-03 2018-07-12 Infineon Technologies Ag Vorrichtung und Verfahren zum Bestimmen einer Temperatur oder eines zur Bestimmung der Temperatur nutzbaren temperaturabhängigen Werts, Temperatursensor, Drucksensor und Kombinationssensor
CN109186790A (zh) * 2018-10-18 2019-01-11 卓捷创芯科技(深圳)有限公司 一种提高半导体温度传感器测量精度的方法
CN112578840A (zh) * 2020-12-09 2021-03-30 杭州米芯微电子有限公司 一种利用温度校准基准电压的方法、系统及存储介质
CN112732002A (zh) * 2021-04-01 2021-04-30 上海艾为微电子技术有限公司 温度校准电路、校准方法、传感器、电子设备及芯片

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081423B (zh) * 2010-12-07 2012-06-27 上海艾为电子技术有限公司 温度折返限流装置
US20160252409A1 (en) * 2015-02-27 2016-09-01 Qualcomm, Incorporated Calibrated temperature sensing system
US10228294B2 (en) * 2016-05-12 2019-03-12 Infineon Technologies Ag System and method for temperature sensing
CN206125581U (zh) * 2016-09-22 2017-04-26 德州圣祥金属制品有限公司 一种金属焊丝热塑膜生产装置
CN107014523A (zh) * 2017-05-18 2017-08-04 周孝银 一种带有自校正功能的温度测量系统
IT201800004496A1 (it) * 2018-04-13 2019-10-13 Circuito sensore, sistema e procedimento corrispondenti
CN208833381U (zh) * 2018-08-08 2019-05-07 上海艾为电子技术股份有限公司 一种温度检测采样电路
CN208672186U (zh) * 2018-09-12 2019-03-29 上海艾为电子技术股份有限公司 温度检测采样电路及音频放大器芯片
DE102019101408B3 (de) * 2019-01-21 2020-06-18 Infineon Technologies Ag Strommesseinrichtung, Strommessverfahren und Kalibrierungsverfahren
CN109799008A (zh) * 2019-01-28 2019-05-24 广东优世联合控股集团股份有限公司 一种温度传感器自动校准方法及温度传感器
CN110146201A (zh) * 2019-04-13 2019-08-20 复旦大学 一种具有温度补偿的传感信号调理系统及温度补偿方法
US11513012B2 (en) * 2019-06-06 2022-11-29 Mediatek Inc. Aging calibration for temperature sensor
CN112113686A (zh) * 2020-09-30 2020-12-22 山东华科半导体研究院有限公司 温度传感器芯片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175347A (zh) * 2011-02-15 2011-09-07 钜泉光电科技(上海)股份有限公司 温度传感器的校准方法及其系统
CN102589734A (zh) * 2012-01-31 2012-07-18 钜泉光电科技(上海)股份有限公司 温度传感器
CN104515611A (zh) * 2013-09-29 2015-04-15 中兴通讯股份有限公司 一种感温电路及温度传感器
CN108007594A (zh) * 2016-10-31 2018-05-08 深圳市中兴微电子技术有限公司 一种温度检测电路和方法
DE102017104434B3 (de) * 2017-03-03 2018-07-12 Infineon Technologies Ag Vorrichtung und Verfahren zum Bestimmen einer Temperatur oder eines zur Bestimmung der Temperatur nutzbaren temperaturabhängigen Werts, Temperatursensor, Drucksensor und Kombinationssensor
CN107255529A (zh) * 2017-06-19 2017-10-17 武汉科技大学 一种高精度温度传感器
CN107560747A (zh) * 2017-09-26 2018-01-09 珠海格力电器股份有限公司 一种温度检测方法及其装置、集成电路
CN109186790A (zh) * 2018-10-18 2019-01-11 卓捷创芯科技(深圳)有限公司 一种提高半导体温度传感器测量精度的方法
CN112578840A (zh) * 2020-12-09 2021-03-30 杭州米芯微电子有限公司 一种利用温度校准基准电压的方法、系统及存储介质
CN112732002A (zh) * 2021-04-01 2021-04-30 上海艾为微电子技术有限公司 温度校准电路、校准方法、传感器、电子设备及芯片

Also Published As

Publication number Publication date
CN112732002A (zh) 2021-04-30
CN112732002B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022205953A1 (zh) 温度校准电路、校准方法、传感器、电子设备及芯片
US9347836B2 (en) Dynamic voltage reference for sampling delta based temperature sensor
CN108225588B (zh) 一种温度传感器及温度检测方法
JP5329474B2 (ja) 温度とデジタルコード間の線形関係の提供
US9557226B2 (en) Current-mode digital temperature sensor apparatus
US7140767B2 (en) Programmable ideality factor compensation in temperature sensors
US10190922B2 (en) Method and apparatus for calibrating a sensor
CN109186790B (zh) 一种提高半导体温度传感器测量精度的方法
US20110234197A1 (en) Bandgap circuit with temperature correction
Eberlein et al. A 28nm CMOS ultra-compact thermal sensor in current-mode technique
JP2002048651A (ja) 半導体温度検出方法およびその回路
US10367518B2 (en) Apparatus and method for single temperature subthreshold factor trimming for hybrid thermal sensor
CN110907807B (zh) 芯片电路功耗测量电路及方法、芯片
CN102338668A (zh) 一种温度检测电路
CN110954229A (zh) 温度检测电路、温度检测设备、芯片及电路结构
CN114623944A (zh) 一种cmos温度传感器
US7852144B1 (en) Current reference system and method
US8854120B2 (en) Auto-calibrating a voltage reference
JP2000074747A (ja) 温度検出回路及び温度検出方法並びに光電変換回路
CN113125920A (zh) 工艺传感器
CN114353976A (zh) 温度检测电路
CN206638358U (zh) 一种易于实现的高精度温度检测电路
CN112965565A (zh) 一种低温漂的带隙基准电路
TW201323843A (zh) 溫度感測裝置
CN113485512B (zh) 低功耗改进型带隙基准温度读出电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934589

Country of ref document: EP

Kind code of ref document: A1