WO2022205622A1 - 一种顺层钻孔水平切缝均匀卸压效果评价方法 - Google Patents

一种顺层钻孔水平切缝均匀卸压效果评价方法 Download PDF

Info

Publication number
WO2022205622A1
WO2022205622A1 PCT/CN2021/099976 CN2021099976W WO2022205622A1 WO 2022205622 A1 WO2022205622 A1 WO 2022205622A1 CN 2021099976 W CN2021099976 W CN 2021099976W WO 2022205622 A1 WO2022205622 A1 WO 2022205622A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
slit
pressure relief
slitting
uniform pressure
Prior art date
Application number
PCT/CN2021/099976
Other languages
English (en)
French (fr)
Inventor
张永将
徐遵玉
赵旭生
刘怀付
牛心刚
陆占金
李成成
袁本庆
杨慧明
季飞
易恩兵
刘永三
国林东
王中华
徐军见
李帅
Original Assignee
中煤科工集团重庆研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工集团重庆研究院有限公司 filed Critical 中煤科工集团重庆研究院有限公司
Publication of WO2022205622A1 publication Critical patent/WO2022205622A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the technical field of coal mine gas drainage, and in particular relates to a method for evaluating the uniform pressure relief effect of horizontal slits of drilled holes.
  • the purpose of the present invention is to provide a method for evaluating the uniform pressure relief effect of the horizontal cutting seam of the layered drilling, which is evaluated from the uniformity of the implementation of the measures and the pressure relief effect.
  • the invention provides the following technical solutions:
  • the present invention provides a method for evaluating the uniform pressure relief effect of horizontal slits of drilled holes, comprising:
  • Step 1) collect the coal density ⁇ and the original in-situ stress ⁇ 0 of the coal seam before the horizontal cutting construction of the horizontal drilling along the bed;
  • Step 2 count the number of axial slit segments n 1 and the number of radial slits n 2 of single-segment axial slits in the construction of the horizontal slits of the layered drilling and horizontal slits, and the formation of a single radial slit
  • Step 3 obtain the gap thickness a of the horizontal slit groove
  • Step 4 calculate the gap depth R of the horizontal slit groove as:
  • Step 5 calculate the standard deviation S R of the gap depth of the horizontal slit groove as:
  • R i is the single value of the gap depth of the horizontal slot, is the average value of the gap depth of the horizontal slot, n 1 n 2 is the total number of drilling slots, i is 1 ⁇ i ⁇ n 1 n 2 , and takes a natural number;
  • Step 6 calculate the coal reserves T and the slag yield ⁇ in the control range of the total number of drilled slits, respectively:
  • Step 7 obtain the cutting in-situ stress ⁇ 1 of the coal seam after the horizontal cutting construction of the bedding drilling, and calculate the in-situ stress increment ⁇ as:
  • Step 8 determine whether the uniformity of the horizontal slit groove, the slag yield ⁇ , and the in-situ stress increment ⁇ all reach or exceed the respective set critical thresholds of the indicators, if so, determine that the horizontal slits of the drilled holes are uniformly discharged.
  • the pressure effect is valid; otherwise, it is invalid.
  • the original in-situ stress ⁇ 0 in step 1) and the cutting in-situ stress ⁇ 1 in step 7) are obtained by a stress relief method or a stress recovery method.
  • the gap thickness ⁇ in step 3 is obtained by using a borehole peep.
  • the horizontal slitting groove uniformity includes the average value of the slit depth and the standard deviation of the gap depth ⁇ R .
  • the critical threshold of the indicator is 1m; the critical threshold of the indicator of the standard deviation of the gap depth S R is ⁇ 0.15m.
  • step 8 the critical threshold value of the index of the slagging rate ⁇ is 2.0%.
  • the critical threshold value of the in-situ stress increment ⁇ in step 8) is 20%-80% of the original in-situ stress
  • the method for evaluating the uniform pressure relief effect of the horizontal cutting seam of the drilled layer of the present invention realizes the evaluation from the uniformity of the implementation of the measures and the pressure relief effect, and has the advantages of simple method, convenient operation, high reliability and practicality. It has the advantages of strong performance, and provides a new evaluation method for the evaluation of the uniform penetration enhancement and pressure relief effect of the drilled slits along the bed, which is helpful to establish a new standard in the field for the evaluation of the uniform penetration enhancement and pressure relief of the drilled slits along the bed.
  • Fig. 1 is the flow chart of the method for evaluating the uniform pressure relief effect of layered drilling horizontal slits according to the present invention
  • FIG. 2 is a schematic diagram of the uniform pressure relief of the horizontal slits of the layered drilling according to the present invention.
  • 1 is coal seam; 2 is drilled hole; 3 is horizontal slit groove.
  • the basic principle of a method for evaluating the uniform pressure relief effect of the horizontal cutting seam of the layered drilling is as follows: first collect the layered drilling The coal density and original in-situ stress of coal seam 1 before horizontal cutting construction, and the number of axial slitting sections of drilled hole 2 and the number of radial slitting times of single-segment axial slitting during horizontal slitting construction of horizontal drilling holes, and The slit length, slit thickness and slag output of the horizontal slit groove 3 formed by a single radial slit; then calculate the slit depth and slit depth standard deviation of the horizontal slit groove; then calculate the total number of drilling slits Coal reserves and slag production rate within the control range; then obtain the cutting in-situ stress of coal seam 1 after the horizontal cutting construction of the layered drilling, and calculate the in-situ stress increment; Whether the rate and the in-s
  • the specific implementation process includes the following:
  • Step 1) collect the coal density ⁇ and the original in-situ stress ⁇ 0 of the coal seam 1 before the horizontal cutting construction of the drilling along the bed;
  • the horizontal slit grooves 3 formed by the slit are two symmetrically arranged, that is, the slag output q is the combined amount of the two symmetrically arranged horizontal slits 3 formed by a single radial slit;
  • Step 3 obtain the gap thickness a of the horizontal slit slot through a drilling peeping instrument
  • Step 4 according to the coal density ⁇ of the coal seam 1, the gap length L, the slag output q and the gap thickness a of the horizontal slot 3, to calculate the slot depth R of the horizontal slot 3 is:
  • Step 5 calculate the standard deviation S R of the gap depth of the horizontal slit groove 3 as:
  • Step 6 according to the gap length L and the average value of the gap depth of the horizontal slot 3
  • the coal density ⁇ of coal seam 1 and the number of axial slits n 1 of borehole 2 are used to calculate the coal reserves T and slag yield ⁇ within the control range of the total number of borehole slits, respectively:
  • Step 7 obtain the cutting in-situ stress ⁇ 1 of the coal seam 1 after the horizontal cutting construction of the bedding drilling, and calculate the corresponding in-situ stress increment ⁇ as:
  • the cutting in-situ stress ⁇ 1 is obtained by the stress-relief method or the stress-recovery method.
  • Both the stress-relief method and the stress-recovery method are commonly used absolute in-situ stress measurement methods, and the stress-recovery method is mainly suitable for measuring the principal stress on the main plane;
  • Step 8 judge the uniformity of the horizontal slit groove (including the average value of the slit depth and gap depth standard deviation S R ), slag rate ⁇ , in-situ stress increment ⁇ all meet or exceed the respective critical thresholds of the indicators, if yes, then determine the uniform pressure relief effect of the horizontal cutting seam of the layered drilling valid; otherwise, invalid.
  • the critical threshold of the index is 1m; the critical threshold of the gap depth standard deviation S R is ⁇ 0.15m; the critical threshold of the slag rate ⁇ is 2.0%; the critical threshold of the ground stress increment ⁇ is the original ground 20% to 80% of stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Economics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Operations Research (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明属于煤矿瓦斯抽采技术领域,公开了一种操作简便、实用性强的顺层钻孔水平切缝均匀卸压效果评价方法,包括:收集出顺层钻孔水平切割施工前煤层的煤密度和原始地应力,并统计出顺层钻孔水平切缝施工中钻孔的轴向割缝段数和单段轴向割缝的径向割缝次数,及单次径向割缝所形成的水平切缝槽的缝隙长度、缝隙厚度和出渣量;再计算出水平切缝槽的缝隙深度和缝隙深度标准差;再计算出钻孔割缝总次数控制范围内的煤储量和出渣率;再获取出顺层钻孔水平切割施工后煤层的切割地应力,并计算出地应力增量;最后通过判断缝隙深度、缝隙深度标准差、出渣率及地应力增量是否均达到或者超过设定的指标临界阀值,来实现对钻孔水平切缝均匀卸压效果评价。

Description

一种顺层钻孔水平切缝均匀卸压效果评价方法 技术领域
本发明属于煤矿瓦斯抽采技术领域,具体涉及一种顺层钻孔水平切缝均匀卸压效果评价方法。
背景技术
在煤矿采掘工程中,采用顺层钻孔割缝均匀增透卸压防治煤与瓦斯突出、冲击地压等动力灾害取得了一定效果。但还是有存在明显的局限性,如一些矿井采取卸压增透措施后的局部区域仍出现有诱发突出、巷道垮塌等事故,致使效果欠佳,并不能完全对煤层进行均匀卸压增透,以无法从根本上保证工作面的安全高效生产。此外,现有的对于顺层钻孔割缝均匀增透卸压措施主要是从瓦斯抽采效果进行防突效果评价,而未从措施实施的均匀程度、卸压效果进行相关的评价。
发明内容
有鉴于此,本发明的目的在于提供一种从措施实施的均匀程度及卸压效果进行评价的顺层钻孔水平切缝均匀卸压效果评价方法。
为达到上述目的,本发明提供了如下技术方案:
本发明提供一种顺层钻孔水平切缝均匀卸压效果评价方法,包括:
步骤1)、收集出顺层钻孔水平切割施工前煤层的煤密度ρ和原始地应力σ 0
步骤2)、统计出顺层钻孔水平切缝施工中钻孔的轴向割缝段数n 1和单段轴向割缝的径向割缝次数n 2,及单次径向割缝所形成的水平切缝槽的缝隙长度L和出渣量q;
步骤3)、获取出水平切缝槽的缝隙厚度a;
步骤4)、计算出水平切缝槽的缝隙深度R为:
Figure PCTCN2021099976-appb-000001
步骤5)、计算出水平切缝槽的缝隙深度标准差S R为:
Figure PCTCN2021099976-appb-000002
其中,R i为水平切缝槽的缝隙深度单次值,
Figure PCTCN2021099976-appb-000003
为水平切缝槽的缝隙深度平均值,n 1n 2为 钻孔割缝总次数,i为1≤i≤n 1n 2,且取自然数;
步骤6)、计算出钻孔割缝总次数控制范围内的煤储量T和出渣率η,分别为:
Figure PCTCN2021099976-appb-000004
Figure PCTCN2021099976-appb-000005
步骤7)、获取出顺层钻孔水平切割施工后煤层的切割地应力σ 1,并计算出地应力增量Δσ为:
Δσ=|σ 10|;
步骤8)、判断水平切缝槽均匀度,出渣率η,地应力增量Δσ是否均达到或者超过各自设定的指标临界阀值,如果是,则判定顺层钻孔水平切缝均匀卸压效果有效;反之,则无效。
进一步,步骤1)中的原始地应力σ 0、步骤7)中的切割地应力σ 1采用应力解除法或应力恢复法获得。
进一步,步骤3)中的缝隙厚度σ采用钻孔窥视仪获得。
进一步,步骤8)中的所述水平切缝槽均匀度包括缝隙深度平均值
Figure PCTCN2021099976-appb-000006
和缝隙深度标准差σ R
进一步,缝隙深度平均值
Figure PCTCN2021099976-appb-000007
的指标临界阀值为1m;所述缝隙深度标准差S R的指标临界阀值为±0.15m。
进一步,在步骤8)中的出渣率η的指标临界阀值为2.0%。
进一步,在步骤8)中的地应力增量Δσ的指标临界阀值为原始地应力|σ 0|的20%~80%。
本发明的有益效果是:本发明的顺层钻孔水平切缝均匀卸压效果评价方法实现了从措施实施的均匀程度、卸压效果进行评价,具有方法简易、操作方便、可靠性高及实用性强的优点,为顺层钻孔割缝均匀增透卸压效果评价提供了新的评价方式,有助于本领域对顺层钻孔割缝均匀增透卸压效果评价建立新的标准。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明的顺层钻孔水平切缝均匀卸压效果评价方法的流程图;
图2为本发明的顺层钻孔水平切缝均匀卸压示意图。
附图标记说明:1为煤层;2为钻孔;3为水平切缝槽。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
如图1-2所示,本实施例中提及的一种操作简便、实用性强的顺层钻孔水平切缝均匀卸压效果评价方法,其基本原理是:先收集出顺层钻孔水平切割施工前煤层1的煤密度和原始地应力,并统计出顺层钻孔水平切缝施工中钻孔2的轴向割缝段数和单段轴向割缝的径向割缝次数,及单次径向割缝所形成的水平切缝槽3的缝隙长度、缝隙厚度和出渣量;再计算出水平切缝槽的缝隙深度和缝隙深度标准差;再计算出钻孔割缝总次数控制范围内的煤储量和出渣率;再获取出顺层钻孔水平切割施工后煤层1的切割地应力,并计算出地应力增量;最后通过判断缝隙深度、缝隙深度标准差、出渣率及地应力增量是否达到或者超过设定的指标临界阀值,来实现对钻孔水平切缝均匀卸压效果评价。
具体的实施过程包括如下:
步骤1)、收集出顺层钻孔水平切割施工前煤层1的煤密度ρ和原始地应力σ 0
步骤2)、统计出顺层钻孔水平切缝施工中钻孔2的轴向割缝段数n 1(示例中n 1=5)和单段轴向割缝的径向割缝次数n 2(示例中n 2=4),及单次径向割缝所形成的水平切缝槽3的缝隙长度L(为定值)和出渣量q(为定值);其中,单次径向割缝所形成的水平切缝槽3为对称布置的两条,即该出渣量q为单次径向割缝所形成的呈对称布置的两条水平切缝3的合量;
步骤3)、通过钻孔窥视仪获取出水平切缝槽的缝隙厚度a;
步骤4)、根据煤层1的煤密度ρ,水平切缝槽3的缝隙长度L、出渣量q和缝隙厚度a,来计算出水平切缝槽3的缝隙深度R为:
Figure PCTCN2021099976-appb-000008
步骤5)、再计算出水平切缝槽3的缝隙深度标准差S R为:
Figure PCTCN2021099976-appb-000009
其中,R i为水平切缝槽的缝隙深度单次值,
Figure PCTCN2021099976-appb-000010
为水平切缝槽的缝隙深度平均值,n 1n 2为钻孔割缝总次数(为5x4=20),i为1≤i≤n 1n 2,且取自然数;
步骤6)、再根据水平切缝槽3的缝隙长度L和缝隙深度平均值
Figure PCTCN2021099976-appb-000011
煤层1的煤密度ρ,钻孔2的轴向割缝段数n 1,来计算出钻孔割缝总次数控制范围内的煤储量T及出渣率η,分别为:
Figure PCTCN2021099976-appb-000012
Figure PCTCN2021099976-appb-000013
步骤7)、获取出顺层钻孔水平切割施工后煤层1的切割地应力σ 1,并计算出相应的地应力增量Δσ为:
Δσ=|σ 10|;
其中,切割地应力σ 1采用应力解除法或应力恢复法获得,该应力解除法和应力恢复法均是常用的绝对地应力测量方法,其中应力恢复法主要适用于测量主平面上的主应力;
步骤8)、判断水平切缝槽均匀度(包括缝隙深度平均值
Figure PCTCN2021099976-appb-000014
和缝隙深度标准差S R),出渣率η,地应力增量Δσ是均否达到或者超过各自设定的指标临界阀值,如果是,则判定顺层钻孔水平切缝均匀卸压效果有效;反之,则无效。而缝隙深度平均值
Figure PCTCN2021099976-appb-000015
的指标临界阀值为1m;缝隙深度标准差S R的指标临界阀值为±0.15m;出渣率η的指标临界阀值为2.0%;地应力增量Δσ的指标临界阀值为原始地应力|σ 0|的20%~80%;即
Figure PCTCN2021099976-appb-000016
-0.15m≤S R≤+0.15m,η≥2.0%,20%|σ 0|≤Δσ≤80%|σ 0|,四个指标均达到或者超过各自对应的指标临界阀值,则判定顺层钻孔水平切缝均匀卸压效果有效;反之,则无效。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

  1. 一种顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,包括:
    步骤1)、收集出顺层钻孔水平切割施工前煤层(1)的煤密度ρ和原始地应力σ 0
    步骤2)、统计出顺层钻孔水平切缝施工中钻孔(2)的轴向割缝段数n 1和单段轴向割缝的径向割缝次数n 2,及单次径向割缝所形成的水平切缝槽(3)的缝隙长度L和出渣量q;
    步骤3)、获取出所述的水平切缝槽的缝隙厚度a;
    步骤4)、计算出所述的水平切缝槽的缝隙深度R为:
    Figure PCTCN2021099976-appb-100001
    步骤5)、计算出所述的水平切缝槽的缝隙深度标准差S R为:
    Figure PCTCN2021099976-appb-100002
    其中,R i为水平切缝槽的缝隙深度单次值,
    Figure PCTCN2021099976-appb-100003
    为水平切缝槽的缝隙深度平均值,n 1n 2为钻孔割缝总次数,i为1≤i≤n 1n 2,且取自然数;
    步骤6)、计算出钻孔割缝总次数控制范围内的煤储量T和出渣率η,分别为:
    Figure PCTCN2021099976-appb-100004
    Figure PCTCN2021099976-appb-100005
    步骤7)、获取出顺层钻孔水平切割施工后煤层的切割地应力σ 1,并计算出地应力增量Δσ为:
    Δσ=|σ 10|;
    步骤8)、判断水平切缝槽均匀度,出渣率η,地应力增量Δσ是否均达到或者超过各自设定的指标临界阀值;如果是,则判定顺层钻孔水平切缝均匀卸压效果有效;反之,则无效。
  2. 根据权利要求1所述的顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,步骤1)中的所述原始地应力σ 0、步骤7)中的所述切割地应力σ 1采用应力解除法或应力恢复法获得。
  3. 根据权利要求1所述的顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,步骤3)中的所述缝隙厚度a采用钻孔窥视仪获得。
  4. 根据权利要求1所述的顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,步骤8)中的所述水平切缝槽均匀度包括缝隙深度平均值
    Figure PCTCN2021099976-appb-100006
    和缝隙深度标准差S R
  5. 根据权利要求4所述的顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,所 述缝隙深度平均值
    Figure PCTCN2021099976-appb-100007
    的指标临界阀值为1m;所述缝隙深度标准差S R的指标临界阀值为±0.15m。
  6. 根据权利要求1所述的顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,在步骤8)中的所述出渣率η的指标临界阀值为2.0%。
  7. 根据权利要求1所述的顺层钻孔水平切缝均匀卸压效果评价方法,其特征在于,在步骤8)中的所述地应力增量Δσ的指标临界阀值为原始地应力|σ 0|的20%~80%。
PCT/CN2021/099976 2021-03-31 2021-06-15 一种顺层钻孔水平切缝均匀卸压效果评价方法 WO2022205622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110349957.7 2021-03-31
CN202110349957.7A CN113033008B (zh) 2021-03-31 2021-03-31 一种顺层钻孔水平切缝均匀卸压效果评价方法

Publications (1)

Publication Number Publication Date
WO2022205622A1 true WO2022205622A1 (zh) 2022-10-06

Family

ID=76453442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099976 WO2022205622A1 (zh) 2021-03-31 2021-06-15 一种顺层钻孔水平切缝均匀卸压效果评价方法

Country Status (2)

Country Link
CN (1) CN113033008B (zh)
WO (1) WO2022205622A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810005B (zh) * 2022-05-19 2022-12-23 贵州大学 煤巷水平切缝-二氧化碳爆破协同作用的煤层致裂方法
CN115467647B (zh) * 2022-10-19 2023-07-18 中煤科工集团重庆研究院有限公司 一种顺层定向平面缝槽的水射流切割方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117739A1 (en) * 2011-06-24 2014-05-01 Ian Gray Mining Method for Gassy and Low Permeability Coal Seams
CN104389636A (zh) * 2014-10-11 2015-03-04 中煤科工集团重庆研究院有限公司 石门揭煤高压水射流扩孔卸压和防突效果评价方法
CN107965316A (zh) * 2017-11-22 2018-04-27 太原理工大学 一种提高高瓦斯低渗透单一煤层抽采效果的方法
CN108871411A (zh) * 2018-06-27 2018-11-23 中煤科工集团重庆研究院有限公司 穿层钻孔水力割缝卸压评价方法
CN109064016A (zh) * 2018-07-30 2018-12-21 西安科技大学 一种低渗煤层水力压裂增透效果评价方法
CN111577256A (zh) * 2020-05-18 2020-08-25 中国矿业大学 一种穿层钻孔水力冲孔增透效果定量评价方法
CN112465330A (zh) * 2020-11-23 2021-03-09 中煤科工集团重庆研究院有限公司 一种煤矿井下瓦斯抽采钻孔失效评判方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422069B (zh) * 2015-11-30 2017-08-25 中国矿业大学 一种高瓦斯突出煤层“钻‑冲‑割”耦合卸压增透方法
CN110685732B (zh) * 2019-09-29 2021-06-15 华北科技学院 基于抽采管路阀门控制的顺煤层钻孔瓦斯抽采方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117739A1 (en) * 2011-06-24 2014-05-01 Ian Gray Mining Method for Gassy and Low Permeability Coal Seams
CN104389636A (zh) * 2014-10-11 2015-03-04 中煤科工集团重庆研究院有限公司 石门揭煤高压水射流扩孔卸压和防突效果评价方法
CN107965316A (zh) * 2017-11-22 2018-04-27 太原理工大学 一种提高高瓦斯低渗透单一煤层抽采效果的方法
CN108871411A (zh) * 2018-06-27 2018-11-23 中煤科工集团重庆研究院有限公司 穿层钻孔水力割缝卸压评价方法
CN109064016A (zh) * 2018-07-30 2018-12-21 西安科技大学 一种低渗煤层水力压裂增透效果评价方法
CN111577256A (zh) * 2020-05-18 2020-08-25 中国矿业大学 一种穿层钻孔水力冲孔增透效果定量评价方法
CN112465330A (zh) * 2020-11-23 2021-03-09 中煤科工集团重庆研究院有限公司 一种煤矿井下瓦斯抽采钻孔失效评判方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN XUEDONG: "Gas Extraction Technology and Application of Pre-Pumping Coal Tunnel by Down-Seam Drilling", SHANDONG INDUSTRIAL TECHNOLOGY, no. 8, 31 August 2013 (2013-08-31), pages 78 - 80, XP055972419, ISSN: 1006-7523, DOI: 10.16640/j.cnki.37-1222/t.2013.08.017 *

Also Published As

Publication number Publication date
CN113033008A (zh) 2021-06-25
CN113033008B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2022205622A1 (zh) 一种顺层钻孔水平切缝均匀卸压效果评价方法
Liu et al. A case study of TBM performance prediction using a Chinese rock mass classification system–Hydropower Classification (HC) method
Gong et al. Development of a rock mass characteristics model for TBM penetration rate prediction
RU2567878C2 (ru) Способ прогнозирования опасности выброса угля и газа посредством объединения различной информации
WO2019042483A2 (zh) 一种tbm在掘岩体状态实时感知系统和方法
CN103293560B (zh) 一种采动三向应力场的测试方法
CN102817619B (zh) 隧道内探测无水和有水溶腔的组合超前钻探方法
CN101824982A (zh) 煤层瓦斯抽放有效半径测定方法
CN104408323A (zh) 一种基于多源信息融合的采场顶板离层水害超前预报方法
Zhang et al. Comparison study on the rock cutting characteristics of disc cutter under free-face-assisted and conventional cutting methods
CN105741029A (zh) 一种基于累积应力集中系数的冲击危险评价方法
CN104500054A (zh) 地层孔隙压力的确定方法及装置
CN112504838B (zh) 一种搭载于tbm的岩石力学综合试验及信息评价系统
CN115075810B (zh) 一种钻孔侧壁取芯三维地应力测量方法
CN111985101A (zh) 一种深井冲击危险巷道卸支耦合防冲方法
CN109555502B (zh) 一种高瓦斯煤巷预裂增透的工业性试验方法
CN112819195B (zh) 一种隧道超前钻探地质精细化预报方法
Cardu et al. Analysis of the tunnel boring machine advancement on the Bologna-Florence railway link
CN112855123B (zh) 一种卸压钻孔深度的确定方法
CN112610224B (zh) 陡壁隧道掏心洞施工工艺
Wu et al. Flow characteristics after water inrush from the working face in karst tunneling
CN108918823A (zh) 隧道突水突泥洞内涌泥淤积长度的预测方法
CN108169449A (zh) 一种煤与瓦斯突出危险性局部预测指标敏感性确定方法
CN204371324U (zh) 地层孔隙压力的确定装置
CN114320268B (zh) 一种基于钻孔应力监测的大直径钻孔卸压效果评价方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934271

Country of ref document: EP

Kind code of ref document: A1