WO2022205492A1 - 一种5g手机天线用导电银浆及其制备方法 - Google Patents
一种5g手机天线用导电银浆及其制备方法 Download PDFInfo
- Publication number
- WO2022205492A1 WO2022205492A1 PCT/CN2021/086302 CN2021086302W WO2022205492A1 WO 2022205492 A1 WO2022205492 A1 WO 2022205492A1 CN 2021086302 W CN2021086302 W CN 2021086302W WO 2022205492 A1 WO2022205492 A1 WO 2022205492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- silver paste
- mobile phone
- conductive silver
- phone antenna
- Prior art date
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 136
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 41
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000001723 curing Methods 0.000 claims abstract description 33
- 238000003756 stirring Methods 0.000 claims abstract description 28
- 238000000227 grinding Methods 0.000 claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 21
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 20
- 239000010432 diamond Substances 0.000 claims abstract description 20
- 125000002091 cationic group Chemical group 0.000 claims abstract description 19
- 239000006185 dispersion Substances 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003822 epoxy resin Substances 0.000 claims abstract description 14
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 14
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 11
- 239000010439 graphite Substances 0.000 claims abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 125000002723 alicyclic group Chemical group 0.000 claims abstract description 10
- 229910021485 fumed silica Inorganic materials 0.000 claims abstract description 10
- 239000002073 nanorod Substances 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 40
- 229910052709 silver Inorganic materials 0.000 claims description 31
- 239000004332 silver Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 24
- -1 hexafluoroantimonate Chemical group 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 16
- 229920001568 phenolic resin Polymers 0.000 claims description 16
- 239000005011 phenolic resin Substances 0.000 claims description 16
- 239000002002 slurry Substances 0.000 claims description 15
- 238000003828 vacuum filtration Methods 0.000 claims description 14
- 229910001220 stainless steel Inorganic materials 0.000 claims description 13
- 239000010935 stainless steel Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 239000004844 aliphatic epoxy resin Substances 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 9
- 229920000573 polyethylene Polymers 0.000 claims description 9
- 239000004593 Epoxy Substances 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000005234 chemical deposition Methods 0.000 claims description 4
- 239000011258 core-shell material Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000012815 thermoplastic material Substances 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 238000007639 printing Methods 0.000 abstract description 9
- 230000007613 environmental effect Effects 0.000 abstract description 5
- 239000013034 phenoxy resin Substances 0.000 abstract description 5
- 229920006287 phenoxy resin Polymers 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000009924 canning Methods 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 239000000976 ink Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- 238000007689 inspection Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000265 homogenisation Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000010946 fine silver Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000013035 low temperature curing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940008099 dimethicone Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- the invention relates to the technical field of conductive silver paste, in particular to a conductive silver paste for 5G mobile phone antennas and a preparation method thereof.
- Conductive inks are widely used in printed circuits, semiconductor packaging, solar cells and other fields.
- Conductive silver paste is the most widely used series of conductive inks.
- the conductive silver paste for 5G mobile phone antenna belongs to silver-based conductive ink, which is configured by silver powder, polymer resin, solvent and curing agent as basic raw materials.
- PDS is the abbreviation of Printed Direct Structural Process Technology. The size of this kind of antenna is generally about 30mm ⁇ 4mm ⁇ 1.5mm.
- 5G mobile phone PDS antennas usually use a low-temperature curing silver paste wiring structure.
- the conductive silver paste for 5G mobile phone antenna is usually printed on the No. 1 PDS antenna position on the edge side of the mobile phone plastic carrier and the No. 2 antenna position on the front of the antenna plastic shell carrier.
- the so-called No. 1 PDS antenna and No. 2 PDS antenna are connected with the electronic circuit of the PCB board mounted on the antenna plastic case carrier through the shrapnel.
- the No. 1 PDS antenna and No. 2 PDS antenna are both printed on the substrate by a low-temperature curing silver paste through a pad printing process. After low-temperature baking and curing, the antenna pattern is directly formed on the surface.
- the new type of structure is simple and flexible in design.
- the PDS antenna routing structure can completely cover the antenna pattern, meet customer needs in appearance, and effectively reduce the bad loss caused by printing, thereby reducing costs. It is a new preparation technology for 5G mobile phone antennas.
- This new antenna preparation technology has very high requirements for conductive silver paste.
- the low-temperature conductive silver paste is limited by the deformation temperature of the plastic substrate of the mobile phone, and needs to be cured and formed at a temperature not exceeding 120 °C, and has excellent conductivity, Abrasion resistance and weather resistance.
- the environmental test parameters of the mobile phone antenna need to maintain good stability in the temperature range of -40 °C ⁇ 85 °C, 85% humidity, and atmospheric pressure of 86 ⁇ 106KPa.
- the purpose of the present invention is to provide a conductive silver paste for 5G mobile phone antenna and a preparation method thereof in order to overcome the above-mentioned defects of the prior art.
- the conductive silver paste has the advantages of low curing temperature, high printing resolution, good electrical conductivity, high hardness, good bonding strength and wear resistance, and environmental protection.
- a first aspect of the present invention provides a conductive silver paste for a 5G mobile phone antenna, comprising the following components in parts by weight:
- the average particle size of the flake silver powder is 3.0-5.0 ⁇ m; the bulk density is 0.8-1.0 g/cm 3 ; and the specific surface area is 2.2-2.5 m 2 /g.
- the nano-rod-shaped silver powder is a filler of flake-shaped silver powder, which is a core-shell structure ultra-fine silver powder prepared by chemical deposition method, and the powder shape is a one-dimensional rod-shaped structure with an average diameter of 50nm-60nm;
- the silver-coated nickel powder adopts advanced chemical plating technology to form silver plating layers of different thicknesses on the surface of the ultra-fine nickel powder, which solves the problem of the hardness of the silver powder and increases the function of absorbing electromagnetic waves, and its average particle size is 1.5 ⁇ 3.5 ⁇ m;
- the ultrafine diamond powder is high-purity diamond micropowder with an average particle size of 0.8-2.5 ⁇ m, which can increase the wear resistance of the coating.
- the phenolic resin is a viscous and soft thermoplastic material with high cohesion and impact resistance, an average molecular weight of 32,000 to 52,000, and a density of 1.1 to 1.2 g/cm 3 . Since each molecule includes many regularly spaced hydroxyl groups, it is very suitable for cross-linking curing.
- the alicyclic epoxy resin is a transparent semi-solid with an epoxy value of 0.18-0.22eq/mg, a softening point of 60-75°C, and an epoxy equivalent weight of 454-555g/eq. It has high bond strength, good flexibility and good wear resistance.
- the mass ratio of the phenolic resin and the alicyclic epoxy resin is 2:1.
- the propylene glycol methyl ether acetate is of high purity, its content is more than 99%, and its moisture content is less than 0.1%.
- the isophorone is of high purity, its content is more than 99%, and its moisture content is less than 0.1%.
- the mass ratio of described propylene glycol methyl ether acetate and isophorone is 1:1.
- the cationic curing agent is a hexafluoroantimonate type thermally initiated cationic epoxy resin latent curing agent, which has a low initiation temperature, can initiate a reaction at 80° C., is colorless and transparent, and does not turn yellow.
- the second aspect of the present invention provides the preparation method of the described conductive silver paste for 5G mobile phone antenna, comprising the following steps:
- the phenolic resin and the aliphatic epoxy resin are added to the reaction kettle according to the proportioning, and the temperature is gradually increased to the first temperature, and then propylene glycol methyl ether acetate and isophorone are added to the reaction kettle in a dropwise manner.
- the reaction time is 1.5 to 2 hours. After the dropwise addition is completed, the reaction is continued for 2 to 4 hours. Then, the reaction kettle is heated to the second temperature, and the ultra-fine flake graphite and fumed silica are added to the reaction kettle. , filtered to obtain a mixed resin carrier, and stored in the dark;
- the flake silver powder, nano-rod silver powder, silver-coated nickel powder and ultra-fine diamond powder are mixed and pre-dispersed, and then placed in a vacuum oven for heat treatment;
- step (1) polyethylene wax, dimethylsiloxane and the heat-treated powder obtained in step (2) are sequentially added, and finally a cationic curing agent is added, and the obtained mixture is placed in a dispersing machine for high-speed dispersion. , to obtain an overall silver-gray slurry;
- the slurry obtained in step (3) is cyclically ground in a three-roll mill, and when it is detected that the fineness of the slurry is less than 10 ⁇ m, vacuum filtration is performed, the finished product is detected, and the product is homogenized and stirred to obtain the product.
- the first temperature is 50°C
- the second temperature is 65°C.
- the filtering is performed by using a 300-mesh stainless steel mesh.
- the temperature of the heat treatment is 80-100° C., and the time is 2-4 hours.
- step (3) when the mixture is placed in the dispersing machine for high-speed dispersion: the stirring head of the dispersing machine is lowered to 2 cm at the bottom of the barrel, the frequency conversion switch is turned on to 75 Hz, and the stirring is continued for 10 min after setting the timing.
- the batching step uses a METTLER TOLEDO BBA211 electronic scale as a weighing tool, and cooperates with a recording component, the operator can add raw materials corresponding to the code according to the value displayed on the panel, and the precision is controlled within 100%. one.
- the cyclic grinding in the three-roll mill includes four cycles: each time the silver paste is rolled, a high-speed dispersion step needs to be performed again, and then the fast roll and The gap between the middle rolls, the roll gap is controlled at 0.3mm-0.35mm in the first pass of grinding slurry, the second pass roll gap is controlled at 0.25-0.30mm, the third pass roll gap is controlled at 0.20-0.25mm, and the fourth pass roll gap is controlled at 0.20-0.25mm.
- the roll gap is controlled at 0.15-0.20mm.
- the uniformity of the material should also be observed.
- the process inspection should be carried out. When the inspection fineness is less than or equal to 10 ⁇ m, the next step can be carried out.
- the vacuum degree of the vacuum filtration is 0.10-0.15MPa, and the homogeneous stirring time is 4-6min.
- the step of vacuum filtration is to simulate the customer's use of the screen printing screen for vacuum filtration, and its main function is to separate the large particles of impurities generated during the grinding process.
- This kind of equipment is designed and self-made. It uses a high-power vacuum pump to connect the stainless steel cavity, places a stainless steel material cylinder in the stainless steel cavity, and finally installs a 300-mesh stainless steel mesh above the stainless steel cavity as needed.
- When using first turn on the vacuum pump switch, then pour the dispersed conductive silver paste on the stainless steel net, and use a rubber scraper to continuously spread the silver paste, so that it can be quickly filtered into the built-in stainless steel material cylinder.
- the low-temperature conductive silver paste in the material barrel is the semi-finished product to be inspected, and the inspector inspects it according to the enterprise standard. After the detection value reaches the standard, the next step can be carried out.
- the invention adopts the flake silver powder as the main solid phase, which can have excellent conductivity and printing resolution after curing into a film, and uses the nano rod-shaped silver powder as the solid filling phase, which can further fill the gap after the nano silver powder is formed into a film, and enhances the conductive ink.
- the effect of performance is small; the use of conductive graphite as the lubricant after film formation can effectively increase the lubricity of the conductive ink after film formation and enhance the hardness of the film layer.
- the use of heat treatment technology before batching can further reduce the average particle size of the nano-silver powder and reduce the residual impurities such as moisture and alcohol in the flake powder.
- the use of a self-made vacuum filter can effectively simulate the screen printing effect of the customer and filter out the impurities produced in the conductive ink; the use of a homogeneous mixer can effectively deaerate the conductive ink and further fully mix the raw materials. Achieve higher fineness and uniformity.
- the present invention has the following beneficial effects:
- ink coating Through the formula design of ink coating, different raw materials are screened and compounded to prepare conductive silver paste for 5G mobile phone antenna. The performance such as speed and printing resolution have been improved.
- the powder heat treatment method can effectively volatilize impurities such as alcohol in the preparation of the nano-silver powder, and is helpful for the premix uniformity of the nano-silver powder.
- Using a mixed carrier of phenolic resin and aliphatic epoxy resin as the bonding phase can enhance the bonding strength and wear resistance.
- the environmentally friendly properties, curing speed and printing fineness of the conductive silver paste coating have been improved by using the step-step environmentally friendly solvent formula.
- Process optimization for the actual production of conductive silver paste for 5G mobile phone antennas that is, to obtain practical applications with stable performance through the steps of resin carrier premixing, powder heat treatment, batching, high-speed dispersion, three-roll grinding, filtration, finished product testing, and homogenization stirring. product.
- the vacuum filtration equipment is self-designed, and the homogeneous stirring process can obviously achieve the defoaming effect and further improve the fineness of the ink.
- the low-temperature conductive silver paste of the present invention can meet the requirements of high life and wear resistance, and the conductive silver paste coating after curing at 120° C./30min has a paper tape friction resistance test of more than 300,000 times.
- the friction resistance of the high-strength silver paste coating mainly adopts the solid phase of silver-coated nickel powder and diamond micro-powder.
- the coating has a high hardness value (>5H), and a mixture of phenolic resin and aliphatic epoxy resin is used at the same time.
- the carrier acts as a binder phase, which can further enhance the wear resistance of the coating. And with the step-type boiling range solvent, it effectively controls the proportion of the ink that spreads to the edge when it is cured by heat.
- polyethylene wax a wax layer is formed on the surface after curing, which can further improve its long-life wear resistance requirements.
- a conductive silver paste for a 5G mobile phone antenna comprising the following components by weight:
- the average particle size of the flake silver powder is 3.0-5.0 ⁇ m; the bulk density is 0.8-1.0 g/cm 3 ; and the specific surface area is 2.2-2.5 m 2 /g.
- the nano-rod-shaped silver powder is a filler of flake-shaped silver powder, which is a core-shell structure ultra-fine silver powder prepared by chemical deposition method, and the powder shape is a one-dimensional rod-shaped structure with an average diameter of 50nm-60nm;
- the silver-coated nickel powder adopts advanced chemical plating technology to form silver plating layers of different thicknesses on the surface of the ultra-fine nickel powder, which solves the problem of the hardness of the silver powder and increases the function of absorbing electromagnetic waves, and its average particle size is 1.5 ⁇ 3.5 ⁇ m;
- the ultrafine diamond powder is high-purity diamond micropowder with an average particle size of 0.8-2.5 ⁇ m, which can increase the wear resistance of the coating.
- the phenolic resin is a viscous and soft thermoplastic material with high cohesion and impact resistance, an average molecular weight of 32,000 to 52,000, and a density of 1.1 to 1.2 g/cm 3 . Since each molecule includes many regularly spaced hydroxyl groups, it is very suitable for cross-linking curing.
- the alicyclic epoxy resin is a transparent semi-solid with an epoxy value of 0.18-0.22eq/mg, a softening point of 60-75°C, and an epoxy equivalent weight of 454-555g/eq. It has high bond strength, good flexibility and good wear resistance.
- the mass ratio of the phenolic resin and the alicyclic epoxy resin is 2:1.
- the propylene glycol methyl ether acetate is of high purity, its content is more than 99%, and its moisture content is less than 0.1%.
- the isophorone is of high purity, its content is more than 99%, and its moisture content is less than 0.1%.
- the mass ratio of described propylene glycol methyl ether acetate and isophorone is 1:1.
- the cationic curing agent is a hexafluoroantimonate type thermally initiated cationic epoxy resin latent curing agent, which has a low initiation temperature, can initiate a reaction at 80° C., is colorless and transparent, and does not turn yellow.
- a second aspect of the present invention provides a method for preparing the described conductive silver paste for 5G mobile phone antenna, comprising the following steps:
- the phenolic resin and the aliphatic epoxy resin are added to the reaction kettle according to the proportioning, and the temperature is gradually increased to the first temperature, and then propylene glycol methyl ether acetate and isophorone are added to the reaction kettle in a dropwise manner.
- the reaction time is 1.5 to 2 hours. After the dropwise addition is completed, the reaction is continued for 2 to 4 hours. Then, the reaction kettle is heated to the second temperature, and the ultra-fine flake graphite and fumed silica are added to the reaction kettle. , filtered to obtain a mixed resin carrier, and stored in the dark;
- the flake silver powder, nano-rod silver powder, silver-coated nickel powder and ultra-fine diamond powder are mixed and pre-dispersed, and then placed in a vacuum oven for heat treatment;
- step (1) polyethylene wax, dimethylsiloxane and the heat-treated powder obtained in step (2) are sequentially added, and finally a cationic curing agent is added, and the obtained mixture is placed in a dispersing machine for high-speed dispersion. , to obtain an overall silver-gray slurry;
- the slurry obtained in step (3) is cyclically ground in a three-roll mill, and when it is detected that the fineness of the slurry is less than 10 ⁇ m, vacuum filtration is performed, the finished product is detected, and the product is homogenized and stirred to obtain the product.
- the first temperature is 50°C
- the second temperature is 65°C.
- the filtering is performed by using a 300-mesh stainless steel mesh.
- the temperature of the heat treatment is 80-100° C., and the time is 2-4 hours.
- step (3) when the mixture is placed in the dispersing machine for high-speed dispersion: the stirring head of the dispersing machine is lowered to 2 cm at the bottom of the barrel, the frequency conversion switch is turned on to 75 Hz, and the stirring is continued for 10 min after setting the timing.
- the batching step uses a METTLER TOLEDO BBA211 electronic scale as a weighing tool, and cooperates with a recording component, the operator can add raw materials corresponding to the code according to the value displayed on the panel, and the precision is controlled within 100%. one.
- the cyclic grinding in the three-roll mill includes four cycles: each time the silver paste is rolled, a high-speed dispersion step needs to be performed again, and then the fast roll and The gap between the middle rolls, the roll gap is controlled at 0.3mm-0.35mm in the first pass of grinding slurry, the second pass roll gap is controlled at 0.25-0.30mm, the third pass roll gap is controlled at 0.20-0.25mm, and the fourth pass roll gap is controlled at 0.20-0.25mm.
- the roll gap is controlled at 0.15-0.20mm.
- the uniformity of the material should also be observed.
- the process inspection should be carried out. When the inspection fineness is less than or equal to 10 ⁇ m, the next step can be carried out.
- the vacuum degree of the vacuum filtration is 0.10-0.15MPa, and the homogeneous stirring time is 4-6min.
- a preparation method of conductive silver paste for 5G mobile phone antenna the components and components are shown in Table 1.
- the mixed carrier of phenolic resin and aliphatic epoxy resin is used as the binding phase. Esters and isophorone are added dropwise in proportion and then heated and melted; the average particle size of the flake silver powder used is 3.0-5.0 ⁇ m; the nanorod silver powder used is nano silver powder, which is a core-shell prepared by chemical deposition method.
- Structural ultra-fine silver powder the powder shape is one-dimensional rod-like structure, and the average diameter is 50nm-60nm.
- Silver-coated nickel powder adopts advanced chemical plating technology to form silver plating layers of different thicknesses on the surface of ultra-fine nickel powder, which solves the problem of hardness of silver powder and increases the function of absorbing electromagnetic waves.
- the average particle size is 1.5-3.5 ⁇ m;
- the diamond powder is high-purity diamond micropowder with an average particle size of 0.8-2.5 ⁇ m, which can increase the wear resistance of the coating.
- Phenoxy resin is a viscous and soft thermoplastic material with high cohesion and impact resistance, an average molecular weight of 32,000 to 52,000, and a density of 1.1 to 1.2 g/cm 3 . Since each molecule includes many regularly spaced hydroxyl groups, it is very suitable for cross-linking curing.
- the cycloaliphatic epoxy resin is a transparent semi-solid, the epoxy value is 0.18 ⁇ 0.22eq/mg, the softening point is 60 ⁇ 75°C, and the epoxy equivalent weight is 454 ⁇ 555g/eq. It has high bond strength, good flexibility and good wear resistance.
- Propylene glycol methyl ether acetate is of high purity, its content is more than 99%, and its moisture content is less than 0.1%.
- Isophorone is of high purity, its content is more than 99%, and its moisture content is less than 0.1%.
- the cationic curing agent is a latent curing agent of hexafluoroantimonate type thermally initiated cationic epoxy resin. The initiation temperature is low, the reaction can be initiated at 80 °C, and it is colorless and transparent without yellowing.
- Example 1 Example 2
- Example 3 Example 4
- Example 5 Flake silver powder(kg) 5 4.9 4.8 4.7 4.6 Nano-rod silver powder (kg) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Silver-coated nickel powder (kg) 0.2 0.2 0.2 0.2 0.2 Ultrafine diamond powder (kg) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
- Phenoxy resin (kg) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Cycloaliphatic epoxy resin (kg) 0.5 0.6 0.7 0.8 0.9 Propylene Glycol Methyl Ether Acetate(kg) 0.93 0.93 0.93 0.93 0.93 0.93 Isophorone(kg) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Cationic curing agent (kg) 0.05 0.05 0.05 0.05 0.05 0.05 Polyethylene Wax(kg) 0.02 0.02 0.02 0.02 0.02 Dimethicone (kg) 0.02 0.02 0.02 0.02 0.02 Fumed silica (kg) 0.04 0.04 0.04 0.04 0.04 Ultrafine Flake Graphite(kg) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
- the phenolic resin and the aliphatic epoxy resin were added to the reaction kettle according to the proportion, and the temperature was gradually raised to 50 °C, and then propylene glycol methyl ether acetate and isophorone were added dropwise to the reaction kettle, and the dropping time was After 1.5h, the reaction was continued for 2h after the dropwise addition was completed. Then, the reaction kettle was heated to 65°C, and ultra-fine flake graphite and fumed silica were added to the reaction kettle. Keep away from light.
- the powder heat treatment step used a vacuum oven. After setting the vacuum degree, the temperature was set to 90 ° C.
- the flake silver powder, nano-rod silver powder, silver-coated nickel powder and ultra-fine diamond powder were mixed, pre-dispersed, and heat-treated for 3 hours.
- Polyethylene wax, dimethylsiloxane and the obtained heat-treated powder are sequentially added to the obtained mixed resin carrier, and finally a cationic curing agent is added, and the obtained mixture is placed in a dispersing machine for high-speed dispersion to obtain a silver-gray slurry as a whole.
- the stirring head of the dispersing machine is lowered to 2 cm at the bottom of the barrel, the frequency conversion switch is turned on to 75 Hz, and the stirring is continued for 10 minutes after setting the timing.
- a METTLER TOLEDO BBA211 electronic scale is used as a weighing tool, and with the recording component, the operator can add raw materials corresponding to the code number according to the value displayed on the panel, and the accuracy is controlled at 1/10,000.
- the material barrel is moved to the platform of the three-roll mill.
- the rolling of the three-roll mill requires four cycles, and each time the silver paste is rolled, the high-speed dispersion step needs to be performed again.
- the gap between the fast roll and the middle roll of the three-roll grinding machine is controlled step by step.
- the roll gap of the first pass of grinding the low-temperature conductive silver paste is 0.3mm
- the second pass roll gap is 0.25mm
- the third pass roll gap is controlled.
- the fourth pass roll gap is controlled at 0.15mm. Move the material barrel with a fineness below 10um to the vacuum filtration platform, install a 300-mesh stainless steel mesh above the filter and filter the ink completely. The fully filtered semi-finished product is handed over to the inspection department for inspection. After reaching the enterprise standard, homogenize and stir, set the vacuum to 0.15MPa, and then put the canned silver paste into the homogenizer and stir for 3 minutes.
- Table 2 The performance of a conductive silver paste for 5G mobile phone antenna is shown in Table 2.
- Comparative Example 1 is basically the same as Example 1, except that the ultrafine diamond powder and silver-coated nickel powder in Example 1 are not included in Comparative Example 1, and the same test method as Example 1 is used to find that the hardness of the coating is Will be reduced to 4H, wear resistance will be reduced to 150,000 times.
- Comparative Example 2 is basically the same as Example 1, except that the aliphatic epoxy resin in Example 1 is not contained in Comparative Example 2, and the same test method as Example 1 is used, and it is found that the coating adhesion is reduced to 3B .
- Comparative Example 3 is basically the same as Example 1, except that the mass of the aliphatic epoxy resin in Comparative Example 3 was reduced to 0.3 kg, and it was found that the same test method as Example 1 was used, and the coating adhesion was found to be reduced to 4B. .
- a conductive silver paste for 5G mobile phone antenna is obtained by the following method:
- the flake silver powder, nano-rod silver powder, silver-coated nickel powder and ultrafine diamond powder are mixed and pre-dispersed, then placed in a vacuum oven at 80°C for heat treatment for 3 hours;
- Polyethylene wax, dimethylsiloxane, fumed silica and the heat-treated powder obtained in step (3) are sequentially added to the polyurethane resin carrier obtained in step (2), finally a cationic curing agent is added, and the resulting mixture is placed in Disperse at high speed in the disperser, drop the stirring head of the disperser to 2cm at the bottom of the barrel, turn on the frequency conversion switch to 75Hz, set the timing and continue stirring for 10min, and finally observe that the silver paste as a whole is silver-gray paste without silver powder particles, then the dispersion is uniform;
- the slurry obtained in step (4) is ground four times in a three-roll mill, and each time the silver paste is rolled, a high-speed dispersion step needs to be performed again, and then the three-roll mill is controlled in a step-by-step manner.
- the gap between the rollers is controlled at 0.35mm for the first pass of grinding the low-temperature conductive silver paste, 0.30mm for the second pass, 0.25mm for the third pass, and 0.20 for the fourth pass. mm.
- the uniformity of the material should also be observed.
- the process inspection should be carried out. When the inspection fineness is less than or equal to 10 ⁇ m, the next step can be carried out.
- the vacuum filter was used for filtration, and the vacuum degree of the vacuum filtration was 0.15 MPa, and the 300-mesh stainless steel mesh was used for filtration.
- Homogenizer equipment is used in the step of homogenization and stirring. Its function on conductive ink is mainly to defoam and prevent silver powder from settling.
- the conductive silver paste after homogenization will be very fine and uniform.
- the low-temperature conductive silver paste after homogenization and stirring can be directly discharged from the warehouse for filling.
- the ultrafine flake graphite is the same as that of Examples 1-5.
- a conductive silver paste for 5G mobile phone antenna is obtained by the following method:
- nano-spherical silver powder and the nano-rod-shaped silver powder are mixed and pre-dispersed, and then placed in a vacuum oven at 80°C for heat treatment for 3 hours;
- Polyethylene wax, dimethylsiloxane, fumed silica and the heat-treated powder obtained in step (3) are sequentially added to the polyurethane resin carrier obtained in step (2), finally a cationic curing agent is added, and the resulting mixture is placed in Disperse at high speed in the disperser, drop the stirring head of the disperser to 2cm at the bottom of the barrel, turn on the frequency conversion switch to 75Hz, set the timing and continue stirring for 10min, and finally observe that the silver paste as a whole is silver-gray paste without silver powder particles, then the dispersion is uniform;
- the slurry obtained in step (4) is ground four times in a three-roll mill, and each time the silver paste is rolled, a high-speed dispersion step needs to be performed again, and then the three-roll mill is controlled in a step-by-step manner.
- the gap between the rollers is controlled at 0.35mm for the first pass of grinding the low-temperature conductive silver paste, 0.30mm for the second pass, 0.25mm for the third pass, and 0.20 for the fourth pass. mm.
- the uniformity of the material should also be observed.
- the process inspection should be carried out. When the inspection fineness is less than or equal to 10 ⁇ m, the next step can be carried out.
- the vacuum filter was used for filtration, and the vacuum degree of the vacuum filtration was 0.15 MPa, and the 300-mesh stainless steel mesh was used for filtration.
- Homogenizer equipment is used in the step of homogenization and stirring. Its function on conductive ink is mainly to defoam and prevent silver powder from settling.
- the conductive silver paste after homogenization will be very fine and uniform.
- the low-temperature conductive silver paste after homogenization and stirring can be directly discharged from the warehouse for filling.
- the ultrafine flake graphite is the same as that of Examples 1-5.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Conductive Materials (AREA)
Abstract
本发明涉及一种5G手机天线用导电银浆及其制备方法,该导电银浆包括以下组分及重量份含量:片状银粉45~50,纳米棒状银粉5~10,超细金刚石粉末2~5,酚氧树脂10~15,脂环族环氧树脂5~10,丙二醇甲醚醋酸酯5~10,异佛尔酮5~10,阳离子固化剂0.5~1,气相二氧化硅0.2~0.5,超细片状石墨0.1~0.5;制备方法包括:树脂载体预混、粉末热处理、配料、高速分散、三辊研磨、过滤、成品检测、均质搅拌、装罐。与现有技术相比,本发明的导电银浆具有固化温度低,印刷分辨率高,导电性能好,硬度高,粘结强度和耐磨性好,环保等优点。
Description
本发明涉及导电银浆技术领域,尤其是涉及一种5G手机天线用导电银浆及其制备方法。
导电油墨被广泛应用于印刷电路、半导体封装、太阳能电池等领域。导电银浆是导电油墨中应用最广的系列产品。5G手机天线用导电银浆属于银系导电油墨,由银粉、高分子树脂、溶剂以及固化剂为基本原材料配置而成。PDS是印刷直接成型结构工艺技术的简称。该种天线尺寸一般在30mm×4mm×1.5mm左右。5G手机PDS天线通常使用的是低温固化银浆走线结构。5G手机天线用导电银浆通常印刷在手机塑料载体的边缘侧面上的一号PDS天线位置以及天线塑壳载体正面上的二号天线位置上。所谓的一号PDS天线和二号PDS天线均通过弹片与安装在天线塑壳载体上的PCB板电子线路相连接。一号PDS天线和二号PDS天线均由低温固化银浆通过移印的工艺印制在基材上,经过低温烘烤固化后,在表面直接形成天线图形,与现有的技术相比,该种新型结构简单、设计灵活,PDS天线走线结构可以使天线图案完全遮蔽,在外观上满足客户需求,并有效的减少印刷造成的不良损耗,从而减少成本,是5G手机天线的新型制备技术。
该种新型天线制备技术对导电银浆的要求非常高,低温导电银浆受限于手机塑料基材的变形温度,需要在不超过120℃的温度下进行固化成型,并具备优异的导电性、耐磨性以及耐候性。手机天线的环境测试参数需要在-40℃~85℃温度范围、85%湿度、86~106KPa的大气压下保持良好的稳定性。随着手机行业的迅速发展,除了满足上述的耐候性条件外,对产品的环保要求、耐磨性(纸带耐磨>30万次)、印刷精度、涂层硬度、涂层电阻的要求越来越高,现在普通的低温导电银浆只有导电性能和附着力的要求,无法满足全部上述要求。现阶段,5G手机天线用导电银浆仍依赖于进口产品,国内没有成熟稳定的产品。国内产品的存在硬度差、印刷分辨率差、导电性能较差、储存时间短的缺陷,故该产品的研发意义重大。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种5G手机天线用导电银浆及其制备方法。该导电银浆具有固化温度低,印刷分辨率高,导电性能好,硬度高,粘结强度和耐磨性好,环保等优点。
本发明的目的可以通过以下技术方案来实现:
本发明第一方面提供一种5G手机天线用导电银浆,包括以下重量份含量的组分:
优选地,所述的片状银粉的平均粒径在3.0~5.0μm;松装密度0.8~1.0g/cm
3;比表面积在2.2~2.5m
2/g。
优选地,所述的纳米棒状银粉为片状银粉的填充物,是由化学沉积法制备而成的核壳结构超细银粉,其粉体形状为一维棒状结构,平均直径为50nm~60nm;
优选地,所述的银包镍粉采用先进化学镀技术,在超细镍粉表面形成不同厚度的银镀层,解决了银粉的硬度问题,并增加了吸收电磁波的功能,其平均粒径在1.5~3.5μm;
优选地,所述的超细金刚石粉末为高纯度金刚石微粉,其平均粒径在0.8~2.5μm,能增加涂层耐磨性。
优选地,所述的酚氧树脂是具有粘性且柔软的热塑性物质,具有高凝聚力和耐冲击性,平均分子量在32000~52000,密度在1.1~1.2g/cm
3。由于每个分子都包括 许多规则间隔排列的羟基群,因此非常适合交联固化作用。
优选地,所述的脂环族环氧树脂为透明半固体,环氧值在0.18~0.22eq/mg,软化点在60~75℃,环氧当量在454~555g/eq。其粘结强度高、柔韧性好、耐磨性佳。
优选地,所述的酚氧树脂和脂环族环氧树脂质量比的2:1。
优选地,所述的丙二醇甲醚醋酸酯为高纯度,其含量>99%,其水分含量<0.1%。
优选地,所述的异佛尔酮为高纯度,其含量>99%,其水分含量<0.1%。
优选地,所述的丙二醇甲醚醋酸酯与异佛尔酮的质量比为1:1。
优选地,所述的阳离子固化剂是六氟锑酸盐型热引发阳离子环氧树脂潜伏性固化剂,引发温度低,可以在80℃引发反应,且无色透明,不会发生黄变。
本发明第二方面提供所述的5G手机天线用导电银浆的制备方法,包括以下步骤:
(1)树脂载体预混
将酚氧树脂和脂肪族环氧树脂按照配比加入反应釜中,并逐渐升温至第一温度,随后将丙二醇甲醚醋酸酯和异佛尔酮以滴加的方式加入反应釜,滴加时间为1.5~2h,滴加完成后继续反应2~4h,接着,将反应釜升温至第二温度,将超细片状石墨、气相二氧化硅加入反应釜,反应2~4h后趁热出料,过滤得到混合树脂载体,避光保存;
(2)粉末热处理
将片状银粉、纳米棒状银粉、银包镍粉和超细金刚石粉末进行混合后预分散,然后置于真空烘箱热处理;
(3)配料
在步骤(1)得到的混合树脂载体中依次加入聚乙烯蜡、二甲基硅氧烷和步骤(2)得到的热处理后的粉末,最后加入阳离子固化剂,所得混合物置于分散机内高速分散,得到整体呈银灰色的浆体;
(4)三辊研磨
将步骤(3)得到的浆体在三辊研磨机中循环研磨,当检测浆体细度小于10μm时,进行真空过滤,成品检测,均质搅拌,即得产品。
优选地,步骤(1)中,所述的第一温度为50℃,所述的第二温度为65℃。
优选地,步骤(1)中,所述的过滤为采用300目的不锈钢网进行过滤。
优选地,步骤(2)中,热处理的温度为80~100℃,时间为2~4小时。
优选地,步骤(3)中,混合物置于分散机内高速分散时:分散机的搅拌头降至桶底2cm处,开启变频开关至75Hz,设置定时后连续搅拌10min。
优选地,步骤(3)中,配料的步骤使用了梅特勒BBA211型号的电子秤作为称量工具,并配合记录组件,操作员可以根据面板显示值添加对应代号的原材料,精度控制在万分之一。
优选地,步骤(4)中,三辊研磨机中循环研磨包括四个循环:每轧制完一遍银浆都需要再次进行一遍高速分散步骤,然后不断循序渐进地控制三辊研磨机中快辊和中辊之间的间隙,第一遍研磨浆体时辊间隙控制在0.3mm-0.35mm,第二遍辊间隙控制在0.25-0.30mm,第三遍辊间隙控制在0.20-0.25mm,第四遍辊间隙控制在0.15-0.20mm。在调节辊间隙的过程中还要观察出料的均匀程度,当四遍研磨过后进行过程检测,当检测细度小于等于10μm时才可进行下一步骤。
优选地,步骤(4)中,所述的真空过滤的真空度为0.10~0.15MPa,均质搅拌时间为4~6min。
真空过滤的步骤是模拟客户使用目数的丝印网版进行真空过滤,其主要作用是为了分离研磨过程中产生的大颗粒杂质。该种设备进行设计并自制,使用的是大功率真空泵连接不锈钢腔体,在不锈钢腔体中位置放置不锈钢物料筒,最后根据需要在不锈钢腔体上方安装300目的不锈钢网。使用时先打开真空泵开关,随后在不锈钢网上不断倾倒分散完毕的导电银浆,并用橡胶刮板不断铺平银浆,使其迅速过滤到内置不锈钢物料筒中去。此时物料桶中的低温导电银浆为待检的半成品,检测员根据企业标准对其进行检测。检测值达到标准后方可进行下一步骤。
本发明采用片状银粉为主要固体相,可以在固化成膜后具备优异的导电性和印刷分辨率,以纳米棒状银粉作为固体填充相,可以进一步填充纳米银粉成膜后的缝隙,增强导电油墨的导电性和附着力;采用银包镍粉和金刚石粉末与银粉混合可以增强导电油墨的硬度;采用酚氧树脂和脂肪族环氧树脂作为粘结相,可以具有很强的附着力和柔韧性,并具备优异的耐磨性;采用阶梯式复配型溶剂相(丙二醇甲醚醋酸酯、异佛尔酮),既满足欧盟ROSH以及WEEE的环保要求,又可以实现快速固化,防止出现印刷后的图形局部膨胀现象;采用阳离子固化剂,可以降低固化温度,增强固化效果;采用聚乙烯蜡作为防沉降剂,可以增强抗沉降性,延长产品的存放时间,并由于其是线性结构,对导电性能的影响效果较小;采用导电石墨作 为成膜后的润滑剂,可以有效增加导电油墨成膜后的润滑性增强膜层硬度。配料前使用热处理技术,可以使纳米银粉的平均粒径进一步缩小,并减少片粉中的水分、酒精等残余杂质。采用自制的真空过滤器,可以有效模拟客户端的丝网印刷效果,过滤掉导电油墨制成中产生的杂质;采用均质搅拌机,可以有效地使导电油墨脱泡、并使原材料进一步地充分混合,达到更高的细度和均匀度。
与现有技术相比,本发明具有以下有益效果:
通过对油墨涂层的配方设计,对不同原材料进行筛选、复配,制备5G手机天线用导电银浆,纳米球状银粉和纳米棒状银粉复配的选择对导电油墨涂层的导电性能、浆料细度、印刷分辨率等性能有所提升。采用粉末热处理的方法能有效挥发纳米银粉制备中的酒精等杂质,且对纳米银粉的预混均匀度有帮助。采用酚氧树脂和脂肪族环氧树脂混合载体作为粘结相,可以增强粘结强度和耐磨性。选用阶梯环保溶剂配方对导电银浆涂层的环保特性、固化速度、印刷精细度等性能有所提升。对5G手机天线用导电银浆的实际生产进行工艺优化,即通过树脂载体预混、粉末热处理、配料、高速分散、三辊研磨、过滤、成品检测、均质搅拌等步骤获得性能稳定的实际应用产品。其中真空过滤设备为自行设计,均质搅拌工艺能够明显地达到消泡效果,并进一步提升油墨细度。
本发明低温导电银浆可高寿命耐磨的要求,120℃/30min固化后的导电银浆涂层具备高于30万次的纸带耐摩擦性测试。高强度的银浆涂层耐摩擦性主要是采用了银包镍粉、金刚石微粉的固体相,是涂层具备高硬度值(>5H),同时使用了酚氧树脂和脂肪族环氧树脂混合载体作为粘结相,可以进一步增强涂层的耐磨性。并且搭配阶梯式沸程溶剂,有效地控制了在受热固化时向油墨向边缘扩散的比例。搭配聚乙烯蜡在固化后在表面形成蜡层,可以进一步提高其高寿命耐磨要求。
一种5G手机天线用导电银浆,包括以下重量份含量的组分:
优选地,所述的片状银粉的平均粒径在3.0~5.0μm;松装密度0.8~1.0g/cm
3;比表面积在2.2~2.5m
2/g。
优选地,所述的纳米棒状银粉为片状银粉的填充物,是由化学沉积法制备而成的核壳结构超细银粉,其粉体形状为一维棒状结构,平均直径为50nm~60nm;
优选地,所述的银包镍粉采用先进化学镀技术,在超细镍粉表面形成不同厚度的银镀层,解决了银粉的硬度问题,并增加了吸收电磁波的功能,其平均粒径在1.5~3.5μm;
优选地,所述的超细金刚石粉末为高纯度金刚石微粉,其平均粒径在0.8~2.5μm,能增加涂层耐磨性。
优选地,所述的酚氧树脂是具有粘性且柔软的热塑性物质,具有高凝聚力和耐冲击性,平均分子量在32000~52000,密度在1.1~1.2g/cm
3。由于每个分子都包括许多规则间隔排列的羟基群,因此非常适合交联固化作用。
优选地,所述的脂环族环氧树脂为透明半固体,环氧值在0.18~0.22eq/mg,软化点在60~75℃,环氧当量在454~555g/eq。其粘结强度高、柔韧性好、耐磨性佳。
优选地,所述的酚氧树脂和脂环族环氧树脂质量比的2:1。
优选地,所述的丙二醇甲醚醋酸酯为高纯度,其含量>99%,其水分含量<0.1%。
优选地,所述的异佛尔酮为高纯度,其含量>99%,其水分含量<0.1%。
优选地,所述的丙二醇甲醚醋酸酯与异佛尔酮的质量比为1:1。
优选地,所述的阳离子固化剂是六氟锑酸盐型热引发阳离子环氧树脂潜伏性固化剂,引发温度低,可以在80℃引发反应,且无色透明,不会发生黄变。
本发明第二方面提供所述的5G手机天线用导电银浆的制备方法,包括以下步 骤:
(1)树脂载体预混
将酚氧树脂和脂肪族环氧树脂按照配比加入反应釜中,并逐渐升温至第一温度,随后将丙二醇甲醚醋酸酯和异佛尔酮以滴加的方式加入反应釜,滴加时间为1.5~2h,滴加完成后继续反应2~4h,接着,将反应釜升温至第二温度,将超细片状石墨、气相二氧化硅加入反应釜,反应2~4h后趁热出料,过滤得到混合树脂载体,避光保存;
(2)粉末热处理
将片状银粉、纳米棒状银粉、银包镍粉和超细金刚石粉末进行混合后预分散,然后置于真空烘箱热处理;
(3)配料
在步骤(1)得到的混合树脂载体中依次加入聚乙烯蜡、二甲基硅氧烷和步骤(2)得到的热处理后的粉末,最后加入阳离子固化剂,所得混合物置于分散机内高速分散,得到整体呈银灰色的浆体;
(4)三辊研磨
将步骤(3)得到的浆体在三辊研磨机中循环研磨,当检测浆体细度小于10μm时,进行真空过滤,成品检测,均质搅拌,即得产品。
优选地,步骤(1)中,所述的第一温度为50℃,所述的第二温度为65℃。
优选地,步骤(1)中,所述的过滤为采用300目的不锈钢网进行过滤。
优选地,步骤(2)中,热处理的温度为80~100℃,时间为2~4小时。
优选地,步骤(3)中,混合物置于分散机内高速分散时:分散机的搅拌头降至桶底2cm处,开启变频开关至75Hz,设置定时后连续搅拌10min。
优选地,步骤(3)中,配料的步骤使用了梅特勒BBA211型号的电子秤作为称量工具,并配合记录组件,操作员可以根据面板显示值添加对应代号的原材料,精度控制在万分之一。
优选地,步骤(4)中,三辊研磨机中循环研磨包括四个循环:每轧制完一遍银浆都需要再次进行一遍高速分散步骤,然后不断循序渐进地控制三辊研磨机中快辊和中辊之间的间隙,第一遍研磨浆体时辊间隙控制在0.3mm-0.35mm,第二遍辊间隙控制在0.25-0.30mm,第三遍辊间隙控制在0.20-0.25mm,第四遍辊间隙控制在0.15-0.20mm。在调节辊间隙的过程中还要观察出料的均匀程度,当四遍研磨过 后进行过程检测,当检测细度小于等于10μm时才可进行下一步骤。
优选地,步骤(4)中,所述的真空过滤的真空度为0.10~0.15MPa,均质搅拌时间为4~6min。
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1~5
一种5G手机天线用导电银浆的制备方法,各组分及成分如表1所示。其中酚氧树脂和脂肪族环氧树脂混合载体作为粘结相,其配方为:先将酚氧树脂和脂肪族环氧树脂加入反应釜中,并逐渐升温至50℃,随后将丙二醇甲醚醋酸酯、异佛尔酮按比例滴加后加热融化制成;使用的片状银粉平均粒径在3.0~5.0μm;使用的纳米棒状银粉为纳米银粉,是由化学沉积法制备而成的核壳结构超细银粉,其粉体形状为一维棒状结构,平均直径为50nm~60nm。银包镍粉采用先进化学镀技术,在超细镍粉表面形成不同厚度的银镀层,解决了银粉的硬度问题,并增加了吸收电磁波的功能,其平均粒径在1.5~3.5μm;超细金刚石粉末为高纯度金刚石微粉,其平均粒径在0.8~2.5μm,能增加涂层耐磨性。酚氧树脂是具有粘性且柔软的热塑性物质,具有高凝聚力和耐冲击性,平均分子量在32000~52000,密度在1.1~1.2g/cm
3。由于每个分子都包括许多规则间隔排列的羟基群,因此非常适合交联固化作用。脂环族环氧树脂为透明半固体,环氧值在0.18~0.22eq/mg,软化点在60~75℃,环氧当量在454~555g/eq。其粘结强度高、柔韧性好、耐磨性佳。丙二醇甲醚醋酸酯为高纯度,其含量>99%,其水分含量<0.1%。异佛尔酮为高纯度,其含量>99%,其水分含量<0.1%。阳离子固化剂是六氟锑酸盐型热引发阳离子环氧树脂潜伏性固化剂,引发温度低,可以在80℃引发反应,且无色透明,不会发生黄变。
表1
材料名称 | 实施例1 | 实施例2 | 实施例3 | 实施例4 | 实施例5 |
片状银粉(kg) | 5 | 4.9 | 4.8 | 4.7 | 4.6 |
纳米棒状银粉(kg) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
银包镍粉(kg) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
超细金刚石粉末(kg) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
酚氧树脂(kg) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
脂环族环氧树脂(kg) | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
丙二醇甲醚醋酸酯(kg) | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
异佛尔酮(kg) | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
阳离子固化剂(kg) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
聚乙烯蜡(kg) | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
二甲基硅氧烷(kg) | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
气相二氧化硅(kg) | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
超细片状石墨(kg) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
将酚氧树脂和脂肪族环氧树脂按照配比加入反应釜中,并逐渐升温至50℃,随后将丙二醇甲醚醋酸酯、异佛尔酮以滴加的方式加入反应釜,滴加时间为1.5h,滴加完成后继续反应2h,接着,将反应釜升温至65℃,将超细片状石墨、气相二氧化硅加入反应釜,反应2h后趁热出料,过滤得到混合树脂载体,避光保存。粉末热处理的步骤使用了真空烘箱,设置完真空度后设置90℃温度,将片状银粉、纳米棒状银粉、银包镍粉和超细金刚石粉末进行混合后预分散,热处理3小时。在得到的混合树脂载体中依次加入聚乙烯蜡、二甲基硅氧烷和得到的热处理后的粉末,最后加入阳离子固化剂,所得混合物置于分散机内高速分散,得到整体呈银灰色的浆体;混合物置于分散机内高速分散时:分散机的搅拌头降至桶底2cm处,开启变频开关至75Hz,设置定时后连续搅拌10min。配料的步骤使用了梅特勒BBA211型号的电子秤作为称量工具,并配合记录组件,操作员可以根据面板显示值添加对应代号的原材料,精度控制在万分之一。
称量完毕后将物料桶移动至高速分散机平台上,然后开启高速分散机开关,将搅拌头降至桶底2cm处,开启变频开关至60Hz,设置定时后连续搅拌3min。接着讲物料桶移至三辊研磨机平台,三辊研磨机的轧制需要四个循环,每轧制完一遍银浆都需要再次进行一遍高速分散步骤。然后不断循序渐进地控制三辊研磨机种快辊和中辊之间的间隙,第一遍研磨低温导电银浆的辊间隙在0.3mm,第二遍辊间隙在0.25mm,第三遍辊间隙控制在0.2mm,第四遍辊间隙控制在0.15mm。将达到10um细度以下的物料桶移至真空过滤平台,在过滤机上方安装300目的不锈钢网并将油墨过滤完全。将过滤完全的半成品交由检测部门检测,达到企业标准后进行 均质搅拌,将真空度设为为0.15MPa,再将装罐完毕的银浆放入均质机中搅拌3min即可。一种5G手机天线用导电银浆的性能如表2所示。
表2
对比例1~3
对比例1与实施例1基本相同,不同之处在于,对比例1中不含实施例1中的超细金刚石粉末和银包镍粉,采用与实施例1相同的测试方法,发现涂层硬度会降低至4H,耐磨性会降低至15万次。
对比例2与实施例1基本相同,不同之处在于,对比例2中不含实施例1中的 脂肪族环氧树脂,采用与实施例1相同的测试方法,发现涂层附着力降至3B。
对比例3与实施例1基本相同,不同之处在于,对比例3中脂肪族环氧树脂的质量降至0.3kg,发现采用与实施例1相同的测试方法,发现涂层附着力降至4B。
实施例6
一种5G手机天线用导电银浆通过以下方法获得:
(1)按以下重量份含量称量各组分:
(2)树脂载体预混
将苯氧树脂、脂环族环氧树脂加入反应釜中,并逐渐升温至50℃,随后将二价酸酯、丙二醇甲醚醋酸酯、异佛尔酮滴加的方式加入反应釜,滴加时间为1.5h,滴加完成后继续反应2h,接着,将反应釜升温至70℃,将片状石墨加入反应釜,反应2h后趁热出料,250目的不锈钢网进行过滤得到聚氨酯树脂载体,避光保存;
(3)粉末热处理
将片状银粉、纳米棒状银粉、银包镍粉和超细金刚石粉末进行混合后预分散,然后置于真空烘箱中80℃,热处理3小时;
(4)配料
在步骤(2)得到的聚氨酯树脂载体中依次加入聚乙烯蜡、二甲基硅氧烷、气相二氧化硅和步骤(3)得到的热处理后的粉末,最后加入阳离子固化剂,所得混 合物置于分散机内高速分散,分散机的搅拌头降至桶底2cm处,开启变频开关至75Hz,设置定时后连续搅拌10min,最后观察银浆整体呈银灰色浆体且无银粉颗粒,则分散均匀;
(5)三辊研磨
将步骤(4)得到的浆体在三辊研磨机中循环四次研磨,每轧制完一遍银浆都需要再次进行一遍高速分散步骤,然后不断循序渐进地控制三辊研磨机中快辊和中辊之间的间隙,第一遍研磨低温导电银浆的辊间隙控制在0.35mm,第二遍辊间隙控制在0.30mm,第三遍辊间隙控制在0.25mm,第四遍辊间隙控制在0.20mm。在调节辊间隙的过程中还要观察出料的均匀程度,当四遍研磨过后进行过程检测,当检测细度小于等于10μm时才可进行下一步骤。
(6)真空过滤
使用真空过滤机进行过滤,将真空过滤的真空度为0.15MPa,使用300目不锈钢网过滤。
(7)均质搅拌
均质搅拌的步骤使用的是均质机设备,它对导电油墨的作用主要是脱泡和防止银粉沉降,均质后的导电银浆会非常细腻均匀。均质搅拌后的低温导电银浆可以直接出库灌装。
本实施例中选用的片状银粉、纳米棒状银粉、超细金刚石粉末、酚氧树脂、脂环族环氧树脂、丙二醇甲醚醋酸酯、异佛尔酮、阳离子固化剂、气相二氧化硅、超细片状石墨与实施例1~5的相同。实施例7
一种5G手机天线用导电银浆通过以下方法获得:
(1)按以下重量份含量称量各组分:
(2)树脂载体预混
将苯氧树脂、脂环族环氧树脂加入反应釜中,并逐渐升温至50℃,随后将二价酸酯、丙二醇甲醚醋酸酯、异佛尔酮滴加的方式加入反应釜,滴加时间为1.5h,滴加完成后继续反应2h,接着,将反应釜升温至70℃,将片状石墨加入反应釜,反应2h后趁热出料,250目的不锈钢网进行过滤得到聚氨酯树脂载体,避光保存。
(3)粉末热处理
将纳米球状银粉和纳米棒状银粉进行混合后预分散,然后置于真空烘箱中80℃,热处理3小时;
(4)配料
在步骤(2)得到的聚氨酯树脂载体中依次加入聚乙烯蜡、二甲基硅氧烷、气相二氧化硅和步骤(3)得到的热处理后的粉末,最后加入阳离子固化剂,所得混合物置于分散机内高速分散,分散机的搅拌头降至桶底2cm处,开启变频开关至75Hz,设置定时后连续搅拌10min,最后观察银浆整体呈银灰色浆体且无银粉颗粒,则分散均匀;
(5)三辊研磨
将步骤(4)得到的浆体在三辊研磨机中循环四次研磨,每轧制完一遍银浆都需要再次进行一遍高速分散步骤,然后不断循序渐进地控制三辊研磨机中快辊和中辊之间的间隙,第一遍研磨低温导电银浆的辊间隙控制在0.35mm,第二遍辊间隙控制在0.30mm,第三遍辊间隙控制在0.25mm,第四遍辊间隙控制在0.20mm。在调节辊间隙的过程中还要观察出料的均匀程度,当四遍研磨过后进行过程检测,当检测细度小于等于10μm时才可进行下一步骤。
(8)真空过滤
使用真空过滤机进行过滤,将真空过滤的真空度为0.15MPa,使用300目不锈钢网过滤。
(9)均质搅拌
均质搅拌的步骤使用的是均质机设备,它对导电油墨的作用主要是脱泡和防止银粉沉降,均质后的导电银浆会非常细腻均匀。均质搅拌后的低温导电银浆可以直接出库灌装。
本实施例中选用的片状银粉、纳米棒状银粉、超细金刚石粉末、酚氧树脂、脂环族环氧树脂、丙二醇甲醚醋酸酯、异佛尔酮、阳离子固化剂、气相二氧化硅、超细片状石墨与实施例1~5的相同。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
Claims (10)
- 根据权利要求1所述的一种5G手机天线用导电银浆,其特征在于,包括以下条件中的任一种或多种:所述的片状银粉的平均粒径在3.0~5.0μm;松装密度0.8~1.0g/cm 3;比表面积在2.2~2.5m 2/g;所述的纳米棒状银粉为片状银粉的填充物,是由化学沉积法制备而成的核壳结构超细银粉,其粉体形状为一维棒状结构,平均直径为50nm~60nm;所述的银包镍粉采用化学镀的方法在超细镍粉表面形成不同厚度的银镀层,平均粒径在1.5~3.5μm;所述的超细金刚石粉末为金刚石微粉,其平均粒径在0.8~2.5μm。
- 根据权利要求1所述的一种5G手机天线用导电银浆,其特征在于,包括以下条件中的任一种或多种:所述的酚氧树脂是热塑性物质,平均分子量在32000~52000,密度在1.1~1.2g/cm 3;所述的脂环族环氧树脂为透明半固体,环氧值在0.18~0.22eq/mg,软化点在 60~75℃,环氧当量在454~555g/eq;所述的酚氧树脂和脂环族环氧树脂质量比的2:1。
- 根据权利要求1所述的一种5G手机天线用导电银浆,其特征在于,包括以下条件中的任一种或多种:所述的丙二醇甲醚醋酸酯为高纯度,其含量>99%,其水分含量<0.1%;所述的异佛尔酮为高纯度,其含量>99%,其水分含量<0.1%;所述的丙二醇甲醚醋酸酯与异佛尔酮的质量比为1:1。
- 根据权利要求1所述的一种5G手机天线用导电银浆,其特征在于,所述的阳离子固化剂是六氟锑酸盐型热引发阳离子环氧树脂潜伏性固化剂。
- 如权利要求1~5任一所述的5G手机天线用导电银浆的制备方法,其特征在于,包括以下步骤:(1)树脂载体预混将酚氧树脂和脂肪族环氧树脂按照配比加入反应釜中,并逐渐升温至第一温度,随后将丙二醇甲醚醋酸酯和异佛尔酮以滴加的方式加入反应釜,滴加时间为1.5~2h,滴加完成后继续反应2~4h,接着,将反应釜升温至第二温度,将超细片状石墨、气相二氧化硅加入反应釜,反应2~4h后趁热出料,过滤得到混合树脂载体,避光保存;(2)粉末热处理将片状银粉、纳米棒状银粉、银包镍粉和超细金刚石粉末进行混合后预分散,然后置于真空烘箱热处理;(3)配料在步骤(1)得到的混合树脂载体中依次加入聚乙烯蜡、二甲基硅氧烷和步骤(2)得到的热处理后的粉末,最后加入阳离子固化剂,所得混合物置于分散机内高速分散,得到整体呈银灰色的浆体;(4)三辊研磨将步骤(3)得到的浆体在三辊研磨机中循环研磨,当检测浆体细度小于10μm时,进行真空过滤,成品检测,均质搅拌,即得产品。
- 根据权利要求6所述的5G手机天线用导电银浆的制备方法,其特征在于,步骤(1)中,包括以下条件中的任一项或多项:所述的第一温度为50℃,所述的第二温度为65℃;所述的过滤为采用250目的不锈钢网进行过滤。
- 根据权利要求6所述的5G手机天线用导电银浆的制备方法,其特征在于,步骤(2)中,热处理的温度为80~100℃,时间为2~4小时。
- 根据权利要求6所述的5G手机天线用导电银浆的制备方法,其特征在于,步骤(3)中,混合物置于分散机内高速分散时:分散机的搅拌头降至桶底2cm处,开启变频开关至75Hz,设置定时后连续搅拌10min。
- 根据权利要求6所述的5G手机天线用导电银浆的制备方法,其特征在于,步骤(4)中,包括以下条件中的任一项或多项:步骤(4)中,三辊研磨机中循环研磨包括四个循环:每轧制完一遍银浆都需要再次进行一遍高速分散步骤,然后不断循序渐进地控制三辊研磨机中快辊和中辊之间的间隙,第一遍研磨浆体时辊间隙控制在0.3mm-0.35mm,第二遍辊间隙控制在0.25-0.30mm,第三遍辊间隙控制在0.20-0.25mm,第四遍辊间隙控制在0.15-0.20mm;步骤(4)中,所述的真空过滤的真空度为0.10~0.15MPa,均质搅拌时间为4~6min。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110350609.1 | 2021-03-31 | ||
CN202110350609.1A CN113066601A (zh) | 2021-03-31 | 2021-03-31 | 一种5g手机天线用导电银浆及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022205492A1 true WO2022205492A1 (zh) | 2022-10-06 |
Family
ID=76564981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/086302 WO2022205492A1 (zh) | 2021-03-31 | 2021-04-10 | 一种5g手机天线用导电银浆及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113066601A (zh) |
WO (1) | WO2022205492A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114956574B (zh) * | 2022-08-01 | 2022-11-08 | 西安宏星电子浆料科技股份有限公司 | 一种耐磨介质浆料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001327884A (ja) * | 2000-05-19 | 2001-11-27 | Tanaka Kikinzoku Kogyo Kk | ペースト製造用ロールミル装置 |
CN105788700A (zh) * | 2014-12-18 | 2016-07-20 | 上海宝银电子材料有限公司 | 一种用于pcb贯孔的快干型银浆及其制备方法 |
CN110310760A (zh) * | 2019-07-25 | 2019-10-08 | Oppo广东移动通信有限公司 | 天线银浆及制备方法、用于电子设备的天线、电子设备 |
CN111243781A (zh) * | 2020-03-28 | 2020-06-05 | 山东嘉汇材料科技有限公司 | 一种银浆及其制备方法与应用 |
CN111489847A (zh) * | 2020-04-21 | 2020-08-04 | 上海宝银电子材料有限公司 | 一种汽车安全带报警用低温导电银浆及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111383791B (zh) * | 2020-02-29 | 2023-05-23 | 上海宝银电子材料有限公司 | 一种高分辨率印刷低温导电银浆及其制备方法 |
-
2021
- 2021-03-31 CN CN202110350609.1A patent/CN113066601A/zh active Pending
- 2021-04-10 WO PCT/CN2021/086302 patent/WO2022205492A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001327884A (ja) * | 2000-05-19 | 2001-11-27 | Tanaka Kikinzoku Kogyo Kk | ペースト製造用ロールミル装置 |
CN105788700A (zh) * | 2014-12-18 | 2016-07-20 | 上海宝银电子材料有限公司 | 一种用于pcb贯孔的快干型银浆及其制备方法 |
CN110310760A (zh) * | 2019-07-25 | 2019-10-08 | Oppo广东移动通信有限公司 | 天线银浆及制备方法、用于电子设备的天线、电子设备 |
CN111243781A (zh) * | 2020-03-28 | 2020-06-05 | 山东嘉汇材料科技有限公司 | 一种银浆及其制备方法与应用 |
CN111489847A (zh) * | 2020-04-21 | 2020-08-04 | 上海宝银电子材料有限公司 | 一种汽车安全带报警用低温导电银浆及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113066601A (zh) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105632587B (zh) | 环氧树脂导电银浆及其制备方法 | |
CN108022669B (zh) | 一种手机触摸屏专用超低温固化激光蚀刻导电银浆 | |
CN112117026B (zh) | 一种浸涂用陶瓷滤波器银浆及其制备方法 | |
WO2018098852A1 (zh) | 可低温固化的纳米金属墨水及其制备方法和应用 | |
CN105802346B (zh) | 一种复合导电油墨膜及其制备方法 | |
CN112466509A (zh) | 一种低温高耐磨导电银浆及其制备方法 | |
CN113436781B (zh) | 耐磨性的导电浆料及其制备方法 | |
CN112961540A (zh) | 一种移印工艺用导电油墨及其制备方法 | |
CN111383791B (zh) | 一种高分辨率印刷低温导电银浆及其制备方法 | |
CN113707363B (zh) | 一种具有高拉力和高导电性的低温固化导电银浆的制备方法 | |
CN113527948A (zh) | 一种移印工艺用导电油墨其制备方法 | |
CN112908513A (zh) | 一种柔性线路用导电银浆及其制备方法 | |
CN111243781A (zh) | 一种银浆及其制备方法与应用 | |
WO2022205492A1 (zh) | 一种5g手机天线用导电银浆及其制备方法 | |
CN110951440A (zh) | 一种聚氨酯丙烯酸酯多元固化导电银胶 | |
CN117487496B (zh) | 一种基于改性银粉的导电银胶及其制备方法 | |
CN115798783A (zh) | 一种超细线印刷的异质结浆料及其制备方法 | |
CN109616242B (zh) | 一种电感用免镀端电极银浆 | |
CN111363412A (zh) | 一种薄膜开关用银包镍导电油墨及其制备方法 | |
KR20050053040A (ko) | 전자기파 차폐용 도전성 시트 조성물 및 그의 제조 방법 | |
CN112053796B (zh) | 一种抗硫化银电极浆料及其制备方法 | |
CN112521803A (zh) | 一种移动血糖测试片用导电碳浆及其制备方法和应用 | |
CN109036627B (zh) | 一种低温快干银浆 | |
CN116948584A (zh) | 一种添加了银微米棒粉的导电银胶及其制备方法 | |
CN116313218A (zh) | 一种超低温固化耐磨导电浆料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21934146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21934146 Country of ref document: EP Kind code of ref document: A1 |