WO2019042483A2 - 一种tbm在掘岩体状态实时感知系统和方法 - Google Patents

一种tbm在掘岩体状态实时感知系统和方法 Download PDF

Info

Publication number
WO2019042483A2
WO2019042483A2 PCT/CN2018/112418 CN2018112418W WO2019042483A2 WO 2019042483 A2 WO2019042483 A2 WO 2019042483A2 CN 2018112418 W CN2018112418 W CN 2018112418W WO 2019042483 A2 WO2019042483 A2 WO 2019042483A2
Authority
WO
WIPO (PCT)
Prior art keywords
rock
tbm
rock mass
parameters
fpi
Prior art date
Application number
PCT/CN2018/112418
Other languages
English (en)
French (fr)
Other versions
WO2019042483A3 (zh
Inventor
荆留杰
李建斌
张娜
杨晨
陈帅
Original Assignee
中铁工程装备集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁工程装备集团有限公司 filed Critical 中铁工程装备集团有限公司
Priority to DE112018003914.5T priority Critical patent/DE112018003914T5/de
Publication of WO2019042483A2 publication Critical patent/WO2019042483A2/zh
Publication of WO2019042483A3 publication Critical patent/WO2019042483A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to the technical field of TBM tunnel construction, in particular to a real-time sensing system and method for TBM in rock mass state.
  • TBM is a major technical equipment for tunnel construction integrating mechanical, electrical and hydraulic. It can realize excavation and caverning such as excavation, rock dumping and cave wall support. It has high mechanization and automation, fast excavation speed and safe construction. Significant advantages such as civilized and environmental protection have been widely used in many underground construction projects such as hydropower, railways, coal mines, and urban subways.
  • TBM geological survey before the construction of the TBM tunnel can not be very detailed and accurate. Unfavorable geological conditions not indicated in the geological data are often encountered during the construction process.
  • the current TBM excavation rock mass state information such as compressive strength, joint conditions and other parameters are still obtained through artificial on-site sketching, sampling and indoor experiments.
  • the acquisition methods are relatively backward, and the rock mass state information cannot be predicted in advance and in real time.
  • Sexuality, causing TBM to encounter stratum changes or complex geological conditions is difficult to make timely adjustments to the excavation plan and control parameters, resulting in TBM card machine, damage, scrap, and even major casualties.
  • TBM generates a large number of real-time data on the operating parameters of the equipment such as thrust, torque, penetration, and cutter speed. These electro-hydraulic data are a direct reflection of the current state of rock breaking by TBM.
  • the present invention proposes a real-time sensing system and method for the TBM in the rock mass state. Based on the quantitative relationship of rock-rock interaction during the TBM excavation process, the state parameters of the rock-drilling body are sensed in real time according to the TBM excavation parameters, and the defects of the existing excavation scheme that can not effectively reflect the rock mass state of the TBM tunneling tunnel in real time can be overcome.
  • a TBM real-time sensing system for rock mass state including data storage warehouse module, model calculation module, rock machine relationship model, real-time output display module, data storage warehouse module and rock machine database, data storage warehouse module and rock machine
  • the relationship model is connected, the data storage warehouse module and the rock machine relationship model are all connected with the model calculation module, the model calculation module is connected with the current excavation parameter memory on the TBM, and the model calculation module is connected with the real-time output display module.
  • the rock machine database is used to save TBM excavation parameters and corresponding rock mass state parameters.
  • the rock machine database includes rock mass parameter database, excavation rock machine database and other TBM engineering databases, rock mass parameter database, excavation rock machine database and other TBM projects.
  • the database is connected to the data storage warehouse module; the current tunneling parameter memory transmits the current tunneling parameters on the TBM to the model calculation module in real time.
  • a real-time sensing method for TBM in rock mass state the steps are as follows:
  • Step 1 Collect the TBM excavation parameters and rock mass state parameter data in the TBM construction case, or collect the TBM excavation parameters and rock mass state parameters of the TBM construction tunnel currently under construction, and put the TBM excavation parameters and rock mass state parameters into the rock machine.
  • a data storage warehouse module for establishing rock machine state parameters for establishing rock machine state parameters
  • Step 2 According to the TBM excavation parameters stored in the data warehouse storage module and the corresponding rock mass state parameters, a rock-relationship model is established by using a step-by-step regression algorithm and a clustering algorithm to form a kernel of the model calculation module;
  • Step 3 The model calculation module combines the current excavation parameters on the TBM, and uses the rock machine relationship model to calculate the rock mass state information of the current TBM face in real time;
  • Step 4 The model calculation module transmits the obtained rock mass compressive strength UCS and the volume joint number Jv and the surrounding rock grade to the real-time output display module, and the real-time output display module converts the rock compressive strength UCS and the volume section.
  • the number Jv and the surrounding rock level output are displayed on the visual interface of the TBM host computer.
  • the TBM excavation parameters include an operating parameter thrust of the TBM, a torque and a control parameter penetration degree, and a rotational speed;
  • the rock mass state parameters include a rock mass compressive strength UCS, a unit volume joint number Jv, and a surrounding rock grade;
  • the surrounding rock grade is to calculate the surrounding rock grading by using the rock mass compressive strength UCS and the unit volume joint number Jv to calculate the surrounding rock basic quality index BQ value.
  • the steps are as follows:
  • Step 1 Determine the corresponding rock mass integrity coefficient Kv by using the unit volume joint number Jv.
  • the comparison relationship between the unit volume joint number Jv and the rock mass integrity coefficient Kv is as follows:
  • Step 2 Calculate the basic quality index BQ of the rock mass according to the rock mass compressive strength UCS and the rock mass integrity coefficient Kv of the quantitative index of the surrounding rock classification factors.
  • Step 3 Determine the surrounding rock grade according to the BQ range of the basic quality index of the rock mass:
  • Quantity indicator BQ Quantity indicator
  • the method for establishing a rock machine relationship model by using a step-by-step regression algorithm is:
  • the clustering algorithm establishes the relationship between the surrounding rock grade and the TBM excavation parameters by statistically distributing the distribution range of the TBM excavation parameters under different surrounding rock grade conditions, and the steps are as follows:
  • m represents the number of samples of FPI and TPI under the same level of surrounding rock conditions
  • 1 in the numerator denominator represents the sample points of the TBM excavation parameters FPI and TPI under the same-scale surrounding rock conditions. Indicates the number of sample points of the TBM excavation parameters FPI and TPI classified under the same level of surrounding rock conditions, Indicates the sum of all sample points for this grade of surrounding rock conditions;
  • Step 3 using the unit volume joint number Jv obtained in step 2, according to the control relationship between the unit volume joint number Jv and the rock mass integrity coefficient Kv, the corresponding rock mass integrity coefficient Kv is calculated by interpolation method;
  • Step 5 According to the calculation of the basic quality index BQ range of the rock mass, the surrounding rock grade is determined according to the relationship between the basic quality index BQ and the surrounding rock grade.
  • the method for calculating the rock mass quality by using the clustering algorithm by the model calculation module is as follows:
  • Step 1 The model calculation module reads the current engineering TBM excavation parameters in the current excavation parameter memory, including thrust, torque, and penetration.
  • Step 2 The model calculation module calculates the ratio of the single-knife thrust F to the penetration P of the current TBM excavation parameter FPI (new) , the ratio of the cutter torque T to the penetration P, TPI (new) .
  • Step 3 (FPI (n), TPI ( n)) of two-dimensional coordinate system, calculates the current (FPI (new), TPI ( new)) from the surrounding rock sample in the mind levels ⁇ j distance, the minimum distance
  • the surrounding rock grade corresponding to the center of mass is the state of the rock mass currently being drilled by TBM.
  • the invention proposes a real-time sensing method for rock mass state.
  • the TBM rock machine relationship perception model is established by the stepwise regression method, and the clustering algorithm is adopted.
  • the TBM is used to classify the mass of the rock mass.
  • the rock mass state parameters of the current TBM excavation can be sensed, including the rock mass strength, volume joint number and surrounding rock grade.
  • the difficulty in obtaining the parameters of the rock mass, the backwardness of the means, and the unclear state of the rock mass in front of the tunnel face are unknown.
  • the invention provides a rock mass state sensing system, which obtains the rock body condition parameter by writing the current TBM excavation parameter and displays it on the TBM host computer visual interface, so that the TBM master driver can adjust the current excavation plan and select a reasonable excavation plan. And optimize the excavation parameters, reduce the energy consumption of TBM, ensure the safety of equipment and personnel, improve the efficiency of TBM tunneling, and greatly improve the safe and efficient tunneling capability of TBM.
  • the invention solves the problem of real-time quantitative sensing of the rock mass state of the tunnel TBM construction, and solves the problem that the dynamic test of the state parameters of the rock-drilled body has the problems of “inaccurate measurement, unacceptable measurement and incomplete measurement”, and provides for safe and efficient tunneling of the TBM. basis.
  • FIG. 1 shows the TBM excavation parameters (thrust, torque, penetration, etc.) as a function of time during normal TBM excavation.
  • Figure 3 is a flow chart of the operation of the present invention.
  • a TBM real-time sensing system for rock mass state is installed in the TBM host computer, including data storage warehouse module, model calculation module, rock machine relationship model, real-time output display module, data storage warehouse module and The rock machine database is connected, the data storage warehouse module is connected with the rock machine relationship model, the data storage warehouse module and the rock machine relationship model are connected with the model calculation module, and the model calculation module is connected with the current excavation parameter memory on the TBM, the model The calculation module is connected to the real-time output display module.
  • the rock machine database is used to save the TBM excavation parameters and the corresponding rock mass state parameters.
  • the rock machine database includes the rock mass parameter database, the excavation rock machine database and other TBM engineering databases, the rock mass parameter database, the excavation rock machine database and other TBM engineering databases. Connect to the data storage warehouse module.
  • the Rock Machine Database uses the TBM host computer to periodically collect and store multiple TBM construction projects containing TBM excavation parameters and corresponding rock mass parameters of the engineering database, including but not limited to TBMs of the same type or similar geological excavation.
  • the current excavation parameter memory acquires engineering data from the current TBM host computer at a certain interval.
  • the current boring parameter memory transmits the current boring parameters on the TBM to the model calculation module in real time.
  • the model calculation module calls the rock mass state parameter data and the TBM tunneling parameter data from the data storage warehouse module, and uses the step-by-step regression algorithm and the clustering algorithm to establish the rock machine relationship model, and reads the current TBM in the current excavation parameter memory in real time.
  • Excavation parameters real-time calculation of rock mass compressive strength, volume joint number, surrounding rock grade and other rock mass state parameters.
  • the real-time output display module outputs the current rock mass state parameters obtained by the step-by-step regression algorithm and the clustering algorithm in the model calculation module, comprehensively evaluates the current surrounding rock grade, and displays the result output to the visual interface.
  • a real-time sensing method for a TBM in a rock mass state is characterized in that the steps are as follows:
  • Step 1 Collect the TBM excavation parameters and rock mass state parameter data in the TBM construction case, or collect the TBM excavation parameters and rock mass state parameters of the TBM construction tunnel currently under construction, and put the TBM excavation parameters and rock mass state parameters into the rock machine.
  • a data storage warehouse module that establishes state parameters of the rock machine.
  • TBM excavation parameters include TBM operating parameters thrust, torque, control parameter penetration and speed, which can be obtained directly from the TBM host computer.
  • the rock mass state parameters include rock mass compressive strength UCS, unit volume joint number Jv and surrounding rock grade.
  • the compressive strength of the rock mass UCS is obtained by on-site coring and laboratory rock compressive strength test or through detailed geological survey reports.
  • d k is the spacing of the kth group of joints
  • S k is the number of non-grouped joints per cubic rock mass of the kth group.
  • the surrounding rock grade is obtained through detailed geological survey report, or the rock mass compressive strength UCS and the unit volume joint number Jv are used to calculate the surrounding rock basic quality index BQ value for surrounding rock classification.
  • the surrounding rock classification is carried out according to the basic quality index BQ of the rock mass in the national standard.
  • the surrounding rock grade is calculated by using the compressive strength UCS of the rock mass and the joint number Jv of the unit volume to calculate the surrounding rock basic quality index BQ value, and the steps are as follows:
  • Step 1 Determine the corresponding rock mass integrity coefficient Kv by using the unit volume joint number Jv.
  • the control relationship between the unit volume joint number Jv and the rock mass integrity coefficient Kv is shown in Table 1.
  • Step 3 According to the BQ range of the basic quality index of rock mass, the surrounding rock grade is determined according to Table 2.
  • Step 2 According to the TBM excavation parameters stored in the data warehouse storage module and the corresponding rock mass state parameters, a rock-relationship model is established by using a step-by-step regression algorithm and a clustering algorithm to form a kernel of the model calculation module.
  • the model calculation module realizes the real-time reading of the TBM excavation parameters in the data storage warehouse module and the current excavation parameter memory, the establishment of the rock machine relationship model, the real-time calculation of the rock mass parameters, and the modification and optimization of the rock machine state relationship model.
  • the model calculation module can realize the real-time calculation of the state parameters of the current TBM excavation face rock mass.
  • TBM thrust, torque, and penetration are normalized into ascending and stable segments as time passes during normal tunneling, as shown in Figure 1.
  • the rising section TBM excavation parameters and the corresponding rock mass state parameters are retrieved from the data storage warehouse module, and the correlation model between the rock mass state parameters and the TBM excavation state parameters is established by using the stepwise regression algorithm and the clustering algorithm respectively.
  • the method of establishing a rock-machine relationship model using a step-by-step regression algorithm is:
  • Establish equipment parameter model Establish a relationship model between equipment operating parameter thrust and penetration of control parameters in the ascending section of TBM excavation parameters under different rock mass conditions.
  • a represents the influence coefficient of penetration on the single-knife thrust
  • b is the value of the broken rock threshold of the tool
  • P represents Penetration.
  • the penetrating degree affects the single-knife thrust influence coefficient a, which is the single-knife thrust increment required to increase the unit penetration.
  • the degree of influence on the single-knife thrust a is a function related to the number of rock mass joints.
  • the tool breaking rock threshold bb is the minimum threshold value for the hob to invade the rock mass and generate the indentation.
  • the clustering algorithm establishes the relationship between the surrounding rock grade and the TBM excavation parameters by statistically distributing the distribution range of TBM excavation parameters under different surrounding rock grade conditions.
  • the steps are as follows:
  • the ratio of the single-knife thrust to the penetration FPI and the cutter torque and penetration is used as a sample database.
  • m represents the number of samples of FPI and TPI under the same level of surrounding rock conditions.
  • the 1 in the numerator denominator indicates the sample points of the TBM excavation parameters FPI and TPI under the same-scale surrounding rock conditions. The denominator indicates that it is classified under the same level of surrounding rock conditions.
  • the number of sample points of the TBM tunneling parameters FPI and TPI, and the numerator indicates the sum of all sample points under the surrounding rock conditions of the grade.
  • Step 3 The model calculation module combines the current excavation parameters on the TBM, and uses the rock machine relationship model to calculate the rock mass state information of the current TBM face.
  • the model calculation module combines the current TBM construction excavation parameters, and uses the rock-machine relationship model established by the step-by-step regression algorithm and the clustering algorithm to calculate the rock mass condition parameters, including the rock mass compressive strength UCS, the volume joint number Jv and the surrounding rock grade. As the rock mass state parameters and TBM tunneling parameters in the data storage warehouse increase, the rock machine relationship model in the calculation module will be continuously corrected or optimized.
  • the form is linearly fitted, and the influence coefficient of the penetration degree on the single-knife thrust and the dam threshold b of the tool are obtained.
  • the rising segment TBM tunneling parameters and the corresponding rock mass state parameters are retrieved from the data storage warehouse module, and the corresponding fitting constants p 0 , p 1 , p 2 , p 3 , p 4 , p 5 are obtained according to the step-by-step regression algorithm.
  • Different types of rocks, such as granite and limestone have different fitting constant values.
  • the fitting constants p 0 , p 1 , p 2 , p 3 may be obtained according to the step-by-step regression algorithm of the present invention according to the TBM construction data of the same type of rock of the same type or the construction data of the current engineering TBM excavation section.
  • p 4 , p 5 used for the calculation of the parameters of the rock mass in the current project.
  • Step 3 Using the unit volume joint number Jv value obtained in step 2, the corresponding rock mass integrity coefficient Kv is calculated by interpolation method according to the comparison relationship between the unit volume joint number Jv and the rock mass integrity coefficient Kv.
  • Step 5 According to the calculation of the basic quality index BQ range of the rock mass, the surrounding rock grade is determined according to the relationship between the basic quality index BQ and the surrounding rock grade.
  • the method of calculating the surrounding rock grade by the model calculation module using the clustering algorithm is as follows:
  • Step 1 The model calculation module reads the current engineering TBM excavation parameters in the current excavation parameter memory, including thrust, torque, and penetration.
  • Step 2 The model calculation module calculates the ratio of the single-knife thrust F to the penetration P of the current TBM excavation parameter FPI (new) , the ratio of the cutter torque T to the penetration P, TPI (new) .
  • Step 3 In the (FPI (n) , TPI (n) ) two-dimensional coordinate system, according to steps 1 to 5 of the clustering algorithm, the distribution range of the surrounding rock conditions (FPI, TPI) and the sample centroid, Calculate the current (FPI (new) , TPI (new) ) distance from the centroid of the surrounding rock samples at all levels.
  • the surrounding rock grade corresponding to the minimum centroid of the distance is the current state of the rock mass in the TBM.
  • the clustering algorithm and the step-by-step regression algorithm are parallel relationships.
  • the stepwise regression algorithm can calculate the rock mass strength UCS, the volume joint number Jv and the surrounding rock grade.
  • the clustering algorithm can calculate the surrounding rock grade, when the stepwise regression algorithm and the clustering When the level of surrounding rock calculated by the class algorithm is the same, it indicates that the TBM is the surrounding rock in the rock mass. When the calculated surrounding rock grades are different, it indicates that the TBM is in the transition of two surrounding rock grades in the rock mass. Section.
  • Step 4 The model calculation module transmits the obtained rock mass compressive strength UCS and the volume joint number Jv and the surrounding rock grade to the real-time output display module, and the real-time output display module converts the rock compressive strength UCS and the volume section.
  • the number Jv and the surrounding rock level output are displayed on the visual interface of the TBM host computer.
  • the real-time output display module displays the rock mass state information obtained by the step-by-step regression algorithm and the clustering algorithm—the rock compressive strength UCS, the volume joint number Jv, and the surrounding rock grade are displayed on the visual interface for reference by the construction personnel.
  • the parameters calculated by the step-by-step regression algorithm are the rock mass strength UCS, the volume joint number Jv and the surrounding rock grade.
  • the clustering algorithm calculates the surrounding rock grade. When the two algorithms obtain the same level of surrounding rock, it indicates that TBM is the surrounding rock grade in the rockburst; when the calculated surrounding rock grades are different, it indicates that the TBM is in the transition of two surrounding rock grades in the rock mass. Section.
  • the invention collects the TBM excavation parameters of the hard rock tunnel and the corresponding rock body state parameter data, establishes a data storage warehouse module, adopts the stepwise regression to establish the rock machine relationship perception model and the clustering algorithm to realize the rock mass quality classification, and forms the calculation module kernel,
  • the rock mass state information is calculated by reading the current tunneling parameters of the excavation project TBM, and the rock mass state information is displayed on the TBM host computer visual interface in real time in the real-time output display module.
  • the invention utilizes the TBM excavation parameter to judge the current rock condition information and the like, and can solve the difficulty in obtaining the current rock mass state parameter of the existing TBM construction, and has the following characteristics:
  • the rock mass state information has high perception accuracy.
  • the rock mass relationship model is continuously optimized or corrected to improve the rock mass state perception. degree.
  • the method is simple to operate, and the system can be installed in the TBM host computer.
  • the host computer can display the current rock mass status information in real time for reference by the TBM construction personnel.
  • TBM construction personnel can adjust the excavation plan according to the current state of excavation rock mass, optimize excavation parameters, improve tunneling efficiency, reduce construction energy consumption, and ensure construction safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mathematical Optimization (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Geology (AREA)
  • Mathematical Analysis (AREA)
  • Civil Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明提出了一种TBM在掘岩体状态实时感知系统和方法,用以解决现有手段不能有效实时反映TBM掘进隧道岩体状态以便选择适应的掘进方案的问题;通过收集硬岩隧道TBM掘进参数和对应岩体状态参数数据,建立数据存储仓库模块,采用分步回归建立岩机关系感知模型和聚类算法实现岩体质量分级,形成计算模块内核,在模型计算模块中通过读取在掘工程TBM当前掘进参数反演计算岩体状态信息,在实时输出显示模块将岩体状态信息实时展现在TBM上位机可视化界面上。本发明弥补了传统岩体条件参数获取困难、手段落后、隧道掌子面前方岩体状态不明等缺点;减小TBM耗能,保障设备和人员安全,提高TBM掘进效率,大大提升TBM安全高效掘进能力。

Description

一种TBM在掘岩体状态实时感知系统和方法 技术领域
本发明涉及TBM隧道施工的技术领域,尤其涉及TBM在掘岩体状态实时感知系统和方法。
背景技术
TBM是集机械、电气、液压于一体的隧道施工的重大技术装备,可实现掘进、岩渣装运、洞壁支护等一次开挖成洞,具有机械化和自动化程度高、掘进速度快、施工安全文明环保等显著优势,已被世界许多国家广泛用于水电、铁路、煤矿、城市地铁等地下工程施工。
由于时间、成本、技术水平等诸多因素的限制,TBM隧道施工前地质勘测不可能很详细、很准确,施工过程中经常会遇到地质资料中没有标明的不良地质条件。同时,目前TBM掘进岩体状态信息如抗压强度、节理条件等参数的获取仍是通过人工现场素描、取样并进行室内试验得到,获取手段比较落后,无法实现岩体状态信息获知预先性和实时性,致使TBM遭遇地层变化或复杂地质条件难以做出掘进方案和控制参数的及时调整,造成TBM的卡机、损坏、报废,甚至人员伤亡的重大事故。TBM在掘进过程中实时产生了大量的推力、扭矩、贯入度、刀盘转速等一系列有关设备运行参数数据,这些机电液数据是TBM当前掘进破岩状态的直接反映。
发明内容
针对现有TBM掘进岩体状态信息获取手段落后,不能有效实时反映TBM掘进隧道岩体状态以便选择适应的掘进方案的技术问题,本发明提出一种TBM在掘岩体状态实时感知系统和方法,基于TBM掘进过程中岩机相互作用定量关系,根据TBM掘进参数实时感知在掘岩体的状态参数,克服现有技术不能有效实时反映TBM掘进隧道岩体状态以便选择适应的掘进方案的缺陷。
为了达到上述目的,本发明的技术方案是这样实现的:
一种TBM在掘岩体状态实时感知系统,包括数据存储仓库模块、模型计算模块、岩机关系模型、实时输出显示模块,数据存储仓库模块与岩机数据库相连接,数据存储仓库模块与岩机关系模型相连接,数据存储仓库模块和岩机关系模型均与模型计算模块相连接,模型计算模块与TBM上的当前掘进参数存储器相连接,模型计算模块与实时输出显示模块相连接。
所述岩机数据库用于保存TBM掘进参数和对应岩体状态参数,岩机数据库包括岩体参数数据库、掘进岩机数据库和其他TBM工程数据库,岩体参数数据库、掘进岩机数据库和其 他TBM工程数据库均与数据存储仓库模块相连接;所述当前掘进参数存储器将TBM上当前的掘进参数实时地传送至模型计算模块。
一种TBM在掘岩体状态实时感知方法,其步骤如下:
步骤一:收集TBM施工案例中的TBM掘进参数和岩体状态参数数据,或者采集当前在建TBM施工隧道的TBM掘进参数和岩体状态参数,将TBM掘进参数和岩体状态参数放进岩机数据库中,建立岩机状态参数的数据存储仓库模块;
步骤二:根据数据仓库存储模块存储的TBM掘进参数和对应的岩体状态参数,采用分步回归算法和聚类算法建立岩机关系模型,形成模型计算模块的内核;
步骤三:模型计算模块结合TBM上当前的掘进参数,利用岩机关系模型实时计算TBM当前掘进掌子面的岩体状态信息;
步骤四:模型计算模块将得到的岩体状态信息的岩体抗压强度UCS和体积节理数Jv及围岩等级传送至实时输出显示模块,实时输出显示模块将岩体抗压强度UCS、体积节理数Jv、围岩等级输出展示在TBM上位机的可视化界面上。
所述TBM掘进参数包括TBM的运行参数推力、扭矩和控制参数贯入度、转速;所述岩体状态参数包括岩体抗压强度UCS、单位体积节理数Jv和围岩等级;所述单位体积节理数Jv是指单位体积岩体中节理的条数,其计算公式为:J v=∑(1/d k)+S k/5,其中,d k为第k组节理的间距,S k为第k组每立方体岩体非成组节理条数。
所述围岩等级是利用岩体抗压强度UCS和单位体积节理数Jv计算围岩基本质量指标BQ值进行围岩分级,其步骤如下:
步骤①:利用单位体积节理数Jv确定对应的岩体完整性系数Kv,单位体积节理数Jv与岩体完整性系数Kv的对照关系表为:
Jv(条/m 3) <3 3~10 10~20 20~35 >35
Kv >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15
步骤②:根据围岩分级因素定量指标的岩体抗压强度UCS和岩体完整性系数Kv计算岩体基本质量指标BQ,计算公式为:BQ=90+3UCS+250Kv;且遵循下列限制条件:①当UCS>90Kv+30时,以UCS=90Kv+30代入计算围岩基本质量指标BQ值;②当Kv>0.04UCS+0.4时,以Kv=0.04UCS+0.4代入计算围岩基本质量指标BQ值;
步骤③:根据岩体基本质量指标BQ范围按下表确定围岩等级:
围岩等级 I II III IV V
岩体基本质 >550 550~451 450~351 350~251 <250
量指标BQ          
所述采用分步回归算法建立岩机关系模型的方法为:
①建立设备参数模型:建立不同岩体条件下TBM掘进参数上升段设备运行参数推力与控制参数贯入度之间的关系模型;单刀推力的回归拟合公式为F=a×P+b,a表示贯入度对单刀推力影响系数,b为刀具破岩门槛值,P表示贯入度;
②建立设备参数模型中贯入度对单刀推力影响系数a、刀具破岩门槛值b与岩体状态参数中岩体抗压强度UCS、单位体积节理数Jv之间的关系模型:贯入度对单刀推力影响系数a与单位体积节理数Jv之间的函数回归拟合公式为:a=f(Jv)=p 0×Jv 2+p 1×Jv+p 2,式中,p 0、p 1、p 2为拟合常数,f为函数;刀具破岩门槛值b为滚刀侵入岩体并产生压痕的最小门槛值,当P=1时,单刀推力F=a+b,用来衡量岩体的可掘进性能特征,其回归拟合公式为:a+b=g(UCS,Jv)=p 3×UCS+p 4×Jv+p 5,式中p 3、p 4、p 5为拟合常数,g为函数。
所述聚类算法是通过统计不同围岩等级条件下TBM掘进参数的分布范围,建立围岩等级与TBM掘进参数之间的关系,其步骤如下:
①利用岩机数据库中的设备参数计算单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI,将单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI作为样本数据库;
②从岩机数据库中随机选取每一等级围岩TBM掘进的单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI值分别作为该围岩等级的样本质心,形成二维坐标系(FPI (n),TPI (n)),n为围岩等级I、II、III、IV、V,FPI (n)和TPI (n)分别表示从岩机数据库中随机选取的I~V级围岩条件下TBM掘进参数FPI和TPI值的大小;
③计算样本数据库中当前样本(FPI (i),TPI (i))归属的围岩类别:
Figure PCTCN2018112418-appb-000001
c (i)代表与当前样本(FPI (i),TPI (i))距离最近的质心点的围岩等级,x (i)代表当前坐标点(FPI (i),TPI (i)),μ j为每一等级围岩的样本质心,FPI (i)和TPI (i)分别表示当前计算样本i所包含的TBM掘进参数FPI和TPI值;
④随着样本量的增加,重新计算每一等级围岩的单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI值的样本质心:
Figure PCTCN2018112418-appb-000002
m表示同一等级围岩条件下FPI和TPI的样本数量,分子分母中的1表示同级围岩条件下的TBM掘进参数FPI和TPI的样本点,
Figure PCTCN2018112418-appb-000003
表示归类于同一等级围岩条件下的TBM掘进参数FPI和TPI的样本点个数,
Figure PCTCN2018112418-appb-000004
表示该等级围岩条件下所有样本点的和;
⑤重复以上步骤③~④直到质心位置不再发生变化或者变化很小,可得到数据库中各级围岩条件下单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI的分布范围和质心点μ j的位置。
所述模型计算模块采用分步回归算法计算岩体状态信息的步骤如下:
步骤1:模型计算模块读取TBM正常掘进循环上升段的单刀推力F和贯入度P数据,将其按照设备参数模型F=a×P+b的形式进行线性拟合,得到贯入度对单刀推力影响系数a和刀具破岩门槛值b;
步骤2:将步骤1中得到的贯入度对单刀推力影响系数a和刀具破岩门槛值b值代入公式a=p 0×Jv 2+p 1×Jv+p 2,a+b=p 3×UCS-p 4×Jv+p 5中,计算得到岩体抗压强度UCS和单位体积节理数Jv;
步骤3:利用步骤2中得到的单位体积节理数Jv值,根据单位体积节理数Jv与岩体完整性系数Kv的对照关系采用插值法计算对应的岩体完整性系数Kv;
步骤4:根据步骤2中得到的岩体抗压强度UCS和步骤3得到的岩体完整性系数Kv值代入岩体基本质量指标BQ计算公式:BQ=90+3UCS+250Kv,计算岩体基本质量指标BQ值;且:当UCS>90Kv+30时,以UCS=90Kv+30代入计算岩体基本质量指标BQ值;当Kv>0.04UCS+0.4时,应以Kv=0.04UCS+0.4代入计算岩体基本质量指标BQ值;
步骤5:根据步骤4计算的岩体基本质量指标BQ范围按照岩体基本质量指标BQ与围岩等级的关系确定围岩等级。
所述模型计算模块采用聚类算法计算岩体质量分级的方法步骤如下:
步骤1:模型计算模块读取当前掘进参数存储器中当前工程TBM掘进参数,包括推力、扭矩、贯入度。
步骤2:模型计算模块计算当前TBM掘进参数的单刀推力F与贯入度P的比值FPI (new)、刀盘扭矩T与贯入度P的比值TPI (new)
步骤3:在(FPI (n),TPI (n))二维坐标系中,计算当前(FPI (new),TPI (new))距各级围岩样本质心μ j的距离,距离最小值的质心对应的围岩等级为TBM当前掘进岩体状态。
本发明提出了一种岩体状态实时感知方法,依据TBM施工中所积累建立的设备掘进参数和对应岩体状态岩机数据库,通过分步回归方法建立TBM岩机关系感知模型,通过聚类算法实现了TBM在掘岩体质量分级,以上两种方法互相补充,可以根据设备掘进参数同时感知预测当前TBM掘进的岩体状态参数,包括岩体强度、体积节理数和围岩等级,弥补了传统岩体条件参数获取困难、手段落后、隧道掌子面前方岩体状态不明等缺点。本发明提供 了一种岩体状态感知系统,通过写入当前TBM掘进参数获取岩体条件参数并展示在TBM上位机可视化界面上,可供TBM主控司机调整当前掘进方案,选择合理的掘进方案和优化掘进参数,减小TBM耗能,保障设备和人员安全,提高TBM掘进效率,可大大提升TBM安全高效掘进能力。
本发明解决了隧道TBM施工岩体状态实时定量感知的难题,解决了被掘岩体状态参数的动态测试存在“测不准、测不快、测不全”的问题,为保障TBM的安全高效掘进提供基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为TBM正常掘进时TBM掘进参数(推力、扭矩、贯入度等)随时间的变化曲线。
图2为本发明采用聚类算法的岩体质量分级。
图3为本发明的工作流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图3所示,一种TBM在掘岩体状态实时感知系统,安装在TBM上位机内,包括数据存储仓库模块、模型计算模块、岩机关系模型、实时输出显示模块,数据存储仓库模块与岩机数据库相连接,数据存储仓库模块与岩机关系模型相连接,数据存储仓库模块和岩机关系模型均与模型计算模块相连接,模型计算模块与TBM上的当前掘进参数存储器相连接,模型计算模块与实时输出显示模块相连接。
岩机数据库用于保存TBM掘进参数和对应岩体状态参数,岩机数据库包括岩体参数数据库、掘进岩机数据库和其他TBM工程数据库,岩体参数数据库、掘进岩机数据库和其他TBM工程数据库均与数据存储仓库模块相连接。岩机数据库利用TBM上位机定期收集并存储多个TBM施工项目包含TBM掘进参数和对应岩体参数的工程数据库,包含但不限于同一类型或类似地质掘进的TBM。当前掘进参数存储器间隔一定时间从当前掘进的TBM上位机获取工程数据。当前掘进参数存储器将TBM上当前的掘进参数实时地传送至模型计算模块。
模型计算模块从数据存储仓库模块调用岩机数据库中岩体状态参数数据和TBM掘进参数数据,运用分步回归算法和聚类算法建立岩机关系模型,通过实时读取当前掘进参数存储器中当前TBM掘进参数,实时计算岩体抗压强度、体积节理数、围岩等级等岩体状态参数。实时输出显示模块输出模型计算模块中分步回归算法和聚类算法得到的当前岩体状态参数,综合评价当前围岩等级,并将结果输出显示至可视化界面。
如图3所示,一种TBM在掘岩体状态实时感知方法,其特征在于,其步骤如下:
步骤一:收集TBM施工案例中的TBM掘进参数和岩体状态参数数据,或者采集当前在建TBM施工隧道的TBM掘进参数和岩体状态参数,将TBM掘进参数和岩体状态参数放进岩机数据库中,建立岩机状态参数的数据存储仓库模块。
岩机数据库数据的数据越多对当前掘进岩体的后续处理越好,因此应该尽量广泛的收集TBM掘进参数和岩体状态参数数据,但是会增加计算量。
TBM掘进参数包括TBM的运行参数推力、扭矩、控制参数贯入度和转速,这些参数可直接从TBM上位机上获取。岩体状态参数包括岩体抗压强度UCS、单位体积节理数Jv和围岩等级。岩体抗压强度UCS是通过现场取芯并进行实验室岩石抗压强度试验获取或者通过详细的地勘报告获取。单位体积节理数Jv是指单位体积岩体中节理的条数,可通过统计掌子面素描中节理间距、节理条数,并根据岩体体积节理数Jv的计算公式J v=∑(1/d k)+S k/5得到。其中,d k为第k组节理的间距,S k为第k组每立方体岩体非成组节理条数。围岩等级通过详细的地勘报告获取,或者利用岩体抗压强度UCS和单位体积节理数Jv计算围岩基本质量指标BQ值进行围岩分级。
本发明根据国标中岩体基本质量指标BQ进行围岩分级,围岩等级是利用岩体抗压强度UCS和单位体积节理数Jv计算围岩基本质量指标BQ值进行围岩分级,其步骤如下:
步骤①:利用单位体积节理数Jv确定对应的岩体完整性系数Kv,单位体积节理数Jv与岩体完整性系数Kv的对照关系如表1所示。
表1单位体积节理数Jv确定对应的岩体完整性系数Kv对照表
Jv(条/m 3) <3 3~10 10~20 20~35 >35
Kv >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15
步骤②:根据围岩分级因素定量指标的岩体抗压强度UCS(单位为MPa)和岩体完整性系数Kv计算岩体基本质量指标BQ,计算公式为:BQ=90+3UCS+250Kv;且遵循下列限制条件:①当UCS>90Kv+30时,以UCS=90Kv+30代入计算围岩基本质量指标BQ值;②当Kv>0.04UCS+0.4时,以Kv=0.04UCS+0.4代入计算围岩基本质量指标BQ值。
步骤③:根据岩体基本质量指标BQ范围按表2确定围岩等级。
表2围岩等级与岩体基本质量指标之间的关系
步骤二:根据数据仓库存储模块存储的TBM掘进参数和对应的岩体状态参数,采用分步回归算法和聚类算法建立岩机关系模型,形成模型计算模块的内核。
模型计算模块实现数据存储仓库模块和当前掘进参数存储器中TBM掘进参数的实时读取、岩机关系模型的建立、岩体参数的实时计算、岩机状态关系模型修正与优化等功能。模型计算模块可实现当前TBM掘进掌子面岩体状态参数的实时计算。
TBM正常掘进时TBM推力、扭矩、贯入度随时间变化分为上升段和稳定段,如图1所示。从数据存储仓库模块中调取上升段TBM掘进参数和对应的岩体状态参数,分别采用分步回归算法和聚类算法建立岩体状态参数与TBM掘进状态参数的相关关系模型。
采用分步回归算法建立岩机关系模型的方法为:
①建立设备参数模型:建立不同岩体条件下TBM掘进参数上升段设备运行参数推力与控制参数贯入度之间的关系模型。单刀推力的回归拟合公式为F=a×P+b,单刀推力F由TBM总推力除以刀具数量得到,a表示贯入度对单刀推力影响系数,b为刀具破岩门槛值,P表示贯入度。
②建立设备参数模型中贯入度对单刀推力影响系数a、刀具破岩门槛值b与岩体状态参数中岩体抗压强度UCS、单位体积节理数Jv之间的关系模型。贯入度对单刀推力影响系数a表示的是增加单位贯入度所需要的单刀推力增量,由于当岩体越破碎时,增加单位贯入度所需要的推力增量越小,故贯入度对单刀推力影响系数a是与岩体节理数量相关的函数。贯入度对单刀推力影响系数a与单位体积节理数Jv之间的函数回归拟合公式为:a=f(Jv)=p 0×Jv 2+p 1×Jv+p 2,式中,p 0、p 1、p 2为拟合常数。刀具破岩门槛值b为滚刀侵入岩体并产生压痕的最小门槛值,当P=1时,单刀推力F=a+b,说明了滚刀产生1mm有效贯入度时,滚刀所需要具备的推力,因此a+b可以用来衡量岩体的可掘进性能特征,其回归拟合公式为:a+b=g(UCS,Jv)=p 3×UCS+p 4×Jv+p 5,式中p 3、p 4、p 5为拟合常数。f和g均表示函数,a=f(Jv)表示a是Jv的函数,a+b=g(UCS,Jv)表示a+b是UCS和Jv的函数。
以上两步所建立模型共同构成了岩机关系模型。
聚类算法是通过统计不同围岩等级条件下TBM掘进参数的分布范围,建立围岩等级与 TBM掘进参数之间的关系,其步骤如下:
①利用岩机数据库中的设备参数计算单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI,将单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI作为样本数据库。
②从岩机数据库中随机选取每一等级围岩TBM掘进的单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI值分别作为该围岩等级的样本质心,形成二维坐标系(FPI (n),TPI (n)),n为围岩等级I、II、III、IV、V,FPI (n)和TPI (n)分别表示从岩机数据库中随机选取的I~V级围岩条件下TBM掘进参数FPI和TPI值的大小。
③计算样本数据库中当前样本(FPI (i),TPI (i))归属的围岩类别:
Figure PCTCN2018112418-appb-000006
c (i)代表与当前样本(FPI (i),TPI (i))距离最近的质心点的围岩等级,x (i)代表当前坐标点(FPI (i),TPI (i)),μ j为每一等级围岩的样本质心,FPI (i)和TPI (i)分别表示当前计算样本i所包含的TBM掘进参数FPI和TPI值。
④随着样本量的增加,重新计算每一等级围岩的单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI值的样本质心:
Figure PCTCN2018112418-appb-000007
m表示同一等级围岩条件下FPI和TPI的样本数量,分子分母中的1表示同级围岩条件下的TBM掘进参数FPI和TPI的样本点,分母表示归类于同一等级围岩条件下的TBM掘进参数FPI和TPI的样本点个数,分子表示该等级围岩条件下所有样本点的和。
⑤重复以上步骤③~④直到质心位置不再发生变化或者变化很小,可得到数据库中各围岩类别条件下单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI的分布范围和质心点位置,如图2所示。由图2可以看出不同级别围岩的FPI和TPI的分布区域不同,围岩等级与FPI和TPI的关系是距当前掘进参数(FPI,TPI)距离最近的质心点所属围岩等级为当前在掘岩体围岩等级。
步骤三:模型计算模块结合TBM上当前的掘进参数,利用岩机关系模型实时计算TBM当前掘进掌子面的岩体状态信息。
模型计算模块结合当前TBM施工掘进参数,利用分步回归算法和聚类算法建立的岩机关系模型计算得到岩体条件参数,包括岩体抗压强度UCS、体积节理数Jv和围岩等级。随着数据存储仓库中岩体状态参数和TBM掘进参数的不断增加,计算模块中的岩机关系模型会不断被修正或优化。
模型计算模块采用分步回归算法计算岩体状态信息的步骤如下:
步骤1:模型计算模块读取TBM正常掘进循环上升段(约30秒时间内)的单刀推力F 和贯入度P数据(约30组数据),按照设备参数模型F=a×P+b的形式进行线性拟合,得到贯入度对单刀推力影响系数a和刀具破岩门槛值b。
步骤2:将步骤1中得到的贯入度对单刀推力影响系数a和刀具破岩门槛值b值代入公式a=p 0×Jv 2+p 1×Jv+p 2,a+b=p 3×UCS-p 4×Jv+p 5中,计算得到岩体抗压强度UCS和单位体积节理数Jv。
从数据存储仓库模块中调取上升段TBM掘进参数和对应的岩体状态参数,根据分步回归算法得到相应的拟合常数p 0、p 1、p 2、p 3、p 4、p 5。不同类型岩石如花岗岩、石灰岩等对应的拟合常数值不同。具体实例中可根据其他工程相同类型岩石的TBM施工数据或者当前工程TBM已掘段的施工数据按照本发明的分步回归算法拟合得到拟合常数p 0、p 1、p 2、p 3、p 4、p 5,用于当前工程在掘岩体参数的计算。
步骤3:利用步骤2中得到的单位体积节理数Jv值,根据单位体积节理数Jv与岩体完整性系数Kv的对照关系采用插值法计算对应的岩体完整性系数Kv。
插值法是数学理论中常用的一种比例关系差量求解计算方法。比如,表1中Jv=3~10时,Kv=0.75~0.55,若步骤2中计算Jv=5时,
Figure PCTCN2018112418-appb-000008
步骤4:根据步骤2中得到的岩体抗压强度UCS和步骤3得到的岩体完整性系数Kv值代入岩体基本质量指标BQ计算公式:BQ=90+3UCS+250Kv,计算岩体基本质量指标BQ值;且:当UCS>90Kv+30时,以UCS=90Kv+30代入计算岩体基本质量指标BQ值;当Kv>0.04UCS+0.4时,应以Kv=0.04UCS+0.4代入计算岩体基本质量指标BQ值。
步骤5:根据步骤4计算的岩体基本质量指标BQ范围按照岩体基本质量指标BQ与围岩等级的关系确定围岩等级。
模型计算模块采用聚类算法计算围岩等级的方法步骤如下:
步骤1:模型计算模块读取当前掘进参数存储器中当前工程TBM掘进参数,包括推力、扭矩、贯入度。
步骤2:模型计算模块计算当前TBM掘进参数的单刀推力F与贯入度P的比值FPI (new)、刀盘扭矩T与贯入度P的比值TPI (new)
步骤3:在(FPI (n),TPI (n))二维坐标系中,根据聚类算法的步骤①~⑤获得的各级围岩条件下(FPI,TPI)的分布范围和样本质心,计算当前(FPI (new),TPI (new))距各级围岩样本质心的距离,距离最小值的质心对应的围岩等级为TBM当前掘进岩体状态。
聚类算法和分步回归算法是并列关系,分步回归算法可计算得到岩体强度UCS、体积节理数Jv和围岩等级,聚类算法可计算得到围岩等级,当分步回归算法和聚类算法计算得到的围岩等级相同时,则说明TBM在掘岩体为该等级围岩,当两者计算的围岩等级不同时,说 明TBM在掘岩体处于两个围岩等级变化的过渡区段。
步骤四:模型计算模块将得到的岩体状态信息的岩体抗压强度UCS和体积节理数Jv及围岩等级传送至实时输出显示模块,实时输出显示模块将岩体抗压强度UCS、体积节理数Jv、围岩等级输出展示在TBM上位机的可视化界面上。
实时输出显示模块将分步回归算法和聚类算法得到的岩体状态信息——岩体抗压强度UCS、体积节理数Jv、围岩等级显示在可视化界面上,以供施工人员参考。利用分步回归算法计算得到参数为岩体强度UCS、体积节理数Jv和围岩等级,聚类算法计算得到的是围岩等级。当两个算法得到的围岩等级相同时,说明TBM在掘岩体为该围岩等级;当两者计算的围岩等级不同时,说明TBM在掘岩体处于两个围岩等级变化的过渡区段。
本发明通过收集硬岩隧道TBM掘进参数和对应岩体状态参数数据,建立数据存储仓库模块,采用分步回归建立岩机关系感知模型和聚类算法实现岩体质量分级,形成计算模块内核,在模型计算模块中通过读取在掘工程TBM当前掘进参数反演计算岩体状态信息,在实时输出显示模块将岩体状态信息实时展现在TBM上位机可视化界面上。
本发明利用TBM掘进参数判断当前岩体条件信息等问题,能够解决现有TBM施工当前岩体状态参数获取困难,具有以下特点:
(1)岩体状态信息获取速度快,能都实时感知TBM掘进隧道岩体状态参数。
(2)岩体状态信息感知准确度高,随着当前工程TBM掘进参数和对应的岩体状态参数定时存入数据存储模块,使得岩体关系模型不断被优化或修正,提高岩体状态感知准确度。
(3)方法操作简单,系统可安装于TBM上位机中,TBM正常掘进时上位机即可实时显示当前岩体状态信息,供TBM施工人员参考。
(4)TBM施工人员可根据当前掘进岩体状态调整掘进方案,优化掘进参数,提高掘进效率,降低施工能耗,保障施工安全。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种TBM在掘岩体状态实时感知系统,其特征在于,包括数据存储仓库模块、模型计算模块、岩机关系模型、实时输出显示模块,数据存储仓库模块与岩机数据库相连接,数据存储仓库模块与岩机关系模型相连接,数据存储仓库模块和岩机关系模型均与模型计算模块相连接,模型计算模块与TBM上的当前掘进参数存储器相连接,模型计算模块与实时输出显示模块相连接。
  2. 根据权利要求1所述的TBM在掘岩体状态实时感知系统,其特征在于,所述岩机数据库用于保存TBM掘进参数和对应岩体状态参数,岩机数据库包括岩体参数数据库、掘进岩机数据库和其他TBM工程数据库,岩体参数数据库、掘进岩机数据库和其他TBM工程数据库均与数据存储仓库模块相连接;所述当前掘进参数存储器将TBM上当前的掘进参数实时地传送至模型计算模块。
  3. 一种TBM在掘岩体状态实时感知方法,其特征在于,其步骤如下:
    步骤一:收集TBM施工案例中的TBM掘进参数和岩体状态参数数据,或者采集当前在建TBM施工隧道的TBM掘进参数和岩体状态参数,将TBM掘进参数和岩体状态参数放进岩机数据库中,建立岩机状态参数的数据存储仓库模块;
    步骤二:根据数据仓库存储模块存储的TBM掘进参数和对应的岩体状态参数,采用分步回归算法和聚类算法建立岩机关系模型,形成模型计算模块的内核;
    步骤三:模型计算模块结合TBM上当前的掘进参数,利用岩机关系模型实时计算TBM当前掘进掌子面的岩体状态信息;
    步骤四:模型计算模块将得到的岩体状态信息的岩体抗压强度UCS和体积节理数Jv及围岩等级传送至实时输出显示模块,实时输出显示模块将岩体抗压强度UCS、体积节理数Jv、围岩等级输出展示在TBM上位机的可视化界面上。
  4. 根据权利要求3所述的TBM在掘岩体状态实时感知方法,其特征在于,所述TBM掘进参数包括TBM的运行参数推力、扭矩和控制参数贯入度、转速;所述岩体状态参数包括岩体抗压强度UCS、单位体积节理数Jv和围岩等级;所述单位体积节理数Jv是指单位体积岩体中节理的条数,其计算公式为:J v=∑(1/d k)+S k/5,其中,d k为第k组节理的间距,Sk为第k组每立方体岩体非成组节理条数。
  5. 根据权利要求4所述的TBM在掘岩体状态实时感知方法,其特征在于,所述围岩等级是利用岩体抗压强度UCS和单位体积节理数Jv计算围岩基本质量指标BQ值进行围岩分级,其步骤如下:
    步骤①:利用单位体积节理数Jv确定对应的岩体完整性系数Kv,单位体积节理数Jv与 岩体完整性系数Kv的对照关系表为:
    Jv(条/m 3) <3 3~10 10~20 20~35 >35 Kv >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15
    步骤②:根据围岩分级因素定量指标的岩体抗压强度UCS和岩体完整性系数Kv计算岩体基本质量指标BQ,计算公式为:BQ=90+3UCS+250Kv;且遵循下列限制条件:①当UCS>90Kv+30时,以UCS=90Kv+30代入计算围岩基本质量指标BQ值;②当Kv>0.04UCS+0.4时,以Kv=0.04UCS+0.4代入计算围岩基本质量指标BQ值;
    步骤③:根据岩体基本质量指标BQ范围按下表确定围岩等级:
    Figure PCTCN2018112418-appb-100001
  6. 根据权利要求3所述的TBM在掘岩体状态实时感知方法,其特征在于,所述采用分步回归算法建立岩机关系模型的方法为:
    ①建立设备参数模型:建立不同岩体条件下TBM掘进参数上升段设备运行参数推力与控制参数贯入度之间的关系模型;单刀推力的回归拟合公式为F=a×P+b,a表示贯入度对单刀推力影响系数,b为刀具破岩门槛值,P表示贯入度;
    ②建立设备参数模型中贯入度对单刀推力影响系数a、刀具破岩门槛值b与岩体状态参数中岩体抗压强度UCS、单位体积节理数Jv之间的关系模型:贯入度对单刀推力影响系数a与单位体积节理数Jv之间的函数回归拟合公式为:a=f(Jv)=p 0×Jv 2+p 1×Jv+p 2,式中,p 0、p 1、p 2为拟合常数,f为函数;刀具破岩门槛值b为滚刀侵入岩体并产生压痕的最小门槛值,当P=1时,单刀推力F=a+b,用来衡量岩体的可掘进性能特征,其回归拟合公式为:a+b=g(UCS,Jv)=p 3×UCS+p 4×Jv+p 5,式中p 3、p 4、p 5为拟合常数,g为函数。
  7. 根据权利要求3所述的TBM在掘岩体状态实时感知方法,其特征在于,所述聚类算法是通过统计不同围岩等级条件下TBM掘进参数的分布范围,建立围岩等级与TBM掘进参数之间的关系,其步骤如下:
    ①利用岩机数据库中的设备参数计算单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI,将单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI作为样本数据库;
    ②从岩机数据库中随机选取每一等级围岩TBM掘进的单刀推力与贯入度的比值FPI和刀 盘扭矩与贯入度的比值TPI值分别作为该围岩等级的样本质心,形成二维坐标系(FPI (n),TPI (n)),n为围岩等级I、II、III、IV、V,FPI (n)和TPI (n)分别表示从岩机数据库中随机选取的I~V级围岩条件下TBM掘进参数FPI和TPI值的大小;
    ③计算样本数据库中当前样本(FPI (i),TPI (i))归属的围岩类别:
    Figure PCTCN2018112418-appb-100002
    c (i)代表与当前样本(FPI (i),TPI (i))距离最近的质心点的围岩等级,x (i)代表当前坐标点(FPI (i),TPI (i)),μ j为每一等级围岩的样本质心,FPI (i)和TPI (i)分别表示当前计算样本i所包含的TBM掘进参数FPI和TPI值;
    ④随着样本量的增加,重新计算每一等级围岩的单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI值的样本质心:
    Figure PCTCN2018112418-appb-100003
    m表示同一等级围岩条件下FPI和TPI的样本数量,分子分母中的1表示同级围岩条件下的TBM掘进参数FPI和TPI的样本点,
    Figure PCTCN2018112418-appb-100004
    表示归类于同一等级围岩条件下的TBM掘进参数FPI和TPI的样本点个数,
    Figure PCTCN2018112418-appb-100005
    表示该等级围岩条件下所有样本点的和;
    ⑤重复以上步骤③~④直到质心位置不再发生变化或者变化很小,可得到数据库中各级围岩条件下单刀推力与贯入度的比值FPI和刀盘扭矩与贯入度的比值TPI的分布范围和质心点μ j的位置。
  8. 根据权利要求6或7所述的TBM在掘岩体状态实时感知方法,其特征在于,所述模型计算模块采用分步回归算法计算岩体状态信息的步骤如下:
    步骤1:模型计算模块读取TBM正常掘进循环上升段的单刀推力F和贯入度P数据,将其按照设备参数模型F=a×P+b的形式进行线性拟合,得到贯入度对单刀推力影响系数a和刀具破岩门槛值b;
    步骤2:将步骤1中得到的贯入度对单刀推力影响系数a和刀具破岩门槛值b值代入公式a=p 0×Jv 2+p 1×Jv+p 2,a+b=p 3×UCS-p 4×Jv+p 5中,计算得到岩体抗压强度UCS和单位体积节理数Jv;
    步骤3:利用步骤2中得到的单位体积节理数Jv值,根据单位体积节理数Jv与岩体完整性系数Kv的对照关系采用插值法计算对应的岩体完整性系数Kv;
    步骤4:根据步骤2中得到的岩体抗压强度UCS和步骤3得到的岩体完整性系数Kv值代入岩体基本质量指标BQ计算公式:BQ=90+3UCS+250Kv,计算岩体基本质量指标BQ值;且:当UCS>90Kv+30时,以UCS=90Kv+30代入计算岩体基本质量指标BQ值;当Kv>0.04UCS+0.4时,应以Kv=0.04UCS+0.4代入计算岩体基本质量指标BQ值;
    步骤5:根据步骤4计算的岩体基本质量指标BQ范围按照岩体基本质量指标BQ与围岩等级的关系确定围岩等级。
  9. 根据权利要求6或7所述的TBM在掘岩体状态实时感知方法,其特征在于,所述模型计算模块采用聚类算法计算岩体质量分级的方法步骤如下:
    步骤1:模型计算模块读取当前掘进参数存储器中当前工程TBM掘进参数,包括推力、扭矩、贯入度。
    步骤2:模型计算模块计算当前TBM掘进参数的单刀推力F与贯入度P的比值FPI (new)、刀盘扭矩T与贯入度P的比值TPI (new)
    步骤3:在(FPI (n),TPI (n))二维坐标系中,计算当前(FPI (new),TPI (new))距各级围岩样本质心μ j的距离,距离最小值的质心对应的围岩等级为TBM当前掘进岩体状态。
PCT/CN2018/112418 2017-08-30 2018-10-29 一种tbm在掘岩体状态实时感知系统和方法 WO2019042483A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018003914.5T DE112018003914T5 (de) 2017-08-30 2018-10-29 Ein Echtzeit-Wahrnehmungssystem und -verfahren für den TBM-Bohrgesteinsmassenzustand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710761045.4A CN107577862B (zh) 2017-08-30 2017-08-30 一种tbm在掘岩体状态实时感知系统和方法
CN201710761045.4 2017-08-30

Publications (2)

Publication Number Publication Date
WO2019042483A2 true WO2019042483A2 (zh) 2019-03-07
WO2019042483A3 WO2019042483A3 (zh) 2019-04-25

Family

ID=61030315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112418 WO2019042483A2 (zh) 2017-08-30 2018-10-29 一种tbm在掘岩体状态实时感知系统和方法

Country Status (3)

Country Link
CN (1) CN107577862B (zh)
DE (1) DE112018003914T5 (zh)
WO (1) WO2019042483A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111008435A (zh) * 2019-11-09 2020-04-14 天津大学 一种用于开敞式tbm结构参数优化设计方法
CN111079342A (zh) * 2019-11-29 2020-04-28 中铁工程装备集团有限公司 一种基于在线岩体等级分类的tbm掘进性能预测方法
CN111581785A (zh) * 2020-04-18 2020-08-25 中铁二院工程集团有限责任公司 高驼峰应力围岩分级方法
CN111783214A (zh) * 2020-07-13 2020-10-16 中电建路桥集团有限公司 一种类岩堆体隧道围岩质量评价方法
CN111798155A (zh) * 2020-07-13 2020-10-20 中电建路桥集团有限公司 一种类岩堆体隧道围岩质量评价和监测开挖管理系统
CN112115537A (zh) * 2020-09-17 2020-12-22 中铁工程装备集团有限公司 一种tbm可掘性分级方法
CN112818439A (zh) * 2020-12-31 2021-05-18 长安大学 一种软岩隧道围岩亚级分级方法
CN114320316A (zh) * 2022-01-14 2022-04-12 重庆邮电大学 一种盾构机施工预警方法及装置
CN115422821A (zh) * 2022-07-22 2022-12-02 北京交通大学 用于岩体参数预测的数据处理方法和装置
CN116840042A (zh) * 2023-05-15 2023-10-03 山东大学 一种多源数据融合的实时围岩分级装置及使用方法
CN117077027A (zh) * 2023-07-24 2023-11-17 西南交通大学 基于智能分级模型分级概率的围岩亚级分级方法及装置
CN117077413A (zh) * 2023-08-21 2023-11-17 石家庄铁道大学 基于地质和掘进特征参数的tbm主梁振动预测方法
CN118067006A (zh) * 2024-04-19 2024-05-24 中交隧道工程局有限公司 一种泥水盾构排渣体积动态检测方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108846238A (zh) * 2018-07-02 2018-11-20 石家庄铁道大学 Tbm掘进过程中围岩特征变化实时指示方法
CN109165406B (zh) * 2018-07-20 2020-05-15 大连海事大学 一种隧道施工过程中围岩快速动态分级预测方法
CN109358505B (zh) * 2018-10-26 2022-03-29 中铁工程装备集团有限公司 一种tbm智能驾驶方法及系统
FR3088089B1 (fr) * 2018-11-05 2022-04-08 Bouygues Travaux Publics Optimisation du forage d'un tunnelier en fonction d'interactions terrain/machine
CN109685378B (zh) * 2018-12-27 2020-04-24 中铁工程装备集团有限公司 一种基于数据挖掘的tbm施工围岩可掘性分级方法
CN109858704A (zh) * 2019-02-18 2019-06-07 中国铁建重工集团有限公司 基于掘进参数的施工风险评估方法及系统
CN109812257A (zh) * 2019-02-21 2019-05-28 山东大学 水射流辅助破岩智能控制系统及方法
CN109946962A (zh) * 2019-03-26 2019-06-28 黄河勘测规划设计研究院有限公司 Tbm掘进参数优化方法
CN110109895B (zh) * 2019-03-29 2021-05-28 山东大学 适用于tbm掘进隧道的围岩分级联合预测方法及应用
CN110110419B (zh) * 2019-04-28 2022-11-18 中铁工程装备集团有限公司 一种基于多目标学习的tbm掘进参数预测方法
CN110295915B (zh) * 2019-07-02 2020-08-04 中国科学院武汉岩土力学研究所 一种实现三向力检测的联合破岩tbm复杂地层掘进方法
CN110318765B (zh) * 2019-07-02 2020-08-21 中国科学院武汉岩土力学研究所 基于岩性识别的机械-水力联合破岩tbm实时掘进方法
CN110516730B (zh) * 2019-08-20 2022-09-23 中铁工程装备集团有限公司 基于pso-svm算法和图像识别的围岩质量在线分级方法
CN110889532B (zh) * 2019-10-08 2023-06-30 中国铁建重工集团股份有限公司 一种隧道开挖及支护参数的智能选择及优化方法、系统
CN110675092B (zh) * 2019-10-18 2022-04-05 中铁隧道局集团有限公司 一种基于扭推比的破碎地层tbm卡机风险预警方法
CN110990938B (zh) * 2019-12-28 2023-04-18 中铁工程装备集团有限公司 一种掌子面在掘岩体状态软测量方法
CN110989366B (zh) * 2020-03-04 2020-07-03 中国铁建重工集团股份有限公司 掘进机的控制方法、掘进机与计算机可读存储介质
CN111648782A (zh) * 2020-06-16 2020-09-11 中铁十四局集团隧道工程有限公司 一种根据tbm自振信息识别地层并调整掘进参数的方法
CN112196559B (zh) * 2020-09-30 2021-08-27 山东大学 基于掘进速度与刀具消耗最优的tbm操作参数优化方法
CN112182973B (zh) * 2020-09-30 2022-11-04 山东大学 考虑刀盘振动与岩渣几何信息的tbm操作参数优化方法
CN112598061B (zh) * 2020-12-23 2023-05-26 中铁工程装备集团有限公司 一种隧道围岩聚类分级方法
CN114075979A (zh) * 2021-04-21 2022-02-22 卢靖 盾构掘进环境变化实时辨识系统及方法
CN113657515B (zh) * 2021-08-20 2024-06-14 盾构及掘进技术国家重点实验室 一种基于岩机敏感参量判识和改进fmc模型隧道围岩等级的分类方法
CN114547740B (zh) * 2022-02-15 2024-07-16 石家庄铁道大学 用于估算tbm在掘岩体强度并分级预警的方法
CN115239108B (zh) * 2022-07-13 2023-04-18 北京交通大学 一种基于tbm实时破岩数据的软弱破碎围岩感知方法
CN115438402A (zh) * 2022-08-22 2022-12-06 武汉大学 基于岩-机互馈感知关系的tbm掘进岩体条件实时预测方法及装置
CN118223903A (zh) * 2024-03-12 2024-06-21 中国科学院武汉岩土力学研究所 一种tbm掘进参数优化系统及其优化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135207B2 (ja) * 1995-12-07 2001-02-13 株式会社大林組 トンネル掘進機の施工管理システム
JP3344561B2 (ja) * 1998-07-16 2002-11-11 鹿島建設株式会社 Tbm切羽及び周辺地質のリアルタイム評価方法及び装置
CN101922985B (zh) * 2010-08-04 2012-07-04 中国水电顾问集团华东勘测设计研究院 一种tbm掘进时围岩应力变化测量方法
KR101230261B1 (ko) * 2011-12-23 2013-02-06 한국건설기술연구원 데이터베이스 기반의 통계모델에 의한 tbm 사양 설계방법
CN103628920B (zh) * 2013-11-07 2016-01-20 广州地铁集团有限公司 一种隧道施工作业面附近沉降预警预测方法
CN104217124A (zh) * 2014-09-15 2014-12-17 天津大学 以工程样本数据为依托的tbm施工围岩分级方法
CN105938611B (zh) * 2016-07-06 2019-08-20 山东大学 基于随钻参数对地下工程围岩快速实时分级的方法
CN106845038B (zh) * 2017-03-21 2020-06-30 中国电建集团成都勘测设计研究院有限公司 一种快速确定tbm预制混凝土管片厂占地规模的方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111008435A (zh) * 2019-11-09 2020-04-14 天津大学 一种用于开敞式tbm结构参数优化设计方法
CN111079342A (zh) * 2019-11-29 2020-04-28 中铁工程装备集团有限公司 一种基于在线岩体等级分类的tbm掘进性能预测方法
CN111079342B (zh) * 2019-11-29 2023-04-07 中铁工程装备集团有限公司 一种基于在线岩体等级分类的tbm掘进性能预测方法
CN111581785A (zh) * 2020-04-18 2020-08-25 中铁二院工程集团有限责任公司 高驼峰应力围岩分级方法
CN111783214A (zh) * 2020-07-13 2020-10-16 中电建路桥集团有限公司 一种类岩堆体隧道围岩质量评价方法
CN111798155A (zh) * 2020-07-13 2020-10-20 中电建路桥集团有限公司 一种类岩堆体隧道围岩质量评价和监测开挖管理系统
CN111798155B (zh) * 2020-07-13 2024-04-30 中电建路桥集团有限公司 一种类岩堆体隧道围岩质量评价和监测开挖管理系统
CN111783214B (zh) * 2020-07-13 2023-09-22 中电建路桥集团有限公司 一种类岩堆体隧道围岩质量评价方法
CN112115537A (zh) * 2020-09-17 2020-12-22 中铁工程装备集团有限公司 一种tbm可掘性分级方法
CN112115537B (zh) * 2020-09-17 2023-11-17 中铁工程装备集团有限公司 一种tbm可掘性分级方法
CN112818439B (zh) * 2020-12-31 2023-07-28 长安大学 一种软岩隧道围岩亚级分级方法
CN112818439A (zh) * 2020-12-31 2021-05-18 长安大学 一种软岩隧道围岩亚级分级方法
CN114320316A (zh) * 2022-01-14 2022-04-12 重庆邮电大学 一种盾构机施工预警方法及装置
CN115422821A (zh) * 2022-07-22 2022-12-02 北京交通大学 用于岩体参数预测的数据处理方法和装置
CN116840042A (zh) * 2023-05-15 2023-10-03 山东大学 一种多源数据融合的实时围岩分级装置及使用方法
CN117077027A (zh) * 2023-07-24 2023-11-17 西南交通大学 基于智能分级模型分级概率的围岩亚级分级方法及装置
CN117077027B (zh) * 2023-07-24 2024-03-15 西南交通大学 基于智能分级模型分级概率的围岩亚级分级方法及装置
CN117077413A (zh) * 2023-08-21 2023-11-17 石家庄铁道大学 基于地质和掘进特征参数的tbm主梁振动预测方法
CN117077413B (zh) * 2023-08-21 2024-02-23 石家庄铁道大学 基于地质和掘进特征参数的tbm主梁振动预测方法
CN118067006A (zh) * 2024-04-19 2024-05-24 中交隧道工程局有限公司 一种泥水盾构排渣体积动态检测方法

Also Published As

Publication number Publication date
CN107577862B (zh) 2019-12-03
DE112018003914T5 (de) 2020-04-16
CN107577862A (zh) 2018-01-12
WO2019042483A3 (zh) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019042483A2 (zh) 一种tbm在掘岩体状态实时感知系统和方法
Sun et al. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
Obregon et al. Probabilistic approach for open pit bench slope stability analysis–A mine case study
CN107605536B (zh) 基于多源信息融合的煤与瓦斯突出实时预警装置与方法
CN109685378B (zh) 一种基于数据挖掘的tbm施工围岩可掘性分级方法
RU2567878C2 (ru) Способ прогнозирования опасности выброса угля и газа посредством объединения различной информации
Agliardi et al. Structurally-controlled instability, damage and slope failure in a porphyry rock mass
WO2021243967A1 (zh) 一种三维电阻率层析成像方法及系统
CN106157181B (zh) 一种基于随钻参数对土质围岩快速实时分级的方法
Li et al. Risk assessment of floor water inrush using entropy weight and variation coefficient model
CA2873816C (en) Systems and methods for processing geophysical data
CN103308946B (zh) 一种基于炮孔钻进信息的隧道超前地质预报方法
Elmo et al. Guidelines for the quantitative description of discontinuities for use in discrete fracture network modelling
CN103147799B (zh) 一种基于瓦斯涌出特征的突出危险性预警方法
Gong et al. A modified rock mass classification system for TBM tunnels and tunneling based on the HC method of China
Luo et al. Cavity 3D modeling and correlative techniques based on cavity monitoring
Liu et al. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology
Karaman et al. A comparative assessment of rock mass deformation modulus
CN113361043B (zh) 一种硬岩隧道掘进机刀盘比能的预测方法及系统
CN110410027A (zh) 一种利用钻孔岩芯进行岩体质量连续评价方法及系统
Ji et al. Modified Q-index for prediction of rock mass quality around a tunnel excavated with a tunnel boring machine (TBM)
Thum et al. 2D and 3D GIS-based geological and geomechanical survey during tunnel excavation
Dudt et al. The “penalty factors” method for the prediction of TBM performances in changing grounds
Guo et al. Influence analysis and relationship evolution between construction parameters and ground settlements induced by shield tunneling under soil-rock mixed-face conditions
CN106372815A (zh) 一种基于数字高程模型的矿产资源储量评估方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851597

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 18851597

Country of ref document: EP

Kind code of ref document: A2