WO2022204882A1 - 电化学装置以及应用其的用电装置 - Google Patents

电化学装置以及应用其的用电装置 Download PDF

Info

Publication number
WO2022204882A1
WO2022204882A1 PCT/CN2021/083630 CN2021083630W WO2022204882A1 WO 2022204882 A1 WO2022204882 A1 WO 2022204882A1 CN 2021083630 W CN2021083630 W CN 2021083630W WO 2022204882 A1 WO2022204882 A1 WO 2022204882A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
insulating material
electrochemical device
elastic material
heat insulating
Prior art date
Application number
PCT/CN2021/083630
Other languages
English (en)
French (fr)
Inventor
南海洋
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to CN202180096578.XA priority Critical patent/CN117121276A/zh
Priority to PCT/CN2021/083630 priority patent/WO2022204882A1/zh
Publication of WO2022204882A1 publication Critical patent/WO2022204882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders

Definitions

  • the present application relates to the field of battery technology, and in particular, to an electrochemical device and an electrical device using the same.
  • thermal runaway In scenarios such as production, transportation, storage, and use of electrochemical devices, there is a risk of thermal runaway due to physical shock, heat, electricity, and other factors.
  • This kind of thermal runaway is generally the first thermal runaway of a cell in the battery pack, and then the flame and heat are conducted to the surrounding cells, which in turn causes continuous thermal runaway of the surrounding cells, resulting in casualties and property losses.
  • the three main solutions and defects for thermal runaway are: (1) Improve the stability of the cell chemical system, but the high stability electrochemical system only improves the thermal stability of the cell to a certain extent. However, it cannot effectively prevent the spread of thermal runaway, and will lead to a decrease in energy density and kinetic performance; (2) A fire extinguishing device is installed in the battery pack.
  • the battery management system (BMS) is used to detect the temperature in the battery pack and monitor and warn, but when The battery management system fails, or the battery pack cannot be protected by the battery management system in the face of thermal runaway of the cells induced by external mechanical abuse.
  • the present application provides an electrochemical device with obvious thermal insulation effect and less influence on the energy density loss of the cell.
  • An embodiment of the present application provides an electrochemical device, including at least two battery cells arranged at intervals, and at least two of the battery cells are stacked along a first direction, the electrochemical device further includes a composite unit, at least two phase The composite unit is provided between the adjacent battery cores, and the composite unit includes: an elastic material layer; /mK; and along the first direction, the elastic material layer and the heat insulating material layer are stacked.
  • the heat insulating material layer has good heat insulating performance
  • a heat insulating material layer is provided at intervals between the elastic material layer and at least one of the two adjacent battery cells, that is, at least one side of the elastic material layer Protected by a layer of insulating material to slow or insulate the spread of thermal runaway from one cell to another, effectively insulate heat transfer when one of the cells fails thermally, thereby slowing or isolating thermal runaway in electrochemical devices
  • the internal spread; and the composite unit between the cells has elasticity, which can provide a buffer space for the cells that expand during the electrochemical cycle, avoid excessive extrusion between the cells, and can absorb the physical energy from the outside.
  • the impact is to protect the cell, so that the composite unit has the function of a buffer while having the function of heat insulation, which improves the utilization rate of the internal space of the electrochemical device and reduces the loss of the energy density of the electrochemical device.
  • the elastic material layer is connected to the insulating material layer, and along the first direction, the orthographic projection of the insulating material layer covers at least part of the orthographic projection of the elastic material layer .
  • the orthographic projection of the heat insulating material layer covers the orthographic projection of the elastic material layer, so that at least one side of the elastic material layer between the two battery cells is covered by the heat insulating material layer protection.
  • the orthographic projection of the heat insulating material layer is greater than or equal to the orthographic projection of the contact surface of the composite unit and the battery cell.
  • a heat insulating material layer with a heat insulating function is filled between the spaced surfaces of two adjacent cells, which can further improve the heat insulating capability of the electrochemical device.
  • the elastic material layer is in contact with one of the battery cells, and the heat insulating material layer is in contact with the other battery core.
  • the elastic material layer and the heat insulating material layer have a double-layer structure, the elastic material layer is mainly used for providing a buffer space, and the heat insulating material layer is mainly used for heat insulation, and can also provide a certain buffer space at the same time.
  • the layer structure can be formed by connecting two elastic material layers and heat insulating material layers of the same size, and the process difficulty is relatively low.
  • the number of the thermal insulation material layers is two
  • the elastic material layer is provided between the two thermal insulation material layers
  • each thermal insulation material layer is respectively associated with one of the thermal insulation material layers.
  • the cell contacts In this embodiment, in the three-layer structure, both sides of the elastic material layer are provided with an elastic material layer and a heat insulating material layer.
  • the heat insulating heat insulating material layer can not only To slow down or isolate heat transfer, it can also try to avoid melting of the elastic material layer to protect the internal structure of the electrochemical device.
  • the number of the elastic material layers is two
  • the heat insulating material layer is provided between the two elastic material layers
  • each elastic material layer is respectively connected to one of the elastic material layers. battery contact.
  • the heat insulating material layer in the three-layer structure can slow down or isolate the heat transfer between two adjacent battery cells, and the elastic material layers on both sides can provide more buffer space.
  • the heat insulating material layer is disposed on the surface of the elastic material layer and wraps the elastic material layer.
  • the heat insulating material layer can wrap the elastic material layer in all directions, and the heat insulating material layer can slow down or insulate the heat transfer from one cell to another adjacent cell, and at the same time reduce the heat transfer rate.
  • the elastic material layer is melted by heat, and the unmelted elastic material layer can also provide a partial thermal insulation effect to improve the thermal insulation performance of the composite unit.
  • the cell includes a top and a bottom, the top is the end of the cell provided with tabs, and the bottom is the part of the cell that is opposite to the top
  • the insulating material layer covers the surface of the end of the elastic material layer adjacent to the top.
  • the encapsulation bonding end at the top is more likely to be broken by an open flame or heat flow than the bottom, that is, the probability of thermal runaway taking the top as the main transfer direction is greater, and the end of the elastic material layer close to the top is protected by the insulating material layer part, which can reduce the risk of the elastic material layer being melted by heat, and the unmelted elastic material layer can also provide partial thermal insulation effect to improve the thermal insulation performance of the composite unit.
  • the thickness of the heat insulating material layer is less than or equal to 20% of the thickness of the battery core.
  • the heat insulating material includes at least one of glass fiber aerogel, calcium silicate, magnesium silicate composite fiber or aramid fiber.
  • the thermal conductivity of the heat insulating material layer is less than or equal to 0.07W/mK.
  • Another embodiment of the present application further provides an electrical device, the electrical device includes the aforementioned electrochemical device and a load, and the electrochemical device is used to supply power to the load.
  • the composite unit has the functions of heat insulation and buffering at the same time, which can improve the safety and reduce the loss of energy density.
  • the thermal insulation material layer has good thermal insulation performance, and along the first direction, the orthographic projection of the thermal insulation material layer covers the orthographic projection of the elastic material layer, so that the elastic material layer between the two battery cores At least one side of the battery is protected by an insulating material layer, which can effectively isolate heat transfer when one of the cells fails thermally, thereby slowing or isolating the spread of thermal runaway inside the electrochemical device; and the composite unit arranged between the cells With elasticity, it can provide a buffered deformation space for the cells that expand during the electrochemical cycle, avoid excessive extrusion between the cells, and can absorb the physical impact from the outside to protect the cells, so that the composite unit has a barrier.
  • the thermal function also has a buffer function, which improves the space utilization rate of the electrochemical device and reduces the loss of the energy density
  • FIG. 1 is a schematic diagram of an electrochemical device according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a composite unit according to an embodiment of the present application.
  • FIG 3 is a schematic cross-sectional view of a composite unit according to another embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of a composite unit according to another embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of a composite unit according to another embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of a composite unit according to another embodiment of the present application.
  • FIG. 7 is a temperature change curve diagram of the electrochemical device according to the embodiment of the present application under the thermal runaway test.
  • FIG. 8 is a schematic diagram of an electrical device according to an embodiment of the present application.
  • an embodiment of the present application provides an electrochemical device 10 , which includes a plurality of battery cells 11 and a composite unit 12 arranged at intervals.
  • the plurality of battery cells 11 are stacked along a first direction X, and at least two phase A composite unit 12 is provided between adjacent cells 11 .
  • the battery cell 11 may be a lithium-ion battery.
  • the composite unit 12 includes an elastic material layer 121 and a heat insulating material layer 122 , the elastic material layer 121 is connected with the heat insulating material layer 122 , and further, the heat insulating material layer 122 can be coated or attached on the surface of the elastic material layer 121 .
  • the elastic material layer 121 and the heat insulating material layer 122 are stacked and arranged.
  • the elastic material layer 121 includes an elastic material.
  • the heat insulating material layer 122 includes an elastic heat insulating material, the melting point of the heat insulating material layer 122 is greater than 320° C., and the thermal conductivity is less than or equal to 0.2 W/mK.
  • the thermal insulation material layer 122 has good thermal insulation performance, and the thermal insulation material layer 122 is provided at intervals between the elastic material layer 121 and at least one of the two adjacent battery cells 11 , that is, the elastic material layer At least one side of 121 is protected by a layer of insulating material 122 to slow or insulate the spread of thermal runaway from one cell 11 to another cell 11 .
  • the composite unit 12 disposed between the cells 11 has elasticity and can be
  • the cells 11 that expand during the electrochemical cycle provide a buffer space to avoid excessive extrusion between the cells 11, and can absorb physical shocks from the outside to protect the cells 11, so that the composite unit 12 can be protected from thermal insulation.
  • it has the function of a buffer, improves the utilization rate of the internal space of the electrochemical device 10 and reduces the loss of the energy density of the electrochemical device 10 .
  • the thermal conductivity of the common solid plastic parts in the field is often greater than 0.2W/mK.
  • the thermal conductivity of the thermal insulation material layer 122 is less than or equal to 0.2W/mK, which can have a better thermal insulation effect. .
  • the elastic material layer 121 containing the elastic material has a buffering function, and the elastic material layer 121 can absorb the physical impact from outside the electrochemical device 10 through its own deformation, or provide a buffer for the expansion of the battery cell 11 during the electrochemical cycle.
  • the elastic material layer 121 may be an organic material such as foam, the elastic material layer 121 has a stable physical form at room temperature, and pores may be distributed inside the elastic material layer 121, so that it has a buffer function and a certain thermal insulation properties.
  • the thermal conductivity of the heat insulating material layer 122 is less than or equal to 0.1 W/mK, and further, the thermal conductivity of the heat insulating material layer 122 is less than or equal to 0.07 W/mK.
  • the heat insulating material layer 122 includes at least one of glass fiber aerogel, calcium silicate, magnesium silicate composite fiber or aramid fiber.
  • the thermal insulation material layer 122 has good thermal insulation performance. When the battery core 11 is thermally out of control (for example, burns), the thermal insulation material layer 122 will not shrink, melt, burn, etc. Maintaining good physical form and slowing down or isolating the conduction of open flame or hot air flow inside the electrochemical device 10, further slowing down or isolating the spread of thermal runaway.
  • the thickness of the heat insulating material layer 122 is less than or equal to 20% of the thickness of the cell 11 .
  • the volume expansion ratio of the battery cell 11 during the electrochemical cycle is about 10%
  • the elastic coefficient of the heat insulating material layer 122 is usually smaller than that of the elastic material layer 121, but the comprehensive volume compression ratio of the composite unit 12 is greater than 50%
  • the thickness of the insulating material layer 122 is less than or equal to 20% of the thickness of the cells 11 , sufficient buffer space can be ensured between the cells 11 . If the thickness of the insulating material layer 122 or the composite unit 12 is too large, it will cause The energy density loss is large.
  • the orthographic projection of the heat insulating material layer 122 is greater than or equal to the orthographic projection of the contact surface of the composite unit 12 and the cell 11 .
  • a heat insulating material layer 122 having a heat insulating function is filled between the spaced surfaces of two adjacent battery cells 11 , which can further improve the overall heat insulating capability of the electrochemical device 10 .
  • the orthographic projection of the insulating material layer 122 covers the orthographic projection of the elastic material layer 121 .
  • the orthographic projection of the insulating material layer 122 covers at least part of the orthographic projection of the elastic material layer 121 , so that at least one side of the elastic material layer 121 between the two battery cells 11 is insulated from heat Material layer 122 protects.
  • the elastic material layer 121 is in contact with one cell 11
  • the heat insulating material layer 122 is in contact with the other cell 11
  • the elastic material layer 121 and the heat insulating material layer 122 are double-layered structures
  • the elastic material layer 121 is mainly used to provide a buffer space
  • the heat insulating material layer 122 is mainly used for heat insulation, and can also provide a certain buffer Space
  • the double-layer structure can be formed by connecting two elastic material layers 121 and heat insulating material layers 122 of the same size, and the process is less difficult.
  • the number of the heat insulating material layers 122 is two, the elastic material layer 121 is disposed between the two heat insulating material layers 122 , and each heat insulating material layer 122 is connected to one electrical The core 11 contacts. That is, the contact part of the composite unit 12 with any adjacent and contacting cell 11 is the heat insulating material layer 122, which has good heat insulating performance.
  • the elastic material layer 121 and the heat insulating material layer 122 are provided on both sides of the elastic material layer 121 in the three-layer structure.
  • the thermal material layer 122 can not only slow down or insulate heat transfer, but also try to avoid melting of the elastic material layer 121 to protect the internal structure of the electrochemical device 10 .
  • the number of the elastic material layers 121 is two, the heat insulating material layer 122 is disposed between the two elastic material layers 121 , and each elastic material layer 121 is connected to one battery cell 11 respectively. touch.
  • the insulating material layer 122 in the three-layer structure can slow down or isolate the heat transfer between two adjacent cells 11 , and the elastic material layers 121 on both sides can provide more buffer space.
  • the battery cell 11 includes a top portion 111 and a bottom portion 112 , the top portion 111 is the end of the battery cell 11 provided with the tabs, and the bottom portion 112 is the portion of the battery cell 11 opposite to the top portion.
  • the insulating material layer covers the surface of one end of the elastic material layer 121 adjacent to the top 111 .
  • the package joint end of the top 111 is more likely to be broken by an open flame or heat flow than the bottom 112 , that is, the probability of thermal runaway taking the top 111 as the main transmission direction is greater, and the insulating material layer 122 is used to protect the elastic material layer 121 is adjacent to the end of the top 111 , which can reduce the risk of the elastic material layer 121 being melted by heat, and the unmelted elastic material layer 121 can also provide partial thermal insulation effect to improve the thermal insulation performance of the composite unit 12 .
  • the insulating material layer 122 is disposed on the surface of the elastic material layer 121 and wraps the elastic material layer 121 , which can slow down or isolate the open flame or heat flow generated by thermal runaway from affecting the elastic material layer from any direction. 121 Erosion.
  • the heat insulating material layer 122 can fully wrap the elastic material layer 121 , and the heat insulating material layer 122 can slow down or insulate the heat transfer from one cell 11 to another adjacent cell 11 at the same time. , the risk of the elastic material layer 121 being melted by heat can also be reduced, and the unmelted elastic material layer 121 can also provide a partial thermal insulation effect to improve the thermal insulation performance of the composite unit 12 .
  • FIG. 7 it is a schematic diagram of the temperature change of the electrochemical device 10 when the electrochemical device 10 (experimental calibration parameters 48V, 12Ah) induces thermal runaway on one cell 11 according to an embodiment of the application.
  • the temperature of the electrochemical device 10 is lower than 50°C.
  • the temperature of the electrochemical device 10 gradually increases.
  • thermal runaway occurs, the temperature of the electrochemical device 10 increases. The temperature rises rapidly to 320° C. and maintains the peak value for a period of time (the single cell 11 in thermal runaway continues to burn), and then the temperature of the electrochemical device 10 gradually drops to the normal range.
  • the electrochemical device 10 of the embodiment of the present application faces thermal runaway with a temperature peak of 320° C., it can effectively slow down or prevent the further spread of thermal runaway, prevent other cells 11 from being ignited, and thus make the electrochemical device 10 ignite.
  • the temperature gradually drops to a normal range, and the electrochemical device 10 of the present application has a good thermal insulation function.
  • the electrochemical device 10 is another electrochemical device with a larger capacity or a higher energy density, the corresponding thermal runaway peak temperature may be higher, and correspondingly, the melting point (or ignition point) of the heat insulating material layer 122 It should be correspondingly adjusted to, for example, 330° C., 350° C. or even higher to meet the safety requirements of the electrochemical device 10 .
  • FIG. 8 it is a schematic diagram of an electrical device 1 provided in an embodiment of the present application. Another embodiment of the present application further provides an electrical device 1 .
  • the electrical device 1 includes an electrochemical device 10 and a load 101 , and the electrochemical device 10 is used to supply power to the load 101 .
  • the electrical device 1 of the present application is not particularly limited, and it can be used in any electrical device known in the prior art.
  • the powered device 1 may include, but is not limited to, notebook computers, pen input computers, mobile computers, e-book players, portable communication devices, portable copiers, portable printers, backup power supplies, motors, automobiles, Motorcycles, electric bicycles, lighting fixtures, toys, power tools, large-scale household batteries and lithium-ion capacitors, etc.

Abstract

提供了一种电化学装置(10)及应用电化学装置(10)的用电装置(1)。电化学装置(10),包括至少两个间隔设置的电芯(11),至少两个电芯(11)沿第一方向堆叠设置,电化学装置(10)还包括复合单元(12),至少两个相邻的电芯(11)之间设有复合单元(12),复合单元(12)包括:弹性材料层(121);隔热材料层(122),隔热材料层(122)的熔点大于320℃,且导热系数小于或等于0.2W/mK;以及沿第一方向,弹性材料层(121)与隔热材料层(122)层叠设置。其中,隔热材料层(122)具有良好的隔热性能,弹性材料层(121)与相邻两个电芯(11)中的至少一个之间间隔设置有隔热材料层(122),即弹性材料层(121)的至少一侧被隔热材料层(122)保护,以减缓或隔绝热失控由一个电芯(11)向另一个电芯(11)蔓延,当其中一个电芯(11)发生热失效时可有效隔离热量传递,从而减缓或隔绝热失控在电化学装置(10)内部蔓延。

Description

电化学装置以及应用其的用电装置 技术领域
本申请涉及电池技术领域,尤其涉及一种电化学装置以及应用其的用电装置。
背景技术
在电化学装置的生产、运输、存储以及使用等场景中,由于物理冲击、热、电等因素的影响,存在热失控的风险。这种热失控一般是电池包内一个电芯先出现热失控,随后火焰和热量向周围电芯传导,进而引发周围电芯的连续热失控,造成人员伤亡和财产损失。现有技术中,针对热失控的三种主要解决方案及缺陷为:(1)提升电芯化学体系的稳定性,但,高稳定性的电化学体系只是一定程度上提高了电芯的热稳定性,却并不能有效的阻止热失控的蔓延,且会导致能量密度下降、动力学性能下降;(2)在电池包内设置灭火装置,但,一方面电芯热失控中阴极材料可通过相变来释放氧气助燃,另一方面电池包内灭火剂的量有限,导致其吸热能力有限;(3)使用电池管理系统(BMS)探测电池包内的温度并进行监控及预警,但,当电池管理系统故障,或者,面对由外部机械滥用诱发的电芯热失控时,无法通过电池管理系统对电池包进行保护。
如何解决上述问题,提供一种对电芯能量密度影响较小、隔热效果更好的电芯隔热方案,是本领域技术人员需要考虑的。
发明内容
为了解决现有技术中的问题,本申请提供一种隔热效果明显且对电芯能量密度损耗影响较小的电化学装置。
本申请实施例提供了一种电化学装置,包括至少两个间隔设置的电芯,至少两个所述电芯沿第一方向堆叠设置,所述电化学装置还包括复合单元,至少两个相邻的所述电芯之间设有所述复合单元,所述复合单元包括:弹性材料层;隔热材料层,所述隔热材料层的熔点大于320℃,且导热系数小于或等于0.2W/mK;以及沿所述第一方向,所述弹性材料层与所述隔热材料层层叠设置。在该实施方式中,隔热材料层具有良好的隔热性能,弹性材料层与相邻两个电芯中的至少一个之间间隔设置有隔热材料层,即,弹性材料层的至少一侧被隔热材料层保护,以减缓或隔绝热失控由一个电芯向另一个电芯的蔓延,当其中一个电芯发生热失效时可有效隔离热量传递,从而减缓或隔绝热失控在电化学装置内部的蔓延;且设于电芯之间的复合单元具有弹性,可为在电化学循环过程中发生膨胀的电芯提供缓冲空间,避免电芯之间过度挤压,且可吸来自外部的物理冲击以保护电芯,使复合单元在具备隔热功能的同时具备缓冲件的功能,提升电化学装置内部空间的利用率,降低电化学装置能量密度的损耗。
在一种可能的实施方式中,所述弹性材料层与所述隔热材料层连接,沿所述第一方向,所述隔热材料层的正投影覆盖至少部分所述弹性材料层的正投影。在该实施方式中,沿所述第一方向,所述隔热材料层的正投影覆盖所述弹性材料层的正投影使得两个电芯之间的弹性材料层的至少一侧被隔热材料层保护。
在一种可能的实施方式中,沿所述第一方向,所述隔热材料层 的正投影大于或等于所述复合单元与所述电芯的接触面的正投影。在该实施方式中,相邻两个电芯的间隔面之间均填充有具备隔热功能的隔热材料层,可进一步提升电化学装置的隔热能力。
在一种可能的实施方式中,所述弹性材料层与一个所述电芯接触,所述隔热材料层与另一所述电芯接触。在该实施方式中,弹性材料层与隔热材料层为双层结构,弹性材料层主要用于提供缓冲空间,隔热材料层主要用于隔热,同时也可提供一定的缓冲空间,该双层结构可由两层尺寸相当的弹性材料层及隔热材料层连接形成,工艺难度较低。
在一种可能的实施方式中,所述隔热材料层的数量为两个,所述弹性材料层设于两个所述隔热材料层之间,每个所述隔热材料层分别与一个所述电芯接触。在该实施方式中,该三层结构中弹性材料层两侧均设置有弹性材料层及隔热材料层,复合单元两侧任一电芯发生热失控时,隔热的隔热材料层不仅可以减缓或隔绝热量传递,还可尽量避免弹性材料层融化以保护电化学装置内部结构。
在一种可能的实施方式中,所述弹性材料层的数量为两个,所述隔热材料层设于两个所述弹性材料层之间,每个所述弹性材料层分别与一个所述电芯接触。在该实施方式中,该三层结构中的隔热材料层可减缓或隔绝相邻两个电芯之间的热传递,两侧的弹性材料层可提供更多的缓冲空间。
在一种可能的实施方式中,所述隔热材料层设于所述弹性材料层表面并包裹所述弹性材料层。在该实施方式中,隔热材料层可对弹性材料层进行全方位包裹,隔热材料层在减缓或隔绝热量由一个电芯向相邻的另一个电芯之间传递的同时,还可以降低弹性材料层 受热融化的风险,未融化的弹性材料层亦可提供部分的隔热效果以提升复合单元的隔热性能。
在一种可能的实施方式中,所述电芯包括顶部及底部,所述顶部为所述电芯的设置有极耳的一端,所述底部为所述电芯中与所述顶部相背的一端,所述隔热材料层覆盖所述弹性材料层临近所述顶部的一端的表面。在该实施方式中,顶部的封装结合端相较于底部更易被明火或热流冲破,即,热失控以顶部为主要传递方向的概率较大,以隔热材料层保护弹性材料层靠近顶部的端部,可以降低弹性材料层受热融化的风险,未融化的弹性材料层亦可提供部分的隔热效果以提升复合单元的隔热性能。
在一种可能的实施方式中,沿所述第一方向,所述隔热材料层的厚度小于或等于所述电芯的厚度的20%。
在一种可能的实施方式中,所述隔热材料包括玻纤气凝胶、硅酸钙、硅酸镁复合纤维或芳纶中的至少一种。
在一种可能的实施方式中,所述隔热材料层的导热系数小于或等于0.07W/mK。
本申请另一实施例还提供了一种用电装置,所述用电装置包括前述的电化学装置和负载,所述电化学装置用于为所述负载供电。
相比于现有技术,本申请实施例的电化学装置,其复合单元同时兼具隔热及缓冲的功效,在提升安全性的同时亦可降低能量密度的损耗。具体的,隔热材料层具有良好的隔热性能,沿所述第一方向,所述隔热材料层的正投影覆盖所述弹性材料层的正投影使得两个电芯之间的弹性材料层的至少一侧被隔热材料层保护,当其中一个电芯发生热失效时可有效隔离热量传递,从而减缓或隔绝热失控 在电化学装置内部的蔓延;且设于电芯之间的复合单元具有弹性,可为在电化学循环过程中发生膨胀的电芯提供缓冲的形变空间,避免电芯之间过度挤压,且可吸来自外部的物理冲击以保护电芯,使复合单元在具备隔热功能的同时具备缓冲功能,提升电化学装置的空间利用率,降低电化学装置能量密度的损耗。
附图说明
图1为本申请一实施例的电化学装置的示意图。
图2为本申请一实施例的复合单元的截面示意图。
图3为本申请另一实施例的复合单元的截面示意图。
图4为本申请又一实施例的复合单元的截面示意图。
图5为本申请又一实施例的复合单元的截面示意图。
图6为本申请又一实施例的复合单元的截面示意图。
图7为本申请实施例电化学装置在热失控试验下的温度变化曲线图。
图8为本申请一实施例的用电装置的示意图。
主要元件符号说明
电化学装置                        10
电芯                              11
顶部                              111
底部                              112
复合单元                          12
弹性材料层                        121
隔热材料层                        122
用电装置                          1
负载                              101
第一方向                          X
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
以下描述将参考附图以更全面地描述本申请内容。附图中所示为本申请的示例性实施例。然而,本申请可以以许多不同的形式来实施,并且不应该被解释为限于在此阐述的示例性实施例。提供这些示例性实施例是为了使本申请透彻和完整,并且将本申请的范围充分地传达给本领域技术人员。类似的附图标记表示相同或类似的组件。
本文使用的术语仅用于描述特定示例性实施例的目的,而不意图限制本申请。如本文所使用的,除非上下文另外清楚地指出,否则单数形式“一”,“一个”和“该”旨在也包括复数形式。此外,当在本文中使用时,“包括”和/或“包含”和/或“具有”,整数,步骤,操作,组件和/或组件,但不排除存在或添加一个或多个其它特征,区域,整数,步骤,操作,组件,组件和/或其群组。
除非另外定义,否则本文使用的所有术语(包括技术和科学术语)具有与本申请所属领域的普通技术人员通常理解的相同的含义。此外,除非文中明确定义,诸如在通用字典中定义的那些术语应该被解释为具有与其在相关技术和本申请内容中的含义一致的含义,并且将不被解释为理想化或过于正式的含义。
以下内容将结合附图对示例性实施例进行描述。须注意的是, 参考附图中所描绘的组件不一定按比例显示;而相同或类似的组件将被赋予相同或相似的附图标记表示或类似的技术用语。
下面参照附图,对本申请的具体实施方式作进一步的详细描述。
如图1所示,本申请实施例提供了一种电化学装置10,包括多个间隔设置的电芯11及复合单元12,多个电芯11沿第一方向X堆叠设置,至少两个相邻的电芯11之间设有复合单元12。电芯11可以为锂离子电池。
如图2至图6所示,复合单元12包括弹性材料层121及隔热材料层122,弹性材料层121与隔热材料层122连接,进一步的,隔热材料层122可涂覆或贴附于弹性材料层121表面。沿第一方向X,弹性材料层121与隔热材料层122层叠设置。弹性材料层121包括弹性材料。隔热材料层122包括具有弹性的隔热材料,隔热材料层122的熔点大于320℃,且导热系数小于或等于0.2W/mK。
在该实施方式中,隔热材料层122具有良好的隔热性能,弹性材料层121与相邻两个电芯11中的至少一个之间间隔设置有隔热材料层122,即,弹性材料层121的至少一侧被隔热材料层122保护,以减缓或隔绝热失控由一个电芯11向另一个电芯11的蔓延。当其中一个电芯11发生热失效时可有效减缓或隔绝热量传递,从而减缓或隔绝热失控在电化学装置10内部的蔓延;且设于电芯11之间的复合单元12具有弹性,可为在电化学循环过程中发生膨胀的电芯11提供缓冲空间,避免电芯11之间过度挤压,且可吸来自外部的物理冲击以保护电芯11,使复合单元12在具备隔热功能的同时具备缓冲件的功能,提升电化学装置10内部空间的利用率,降低电化学装置10能量密度的损耗。
通常,本领域中常见的实心塑料件的导热系数往往大于0.2W/mK,在本申请实施例中,隔热材料层122的导热系数小于或等于0.2W/mK可具备较好的隔热效果。
包含弹性材料的弹性材料层121具备缓冲功能,弹性材料层121可通过自身形变吸收来自电化学装置10外部的物理冲击,或为电芯11电化学循环过程中的膨胀提供缓冲。于一实施例中,弹性材料层121可以为例如泡棉的有机材质,弹性材料层121在常温状态下具备稳定的物理形态,弹性材料层121内部可分布有孔隙,使其具备缓冲功能及一定的隔热性能。
包含具有弹性的隔热材料层122中,隔热材料层122的导热系数小于或等于0.1W/mK,进一步的,隔热材料层122的导热系数小于或等于0.07W/mK。进一步的,隔热材料层122包括玻纤气凝胶、硅酸钙、硅酸镁复合纤维或芳纶中的至少一种。隔热材料层122具有良好的隔热性能,当电芯11发生热失控(例如燃烧)时,隔热材料层122不会发生收缩、融化、燃烧等现象,可以在电芯11发生热失控时保持良好的物理形态并减缓或隔绝明火或热气流在电化学装置10内部的传导,进一步减缓或隔绝热失控的蔓延。
于一实施例中,沿第一方向X,隔热材料层122的厚度小于或等于电芯11的厚度的20%。例如,一般电芯11在电化学循环中体积膨胀比例约为10%,隔热材料层122的弹性系数通常小于弹性材料层121的弹性系数,但复合单元12的综合体积压缩比例大于50%,在隔热材料层122的厚度小于或等于电芯11的厚度的20%的情况下,可保证电芯11之间具备足够的缓冲空间,隔热材料层122或复合单元12厚度过大则造成能量密度损耗较大。
于一实施例中,沿第一方向X上,隔热材料层122的正投影大于或等于复合单元12与电芯11的接触面的正投影。在该实施方式中,相邻两个电芯11的间隔面之间均填充有具备隔热功能的隔热材料层122,可进一步提升电化学装置10的总体隔热能力。
于一实施例中,沿第一方向X,隔热材料层122的正投影覆盖弹性材料层121的正投影。在该实施方式中,沿第一方向X,隔热材料层122的正投影覆盖至少部分弹性材料层121的正投影使得两个电芯11之间的弹性材料层121的至少一侧被隔热材料层122保护。
如图2所示,于一实施例中,弹性材料层121与一个电芯11接触,隔热材料层122与另一电芯11接触。在该实施方式中,弹性材料层121与隔热材料层122为双层结构,弹性材料层121主要用于提供缓冲空间,隔热材料层122主要用于隔热,同时也可提供一定的缓冲空间,该双层结构可由两层尺寸相当的弹性材料层121及隔热材料层122连接形成,工艺难度较低。
如图3所示,于一实施例中,隔热材料层122的数量为两个,弹性材料层121设于两个隔热材料层122之间,每个隔热材料层122分别与一个电芯11接触。即,复合单元12与任一相邻且接触的电芯11的接触的部分均为隔热材料层122,具有较好的隔热性能。
在该实施方式中,该三层结构中弹性材料层121两侧均设置有弹性材料层121及隔热材料层122,复合单元12两侧任一电芯11发生热失控时,隔热的隔热材料层122不仅可以减缓或隔绝热量传递,还可尽量避免弹性材料层121融化以保护电化学装置10内部结构。
如图4所示,于一实施例中,弹性材料层121的数量为两个,隔热材料层122设于两个弹性材料层121之间,每个弹性材料层121分别与一个电芯11接触。
在该实施方式中,该三层结构中的隔热材料层122可减缓或隔绝相邻两个电芯11之间的热传递,两侧的弹性材料层121可提供更多的缓冲空间。
如图1及5所示,于一实施例中,电芯11包括顶部111及底部112,顶部111为电芯11的设置有极耳的一端,底部112为电芯11中与顶部相背的一端,所述隔热材料层覆盖弹性材料层121临近顶部111的一端的表面。
在该实施方式中,顶部111的封装结合端相较于底部112更易被明火或热流冲破,即,热失控以顶部111为主要传递方向的概率较大,以隔热材料层122保护弹性材料层121临近顶部111的端部,可以降低弹性材料层121受热融化的风险,未融化的弹性材料层121亦可提供部分的隔热效果以提升复合单元12的隔热性能。
如图6所示,于一实施例中,隔热材料层122设于弹性材料层121表面并包裹弹性材料层121,可减缓或隔绝热失控所产的明火或热流从任意方向对弹性材料层121的侵蚀。
在该实施方式中,隔热材料层122可对弹性材料层121进行全面包裹,隔热材料层122在减缓或隔绝热量由一个电芯11向相邻的另一个电芯11之间传递的同时,还可以降低弹性材料层121受热融化的风险,未融化的弹性材料层121亦可提供部分的隔热效果以提升复合单元12的隔热性能。
如图7所示,为本申请一实施例的电化学装置10(实验标定参 数48V、12Ah)对一个电芯11诱发热失控时的电化学装置10的温度变化示意图。由图可知,正常工作状态下,电化学装置10的温度低于50℃,随着诱发热失控的过程继续,电化学装置10的温度逐渐升高,当热失控发生后,电化学装置10的温度迅速升高至320℃,保持该峰值一段时间(发生热失控的单个电芯11持续燃烧),随后电化学装置10的温度逐步下降至正常范围。由图可知,本申请实施例的电化学装置10面临温度峰值为320℃的热失控时,可有效减缓或阻绝热失控进一步蔓延,避免其他电芯11被引燃,进而使电化学装置10的温度逐步下降至正常范围,本申请的电化学装置10具有良好的隔热功能。在其他实施例中,若电化学装置10为其他容量更大或能量密度更大的电化学装置,对应的热失控峰值温度可能更高,对应的,隔热材料层122的熔点(或燃点)应对应调高至例如330℃、350℃甚至更高,以满足电化学装置10的安全性需求。
如图8所示,为本申请实施例提供的用电装置1的示意图。本申请另一实施例还提供了一种用电装置1,该用电装置1包括电化学装置10和负载101,电化学装置10用于为负载101供电。本申请的用电装置1没有特别限定,其可以是用于现有技术中已知的任何用电装置。
在一些实施例中,用电装置1可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式通信设备、便携式复印机、便携式打印机、备用电源、电机、汽车、摩托车、电动自行车、照明器具、玩具、电动工具、家庭用大型蓄电池和锂离子电容器等。
上文中,参照附图描述了本申请的具体实施方式。但是,本领 域中的普通技术人员能够理解,在不偏离本申请的精神和范围的情况下,还可以对本申请的具体实施方式作各种变更和替换。这些变更和替换都落在本申请所限定的范围内。

Claims (12)

  1. 一种电化学装置,包括至少两个间隔设置的电芯,至少两个所述电芯沿第一方向堆叠设置,其特征在于,所述电化学装置还包括:
    复合单元,至少两个相邻的所述电芯之间设有所述复合单元,所述复合单元包括:
    弹性材料层;和
    隔热材料层,所述隔热材料层的熔点大于320℃,且导热系数小于或等于0.2W/mK;以及
    沿所述第一方向,所述弹性材料层与所述隔热材料层层叠设置。
  2. 如权利要求1所述的电化学装置,其特征在于,所述弹性材料层与所述隔热材料层连接,沿所述第一方向,所述隔热材料层的正投影覆盖至少部分所述弹性材料层的正投影。
  3. 如权利要求2所述的电化学装置,其特征在于,沿所述第一方向,所述隔热材料层的正投影大于或等于所述复合单元与所述电芯的接触面的正投影。
  4. 如权利要求3所述的电化学装置,其特征在于,所述弹性材料层与一个所述电芯接触,所述隔热材料层与另一所述电芯接触。
  5. 如权利要求3所述的电化学装置,其特征在于,所述隔热材料层的数量为两个,所述弹性材料层设于两个所述隔热材料层之间,每个所述隔热材料层分别与一个所述电芯接触。
  6. 如权利要求3所述的电化学装置,其特征在于,所述弹性材料层的数量为两个,所述隔热材料层设于两个所述弹性材料层之间,每个所述弹性材料层分别与一个所述电芯接触。
  7. 如权利要求2所述的电化学装置,其特征在于,所述隔热材料层设于所述弹性材料层表面并包裹所述弹性材料层。
  8. 如权利要求2所述的电化学装置,其特征在于,所述电芯包括顶部及底部,所述顶部为所述电芯的设置有极耳的一端,所述底部为所述电芯中与所述顶部相背的一端,所述隔热材料层覆盖所述弹性材料层临近所述顶部的一端的表面。
  9. 如权利要求1所述的电化学装置,其特征在于,沿所述第一方向,所述隔热材料层的厚度小于或等于所述电芯的厚度的20%。
  10. 如权利要求1所述的电化学装置,其特征在于,所述隔热材料层包括玻纤气凝胶、硅酸钙、硅酸镁复合纤维或芳纶中的至少一种。
  11. 如权利要求1所述的电化学装置,其特征在于,所述隔热材料层的导热系数小于或等于0.07W/mK。
  12. 一种用电装置,其特征在于,所述用电装置包括如权利要求1至11任意一项所述的电化学装置和负载,所述电化学装置用于为所述负载供电。
PCT/CN2021/083630 2021-03-29 2021-03-29 电化学装置以及应用其的用电装置 WO2022204882A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180096578.XA CN117121276A (zh) 2021-03-29 2021-03-29 电化学装置以及应用其的用电装置
PCT/CN2021/083630 WO2022204882A1 (zh) 2021-03-29 2021-03-29 电化学装置以及应用其的用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083630 WO2022204882A1 (zh) 2021-03-29 2021-03-29 电化学装置以及应用其的用电装置

Publications (1)

Publication Number Publication Date
WO2022204882A1 true WO2022204882A1 (zh) 2022-10-06

Family

ID=83456991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083630 WO2022204882A1 (zh) 2021-03-29 2021-03-29 电化学装置以及应用其的用电装置

Country Status (2)

Country Link
CN (1) CN117121276A (zh)
WO (1) WO2022204882A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435269A (zh) * 2019-06-27 2019-11-12 惠州市保瑞新材料有限公司 一种耐高温防火复合材料及其制备方法
CN211307744U (zh) * 2019-10-22 2020-08-21 德莎欧洲股份公司 一种防火结构
WO2020194939A1 (ja) * 2019-03-27 2020-10-01 三洋電機株式会社 電源装置と電動車両
WO2020262079A1 (ja) * 2019-06-28 2020-12-30 三洋電機株式会社 電源装置とこの電源装置を備える電動車両及び蓄電装置
CN112310539A (zh) * 2019-07-15 2021-02-02 江苏泛亚微透科技股份有限公司 电动汽车动力电池包内电池芯热胀冷缩位移动态补偿隔热功能的电芯模组及其制备方法
CN112366401A (zh) * 2019-07-23 2021-02-12 Sk新技术株式会社 电池模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194939A1 (ja) * 2019-03-27 2020-10-01 三洋電機株式会社 電源装置と電動車両
CN110435269A (zh) * 2019-06-27 2019-11-12 惠州市保瑞新材料有限公司 一种耐高温防火复合材料及其制备方法
WO2020262079A1 (ja) * 2019-06-28 2020-12-30 三洋電機株式会社 電源装置とこの電源装置を備える電動車両及び蓄電装置
CN112310539A (zh) * 2019-07-15 2021-02-02 江苏泛亚微透科技股份有限公司 电动汽车动力电池包内电池芯热胀冷缩位移动态补偿隔热功能的电芯模组及其制备方法
CN112366401A (zh) * 2019-07-23 2021-02-12 Sk新技术株式会社 电池模块
CN211307744U (zh) * 2019-10-22 2020-08-21 德莎欧洲股份公司 一种防火结构

Also Published As

Publication number Publication date
CN117121276A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
JP5379238B2 (ja) 電池パック
Lin et al. Research progress of phase change storage material on power battery thermal management
CN216958236U (zh) 电池模组、电池及用电装置
CN202121030U (zh) 高导热锂离子电池安全结构
CN209461496U (zh) 一种阻燃型锂离子电池
WO2023197907A1 (zh) 一种储能预制箱和换电站
CN111029683A (zh) 一种耐温变储能元器件
WO2023125086A1 (zh) 电池模组、电池包和储能系统
WO2022204882A1 (zh) 电化学装置以及应用其的用电装置
CN215578703U (zh) 电化学装置以及应用其的用电装置
WO2022204884A1 (zh) 一种电化学装置以及应用其的用电装置
WO2023124553A1 (zh) 电池模组和电池包
EP4358245A2 (en) Materials, systems, and methods for encapsulating thermal barrier materials
CN114243164B (zh) 电池安全防护组件、系统和方法
CN216054922U (zh) 一种电化学装置以及应用其的用电装置
WO2023125085A1 (zh) 电池模组、电池包和储能系统
WO2022042385A1 (zh) 一种电池组
CN212365545U (zh) 一种抗拖拽耐弯曲的电瓶连接线
CN204375861U (zh) 电池组
CN219917302U (zh) 一种抑制电芯热失控蔓延的液冷电池模组、电池及用电装置
CN216354443U (zh) 电池模组、电池包以及储能设备
CN209515800U (zh) 一种锂电池盒
CN219203306U (zh) 电芯组储能防护装置以及家用储能电池
CN220341345U (zh) 一种新型动力电池隔热防火材料
CN214280157U (zh) 一种安全组合圆柱锂电池盖帽组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933568

Country of ref document: EP

Kind code of ref document: A1