WO2022205777A1 - 增强水泥基电磁波吸收材料及其制备方法 - Google Patents

增强水泥基电磁波吸收材料及其制备方法 Download PDF

Info

Publication number
WO2022205777A1
WO2022205777A1 PCT/CN2021/117330 CN2021117330W WO2022205777A1 WO 2022205777 A1 WO2022205777 A1 WO 2022205777A1 CN 2021117330 W CN2021117330 W CN 2021117330W WO 2022205777 A1 WO2022205777 A1 WO 2022205777A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
cement
electromagnetic wave
absorbing material
nickel alloy
Prior art date
Application number
PCT/CN2021/117330
Other languages
English (en)
French (fr)
Inventor
孙启龙
王茹
龙啸云
叶伟
季涛
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2022205777A1 publication Critical patent/WO2022205777A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present application relates to the field of building materials, in particular to an iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material and a preparation method thereof.
  • the main realization means of existing electromagnetic wave absorbing cement-based materials are adding various electromagnetic wave absorbing agent fillers, such as adding carbonyl iron powder (CN201910052541.1 Double-layer electromagnetic wave absorbing concrete based on 3D and jet printing and its preparation method), adding carbon black / Fe3O4 nano-electromagnetic wave absorber (CN201710239526.9 High-performance wave absorbing concrete utilizing carbon black/Fe3O4 material and preparation method thereof), adding MFe 2 O 4 /SiO 2 core/shell structure material (CN201510040495.
  • Adding powdery and granular electromagnetic wave absorbers can impart electromagnetic wave absorption properties to cement-based materials, but electromagnetic wave absorbers cannot effectively improve the mechanical properties of cement-based materials.
  • Adding carbon fiber-carbonyl iron composite modified electromagnetic wave absorber can not only endow cement-based materials with electromagnetic wave absorption properties, but also contribute to strengthening, toughening, and crack resistance of cement-based materials, but the cost is high, the process is complicated, and it is difficult to industrialize.
  • the present application discloses a reinforced cement-based electromagnetic wave absorbing material, the absorbing material includes: cement, water, sand and iron-nickel alloy fibers; based on the total mass of the water and the cement , the weight percentage of the iron-nickel alloy fibers ranges from 20wt% to 40wt%.
  • the nickel content ranges from 70 wt% to 80 wt%, the iron content ranges from 19 wt% to 29 wt%, and the chromium content is 1 wt%.
  • the length-diameter ratio of the iron-nickel alloy fibers is in the range of 400:1 to 1000:1, and the diameter of the iron-nickel alloy fibers is in the range of 8 ⁇ m to 20 ⁇ m.
  • the weight ratio of the water and the cement ranges from 1:1.5 to 1:2.5; based on the total mass of the water and the cement, the weight percentage of the sand The range is 100% to 300%.
  • the present application also discloses the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material, including:
  • the stirring material is constructed by spraying or plastering, or the stirring material is cast into a prefabricated plate by using a mold to obtain the absorbing material.
  • iron-nickel alloy fibers are used as electromagnetic wave absorbers and at the same time as reinforcing materials, which not only endow cement-based materials with electromagnetic wave absorption properties, but also improve their toughness and crack resistance properties.
  • electromagnetic wave absorbing materials with excellent wave absorbing properties and mechanical properties can be obtained.
  • the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material prepared in the present application has a minimum reflectivity of -15.0dB to -22.0dB in the X-band 8GHz-18GHz, and an effective bandwidth (reflectivity less than -10dB) of 9.0GHz-16.0 GHz.
  • the compressive strength of 28d is 12-13MPa
  • the flexural strength is 3.5-5MPa
  • the flexural ratio is 2.7-3.5.
  • An iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fiber is 30%.
  • the nickel content of the iron-nickel alloy fiber is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 600 and a diameter of 12 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -21.0dB, and the effective bandwidth (reflectivity is less than -10dB) is 9.2GHz-15.8GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.3MPa, the flexural strength is 4.2MPa, and the compression-folding ratio is 2.93.
  • An iron-nickel fiber-reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 150%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fiber is 30%.
  • the nickel content of the iron-nickel alloy fiber is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 600 and a diameter of 12 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -22.0dB, and the effective bandwidth (reflectivity is less than -10dB) is 9.1GHz-16.0GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.8MPa, the flexural strength is 4.7MPa, and the compression-folding ratio is 2.72.
  • An iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fibers is 20%.
  • the nickel content of the iron-nickel alloy fiber is 70 wt %, the iron content is 29 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 600 and a diameter of 12 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -16.7dB, and the effective bandwidth (reflectivity is less than -10dB) is 9.7GHz-15.1GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.2MPa, the flexural strength is 3.8MPa, and the compression-folding ratio is 3.21.
  • An iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fiber is 30%.
  • the nickel content of the iron-nickel alloy fiber is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 900 and a diameter of 20 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -15.0dB, and the effective bandwidth (reflectivity is less than -10dB) is 11.3GHz-14.9GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.3MPa, the flexural strength is 4.1MPa, and the compression-folding ratio is 3.0.
  • a cement-based material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%.
  • the preparation method of above-mentioned cement-based material comprises the following steps:
  • the electromagnetic wave absorption performance of the cement-based material board with a thickness of 6mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -0.2dB.
  • cement mortar strength test method test the compressive strength and flexural strength of the material (sample size is 40mm ⁇ 40mm ⁇ 160mm), after 28 days of curing, the compressive strength is 12MPa, and the resistance The folding strength is 3.1MPa, and the compression-folding ratio is 3.87.
  • An iron-nickel alloy powder reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%; based on the total mass of water and cement As a basis, the weight percent of iron-nickel alloy powder is 30%.
  • the nickel content of the iron-nickel alloy powder is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the mesh number of iron-nickel alloy powder is 300 meshes.
  • the preparation method of the above-mentioned iron-nickel alloy powder reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel alloy powder reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -2.1dB.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid), after 28 days of curing, the compressive strength is 12.1MPa, the flexural strength is 3.1MPa, and the compression-folding ratio is 3.90.
  • An iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 400%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fiber is 30%.
  • the nickel content of the iron-nickel alloy fiber is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 600 and a diameter of 12 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -12.1dB, and the effective bandwidth (reflectivity is less than -10dB) is 11.3GHz-14.2GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.20MPa, the flexural strength is 3.7MPa, and the compression-folding ratio is 3.30.
  • An iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fibers is 50%.
  • the nickel content of the iron-nickel alloy fiber is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 600 and a diameter of 12 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -5.2dB.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.5MPa, the flexural strength is 4.5MPa, and the compression-folding ratio is 2.78.
  • An iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material wherein the weight ratio of water and cement is 1:2; based on the total mass of water and cement, the weight percentage of sand is 200%; the total mass of water and cement is On a basis, the weight percent of Fe-Ni alloy fiber is 30%.
  • the nickel content of the iron-nickel alloy fiber is 76 wt %, the iron content is 23 wt %, and the chromium content is 1 wt %.
  • the iron-nickel alloy fibers have an aspect ratio of 1200 and a diameter of 30 ⁇ m.
  • the preparation method of the above-mentioned iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material comprises the following steps:
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -8.2dB.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 11.3MPa, the flexural strength is 3.0MPa, and the compression-folding ratio is 3.77.
  • the nickel content of the iron-nickel alloy fiber is 65 wt %, the iron content is 33 wt %, and the chromium content is 2 wt %, and the rest are the same as in Example 1.
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -13dB, and the effective bandwidth (reflectivity is less than -10dB) is 11.3GHz-13.5GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.3MPa, the flexural strength is 4.3MPa, and the compression-folding ratio is 2.86.
  • the nickel content of the iron-nickel alloy fiber is 85 wt %, the iron content is 14 wt %, and the chromium content is 1 wt %, and the rest are the same as in Example 1.
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -12dB, and the effective bandwidth (reflectivity is less than -10dB) is 11.5GHz-13.7GHz.
  • the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.3MPa, the flexural strength is 4.2MPa, and the compression-folding ratio is 2.93.
  • the electromagnetic wave absorption performance of the iron-nickel fiber reinforced cement-based electromagnetic wave absorbing material board with a thickness of 6 mm was tested.
  • the results show that in the X-band 8GHz-18GHz, the minimum reflectivity is -7.0dB.
  • cement mortar strength test method test the compressive strength and flexural strength of the material (the sample size is 40mm ⁇ 40mm ⁇ 160mm cuboid sample), after 28 days of curing, the compressive strength is 12.4 MPa, the flexural strength is 3.3MPa, and the indentation ratio is 3.73.
  • Example 1 is compared with Comparative Example 3 in which the weight percentage of sand is 400% based on the total mass of water and cement, since the amount of sand used in Comparative Example 3 is too much, the relative content of cement and iron-nickel alloy fibers is reduced, so The electromagnetic wave absorption performance, crack resistance and bending resistance of the material are limited.
  • Example 1 is compared with Comparative Example 4 in which the weight percentage of iron-nickel fibers is 60% based on the total mass of water and cement. In Comparative Example 4, the amount of iron-nickel fibers is too much, and the fibers contact each other to form a connected conductive network, which is resistant to electromagnetic waves.
  • Example 1 is compared with Comparative Example 5, in which the length-diameter ratio of iron-nickel fibers is 1200 and the diameter is 12 microns.
  • Comparative Example 5 the iron-nickel fibers are too long, resulting in uneven dispersion, resulting in no improvement in mechanical properties. Stress concentration points are formed in the material and the compressive properties are reduced.
  • the difference between Example 1 and Comparative Examples 6-7 is that the iron-nickel content in the iron-nickel fibers incorporated is different.
  • Example 1 the nickel content is 76wt%, the iron content is 23wt%, and the chromium content is 1wt%.
  • the fibers of this composition have better electromagnetic wave absorption effect.
  • the change of the composition has little effect on the mechanical properties of the fibers.
  • the fiber content is the same and the components of the cement-based materials are the same, the mechanical properties of the materials are similar.
  • the difference between Example 1 and Comparative Example 8 is that the content of iron-nickel fibers incorporated is different.
  • the weight percentage of iron-nickel alloy fibers is 10% based on the total mass of water and cement, the wave absorbing performance of the material is reduced. , while the crack resistance has not been significantly improved.

Abstract

一种铁镍纤维增强水泥基电磁波吸收材料,其组成包括:水泥、水、沙子、铁镍合金纤维和减水剂;其中水和水泥的重量比为1:1.5-2;以水和水泥的总质量为基准计,沙子重量百分比为100-200%,减水剂重量百分比为0.2-0.5%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为20wt%至40wt%。按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分批投料;称取减水剂和水,搅拌均匀制备减水剂溶液;在干拌料中分批加入减水剂溶液,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;采用喷涂或抹灰的方式进行施工,或采用模具浇筑制成电磁波吸收材料。

Description

增强水泥基电磁波吸收材料及其制备方法
相关申请
本申请要求于2021年3月31日提交中国专利局、申请号为202010303803X、申请名称为“铁镍纤维增强水泥基电磁波吸收材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及建筑材料领域,特别涉及一种铁镍纤维增强水泥基电磁波吸收材料及其制备方法。
背景技术
现有电磁波吸收水泥基材料的主要实现手段为添加各种电磁波吸收剂填料,如添加羰基铁粉末(CN201910052541.1基于3D与喷射打印的双层电磁吸波混凝土及其制备方法)、添加炭黑/四氧化三铁纳米电磁波吸收剂(CN201710239526.9利用炭黑/四氧化三铁材料的高性能吸波混凝土及其制备方法),添加MFe 2O 4/SiO 2核/壳结构材料(CN201510040495.5—种用二氧化硅包覆磁性纳米颗粒使水泥或混凝土具有吸波性能及密实表面的方法)、添加电磁波吸收功能陶粒集料(CN200610098349.9水泥混凝土吸波材料及其制备方法)、添加碳纤维-羰基铁复合改性电磁波吸收剂(CN201910544116.4—种碳纤维-羰基铁复合改性吸波混凝土及其制备方法)等。
添加粉末状、颗粒状电磁波吸收剂可以赋予水泥基材料的电磁波吸收性能,但是电磁波吸收剂对水泥基材料的力学性能的提升无法产生有效作用。添加碳纤维-羰基铁复合改性电磁波吸收剂不仅能够赋予水泥基材料的电磁波吸收性能,同时可以有助于水泥基材料的增强增韧阻裂,但是成本高,工艺复杂,难以产业化。
发明内容
为了解决上述技术问题,本申请公开了一种增强水泥基电磁波吸收材料,所述吸收材料包括:水泥、水、沙子和铁镍合金纤维;以所述水和所述水泥的总质量为基准计,所述铁镍合金纤维的重量百分比的范围为20wt%至40%wt%。
在一实施例中,在所述铁镍合金纤维中,镍含量的范围为70wt%至80wt%,铁含量的范围为19wt%至29wt%,以及铬含量为1wt%。
在一实施例中,所述铁镍合金纤维的长径比的范围为400:1至1000:1,所述铁镍合金纤维的直径的范围为8μm至20μm。
在一实施例中,所述水和所述水泥的重量比的范围为1:1.5至1:2.5;以所述水和所述水泥的所述总质量为基准计,所述沙子的重量百分比的范围为100%至300%。同时,本申请还公开了上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括:
1)按照配比,先称取水泥、沙子进行干拌,所述干拌过程中将铁镍合金纤维分4批进行投料以得到干拌料,其中,每批铁镍合金纤维占所述铁镍合金纤维的总重量的1/4;
2)将所述干拌料中划分为2批,每批干拌料占所述干拌料的总重量的1/2,并且分别加入水,均匀搅拌后得到所述增强水泥基电磁波吸收材料的搅拌料;以及
3)对所述搅拌料采用喷涂或抹灰的方式进行施工,或采用模具将所述搅拌料浇筑制成预制板以获得所述吸收材料。
本申请采用铁镍合金纤维作为电磁波吸收剂,同时作为增强材料,不但赋予水泥基材料电磁波吸收性能,同时提升其韧性和阻裂性能。同时通过调整沙子、水泥和铁镍合金纤维的用量,以及铁镍合金纤维的规格,从而获得吸波性能、力学性能等均优异的电磁波吸收材料。本申请所制得的铁镍纤维增强水泥基电磁波吸收材料,其在X波段8GHz-18GHz,最小反射率为-15.0dB至-22.0dB,有效带宽(反射率小于-10dB)为9.0GHz-16.0GHz。28d抗压强度为12-13MPa,抗折强度为3.5-5MPa,抗折比为2.7-3.5。
具体实施方式
下面结合实施例对本申请做进一步说明,但本申请并不不局限于说明书上的内容。
实施例1
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为30%。其中铁镍合金纤维的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金纤维的长径比为600,直径为12μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-21.0dB,有效带宽(反射率小于-10dB)为9.2GHz-15. 8GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为79.2mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.3MPa,抗折强度为4.2MPa,压折比为2.93。
实施例2
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为150%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为30%。其中铁镍合金纤维的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金纤维的长径比为600,直径为12μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-22.0dB,有效带宽(反射率小于-10dB)为9.1GHz-16.0GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为89.6mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.8MPa,抗折强度为4.7MPa,压折比为2.72。
实施例3
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为20%。其中铁镍合金纤维的镍含量为70wt%,铁含量为29wt%,铬含量为1wt%。铁镍合金纤维的长径比为600,直径为12μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-16.7dB,有效带宽(反射率小于-10dB)为9.7GHz-15.1GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为128.3mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.2MPa,抗折强度为3.8MPa,压折比为3.21。
实施例4
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为30%。其中铁镍合金纤维的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金纤维的长径比为900,直径为20μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-15.0dB,有效带宽(反射率小于-10dB)为11.3GHz-14.9GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为149.7mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压 强度为12.3MPa,抗折强度为4.1MPa,压折比为3.0。
对比例1
一种水泥基材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%。
上述水泥基材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到水泥基材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达电磁波吸收材料反射率测试方法对厚度6mm的水泥基材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-0.2dB。
按照CECS38-2004纤维混凝土结构技术规程附录D对水泥基材料板的阻裂性能进行测试。实验24h水泥基材料板的裂缝总面积为874mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm),经过28天养护后,抗压强度为12MPa,抗折强度为3.1MPa,压折比为3.87。
对比例2
一种铁镍合金粉末增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%;以水和水泥的总质量为基准计,铁镍合金粉末重量百分比为30%。其中铁镍合金粉末的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金粉末的目数300目。
上述铁镍合金粉末增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金粉末分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍合金粉末增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍合金粉末增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-2.1dB。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为654.8mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mmx×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.1MPa,抗折强度为3.1MPa,压折比为3.90。
对比例3
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为400%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为30%。其中铁镍合金纤维的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金纤维的长径比为600,直径为12μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-12.1dB,有效带宽(反射率小于-10dB)为11.3GHz-14.2GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为132.1mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.20MPa,抗折强度为3.7MPa,压折比为3.30。
对比例4
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为50%。其中铁镍合金纤维的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金纤维的长径比为600,直径为12μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-5.2dB。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为68.3mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.5MPa,抗折强度为4.5MPa,压折比为2.78。
对比例5
一种铁镍纤维增强水泥基电磁波吸收材料,其中水和水泥的重量比为1:2;以水和水泥的总质量为基准计,沙子重量百分比为200%;以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为30%。其中铁镍合金纤维的镍含量为76wt%,铁含量为23wt%,铬含量为1wt%。铁镍合金纤维的长径比为1200,直径为30μm。
上述铁镍纤维增强水泥基电磁波吸收材料的制备方法,包括以下步骤:
1)按照配比,先称取水泥、沙子进行干拌,干拌过程中铁镍合金纤维分4批,每批1/4投料;
2)在干拌料中分2批,每批1/2加入水,搅拌均匀后得到铁镍纤维增强水泥基电磁波吸收材料搅拌料;
3)采用模具浇筑制成板状或长方体试样。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-8.2dB。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为178.3mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为11.3MPa,抗折强度为3.0MPa,压折比为3.77。
对比例6
铁镍合金纤维的镍含量为65wt%,铁含量为33wt%,铬含量为2wt%,其余与实施例1相同。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-13dB,有效带宽(反射率小于-10dB)为11.3GHz-13.5GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为80.3mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.3MPa,抗折强度为4.3MPa,压折比为2.86。
对比例7
铁镍合金纤维的镍含量为85wt%,铁含量为14wt%,铬含量为1wt%,其余与实施例1相同。
按照GJB2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-12dB,有效带宽(反射率小于-10dB)为11.5GHz-13.7GHz。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为78.8mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.3MPa,抗折强度为4.2MPa,压折比为2.93。
对比例8
以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为10%。其余与实施例1相同。
按照GJB 2038A-2011雷达吸波材料反射率测试方法对厚度6mm的铁镍纤维增强水泥基电磁波吸收材料板的电磁波吸收性能进行测试。结果显示,在X波段8GHz-18GHz,最小反射率为-7.0dB。
按照CECS38-2004纤维混凝土结构技术规程附录D对电磁波吸收材料板的阻裂性能进行测试。实验24h铁镍纤维增强水泥基电磁波吸收材料板的裂缝总面积为531.9mm 2
按照GB/T17671水泥胶砂强度检验方法(ISO法)测试材料的抗压强度和抗折强度(试样尺寸为40mm×40mm×160mm长方体试样),经过28天养护后,抗压强度为12.4MPa,抗折强度为3.3MPa,压折比为3.73。
由上述实施例和对比例可以看出,与未掺入铁镍合金纤维的对比例1相比,本申请的材料被赋予了显著的电磁波吸收性能,说明本申请配方可以赋予水泥基材料电磁波吸收性能。实施例1与掺入同样质量的300目铁镍合金粉末对比例2相比,实施例1电磁波吸收性能显著高于对比例2,同时实施例1阻裂性能和抗折性能均高于对比例2,说明掺入铁镍合金纤维比掺入铁镍合金粉末对材料的电磁波吸收性能、阻裂性能和抗折性能提升更加有效。实施例1与以水和水泥的总质量为基准计沙子重量百分比为400%的对比例3相比,由于对比例3中砂子使用量过多,导致水泥和铁镍合金纤维相对含量减少,所以对材料的电磁波吸收性能、阻裂性能和抗折性能提升有限。实施例1与以水和水泥的总质量为基准计铁镍纤维重量百分比为60%的对比例4相比,对比例4中铁镍纤维掺量过多,纤维互相接触形成连通导电网络,对电磁波形成了反射,吸收性能下降,且掺料过大后,出现分散不匀情况,导致力学性能没有随掺量提高而成比例提升。实施例1与掺入铁镍纤维长径比为1200直径为12微米的对比例5相比,对比例5中铁镍纤维过长,出现分散不匀情况,导致力学性能没有得到提升,反而由于在材料中形成了应力集中点而导致抗压性能下降。实施例1与对比例6-7的区别在于掺入的铁镍纤维中的铁镍含量不同,实施例1中镍含量为76wt%,铁含量为23wt%,铬含量为1wt%为铁镍纤维的较优工艺,该组成的纤维较对比例6-7中的纤维具有更优的电磁波吸收效果。但是组成的变化对纤维的力学性能影响较小,当纤维掺量相同,水泥基材料组分相同时,材料的力学性能较为相似。实施例1与对比例8的区别在于掺入的铁镍纤维含量不同,当以水和水泥的总质量为基准计,铁镍合金纤维重量百分比为10%时,材料的吸波性能有所减低,同时抗裂性能未能得到明显改善。
显然,本申请的上述实施方式仅仅是为清楚地说明本申请所作的举例,而并非是对本申请的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本申请的技术方案所引伸出的显而易见的变化或变动仍处于本申请的保护范围之列。

Claims (5)

  1. 一种增强水泥基电磁波吸收材料,其中,所述吸收材料包括:水泥、水、沙子和铁镍合金纤维;以所述水和所述水泥的总质量为基准计,所述铁镍合金纤维的重量百分比的范围为20wt%至40wt%。
  2. 如权利要求1所述的吸收材料,其中,在所述铁镍合金纤维中,镍含量的范围为70wt%至80wt%,铁含量的范围为19wt%至29wt%,以及铬含量为1wt%。
  3. 如权利要求1所述的吸收材料,其中,所述铁镍合金纤维的长径比的范围为400:1至1000:1,所述铁镍合金纤维的直径的范围为8μm至20μm。
  4. 如权利要求1至3中任一项所述的吸收材料,其中,所述水和所述水泥的重量比的范围为1:1.5至1:2.5;以所述水和所述水泥的所述总质量为基准计,所述沙子的重量百分比范围为100%至300%。
  5. 如权利要求1至4中任一项所述的吸收材料的制备方法,包括:
    1)按照配比,先称取水泥、沙子进行干拌,所述干拌过程中将铁镍合金纤维分4批进行投料以得到干拌料,其中,每批铁镍合金纤维占所述铁镍合金纤维的总重量的1/4;
    2)将所述干拌料中划分为2批,每批干拌料占所述干拌料的总重量的1/2,并且分别加入水,均匀搅拌后得到所述增强水泥基电磁波吸收材料的搅拌料;以及
    3)对所述搅拌料采用喷涂或抹灰的方式进行施工,或采用模具将所述搅拌料浇筑制成预制板以获得所述吸收材料。
PCT/CN2021/117330 2021-03-31 2021-09-09 增强水泥基电磁波吸收材料及其制备方法 WO2022205777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110349048.3A CN113060981B (zh) 2021-03-31 2021-03-31 铁镍纤维增强水泥基电磁波吸收材料及其制备方法
CN202110349048.3 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205777A1 true WO2022205777A1 (zh) 2022-10-06

Family

ID=76564912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117330 WO2022205777A1 (zh) 2021-03-31 2021-09-09 增强水泥基电磁波吸收材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113060981B (zh)
WO (1) WO2022205777A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060981B (zh) * 2021-03-31 2022-09-09 南通大学 铁镍纤维增强水泥基电磁波吸收材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605447A (zh) * 2008-06-13 2009-12-16 张仁鸿 抗电磁波微粒材料
CN101851814A (zh) * 2010-05-14 2010-10-06 江苏大学 铁镍合金/镍铁氧体磁性复合纳米纤维及其制备方法
CN101891419A (zh) * 2010-07-07 2010-11-24 东华理工大学 一种水泥基电磁屏蔽材料及其生产方法
KR101372676B1 (ko) * 2012-10-10 2014-03-12 재단법인 포항산업과학연구원 철강 슬래그를 이용한 콘크리트 조성물
CN103763895A (zh) * 2014-01-22 2014-04-30 昆山海普过滤分离科技有限公司 一种漫反射型电磁波屏蔽材料
CN113060981A (zh) * 2021-03-31 2021-07-02 南通大学 铁镍纤维增强水泥基电磁波吸收材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548279B1 (ko) * 2013-12-20 2015-08-28 주식회사 불스원신소재 전자파 차폐 및 흡수용 부직포 또는 부직포 복합재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605447A (zh) * 2008-06-13 2009-12-16 张仁鸿 抗电磁波微粒材料
CN101851814A (zh) * 2010-05-14 2010-10-06 江苏大学 铁镍合金/镍铁氧体磁性复合纳米纤维及其制备方法
CN101891419A (zh) * 2010-07-07 2010-11-24 东华理工大学 一种水泥基电磁屏蔽材料及其生产方法
KR101372676B1 (ko) * 2012-10-10 2014-03-12 재단법인 포항산업과학연구원 철강 슬래그를 이용한 콘크리트 조성물
CN103763895A (zh) * 2014-01-22 2014-04-30 昆山海普过滤分离科技有限公司 一种漫反射型电磁波屏蔽材料
CN113060981A (zh) * 2021-03-31 2021-07-02 南通大学 铁镍纤维增强水泥基电磁波吸收材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIANGCHENG, GONG RONG-ZHOU: "Magnetic Field Induced Preparation and Electromagnetic Properties of Fe-Ni Fibers", JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU , CHONGQING, CN, vol. 37, no. 1, 20 January 2006 (2006-01-20), CN , pages 27 - 28 + 32, XP055973719, ISSN: 1001-9731 *

Also Published As

Publication number Publication date
CN113060981A (zh) 2021-07-02
CN113060981B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
RU2036886C1 (ru) Способ приготовления смеси для получения композиционного материала и изделия из композиционного материала
CN108609947B (zh) 一种可3d打印的铜炉渣电磁吸波混凝土及其使用方法
Ma et al. Electromagnetic and microwave absorbing properties of cementitious composite for 3D printing containing waste copper solids
CN105523741B (zh) 防电磁辐射建筑用水泥基板材及其制备方法
CN106278001A (zh) 一种电磁吸波混凝土及其制备方法
WO2022205777A1 (zh) 增强水泥基电磁波吸收材料及其制备方法
CN107032703A (zh) 利用四氧化三铁和粉煤灰空心微珠复合的水泥基吸波材料及其制备方法
CN113045263A (zh) 一种混杂纤维水泥基泡沫复合吸波材料及其制备方法
CN109279860B (zh) 3d打印电磁防护轻质高强磷酸盐水泥材料的制备方法
Xie et al. Layered gypsum-based composites with grid structures for S-band electromagnetic wave absorption
CN114853400A (zh) 一种炭黑-碳纤维复合吸波泡沫混凝土及其制备方法
CN109265128B (zh) 一种可3d打印的电磁防护磷酸盐材料的制备方法
CN109265127B (zh) 一种3d打印高强高韧性电磁防护材料的制备方法
CN108658536B (zh) 一种纤维增强水泥基材料及其制备方法
CN116335269A (zh) 基于优化铺装频率定向钢纤维的3d电磁吸波混凝土超结构
CN114262185B (zh) 一种采用外加剂的特细混合砂混凝土及其制备方法
JP4556164B2 (ja) 高強度モルタル組成物
CN114059682A (zh) 一种宽频高效多层型泡沫水泥基吸波板
KR102011335B1 (ko) 유무기 복합 수축저감 혼화재의 제조방법
JPS59102849A (ja) 超高強度セメント硬化体
CN112374825A (zh) 一种3d打印韧性混凝土材料及制备方法
CN112125582A (zh) 一种水泥基导电复合材料及其制备方法
JP2688155B2 (ja) 繊維補強無機質製品の押出成形方法
CN114907076A (zh) 一种用纳米颗粒协同提高混凝土动力特性、吸波性能的方法
CN113620668B (zh) 一种再生骨料混凝土及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934415

Country of ref document: EP

Kind code of ref document: A1