WO2022205948A1 - 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法 - Google Patents

基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法 Download PDF

Info

Publication number
WO2022205948A1
WO2022205948A1 PCT/CN2021/132238 CN2021132238W WO2022205948A1 WO 2022205948 A1 WO2022205948 A1 WO 2022205948A1 CN 2021132238 W CN2021132238 W CN 2021132238W WO 2022205948 A1 WO2022205948 A1 WO 2022205948A1
Authority
WO
WIPO (PCT)
Prior art keywords
accident
equipment
sensitivity
power
node
Prior art date
Application number
PCT/CN2021/132238
Other languages
English (en)
French (fr)
Inventor
冷贵峰
连欣乐
杨礼顺
黄佐林
李华鹏
荣龙
樊国盛
王荣
谭宇
张荣华
糟海钰
陈飞建
吕元双
李定强
黄莉
Original Assignee
贵州电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州电网有限责任公司 filed Critical 贵州电网有限责任公司
Publication of WO2022205948A1 publication Critical patent/WO2022205948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention relates to a power grid accident event level prediction system and method based on sensitivity analysis and equipment failure rate, and belongs to the technical field of power dispatch risk analysis.
  • Accurately judging the situation of the accident event can provide a reference for the emergency command organization to initiate an emergency response or emergency plan.
  • the location of the impact of accidents is often inaccurate and the reporting is not timely, which greatly affects the progress of accident processing and also affects Response speed of power grid and related enterprise organizations to power grid accident events and power restoration work.
  • the present invention provides a power grid accident event level prediction system and method based on sensitivity analysis and equipment failure rate, so as to solve the problem that in the actual operation of the current power grid, due to the lack of sufficient automatic data processing analysis and equipment dynamic management systems, it is often This resulted in inaccurate positioning of the impact of accident events and untimely reporting, which greatly affected the progress of accident handling, and also affected the response speed of power grids and related enterprise organizations to power grid accident events and the problem of power restoration.
  • the present invention provides a power grid accident event level prediction method based on sensitivity analysis and equipment failure rate, wherein the prediction method includes:
  • the equipment with the historical failure rate higher than the set value is regarded as being cut off, and the node involved in the accident event is regarded as cut off, and the static safety analysis of the power system is performed to obtain the node that exceeds the limit;
  • the node involved in the accident event and the equipment and lines involved in the limit-crossing node are considered to be removed, and the level of the accident event is predicted.
  • the calculation method of the sensitivity is:
  • the active power sensitivity and the reactive power sensitivity are added to obtain the sensitivity.
  • the calculation method of the historical failure rate is:
  • the out-of-limit node includes a node with out-of-limit power or out-of-limit voltage in the power system.
  • the power failure severity, equipment damage and personnel hazards that may occur in the power grid are pre-judged, and the accident event is graded according to the pre-judgment result.
  • the present invention provides a power grid accident event level prediction device based on sensitivity analysis and equipment failure rate, wherein the device includes:
  • a first calculation module configured to: when an accident occurs in the electric power system, calculate the sensitivity of each node in the electric power system before the occurrence of the accident and a node related to the occurrence of the accident;
  • a node selection module configured to: select a number of nodes with the highest sensitivity related to the nodes involved in the accident event to form a set of nodes indirectly involved in the accident event;
  • the second calculation module is used to: calculate the historical failure rate of the equipment on the node indirectly involved in the accident event;
  • the limit violation analysis module is used to: regard the equipment with the historical failure rate higher than the set value as being cut off, and at the same time regard the nodes involved in the accident event as cut off, perform static safety analysis on the power system, and obtain the limit violation node;
  • the level prediction module is used for: considering both the node involved in the accident event and the equipment and lines involved in the limit crossing node as being cut off, and predicting the level of the accident event.
  • the first computing module includes:
  • an acquisition sub-module used for: acquiring the steady state data of the power grid operation before the occurrence of the accident event;
  • a power flow calculation sub-module used for: taking the steady-state data of the power grid operation as the basic data for power flow calculation, and performing active power sensitivity and reactive power sensitivity calculations on the nodes involved in the accident event;
  • the addition calculation sub-module is used for: adding the active power sensitivity and the reactive power sensitivity to obtain the sensitivity.
  • the calculation method of the historical failure rate is:
  • the present invention provides a power grid accident event level prediction system based on sensitivity analysis and equipment failure rate, comprising a memory, a processor and a computer program stored in the memory and executable on the processor, the processor Execute the pre-judgment method described.
  • the present invention provides a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, the pre-judgment method is implemented.
  • the method of the invention can quickly and accurately predict the level of the accident event through the analysis of safety and stability after the occurrence of the accident event, improve the ability of the relevant departments of the power system to respond quickly and appropriately to emergencies and disasters, and effectively solve the problem.
  • the power system analysis and calculation scale is more and more complex, and the power accident event determination workload is large and the efficiency is low.
  • FIG. 1 is a flow chart of a method according to an embodiment of the present invention.
  • Fig. 3 is another apparatus block diagram of the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a computer-readable medium according to an embodiment of the present invention.
  • an embodiment of the present invention is a method for predicting a power grid accident event level based on sensitivity analysis and equipment failure rate, wherein the predicting method includes:
  • the grid operation steady state data before the accident occurs such as a given grid structure, parameters and operating conditions of components such as generators and loads;
  • the operating steady-state data is used as the basic data for power flow calculation, and the active power sensitivity and reactive power sensitivity are calculated for the nodes involved in the accident event; finally, the active power sensitivity and the reactive power sensitivity are added to obtain the sensitivity.
  • the grid operation steady-state data before the accident is used as the basic data for power flow calculation, and the sensitivity of each node in the system to the node related to the accident event is calculated; Calculate the sensitivity of active power and reactive power for the nodes involved in each accident event, add the calculated active power sensitivity and reactive power sensitivity, sort according to the added value, and find the accident related to the calculation.
  • the event involves the node with the greatest correlation between the active power fluctuation and the reactive power fluctuation of the node; sensitivity calculation, processing and sorting of calculation results are performed for all nodes involved in the accident event.
  • the sensitivity analysis method is based on the power flow calculation of the power grid, and its basic starting point is the power balance calculation matrix of the node.
  • the perturbation method adds a small perturbation to the control variable, calculates the power flow before and after the perturbation, and calculates the relationship between the dependent variable and the variable.
  • the Jacobian matrix method Take the Jacobian matrix method as an example:
  • ⁇ P is the node active power change vector
  • ⁇ Q is the node reactive power change vector
  • ⁇ U is the node voltage change vector
  • J P ⁇ , J PU , J Q ⁇ , J QU are P, Partial differential matrix of Q with respect to ⁇ and U.
  • the sensitivity calculation formula of voltage and active power/reactive power can be obtained, as shown in the following formula.
  • all the nodes involved in the power flow calculation are usually determined according to the regional level, and the relevant nodes are the line nodes directly related to the accident event. For example, if a line is disconnected, the two nodes at both ends of the line are the relevant nodes.
  • step S1 select N nodes with the highest sensitivity for the nodes involved in each accident event, and the value of N is determined according to the actual situation of the analyzed power grid. After the selection is completed, the selection results are comprehensively selected to remove duplicate nodes. A collection of nodes indirectly involved in accident events is formed.
  • the calculation method of the historical failure rate is: according to the historical failure situation of the power grid equipment, analyze the proportion of the failure times of the equipment on the node indirectly involved in the accident event under the overvoltage or overload condition to all the failure times, to calculate This is the failure rate of the equipment under overvoltage or overload conditions.
  • the equipment with the failure rate higher than the set value is considered to have been removed, and the set value of the failure rate is determined according to the actual situation of the calculated power grid.
  • the set value here is The value is a threshold value. If the value is greater than this value, it is considered that the equipment is very likely to be damaged in this case.
  • the set value is related to the weather, humidity, and temperature. It is different in each place, such as Guizhou and Heilongjiang, and should be determined according to the actual situation. Disconnected means that the original state of being connected to the grid has changed to the state of being disconnected from the grid.
  • the static safety analysis function is used to analyze the static safety situation of the power system under the specified fault or fault combination. Check and generate a system safety assessment report to get the nodes that exceed the power limit or voltage limit in the grid.
  • the static safety analysis of the power system can also apply the N-1 principle to disconnect the lines, transformers and other components one by one without faults, and check whether other components are overloaded and the power grid is low voltage, so as to check whether the structural strength and operation mode of the power grid meet the requirements of safe operation. .
  • the nodes involved in the accident event and the unstable nodes that are beyond the limit calculated after the static safety analysis are integrated, and the equipment and lines involved in the nodes are considered to be removed.
  • the removal node according to the removal node to predict the possible shutdown severity, equipment damage and personnel hazards of the power grid, and to judge the level of the accident events according to the prediction results.
  • the rating can be determined according to the Regulations on Emergency Response and Investigation and Handling of Electric Power Safety Accidents.
  • the present invention completes the rapid and accurate determination of the situation of electric power safety accidents through reliable analysis and calculation, which can not only help the dispatching and operation personnel to fully understand the possible consequences of equipment failures, but also help the dispatching and operation personnel to Quickly recognize the seriousness of the accident after the accident, and make reasonable measures.
  • the method of the invention can solve the problems in the prior art that the power system analysis and calculation scale is becoming more and more complex, the power accident event determination workload is large and the efficiency is low. Improve the ability of relevant departments of the power system to respond quickly and appropriately to emergencies and disasters.
  • the second embodiment of the present invention provides a power grid accident event level prediction device based on sensitivity analysis and equipment failure rate.
  • the device includes: a first calculation module, used for: when an accident event occurs in the power system, Calculate the sensitivity of each node in the power system before the accident event occurs and the node related to the accident event; a node selection module is used to: select a number of nodes with the highest sensitivity related to the node involved in the accident event to form the node indirectly involved in the accident event.
  • the second calculation module is used to: statistically calculate the historical failure rate of the equipment on the node indirectly involved in the accident event;
  • the limit violation analysis module is used for: the equipment whose historical failure rate is higher than the set value is calculated It is considered to have been cut off, and at the same time, the nodes involved in the accident event are regarded as cut off, and the static safety analysis of the power system is carried out to obtain out-of-limit nodes; the level prediction module is used for: the nodes involved in the accident event and the over-
  • the first calculation module includes: an acquisition sub-module for: acquiring the grid operation steady state data before the occurrence of the accident; a power flow calculation sub-module for: using the grid operation steady state data as The basic data of power flow calculation is used to calculate the active power sensitivity and reactive power sensitivity of the nodes involved in the accident event; the addition calculation sub-module is used for: adding the active power sensitivity and the reactive power sensitivity, get sensitivity.
  • the device introduced in the second embodiment of the present invention is the device used to implement the method in the first embodiment of the present invention, based on the method introduced in the first embodiment of the present invention, those skilled in the art can understand the specific structure and deformation of the device. , so it is not repeated here. All devices used in the method of Embodiment 1 of the present invention belong to the scope of protection of the present invention.
  • the third embodiment of the present invention provides a system, including: a radio frequency circuit 310 , a memory 320 , an input unit 330 , and a display unit 340, audio circuit 350, WiFi module 360, processor 370, power supply 380 and other components.
  • the storage 320 stores a computer program that can run on the processor 370, and the processor 370 implements the steps S1, S2, S3, S4, and S5 described in the first embodiment when the processor 370 executes the computer program.
  • any one of the first and second embodiments may be implemented.
  • the device structure shown in FIG. 3 does not constitute a limitation on the device itself, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the radio frequency circuit 310 can be used for signal reception and transmission, in particular, after receiving the downlink information of the base station, it is processed by the processor.
  • the radio frequency circuit 310 includes, but is not limited to, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, and the like.
  • the memory 320 can be used to store software programs and modules, and the processor 370 executes various functional applications and data processing of the computer device by running the software programs and modules stored in the memory 320 .
  • the memory 320 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function, and the like; the storage data area may store data created according to the use of computer equipment, and the like. Additionally, memory 320 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 330 may be used to receive input numerical or character information, and generate key signal input related to user settings and function control of the computer device.
  • the input unit 330 may include a keyboard 331 and other input devices 332 .
  • the keyboard 331 can collect the user's input operation on it, and drive the corresponding connection device according to the preset program. The keyboard collects the output information and then sends it to the processor 370 .
  • the input unit may also include other input devices 332 .
  • other input devices 332 may include, but are not limited to, one or more of a touch panel, function keys (such as volume control keys, switch key lights), trackballs, mice, joysticks, and the like.
  • the display unit 340 may be used to display information input by the user or information provided to the user and various menus of the computer device.
  • the display unit 340 may include a display panel 341, and optionally, the display panel 341 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the keyboard 331 may cover the display panel 341. When the keyboard 331 detects a touch operation on or near it, it transmits it to the processor 370 to determine the type of the touch event, and then the processor 370 displays the touch event on the display panel according to the type of the input event. The corresponding visual output is available on the 341.
  • the keyboard 331 and the display panel 341 are used as two independent components to realize the input and input functions of the computer device, in some embodiments, the keyboard 331 and the display panel 341 may be integrated to realize the computer device input and output functions.
  • Audio circuitry 350, speakers 351, and microphones 352 may provide an audio interface between the user and computer equipment.
  • the audio circuit 350 can transmit the electrical signal converted from the received audio data to the speaker 351, and the speaker 351 converts it into a sound signal and outputs it.
  • WiFi is a short-distance wireless transmission technology
  • computer equipment can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 360, which provides users with wireless broadband Internet access.
  • WiFi module 360 is shown in FIG. 3 , it can be understood that it is not a necessary component of the computer equipment, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 370 is the control center of the computer equipment, using various interfaces and lines to connect various parts of the entire computer equipment, by running or executing the software programs and/or modules stored in the memory, and calling the data stored in the memory 320, Perform various functions of computer equipment and process data, so as to carry out overall monitoring of computer equipment.
  • the processor 320 may apply for one or more processing units; preferably, the processor 320 may integrate an application processor, wherein the application processor mainly processes the operating system, user interface, and application programs.
  • the computer device also includes a power supply 380 (such as a power adapter) for supplying power to various components.
  • a power supply 380 (such as a power adapter) for supplying power to various components.
  • the power supply can be logically connected to the processor 370 through a power management system.
  • the fourth embodiment provides a computer-readable storage medium 400 on which a computer program 411 is stored, and when the computer program 411 is executed by a processor, implements the description in the first embodiment steps S1, S2, S3, S4, S5.
  • any one of the first and second embodiments can be implemented.
  • embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to hard disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to hard disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions may also be stored in a computer-readable medium memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • These computer program instructions may also be embodied on a computer or other programmable data processing apparatus, such that a series of operational steps are performed on the computer or other programmable apparatus to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Power Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Electromagnetism (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法,其中,所述方法包括:当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;统计计算出所述事故事件间接涉及节点上的设备的历史故障率;将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。本发明可提高电力系统对突发事件和灾害的快速响应的能力。

Description

基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法 技术领域
本发明涉及一种基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法,属于电力调度风险分析技术领域。
背景技术
如今中国的经济发展速度越来越快,社会生产力不断提高,广大人民的生活质量不断提高,高精尖行业不断高速扩张。电网的可靠性、稳定性与广大老百姓的生活水平直接息息相关,也是制约国家经济快速发展的重要因素。维持电力系统的稳定性、安全运行变得十分重要。同时,电力体制的改革也不断创新,按照“三集五大”的完善需求,电网的“大运行”体系的逐步建立,各个公司都进行了地县调控一体化模式的改进;同时新出台的《电力安全事故应急处置和调查处理条例》,这些情况都对电网安全稳定运行提出了更高的要求。
在新发行的规范中,除了传统的失压厂站数量、减供负荷比例等因素会造成电力安全事故事件外,新增了对停电影响用户数量及停电时间、重要用户供电中断时户数等考量,这加大了对电力安全事故事件等级的评定计算的难度。以上要求的实现离不开对电网中海量数据信息的筛选、分析、判断,同时信息汇报的时限要求也对评定效率提出了更高的要求。传统运行人员依靠人工理解和记忆开展调控业务,安全运行的风险和压力明显增加,显然这种对电网进行细致分析的工作对电力工作人员要求高,评定工作量大、效率低、易出错,这些问题都需要有信息的自动化处理系统协助解决。
对事故事件的态势进行准确的判定,可以为应急指挥机构启动应急响应或应急预案提供参考依据。在当前的电网现实运行中,由于缺乏足够的自动数据处理分析和设备动态管理系统,经常造成对事故事件影响程度定位不准确、上报不及时的情况,极大影响了事故处理进度,也影响了电网及相关企业组织对电网事故事件的响应速度以及复电工作。
发明内容
基于上述,本发明提供一种基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法,以解决当前的电网现实运行中,由于缺乏足够的自动数据处理分析和设备动态管理系统,经常造成对事故事件影响程度定位不准确、上报不及时的情况,极大影响了事故处理进度,也影响了电网及相关企业组织对电网事故事件的响应速度以及复电工作的问题。
本发明的技术方案是:
第一方面,本发明提供一种基于灵敏度分析和设备故障率的电网事故事件等级预判方法,其中,所述预判方法包括:
当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;
选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;
统计计算出所述事故事件间接涉及节点上的设备的历史故障率;
将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;
将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。
可选的,所述灵敏度的计算方法为:
获取发生所述事故事件前的电网运行稳态数据;
将所述电网运行稳态数据作为潮流计算的基础数据,对所述事故事件所涉及节点进行有功功率灵敏度和无功功率灵敏度计算;
将所述有功功率灵敏度和所述无功功率灵敏度相加,得到灵敏度。
可选的,所述历史故障率的计算方法为:
根据电网设备的历史故障情况,分析所述事故事件间接涉及节点上的设备在过电压或过负荷工况下发生故障次数占所有故障次数的比例,以此作为该设备在过电压或过负荷工况下的故障率。
可选的,所述越限节点包括电力系统中功率越限或电压越限的节点。
可选的,根据切除的设备和线路预判电网可能出现的停电严重程度、设备损坏情况以及人员危害情况,根据预判结果对所述事故事件进行等级评判。
第二方面,本发明提供一种基于灵敏度分析和设备故障率的电网事故事件等级预判装置,其中,所述装置包括:
第一计算模块,用于:当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;
节点选取模块,用于:选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;
第二计算模块,用于:统计计算出所述事故事件间接涉及节点上的设备的历史故障率;
越限分析模块,用于:将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;
等级预判模块,用于:将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。
可选的,所述第一计算模块包括:
获取子模块,用于:获取发生所述事故事件前的电网运行稳态数据;
潮流计算子模块,用于:将所述电网运行稳态数据作为潮流计算的基础数据,对所述事故事件所涉及节点进行有功功率灵敏度和无功功率灵敏度计算;
相加计算子模块,用于:将所述有功功率灵敏度和所述无功功率灵敏度相加,得到灵敏度。
可选的,所述历史故障率的计算方法为:
根据电网设备的历史故障情况,分析所述事故事件间接涉及节点上的设备在过电压或过负荷工况下发生故障次数占所有故障次数的比例,以此作为该设备在过电压或过负荷工况下的故障率。
第三方面,本发明提供一种基于灵敏度分析和设备故障率的电网事故事件等级预判系统,包括存储器、处理器及存储在存储器上并可以在处理器上运行的计算机程序,所述处理器执行所述的预判方法。
第四方面,本发明提供一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现权所述的预判方法。
本发明的有益效果是:本发明方法通过事故事件发生后的安全稳定分析,可快速准确预判事故事件等级,提高电力系统相关部门对突发事件和灾害的快速恰当响应的能力,有效解决了现有技术中电力系统分析计算规模越来越复杂,电力事故事件判定工作量大且效率低的问题,。
附图说明
图1为本发明实施例的方法流程图;
图2为本发明实施例的结构框架图;
图3为本发明实施例的又一装置框图;
图4为本发明实施例的计算机可读介质的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一
请参阅图1,本发明实施例一种基于灵敏度分析和设备故障率的电网事故事件等级预判方法,其中,所述预判方法包括:
S1,当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;
具体地,在电力系统发生事故事件时,首先获取发生所述事故事件前的电网运行稳态数据,例如给定的电网结构、参数和发电机、负荷等元件的运行条件;然后将所述电网运行稳态数据作为潮流计算的基础数据,对所述事故事件所涉及节点进行有功功率灵敏度和无功功率灵敏度计算;最后将所述有功功率灵敏度和所述无功功率灵敏度相加,得到灵敏度。
在一个示例中,当电力系统中的线路或设备发生事故事件时,以事故事件发生前的电网运行稳态数据作为潮流计算的基础数据,计算系统中各节点与发生事故事件相关节点的灵敏度;针对每一个事故事件所涉及的节点进行有功功率和无功功率的灵敏度计算,并将所计算的有功功率灵敏度与无功功率灵敏度相加,按照相加后的值进行排序,查找与该计算事故事件涉及节点有功功率波动和无功功率波动相关性最大的节点;对事故事件涉及的所有节点都进行灵敏度计算、计算结果的处理及排序。
在电力技术领域中,灵敏度分析方法是以电网的潮流计算为基础的,其基本出发点是节点的功率平衡计算矩阵。灵敏度计算有扰动法和雅克比矩阵法。扰动法通过对控制变量增加一小扰动,计算扰动前后的电网潮流,计算因变量与变量之间变化关系。以雅克比矩阵法为例:
系统的状态改变量:
Figure PCTCN2021132238-appb-000001
其中,ΔP为节点有功功率变化向量、ΔQ为节点无功功率变化向量;Δθ为相角变化量向量、ΔU为节点电压变化量向量;J 、J PU、J 、J QU分别为P、Q对θ和U的偏微分矩阵。
根据上式可得电压与有功功率/无功功率的灵敏度计算公式,如下式所示。
Figure PCTCN2021132238-appb-000002
应当注意的是,潮流计算所涉及的所有节点,通常根据地区级别确定,相关节点是与事故事件直接相关的线路节点,例如一条线路断开,这条线路两端的两个节点即为相关节点。
S2,选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;
具体地,按照步骤S1的计算结果,针对每个事故事件所涉及的节点选取灵敏度最高的N个节点,N的数值根据所分析电网的实际情况确定,选取完成后综合选取结果,去掉重复的节点形成事故事件间接涉及节点的集合。
S3,统计计算出所述事故事件间接涉及节点上的设备的历史故障率;
具体地,历史故障率的计算方法为:根据电网设备的历史故障情况,分析所述事故事件间接涉及节点上的设备在过电压或过负荷工况下发生故障次数占所有故障次数的比例,以此作为该设备在过电压或过负荷工况下的故障率。
S4,将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;
具体地,根据步骤S3的计算结果,将故障率高于设定值的设备视为已切除,其中故障率的设定值根据所计算电网的实际情况确定,应当注意的是,本处设定值是一个阈值,大于这个值认为在这种情况下设备非常有可能损坏,设定值跟天气、湿度、温度相关,每个地方不一样,例如贵州和黑龙江,要根据实际情况确定。已切除表示由原来的连接在电网的状态转为不连接在电网的状态。
在电力技术领域中,静态安全分析功能用来分析在指定的故障或故障组合下电力系统的静态安全情况,它通过对每个故障模拟计算,得出稳态潮流结果,并进行网络越限条件检查,生成一个系统安全评估报告,即可得到电网中功率越限或电压越限的节点。电力系统静态安全分析还能应用N—1原则,逐个无故障断开线路、变压器等元件,检查其他元件是否因此过负荷和电网低电压,用以检验电网结构强度和运行方式是否满足安全运行要求。
S5,将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。
具体地,依据切除事故事件涉及节点及间接涉及节点的静态安全分析结果,综合事故事件涉及节点和静态安全分析后计算出的越限不稳定节点,将节点所涉及的设备和线路均视为切除,根据切除节点预判电网可能实现的停严重程度、设备损坏情况以及人员危害的情况,根据预判结果进行事故事件的等级评判。等级评判可根据《电力安全事故应急处置和调查处理条例》而定。
本发明依据电力运行的实际运行数据,通过可靠的分析计算,完成对电力安全事故事件态势的快速准确判定,既可以帮助调度运行人员充分了解设备故障可能造成的后果,也可以帮助调度运行人员在事故发生后快速认识事故的严重性,并做出合理的处置。
本发明方法可解决现有技术中电力系统分析计算规模越来越复杂,电力事故事件判定工作量大且效率低的问题,通过事故事件发生后的安全稳定分析,快速准确预判事故事件等级,提高电力系统相关部门对突发事件和灾害的快速恰当响应的能力。
实施例二
请参阅图2,本发明实施例二提供了一种基于灵敏度分析和设备故障率的电网事故事件等级预判装置,该装置包括:第一计算模块,用于:当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;节点选取模块,用于:选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;第二计算模块,用于:统计计算出所述事故事件间接涉及节点上的设备的历史故障率;越限分析模块,用于:将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;等级预判模块,用于:将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。
可选的,所述第一计算模块包括:获取子模块,用于:获取发生所述事故事件前的电网运行稳态数据;潮流计算子模块,用于:将所述电网运行稳态数据作为潮流计算的基础数据,对所述事故事件所涉及节点进行有功功率灵敏度和无功功率灵敏度计算;相加计算子模块,用于:将所述有功功率灵敏度和所述无功功率灵敏度相加,得到灵敏度。
由于本发明实施例二所介绍的装置,为实施本发明实施例一的方法所采用的装置,故而基于本发明实施例一所介绍的方法,本领域所属人员能够了解该装置的具体结构及变形,故而在此不再赘述。凡是本发明实施例一的方法所采用的装置都属于本发明所欲保护的范围。
实施例三
请参阅图3,需要说明的是,基于上述实施例一、实施例二同样的发明技术,本发明实施例三提供了一种系统,包括:射频电路310、存储器320、输入单元330、显示单元340、音频电路350、WiFi模块360、处理器370、以及电源380等部件。其中,储存器320上存储有可在处理器370上运行的计算机程序,处理器370执行所述计算机程序时实现实施例一种所述的步骤S1、S2、S3、S4、S5。
在具体实施过程中,处理器执行计算机程序时,可以实现实施例一、二中的任一实施方式。
本领域技术人员可以理解,图3中示出的装置结构并不构成对装置本身的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图3对计算机设备的各个构成部件进行具体的介绍:
射频电路310可用于信号的接收和发送,特别地,将基站的下行信息接收后,给处理器处理。通常,射频电路310包括但不限于至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器320可用于存储软件程序以及模块,处理器370通过运行存储在存储器320的软件程度以及模块,从而执行计算机设备的各种功能应用以及数据处理。存储器320可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器320可以包括高速随机存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元330可用于接收输入的数字或字符信息,以及产生与计算机设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元330可包括键盘331以及其他输入设备332。键盘331,可收集用户在其上的输入操作,并根据预先设定的程序驱动相应的连接装置。键盘采集到输出信息后再输送给处理器370。除了键盘331,输入单元还可以包括其他输入设备332。具体地,其他输入设备332可以包括但不限于触控面板、功能键(比如音量控制按键、开关按键灯)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元340可用于显示由用户输入的信息或提供给用户的信息以及计算机设备的各种菜单。显示单元340可包括显示面板341,可选地,可以采用液晶显示器、有机发光二极管等形式来配置显示面板341。进一步的,键盘331可覆盖显示面板341,当键盘331检测到在其上或附近的触摸操作后,传送给处理器370以确定触摸事件的类型,随后处理器370根据输入事件的类型在显示面板341上提供相应的视觉输出。虽然在图3中键盘331与显示面板341是作为两个独立的部件来实现计算机设备的输入和输入功能,但是在某些实施例中,可以将键盘331与显示面板集341成而实现计算机设备的输入和输出功能。
音频电路350、扬声器351,传声器352可提供用户与计算机设备之间的音频接口。音频电路350可将接收到的音频数据转换后的电信号,传输到扬声器351,由扬声器351转换为声音信号输出。
WiFi属于短距离无线传输技术,计算机设备通过WiFi模块360可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图3中示出了WiFi模块360,但是可以理解的是,其并不属于计算机设备的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器370是计算机设备的控制中心,利用各种接口和线路连接整个计算机设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行计算机设备的各种功能和处理数据,从而对计算机设备进行整体监控。可选地,处理器320可报考一个或多个处理单元;优选地,处理器320可集成应用处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等。
计算机设备还包括给各个部件供电的电源380(比如电源适配器),优选的,电源可以通过电源管理系统与处理器370逻辑相连。
实施例四
基于同一发明构思,如图4所示,本实施例四提供了一种计算机可读存储介质400,其上存储有计算机程序411,该计算机程序411被处理器执行时实现实施例一种所述的步骤S1、S2、S3、S4、S5。
在具体实施过程中,该计算机程序411被处理器执行时,可以实现实施例一、二中的任一实施方式。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于硬盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他科编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读介质存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装置到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于灵敏度分析和设备故障率的电网事故事件等级预判方法,其中,
    所述预判方法包括:
    当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;
    选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;
    统计计算出所述事故事件间接涉及节点上的设备的历史故障率;
    将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;
    将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。
  2. 根据权利要求1所述的电网事故事件等级预判方法,其中,所述灵敏度的计算方法为:
    获取发生所述事故事件前的电网运行稳态数据;
    将所述电网运行稳态数据作为潮流计算的基础数据,对所述事故事件所涉及节点进行有功功率灵敏度和无功功率灵敏度计算;
    将所述有功功率灵敏度和所述无功功率灵敏度相加,得到灵敏度。
  3. 根据权利要求1所述的电网事故事件等级预判方法,其中,所述历史故障率的计算方法为:
    根据电网设备的历史故障情况,分析所述事故事件间接涉及节点上的设备在过电压或过负荷工况下发生故障次数占所有故障次数的比例,以此作为该设备在过电压或过负荷工况下的故障率。
  4. 根据权利要求1所述的电网事故事件等级预判方法,其中,所述越限节点包括电力系统中功率越限或电压越限的节点。
  5. 根据权利要求1所述的电网事故事件等级预判方法,其中,根据切除的设备和线路预判电网可能出现的停电严重程度、设备损坏情况以及人员危害情况,根据预判结果对所述事故事件进行等级评判。
  6. 一种基于灵敏度分析和设备故障率的电网事故事件等级预判装置,其中,所述装置包括:
    第一计算模块,用于:当电力系统发生事故事件时,计算发生所述事故事件前电力系统中各节点与发生所述事故事件相关节点的灵敏度;
    节点选取模块,用于:选取与所述事故事件涉及节点灵敏度相关最高的若干节点形成事故事件间接涉及节点的集合;
    第二计算模块,用于:统计计算出所述事故事件间接涉及节点上的设备的历史故障率;
    越限分析模块,用于:将所述历史故障率高于设定值的设备视为已切除,同时将所述事故事件涉及节点视为切除,对电力系统进行静态安全分析,得出越限节点;
    等级预判模块,用于:将所述事故事件涉及节点和所述越限节点所涉及的设备和线路均视为切除,预判事故事件的等级程度。
  7. 根据权利要求6所述的电网事故事件等级预判装置,其中,所述第一计算模块包括:
    获取子模块,用于:获取发生所述事故事件前的电网运行稳态数据;
    潮流计算子模块,用于:将所述电网运行稳态数据作为潮流计算的基础数据,对所述事故事件所涉及节点进行有功功率灵敏度和无功功率灵敏度计算;
    相加计算子模块,用于:将所述有功功率灵敏度和所述无功功率灵敏度相加,得到灵敏度
  8. 根据权利要求6所述的电网事故事件等级预判装置,其中,所述历史故障率的计算方法为:
    根据电网设备的历史故障情况,分析所述事故事件间接涉及节点上的设备在过电压或过负荷工况下发生故障次数占所有故障次数的比例,以此作为该设备在过电压或过负荷工况下的故障率。
  9. 一种基于灵敏度分析和设备故障率的电网事故事件等级预判系统,包括存储器、处理器及存储在存储器上并可以在处理器上运行的计算机程序,其特征在于,所述处理器执行权利要求1至5中任一项所述的预判方法。
  10. 一种计算机可读介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至5中任一项所述的预判方法。
PCT/CN2021/132238 2021-03-31 2021-11-23 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法 WO2022205948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110348739.1A CN113078649B (zh) 2021-03-31 2021-03-31 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法
CN202110348739.1 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205948A1 true WO2022205948A1 (zh) 2022-10-06

Family

ID=76614202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132238 WO2022205948A1 (zh) 2021-03-31 2021-11-23 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法

Country Status (2)

Country Link
CN (1) CN113078649B (zh)
WO (1) WO2022205948A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115967126A (zh) * 2022-12-06 2023-04-14 哈尔滨工业大学 一种自然灾害下新能源集群出力外送风险在线分析方法
CN116136985A (zh) * 2023-02-21 2023-05-19 北京思维实创科技有限公司 一种变电所安全风险在线识别方法及其系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078649B (zh) * 2021-03-31 2021-11-16 贵州电网有限责任公司 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181387A (ja) * 2005-12-01 2007-07-12 Chubu Electric Power Co Inc 電力系統の過渡安定度判別方法およびその装置
CN103985065A (zh) * 2014-05-20 2014-08-13 天津大学 一种基于故障预扫描的电力系统风险评估方法
CN106327034A (zh) * 2015-06-18 2017-01-11 中国电力科学研究院 基于运行可靠性模型的连锁故障搜索及薄弱环节分析方法
CN109521327A (zh) * 2018-11-15 2019-03-26 贵州电网有限责任公司 一种配电线路故障原因综合概率分析方法
CN111475915A (zh) * 2020-03-05 2020-07-31 国电南瑞科技股份有限公司 基于故障概率和时域仿真准稳态的相继故障在线评估方法
CN113078649A (zh) * 2021-03-31 2021-07-06 贵州电网有限责任公司 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100576680C (zh) * 2007-11-08 2009-12-30 江苏省电力公司 大电网设备过载在线灵敏度的智能联切方法
US10141736B2 (en) * 2009-06-26 2018-11-27 Abb Research Ltd. Method for identifying type of fault on power line
CN104809653B (zh) * 2015-01-13 2018-08-31 国电南瑞科技股份有限公司 基于特征值分析的电力系统无功备用综合评估方法
CN105653764B (zh) * 2015-12-22 2018-11-30 中国南方电网有限责任公司 电网安全事故风险等级在线评估与预警方法
CN107276075A (zh) * 2017-06-20 2017-10-20 贵州电网有限责任公司电力调度控制中心 一种计及电网事故风险等级的多区域减负荷协同决策方法
EP3605436B1 (en) * 2018-07-31 2022-03-09 Schneider Electric Industries SAS Method for locating phase faults in a microgrid and controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181387A (ja) * 2005-12-01 2007-07-12 Chubu Electric Power Co Inc 電力系統の過渡安定度判別方法およびその装置
CN103985065A (zh) * 2014-05-20 2014-08-13 天津大学 一种基于故障预扫描的电力系统风险评估方法
CN106327034A (zh) * 2015-06-18 2017-01-11 中国电力科学研究院 基于运行可靠性模型的连锁故障搜索及薄弱环节分析方法
CN109521327A (zh) * 2018-11-15 2019-03-26 贵州电网有限责任公司 一种配电线路故障原因综合概率分析方法
CN111475915A (zh) * 2020-03-05 2020-07-31 国电南瑞科技股份有限公司 基于故障概率和时域仿真准稳态的相继故障在线评估方法
CN113078649A (zh) * 2021-03-31 2021-07-06 贵州电网有限责任公司 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115967126A (zh) * 2022-12-06 2023-04-14 哈尔滨工业大学 一种自然灾害下新能源集群出力外送风险在线分析方法
CN115967126B (zh) * 2022-12-06 2024-03-22 哈尔滨工业大学 一种自然灾害下新能源集群出力外送风险在线分析方法
CN116136985A (zh) * 2023-02-21 2023-05-19 北京思维实创科技有限公司 一种变电所安全风险在线识别方法及其系统
CN116136985B (zh) * 2023-02-21 2023-09-05 北京思维实创科技有限公司 一种变电所安全风险在线识别方法及其系统

Also Published As

Publication number Publication date
CN113078649A (zh) 2021-07-06
CN113078649B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2022205948A1 (zh) 基于灵敏度分析和设备故障率的电网事故事件等级预判系统和方法
CN108919935A (zh) 一种针对于服务器主板上的电源的监测方法、装置及设备
CN103440726B (zh) 电气火灾预警信息处理方法和系统
CN109873499B (zh) 智能配电台区管理终端
CN103439613A (zh) 电力安全综合监测装置及其分析方法
US8941372B2 (en) Systems and methods for predicting power system instability
CN106815770A (zh) 一种综合考虑系统充裕性和系统安全性的风险评估方法
Li et al. A cascading failure model based on AC optimal power flow: Case study
CN201984120U (zh) 电能质量监测系统
CN103533084A (zh) 一种b/s架构的实时设备管理系统及其方法
CN104700326A (zh) 配电网风险评估方法
CN104021438A (zh) 基于业务模型对业务系统中物理设备进行监控的方法和装置
CN110942235B (zh) 一种电力应急评估系统
CN101901430A (zh) 电网风险管控方法和装置
CN105956783A (zh) 一种输电线路风险评估方法
CN110378585B (zh) 电网故障处置计算任务编排调用方法、系统及存储介质
CN104459249A (zh) 基于电流异常分析的异常用电判断方法
CN204271641U (zh) 一种基于psd-bpa的故障潮流并行分析系统
CN115392383A (zh) 一种用电异常的预警方法、装置、电子设备及存储介质
Li et al. Research on new characteristics of power quality in distribution network
CN104680423A (zh) 一种电费异常侦测系统及方法
CN112467806B (zh) 一种基于dmn电网调控规则确定电网运行状态的方法及系统
CN110189038B (zh) 一种电网风险分析方法、系统、计算机装置及存储介质
CN113850463A (zh) 用于变电站防误操作的处理方法及装置
Myhre et al. RELSAD: A Python package for reliability assessment of modern distribution systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934584

Country of ref document: EP

Kind code of ref document: A1