WO2022205802A1 - 涡旋盘组件、涡旋压缩机和空调器 - Google Patents

涡旋盘组件、涡旋压缩机和空调器 Download PDF

Info

Publication number
WO2022205802A1
WO2022205802A1 PCT/CN2021/119777 CN2021119777W WO2022205802A1 WO 2022205802 A1 WO2022205802 A1 WO 2022205802A1 CN 2021119777 W CN2021119777 W CN 2021119777W WO 2022205802 A1 WO2022205802 A1 WO 2022205802A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
chamber
back pressure
hole
oil
Prior art date
Application number
PCT/CN2021/119777
Other languages
English (en)
French (fr)
Inventor
谭琴
江波
杨志鹏
罗承卓
胡超奇
宋红飞
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110338891.1A external-priority patent/CN112901487A/zh
Priority claimed from CN202120640844.8U external-priority patent/CN214464888U/zh
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Publication of WO2022205802A1 publication Critical patent/WO2022205802A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present application relates to the technical field of compressors, and in particular, to a scroll assembly, a scroll compressor and an air conditioner.
  • the pressure of the back pressure chamber of the scroll compressor is the intermediate pressure
  • the movable scroll is close to the stationary scroll under the action of the pressure of the back pressure chamber.
  • the friction loss of the contact surface of the stationary scroll increases, and the power increases; if the pressure in the back pressure chamber is too small, the movable scroll will not be able to fit the stationary scroll smoothly, which will easily lead to the overturning of the movable scroll, and cause damage to the stationary scroll. Air leakage occurs, resulting in a decrease in the working capacity of the scroll compressor.
  • the back pressure hole is communicated with the back pressure chamber, so that the back pressure chamber has an intermediate pressure higher than the suction pressure.
  • Another object of an embodiment according to the present application is to provide a scroll compressor.
  • Still another object of the embodiments according to the present application is to provide an air conditioner.
  • a scroll assembly including: a fixed scroll, the fixed scroll is provided with an air intake hole, an exhaust hole and an oil injection channel; a movable scroll The rotating disk meshes with the fixed scroll, and forms a working chamber with the fixed scroll.
  • the movable scroll is provided with an oil filling groove that communicates with the back pressure chamber of the scroll compressor.
  • the disk is configured to translate relative to the fixed scroll to compress the gas entering the working chamber; wherein the oil injection passage is in intermittent communication with the oil injection groove and the working chamber to be between the back pressure chamber and the working chamber Under the action of the pressure difference, the oil in the back pressure chamber is intermittently injected into the working chamber.
  • a scroll assembly including a fixed scroll and an orbiting scroll may be used in a scroll compressor.
  • the movable scroll and the fixed scroll are meshed with each other, and a working chamber is enclosed between the two; the movable scroll can translate relative to the fixed scroll.
  • the gas can enter the working chamber through the air inlet, so as to change the structural state of the working chamber during the operation of the movable scroll, thereby compressing
  • the compressed gas is discharged to the discharge chamber of the scroll compressor through the discharge hole.
  • an oil injection groove is provided on the movable scroll, and the oil injection groove can be communicated with the back pressure chamber of the scroll compressor, so that during the operation of the movable scroll, the oil injection groove can communicate with the back pressure chamber of the scroll compressor.
  • the oil filling groove can be communicated with the oil filling channel and the working chamber intermittently, and use the pressure difference between the working chamber and the back pressure chamber to drive the oil in the back pressure chamber to flow into the working chamber through the oil filling groove and the oil filling channel
  • the gap in the working chamber is sealed to prevent the gas in the working chamber from leaking to the back pressure chamber, and at the same time , when the oil filling groove is disconnected from the oil filling channel and the working chamber, the gas in the back pressure cavity can be prevented from entering the working chamber through the oil filling channel, and intermittent oil filling can be realized, thereby reducing the working process of the scroll assembly.
  • the flow loss of the gas is beneficial to promote the scroll compressor to improve the energy efficiency.
  • the gas will flow into or out of the working chamber under the action of pressure, causing the gas to leak. flow loss.
  • the pressure of the back pressure chamber of the scroll compressor is usually between the suction pressure and the discharge pressure, and the oil in the oil storage space of the scroll compressor can enter the back pressure chamber under the action of pressure, so as to provide the working chamber. oil.
  • scroll assembly in the above-mentioned technical solutions provided in the embodiments of the present application may also have the following additional technical features:
  • the oil filling channel is disconnected from the oil filling groove and the working chamber; when the pressure of the working chamber is less than the pressure of the back pressure chamber, the oil filling The passage communicates with the oil filling sump and the working chamber.
  • the oil filling channel is alternately connected and disconnected from the oil filling groove and the working chamber.
  • the pressure of the working chamber is greater than the pressure of the back pressure chamber, through the operation of the movable scroll, the communication relationship between the oil injection channel, the oil injection groove and the working chamber is disconnected, so as to prevent the gas in the working chamber from passing through the oil injection.
  • the passage and the oil filling groove enter the back pressure chamber to reduce the gas loss; and when the pressure of the working chamber is less than the pressure of the back pressure chamber, the oil filling passage is communicated with the oil filling groove and the working chamber through the operation of the movable scroll.
  • a pressure difference is formed between the back pressure chamber and the working chamber, and the oil in the back pressure chamber enters the working chamber through the oil filling groove and the oil filling channel under the action of pressure, so as to seal the gap of the working chamber and prevent gas Leaks through the gap to the back pressure chamber.
  • the above arrangement can not only reduce the gas flow loss caused by the gap of the working chamber, but also prevent the gas loss caused by the oil injection channel and the oil injection groove itself, and improve the energy efficiency of the scroll compressor better.
  • the stationary scroll includes a first end plate and a stationary scroll structure arranged on the bottom surface of the first end plate;
  • the oil injection channel includes an oil injection hole, a communication hole and a back pressure hole, and the oil injection hole is provided in the stationary scroll structure
  • the back pressure hole is arranged on the bottom surface of the first end plate, and the two ends of the communication hole are respectively connected with the oil injection hole and the back pressure hole; wherein, the oil injection groove is intermittently connected with the oil injection hole, and the back pressure hole is connected with the working chamber. Intermittent connectivity.
  • the stationary scroll specifically includes a first end plate and a stationary scroll structure.
  • the stationary scroll structure is arranged on the bottom surface of the first end plate and is arranged in a scroll shape; the exhaust hole is located in the stationary scroll structure. in order to facilitate exhaust.
  • the oil injection channel specifically includes an oil injection hole, a connection hole and a back pressure hole, the back pressure hole is arranged on the bottom surface of the first end plate, the oil injection hole is arranged on the bottom surface of the static scroll structure, and both the oil injection hole and the back pressure hole are blind holes;
  • the communication hole is arranged inside the first end plate and the fixed scroll structure, and both ends of the communication hole are communicated with the oil injection hole and the back pressure hole respectively, so as to form a through oil injection channel.
  • the movable scroll moves in translation relative to the fixed scroll, and the back pressure holes are opened and closed alternately.
  • the back pressure chamber of the machine is alternately connected and disconnected from the working chamber.
  • the movable scroll includes a second end plate and a movable scroll structure arranged on the top surface of the second end plate, the movable scroll structure is engaged with the fixed scroll structure, and the movable scroll structure is engaged with the stationary scroll structure.
  • a working chamber is formed between the two end plates; the oil injection groove is arranged on the top surface of the second end plate and is located outside the movable scroll structure. direction extension.
  • the movable scroll specifically includes a second end plate and a movable scroll structure, and the movable scroll structure is arranged on the top surface of the second end plate and forms a vortex adapted to the stationary scroll structure.
  • the movable scroll structure is meshed with the stationary scroll structure and forms a working chamber.
  • the oil injection groove By setting the oil injection groove on the outer side of the movable scroll structure on the second end plate, after the second end plate is attached to the bottom surface of the fixed scroll structure, the oil injection groove can follow the operation of the orbiting scroll intermittently and the oil injection hole. Connects and disconnects for easy priming.
  • One end of the oil filling groove extends to the edge of the second end plate to communicate with the back pressure chamber, and the other end of the oil filling groove extends toward the movable scroll structure to correspond to the position of the oil filling hole.
  • the diameter of the back pressure hole is smaller than the tooth thickness of the movable scroll structure.
  • the top surface of the movable scroll structure is in contact with the bottom surface of the first end plate, and the aperture size of the back pressure hole is limited so that the aperture of the back pressure hole is smaller than the tooth thickness of the movable scroll structure,
  • the movable scroll structure moves to the position of the back pressure hole, it can completely block the back pressure hole, so that the back pressure hole and the working chamber can be alternately connected and disconnected, so as to prevent the back pressure hole from being connected to the movable scroll structure.
  • the size mismatch causes gas to leak through the back pressure hole to the back pressure chamber.
  • one end of the oil injection groove close to the movable scroll structure is of a circular arc structure, and the diameter of the circular arc structure is equal to the groove width of the oil injection groove.
  • the end of the oil injection groove close to the movable scroll structure is of a circular arc structure, such as a semicircular structure, which is convenient for processing and forming, and can also play a guiding role when the oil flows through.
  • the groove width of the oil filling groove is greater than or equal to 1 mm, and the groove depth of the oil filling groove is greater than or equal to 0.5 mm.
  • the groove width of the oil filling groove is set to be greater than or equal to 1 mm, and the groove depth is greater than or equal to 0.5 mm, so as to prevent the oil filling groove from being too narrow and affecting the impact when the second end plate is attached to the fixed scroll. flow of oil.
  • the bottom surface of the first end plate is provided with a side wall along the circumferential direction, and the air inlet holes are arranged along the radial direction and pass through the side wall; wherein, in the direction in which the stationary scroll structure gradually shrinks, the inlet
  • the angle between the centerline of the air hole and the back pressure hole is 225° to 315°.
  • the air intake holes are arranged along the radial direction of the first end plate, so as to connect the air intake pipe of the scroll compressor;
  • the working chamber is in communication.
  • the air intake hole and the working chamber are in a state of communication, the air intake operation is performed, and with the operation of the movable scroll, the communication relationship between the air intake hole and the working chamber is blocked, and then the air in the working chamber is blocked.
  • the gas is compressed, and finally the compressed gas is discharged to the exhaust chamber of the scroll compressor through the exhaust hole to complete a working cycle.
  • the included angle is in the range of 225° to 315°, the back pressure hole can obtain better back pressure pressure.
  • the back pressure hole is always kept disconnected from the intake hole, so as to prevent the oil injection operation from affecting the suction process, and also to prevent the gas from entering the air during the compression process. Air holes leak out.
  • the bottom of the second end plate is provided with an eccentric bearing.
  • an eccentric bearing is arranged at the bottom of the second end plate to facilitate connection with the eccentric part of the drive mechanism when assembled in the scroll compressor, so as to realize the eccentric connection of the movable scroll, so that the movable scroll
  • the rotating disk can be translated relative to the fixed scroll under the driving of the driving mechanism.
  • the working chamber includes: a first chamber located between the outer side surface of the movable scroll structure and the inner side surface of the fixed scroll structure; a second chamber located between the inner side surface of the movable scroll structure and the stationary scroll structure between the outer sides of the scroll structure; wherein, the back pressure holes are alternately communicated with the first chamber and the second chamber, so that the oil in the back pressure chamber is alternately injected into the first chamber and the second chamber.
  • the working chamber includes a first chamber and a second chamber.
  • a first chamber is formed between the outer side surface of the movable scroll structure and the inner side surface of the fixed scroll structure, and the movable scroll structure
  • a second chamber is formed between the inner side surface of the movable scroll structure and the outer side surface of the stationary scroll structure, and with the operation of the movable scroll, the shapes and volumes of the first chamber and the second chamber periodically change.
  • the back pressure hole is alternately communicated with the first chamber and the second chamber, and when the movable scroll structure blocks the back pressure hole, the back pressure hole is disconnected from the first chamber and the second chamber connectivity between.
  • the oil in the back pressure chamber can alternately inject oil into the first chamber and the second chamber under the action of pressure, so as to seal the gap between the first chamber and the second chamber respectively, and further reduce the working chamber. The gas leaks out through the gap.
  • the movable scroll rotates for one revolution, and oil is injected into the first chamber and the second chamber respectively once.
  • one working cycle is one cycle of translation of the movable scroll relative to the fixed scroll.
  • the first chamber and the second chamber are respectively communicated with the back pressure hole once, and accordingly, The first chamber and the second chamber are each filled with oil once to match the oil filling operation with the working cycle of the orbiting scroll.
  • the maximum volume of the first chamber is greater than the maximum volume of the second chamber; wherein the communication time between the first chamber and the back pressure chamber is greater than or equal to the communication time between the second chamber and the back pressure chamber duration.
  • the maximum volume of the first chamber is set to be greater than the maximum volume of the second chamber, that is, the maximum volumes of the first chamber and the second chamber are different, so as to facilitate the application of asymmetric profile scroll compression machine.
  • the communication time between the back pressure chamber and the first chamber is no less than the communication time between the back pressure chamber and the second chamber, the maximum volumes corresponding to the first chamber and the second chamber are matched to achieve the first chamber.
  • the first chamber and the second chamber have different exhaust volumes.
  • An embodiment of the second aspect of the present application provides a scroll compressor, comprising: a casing, an intake pipe and an exhaust pipe are arranged on the casing, and oil is contained in the casing; a frame is arranged in the casing;
  • the scroll assembly according to any one of the embodiments of the above-mentioned first aspect is provided on the frame, the air intake hole and the exhaust hole of the scroll assembly are respectively communicated with the intake pipe and the exhaust pipe, and the scroll assembly is A back pressure chamber is formed between the movable scroll and the frame; the drive assembly is arranged in the casing, and the output end of the drive assembly is eccentrically connected to the movable scroll for driving the movable scroll to be flat relative to the stationary scroll.
  • a scroll compressor includes a housing, a frame, a scroll assembly and a drive assembly as in the embodiments of the first aspect described above.
  • the frame, the scroll assembly and the drive assembly are all disposed within the housing.
  • the frame serves as a mounting base for the scroll assembly and the drive assembly to form support for the scroll assembly and the drive assembly.
  • the fixed scroll of the scroll assembly is fixedly connected to the frame, and a back pressure chamber is formed between the movable scroll of the scroll assembly and the frame; the output end of the drive assembly is eccentrically connected to the movable scroll to The movable scroll is driven to translate relative to the fixed scroll.
  • the shell is provided with an intake pipe and an exhaust pipe, the intake pipe is communicated with the intake hole of the stationary scroll, and the exhaust hole of the stationary scroll is communicated with the exhaust pipe through the exhaust chamber in the shell, so as to facilitate the Suction and exhaust operation.
  • Oil is stored in the housing, and the oil can enter the back pressure chamber through the oil passage.
  • the oil injection channel of the fixed scroll can intermittently communicate with the oil injection groove of the movable scroll and the working chamber, so as to realize the intermittent connection between the back pressure chamber and the working chamber.
  • it can prevent the gas in the working chamber from entering the back pressure chamber through the oil supply channel and the oil filling groove, thereby effectively reducing the gas flow loss during the working process of the scroll compressor, which is conducive to promoting the scroll compressor to improve energy efficiency.
  • the scroll compressor in this solution also has all the beneficial effects of the scroll assembly in any one of the embodiments of the first aspect, which will not be repeated here.
  • An embodiment of a third aspect of the present application provides an air conditioner, comprising: an indoor unit; an outdoor unit connected to the indoor unit through a pipeline, and the scroll compressor in the embodiment of the second aspect is provided in the outdoor unit.
  • the air conditioner includes an indoor unit and an outdoor unit connected by pipelines, so as to realize air conditioning by circulating a refrigerant.
  • the scroll compressor in the embodiment of the second aspect above is provided in the outdoor unit for compressing the refrigerant and changing the state of the refrigerant so as to meet the operation requirements of the air conditioner.
  • the air conditioner in this solution also has all the beneficial effects of the scroll compressor in the embodiment of the second aspect, which will not be repeated here.
  • FIG. 1 shows a cross-sectional view of a scroll compressor according to an embodiment of the present application
  • Fig. 2 shows the partial schematic diagram of Fig. 1;
  • FIG. 3 shows a schematic diagram of the upper structure of the fixed scroll according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a lower structure of an orbiting scroll according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a fixed scroll according to an embodiment of the present application
  • Fig. 6 shows the A-A sectional view in Fig. 5;
  • FIG. 7 shows a schematic diagram of an orbiting scroll according to an embodiment of the present application.
  • Fig. 8 shows the sectional view taken along the direction B-B in Fig. 7;
  • FIG. 9 shows a schematic diagram of a fixed scroll according to an embodiment of the present application.
  • Figure 10 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application
  • Figure 11 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 12 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application
  • Figure 13 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 14 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application.
  • Figure 15 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 16 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application
  • Figure 17 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 18 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application.
  • Figure 19 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 20 shows a cross-sectional view of a scroll assembly in accordance with one embodiment of the present application
  • Figure 21 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 22 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application
  • Figure 23 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • Figure 24 shows a cross-sectional view of a scroll assembly according to one embodiment of the present application.
  • Figure 25 shows a schematic diagram of a scroll assembly according to one embodiment of the present application.
  • FIG. 26 shows a schematic block diagram of an air conditioner according to an embodiment of the present application.
  • This embodiment provides a scroll assembly 1 that can be used in a scroll compressor 2 .
  • the scroll assembly 1 includes a stationary scroll 11 (ie, a stationary scroll) and an orbiting scroll 12 (ie, an orbiting scroll).
  • the moving plate 12 and the static plate 11 are engaged with each other, and a working chamber 13 is enclosed between the moving plate 12 and the static plate 11 .
  • the moving plate 12 can translate relative to the static plate 11 , and during the operation of the moving plate 12 , the shape and volume of the working chamber 13 change dynamically.
  • the static plate 11 is provided with an intake hole 113 and an exhaust hole 114; when assembled in the scroll compressor 2, the intake hole 113 is communicated with the intake pipe 211 of the scroll compressor 2, and the exhaust hole 114 is connected with the scroll compressor 2. 2 of the exhaust chamber 214 communicates.
  • the gas can enter the working chamber 13 through the air inlet 113, and the gas in the working chamber 13 can be compressed under the action of the moving plate 12; the compressed gas can be exhausted through the exhaust hole. 114 is discharged to the discharge chamber 214 of the scroll compressor 2 , and then discharged to the outside through the discharge pipe 212 .
  • the static plate 11 is provided with an oil injection channel 115
  • the movable plate 12 is provided with an oil injection groove 123
  • the oil injection groove 123 can be adjusted to the back pressure of the scroll compressor 2 .
  • the chamber 213 communicates.
  • the oil filling groove 123 can intermittently communicate with the oil filling passage 115 and the working chamber 13, so that the back pressure chamber 213 is communicated with the working chamber 13, and the oil filling groove 123 can be intermittently connected with the working chamber 13.
  • the oil injection channel 115 and the working chamber 13 are disconnected.
  • the scroll assembly 1 in this embodiment can effectively prevent the gas in the working chamber 13 from leaking to the back pressure chamber 213 , and can prevent the gas in the back pressure chamber 213 from entering the working chamber 13 through the oil filling passage 115 , thereby During the working process of the scroll assembly 1 , the flow loss of the gas is reduced, which is beneficial to promote the scroll compressor 2 to improve the energy efficiency.
  • the pressure of the back pressure chamber 213 of the scroll compressor 2 is usually between the suction pressure and the discharge pressure, and the oil in the oil storage space of the scroll compressor 2 can enter the back pressure under the action of pressure chamber 213 , thereby providing oil for the working chamber 13 .
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the first embodiment.
  • the oil filling passage 115 is alternately connected and disconnected from the oil filling groove 123 and the working chamber 13 .
  • the arrangement in this embodiment can reduce the gas flow loss caused by the gap in the working chamber 13 , and at the same time, can prevent the gas loss caused by the oil injection channel 115 and the oil injection groove 123 themselves, thereby improving the energy efficiency of the scroll compressor 2 better.
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the second embodiment.
  • the stationary disk 11 specifically includes a stationary disk end plate 111 (ie, a first end plate) and a stationary disk scroll 112 (ie, a stationary scroll structure).
  • the stationary disk scroll 112 is arranged on the bottom surface of the stationary disk end plate 111 and is arranged in a scroll shape.
  • a vent hole 114 is located in the stationary disk scroll 112 to facilitate venting.
  • the oil filling passage 115 specifically includes an oil filling hole 1151 , a connecting hole and a back pressure hole 1153 .
  • the oil injection hole 1151 and the back pressure hole 1153 are both blind holes;
  • the communication hole 1152 is arranged inside the static disk end plate 111 and the static disk scroll 112, and the two ends of the communication hole 1152 are respectively connected to the oil injection hole 1151 and the back pressure hole. 1153 communicate with each other, thereby forming a through oil injection channel 115 .
  • the moving plate 12 moves in translation relative to the stationary plate 11, and the back pressure hole 1153 is opened and closed alternately.
  • the back pressure chamber 213 of the rotary compressor 2 is alternately connected and disconnected from the working chamber 13 .
  • bottom surface and the top surface in this embodiment are all based on the height direction of the static plate 11 in the assembled state, such as the states in FIGS. 1 and 2 ; Schematic diagram of the lower structure, not the orientation in the assembled state.
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the third embodiment.
  • the moving plate 12 specifically includes a moving plate end plate 121 (ie, the second end plate) and a moving plate scroll 122 (ie, a moving scroll structure).
  • the moving plate scroll 122 is provided at the end of the moving plate.
  • On the top surface of the plate 121 a scroll-like arrangement is formed that is adapted to the stationary disk scroll 112 .
  • the movable disk scroll 122 meshes with the stationary disk scroll 112 and forms a working chamber 13 with the stationary disk scroll 112 .
  • the shape and volume of the working chamber 13 will change with the operation of the moving disk 12 .
  • An oil filling groove 123 is provided on the top surface of the moving plate end plate 121 at the outer side of the moving plate scroll 122 , so that after the top surface of the moving plate end plate 121 is in contact with the bottom surface of the stationary plate scroll 112 , the oil filling groove 123 The operation of the disk 12 can be intermittently connected to and disconnected from the oil injection hole 1151 .
  • One end of the oil injection groove 123 extends to the edge of the moving plate end plate 121 , so that when the scroll assembly 1 is assembled with the scroll compressor 2 , the oil injection groove 123 can communicate with the back pressure chamber 213 of the scroll compressor 2 .
  • the other end of the oil filling groove 123 extends in the direction close to the moving plate scroll 122 to correspond to the position of the oil filling hole 1151 so as to be able to communicate with the oil filling hole 1151 to facilitate the oil filling operation.
  • the diameter of the back pressure hole 1153 is smaller than the tooth thickness of the moving plate scroll 122, so that when the moving plate scroll 122 moves to the position of the back pressure hole 1153, the back pressure hole 1153 can be completely blocked, so that the back pressure hole can be completely blocked.
  • the 1153 is alternately connected and disconnected from the working chamber 13 , thereby preventing the back pressure hole 1153 from being mismatched with the size of the movable plate scroll 122 and causing gas to leak to the back pressure chamber 213 through the back pressure hole 1153 .
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the fourth embodiment.
  • one end of the oil filling groove 123 close to the moving plate scroll 122 has a circular arc structure, specifically a semicircular structure, which is convenient for processing and forming, and can guide the oil when the oil flows.
  • the groove width of the oil filling groove 123 is equal to the diameter of the arc structure, so that the whole oil filling groove 123 is formed into a long groove body of equal width, which is easy to process, and can reduce the pressure change of the oil caused by the change of the width when the oil flows through. .
  • the groove width of the oil filling groove 123 is greater than or equal to 1 mm, and the groove depth is greater than or equal to 0.5 mm, so that the oil filling groove 123 can maintain a suitable flow area when the moving plate end plate 121 is attached to the static plate 11 . Prevent the oil filling groove 123 from being too narrow to affect the normal flow of oil.
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the fourth embodiment.
  • an eccentric bearing 124 is provided at the bottom of the moving plate end plate 121 .
  • the eccentric bearing 124 can be connected with an eccentric component (eg, a crankshaft) of the driving mechanism, so as to realize the eccentric connection of the movable plate 12 .
  • the moving plate 12 can translate relative to the stationary plate 11 under the driving of the eccentric component of the driving mechanism, so as to compress the gas.
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the fourth embodiment.
  • the static disk end plate 111 of the static disk 11 includes a bottom wall 1111 and a side wall 1112 , the side wall 1112 is arranged along the circumferential direction of the bottom wall 1111 , and the static disk scroll 112 is located on the side wall Inside of 1112.
  • the air intake holes 113 are arranged along the radial direction of the static disk end plate 111 to facilitate connection with the intake pipe 211 of the scroll compressor 2; It communicates with the working chamber 13 .
  • the air suction operation is performed, and the gas enters the working chamber 13 through the air inlet 113; Then, the gas in the working chamber 13 is compressed, and the compressed gas is discharged to the exhaust chamber 214 of the scroll compressor 2 through the exhaust hole 114 to complete a working cycle.
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the fourth embodiment.
  • the air intake hole 113 extends to the outer side of the stationary scroll 112 , and the back pressure hole 1153 is located at the inner side of the stationary scroll 112 .
  • the moving plate 12 can separate the back pressure hole 1153 from the air intake hole 113, so that the back pressure hole 1153 is always kept disconnected from the air intake hole 113, so as to prevent the oil filling operation from affecting the air intake process
  • the gas can also be prevented from leaking out from the air inlet hole 113 .
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the fourth embodiment.
  • the working chamber 13 includes a first chamber 131 and a second chamber 132 .
  • the first chamber 131 is formed between the outer side of the movable scroll 122 and the inner side of the stationary scroll 112
  • the first chamber 131 is formed between the inner side of the movable scroll 122 and the outer side of the stationary scroll 112 .
  • Two chambers 132 are two chambers 132 .
  • the shapes and volumes of the first chamber 131 and the second chamber 132 periodically change.
  • the back pressure hole 1153 communicates with the first chamber 131 and the second chamber 132 alternately, and when the movable disk scroll 122 blocks the back pressure hole 1153, the back pressure hole 1153 and the first chamber are disconnected The communication relationship between the chamber 131 and the second chamber 132 .
  • the oil in the back pressure chamber 213 can alternately flow to the first chamber 131 under the action of pressure. Oil is injected into the first chamber 131 and the second chamber 132 to seal the gaps between the first chamber 131 and the second chamber 132, and further prevent the gas in the working chamber 13 from leaking out through the gap.
  • one cycle of translation of the moving plate 12 relative to the stationary plate 11 is one cycle.
  • the first chamber 131 and the second chamber 132 communicate with the back pressure hole 1153 once respectively, and accordingly, the back pressure chamber 213 injects oil into the first chamber 131 and the second chamber 132 once each , so that the oil filling operation matches the working cycle of the rotor plate 12 .
  • the back pressure hole 1153 is closed to prevent the gas from flowing backward into the back pressure chamber 213 from the back pressure hole 1153 .
  • This embodiment provides a scroll assembly 1, which is further improved on the basis of the ninth embodiment.
  • the maximum volume of the first chamber 131 is greater than the maximum volume of the second chamber 132 , that is, the maximum volumes of the first chamber 131 and the second chamber 132 are different, and there is a volume difference between them.
  • the duration of communication between the first chamber 131 and the back pressure chamber 213 is greater than or equal to the duration of communication between the second chamber 132 and the back pressure chamber 213 , that is, the duration of communication between the back pressure chamber 213 and the first chamber 131 is not less than the duration of the communication between the back pressure chamber 213 and the second chamber 132, so that the duration of the communication between the first chamber 131 and the second chamber 132 and the back pressure chamber 213 matches their respective maximum volumes, so as to achieve the first
  • the chamber 131 and the second chamber 132 have different discharge volumes, so as to be easily applied to the asymmetric profile scroll compressor.
  • This embodiment provides a scroll assembly 1 that can be used in the scroll assembly 1 .
  • the scroll assembly 1 includes a stationary scroll 11 (ie, a stationary scroll) and an orbiting scroll 12 (ie, an orbiting scroll).
  • the moving plate 12 and the static plate 11 are engaged with each other, and a working chamber 13 is enclosed between the moving plate 12 and the static plate 11 .
  • the stationary disk 11 specifically includes a stationary disk end plate 111 (ie a first end plate) and a stationary disk scroll 112 (ie a stationary scroll structure).
  • the stationary disk scroll 112 is arranged on the bottom surface of the stationary disk end plate 111 and is arranged in a scroll shape.
  • the stationary disk end plate 111 includes a bottom wall 1111 and a side wall 1112, the side wall 1112 is arranged along the circumferential direction of the bottom wall 1111, and the stationary disk scroll 112 is located inside the side wall 1112.
  • the static disk 11 is provided with an air intake hole 113 and an exhaust hole 114; At the same time, the air inlet hole 113 passes through the side wall 1112 of the static disk end plate 111 so as to be able to communicate with the working chamber 13 .
  • a vent hole 114 is located in the stationary disk scroll 112 to facilitate venting.
  • the moving plate 12 specifically includes a moving plate end plate 121 (ie, the second end plate) and a moving plate scroll 122 (ie, a moving scroll structure).
  • the moving plate scroll 122 is provided at the end of the moving plate.
  • On the top surface of the plate 121 a scroll-like arrangement is formed that is adapted to the stationary disk scroll 112 .
  • the movable disk scroll 122 meshes with the stationary disk scroll 112 and forms a working chamber 13 with the stationary disk scroll 112 .
  • the moving plate 12 can translate relative to the stationary plate 11.
  • the gas can enter the working chamber 13 through the air inlet 113, and under the action of the moving plate 12, the gas in the working chamber 13 can be affected.
  • the gas is compressed; the compressed gas can be discharged to the discharge chamber 214 of the scroll compressor 2 through the discharge hole 114 , and then discharged to the outside through the discharge pipe 212 .
  • the stationary plate 11 is provided with an oil injection channel 115
  • the movable plate 12 is provided with an oil injection groove 123
  • the oil injection groove 123 can be connected to the back pressure chamber of the scroll compressor 2 . 213 Connected.
  • the oil filling passage 115 specifically includes an oil filling hole 1151 , a connecting hole and a back pressure hole 1153 .
  • the oil injection hole 1151 and the back pressure hole 1153 are both blind holes;
  • the communication hole 1152 is arranged inside the static disk end plate 111 and the static disk scroll 112, and the two ends of the communication hole 1152 are respectively connected to the oil injection hole 1151 and the back pressure hole. 1153 communicate with each other, thereby forming a through oil injection channel 115 .
  • an oil filling groove 123 is provided on the top surface of the moving plate end plate 121 at the outer side of the moving plate scroll 122 .
  • the oil filling groove 123 can communicate with the back pressure chamber 213 of the scroll compressor 2;
  • the positions of the holes 1151 are corresponding so as to be able to communicate with the oil filling holes 1151 to facilitate the oil filling operation.
  • the oil filling groove 123 can intermittently communicate with the oil filling passage 115 and the working chamber 13, so that the back pressure chamber 213 is communicated with the working chamber 13, and the oil filling groove 123 can be intermittently connected with the working chamber 13.
  • the oil injection channel 115 and the working chamber 13 are disconnected.
  • the moving plate 12 can separate the back pressure hole 1153 from the air intake hole 113, so that the back pressure hole 1153 is always disconnected from the air intake hole 113, so as to prevent the oil injection operation from affecting the air intake process.
  • the diameter of the back pressure hole 1153 is smaller than the tooth thickness of the moving plate scroll 122 , so that when the moving plate scroll 122 moves to the position of the back pressure hole 1153 , the back pressure can be completely blocked hole 1153, so that the back pressure hole 1153 and the working chamber 13 can be alternately connected and disconnected.
  • the pressure of the working chamber 13 is greater than the pressure of the back pressure chamber 213 , the pressure of the working chamber 13 is relatively high at this time, and the oil filling passage 115 and the oil filling groove 123 and the working chamber are disconnected through the operation of the moving plate 12 .
  • the communication relationship between the chambers 13 prevents the gas in the working chamber 13 from entering the back pressure chamber 213 through the oil injection channel 115 and the oil injection groove 123 to reduce gas loss.
  • one end of the oil filling groove 123 close to the moving plate scroll 122 has a circular arc structure, specifically a semicircular structure, which is convenient for processing and forming, and can guide the oil when the oil flows.
  • the groove width of the oil filling groove 123 is equal to the diameter of the arc structure, so that the whole oil filling groove 123 is formed into a long groove body of equal width, which is easy to process, and can reduce the pressure change of the oil caused by the change of the width when the oil flows through. .
  • the groove width of the oil filling groove 123 is greater than or equal to 1 mm, and the groove depth is greater than or equal to 0.5 mm, so that the oil filling groove 123 can maintain a suitable flow area when the moving plate end plate 121 is attached to the static plate 11, preventing the The oil filling groove 123 is too narrow to affect the normal flow of oil.
  • an eccentric bearing 124 is provided at the bottom of the moving plate end plate 121 to connect the eccentric part (e.g. crankshaft).
  • the working chamber 13 includes a first chamber 131 and a second chamber 132 .
  • the first chamber 131 is formed between the outer side of the movable scroll 122 and the inner side of the stationary scroll 112
  • the first chamber 131 is formed between the inner side of the movable scroll 122 and the outer side of the stationary scroll 112 .
  • Two chambers 132 are two chambers 132 .
  • the shapes and volumes of the first chamber 131 and the second chamber 132 periodically change, and the maximum volume of the first chamber 131 is greater than the maximum volume of the second chamber 132, correspondingly,
  • the duration of the communication between the first chamber 131 and the back pressure chamber 213 is longer than the duration of the communication between the second chamber 132 and the back pressure chamber 213 , so as to be applied to the asymmetric profile scroll compressor.
  • the back pressure hole 1153 communicates with the first chamber 131 and the second chamber 132 alternately, and when the movable disk scroll 122 blocks the back pressure hole 1153, the back pressure hole 1153 and the first chamber are disconnected The communication relationship between the chamber 131 and the second chamber 132 .
  • one working cycle is one rotation of the moving plate 12 relative to the stationary plate 11 in translation.
  • the first chamber 131 and the second chamber 132 communicate with the back pressure hole 1153 once respectively, and accordingly, the back pressure chamber 213 injects oil into the first chamber 131 and the second chamber 132 once each , so that the oil filling operation matches the working cycle of the rotor plate 12 .
  • the back pressure hole 1153 is closed to prevent the gas from flowing backward into the back pressure chamber 213 from the back pressure hole 1153 .
  • the back pressure hole 1153 is still in communication with the first chamber 131 , but the oil filling groove 123 is disconnected from the oil filling hole 1151 .
  • the pressure of the first chamber 131 at the back pressure hole 1153 is higher (higher than the pressure of the back pressure chamber 213 ), but the gas in the first chamber 131 cannot enter the back pressure chamber 213 .
  • the back pressure hole 1153 is still in communication with the second chamber 132 , but the oil filling groove 123 is disconnected from the oil filling hole 1151 .
  • the pressure of the second chamber 132 at the back pressure hole 1153 is higher (higher than the pressure of the back pressure chamber 213 ), but the gas in the second chamber 132 cannot enter the back pressure chamber 213 .
  • the scroll assembly 1 in this embodiment can effectively prevent the gas in the working chamber 13 from leaking to the back pressure chamber 213 , and can prevent the gas in the back pressure chamber 213 from entering the working chamber 13 through the oil filling passage 115 , thereby During the working process of the scroll assembly 1 , the flow loss of the gas is reduced, which is beneficial to promote the scroll compressor 2 to improve the energy efficiency.
  • the scroll compressor 2 includes a casing 21, a frame 22, the scroll assembly 1 in any of the above embodiments, and a drive Component 23.
  • the frame 22 , the scroll assembly 1 and the drive assembly 23 are all arranged in the casing 21 .
  • the frame 22 serves as a mounting base for the scroll assembly 1 and the drive assembly 23 to support the scroll assembly 1 and the drive assembly 23 .
  • the stationary plate 11 of the scroll assembly 1 is fixedly connected to the frame 22 , and a back pressure chamber 213 is formed between the movable plate 12 of the scroll assembly 1 and the frame 22 .
  • the output end of the driving assembly 23 is eccentrically connected to the moving plate 12 to drive the moving plate 12 to perform translation relative to the stationary plate 11 .
  • the drive assembly 23 includes a motor 231 and a crankshaft 232.
  • the eccentric portion of the crankshaft 232 is eccentrically connected to the moving plate 12.
  • the motor 231 outputs power to the moving plate 12 through the crankshaft 232 to drive the moving plate 12 to translate.
  • the casing 21 is provided with an intake pipe 211 and an exhaust pipe 212.
  • the intake pipe 211 communicates with the intake hole 113 of the static plate 11, and the exhaust hole 114 of the static plate 11 passes through the exhaust chamber 214 in the casing 21 and is connected to the exhaust.
  • Trachea 212 communicates to facilitate inhalation and exhaust operations.
  • the housing 21 stores oil, and the oil can enter the back pressure chamber 213 through the oil passage.
  • the oil filling channel 115 of the static plate 11 can intermittently communicate with the oil filling groove 123 of the moving plate 12 and the working chamber 13, so as to realize the connection between the back pressure chamber 213 and the working chamber 13. Intermittent connection and disconnection, and then use the pressure difference between the back pressure chamber 213 and the working chamber 13 to intermittently inject the oil in the back pressure chamber 213 into the working chamber 13, so that the working chamber 13 The gaps inside are sealed.
  • the scroll compressor 2 in this embodiment can effectively prevent the gas leakage in the working chamber 13, and at the same time, can prevent the gas in the working chamber 13 from entering the back pressure chamber 213 through the oil supply passage and the oil filling groove 123, thereby effectively Reducing the gas flow loss during the working process of the scroll compressor 2 is beneficial to promoting the scroll compressor 2 to improve energy efficiency.
  • the scroll compressor 2 in this embodiment also has all the beneficial effects of the scroll assembly 1 in any one of the above-mentioned embodiments, which will not be repeated here.
  • This embodiment provides an air conditioner 3.
  • the air conditioner 3 includes an indoor unit 31 and an outdoor unit 32 connected by pipelines, so as to realize air conditioning through the circulating flow of refrigerant.
  • the scroll compressor 2 in any of the above embodiments is provided in the outdoor unit 32 for compressing the refrigerant and changing the state of the refrigerant so as to meet the operation requirements of the air conditioner 3 .
  • the air conditioner 3 in this embodiment also has all the beneficial effects of the scroll compressor 2 in any of the above embodiments, which will not be repeated here.
  • a scroll compressor compression structure comprises: a casing, a crankshaft, a moving plate and a stationary plate.
  • the casing is a closed container with a suction pipe and an exhaust pipe.
  • the casing is a high-pressure environment and stores lubricating oil;
  • the crankshaft has an eccentric part and rotates around a fixed axis;
  • the moving plate has a mirror plate, which stands on the front of the mirror plate.
  • the static disc is provided with suction holes and exhaust holes, and has a concave scroll-shaped scroll.
  • the stationary disk scroll meshes with the movable disk scroll to form a compressor working chamber.
  • the working chamber sucks low-pressure gas from the suction port of the casing through the suction pipe, and the low-pressure gas is compressed and discharged into the casing through the static disk exhaust hole, and finally discharged from the casing exhaust pipe.
  • the working chamber includes: cavity A (ie, the first chamber) between the outer line of the movable disk scroll and the inner line of the stationary scroll, and cavity B (ie the first chamber) between the inner line of the movable disk scroll and the outer line of the stationary scroll Two chambers); back pressure chamber, the pressure of the back pressure chamber is the intermediate pressure between the suction pressure and the exhaust pressure, and the back pressure chamber provides a supporting force for the front of the moving disk mirror plate to be close to the top surface of the static disk to prevent the moving disk capsize.
  • Back pressure hole the back pressure hole is opened on the inner top surface of the static plate.
  • the back pressure hole is alternately connected with the A cavity and the B cavity, and the back pressure hole is covered by the scroll scroll of the passive plate during the alternation; oil injection hole, oil injection hole It is opened on the bottom surface of the scroll of the static disk and communicated with the back pressure hole; the oil filling groove is opened on the front of the mirror plate of the moving disk and communicated with the back pressure chamber;
  • the oil filling groove and the oil filling hole are intermittently connected, and in the process of increasing the pressure of the back pressure hole, before the back pressure hole is covered by the passive plate scroll, the oil filling groove and the oil filling hole are disconnected.
  • the oil filling hole is set on the stationary static plate, and the oil filling groove is set on the moving plate that moves in a plane.
  • the oil filling groove and the oil filling hole can be intermittently connected and disconnected, and the back pressure hole can be ensured.
  • the oil filling groove is disconnected from the oil filling hole. That is, when the pressure of the working chamber at the back pressure hole is low, the working chamber is connected to the back pressure chamber; the pressure of the working chamber at the back pressure hole is high, and the working chamber is disconnected from the back pressure chamber. The gas in the working chamber is prevented from entering the back pressure chamber and the breathing loss is reduced.
  • the lubricating oil in the casing enters the back pressure chamber through the pressure difference.
  • the oil filling groove is connected to the oil filling hole, since the pressure of the working chamber at the back pressure hole is lower than the pressure of the back pressure chamber, the lubricating oil is injected from the back pressure chamber to the working chamber to realize the oil supply of the working chamber to seal the gap and prevent the Gas leak.
  • the shell is provided with a suction pipe and an exhaust pipe, and lubricating oil is stored at the bottom.
  • the moving plate has a mirror plate and a swirl scroll standing on the front of the mirror plate, protruding from an eccentric bearing on the back of the mirror plate, and an oil filling groove is opened on the front of the mirror plate.
  • the static disc is provided with a suction hole and an exhaust hole, a concave vortex scroll, a back pressure hole is set on the inner top surface of the static disc, an oil injection hole is set on the bottom surface of the static disc scroll, and the two holes pass through a radial The communication holes communicate with each other.
  • the stationary disk scroll meshes with the movable disk scroll to form a compressor working chamber.
  • the A working chamber is between the outer line of the movable plate scroll and the inner line of the stationary scroll
  • the B working chamber is between the inner line of the movable plate scroll and the outer line of the stationary scroll.
  • the compressor is also provided with a main frame to support the crankshaft.
  • a back pressure chamber is formed on the back of the moving disk mirror plate, and the back pressure chamber is surrounded by the main frame, the static disk and the moving disk.
  • the oil filling groove on the moving plate is connected with the edge of the mirror plate, that is, the oil filling groove is communicated with the back pressure chamber.
  • the back pressure chamber is communicated with the high pressure in the housing through a small gap; on the other hand, when the back pressure hole is communicated with the A or B working chamber, and the oil filling groove is also communicated with the oil filling hole, the back pressure chamber is communicated with the working chamber; Therefore, the back pressure chamber is at an intermediate pressure between high pressure and low pressure, which provides a support force for the front of the mirror plate of the moving disk to be close to the top surface of the static disk to prevent the moving disk from overturning.
  • the lubricating oil is pressed into the back pressure chamber from the casing, and then injected into the working chamber to realize the oil supply of the working chamber to seal the gap and prevent gas leakage.
  • the oil filling groove is composed of two parallel lines and a circular arc.
  • the groove width is equal to the diameter of the circular arc, the groove width is greater than or equal to 1mm, and the groove depth is greater than or equal to 0.5mm.
  • the oil tank is simple and easy to machine.
  • the center line of the suction hole rotates around the center of the stationary disc toward the scroll shrinking direction by an angle of ⁇ and passes through the back pressure hole, where ⁇ is greater than or equal to 225° and less than or equal to 315°. As a result, a better back pressure can be obtained.
  • the volume of the A working chamber is larger than that of the B working chamber, so it is preferable that the communication time between the back pressure chamber and the A chamber is not less than the communication time between the back pressure chamber and the B chamber.
  • the back pressure hole is not communicated with the suction hole of the static disk.
  • the back pressure hole is about to communicate with the A/B cavity, the A/B cavity has completed the inspiratory closure.
  • the terms “first”, “second” and “third” are only used for the purpose of description, and cannot be construed as indicating or implying relative importance; the term “multiple” refers to two one or two or more, unless otherwise expressly limited.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; “connected” can be It is directly connected or indirectly connected through an intermediary. Those of ordinary skill in the art can understand the specific meanings of the above terms in the embodiments according to the present application according to specific situations.

Abstract

一种涡旋盘组件、涡旋压缩机和空调器。涡旋盘组件包括:静涡旋盘(11),静涡旋盘(11)上设有进气孔(113)、排气孔(114)和注油通道(115);动涡旋盘(12),与静涡旋盘(11)相啮合,并与静涡旋盘(11)之间形成工作腔室(13),动涡旋盘(12)上设有与涡旋压缩机的背压腔室(213)相连通的注油槽(123),动涡旋盘(12)配置为相对于静涡旋盘(11)平动,以对进入工作腔室(13)的气体进行压缩;其中,注油通道(115)与注油槽(123)和工作腔室(13)间歇性地连通,以在背压腔室(213)与工作腔室(13)之间的压力差的作用下,使背压腔室(213)中的油液间歇性注入工作腔室(13)。这种结构能够有效防止工作腔室中的气体向背压腔室泄漏,从而在涡旋盘组件工作过程中减少气体的流动损失,有利于提高涡旋压缩机能效。

Description

涡旋盘组件、涡旋压缩机和空调器
本申请要求于2021年03月30日提交到中国国家知识产权局的申请号为202110338891.1、发明名称为“涡旋盘组件、涡旋压缩机和空调器”的中国专利申请的优先权,并要求于2021年03月30日提交到中国国家知识产权局的申请号为202120640844.8、发明名称为“涡旋盘组件、涡旋压缩机和空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种涡旋盘组件、一种涡旋压缩机和一种空调器。
背景技术
目前,涡旋压缩机的背压腔的压力为中间压力,动涡旋盘在背压腔压力作用下紧贴静涡旋盘,若背压腔压力过大,则会造成动涡旋盘与静涡旋盘贴合面摩擦损失增大,功率升高;若背压腔压力过小,则会造成动涡旋盘不能平稳地贴合静涡旋盘,容易导致动涡旋盘倾覆,并发生漏气现象,造成涡旋压缩机的工作能力下降。现有技术中通过在工作腔内设置背压孔的方案,使背压孔与背压腔连通,以使背压腔具有高于吸气压力的中间压力。但在该方案中,由于工作腔压力随静涡旋盘的运转而发生变化,当背压孔处的工作腔压力较高时,工作腔的气体容易通过背压孔进入背压腔内,当背压孔处的工作腔压力较低时,气体又容易通过背压孔进入工作腔,从而造成气体的流动损失,影响涡旋压缩机的能效。
发明内容
根据本申请的实施例,旨在至少改善现有技术或相关技术中存在的技术问题之一。
为此,根据本申请的实施例的一个目的在于提供一种涡旋盘组件。
根据本申请的实施例的另一个目的在于提供一种涡旋压缩机。
根据本申请的实施例的又一个目的在于提供一种空调器。
为了实现上述目的,根据本申请第一方面的实施例提供了一种涡旋盘组件,包括:静涡旋盘,静涡旋盘上设有进气孔、排气孔和注油通道;动涡旋盘,与静涡旋盘相啮合,并与静涡旋盘之间形成工作腔室,动涡旋盘上设有与涡旋压缩机的背压腔室相连通的注油槽,动涡旋盘配置为相对于静涡旋盘平动,以对进入工作腔室的气体进行压缩;其中,注油通道与注油槽和工作腔室间歇性地连通,以在背压腔室与工作腔室之间的压力差的作用下,使背压腔室中的油液间歇性注入工作腔室。
根据本申请第一方面的实施例,涡旋盘组件包括静涡旋盘和动涡旋盘,可用于涡旋压缩机。动涡旋盘与静涡旋盘相互啮合,并在二者之间围成工作腔室;动涡旋盘能够相对于静涡旋盘进行平动。通过在静涡旋盘上设置进气孔和排气孔,以使气体能够由进气孔进入工作腔室,以在动涡旋盘的运转过程中,改变工作腔室的结构状态,从而压缩气体,并使压缩后的气体通过排气孔排出至涡旋压缩机的排气腔室。
通过在静涡旋盘上设置注油通道,对应地,在动涡旋盘上设置注油槽,且注油槽能够与涡旋压缩机的背压腔室连通,以在动涡旋盘的运转过程中,注油槽能够间歇性地与注油通道以及工作腔室连通,并利用工作腔室与背压腔室之间的压力差,驱动背压腔室中的油液通过注油槽和注油通道流入工作腔室中,在对动涡旋盘与静涡旋盘之间的贴合面进行润滑的同时,并对工作腔室中的缝隙进行密封,防止工作腔室中的气体向背压腔室泄漏,同时,在注油槽与注油通道以及工作腔室处于断开连通的状态时,能够防止背压腔内的气体通过注油通道进入工作腔室,实现间歇性注油,从而在涡旋盘组件工作过程中减少气体的流动损失,有利于促进涡旋压缩机提高能效。
需要说明的是,涡旋压缩机的动涡旋盘与静涡旋盘之间的贴合面存在细微的缝隙,通常情况下,气体会在压力作用下流入或流出工作腔室,造成气体的流动损失。涡旋压缩机的背压腔的压力通常处于吸气压力与排气压力之间,涡旋压缩机的储油空间中的油液能够在压力作用下进入背压腔,从而为工作腔室提供油液。
另外,根据本申请的实施例中提供的上述技术方案中的涡旋盘组件还可以 具有如下附加技术特征:
在上述技术方案中,在工作腔室的压力大于背压腔室的压力时,注油通道与注油槽和工作腔室断开连通;在工作腔室的压力小于背压腔室的压力时,注油通道与注油槽和工作腔室连通。
在该技术方案中,随着工作腔室内的压力变化,注油通道与注油槽以及工作腔室交替连通和断开。当工作腔室的压力大于背压腔室的压力时,通过动涡旋盘的运转,断开注油通道与注油槽以及工作腔室之间的连通关系,以防止工作腔室中的气体通过注油通道和注油槽进入背压腔,以减少气体损失;而当工作腔室的压力小于背压腔室的压力时,通过动涡旋盘的运转,使注油通道与注油槽以及工作腔室连通,此时,在背压腔与工作腔室之间形成压力差,背压腔的油液在压力作用下通过注油槽和注油通道进入工作腔室,以对工作腔室的缝隙进行密封,防止气体通过缝隙泄漏至背压腔。以上设置既能够减少工作腔室的缝隙造成的气体流动损失,同时能够防止注油通道和注油槽自身造成气体损失,对涡旋压缩机的能效的改善效果更佳。
在上述技术方案中,静涡旋盘包括第一端板和设于第一端板底面上的静涡旋结构;注油通道包括注油孔、连通孔和背压孔,注油孔设于静涡旋结构的底面上,背压孔设于第一端板的底面上,连通孔的两端分别与注油孔和背压孔连通;其中,注油槽与注油孔间歇性连通,背压孔与工作腔室间歇性连通。
在该技术方案中,静涡旋盘具体包括第一端板和静涡旋结构,静涡旋结构设于第一端板的底面,并呈涡旋状设置;排气孔位于静涡旋结构中,以便于排气。注油通道具体包括注油孔、连接孔和背压孔,背压孔设于第一端板的底面上,注油孔设于静涡旋结构的底面上,且注油孔和背压孔均为盲孔;连通孔设于第一端板和静涡旋结构内部,且连通孔的两端分别于注油孔和背压孔连通,从而形成贯通的注油通道。在涡旋压缩机工作过程中,动涡旋盘相对于静涡旋盘进行平动,并使背压孔交替打开和关闭,同时,注油槽于注油孔交替连通和断开,进而使涡旋压缩机的背压腔室与工作腔室实现交替性连通和断开。
在上述技术方案中,动涡旋盘包括第二端板和设于第二端板顶面上的动涡旋结构,动涡旋结构与静涡旋结构相啮合,并与静涡旋结构之间形成工作腔室;注油槽设于第二端板的顶面上,并位于动涡旋结构的外侧,注油槽的一端延伸 至第二端板的边缘,另一端向靠近动涡旋结构的方向延伸。
在该技术方案中,动涡旋盘具体包括第二端板和动涡旋结构,动涡旋结构设于第二端板的顶面上,并形成与静涡旋结构相适配的涡旋状设置;动涡旋结构与静涡旋结构相啮合,并围成工作腔室。其中,随着动涡旋盘的运转,工作腔室的形状和体积会发生变化。通过在第二端板上位于动涡旋结构的外侧设置注油槽,以在第二端板与静涡旋结构的底面贴合后,注油槽能够随动涡旋盘的运转间歇性与注油孔连通和断开,以便于进行注油操作。其中,注油槽的一端延伸至第二端板的边缘,以与背压腔室连通,注油槽的另一端向靠近动涡旋结构的方向延伸,以与注油孔的位置相对应。
在上述技术方案中,背压孔的孔径小于动涡旋结构的齿厚。
在该技术方案中,动涡旋结构的顶面与第一端板的底面相贴合,通过对背压孔的孔径尺寸进行限定,使得背压孔的孔径小于动涡旋结构的齿厚,使得动涡旋结构在运动至背压孔的位置时,能够完全封挡背压孔,以使背压孔与工作腔室实现交替性连通和断开,以防止背压孔与动涡旋结构的尺寸不匹配而导致气体通过背压孔向背压腔室泄漏。
在上述技术方案中,注油槽靠近动涡旋结构的一端为圆弧结构,且圆弧结构的直径与注油槽的槽宽相等。
在该技术方案中,注油槽靠近动涡旋结构的一端为圆弧结构,例如半圆结构,便于加工成型,同时在油液流过时能够起导引作用。通过设置注油槽的槽宽与圆弧结构的直径相等,以形成等宽的长条状槽体,易于加工,同时在油液流过时能够减少对油液的压力变化。
在上述技术方案中,注油槽的槽宽大于或等于1mm,且注油槽的槽深大于或等于0.5mm。
在该技术方案中,通过设置注油槽的槽宽尺寸具体大于或等于1mm,槽深大于或等于0.5mm,以在第二端板与静涡旋盘贴合时,防止注油槽过窄而影响油液的流动。
在上述技术方案中,第一端板的底面上沿圆周方向设有侧壁,进气孔沿径向方向设置,并穿过侧壁;其中,在静涡旋结构逐渐缩小的方向上,进气孔的中心线和背压孔之间的夹角为225°至315°。
在该技术方案中,通过设置进气孔沿第一端板的径向方向设置,以便于连接涡旋压缩机的进气管;进气孔穿过第一端板的侧壁,以便于能够与工作腔室形成连通。其中,当进气孔与工作腔室处于连通状态时,进行吸气操作,随着动涡旋盘的运转,阻断进气孔与工作腔室之间的连通关系,进而对工作腔室内的气体进行压缩操作,最后使压缩后的气体通过排气孔排放至涡旋压缩机的排气腔室,完成一次工作循环。其中,通过设置进气孔的中心线与背压孔之间的夹角,以使背压孔和进气孔之间保持合适的间隔,具体地,在静涡旋结构逐渐缩小的方向上,夹角在225°至315°的范围内,背压孔能够获得较优的背压压力。
在上述技术方案中,背压孔与进气孔之间始终保持断开状态。
在该技术方案中,在动涡旋盘的运转过程中,背压孔始终与进气孔保持断开状态,以防止注油操作对吸气过程造成影响,同时也防止在压缩过程中气体由进气孔向外泄漏。
在上述技术方案中,第二端板的底部设有偏心轴承。
在该技术方案中,通过在第二端板的底部设置偏心轴承,以在装配于涡旋压缩机时,便于与驱动机构的偏心部件连接,从而实现动涡旋盘的偏心连接,使得动涡旋盘能够在驱动机构的驱动下相对于静涡旋盘进行平动。
在上述技术方案中,工作腔室包括:第一腔室,位于动涡旋结构的外侧面与静涡旋结构的内侧面之间;第二腔室,位于动涡旋结构的内侧面与静涡旋结构的外侧面之间;其中,背压孔交替与第一腔室和第二腔室连通,使背压腔室的油液交替注入第一腔室和第二腔室。
在该技术方案中,工作腔室包括第一腔室和第二腔室,具体地,动涡旋结构的外侧面与静涡旋结构的内侧面之间形成第一腔室,动涡旋结构的内侧面与静涡旋结构的外侧面之间形成第二腔室,且随着动涡旋盘的运转,第一腔室和第二腔室的形状和体积发生周期性变化。在此过程中,背压孔与第一腔室和第二腔室交替形成连通,且在动涡旋结构封挡背压孔时,断开背压孔与第一腔室和第二腔室之间的连通关系。其中,背压腔室的油液能够在压力作用下,交替向第一腔室和第二腔室内注油,以分别对第一腔室和第二腔室的缝隙进行密封,进一步减少工作腔室中的气体通过缝隙向外泄漏。
在上述技术方案中,动涡旋盘平动一周,向第一腔室和第二腔室分别注油一次。
在该技术方案中,动涡旋盘相对于静涡旋盘平动一周为一个工作循环,在一个工作循环过程中,第一腔室和第二腔室分别与背压孔连通一次,相应地,分别向第一腔室和第二腔室分别注油一次,以使注油操作与动涡旋盘的工作循环相匹配。
在上述技术方案中,第一腔室的最大容积大于第二腔室的最大容积;其中,第一腔室与背压腔室的连通时长大于或等于第二腔室与背压腔室的连通时长。
在该技术方案中,通过设置第一腔室的最大容积大于第二腔室的最大容积,即第一腔室与第二腔室的最大容积不同,以便于应用于非对称型线涡旋压缩机。此时,通过设置背压腔与第一腔室的连通时长不小于背压腔与第二腔室的连通时长,以第一腔室和第二腔室各自对应的最大容积相匹配,实现第一腔室和第二腔室不同的排气量。
本申请第二方面的实施例提供了一种涡旋压缩机,包括:壳体,壳体上设有进气管和排气管,且壳体内容纳有油液;机架,设于壳体内;上述第一方面的实施例中任一项的涡旋盘组件,设于机架上,涡旋盘组件的进气孔和排气孔分别与进气管和排气管连通,且涡旋盘组件的动涡旋盘与机架之间形成背压腔室;驱动组件,设于壳体内,驱动组件的输出端与动涡旋盘偏心连接,用于驱动动涡旋盘相对于静涡旋盘平动。
根据本申请第二方面的实施例,涡旋压缩机包括壳体、机架、上述第一方面的实施例中的涡旋盘组件和驱动组件。机架、涡旋盘组件和驱动组件均设于壳体内。机架作为涡旋盘组件和驱动组件的安装底座,以对涡旋盘组件和驱动组件形成支撑。涡旋盘组件的静涡旋盘固定连接于机架上,涡旋盘组件的动涡旋盘与机架之间形成背压腔室;驱动组件的输出端与动涡旋盘偏心连接,以驱动动涡旋盘相对于静涡旋盘进行平动。壳体上设有进气管和排气管,进气管与静涡旋盘的进气孔连通,静涡旋盘的排气孔通过壳体内的排气腔室与排气管连通,以便于进行吸气和排气操作。壳体内储存有油液,且油液能够通过油道进入背压腔室。
其中,随着动涡旋盘的运转,静涡旋盘的注油通道能够间歇性与动涡旋盘 的注油槽以及工作腔室连通,以实现背压腔室与工作腔室之间的间歇性连通和断开,进而利用背压腔室与工作腔室之间的压力差,使背压腔室内的油液间歇性注入工作腔室内,以对工作腔室内的缝隙进行密封,防止工作腔室的气体泄漏,同时,能够防止工作腔室内的气体通过供油通道和注油槽进入背压腔室,从而有效减少涡旋压缩机工作过程中的气体流动损失,有利于促进涡旋压缩机提高能效。
此外,本方案中的涡旋压缩机还具有上述第一方面实施例中任一项的涡旋盘组件的全部有益效果,在此不再赘述。
本申请第三方面的实施例提供了一种空调器,包括:室内机;室外机,通过管路与室内机相连,室外机中设有上述第二方面的实施例中的涡旋压缩机。
根据本申请第三方面的实施例,空调器包括通过管路相连的室内机和室外机,以通过冷媒的循环流动实现空气调节。其中,室外机中设有上述第二方面的实施例中的涡旋压缩机,用于对冷媒进行压缩,改变冷媒的状态,以符合空调器的运行需求。
此外,本方案中的空调器还具有上述第二方面实施例中的涡旋压缩机的全部有益效果,在此不再赘述。
本申请实施例中的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请实施例中的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的涡旋压缩机的剖视图;
图2示出了图1的局部示意图;
图3示出了根据本申请的一个实施例的静涡旋盘的上部结构示意图;
图4示出了根据本申请的一个实施例的动涡旋盘的下部结构示意图;
图5示出了根据本申请的一个实施例的静涡旋盘的示意图;
图6示出了图5中的A-A向剖视图;
图7示出了根据本申请的一个实施例的动涡旋盘的示意图;
图8示出了图7中B-B向剖视图;
图9示出了根据本申请的一个实施例的静涡旋盘的示意图;
图10示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图11示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图12示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图13示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图14示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图15示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图16示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图17示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图18示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图19示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图20示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图21示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图22示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图23示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图24示出了根据本申请的一个实施例的涡旋盘组件的剖视图;
图25示出了根据本申请的一个实施例的涡旋盘组件的示意图;
图26示出了根据本申请的一个实施例的空调器的示意框图。
其中,图1至图26中的附图标记与部件名称之间的对应关系如下:
1涡旋盘组件,11静盘,111静盘端板,1111底壁,1112侧壁,112静盘涡卷,113进气孔,114排气孔,115注油通道,1151注油孔,1152连通孔,1153背压孔,12动盘,121动盘端板,122动盘涡卷,123注油槽,124偏心轴承,13工作腔室,131第一腔室,132第二腔室,2涡旋压缩机,21壳体,211进气管,212排气管,213背压腔室,214排气腔室,22机架,23驱动组件,231电机,232曲轴,3空调器,31室内机,32室外机。
具体实施方式
为了能够更清楚地理解根据本申请的实施例中的上述目的、特征和优点, 下面结合附图和具体实施方式对根据本申请的实施例进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解根据本申请的实施例,但是,根据本申请的实施例还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图26描述根据本申请一些实施例的涡旋盘组件、涡旋压缩机和空调器。
实施例一
本实施例提供了一种涡旋盘组件1,可用于涡旋压缩机2。
如图1和图2所示,涡旋盘组件1包括静盘11(即静涡旋盘)和动盘12(即动涡旋盘)。动盘12与静盘11相互啮合,并与静盘11之间围成工作腔室13。
动盘12能够相对于静盘11进行平动,且在动盘12运转过程中,工作腔室13的形态和体积发生动态变化。
静盘11上设置进气孔113和排气孔114;在装配于涡旋压缩机2时,进气孔113与涡旋压缩机2的进气管211连通,排气孔114与涡旋压缩机2的排气腔室214连通。
在涡旋压缩机2工作过程中,气体能够由进气孔113进入工作腔室13,并在动盘12的作用下对工作腔室13中的气体进行压缩;完成压缩的气体能够排气孔114排出至涡旋压缩机2的排气腔室214,进而通过排气管212向外界排出。
其中,如图3和图4所示,静盘11上设置有注油通道115,与之相对应,动盘12上设置有注油槽123,且注油槽123能够与涡旋压缩机2的背压腔室213连通。在动盘12的运转过程中,注油槽123能够间歇性地与注油通道115以及工作腔室13连通,使背压腔室213与工作腔室13实现连通,也能够使注油槽123间歇性与注油通道115以及工作腔室13断开连接关系。
工作腔室13与背压腔室213之间存在压力差,背压腔室213中的油液能够在压力作用下,通过注油槽123和注油通道115流入工作腔室13中,实现 间歇性注油,以对动盘12与静盘11之间的贴合面进行润滑,同时,对工作腔室13中的缝隙进行密封。
需要说明的是,涡旋压缩机2的动盘12与静盘11之间的贴合面存在细微的缝隙,通常情况下,气体会在压力作用下流入或流出工作腔室13,造成气体的流动损失。
本实施例中的涡旋盘组件1,能够有效防止工作腔室13中的气体向背压腔室213泄漏,并能够防止背压腔室213内的气体通过注油通道115进入工作腔室13,从而在涡旋盘组件1工作过程中减少气体的流动损失,有利于促进涡旋压缩机2提高能效。
可以理解地,涡旋压缩机2的背压腔室213的压力通常处于吸气压力与排气压力之间,涡旋压缩机2的储油空间中的油液能够在压力作用下进入背压腔室213,从而为工作腔室13提供油液。
实施例二
本实施例提供了一种涡旋盘组件1,在实施例一的基础上做了进一步的改进。
如图1至图4所示,随着工作腔室13内的压力变化,注油通道115与注油槽123以及工作腔室13交替连通和断开。
当工作腔室13的压力大于背压腔室213的压力时,此时工作腔室13的压力较高,通过动盘12的运转,断开注油通道115与注油槽123以及工作腔室13之间的连通关系,以防止工作腔室13中的气体通过注油通道115和注油槽123进入背压腔室213,以减少气体损失。
当工作腔室13的压力小于背压腔室213的压力时,此时工作腔室13的压力较低,通过动盘12的运转,使注油通道115与注油槽123以及工作腔室13连通,背压腔室213与工作腔室13之间形成压力差,使背压腔室213的油液在压力作用下通过注油槽123和注油通道115进入工作腔室13,以对工作腔室13的缝隙进行密封,防止气体通过缝隙泄漏至背压腔室213。
本实施例中的设置方式能够减少工作腔室13的缝隙造成的气体流动损失,同时能够防止注油通道115和注油槽123自身造成气体损失,对涡旋压缩机2的能效的改善效果更佳。
实施例三
本实施例提供了一种涡旋盘组件1,在实施例二的基础上做了进一步的改进。
如图1至图4所示,静盘11具体包括静盘端板111(即第一端板)和静盘涡卷112(即静涡旋结构)。静盘涡卷112设于静盘端板111的底面,并呈涡旋状设置。排气孔114位于静盘涡卷112中,以便于排气。
如图5和图6所示,注油通道115具体包括注油孔1151、连接孔和背压孔1153,背压孔1153设于静盘端板111的底面上,注油孔1151设于静盘涡卷112的底面上,且注油孔1151和背压孔1153均为盲孔;连通孔1152设于静盘端板111和静盘涡卷112内部,且连通孔1152的两端分别于注油孔1151和背压孔1153连通,从而形成贯通的注油通道115。
在涡旋压缩机2工作过程中,动盘12相对于静盘11进行平动,并使背压孔1153交替打开和关闭,同时,注油槽123于注油孔1151交替连通和断开,进而使涡旋压缩机2的背压腔室213与工作腔室13实现交替性连通和断开。
需要说的是,本实施例中的底面、顶面均以静盘11在装配状态下的高度方向作为参照,例如图1和图2中的状态;图3中示出的是静盘11的下部结构示意图,并非在装配状态下的方向。
实施例四
本实施例提供了一种涡旋盘组件1,在实施例三的基础上做了进一步的改进。
如图1至图4所示,动盘12具体包括动盘端板121(即第二端板)和动盘涡卷122(即动涡旋结构),动盘涡卷122设于动盘端板121的顶面上,并形成与静盘涡卷112相适配的涡旋状设置。动盘涡卷122与静盘涡卷112相啮合,并与静盘涡卷112围成工作腔室13。
其中,随着动盘12的运转,工作腔室13的形状和体积会发生变化。动盘端板121的顶面上位于动盘涡卷122的外侧的位置设有注油槽123,以在动盘端板121的顶面与静盘涡卷112的底面贴合后,注油槽123能够随动盘12的运转间歇性与注油孔1151连通和断开。
其中,注油槽123的一端延伸至动盘端板121的边缘,以在涡旋盘组件1 装配与涡旋压缩机2时,注油槽123能够与涡旋压缩机2的背压腔室213连通;注油槽123的另一端向靠近动盘涡卷122的方向延伸,以与注油孔1151的位置相对应,以能够与注油孔1151连通,便于进行注油操作。
进一步地,背压孔1153的孔径小于动盘涡卷122的齿厚,使得动盘涡卷122在运动至背压孔1153的位置时,能够完全封挡背压孔1153,以使背压孔1153与工作腔室13实现交替性连通和断开,进而防止背压孔1153与动盘涡卷122的尺寸不匹配而导致气体通过背压孔1153向背压腔室213泄漏。
实施例五
本实施例提供了一种涡旋盘组件1,在实施例四的基础上做了进一步的改进。
如图7所示,注油槽123靠近动盘涡卷122的一端为圆弧结构,具体为半圆结构,便于加工成型,在油液流过时能够对油液起导引作用。
注油槽123的槽宽与圆弧结构的直径相等,使得注油槽123整体形成等宽度的长条状槽体,易于加工,且在油液流过时能够减少因宽度变化而引起油液的压力变化。
进一步地,注油槽123的槽宽尺寸大于或等于1mm,槽深大于或等于0.5mm,以在动盘端板121与静盘11贴合时,使注油槽123能够保持合适的过流面积,防止注油槽123过窄而影响油液的正常流动。
实施例六
本实施例提供了一种涡旋盘组件1,在实施例四的基础上做了进一步的改进。
如图1、图2和图8所示,动盘端板121的底部设置有偏心轴承124。在涡旋盘组件1装配于涡旋压缩机2时,偏心轴承124能够与驱动机构的偏心部件(例如曲轴)连接,从而实现动盘12的偏心连接。在涡旋压缩机2工作时,动盘12能够在驱动机构的偏心部件的带动下,相对于静盘11进行平动,以对气体进行压缩。
实施例七
本实施例提供了一种涡旋盘组件1,在实施例四的基础上做了进一步的改进。
如图1至图3以及图9所示,静盘11的静盘端板111包括底壁1111和侧壁1112,侧壁1112沿底壁1111的圆周方向设置,静盘涡卷112位于侧壁1112的内侧。进气孔113沿静盘端板111的径向方向设置,以便于连接涡旋压缩机2的进气管211;同时,进气孔113穿过静盘端板111的侧壁1112,以便于能够与工作腔室13形成连通。
当进气孔113与工作腔室13处于连通状态时,进行吸气操作,气体通过进气孔113进入工作腔室13;随着动盘12的运转,进气孔113与工作腔室13之间断开,进而对工作腔室13内的气体进行压缩操作,压缩后的气体通过排气孔114排放至涡旋压缩机2的排气腔室214,完成一次工作循环。
其中,进气孔113的中心线与背压孔1153之间存在夹角β,以使背压孔1153和进气孔113之间保持合适的间隔,具体地,如图9所示,在静盘涡卷112逐渐缩小的方向上(即图9中的逆时针方向),进气孔113的中心线绕静盘11的中心点旋转夹角β至背压孔1153的中心点,且225°≤夹角β≤315°,在该范围内,背压孔1153能够获得较优的背压压力。
实施例八
本实施例提供了一种涡旋盘组件1,在实施例四的基础上做了进一步的改进。
如图1至图4所示,进气孔113延伸至静盘涡卷112的外侧,而背压孔1153位于静盘涡卷112的内侧。在动盘12的运转过程中,动盘12能够将背压孔1153与进气孔113隔开,使背压孔1153始终与进气孔113保持断开状态,以防止注油操作对吸气过程造成影响,同时在压缩过程中,也能够防止气体由进气孔113向外泄漏。
实施例九
本实施例提供了一种涡旋盘组件1,在实施例四的基础上做了进一步的改进。
如图1、图2和图10所示,工作腔室13包括第一腔室131和第二腔室132。具体地,动盘涡卷122的外侧面与静盘涡卷112的内侧面之间形成第一腔室131,动盘涡卷122的内侧面与静盘涡卷112的外侧面之间形成第二腔室132。
随着动盘12的运转,第一腔室131和第二腔室132的形状和体积发生周 期性变化。在此过程中,背压孔1153与第一腔室131以及第二腔室132交替形成连通,且在动盘涡卷122封挡背压孔1153时,断开背压孔1153与第一腔室131和第二腔室132之间的连通关系。
其中,由于背压腔室213与工作腔室13之间的压力差的存在,随着动盘12的运转,背压腔室213的油液能够在压力作用下,交替向第一腔室131和第二腔室132内注油,以分别对第一腔室131和第二腔室132的缝隙进行密封,进一步防止工作腔室13中的气体通过缝隙向外泄漏。
进一步地,动盘12相对于静盘11平动一周为一个工作循环。在一个工作循环过程中,第一腔室131和第二腔室132分别与背压孔1153连通一次,相应地,背压腔室213向第一腔室131和第二腔室132各注油一次,以使注油操作与动盘12的工作循环相匹配。其中,在两次注油过程之间,背压孔1153关闭,以防止气体由背压孔1153反向流入背压腔室213。
实施例十
本实施例提供了一种涡旋盘组件1,在实施例九的基础上做了进一步的改进。
第一腔室131的最大容积大于第二腔室132的最大容积,即第一腔室131与第二腔室132的最大容积不同,二者之间存在容积差。其中,第一腔室131与背压腔室213的连通时长大于或等于第二腔室132与背压腔室213的连通时长,即背压腔室213与第一腔室131的连通时长不小于背压腔室213与第二腔室132的连通时长,以使第一腔室131和第二腔室132各自与背压腔室213的连通时长与各自的最大容积相匹配,实现第一腔室131和第二腔室132不同的排气量,以便于应用于非对称型线涡旋压缩机。
以下提供上述涡旋盘组件1的一个具体实施例:
本实施例提供了一种涡旋盘组件1,可用于涡旋盘组件1。
如图1和图2所示,涡旋盘组件1包括静盘11(即静涡旋盘)和动盘12(即动涡旋盘)。动盘12与静盘11相互啮合,并与静盘11之间围成工作腔室13。
静盘11具体包括静盘端板111(即第一端板)和静盘涡卷112(即静涡旋结构)。静盘涡卷112设于静盘端板111的底面,并呈涡旋状设置。静盘端板 111包括底壁1111和侧壁1112,侧壁1112沿底壁1111的圆周方向设置,静盘涡卷112位于侧壁1112的内侧。
如图1至图3所示,静盘11上设置进气孔113和排气孔114;进气孔113沿静盘端板111的径向方向设置,以便于连接涡旋压缩机2的进气管211;同时,进气孔113穿过静盘端板111的侧壁1112,以便于能够与工作腔室13形成连通。排气孔114位于静盘涡卷112中,以便于排气。在装配于涡旋压缩机2时,进气孔113与涡旋压缩机2的进气管211连通,排气孔114与涡旋压缩机2的排气腔室214连通。
如图1至图4所示,动盘12具体包括动盘端板121(即第二端板)和动盘涡卷122(即动涡旋结构),动盘涡卷122设于动盘端板121的顶面上,并形成与静盘涡卷112相适配的涡旋状设置。动盘涡卷122与静盘涡卷112相啮合,并与静盘涡卷112围成工作腔室13。
动盘12能够相对于静盘11进行平动,在涡旋压缩机2工作过程中,气体能够由进气孔113进入工作腔室13,并在动盘12的作用下对工作腔室13中的气体进行压缩;完成压缩的气体能够排气孔114排出至涡旋压缩机2的排气腔室214,进而通过排气管212向外界排出。
如图3和图4所示,静盘11上设置有注油通道115,与之相对应,动盘12上设置有注油槽123,且注油槽123能够与涡旋压缩机2的背压腔室213连通。
如图5和图6所示,注油通道115具体包括注油孔1151、连接孔和背压孔1153,背压孔1153设于静盘端板111的底面上,注油孔1151设于静盘涡卷112的底面上,且注油孔1151和背压孔1153均为盲孔;连通孔1152设于静盘端板111和静盘涡卷112内部,且连通孔1152的两端分别于注油孔1151和背压孔1153连通,从而形成贯通的注油通道115。
如图7所示,动盘端板121的顶面上位于动盘涡卷122的外侧的位置设有注油槽123,注油槽123的一端延伸至动盘端板121的边缘,以在涡旋盘组件1装配与涡旋压缩机2时,注油槽123能够与涡旋压缩机2的背压腔室213连通;注油槽123的另一端向靠近动盘涡卷122的方向延伸,以与注油孔1151的位置相对应,以能够与注油孔1151连通,便于进行注油操作。
在动盘12的运转过程中,注油槽123能够间歇性地与注油通道115以及工作腔室13连通,使背压腔室213与工作腔室13实现连通,也能够使注油槽123间歇性与注油通道115以及工作腔室13断开连接关系。在此过程中,动盘12能够将背压孔1153与进气孔113隔开,使背压孔1153始终与进气孔113保持断开状态,以防止注油操作对吸气过程造成影响。
其中,如图5和图7所示,背压孔1153的孔径小于动盘涡卷122的齿厚,使得动盘涡卷122在运动至背压孔1153的位置时,能够完全封挡背压孔1153,以使背压孔1153与工作腔室13实现交替性连通和断开。
工作腔室13与背压腔室213之间存在压力差,背压腔室213中的油液能够在压力作用下,通过注油槽123和注油通道115流入工作腔室13中,实现间歇性注油。
具体地,当工作腔室13的压力大于背压腔室213的压力时,此时工作腔室13的压力较高,通过动盘12的运转,断开注油通道115与注油槽123以及工作腔室13之间的连通关系,以防止工作腔室13中的气体通过注油通道115和注油槽123进入背压腔室213,以减少气体损失。
当工作腔室13的压力小于背压腔室213的压力时,此时工作腔室13的压力较低,通过动盘12的运转,使注油通道115与注油槽123以及工作腔室13连通,背压腔室213与工作腔室13之间形成压力差,使背压腔室213的油液在压力作用下通过注油槽123和注油通道115进入工作腔室13,以对工作腔室13的缝隙进行密封,防止气体通过缝隙泄漏至背压腔室213。
如图7所示,注油槽123靠近动盘涡卷122的一端为圆弧结构,具体为半圆结构,便于加工成型,在油液流过时能够对油液起导引作用。注油槽123的槽宽与圆弧结构的直径相等,使得注油槽123整体形成等宽度的长条状槽体,易于加工,且在油液流过时能够减少因宽度变化而引起油液的压力变化。
其中,注油槽123的槽宽尺寸大于或等于1mm,槽深大于或等于0.5mm,以在动盘端板121与静盘11贴合时,使注油槽123能够保持合适的过流面积,防止注油槽123过窄而影响油液的正常流动。
如图1、图2和图8所示,动盘端板121的底部设置有偏心轴承124,以在涡旋盘组件1装配于涡旋压缩机2时,用于连接驱动机构的偏心部件(例如 曲轴)。
如图9所示,进气孔113的中心线与背压孔1153之间存在夹角β,以使背压孔1153和进气孔113之间保持合适的间隔,具体地,在静盘涡卷112逐渐缩小的方向上(即图9中的逆时针方向),进气孔113的中心线绕静盘11的中心点旋转夹角β至背压孔1153的中心点,且225°≤夹角β≤315°,在该范围内,背压孔1153能够获得较优的背压压力。
如图1、图2和图10所示,工作腔室13包括第一腔室131和第二腔室132。具体地,动盘涡卷122的外侧面与静盘涡卷112的内侧面之间形成第一腔室131,动盘涡卷122的内侧面与静盘涡卷112的外侧面之间形成第二腔室132。
随着动盘12的运转,第一腔室131和第二腔室132的形状和体积发生周期性变化,且第一腔室131的最大容积大于第二腔室132的最大容积,对应地,第一腔室131与背压腔室213的连通时长大于第二腔室132与背压腔室213的连通时长,以便于应用于非对称型线涡旋压缩机。在此过程中,背压孔1153与第一腔室131以及第二腔室132交替形成连通,且在动盘涡卷122封挡背压孔1153时,断开背压孔1153与第一腔室131和第二腔室132之间的连通关系。
其中,动盘12相对于静盘11平动一周为一个工作循环。在一个工作循环过程中,第一腔室131和第二腔室132分别与背压孔1153连通一次,相应地,背压腔室213向第一腔室131和第二腔室132各注油一次,以使注油操作与动盘12的工作循环相匹配。其中,在两次注油过程之间,背压孔1153关闭,以防止气体由背压孔1153反向流入背压腔室213。
以下具体说明动盘12在一个工作循环内的工作过程:
图10和图11示出了背压孔1153被动盘涡卷122封挡时的状态,此时,注油槽123与注油孔1151已断开一段时间,背压孔1153刚与第二腔室132断开。随着动盘12继续运转,背压孔1153即将进入第一腔室131,如图12和图13所示的状态。
图14和图15示出了背压孔1153与第一腔室131连通时的状态,此时,注油槽123与注油孔1151也连通,使得背压腔室213与第一腔室131处于连通状态,由于背压孔1153处的第一腔室131的压力较低(低于背压腔室213的压力),背压腔室213中的油液在压力作用下进入第一腔室131。
随着动盘12的进行运转,如图16和图17所示的状态,背压孔1153与第一腔室131仍然连通,但注油槽123与注油孔1151断开。此时,背压孔1153处的第一腔室131的压力较高(高于背压腔室213的压力),但第一腔室131内的气体无法进入背压腔室213。
图18和图19示出了背压孔1153被动盘12封挡时的状态,此时,注油槽123与注油孔1151已断开一段时间,而背压孔1153刚与第一腔室131断开。随着动盘12继续运转,背压孔1153即将进入第二腔室132,如图20和图21所示的状态。
图22和图23示出了背压孔1153与第二腔室132连通时的状态,此时,注油槽123与注油孔1151也连通,使得背压腔室213与第二腔室132处于连通状态,由于背压孔1153处的第二腔室132的压力较低(低于背压腔室213的压力),背压腔室213中的油液在压力作用下进入第二腔室132。
随着动盘12的进行运转,如图24和图25所示的状态,背压孔1153与第二腔室132仍然连通,但注油槽123与注油孔1151断开。此时,背压孔1153处的第二腔室132的压力较高(高于背压腔室213的压力),但第二腔室132内的气体无法进入背压腔室213。
需要说明的是,涡旋压缩机2的动盘12与静盘11之间的贴合面存在细微的缝隙,通常情况下,气体会在压力作用下流入或流出工作腔室13,造成气体的流动损失。
本实施例中的涡旋盘组件1,能够有效防止工作腔室13中的气体向背压腔室213泄漏,并能够防止背压腔室213内的气体通过注油通道115进入工作腔室13,从而在涡旋盘组件1工作过程中减少气体的流动损失,有利于促进涡旋压缩机2提高能效。
实施例十一
本实施例提供了一种涡旋压缩机2,如图1至图4所示,涡旋压缩机2包括壳体21、机架22、上述任一实施例中的涡旋盘组件1和驱动组件23。
机架22、涡旋盘组件1和驱动组件23均设于壳体21内。机架22作为涡旋盘组件1和驱动组件23的安装底座,以对涡旋盘组件1和驱动组件23形成支撑。
涡旋盘组件1的静盘11固定连接于机架22上,涡旋盘组件1的动盘12与机架22之间形成背压腔室213。
驱动组件23的输出端与动盘12偏心连接,以驱动动盘12相对于静盘11进行平动。具体地,驱动组件23包括电机231和曲轴232,曲轴232的偏心部与动盘12偏心连接,电机231通过曲轴232向动盘12输出动力,驱动动盘12进行平动。
壳体21上设有进气管211和排气管212,进气管211与静盘11的进气孔113连通,静盘11的排气孔114通过壳体21内的排气腔室214与排气管212连通,以便于进行吸气和排气操作。壳体21内储存有油液,且油液能够通过油道进入背压腔室213。
其中,随着动盘12的运转,静盘11的注油通道115能够间歇性与动盘12的注油槽123以及工作腔室13连通,以实现背压腔室213与工作腔室13之间的间歇性连通和断开,进而利用背压腔室213与工作腔室13之间的压力差,使背压腔室213内的油液间歇性注入工作腔室13内,以对工作腔室13内的缝隙进行密封。
本实施例中的涡旋压缩机2,能够有效防止工作腔室13的气体泄漏,同时,能够防止工作腔室13内的气体通过供油通道和注油槽123进入背压腔室213,从而有效减少涡旋压缩机2工作过程中的气体流动损失,有利于促进涡旋压缩机2提高能效。
此外,本实施例中的涡旋压缩机2还具有上述任一实施例中任一项的涡旋盘组件1的全部有益效果,在此不再赘述。
实施例十二
本实施例提供了一种空调器3,如图1和图26所示,空调器3包括通过管路相连的室内机31和室外机32,以通过冷媒的循环流动实现空气调节。其中,室外机32中设有上述任一实施例中的涡旋压缩机2,用于对冷媒进行压缩,改变冷媒的状态,以符合空调器3的运行需求。
此外,本实施例中的空调器3还具有上述任一实施例中的涡旋压缩机2的全部有益效果,在此不再赘述。
以下提供了本申请的一个具体实施例:
一种涡旋式压缩机压缩结构,包括:壳体、曲轴、动盘和静盘。壳体为设有吸气管和排气管的密闭容器,壳体内为高压环境,储存有润滑油;曲轴具有偏心部,并绕固定轴旋转;动盘具有镜板,立于镜板正面的涡旋状涡卷;静盘开设有吸气孔和排气孔,并具有内凹的涡旋状涡卷。静盘涡卷与动盘涡卷啮合形成压缩机工作腔。工作腔通过吸气管从壳体吸入口吸入低压气体,低压气体被压缩并经过静盘排气孔排出至壳体内,最后从壳体排气管排出。
该工作腔包括:动盘涡卷的外线与静盘涡卷内线之间的A腔(即第一腔室),动盘涡卷的内线与静盘涡卷外线之间的B腔(即第二腔室);背压腔室,背压腔室压力为处于吸气压力和排气压力的中间压力,背压腔室为动盘镜板正面紧贴静盘顶面提供支撑力防止动盘倾覆。背压孔,背压孔开设在静盘的内顶面,随着动盘运动,背压孔与A腔和B腔交替连通,交替时背压孔被动盘涡卷覆盖;注油孔,注油孔开设在静盘涡卷的底面,与背压孔连通;注油槽,注油槽开设在动盘镜板正面,与背压腔室连通;
其中,随着动盘运动,注油槽与注油孔间歇性连通,而且在背压孔压力升高过程中,在背压孔被动盘涡卷覆盖前,注油槽与注油孔断开连通。
注油孔开设在静止的静盘上,注油槽开设在平面运动的动盘上,通过对注油槽的位置进行设计,能够使得注油槽与注油孔间歇性连通和断开,而且保证在背压孔压力升高过程中,在背压孔被动盘涡卷覆盖前,注油槽与注油孔断开连通。即背压孔处工作腔压力较低时,工作腔与背压腔室连通;背压孔处工作腔压力较高,工作腔与背压腔室断开。防止了工作腔的气体进入到背压腔室,减少了呼吸损失。而由于背压腔室的压力低于排气压力,壳体内的润滑油通过压差进入到背压腔室。当注油槽与注油孔连通时,由于此时背压孔处工作腔压力比背压腔室压力低,润滑油被从背压腔室注入到工作腔,实现工作腔供油进行间隙密封,防止气体泄漏。
壳体设有吸气管和排气管,底部储存有润滑油。动盘具有镜板和立于镜板正面的涡旋状涡卷,凸出镜板背面的偏心轴承,镜板正面开设有注油槽。静盘开设有吸气孔和排气孔,内凹的涡旋状涡卷,背压孔开设在静盘的内顶面,注油孔开设在静盘涡卷的底面,两孔通过一径向连通孔相互连通。静盘涡卷与动盘涡卷啮合形成压缩机工作腔。动盘涡卷的外线与静盘涡卷内线之间的A工 作腔,动盘涡卷的内线与静盘涡卷外线之间的B工作腔;压缩机还设有主机架,支撑曲轴。
动盘镜板背面形成有背压腔室,背压腔室由主机架、静盘和动盘三者围成。动盘上的注油槽与镜板边缘贯通,即注油槽与背压腔室连通。
一方面,背压腔室与壳体内高压通过微小间隙连通;另一方面当背压孔与A或B工作腔连通,且注油槽与注油孔也连通时,背压腔室与工作腔连通;由此背压腔室处于高压和低压之间的中间压力,为动盘镜板正面紧贴静盘顶面提供支撑力防止动盘倾覆。润滑油被从壳体内压入背压腔室,后注入到工作腔,实现工作腔供油进行间隙密封,防止气体泄漏。
在背压孔压力升高过程中,在背压孔被动盘涡卷覆盖前,注油槽与注油孔断开,背压孔与背压腔室断开连通。
注油槽由两条平行线和圆弧组成,槽宽等于圆弧直径,槽宽大于等于1mm,槽深大于等于0.5mm。注油槽简单容易加工。
吸气孔中心线绕静盘中心向涡卷缩小方向旋转β角经过背压孔,β大于等于225°且小于等于315°。由此能获得较优的背压压力。
对于非对称型线涡旋压缩机,A工作腔容积大于B工作腔,因此优选背压腔室与A腔的连通时间不小于背压腔室与B腔的连通时间。
为防止往工作腔内喷油时影响吸气,优选背压孔不与静盘吸气孔连通。背压孔即将与A/B腔连通时,A/B腔已完成吸气闭合。
以上结合附图详细说明了根据本申请的一些实施例的技术方案,能够有效防止工作腔室中的气体向背压腔室室泄漏,并能够防止背压腔室内的气体通过注油通道进入工作腔室,从而在涡旋盘组件工作过程中减少气体的流动损失,有利于促进涡旋压缩机提高能效。
在根据本申请的实施例中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。本领域的普通技术人员可以根据具体情况理解上述术语在根据本申请的实施例中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于根据本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为根据本申请的优选实施例而已,并不用于限制本申请的技术方案,对于本领域的技术人员来说,本申请的技术方案可以有各种更改和变化。凡在本申请的技术方案的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种涡旋盘组件,用于涡旋压缩机,其中,包括:
    静涡旋盘,所述静涡旋盘上设有进气孔、排气孔和注油通道;
    动涡旋盘,与所述静涡旋盘相啮合,并与所述静涡旋盘之间形成工作腔室,所述动涡旋盘上设有与所述涡旋压缩机的背压腔室相连通的注油槽,所述动涡旋盘配置为相对于所述静涡旋盘平动,以对进入所述工作腔室的气体进行压缩;
    其中,所述注油通道与所述注油槽和所述工作腔室间歇性地连通,以在所述背压腔室与所述工作腔室之间的压力差的作用下,使所述背压腔室中的油液间歇性注入所述工作腔室。
  2. 根据权利要求1所述的涡旋盘组件,其中,
    在所述工作腔室的压力大于所述背压腔室的压力时,所述注油通道与所述注油槽和所述工作腔室断开连通;
    在所述工作腔室的压力小于所述背压腔室的压力时,所述注油通道与所述注油槽和所述工作腔室连通。
  3. 根据权利要求2所述的涡旋盘组件,其中,
    所述静涡旋盘包括第一端板和设于所述第一端板底面上的静涡旋结构;
    所述注油通道包括注油孔、连通孔和背压孔,所述注油孔设于所述静涡旋结构的底面上,所述背压孔设于所述第一端板的底面上,所述连通孔的两端分别与所述注油孔和所述背压孔连通;
    其中,所述注油槽与所述注油孔间歇性连通,所述背压孔与所述工作腔室间歇性连通。
  4. 根据权利要求3所述的涡旋盘组件,其中,
    所述动涡旋盘包括第二端板和设于所述第二端板顶面上的动涡旋结构,所述动涡旋结构与所述静涡旋结构相啮合,并与所述静涡旋结构之间形成所述工作腔室;
    所述注油槽设于所述第二端板的顶面上,并位于所述动涡旋结构的外侧,所述注油槽的一端延伸至所述第二端板的边缘,另一端向靠近所述动涡旋结构的方向延伸。
  5. 根据权利要求4所述的涡旋盘组件,其中,
    所述背压孔的孔径小于所述动涡旋结构的齿厚。
  6. 根据权利要求4所述的涡旋盘组件,其中,
    所述注油槽靠近所述动涡旋结构的一端为圆弧结构,且所述圆弧结构的直径与所述注油槽的槽宽相等。
  7. 根据权利要求6所述的涡旋盘组件,其中,
    所述注油槽的槽宽大于或等于1mm,且所述注油槽的槽深大于或等于0.5mm。
  8. 根据权利要求4所述的涡旋盘组件,其中,
    所述第一端板的底面上沿圆周方向设有侧壁,所述进气孔沿径向方向设置,并穿过所述侧壁;
    其中,在所述静涡旋结构逐渐缩小的方向上,所述进气孔的中心线和所述背压孔之间的夹角为225°至315°。
  9. 根据权利要求4所述的涡旋盘组件,其中,
    所述背压孔与所述进气孔之间始终保持断开状态。
  10. 根据权利要求4所述的涡旋盘组件,其中,
    所述第二端板的底部设有偏心轴承。
  11. 根据权利要求4至10中任一项所述的涡旋盘组件,其中,所述工作腔室包括:
    第一腔室,位于所述动涡旋结构的外侧面与所述静涡旋结构的内侧面之间;
    第二腔室,位于所述动涡旋结构的内侧面与所述静涡旋结构的外侧面之间;
    其中,所述背压孔交替与所述第一腔室和所述第二腔室连通,使所述背压腔室的油液交替注入所述第一腔室和所述第二腔室。
  12. 根据权利要求11所述的涡旋盘组件,其中,
    所述动涡旋盘平动一周,向所述第一腔室和所述第二腔室分别注油一次。
  13. 根据权利要求11所述的涡旋盘组件,其中,
    所述第一腔室的最大容积大于所述第二腔室的最大容积;
    其中,所述第一腔室与所述背压腔室的连通时长大于或等于所述第二腔室与所述背压腔室的连通时长。
  14. 一种涡旋压缩机,其中,包括:
    壳体,所述壳体上设有进气管和排气管,且所述壳体内容纳有油液;
    机架,设于所述壳体内;
    如权利要求1至13中任一项所述的涡旋盘组件,设于所述机架上,所述涡旋盘组件的进气孔和排气孔分别与所述进气管和所述排气管连通,且所述涡旋盘组件的动涡旋盘与所述机架之间形成背压腔室;
    驱动组件,设于所述壳体内,所述驱动组件的输出端与所述动涡旋盘偏心连接,用于驱动所述动涡旋盘相对于所述静涡旋盘平动。
  15. 一种空调器,其中,包括:
    室内机;
    室外机,通过管路与所述室内机相连,所述室外机中设有如权利要求14所述的涡旋压缩机。
PCT/CN2021/119777 2021-03-30 2021-09-23 涡旋盘组件、涡旋压缩机和空调器 WO2022205802A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110338891.1A CN112901487A (zh) 2021-03-30 2021-03-30 涡旋盘组件、涡旋压缩机和空调器
CN202120640844.8U CN214464888U (zh) 2021-03-30 2021-03-30 涡旋盘组件、涡旋压缩机和空调器
CN202120640844.8 2021-03-30
CN202110338891.1 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022205802A1 true WO2022205802A1 (zh) 2022-10-06

Family

ID=83457873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119777 WO2022205802A1 (zh) 2021-03-30 2021-09-23 涡旋盘组件、涡旋压缩机和空调器

Country Status (1)

Country Link
WO (1) WO2022205802A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177683A (ja) * 1995-12-27 1997-07-11 Daikin Ind Ltd スクロール形流体機械
CN102367797A (zh) * 2011-04-29 2012-03-07 湖南华强电气有限公司 一种涡旋压缩机回油结构
CN102454603A (zh) * 2010-10-28 2012-05-16 日立空调·家用电器株式会社 涡旋式压缩机
CN103244411A (zh) * 2012-02-14 2013-08-14 日立空调·家用电器株式会社 涡旋压缩机
CN105822546A (zh) * 2015-01-09 2016-08-03 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机及空调器
CN112901487A (zh) * 2021-03-30 2021-06-04 安徽美芝精密制造有限公司 涡旋盘组件、涡旋压缩机和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177683A (ja) * 1995-12-27 1997-07-11 Daikin Ind Ltd スクロール形流体機械
CN102454603A (zh) * 2010-10-28 2012-05-16 日立空调·家用电器株式会社 涡旋式压缩机
CN102367797A (zh) * 2011-04-29 2012-03-07 湖南华强电气有限公司 一种涡旋压缩机回油结构
CN103244411A (zh) * 2012-02-14 2013-08-14 日立空调·家用电器株式会社 涡旋压缩机
CN105822546A (zh) * 2015-01-09 2016-08-03 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机及空调器
CN112901487A (zh) * 2021-03-30 2021-06-04 安徽美芝精密制造有限公司 涡旋盘组件、涡旋压缩机和空调器

Similar Documents

Publication Publication Date Title
WO2018094914A1 (zh) 喷气增焓涡旋压缩机及制冷系统
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
CN100554694C (zh) 螺杆压缩机
CN112901487A (zh) 涡旋盘组件、涡旋压缩机和空调器
JP2003286949A (ja) 高低圧ドーム型圧縮機
KR20100103139A (ko) 스크롤 압축기
WO2022205802A1 (zh) 涡旋盘组件、涡旋压缩机和空调器
CN209943112U (zh) 一种涡旋压缩机的补气结构及涡旋压缩机
CN207830127U (zh) 涡旋压缩机的压缩机构
CN209976794U (zh) 一种涡旋压缩机的补气阀及涡旋压缩机
CN205064273U (zh) 滚动转子式压缩机
CN212838343U (zh) 压缩组件和压缩机
CN110594152B (zh) 一种立式双级涡旋压缩机
CN214464888U (zh) 涡旋盘组件、涡旋压缩机和空调器
CN210196017U (zh) 止推面润滑结构、压缩机及空调
KR100679883B1 (ko) 밀폐형 선회베인 압축기
US9470229B2 (en) Single screw compressor
CN105179241A (zh) 卧式全封闭椭圆转子回转压缩机
CN205136030U (zh) 旋转式压缩机
CN204984890U (zh) 卧式全封闭椭圆转子回转压缩机
CN204941946U (zh) 旋转式压缩机及其压缩机构
CN105114313A (zh) 滚动转子式压缩机
KR100360236B1 (ko) 스크롤 압축기의 가스누설 저감구조
JPH0579481A (ja) ロータリ圧縮機
US6729863B2 (en) Rotary pump having high and low pressure ports in the housing cover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934439

Country of ref document: EP

Kind code of ref document: A1