WO2022203463A1 - 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포 - Google Patents

폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포 Download PDF

Info

Publication number
WO2022203463A1
WO2022203463A1 PCT/KR2022/004251 KR2022004251W WO2022203463A1 WO 2022203463 A1 WO2022203463 A1 WO 2022203463A1 KR 2022004251 W KR2022004251 W KR 2022004251W WO 2022203463 A1 WO2022203463 A1 WO 2022203463A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polypropylene resin
reactor
ethylene
polypropylene
Prior art date
Application number
PCT/KR2022/004251
Other languages
English (en)
French (fr)
Inventor
노경섭
박희광
채성민
예지화
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22776163.2A priority Critical patent/EP4253472A1/en
Priority to CN202280008313.4A priority patent/CN116648535A/zh
Priority to US18/267,926 priority patent/US20240052074A1/en
Priority claimed from KR1020220037393A external-priority patent/KR20220134483A/ko
Publication of WO2022203463A1 publication Critical patent/WO2022203463A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics

Definitions

  • the present invention relates to a polypropylene resin composition suitable for a nonwoven fabric that is softer than existing products while maintaining high strength with excellent processability, and a nonwoven fabric manufactured therefrom.
  • nonwoven fabrics are fabrics made by bonding or entangling fiber aggregates by mechanical or chemical treatment such as mechanical manipulation or thermal bonding without going through weaving, weaving, or knitting processes. These include felt, resin-bonded non-woven fabric, needle punch, spun bond, spun lace, embossed film, and wet-laid non-woven fabric. In narrow terms, it means that the contact point of the web and the fiber overlapped at random is bonded with resin and used as a wick, etc. It is also called adhesive fabric and also called bonded fabric.
  • Such a nonwoven fabric may be manufactured by various methods, and known methods include needle punching, chemical bonding, thermal bonding, melt blown, spunlace, stitch bonding, and spunbonding.
  • spunbond non-woven fabric made of polyolefin-based resin has excellent touch, flexibility, breathability, and thermal insulation properties, so it is widely used in filters, packaging materials, bedding, clothing, medical supplies, hygiene products, automobile interior materials, and building materials.
  • polypropylene fiber is processed into a thermal bond nonwoven fabric through a calender bonding method or an air-through bonding method due to its unique low melting point and excellent chemical resistance, and is mainly used as a surface material for hygiene products such as diapers and sanitary napkins.
  • the homo polypropylene resin produced by the metallocene catalyst has a narrow molecular weight distribution, so it is possible to produce a uniform fiber with a thin thickness.
  • the metallocene homo polypropylene resin has low xylene solubles or low molecular weight content due to a narrow molecular weight distribution, it has a disadvantage of giving a rough feel to the surface when manufacturing a nonwoven fabric.
  • a bi-component processing technology using homo polypropylene and polyethylene such as homo polypropylene and polyolefin containing propylene (C3- 4 of mixing technology using POE), mixing technology using homo polypropylene and low modulus polypropylene (LPP), or mixing technology using homo polypropylene and terpolymer polypropylene (tPP)
  • Several methods are being used.
  • a propylene-1 butene random copolymer prepared with a metallocene catalyst may be used to increase flexibility while maintaining excellent strength characteristics when manufacturing a nonwoven fabric.
  • the degree of flexibility improvement is not sufficient, and compared to products manufactured by the existing Ziegler-Natta system homopolypropylene and polyethylene heterogeneous processing technology or by mixing technology using homopolypropylene and propylene-containing polyolefin (C3-POE) ), it has a disadvantage in that it gives a rough touch due to its relatively inferior characteristics.
  • An object of the present specification is to provide a polypropylene resin composition suitable for a nonwoven fabric having excellent processability and high strength using a continuous reactor in the presence of a metallocene compound having a specific structure and softer than existing products, and a method for manufacturing the same.
  • molecular weight distribution (Mw / Mn) is 2.6 to 3.2
  • xylene soluble (XS, Xylene soluble) is 4.5 wt% to 8.0 wt%
  • the content of ethylene is 1.0 wt% to 5.0 wt%
  • Tensile strength measured by ASTM D 638 method is 275 kg/cm 2 to 285 kg/cm 2
  • flexural modulus measured by ASTM D 790 method is 11500 kg/cm 2 to 12500 kg/cm 2 ASTM D 790 method
  • One flexural modulus is 11500 kg/cm 2 to 12500 kg/cm 2
  • a melt index (melt index measured at MI 2.16 , ASTM D 1238, 230° C., 2.16 kg load) is 10 g/10 min to 100 g/10 min
  • the crystallization temperature (Tc) is 95 °C to 115 °C, to provide a polypropylene resin composition.
  • the present invention provides a method for preparing the above-described polypropylene resin composition.
  • the method for preparing the polypropylene resin composition comprises a series of at least one first reactive group and at least one second reactive group in the presence of a catalyst composition comprising at least one metallocene compound represented by the following Chemical Formula 1
  • a catalyst composition comprising at least one metallocene compound represented by the following Chemical Formula 1
  • A is carbon, silicon or germanium
  • M is a Group 4 transition metal
  • X 1 and X 2 are each independently halogen
  • R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl
  • R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1-20 silylether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl;
  • R 9 and R 10 are each independently C 1-20 alkyl.
  • A may be silicon
  • R 1 , and R 5 may be phenyl substituted with a C 3-6 branched chain alkyl group, respectively.
  • R 9 and R 10 may each be C 2-4 linear alkyl, among which R 9 and R 10 may be the same as each other, preferably ethyl.
  • metallocene compound specifically, for example, may be one represented by the following Chemical Formula 1-1:
  • the first reactor may be a loop reactor
  • the second reactor may be a gas phase reactor
  • propylene and ethylene may be added in a weight ratio of 7:3 to 6:4.
  • the present invention provides a polypropylene nonwoven fabric made of fibers prepared from the above-described polypropylene resin composition.
  • the polypropylene nonwoven fabric has a handle-O-meter measurement value according to NWSP 090.3.R0 under the condition that the basis weight of the nonwoven fabric is 72 g/m 2 to 76 g/m 2 24 g or less.
  • each layer or element is formed “on” or “over” each layer or element, it means that each layer or element is formed directly on each layer or element, or other It means that a layer or element may additionally be formed between each layer, on the object, on the substrate.
  • the polypropylene resin composition according to an embodiment of the present invention has a molecular weight distribution (Mw/Mn) of 2.6 to 3.2, a xylene soluble content (XS) of 4.5 wt% to 8.0 wt%, and the content of ethylene This is 1.0 wt% to 5.0 wt%, the tensile strength measured by the ASTM D 638 method is 275 kg/cm 2 to 285 kg/cm 2 , and the flexural modulus measured by the ASTM D 790 method is 11500 kg/cm 2 to 12500 The flexural modulus measured by the ASTM D 790 method of kg/cm 2 is 11500 kg/cm 2 to 12500 kg/cm 2 , and the melt index (MI 2.16 , ASTM D 1238, 230 ° C, melt index measured at a load of 2.16 kg) is 10 g/10min to 100 g/10min, and the crystallization temperature (Tc) is characterized in that all of the conditions of 95
  • the propylene (co)polymer produced by the Ziegler-Natta catalyst uses a multi-site catalyst in which several active sites are mixed, so the molecular weight distribution of the polymer is wide and the xylene soluble content is high. There is a problem in that the composition distribution of the comonomer is not uniform, so that there is a limit in securing desired physical properties.
  • polypropylene when polypropylene is produced using a conventional metallocene catalyst, it has a low melting point (Tm) and a narrow molecular weight distribution, which has a disadvantage in that stretch stability and strength are excellent, while softness is lowered when manufacturing a nonwoven fabric. . Accordingly, in the case of preparing a binary or terpolymer with ethylene or 1-butene, the flexibility of the nonwoven fabric may be increased, but the degree of improvement in flexibility is not sufficient.
  • the present inventors were intensively researching a polypropylene resin composition suitable for a nonwoven fabric that is softer than existing products and maintains high strength with excellent processability.
  • the following metallocene catalyst was used and propylene homopolymer was used.
  • the present invention was completed by confirming that the polypropylene resin composition prepared using a series of reactors including a first reactor to prepare and a second reactor for producing an ethylene-propylene-based copolymer satisfies this.
  • the present invention provides a polypropylene resin composition suitable for manufacturing a nonwoven fabric that is softer than conventional products while maintaining high strength with excellent processability.
  • the polypropylene resin composition may have a molecular weight distribution (Mw/Mn, MWD) of about 2.6 to about 3.2. As such, by having a narrow molecular weight distribution, elongation stability and rigidity are increased, so that excellent mechanical properties can be exhibited when manufacturing a fiber product for multi-filament or non-woven fabric. More specifically, the polypropylene resin composition may have a molecular weight distribution (Mw/Mn, MWD) of about 2.6 to about 3.0, about 2.6 to about 2.9, or about 2.6 to about 2.8.
  • Mw/Mn, MWD molecular weight distribution
  • the molecular weight distribution is measured by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene resin composition using gel permeation chromatography (GPC), and as the molecular weight distribution, the weight average with respect to the number average molecular weight It can be obtained by calculating the molecular weight ratio (Mw/Mn).
  • a gel permeation chromatography (GPC) apparatus a Waters PL-GPC220 instrument may be used, and a Polymer Laboratories PLgel MIX-B 300 mm long column may be used.
  • the measurement temperature is 160 °C
  • 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene) can be used as a solvent, and the flow rate can be applied at 1 mL/min.
  • Each polypropylene sample was pretreated by dissolving it in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% BHT at 160 ° C.
  • the values of Mw and Mn can be derived using a calibration curve formed using a polystyrene standard specimen.
  • the weight average molecular weight of the polystyrene standard specimen is 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 400000 g/mol , 9 kinds of 1000000 g/mol can be used.
  • xylene soluble content may be 4.5 wt% to 8.0 wt%.
  • the xylene-soluble component contains an atactic component in the entire polymer and, in the case of a product having a composition including a homo polypropylene polymer and an ethylene propylene copolymer, the ethylene propylene copolymer component, that is, the amorphous polymer content in the entire polymer.
  • the xylene-soluble component contains an atactic component in the entire polymer and, in the case of a product having a composition including a homo polypropylene polymer and an ethylene propylene copolymer, the ethylene propylene copolymer component, that is, the amorphous polymer content in the entire polymer.
  • the indicated value it is possible to obtain a polypropylene resin composition capable of expressing an appropriate level of melting point and mechanical properties by optimizing the xylene soluble content content.
  • the polypropylene resin composition has a xylene soluble content (X.S., Xylene soluble) content of about 4.5 wt% or more, about 7.8 wt% or less, or about 7.5 wt% or less, or about 7.3 wt% or less, or about 7.0% by weight or less.
  • the xylene-soluble content is the content (wt%) of a polymer soluble in cooled xylene determined by dissolving a polypropylene resin composition in xylene and crystallizing an insoluble portion from a cooling solution, and the xylene-soluble content is It contains low stereoregularity, i.e., amorphous polymer chains. Accordingly, the lower the content of the xylene solubles, the higher the stereoregularity, that is, the higher the amount of crystalline polymer. As the polypropylene resin composition according to an embodiment of the present invention has such a low content of crystalline polymer, it may exhibit excellent softness properties when manufacturing a nonwoven fabric. Considering the superiority of the improvement effect according to the control of the xylene soluble content, the xylene soluble content of the polypropylene resin composition may be maintained in the above-described range.
  • the xylene-soluble component is a solid phase by putting xylene in a polypropylene resin composition sample, heating at 130 ° C. for 1 hour or more to completely dissolve the composition, cooling it at 20 ° C. for 1 hour or more, and filtering it. and the liquid phase are separated. After the xylene component is removed by heating the liquid phase to 130 °C, the weight of the remaining component can be measured.
  • the polypropylene resin composition according to the present invention more specifically, from about 1.0 wt% to about 5.0 wt%, or from about 1.2 wt% to about 4.8 wt%, or from about 1.5 wt% to about 4.5 wt%, based on the total weight of the total resin composition %, or from about 1.8% to about 4.0% by weight, or from about 1.9% to about 3.5% by weight, or from about 2.0% to about 3.2% by weight, or from about 2.1% to about 3.0% by weight, or about 2.2% by weight % to about 2.7% by weight of ethylene.
  • the ethylene content of the final polymer that has passed through the first and second reactors, which will be described later, is formed and included within the above-described range, whereby a heterogeneous comonomer enters between the main chains of the ethylene propylene copolymer, and thus The obtained ethylene-propylene copolymer is included in the propylene homopolymer so as not to exhibit large phase separation due to high dispersibility, thereby controlling the softness properties of the final resin composition.
  • polypropylene resin in terms of exhibiting a narrow molecular weight distribution even in polymerization at a high conversion rate using a metallocene-based catalyst having a specific structure to be described later, and exhibiting improved strength characteristics along with excellent stretch stability (processability) and softness characteristics, polypropylene resin
  • the content of ethylene in the composition is preferably included in the above-mentioned range.
  • the ethylene content in the polypropylene resin composition can be measured by a spectroscopic method using an infrared absorption spectrum (FT-IR) in accordance with the American Society for Testing and Materials standard ASTM D 5576.
  • FT-IR infrared absorption spectrum
  • the height of the 4800-3500 cm -1 peak reflecting the thickness of the specimen in the IR absorption spectrum and ethylene It is calculated by measuring the area of the 750-710 cm -1 peak in which the component appears. That is, according to the method of the American Society for Testing and Materials Standards ASTM D 5576, the measured value is calculated by dividing the peak area of each peak area of the standard sample by 4800-3500 cm -1 peak height by plotting the calibration ( Calibration) and calculate each ethylene content.
  • a method of measuring the ethylene content in the polypropylene resin composition may be more detailed in Test Example 1 to be described later.
  • the polypropylene resin composition as described above, is characterized in that the molecular weight distribution, the xylene soluble content and the ethylene content are optimized, and the tensile strength and the flexural modulus are maintained in the optimum range.
  • the polypropylene resin composition has a tensile strength of 275 kg/cm 2 to 285 kg/cm 2 measured by the ASTM D 638 method, and a flexural modulus measured by the ASTM D 790 method. 11500 kg/cm 2 to 12500 kg/cm 2 .
  • the polypropylene resin composition may have a tensile strength of 276 kg/cm 2 to 284 kg/cm 2 , or 278 kg/cm 2 to 283 kg/cm 2 measured by the ASTM D 638 method, and ASTM D A flexural modulus measured by the 790 method may be 11600 kg/cm 2 to 12400 kg/cm 2 , or 11800 kg/cm 2 to 12300 kg/cm 2 .
  • the polypropylene resin composition has a flexural strength measured by the ASTM D 790 method of 375 kg/cm 2 to 385 kg/cm 2 , or 376 kg/cm 2 to 384 kg/cm 2 , or 378 kg /cm 2 to 383 kg/cm 2 It may be.
  • the polypropylene resin composition according to an embodiment of the present invention simultaneously optimizes the molecular weight distribution, xylene soluble content (X.S., Xylene soluble), ethylene content, and tensile strength and flexural modulus, so that excellent processability and It can exhibit high rigidity along with softness characteristics.
  • xylene soluble content X.S., Xylene soluble
  • ethylene content ethylene content
  • tensile strength and flexural modulus tensile strength and flexural modulus
  • the polypropylene resin composition has a melt index (MI 2.16 ) of about 10 g/10min to about 100 g/10min, measured at 230° C. under a load of 2.16 kg according to the American Society for Testing and Materials standard ASTM D 1238.
  • the polypropylene resin composition has a melt index (MI2.16) of about 12 g/10min or more, or about 15 g/10min or more, or about 18 g/10min or more, or about 20 g/10min or more, or about 23 g/10min, or about 25 g/10min or more, and about 85 g/10min or less, or about 60 g/10min or less, or about 45 g/10min or less, or about 40 g/10min or less, or about 35 g /10 min or less, or about 30 g/10 min or less.
  • MI2.16 melt index
  • the polypropylene resin composition may have a crystallization temperature (Tc) of 95 °C to 115 °C.
  • the polypropylene resin composition of the present invention effectively controls the molecular weight distribution, X.S., Xylene soluble), ethylene content, tensile strength and flexural modulus, and crystallization temperature (Tc) to about 95 It is characterized in that it is optimized to °C to about 115 °C.
  • the xylene soluble content is a value indicating the content of atactic components in the entire polymer, and by optimizing the xylene soluble content content, a polypropylene resin composition capable of expressing an appropriate level of melting point and mechanical properties is obtained.
  • the polypropylene resin composition has a crystallization temperature (Tc) of from about 100 °C to about 115 °C, or from about 105 °C to about 114 °C, or from about 107 °C to about 113 °C, or from about 108 °C to about 112 °C.
  • Tc crystallization temperature
  • the polypropylene resin composition may have a melting point (Tm) of about 150 °C to about 158 °C, or about 150 °C to about 155 °C, or about 151 °C to about 153 °C.
  • Tm melting point
  • the crystallization temperature (Tc) and the melting point (Tm) can be measured using a Differential Scanning Calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). Specifically, after heating the polypropylene resin composition to 200 °C by increasing the temperature, it is maintained at that temperature for 5 minutes (1 st RUN heat history removed), then lowered to -30 °C, and again by increasing the temperature to DSC ( Differential Scanning Calorimeter, manufactured by TA) Let the melting point (Tm) be the temperature corresponding to the top of the curve, and the temperature corresponding to the top of the DSC (Differential Scanning Calorimeter, manufactured by TA) curve, which appears while decreasing the temperature again, is defined as the crystallization temperature ( Tc). At this time, the rate of rise and fall of the temperature is 10 °C/min, and the melting point (Tm) and the crystallization temperature (Tc) are shown as a result of measurement in the second temperature rise and
  • the polypropylene resin composition of the present invention is different from the conventional Ziegler-Natta catalyst applied polypropylene or the conventional metallocene catalyst applied polypropylene, with molecular weight distribution, xylene soluble content, ethylene content, melt index, crystallization temperature, tensile strength. And by optimizing all of the flexural modulus, it is possible to manufacture thin and uniform fibers while securing excellent process stability in the copolymerization process. can be implemented simultaneously. Accordingly, it may be particularly useful for manufacturing a polypropylene nonwoven fabric requiring excellent softness along with high rigidity.
  • the polypropylene resin composition includes a propylene homopolymer and an ethylene-propylene-based copolymer, and the ethylene-propylene-based copolymer is dispersed in the propylene homopolymer.
  • the polypropylene resin composition of the present invention in the presence of a catalyst composition comprising at least one metallocene compound represented by Chemical Formula 1, the polymerization process in the first reactor and the copolymerization process in the second reactor , the thus obtained ethylene-propylene copolymer is included in the propylene homopolymer so as not to exhibit large phase separation due to its high dispersibility, thereby exhibiting improved strength properties along with excellent elongation stability (processability) and softness properties in the final resin composition.
  • a catalyst composition comprising at least one metallocene compound represented by Chemical Formula 1
  • the resin composition of the present invention may further include one or more additives such as antioxidants, neutralizers, dispersants, weathering agents, UV stabilizers, slip agents, anti-blocking agents, and antistatic agents within the range that does not impair the properties of the resin composition. have.
  • the content of these additives may be 500 ppm to 3000 ppm based on the total weight of the entire resin composition.
  • these additives are added to the polypropylene resin composition obtained after completing both the processes of the first and second reactors as described below, and may affect the catalytic activity during the manufacturing process, so it is not preferable to use them in the polymerization process. .
  • the polypropylene resin composition according to the present invention does not include nucleating agents.
  • a nucleating agent is added to the polypropylene resin composition according to the present invention, the crystallinity becomes too large and the fiber spinnability is lowered, thereby reducing the effect of improving elongation stability and softness.
  • the method for preparing the polypropylene resin composition comprises a series of at least one first reactive group and at least one second reactive group in the presence of a catalyst composition comprising at least one metallocene compound represented by the following Chemical Formula 1
  • a catalyst composition comprising at least one metallocene compound represented by the following Chemical Formula 1
  • A is carbon, silicon or germanium
  • M is a Group 4 transition metal
  • X 1 and X 2 are each independently halogen
  • R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl
  • R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1-20 silylether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl;
  • R 9 and R 10 are each independently C 1-20 alkyl.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • alkyl having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkyl.
  • alkyl having 1 to 20 carbon atoms is a straight chain alkyl having 1 to 20 carbon atoms; straight-chain alkyl having 1 to 15 carbon atoms; straight-chain alkyl having 1 to 5 carbon atoms; branched or cyclic alkyl having 3 to 20 carbon atoms; branched or cyclic alkyl having 3 to 15 carbon atoms; Or it may be a branched or cyclic alkyl having 3 to 10 carbon atoms.
  • the alkyl having 1 to 20 carbon atoms is methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl , cyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.
  • the alkenyl having 2 to 20 carbon atoms that is, C 2-20 alkenyl includes straight-chain or branched alkenyl, and specifically includes allyl, allyl, ethenyl, propenyl, butenyl, pentenyl, and the like.
  • the present invention is not limited thereto.
  • alkoxy having 1 to 20 carbon atoms examples include methoxy group, ethoxy, isopropoxy, n-butoxy, tert-butoxy, phenyloxy, cyclohexyloxy group, etc., but only It is not limited.
  • a C 2 to C 20, that is, C 2-20 alkoxyalkyl group is a functional group in which one or more hydrogens of the aforementioned alkyl are substituted with alkoxy, specifically methoxymethyl, methoxyethyl, ethoxymethyl, iso-propoxymethyl , alkoxyalkyl such as iso-propoxyethyl, iso-propoxypropyl, iso-propoxyhexyl, tert-butoxymethyl, tert-butoxyethyl, tert-butoxypropyl and tert-butoxyhexyl; or aryloxyalkyl such as phenoxyhexyl, but is not limited thereto.
  • C 1-20 alkylsilyl or C 1 to 20 (C 1-20 ) alkoxysilyl group is —SiH 3 1 to 3 hydrogens are 1 to 3 alkyl or alkoxy as described above is a functional group substituted with, specifically, alkylsilyl such as methylsilyl, dimethylsilyl, trimethylsilyl, dimethylethylsilyl, diethylmethylsilyl or dimethylpropylsilyl; alkoxysilyl such as methoxysilyl, dimethoxysilyl, trimethoxysilyl or dimethoxyethoxysilyl; alkoxyalkylsilyl such as methoxydimethylsilyl, diethoxymethylsilyl or dimethoxypropylsilyl, but is not limited thereto.
  • alkylsilyl such as methylsilyl, dimethylsilyl, trimethylsilyl, dimethylethylsilyl, diethylmethylsilyl or
  • C 1-20 that is, C 1-20 silylalkyl is a functional group in which one or more hydrogens of alkyl as described above are substituted with silyl, specifically -CH 2 -SiH 3 , methylsilylmethyl or dimethylethoxysilylpropyl and the like, but is not limited thereto.
  • alkylene having 1 to 20 carbon atoms is the same as the above-described alkyl except that it is a divalent substituent, specifically methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, cyclooctylene, and the like, but is not limited thereto.
  • Aryl having 6 to 20 carbon atoms, that is, C 6-20 may be a monocyclic, bicyclic or tricyclic aromatic hydrocarbon.
  • the aryl may include, but is not limited to, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, and the like.
  • C 7-20 that is, C 7-20 alkylaryl may mean a substituent in which at least one hydrogen among hydrogens of an aromatic ring is substituted by the above-described alkyl.
  • the alkylaryl may include, but is not limited to, methylphenyl, ethylphenyl, methylbiphenyl, and methylnaphthyl.
  • C 7 to 20, that is, C 7-20 arylalkyl may refer to a substituent in which one or more hydrogens of the aforementioned alkyl are substituted by the aforementioned aryl.
  • the arylalkyl may include, but is not limited to, phenylmethyl, phenylethyl, biphenylmethyl, and naphthylmethyl.
  • aryloxy having 6 to 20 carbon atoms that is, C 6-20 aryloxy includes phenoxy, biphenoxy, naphthoxy, and the like, but is not limited thereto.
  • arylene having 6 to 20 carbon atoms that is, C 6-20 arylene is the same as the above-described aryl except that it is a divalent substituent, specifically phenylene, biphenylene, naphthylene, anthracenylene, and phenanthrene.
  • nylene, fluorenylene, and the like are not limited thereto.
  • the Group 4 transition metal may be titanium (Ti), zirconium (Zr), hafnium (Hf), or rutherpodium (Rf), specifically titanium (Ti), zirconium (Zr), or hafnium (Hf) may be, and more specifically, may be zirconium (Zr) or hafnium (Hf), but is not limited thereto.
  • the group 13 element may be boron (B), aluminum (Al), gallium (Ga), indium (In), or thallium (Tl), specifically, boron (B), or aluminum (Al). and is not limited thereto.
  • substituents are optionally a hydroxyl group within the range of exhibiting the same or similar effect as the desired effect; halogen; alkyl or alkenyl, aryl, alkoxy; alkyl or alkenyl, aryl, alkoxy containing one or more heteroatoms among the heteroatoms of Groups 14 to 16; silyl; alkylsilyl or alkoxysilyl; phosphine group; phosphide group; sulfonate group; And it may be substituted with one or more substituents selected from the group consisting of a sulfone group.
  • the catalyst composition used for preparing the polypropylene resin composition according to an embodiment of the present invention is characterized in that it includes the metallocene compound represented by Chemical Formula 1 above.
  • a metallocene catalyst having a specific substituent is used in a bridging group connecting two ligands including an indenyl group, polypropylene having an optimized melting point and molecular weight distribution to meet desired physical properties can be prepared.
  • the compound of Formula 1 as a bridging group connecting two ligands including an indenyl group, includes a divalent functional group A bisubstituted with the same alkyl group having 2 or more carbon atoms, thereby increasing the atomic size and increasing the solubility angle. Accordingly, propylene or ethylene monomers can be easily accessed, thereby exhibiting superior catalytic activity.
  • both of the two indenyl groups that are ligands are substituted at the 2nd position by a methyl group, and the 4th position (ie, R 1 and R) contains an alkyl-substituted aryl group, respectively, so that sufficient electrons can be supplied.
  • R 1 and R contains an alkyl-substituted aryl group, respectively, so that sufficient electrons can be supplied.
  • Better catalytic activity may be exhibited by the inductive effect.
  • R 1 and R 5 may each independently be C 6-12 aryl substituted with C 1-10 alkyl, and more specifically, a C 3-6 branch such as tert-butyl phenyl. phenyl substituted with chain alkyl.
  • the substitution position of the alkyl with respect to the phenyl may be the 4th position corresponding to the position of R 1 and R 5 bonded to the indenyl and para position.
  • R 2 to R 7 may each independently be hydrogen, and X 1 and X 2 may each independently be chlorine (Cl).
  • A may be silicon (Si).
  • R 9 and R 10 which are each of the substituents of A are They are the same as each other in terms of improving the carrying efficiency by increasing the solubility, and may be a C 2-10 alkyl group, specifically a C 2-4 linear alkyl group, more specifically, ethyl.
  • the solubility in preparing the supported catalyst is poor, so the problem of poor supporting reactivity can be solved.
  • M may be zirconium (Zr) or hafnium (Hf), preferably zirconium (Zr).
  • zirconium (Zr) when zirconium (Zr) is included as a central metal in the compound of Formula 1, compared to when other Group 14 elements such as hafnium (Hf) are included, it has more orbitals capable of accommodating electrons. It can easily bind to a monomer with a higher affinity, and as a result, a better effect of improving catalytic activity can be exhibited.
  • Representative examples of the metallocene compound represented by Formula 1 are as follows.
  • the metallocene compound represented by Chemical Formula 1 may be prepared by a known method for synthesizing an organic compound, and will be described in more detail in Examples to be described later.
  • the equivalent (eq) means molar equivalent (eq/mol).
  • the metallocene compound of Formula 1 may be used in the state of a supported catalyst supported on a support, or may be used in the form of an unsupported catalyst. have.
  • a carrier having a hydroxyl group or a siloxane group having high reactivity on the surface may be used, and preferably, a carrier having a hydroxyl group or a siloxane group having high reactivity, which is dried to remove moisture from the surface, may be used.
  • silica dried at high temperature silica-alumina, and silica-magnesia may be used, and these are typically oxides, carbonates, such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 ; It may contain sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably from about 200 °C to about 800 °C, more preferably from about 300 °C to about 600 °C, most preferably from about 300 °C to about 400 °C.
  • the drying temperature of the carrier is less than about 200 °C, there is too much moisture and the surface moisture and the cocatalyst react with it. Since many hydroxy groups disappear and only siloxane remains, a reaction site with a co-catalyst is reduced, which is not preferable.
  • the amount of hydroxyl groups on the surface of the carrier is preferably about 0.1 mmol/g to about 10 mmol/g, more preferably about 0.5 mmol/g to about 5 mmol/g.
  • the amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions or drying conditions of the carrier, such as temperature, time, vacuum or spray drying, and the like. If the amount of the hydroxyl group is less than about 0.1 mmol/g, there are few reaction sites with the co-catalyst, etc., and if it exceeds about 10 mmol/g, there is a possibility that it is due to moisture other than the hydroxyl group present on the surface of the carrier particle. Not desirable.
  • the weight ratio of the total transition metal to the carrier included in the metallocene compound of Formula 1 may be about 1:1 to about 1:1000.
  • the carrier and the metallocene compound are included in the above weight ratio, an appropriate supported catalyst activity may be exhibited, which may be advantageous in terms of maintaining the activity of the catalyst and economic feasibility. More specifically, the weight ratio of the compound of Formula 1 to the carrier may be 1:10 to 1:30, and even more specifically 1:15 to 1:20.
  • the catalyst composition may further include a co-catalyst in addition to the metallocene compound of Formula 1 and the carrier in terms of improving high activity and process stability.
  • the cocatalyst may include one or more of the compounds represented by the following formula (2).
  • R 21 are the same as or different from each other and are each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl;
  • n is an integer greater than or equal to 2;
  • Examples of the compound represented by Formula 2 may include an aluminoxane-based compound such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, any one or mixture of two or more thereof may be used .
  • an aluminoxane-based compound such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, any one or mixture of two or more thereof may be used .
  • the cocatalyst may include one or more of the compounds represented by the following formula (3).
  • R 31 are the same as or different from each other and are each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl;
  • J is aluminum or boron.
  • Examples of the compound represented by Formula 3 include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, and tricyclopentylaluminum.
  • tripentyl aluminum triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, and more specifically, may be selected from trimethylaluminum, triethylaluminum, and triisobutylaluminum.
  • the cocatalyst may include one or more of the compounds represented by the following formula (4).
  • E is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a group 13 element
  • Q is the same as or different from each other and is each independently C 6-20 aryl or C 1-20 alkyl, wherein the C 6-20 aryl or C 1-20 alkyl is unsubstituted or halogen, C 1-20 alkyl , C 1-20 alkoxy and C 6-20 aryloxy are substituted with one or more substituents selected from the group consisting of.
  • [EH] + is a Bronsted acid.
  • E may be an amine containing one or more nitrogen atoms, and the amine may be substituted with C 6-20 aryl or C 1-20 alkyl.
  • E may be an amine containing one or two nitrogen atoms, and the amine group may be substituted with two or more C 6-20 aryl or C 1-20 alkyl.
  • the amine may be substituted with two or three C 6-18 aryl or C 6-12 aryl, or C 1-12 alkyl or C 1-6 alkyl.
  • Z may be aluminum or boron.
  • Q may be C 6-18 aryl or C 6-12 aryl, each of which is substituted or unsubstituted as described above, or C 1-12 alkyl or C 1-6 alkyl.
  • Examples of the compound represented by Formula 4 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra(p-tolyl).
  • the weight ratio of the metallocene compound of Formula 1 to the co-catalyst may be about 1:1 to about 1:20.
  • the weight ratio of the compound of Formula 1 to the cocatalyst may be from about 1:5 to about 1:20, or from about 1:5 to about 1:15.
  • the cocatalyst may be supported in an amount of about 3 mmol or more or about 5 mmol or more per carrier weight, for example, based on 1 g of silica, and may be supported in an amount of about 20 mmol or less, or about 15 mmol or less. . When included in the above content range, it is possible to exhibit the effect of improving the catalytic activity according to the use of the cocatalyst.
  • the catalyst composition includes both the carrier and the co-catalyst
  • the catalyst composition includes the steps of supporting the co-catalyst compound on a carrier, and supporting the compound represented by Formula 1 on the carrier
  • the order of supporting the cocatalyst and the metallocene compound of Formula 1 may be changed as needed.
  • a hydrocarbon solvent such as pentane, hexane, or heptane, or an aromatic solvent such as benzene or toluene may be used as a reaction solvent in the preparation of the catalyst composition.
  • the polypropylene resin composition according to an embodiment of the present invention comprises at least one first reactor and at least one second reactor in the presence of a catalyst composition for one or more metallocene compounds represented by Formula 1 above.
  • a catalyst composition for one or more metallocene compounds represented by Formula 1 above To prepare a polypropylene resin composition using a series of reactors comprising the steps of: preparing a propylene homopolymer in the first reactor; and preparing an ethylene-propylene-based copolymer in the second reactor.
  • the method for preparing the polypropylene resin composition of the present invention comprises the steps of: preparing a propylene homopolymer in the first reactor; and preparing a propylene-based copolymer with ethylene dispersed in the propylene homopolymer in the second reactor.
  • the present invention uses a series of reactors including at least one first reactor and at least one second reactor in the presence of a catalyst composition including one or more metallocene compounds represented by Chemical Formula 1 above.
  • a catalyst composition including one or more metallocene compounds represented by Chemical Formula 1 above.
  • the polypropylene resin composition thus prepared includes a propylene homopolymer and an ethylene-propylene-based copolymer, and the ethylene-propylene-based copolymer is dispersed in the propylene homopolymer.
  • the polymerization process of the first reactor and the copolymerization process of the second reactor are optimized in the presence of a catalyst composition including at least one metallocene compound represented by Formula 1, and thus obtained ethylene propylene-based
  • the copolymer may be included in the propylene homopolymer to prevent significant phase separation due to high dispersibility, thereby exhibiting improved strength properties along with excellent elongation stability (processability) and softness properties in the final resin composition.
  • the polypropylene resin composition according to an embodiment of the present invention is a bulk slurry process and a gas phase process ( Gas phase process).
  • the first reactor may be a loop reactor, for example, a spheripol process reactor including two loop reactors.
  • the second reactor may be a gas phase reactor.
  • the ethylene-propylene copolymer is prepared in a continuous reactor of a bulk-slurry process, that is, a gas phase process.
  • a solution process has to be applied. Unlike polymerization in the presence of a solvent, the overall process efficiency can be significantly improved.
  • the method for producing the polypropylene resin composition according to the present invention is a bulk slurry process (bulk-slurry process) followed by gas phase in a continuous reactor in the presence of a catalyst composition of one or more metallocene compounds of Formula 1 described above.
  • the first reactor consists of a reaction system including a plurality of loop reactors, and in the reaction system including a plurality of loop reactors, in the presence of a catalyst and hydrogen gas, a liquid propylene monomer is continuously polymerized to propylene It may be to produce a homopolymer.
  • the content of hydrogen gas for each of the plurality of loop reactors is in the range of 0.07 L to 4 L under reactor conditions of 1 atm, or is supplied at a pressure of 1 bar to 40 bar, or 150 ppm in the hydrogen molar content range compared to the propylene monomer. to 8000 ppm may be supplied.
  • the input amount of the hydrogen gas is a molar content value (ppm) based on the input amount of propylene.
  • the reaction system of the first reactor for producing the propylene homopolymer includes 1-1 and 1-2 loop reactors, and the 1-1 loop reactor contains hydrogen gas at a concentration of 150 to 8000 ppm.
  • the hydrogen gas may be supplied to the 1-2 loop reactor at a concentration equal to or higher than the feed concentration for the 1-1 loop reactor, and at a concentration of 8000 ppm or less.
  • the hydrogen input amount in the first reactor is 160 ppm or more, or 170 ppm or more, or 180 ppm or more, or 190 ppm or more, or 200 ppm or more, or 250 ppm or more, or 300 ppm or more, or 350 ppm, respectively.
  • the polymerization reaction in the first reactor may be carried out by reacting at a temperature of 25 °C to 500 °C and a pressure of 1 kgf/cm2 to 100 kgf/cm2 for 1 hour to 24 hours.
  • the polymerization reaction temperature of the first reactor is preferably 25 °C to 250 °C, or 30 °C to 200 °C, or 35 °C to 180 °C, or 40 °C to 150 °C, or 45 °C to 120 °C, or 50 °C. to 100 °C, or from 60 °C to 85 °C.
  • the polymerization reaction pressure of the first reactor is preferably 1 kgf/cm 2 to 80 kgf/cm 2 , or 1 kgf/cm 2 to 70 kgf/cm 2 , or 1 kgf/cm 2 to 60 kgf/cm 2 , or 2 kgf/cm 2 to 55 kgf/cm 2 , or 3 kgf/cm 2 to 50 kgf/cm 2 , or 4 kgf/cm 2 to 45 kgf/cm 2 , or 5 kgf/cm 2 to 40 kgf/cm 2 .
  • the polymerization reaction time is preferably 1 to 5 hours.
  • a polypropylene resin composition having excellent processability can be prepared.
  • the copolymerization process of the second reactor for producing the ethylene-propylene-based copolymer dispersed in the propylene homopolymer obtained in the first reactor is a gas phase reaction.
  • the copolymerization process of the second reactor is carried out by transferring the propylene homopolymer produced in the first reactor and then adding propylene and ethylene in addition.
  • the propylene homopolymer produced from the first reactor is transferred to the second reactor (Gas Phase Reactor)
  • the residual propylene monomer and hydrogen gas remaining after the primary recovery process in the first reactor are combined with the propylene homopolymer.
  • transport Preferably, when the propylene homopolymer produced from the first reactor is transferred to the second reactor (Gas Phase Reactor), the antistatic agent treatment used when applying the existing Ziegler-Natta catalyst can be omitted and performed.
  • the copolymerization reaction of the second reactor may be carried out by reacting at a temperature of 28 ° C. to 500 ° C. and a pressure of 1 kgf / cm 2 to 80 kgf / cm 2 for 1 hour to 24 hours.
  • the copolymerization reaction temperature of the second reactor is preferably 30 °C to 250 °C, or 35 °C to 200 °C, or 40 °C to 180 °C, or 45 °C to 150 °C, or 50 °C to 120 °C, or 55 °C. to 100 °C, or 65 °C to 85 °C.
  • the copolymerization reaction pressure of the second reactor is preferably 1 kgf/cm 2 to 65 kgf/cm 2 , or 1 kgf/cm 2 to 55 kgf/cm 2 , or 1 kgf/cm 2 to 50 kgf/cm 2 , or 2 kgf/cm 2 to 40 kgf/cm 2 , or 3 kgf/cm 2 to 35 kgf/cm 2 , or 4 kgf/cm 2 to 30 kgf/cm 2 , or 5 kgf/cm 2 to 25 kgf/cm 2 .
  • the polymerization reaction time is preferably 1 to 5 hours.
  • the copolymerization process of the second reactor may be performed under hydrogenation or non-hydrogenation conditions.
  • hydrogen gas is additionally A copolymerization process of a gas phase reaction in which only propylene and ethylene are additionally added may be performed without input or by adding a small amount of hydrogen.
  • a small amount of hydrogen when a small amount of hydrogen is added, it may be added in an amount of about 0.01 times or less, or about 0.005 times or less, or about 0.001 times or less, compared to the hydrogen content used in the first reactor.
  • about 80 ppm or less, or about 50 ppm or less, or about 30 ppm or less, or about 15 ppm or less, or about 10 ppm or less, or about 5 ppm or less in the range of the hydrogen molar content relative to the propylene monomer may be added.
  • the ethylene propylene copolymer dispersed in the propylene homopolymer is prepared by an additional gas reaction process, thereby providing a narrow molecular weight distribution with xylene-soluble content, ethylene
  • Tc crystallization temperature
  • the propylene homopolymer obtained from the first reactor has a melt index (MI 2.16 ) of about 10 g/10min to about 100 g/ It may be 10 min, and more specifically, about 15 g/10 min to about 35 g/10 min or about 25.2 g/10 min to about 25.6 g/10 min.
  • MI 2.16 melt index
  • the melt index (MI 2.16 ) of the propylene homopolymer obtained from the first reactor is obtained in the same or similar range to the melt index (MI 2.16 ) of the finally produced polypropylene resin composition.
  • the melt index (MI 2.16 ) of the propylene homopolymer and the melt index (MI 2.16 ) of the finally produced polypropylene resin composition may be different from each other within about 5 g/10 min.
  • the melt index (MI 2.16 ) of the propylene homopolymer and the ethylene propylene copolymer may have a difference within about 0 to about 5 g/10min, more specifically, within about 3 g/10min, or It may have a difference within about 2 g/10 min, or within about 1.5 g/10 min.
  • the propylene homopolymer obtained from the first reactor and the ethylene propylene copolymer obtained from the second reactor may also have the same or similar melt index (MI 2.16 ), viscosity, and molecular weight. have.
  • MI 2.16 melt index
  • viscosity viscosity
  • molecular weight molecular weight of the ethylene-propylene copolymer from rapidly increasing, unlike the case where a conventional Ziegler-Natta catalyst is applied.
  • the difference in physical properties between the propylene homopolymer and the ethylene-propylene-based copolymer is optimized, and the ethylene-propylene-based copolymer dispersed in the propylene homopolymer minimizes phase separation.
  • dispersing in the form it is possible to solve the problems of lowering strength and lowering stretchability and processability due to the phase separation of the conventional propylene homopolymer and the ethylene-propylene-based copolymer.
  • propylene and ethylene may be added in a weight ratio of 7:3 to 6:4, or propylene may be added in a weight ratio of 1.4 to 2.6 times based on the weight of the ethylene input.
  • the propylene and ethylene may be added in a weight ratio of 7:3, or 6.5:4, or 6:4.
  • the propylene is 1.45 times or more, or 1.5 times or more, or 1.52 times or more, or 1.55 times or more, or 1.58 times or more, or 1.6 times or more, or 1.62 times or more, based on the weight of the ethylene input amount, 2.5 times or less, or 2.48 times or less, or 2.45 times or less, or 2.4 times or less, or 2.38 times or less, or 2.35 times or less, or 2.34 times or less.
  • the content of the ethylene propylene copolymer is 3 wt% to 9 wt%, or 3.2 wt% to 8.8 wt%, or 3.3 wt% to 8.6 wt%, based on the weight of the propylene homopolymer %, or from 3.5% to 8.4% by weight, or from 4% to 8% by weight.
  • the process of preparing a propylene homopolymer and the process of preparing an ethylene-propylene-based copolymer in the presence of the catalyst composition described above can be performed by applying a conventional apparatus and contacting technique. have.
  • the polypropylene resin composition according to an embodiment of the present invention prepared by the above-described manufacturing method is a thin and uniform fiber by optimizing xylene soluble content, ethylene content, tensile strength and flexural modulus with a narrow molecular weight distribution. can be manufactured, and it not only gives a softer touch than existing products, but also realizes excellent toughness that is not easily torn with high strength. Accordingly, it may be particularly useful for manufacturing a polypropylene nonwoven fabric requiring excellent softness along with high rigidity.
  • the polypropylene resin composition of the present invention maintains high rigidity with superior process stability and processability than conventional Ziegler-Natta catalyst-applied polypropylene or conventional metallocene catalyst-applied homo polypropylene or copolymer, and provides improved soft Nice characteristics can be secured.
  • a resin composition for manufacturing a nonwoven fabric comprising the polypropylene resin composition and a polypropylene nonwoven fabric manufactured using the same are provided.
  • the resin composition for preparing the nonwoven fabric and the nonwoven fabric manufactured using the same may be prepared according to a conventional method except for using the polypropylene resin composition.
  • the polypropylene nonwoven fabric according to the present invention may be made of fibers prepared from the above-described polypropylene resin composition.
  • the polypropylene resin composition optimizes all of xylene soluble content, ethylene content, tensile strength and flexural modulus, melt index, and crystallization temperature with a narrow molecular weight distribution, so that when producing a polypropylene nonwoven fabric, excellent processability It has the advantage of maintaining high strength and providing superior softness than existing products.
  • the polypropylene nonwoven fabric has a handle-O-meter measurement value of 24 g or less or about 1.0 g to about 24 according to NWSP 090.3.R0 standard in terms of securing excellent flexibility with high strength. can be g.
  • the handle-o-meter is a value measured under the condition that the basis weight of the nonwoven fabric is 72 g/m 2 to 76 g/m 2 .
  • the polypropylene nonwoven fabric according to the present invention is characterized in that it satisfies the handle-o-meter measurement value range as described above, thereby maintaining high strength and implementing softer properties than existing products.
  • the polypropylene resin composition according to the present invention includes an ethylene-propylene-based copolymer prepared by using a continuous reactor in the presence of a metallocene compound having a specific structure, and has a narrow molecular weight distribution and xylene soluble content, ethylene content, and tensile strength. and flexural modulus, melt index, and crystallization temperature are optimized at the same time, so that it exhibits high strength with excellent processability and softness properties, and is advantageous for manufacturing polypropylene nonwoven fabric.
  • Example 1 is a scanning electron microscope (SEM) photograph of a cross section of a polypropylene resin composition according to Example 1-1.
  • Example 2 is a photograph measured by a scanning electron microscope (SEM) of the polypropylene nonwoven fabric prepared according to Example 2-1.
  • Example 3 is a photograph measured with a scanning electron microscope (SEM) of the polypropylene nonwoven fabric prepared according to Example 2-2.
  • the (diethylsilane-diyl)-bis((2-methyl-4-tert-butyl-phenylindenyl)silane prepared in step 1 was dissolved in toluene/THF volume ratio 5/1 mixed solvent (120 mL). Then, a solution of n-butyllithium (2.5 M, hexane solvent, 22.2 g) was slowly added dropwise at -78° C., followed by stirring at room temperature for one day. To the reaction solution, zirconium chloride (8.9 g) was dissolved in toluene (20 mL). After dilution, it was slowly added dropwise at -78° C. and stirred at room temperature for one day.
  • the polypropylene resin compositions of Examples 1 to 4 contain only the propylene homopolymer and the ethylene propylene copolymer obtained as described above, and do not contain additives such as a nucleating agent.
  • the type of supported catalyst used in each example the polymerization pressure and temperature of each reactor, the concentration of hydrogen gas supplied to each reactor, or the concentration of the cocatalyst (TEAL), and the input amount of ethylene gas and propylene gas As summarized in Table 1 below.
  • the type of supported catalyst used in each example the polymerization pressure and temperature of each reactor, the concentration of hydrogen gas supplied to each reactor, or the concentration of the cocatalyst (TEAL), and the input amount of ethylene gas and propylene gas As summarized in Table 1 below.
  • Example 1-1 production example One 1.3 35 67 80 50 430 18 72 7.0 3.0
  • Example 1-2 production example One 1.3 35 67 80 50 430 18 72 6.5 4.0 comparative example 1-1 chemical formula A 1.8 35 70 80 50 350 18 72 6.5 4.0 comparative example 1-2 chemical formula B 2.4 35 70 80 50 430 18 72 6.5 4.0
  • the input amounts of TEAL and H 2 are molar content values (ppm) based on the propylene input amount.
  • Propylene homopolymer (Homo PP, LG Chem H7700, MI 2.16 34 g/10min) and ethylene propylene elastomer (C3-based POE, Exxon Vistamaxx 6202, MI 2.16 20 g/10min) were mixed with an elastomer content based on the total weight of the composition.
  • the polypropylene resin composition of Comparative Example 1-3 [Homo PP + C3-based POE (15%)] was prepared.
  • Propylene homopolymer (Homo PP, LG Chem H7700, MI 2.16 34 g/10min) and ethylene propylene elastomer (C3-based POE, Exxon Vistamaxx 6202, MI 2.16 20 g/10min) were mixed with an elastomer content based on the total weight of the composition.
  • the polypropylene resin composition of Comparative Example 1-4 [Homo + C3-based POE (20%)] was prepared.
  • a metal phosphate-based nucleating agent was additionally prescribed at 200 ppm based on the total weight of the resin composition, thereby preparing a polypropylene resin composition of Comparative Example 1-5.
  • ethylene content in the polypropylene resin compositions of Examples 1-1 to 1-2 and Comparative Examples 1-1 to 1-5 was measured by infrared spectroscopy in accordance with ASTM D 5576 standard of the American Society for Testing and Materials.
  • the specimen in the IR absorption spectrum It was calculated by measuring the height of the 4800-3500 cm -1 peak reflecting the thickness and the area of the 750-710 cm -1 peak where the ethylene (C2) component appears.
  • Calibration obtained by plotting the value obtained by dividing the 750-710 cm -1 peak area of the measured standard sample by the 4800-3500 cm -1 peak height according to the method of the American Society for Testing and Materials ASTM D 5576 (Calibration) Substituted in the formula to calculate the ethylene content.
  • Examples 1-1 to 1-2 and Comparative Example 1-1 using a differential scanning calorimeter (Differential Scanning Calorimeter, DSC, device name: DSC 2920, manufacturer: TA instrument) in accordance with the ASTM D 3418 standard of the American Society for Testing and Materials Melting points and melting points (Tm) of the polypropylene resin compositions of 1 to 5 were measured.
  • DSC differential Scanning Calorimeter
  • the polypropylene resin composition After heating the polypropylene resin composition to 200 °C by increasing the temperature, it is maintained at that temperature for 5 minutes (1 st RUN heat history removed), then lowered to -30 °C, and DSC appears by increasing the temperature again (Differential Scanning Calorimeter, manufactured by TA) The temperature corresponding to the top of the curve was measured as the melting point (Tm). At this time, the rate of temperature rise and fall is 10 °C/min, and the melting point (Tm) is shown as a result of measurement in the second temperature rise and fall section ( 2nd RUN).
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer are measured using gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water), and the molecular weight distribution (MWD) by dividing the weight average molecular weight by the number average molecular weight ) was calculated.
  • GPC gel permeation chromatography
  • MWD molecular weight distribution
  • GPC gel permeation chromatography
  • a Waters PL-GPC220 instrument was used, and a Polymer Laboratories PLgel MIX-B 300 mm long column was used.
  • the measurement temperature was 160 °C
  • 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene) was used as a solvent, and the flow rate was 1 mL/min.
  • the samples of the polypropylene resin compositions of Examples 1-1 to 1-2 and Comparative Examples 1-1 to 1-5 were obtained by using a GPC analysis instrument (PL-GP220), respectively, and trichlorobenzene containing 0.0125% of BHT (1, 2,4-Trichlorobenzene) was dissolved in 160 °C for 10 hours, pre-treated, prepared to a concentration of 10 mg/10mL, and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were derived using a calibration curve formed using a polystyrene standard specimen.
  • the weight average molecular weight of the polystyrene standard specimen is 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 1000000 g
  • Nine species of /mol were used.
  • the tensile strength (kg/cm 2 ) of the polypropylene resin composition was measured using Instron's UTM equipment (Universal Testing Machine, universal testing machine).
  • the strength (kg/cm2) taken when a load was applied at 28 mm/min with a loading nose after a specimen according to ASTM D 790 standard was placed on a support and fixed on a support was measured.
  • the flexural strength (Flexural Strength) which is the maximum value at which the loading nose does not increase any more
  • the flexural modulus indicating stiffness as the initial slope value according to the flexural force were measured.
  • Table 2 shows the evaluation results of the physical properties of the polypropylene resin compositions of Examples 1-1 to 1-2 and Comparative Examples 1-1 to 1-5, which were measured in the same manner as described above.
  • Example 1-1 Example 1-2 comparative example 1-1 comparative example 1-2 comparative example 1-3 comparative example 1-4 comparative example 1-5 MI (2.16 kg, g/10 min) 25.2 25.6 26.2 32.6 34/20 34/20 32.6 C2 content (wt%) 2.2 2.7 2.5 5.6 2.5 3.0 5.6 X.S (%) 4.5 7.0 7.0 12.2 unmeasured unmeasured 12.2 Tm ( o C) 152 152 149 153 159 159 154 Tc ( o C) 111 110 105 108 109 109 121 Mw/Mn 2.8 2.8 3.4 3.0 3.0 3.0 3.0 Tensile strength (kg/cm 2 ) 280 280 260 260 250 250 275 Flexural strength (kg/cm 2 ) 380 380 350 350 350 340 370 Flexural modulus (kg/cm 2 ) 12000 12000 11000 10500 11000 10500 12500 12500
  • the cross section of the polypropylene resin composition was examined by a scanning electron microscope (SEM). Microscope). Specifically, a scanning electron microscope (SEM) photograph of a cross section of the polypropylene resin composition according to Example 1-1 is shown in FIG. 1 (magnification of 3000 times).
  • SEM scanning electron microscope
  • the polypropylene resins of Examples 1-1 and 1-2 containing the ethylene propylene copolymer prepared using a continuous reactor in the presence of a metallocene compound of a specific structure according to the present invention exhibits a narrow molecular weight and an optimized xylene soluble content (X.S) along with high tensile strength and flexural modulus compared to the polypropylene resin compositions of Comparative Examples 1-1 to 1-4, and is soft with excellent stretchability and processability. It can be seen that the varnish can be improved.
  • X.S xylene soluble content
  • a polypropylene nonwoven fabric was prepared using the polypropylene resin composition obtained in Example 1-1 under the following spinning equipment and conditions.
  • a polypropylene nonwoven fabric was prepared in the same manner as in Example 2-1, except that the polypropylene resin composition obtained in Example 1-2 was used.
  • a polypropylene nonwoven fabric was prepared in the same manner as in Example 2-1, except that 15% and 20% blend of polypropylene C3-Elastomer of Comparative Examples 1-1 to 1-5 was used.
  • a polypropylene nonwoven fabric was prepared in the same manner as in Example 2-1, except that 15% and 20% blend of polypropylene C3-Elastomer of Comparative Examples 1-1 to 1-4 was used.
  • Comparative Example 1-5 A polypropylene nonwoven fabric manufacturing process was performed in the same manner as in Example 2-1 except for using the polypropylene resin composition, but spinning was not possible due to a single yarn problem.
  • the weight of the prepared nonwoven fabric was measured, and the weight of the nonwoven fabric per unit area (g/m 2 ) was calculated.
  • the average diameter (Fiber Diameter, ⁇ m) of fibers constituting the nonwoven fabric was obtained by measuring 400 samples of the nonwoven fabric with a scanning electron microscope (SEM).
  • the softness (Softness, HOM; Total Hand, g) of the nonwoven fabric was measured using a Handle-O-meter instrument of Thwing-Albert Instruments.
  • the Handle-O-Meter values used have an error of +25% to -25%, which is a known deviation from the manufacturer.
  • Example 2-1 Example 2-2 comparative example 2-1 comparative example 2-2 comparative example 2-3 comparative example 2-4 comparative example 2-5
  • Nonwoven weight (g/m 2 ) 72 75 not measurable (poor radiation) 76 76 74 not measurable (poor radiation) Individual Fiber Strength (g/d) 5.5 5.1 Impossible to measure (bad radiation) 3.5 4.5 4 not measurable (poor radiation) Individual Fiber Average Diameter ( ⁇ m) 8.5 8.6 not measurable (poor radiation) 9.2 11.6 10.6 not measurable (poor radiation) Handle-O- Meter (g) 24 21 not measurable (poor radiation) 18 32 28 not measurable (poor radiation)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 특정 구조의 메탈로센 화합물 존재 하에 연속 반응기를 이용하여 제조한 에틸렌 프로필렌계 공중합체를 포함하는 폴리프로필렌 수지 조성물에 관한 것으로, 좁은 분자량 분포와 함께 자일렌 가용분, 에틸렌 함량, 용융지수, 결정화 온도, 인장강도 및 굴곡탄성율을 최적화함으로써, 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 소프트한 부직포를 제조할 수 있는 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포가 제공된다.

Description

폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포
관련 출원(들)과의 상호 인용
본 출원은 2021년 3월 26일자 한국 특허 출원 제10-2021-0039665호 및 2022년 3월 25일자 한국 특허 출원 제10-2022-0037393호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 소프트한 부직포에 적합한 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포에 관한 것이다.
일반적으로 부직포는 방직, 제직이나 편성과정을 거치지 않고 기계조작이나 열접착 등 기계, 화학처리로 섬유 집합체를 접착하거나 엉키게하여 만든 직물. 펠트, 수지접착시킨 부직포, 니들 펀치, 스펀 본드, 스펀 레이스, 엠보스 필름, 습식 부직포 등이 이에 속한다. 협의로는 랜덤(random)에 겹친 웹(web)과 섬유의 접점을 수지로 접착하여 심지등으로 사용하는 것을 의미한다. 접착포라고도 하며 본드 패브릭(bonded fabric)이라고도 한다. 이러한 부직포는 다양한 방법으로 제조될 수 있는데 니들펀칭법, 케미칼본딩법, 서멀본딩법, 멜트블로운법, 스펀레이스법, 스테치본드법, 스펀본드법이 알려져 있다.
한편, 폴리올레핀계 수지를 원료로 한 스펀본드(spunbond) 부직포는 촉감, 유연성, 통기성, 단열성 등이 우수하여 필터, 포장재, 침구, 의류, 의료용품, 위생용품, 자동차 내장재, 건축 자재 등으로 널리 사용되고 있다. 특히, 폴리프로필렌 섬유는 특유의 낮은 융점, 및 우수한 내화학성으로 인해 캘린더 본딩공법 또는 에어스루 본딩공법을 통해 서멀본드 부직포로 가공되며, 기저귀, 생리대 등의 위생용품 표면재로 주로 사용되고 있다.
한편, 기존의 지글러-나타 촉매로 제조되는 호모 폴리프로필렌 수지와 달리 메탈로센 촉매로 제조된 호모 폴리프로필렌 수지는 분자량 분포가 좁기 때문에 굵기가 가늘면서 균일한 섬유가 제조 가능하고, 이에 따라 강도가 우수한 저평량의 부직포를 제조하는 장점이 있다. 하지만, 메탈로센 호모 폴리프로필렌 수지는 낮은 자일렌 용해도(xylene solubles)나 좁은 분자량 분포에 따른 저분자량의 함량이 적기 때문에, 부직포 제조시 표면적으로 거친 촉감(feel)을 주는 단점이 있다.
기존의 범용 지글러 나타 호모 폴리프로필렌을 기반으로 유연한(soft) 느낌을 가미하기 위해, 호모 폴리프로필렌과 폴리에틸렌을 이용한 이중 성분(Bi-Component) 가공 기술, 예컨대, 호모 폴리프로필렌과 프로필렌 포함 폴리올레핀(C3-POE)를 이용한 혼합 기술, 호모 폴리프로필렌과 낮은 모듈러스를 갖는 폴리프로필렌(Low modulus polypropylene; LPP)를 이용한 혼합 기술, 또는 호모 폴리프로필렌과 폴리프로필렌 터폴리머(terpolymer polypropylene; tPP)를 이용한 혼합 기술의 4가지 방법이 이용되고 있다. 그러나, 이들 방법은 모두 폴리프로필렌에 추가적으로 이종의 수지를 함께 사용하는 것으로, 종래 대비 유연한 느낌(또는 유연성)이 개선은 되나, 소프트니스 특성을 개선하는 정도에 한계가 있을 뿐만 아니라, 부직포의 강도 저하 및 가공시 단사 발생으로 인한 생산성 저하 등의 문제점이 필연적으로 수반된다.
또한, 이러한 지글러 나타 촉매로 제조한 폴리프로필렌의 문제를 개선하기 위하여, 메탈로센 촉매로 제조한 프로필렌-1부텐 랜덤 공중합체를 사용함으로써 부직포 제조시 우수한 강도 특성을 유지하면서도 유연성을 증대시킬 수도 있으나, 유연성 개선 정도가 충분하지 않으며 기존의 지글러 나타계 호모 폴리프로필렌과 폴리에틸렌의 이종 성분 가공 기술 또는, 호모 폴리프로필렌과 프로필렌 함유 폴리올레핀(C3-POE)을 이용한 혼합 기술로 제조한 제품 대비 소프트니스(Softness) 특성이 상대적으로 열세하여 거친 촉감을 주는 단점이 있다.
이에 메탈로센계 촉매를 이용하여, 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 소프트한 부직포에 적합한 폴리프로필렌 수지 조성물의 개발이 요구된다.
본 명세서는, 특정 구조의 메탈로센 화합물 존재 하에 연속 반응기를 이용하여 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 소프트한 부직포에 적합한 폴리프로필렌 수지 조성물 및 그의 제조방법을 제공하고자 한다.
본 발명은, 분자량 분포(Mw/Mn)가 2.6 내지 3.2이고, 자일렌 가용분(X.S., Xylene soluble)이 4.5 중량% 내지 8.0 중량%이고, 에틸렌의 함량이 1.0 중량% 내지 5.0 중량%이고, ASTM D 638 방법으로 측정한 인장강도가 275 kg/cm2 내지 285 kg/cm2이고, ASTM D 790 방법으로 측정한 굴곡 탄성율이 11500 kg/cm2 내지 12500 kg/cm2 ASTM D 790 방법으로 측정한 굴곡 탄성율이 11500 kg/cm2 내지 12500 kg/cm2 이고, 용융지수(MI2.16, ASTM D 1238, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 10 g/10min 내지 100 g/10min이고, 결정화 온도(Tc)는 95 ℃ 내지 115 ℃인, 폴리프로필렌 수지 조성물을 제공한다.
한편, 본 발명은 상술한 폴리프로필렌 수지 조성물을 제조하는 방법을 제공한다. 상기 폴리프로필렌 수지 조성물의 제조 방법은, 하기 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에, 적어도 하나 이상의 제1 반응기와 적어도 하나 이상의 제2 반응기를 포함하는 일련의 반응기를 이용하여 폴리프로필렌 수지 조성물을 제조하는 것으로, 상기 제1 반응기에서 프로필렌 단일중합체를 제조하는 단계; 및 상기 제2 반응기에서 에틸렌 프로필렌계 공중합체 를 제조하는 단계를 포함한다.
[화학식 1]
Figure PCTKR2022004251-appb-img-000001
상기 화학식 1에서,
A는 탄소, 실리콘 또는 게르마늄이고,
M은 4족 전이금속이며,
X1 및 X2는 각각 독립적으로 할로겐이고,
R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환된 C6-20 아릴이고,
R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
R9 및 R10은 각각 독립적으로 C1-20 알킬이다.
이 때, 상기 화학식 1에서, A는 실리콘일 수 있고, R1, 및 R5는 각각 C3-6 분지쇄 알킬기로 치환된 페닐일 수 있다. 또한, R9, 및 R10은 각각 C2-4 직쇄상 알킬일 수 있으며, 이 중에서 R9, 및 R10은 서로 동일한 것일 수 있으며, 바람직하게는 에틸일 수 있다.
그리고, 상기 메탈로센 화합물, 구체적으로 예를 들어, 하기 화학식 1-1로 표시되는 것일 수 있다:
[화학식 1-1]
Figure PCTKR2022004251-appb-img-000002
.
상기 화학식 1-1의 구조식은 본 발명을 설명하기 위한 일 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.
일예로, 상기 제1 반응기는 루프 반응기이고, 상기 제2 반응기는 기체상 반응기일 수 있다.
그리고, 상기 제2 반응기에서, 프로필렌과 에틸렌은 7:3 내지 6:4의 중량비로 투입할 수 있다.
한편, 본 발명은 상술한 폴리프로필렌 수지 조성물로부터 제조된 섬유로 이루어진, 제조되는 폴리프로필렌 부직포를 제공한다.
일예로, 상기 폴리프로필렌 부직포는, 부직포의 평량이 72 g/m2 내지 76 g/m2인 조건 하에서, NWSP 090.3.R0 기준에 따른 핸들-오-미터(Handle-O-meter) 측정값이 24 g 이하일 수 있다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합을 설명하기 위한 것이며, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 이들의 조합 또는 부가 가능성을 배제하는 것은 아니다.
또한 본 명세서에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에” 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태로 한정하는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명을 상세하게 설명한다.
폴리프로필렌 수지 조성물
본 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물은, 분자량 분포(Mw/Mn)가 2.6 내지 3.2이고, 자일렌 가용분(X.S., Xylene soluble)이 4.5 중량% 내지 8.0 중량%이고, 에틸렌의 함량이 1.0 중량% 내지 5.0 중량%이고, ASTM D 638 방법으로 측정한 인장강도가 275 kg/cm2 내지 285 kg/cm2이고, ASTM D 790 방법으로 측정한 굴곡 탄성율이 11500 kg/cm2 내지 12500 kg/cm2인 ASTM D 790 방법으로 측정한 굴곡 탄성율이 11500 kg/cm2 내지 12500 kg/cm2 이고, 용융지수(MI2.16, ASTM D 1238, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 10 g/10min 내지 100 g/10min이고, 결정화 온도(Tc)는 95 ℃ 내지 115 ℃인 조건을 모두 만족하는 것을 특징으로 한다.
지글러-나타 촉매로 제조되는 프로필렌 (공)중합체는, 활성점이 여러 개 혼재하는 다 활성점 촉매(multi-site catalyst)를 사용하기 때문에, 중합체의 분자량 분포가 넓고 자일렌 가용분이 높은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제가 있다.
또한, 기존의 메탈로센 촉매를 사용하여 폴리프로필렌을 제조할 경우, 낮은 융점(Tm)과 좁은 분자량 분포로 부직포 제조시 연신 안정성 및 강도가 우수한 반면에 소프트니스(Softness)가 저하되는 단점을 갖는다. 이에 따라, 에틸렌이나 1-부텐 등과 함께 이원 또는 삼원 공중합체를 제조하는 경우에 부직포의 유연성을 증대시킬 수도 있으나, 유연성 개선 정도가 충분하지 않다. 또, 기존의 지글러 나타계 호모 폴리프로필렌과 폴리에틸렌의 이종 성분 가공 기술 또는, 호모 폴리프로필렌과 프로필렌 포함 폴리올레핀(C3-POE, 예컨대, 프로필렌-에틸렌 공중합체 엘라스토머)를 이용한 혼합 기술로 제조한 제품 대비 소프트니스(Softness) 특성이 상대적으로 열세하여 거친 촉감을 주는 단점이 있다.
이에 본 발명자들은 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 소프트한 부직포에 적합한 폴리프로필렌 수지 조성물을 예의 연구하던 중, 지글러-나타 촉매 대신 이하 후술할 메탈로센 촉매를 사용하고 프로필렌 단일중합체를 제조하는 제1 반응기와 에틸렌 프로필렌계 공중합체를 제조하는 제2 반응기를 포함하는 일련의 반응기를 이용하여 제조한 폴리프로필렌 수지 조성물이 이를 만족함을 확인하여 본 발명을 완성하였다.
본 발명의 일 구현예에 따르며, 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 소프트한 부직포를 제조하는 데 적합한 폴리프로필렌 수지 조성물을 제공한다.
상기 폴리프로필렌 수지 조성물은, 보다 구체적으로 분자량 분포(Mw/Mn, MWD)가 약 2.6 내지 약 3.2일 수 있다. 이와 같이, 좁은 분자량 분포를 가짐으로써 연신 안정성 및 강성이 증가되어 멀티 필라멘트용 또는 부직포용 섬유 제품 제조시 우수한 기계적 물성을 나타낼 수 있다. 보다 구체적으로, 상기 폴리프로필렌 수지 조성물은 분자량 분포(Mw/Mn, MWD)가 약 2.6 내지 약 3.0, 약 2.6 내지 약 2.9, 또는 약 2.6 내지 약 2.8일 수 있다.
본 발명에 있어서 분자량 분포는 겔 투과 크로마토그래피(GPC)를 이용하여 폴리프로필렌 수지 조성물의 중량평균 분자량(Mw) 및 수평균 분자량(Mn)을 각각 측정하고, 분자량 분포로서 수평균 분자량에 대한 중량평균 분자량의 비(Mw/Mn)를 계산하여 구할 수 있다.
구체적으로, 겔투과 크로마토그래피(GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 사용할 수 있다. 이때 측정 온도는 160 ℃이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용할 수 있고, 유속은 1 mL/min로 적용할 수 있다. 폴리프로필렌의 샘플은 각각 GPC 분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠(1,2,4-Trichlorobenzene)에서 160 ℃, 10 시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하여 측정할 수 있다. 또한, 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도할 수 있다. 일예로, 폴리스티렌 표준 시편의 중량평균분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol의 9종을 사용할 수 있다.
또한, 상기 폴리프로필렌 수지 조성물은, 자일렌 가용분(X.S., Xylene soluble)이 4.5 중량% 내지 8.0 중량%일 수 있다.
상술한 바와 같이 약 2.6 내지 약 3.2의 좁은 분자량 분포와 함께 자일렌 가용분(X.S., Xylene soluble)을 효과적으로 제어하여 약 4.5 중량% 내지 약 8.0 중량%으로 최적화한 것을 특징으로 한다. 특히, 자일렌 가용분은 전체 중합체 내 어택틱(atactic) 성분 및 호모 폴리프로필렌 중합체와 에틸렌 프로필렌계 공중합체를 포함한 조성의 제품의 경우 에틸렌 프로필렌계 공중합체 성분 즉, 전체 중합체 중 비결정성 중합체 함량을 나타내는 값으로, 이러한 자일렌 가용분 함량을 최적화하여 적정 수준의 녹는 점과 기계적 물성의 발현이 가능한 폴리프로필렌 수지 조성물을 얻을 수 있다.
이와 같이, 자일렌 가용분(X.S., Xylene soluble) 함량을 최적 범위로 조절함으로써 가공성 및 연신성이 개선되며 멀티 필라멘트용 또는 부직포 제품 제조시 우수한 웹 형성(web formation)이나 높은 강도 확보와 함께 우수한 소프트니스(softness) 특성을 나타낼 수 있다. 보다 구체적으로, 상기 폴리프로필렌 수지 조성물은 자일렌 가용분(X.S., Xylene soluble) 함량이 약 4.5 중량% 이상이며, 약 7.8 중량% 이하, 또는 약 7.5 중량% 이하, 또는 약 7.3 중량% 이하, 또는 약 7.0 중량% 이하일 수 있다.
본 발명에 있어서 자일렌 가용분은, 폴리프로필렌 수지 조성물을 자일렌 중에 용해시키고, 냉각 용액으로부터 불용성 부분을 결정화시켜 결정된 냉각 자일렌 중에 가용성인 중합체의 함량(중량%)으로, 자일렌 가용분은 낮은 입체 규칙성 즉, 비결정성 중합체 사슬을 함유한다. 이에 따라, 자일렌 가용분의 함량이 낮을수록 높은 입체 규칙도 즉, 높은 결정성 중합체 햠량을 갖는다. 본 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물은 이와 같이 낮은 결정성 중합체 함량을 가짐에 따라 부직포 제조시 우수한 부드러움(Softness) 특성을 나타낼 수 있다. 자일렌 가용분 제어에 따른 개선 효과의 우수함을 고려할 때, 상기 폴리프로필렌 수지 조성물의 자일렌 가용분은 상술한 바와 같은 범위로 유지될 수 있다.
또, 본 발명에 있어서 상기 자일렌 가용분은, 폴리프로필렌 수지 조성물 샘플에 자일렌을 넣고, 130 ℃에서 1 시간 이상 가열하여 조성물을 완전히 용해시킨 후 20 ℃에서 1 시간 이상 냉각한 후 필터하여 고체상과 액체상을 분리한다. 이후 액체상을 130 ℃로 가열하여 자일렌 성분을 제거한 후 잔류하는 성분의 무게를 측정할 수 있다.
본 발명에 따른 폴리프로필렌 수지 조성물은, 보다 구체적으로 전체 수지 조성물 총 중량에 대하여 약 1.0 중량% 내지 약 5.0 중량%, 또는 약 1.2 중량% 내지 약 4.8 중량%, 또는 약 1.5 중량% 내지 약 4.5 중량%, 또는 약 1.8 중량% 내지 약 4.0 중량%, 또는 약 1.9 중량% 내지 약 3.5 중량%, 또는 약 2.0 중량% 내지 약 3.2 중량%, 또는 약 2.1 중량% 내지 약 3.0 중량%, 또는 약 2.2 중량% 내지 약 2.7 중량%의 함량으로 에틸렌을 포함한다.
상기 폴리프로필렌 수지 조성물은, 후술되는 제1, 제2 반응기를 통과한 최종 중합체의 에틸렌 함량을 상술한 범위내로 형성시켜 포함함으로써, 이종의 공단량체가 에틸렌 프로필렌계 공중합체 주사슬 사이에 들어가며, 이렇게 얻어진 에틸렌 프로필렌계 공중합체가 프로필렌 단일중합체에 높은 분산성으로 상 분리가 크게 나타나지 않도록 포함되어, 최종 수지 조성물의 소프트니스 특성을 조절한다. 또한, 후술하는 특정 구조의 메탈로센계 촉매를 사용하여 높은 전환율로 중합에서도 좁은 분자량 분포를 나타내며, 또 우수한 연신 안정성 (가공성) 및 소프트니스 특성과 함께 개선된 강도 특성을 나타내는 측면에서, 폴리프로필렌 수지 조성물에서 에틸렌의 함량은 전술한 범위로 포함되는 게 바람직하다.
한편, 본 발명에 있어서 폴리프로필렌 수지 조성물 내 에틸렌 함량은, 미국재료시험학회규격 ASTM D 5576에 따라 적외선흡수스펙트럼(FT-IR)을 사용하여 분광학적인 방법으로 측정할 수 있다.
일예로, 폴리프로필렌 수지 조성물의 필름 혹은 필름 형태 시편을 FT-IR 장비의 마그네틱 홀더(magnetic holder)에 고정시킨 후, IR 흡수 스펙트럼에서 시편 두께를 반영하는 4800-3500 cm-1 피크의 높이와 에틸렌 성분이 나타나는 750-710 cm-1 피크의 면적을 각각 측정하여 계산한다. 즉, 미국재료시험학회규격 ASTM D 5576의 방법에 따라, 측정한 값을 표준 시편(Standard sample)의 각 피크 면적을 4800-3500 cm-1 피크 높이로 나눈 값을 플롯(Plot)하여 구한 캘리브레이션(Calibration) 식에 대입하여 각각 에틸렌 함량을 각각 계산한다. 폴리프로필렌 수지 조성물 내 에틸렌 함량의 측정 방법은 후술할 시험예 1에서 보다 구체화될 수 있다.
또, 상기 폴리프로필렌 수지 조성물은, 상술한 바와 같이 분자량 분포 및 자일렌 가용분과 에틸렌 함량을 최적화함과 동시에, 인장강도와 굴곡탄성율을 최적 범위로 유지하는 것을 특징으로 한다.
구체적으로, 상기 폴리프로필렌 수지 조성물은 ASTM D 638 방법으로 측정한 인장강도(Tensil Strength)가 275 kg/cm2 내지 285 kg/cm2이고, ASTM D 790 방법으로 측정한 굴곡 탄성율(Flexural Modulus)이 11500 kg/cm2 내지 12500 kg/cm2이다.
바람직하게는, 상기 폴리프로필렌 수지 조성물은 ASTM D 638 방법으로 측정한 인장강도가 276 kg/cm2 내지 284 kg/cm2, 또는 278 kg/cm2 내지 283 kg/cm2일 수 있으며, ASTM D 790 방법으로 측정한 굴곡 탄성율(Flexural Modulus)이 11600 kg/cm2 내지 12400 kg/cm2, 또는 11800 kg/cm2 내지 12300 kg/cm2일 수 있다.
또, 상기 폴리프로필렌 수지 조성물은 ASTM D 790 방법으로 측정한 굴곡강도(Flexural Strength)가 375 kg/cm2 내지 385 kg/cm2, 또는 376 kg/cm2 내지 384 kg/cm2, 또는 378 kg/cm2 내지 383 kg/cm2일 수 있다.
이와 같이 발명의 일 구현예에 따른 상기 폴리프로필렌 수지 조성물은 분자량 분포와 함께 자일렌 가용분(X.S., Xylene soluble), 에틸렌 함량, 및 인장강도와 굴곡탄성율을 동시에 최적화하여, 부직포 제조시 우수한 가공성 및 소프트니스 특성과 함께 높은 강성을 나타낼 수 있다.
또, 상기 폴리프로필렌 수지 조성물은, 미국재료시험학회규격 ASTM D 1238에 따라 230 ℃에서 2.16 kg 하중으로 측정한 용융지수(MI2.16)가 약 10 g/10min 내지 약 100 g/10min이다. 이와 같이 용융 지수의 범위를 최적화함으로써 멀티 필라멘트용 또는 부직포용 섬유 제품에 적합한 폴리프로필렌 수지 조성물을 얻을 수 있다. 보다 구체적으로, 상기 폴리프로필렌 수지 조성물은 용융지수(MI2.16)가 약 12 g/10min 이상, 또는 약 15 g/10min 이상, 또는 약 18 g/10min 이상, 또는 약 20 g/10min 이상, 또는 약 23 g/10min, 또는 약 25 g/10min 이상이면서, 약 85 g/10min 이하, 또는 약 60 g/10min 이하, 또는 약 45 g/10min 이하, 또는 약 40 g/10min 이하, 또는 약 35 g/10min 이하, 또는 약 30 g/10min 이하일 수 있다.
또한, 상기 폴리프로필렌 수지 조성물은, 결정화 온도(Tc)가 95 ℃ 내지 115 ℃일 수 있다.
본 발명의 폴리프로필렌 수지 조성물은, 상술한 바와 같이 분자량 분포와 함께 자일렌 가용분(X.S., Xylene soluble), 에틸렌 함량, 및 인장강도와 굴곡탄성율, 및 결정화 온도(Tc)를 효과적으로 제어하여 약 95 ℃ 내지 약 115 ℃로 최적화한 것을 특징으로 한다. 특히, 자일렌 가용분은 전체 중합체 내 어택틱(atactic) 성분의 함량을 나타내는 값으로, 이러한 자일렌 가용분 함량을 최적화하여 적정 수준의 녹는 점과 기계적 물성의 발현이 가능한 폴리프로필렌 수지 조성물을 얻을 수 있다.
구체적으로, 상기 폴리프로필렌 수지 조성물은, 결정화 온도(Tc)가 약 100 ℃ 내지 약 115 ℃, 또는 약 105 ℃ 내지 약 114 ℃, 또는 약 107 ℃ 내지 약 113 ℃, 또는 약 108 ℃ 내지 약 112 ℃일 수 있다.
또, 상기 폴리프로필렌 수지 조성물은, 융점(Tm)이 약 150 ℃ 내지 약 158 ℃, 또는 약 150 ℃ 내지 약 155 ℃, 또는 약 151 ℃ 내지 약 153 ℃일 수 있다.
본 발명에 있어서 결정화 온도(Tc) 및 융점(Tm)은 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 측정할 수 있다. 구체적으로, 온도를 상승시켜 폴리프로필렌 수지 조성물을 200 ℃까지 가열한 후 5분 동안 그 온도에서 유지하고(1st RUN 열이력 제거), 그 다음 -30 ℃까지 내리고, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기에 해당하는 온도를 용융점(Tm)으로 하고, 다시 온도를 감소시키면서 나타나는 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기에 해당하는 온도를 결정화 온도(Tc)로 한다. 이 때, 온도의 상승과 내림의 속도는 10 ℃/min이고, 융점(Tm) 및 결정화 온도(Tc)은 두 번째 온도가 상승, 내림하는 구간(2nd RUN)에서 측정한 결과로 나타낸 것이다.
상기와 같이 본 발명의 폴리프로필렌 수지 조성물은 기존 지글러-나타 촉매 적용 폴리프로필렌 또는 종래 메탈로센 촉매 적용 폴리프로필렌과 달리 분자량 분포와 함께 자일렌 가용분, 에틸렌 함량, 용융지수, 결정화 온도, 인장강도 및 굴곡탄성율을 모두 최적화함으로써, 공중합 공정에서 우수한 공정안정성을 확보하면서 굵기가 가늘면서도 균일한 섬유의 제조가 가능하고, 또 기존 제품보다 부드러운 촉감을 부여할 뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 동시에 구현할 수 있다. 이에 따라 고강성과 함께 우수한 소프트니스가 요구되는 폴리프로필렌 부직포 제조에 특히 유용할 수 있다.
구체적으로, 상기 폴리프로필렌 수지 조성물은, 프로필렌 단일중합체 및 에틸렌 프로필렌계 공중합체를 포함하고, 상기 에틸렌 프로필렌계 공중합체는 프로필렌 단일중합체에 분산되어 있다. 특히, 본 발명의 폴리프로필렌 수지 조성물은, 후술되는 바와 같이 상술한 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에서 제1 반응기의 중합 공정과 제2 반응기의 공중합 공정을 수행하여, 이렇게 얻어진 에틸렌 프로필렌계 공중합체가 프로필렌 단일중합체에 높은 분산성으로 상 분리가 크게 나타나지 않도록 포함되어 최종 수지 조성물에서 우수한 연신 안정성 (가공성) 및 소프트니스 특성과 함께 개선된 강도 특성을 나타낼 수 있다.
본 발명의 수지 조성물에는 수지 조성물의 특성을 해치지 않는 범위 내에서 산화방지제, 중화제, 분산제, 내후제, UV 안정제, 슬립제, 안티블록킹제, 대전방지제와 같은 첨가제 1종 이상을 추가로 포함할 수 있다. 이러한 첨가제의 함량은 전체 수지 조성물의 총중량 기준으로 500 ppm 내지 3000 ppm일 수 있다. 특히, 이러한 첨가제는 후술한 바와 같은 제1, 제2 반응기의 공정을 모두 마치고 얻어진 폴리프로필렌 수지 조성물에 추가하는 것으로, 제조 공정 중 촉매 활성 등에 영향을 미칠 수 있어 중합 공정에 사용하는 것은 바람직하지 않다. 한편, 본 발명에 따른 상기 폴리프로필렌 수지 조성물은, 디벤질이덴 솔비톨(Dibezylidene Sorbitol), 디(p-메틸벤질이덴)솔비톨, 디메틸 벤질이덴 솔비톨, 알킬벤조산 알루미늄 염, 및 유기 인 금속염 등의 핵제는 포함하지 않는다. 이러한 핵제를 본 발명에 따른 폴리프로필렌 수지 조성물에 추가할 경우에는, 결정성이 너무 커지면서 섬유 방사성이 저하되어 연신 안정성 및 소프트니스 개선 효과를 저감시킬 수 있다.
폴리프로필렌 수지 조성물의 제조 방법
한편, 본 발명의 다른 일 구현예에 따르면, 상술한 상기와 같은 물성적 특징을 갖는 폴리프로필렌 수지 조성물을 제조하는 방법을 제공한다.
상기 폴리프로필렌 수지 조성물의 제조 방법은, 하기 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에, 적어도 하나 이상의 제1 반응기와 적어도 하나 이상의 제2 반응기를 포함하는 일련의 반응기를 이용하여 폴리프로필렌 수지 조성물을 제조하는 것으로, 상기 제1 반응기에서 프로필렌 단일중합체를 제조하는 단계; 및 상기 제2 반응기에서 에틸렌 프로필렌계 공중합체 를 제조하는 단계;를 포함한다.
[화학식 1]
Figure PCTKR2022004251-appb-img-000003
상기 화학식 1에서,
A는 탄소, 실리콘 또는 게르마늄이고,
M은 4족 전이금속이며,
X1 및 X2는 각각 독립적으로 할로겐이고,
R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환된 C6-20 아릴이고,
R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
R9 및 R10은 각각 독립적으로 C1-20 알킬이다.
한편, 본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br), 또는 요오드(I)일 수 있다.
탄소수 1 내지 20, 즉, C1-20의 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬은 탄소수 1 내지 20의 직쇄 알킬; 탄소수 1 내지 15의 직쇄 알킬; 탄소수 1 내지 5의 직쇄 알킬; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬일 수 있다. 일예로, 상기 탄소수 1 내지 20(C1-20)의 알킬은 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 2 내지 20, 즉, C2-20의 알케닐로는 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 1 내지 20, 즉, C1-20의 알콕시로는 메톡시기, 에톡시, 이소프로폭시, n-부톡시, tert-부톡시, 페닐옥시, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 2 내지 20, 즉, C2-20의 알콕시알킬기는 상술한 알킬의 1개 이상의 수소가 알콕시로 치환된 작용기이며, 구체적으로 메톡시메틸, 메톡시에틸, 에톡시메틸, iso-프로폭시메틸, iso-프로폭시에틸, iso-프로폭시프로필, iso-프로폭시헥실, tert-부톡시메틸, tert-부톡시에틸, tert-부톡시프로필, tert-부톡시헥실 등의 알콕시알킬; 또는 페녹시헥실 등의 아릴옥시알킬을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 1 내지 20, 즉, C1-20의 알킬실릴 또는 탄소수 1 내지 20(C1-20)의 알콕시실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 상술한 바와 같은 알킬 또는 알콕시로 치환된 작용기이며, 구체적으로 메틸실릴, 디메틸실릴, 트라이메틸실릴, 디메틸에틸실릴, 디에틸메틸실릴기 또는 디메틸프로필실릴 등의 알킬실릴; 메톡시실릴, 디메톡시실릴, 트라이메톡시실릴 또는 디메톡시에톡시실릴 등의 알콕시실릴; 메톡시디메틸실릴, 디에톡시메틸실릴 또는 디메톡시프로필실릴 등의 알콕시알킬실릴을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 1 내지 20, 즉, C1-20의 실릴알킬은 상술한 바와 같은 알킬의 1 이상의 수소가 실릴로 치환된 작용기이며, 구체적으로 -CH2-SiH3, 메틸실릴메틸 또는 디메틸에톡시실릴프로필 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또한, 탄소수 1 내지 20, 즉, C1-20의 알킬렌으로는 2가 치환기라는 것을 제외하고는 상술한 알킬과 동일한 것으로, 구체적으로 메틸렌, 에틸렌, 프로필렌, 부틸렌, 펜틸렌, 헥실렌, 헵틸렌, 옥틸렌, 시클로프로필렌, 시클로부틸렌, 시클로펜틸렌, 시클로헥실렌, 시클로헵틸렌, 시클로옥틸렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 6 내지 20, 즉, C6-20의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소일 수 있다. 일예로, 상기 아릴은 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
탄소수 7 내지 20, 즉, C7-20의 알킬아릴은 방향족 고리의 수소 중 하나 이상의 수소가 상술한 알킬에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 알킬아릴은 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다
또한, 탄소수 7 내지 20, 즉, C7-20의 아릴알킬은 상술한 알킬의 1 이상의 수소가 상술한 아릴에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 아릴알킬은 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또한, 탄소수 6 내지 20, 즉, C6-20의 아릴옥시로는 페녹시, 비페녹시, 나프톡시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또한, 탄소수 6 내지 20, 즉, C6-20의 아릴렌은 2가 치환기라는 것을 제외하고는 상술한 아릴과 동일한 것으로, 구체적으로 페닐렌, 비페닐렌, 나프틸렌, 안트라세닐렌, 페난트레닐렌, 플루오레닐렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
그리고, 4족 전이 금속은, 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 또는 러더포듐(Rf)일 수 있으며, 구체적으로 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf) 일 수 있으며, 보다 구체적으로 지르코늄(Zr), 또는 하프늄(Hf)일 수 있으며, 이에만 한정되는 것은 아니다.
또한, 13족 원소는, 붕소(B), 알루미늄(Al), 갈륨(Ga), 인듐(In), 또는 탈륨(Tl)일 수 있으며, 구체적으로 붕소(B), 또는 알루미늄(Al)일 수 있으며, 이에만 한정되는 것은 아니다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬 또는 알케닐, 아릴, 알콕시; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬 또는 알케닐, 아릴, 알콕시; 실릴; 알킬실릴 또는 알콕시실릴; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
본 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물의 제조에 사용되는 촉매 조성물은, 상기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 것을 특징으로 한다. 특히, 인데닐기 포함 두 개의 리간드를 연결하는 브릿지 그룹에 특정 치환기를 갖는 메탈로센 촉매를 이용하는 경우, 목적하는 물성에 맞도록 융점 및 분자량 분포가 함께 최적화된 폴리프로필렌을 제조할 수 있다.
더욱이, 상기 화학식 1의 화합물은, 인데닐기 포함 두 개의 리간드를 연결하는 브릿지 그룹으로서, 탄소수 2 이상의 동일한 알킬기로 2 치환된 2가의 작용기 A를 포함함으로써, 원자 사이즈가 증가하고, 가용 각도가 늘어남에 따라 프로필렌이나 에틸렌 모노머의 접근이 용이하여 보다 우수한 촉매활성을 나타낼 수 있다.
또, 상기 화학식 1의 화합물에서 리간드인 두 개의 인데닐기 모두 2번 위치가 메틸기로 치환되고, 4번 위치(즉, R1 및 R)는 각각 알킬 치환된 아릴기를 포함함으로써, 충분한 전자를 공급할 수 있는 유도 효과(Inductive effect)에 의해 보다 우수한 촉매 활성을 나타낼 수 있다.
보다 구체적으로, 상기 화학식 1에서 R1 및 R5는 각각 독립적으로 C1-10 알킬로 치환된 C6-12 아릴일 수 있으며, 보다 더 구체적으로는 tert-부틸 페닐과 같은 C3-6 분지쇄 알킬로 치환된 페닐일 수 있다. 또, 상기 페닐에 대한 알킬의 치환 위치는 인데닐에 결합한 R1 및 R5는 위치와 para 위치에 해당하는 4번 위치일 수 있다.
또, 상기 화학식 1에서, R2 내지 R7은 각각 독립적으로 수소일 수 있으며, X1 및 X2는 각각 독립적으로 염소(Cl)일 수 있다.
또, 상기 화학식 1에서 A는 실리콘(Si)일 수 있다. 또, 상기 A의 각 치환기인 R9 및 R10 용해도를 증대시켜 담지 효율성을 개선하는 측면에서 서로 동일하며, C2-10 알킬기일 수 있고, 구체적으로는 C2-4 직쇄상 알킬기, 보다 구체적으로는 각각 에틸일 수 있다. 이와 같이 브릿지 그룹의 A에 대한 치환기로서 서로 동일한 알킬기를 가짐으로써, 종래 브릿지 그룹의 원소에 대한 치환기가 탄소수 1의 메틸기인 경우 담지 촉매 조제시 용해도가 좋지 않아 담지 반응성이 떨어지는 문제를 해결할 수 있다.
또, 상기 화학식 1에서, M는 지르코늄(Zr) 또는 하프늄(Hf)일 수 있으며, 바람직하게는 지르코늄(Zr)일 수 있다. 특히, 상기 화학식 1의 화합물에서 중심 금속으로서 지르코늄(Zr)을 포함하는 경우에, 하프늄(Hf) 등과 같은 다른 14족 원소를 포함할 때와 비교하여 전자를 수용할 수 있는 오비탈을 더 많이 가지고 있어 보다 높은 친화력으로 모노머와 쉽게 결합할 수 있으며, 그 결과로 보다 우수한 촉매 활성 개선 효과를 나타낼 수 있다.
상기 화학식 1로 표시되는 상기 메탈로센 화합물의 대표적인 예는 다음과 같다.
[화학식 1-1]
Figure PCTKR2022004251-appb-img-000004
.
상기 화학식 1로 표시되는 메탈로센 화합물은 알려진 유기 화합물의 합성 방법에 의해 제조할 수 있으며, 후술하는 실시예에 보다 구체화하여 기재하였다.
한편, 본 발명의 메탈로센 화합물이나 촉매 조성물을 제조하는 방법에 있어서, 당량(eq)은 몰 당량(eq/mol)을 의미한다.
본 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물의 제조에 사용되는 촉매 조성물에서 상기 화학식 1의 메탈로센 화합물은 담체에 담지된 담지 촉매의 상태로 사용되거나, 비담지된 촉매 형태로도 사용될 수 있다. 특히, 상기 촉매 조성물을 사용한 중합 공정의 안정성 및 물성 조절의 균일성 확보 측면에서 담지 촉매의 형태로 사용하는 것이 좀더 바람직하다.
상기 담체로는 표면에 반응성이 큰 하이드록시기 또는 실록산기를 갖는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 약 200 ℃ 내지 약 800 ℃가 바람직하고, 약 300 ℃ 내지 약 600 ℃가 더욱 바람직하며, 약 300 ℃ 내지 약 400 ℃가 가장 바람직하다. 상기 담체의 건조 온도가 약 200 ℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매 등이 반응하게 되고, 약 800 ℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매 등과의 반응 자리가 감소하기 때문에 바람직하지 않다.
일예로, 상기 담체 표면의 하이드록시기 양은 약 0.1 mmol/g 내지 약 10 mmol/g이 바람직하며, 약 0.5 mmol/g 내지 약 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시기의 양이 약 0.1 mmol/g 미만이면 조촉매 등과의 반응자리가 적고, 약 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
상기 화학식 1의 메탈로센 화합물이 담체에 담지될 경우, 상기 화학식 1로 표시되는 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 중량비는 약 1:1 내지 약 1:1000 일 수 있다. 상기 중량비로 담체 및 메탈로센 화합물을 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다. 보다 구체적으로는 화학식 1의 화합물 대 담체의 중량비는 1:10 내지 1:30, 보다 더 구체적으로는 1:15 내지 1:20일 수 있다.
또한, 상기 촉매 조성물은 상기 화학식 1의 메탈로센 화합물과 담체 이외에, 높은 활성과 공정 안정성을 향상시키는 측면에서 조촉매를 추가로 포함할 수 있다.
구체적으로, 상기 조촉매로는 하기 화학식 2으로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 2]
-[Al(R21)-O]m-
상기 화학식 2에서,
R21는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고;
m은 2 이상의 정수이다.
상기 화학식 2으로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등의 알루미녹산계 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 조촉매로는 하기 화학식 3로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 3]
J(R31)3
상기 화학식 3에서,
R31은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고;
J는 알루미늄 또는 보론이다.
상기 화학식 3로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 보다 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 및 트리이소부틸알루미늄 중에서 선택되는 것일 수 있다.
또한, 상기 조촉매로는 하기 화학식 4로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 4]
[E-H]+[ZQ4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 염기이고;
H는 수소 원자이며;
Z는 13족 원소이고;
Q는, 서로 동일하거나 상이하고, 각각 독립적으로 C6-20 아릴 또는 C1-20 알킬이고, 여기서 상기 C6-20 아릴 또는 C1-20 알킬은 비치환되거나 또는 할로겐, C1-20 알킬, C1-20 알콕시 및 C6-20 아릴옥시로 구성되는 군으로부터 선택되는 하나 이상의 치환기로 치환된다.
구체적으로, 상기 화학식 4에서 [E-H]+는 브론스테드 산이다.
구체적으로, 상기 화학식 4에서, E는 하나 이상의 질소 원자를 포함하는 아민일 수 있으며, 상기 아민은 C6-20 아릴 또는 C1-20 알킬로 치환될 수 있다. 일예로, E는 하나 또는 두 개의 질소 원자를 포함하는 아민일 수 있으며, 상기 아민기는 두 개 이상의 C6-20 아릴 또는 C1-20 알킬로 치환될 수 있다. 또는, 상기 아민은 두 개 또는 세 개의 C6-18 아릴이나 C6-12 아릴, 또는 C1-12 알킬이나 C1-6 알킬로 치환될 수 있다.
구체적으로, 상기 화학식 4에서, Z는 알루미늄 또는 보론일 수 있다.
구체적으로, 상기 화학식 4에서, Q는 각각 전술한 바와 같이 치환되거나 비치환된 C6-18 아릴 또는 C6-12 아릴이거나, C1-12 알킬 또는 C1-6 알킬일 수 있다.
상기 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 또는 트리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 조촉매가 더 포함되는 경우, 상기 화학식 1의 메탈로센 화합물 대 조촉매의 중량비는 약 1:1 내지 약 1:20일 수 있다. 상기 중량비로 조촉매와 메탈로센 화합물을 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다. 보다 구체적으로, 상기 화학식 1의 화합물 대 조촉매의 중량비는 약 1:5 내지 약 1:20, 또는 약 1:5 내지 약 1:15일 수 있다.
상기 조촉매는 담체 중량당, 예컨대, 실리카 1 g을 기준으로 약 3 mmol 이상 또는 약 5 mmol 이상의 함량으로 담지될 수 있으며, 또한 약 20 mmol 이하, 또는 약 15 mmol 이하의 함량으로 담지될 수 있다. 상기한 함량 범위로 포함시 조촉매 사용에 따른 촉매 활성 개선 효과를 나타낼 수 있다.
상기 촉매 조성물이 상기한 담체 및 조촉매를 모두 포함하는 경우, 상기 촉매 조성물은 담체에 조촉매 화합물을 담지시키는 단계, 및 상기 담체에 상기 화학식 1로 표시되는 화합물을 담지시키는 단계를 포함하는 제조방법에 의해 제조될 수 있으며, 이때 조촉매와 화학식 1의 메탈로센 화합물을 담지하는 순서는 필요에 따라 바뀔 수 있다.
이때, 상기 촉매 조성물의 제조시에 반응 용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있다.
한편, 본 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물은, 상기 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 촉매 조성물의 존재 하에서, 적어도 하나 이상의 제1 반응기와 적어도 하나 이상의 제2 반응기를 포함하는 일련의 반응기를 이용하여 폴리프로필렌 수지 조성물을 제조하는 것으로, 상기 제1 반응기에서 프로필렌 단일중합체를 제조하는 단계; 및 상기 제2 반응기에서 에틸렌 프로필렌계 공중합체를 제조하는 단계를 포함하여 제조될 수 있다.
일 예로, 본 발명의 폴리프로필렌 수지 조성물의 제조 방법은, 상기 제1 반응기에서 프로필렌 단일중합체를 제조하는 단계; 및 상기 제2 반응기에서 상기 프로필렌 단일중합체에 분산되는 에틸렌을 프로필렌계 공중합체를 제조하는 단계;를 포함할 수 있다.
구체적으로, 본 발명은 상술한 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에서, 적어도 하나 이상의 제1 반응기와 적어도 하나 이상의 제2 반응기를 포함하는 일련의 반응기를 이용하여 폴리프로필렌 수지 조성물을 제조하는 것으로, 이렇게 제조한 폴리프로필렌 수지 조성물은 프로필렌 단일중합체 및 에틸렌 프로필렌계 공중합체를 포함하고, 상기 에틸렌 프로필렌계 공중합체는 프로필렌 단일중합체에 분산되어 있다. 특히, 본 발명에서는, 상술한 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에서 제1 반응기의 중합 공정과 제2 반응기의 공중합 공정을 최적화하여, 이렇게 얻어진 에틸렌 프로필렌계 공중합체가 프로필렌 단일중합체에 높은 분산성으로 상 분리가 크게 나타나지 않도록 포함되어 최종 수지 조성물에서 우수한 연신 안정성 (가공성) 및 소프트니스 특성과 함께 개선된 강도 특성을 나타낼 수 있다.
본 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물은, 상술한 화학식 1로 표시되는 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에서, 벌크 슬러리 공정(bulk-slurry process)과 기상 공정(Gas Phase process)으로 제조될 수 있다.
이때, 상기 제1 반응기는 루프 반응기(roof reactor)가 될 수 있으며, 예컨대, 2개의 루프 반응기 포함하는 스페리폴(spheripol) 공정 반응기가 될 수 있다. 또한, 상기 제2 반응기는 기체상 반응기(gas phase reactor)일 수 있다.
본 발명에서는 벌크 슬러리 공정(Bulk-slurry Process)의 연속반응기 즉, 기상 공정(Gas phase process)에서 에틸렌 프로필렌계 공중합체를 제조하는 것을 특징으로 한다. 이러한 본 발명은, 기존에 에틸렌 함량이 높은 프로필렌계 엘라스토머를 제조하기 위해서는 용액 중합(solution process)을 적용하여야 하였으며, 즉 에틸렌 등의 코모노머(comonomer) 함량이 높음에 따라 낮은 용융점(Tm)으로 반응기 내 용액(solvent) 존재 하에서 중합을 수행하였던 것과는 달리, 전체 공정 효율을 현저히 향상시킬 수 있다.
또한, 본 발명에 따른 상기 폴리프로필렌 수지 조성물의 제조 방법은, 상술한 화학식 1의 메탈로센 화합물 1종 이상을 촉매 조성물의 존재 하에서, 연속 반응기로 벌크 슬러리 공정(bulk-slurry process)에 이어 기상 공정(Gas Phase process)을 수행함으로써, 제1 반응기로 얻어진 프로필렌 단일중합체와 제2 반응기로 얻어진 에틸렌 프로필렌계 공중합체의 상의 분리를 최소화하여, 최종 생성되는 폴리프로필렌 수지 조성물의 높은 강성과 연신성을 동시에 현저히 개선할 수 있다.
구체적으로, 상기 제1 반응기는 복수의 루프 반응기를 포함하는 반응 시스템으로 이뤄진 것이며, 복수의 루프 반응기를 포함하는 반응 시스템 내에서 촉매 및 수소 기체의 존재 하에, 액상의 프로필렌 모노머를 연속 중합 반응시켜 프로필렌 단독중합체를 생성시키는 것일 수 있다. 일예로, 상기 복수의 루프 반응기에 대해 각각 수소 기체의 함량은 반응기 조건 1 기압 하에서 0.07 L 내지 4 L 범위이거나, 또는 1 bar 내지 40 bar의 압력으로 공급되거나 프로필렌 모노머 대비 수소 몰 함량 범위로 150 ppm 내지 8000 ppm으로 공급될 수 있다. 상기 수소 기체의 투입량은 프로필렌 투입량을 기준으로 한 몰 함량 값(ppm)이다. 좀더 구체적으로, 프로필렌 단독중합체를 생성시키는 상기 제1 반응기의 반응시스템은 제1-1 및 제1-2 루프 반응기를 포함하고, 제1-1 루프 반응기에는 수소 기체가 150 내지 8000 ppm의 농도로 공급되고, 제1-2 루프 반응기에는 제1-1 루프 반응기에 대한 공급 농도와 동일하거나 또는 그 이상에서, 8000 ppm 이하의 농도로 수소 기체가 공급될 수 있다. 바람직하게는, 상기 제1 반응기에서 수소 투입량은 각각 160 ppm 이상, 또는 170 ppm 이상, 또는 180 ppm 이상, 또는 190 ppm 이상, 또는 200 ppm 이상, 또는 250 ppm 이상, 또는 300 ppm 이상, 또는 350 ppm 이상, 또는 380 ppm 이상, 또는 400 ppm 이상, 또는 430 ppm 이상이면서, 6000 ppm 이하, 또는 4000 ppm 이하, 또는 2000 ppm 이하, 또는 1800 ppm 이하, 또는 1500 ppm 이하, 또는 1200 ppm 이하, 또는 1000 ppm 이하, 또는 800 ppm 이하, 또는 650 ppm 이하일 수 있다.
또한, 상기 제1 반응기의 중합 반응은, 25 ℃ 내지 500 ℃의 온도 및 1 kgf/㎠ 내지 100 kgf/㎠의 압력 하에서 1 시간 내지 24 시간 동안 반응시켜 수행될 수 있다. 이때, 상기 제1 반응기의 중합 반응 온도는 바람직하게 25 ℃ 내지 250 ℃, 또는 30 ℃ 내지 200 ℃, 또는 35 ℃ 내지 180 ℃, 또는 40 ℃ 내지 150 ℃, 또는 45 ℃ 내지 120 ℃, 또는 50 ℃ 내지 100 ℃, 또는 60 ℃ 내지 85 ℃일 수 있다. 또한, 상기 제1 반응기의 중합 반응 압력은 바람직하게 1 kgf/㎠ 내지 80 kgf/㎠, 또는 1 kgf/㎠ 내지 70 kgf/㎠, 또는 1 kgf/㎠ 내지 60 kgf/㎠, 또는 2 kgf/㎠ 내지 55 kgf/㎠, 또는 3 kgf/㎠ 내지 50 kgf/㎠, 또는 4 kgf/㎠ 내지 45 kgf/㎠, 또는 5 kgf/㎠ 내지 40 kgf/㎠ 일 수 있다. 상기 중합 반응 시간은 1 내지 5시간이 바람직하다.
본 발명에서는 상기 화학식 1의 메탈로센 화합물 존재 하에 연속반응기를 사용하여, 예컨대, 제1 반응기에서 프로필렌 단독중합체를 제조하고, 제2 반응기에서 에틸렌 프로필렌계 공중합체를 제조함으로써, 소프트니스 및 연신성, 가공성이 우수한 폴리프로필렌 수지 조성물을 제조할 수 있다.
구체적으로, 상기 제1 반응기에서 얻어진 프로필렌 단일중합체에 분산되는 에틸렌 프로필렌계 공중합체를 제조하는 제2 반응기의 공중합 공정은 가스상 반응으로 이뤄진다. 이러한 제2 반응기의 공중합 공정은, 앞서 제1 반응기에서 생성된 프로필렌 단일 중합체를 이송하여 투입한 후, 추가로 프로필렌과 에틸렌을 투입하여 수행한다. 여기서, 제1 반응기로부터 생성된 프로필렌 단일 중합체를 제2 반응기 (Gas Phase Reactor)로 이송시에는, 제1 반응기에서 1차 회수 공정을 거친 후 남아 있는 잔류 프로필렌 모노머와 수소 기체를 프로필렌 단일 중합체와 함께 이송한다. 바람직하게는, 제1 반응기로부터 생성된 프로필렌 단일 중합체를 제2 반응기 (Gas Phase Reactor)로 이송시에 기존의 지글러-나타 촉매 적용시 사용하던 대전방지제 처리는 생략하고 수행할 수 있다.
또한, 상기 제2 반응기의 공중합 반응은, 28 ℃ 내지 500 ℃의 온도 및 1 kgf/㎠ 내지 80 kgf/㎠의 압력 하에서 1 시간 내지 24 시간 동안 반응시켜 수행될 수 있다. 이때, 상기 제2 반응기의 공중합 반응 온도는 바람직하게 30 ℃ 내지 250 ℃, 또는 35 ℃ 내지 200 ℃, 또는 40 ℃ 내지 180 ℃, 또는 45 ℃ 내지 150 ℃, 또는 50 ℃ 내지 120 ℃, 또는 55 ℃ 내지 100 ℃, 또는 65 ℃ 내지 85 ℃일 수 있다. 또한, 상기 제2 반응기의 공중합 반응 압력은 바람직하게 1 kgf/㎠ 내지 65 kgf/㎠, 또는 1 kgf/㎠ 내지 55 kgf/㎠, 또는 1 kgf/㎠ 내지 50 kgf/㎠, 또는 2 kgf/㎠ 내지 40 kgf/㎠, 또는 3 kgf/㎠ 내지 35 kgf/㎠, 또는 4 kgf/㎠ 내지 30 kgf/㎠, 또는 5 kgf/㎠ 내지 25 kgf/㎠ 일 수 있다. 상기 중합 반응 시간은 1 내지 5 시간이 바람직하다.
상기 제2 반응기의 공중합 공정은 수소 첨가 또는 미첨가 조건 하에서 수행할 수 있다. 다만, 앞서 제1 반응기의 중합 공정에서 얻어진 프로필렌 단일 중합체와 함께 1차 회수 공정을 거친후 미반응 프로필렌 및 수소 기체를 포함하여 제2 반응기로 이송되는 경우에는, 제2 반응기에서는 추가로 수소 기체를 투입하지 않거나 미량의 수소를 투입하여 프로필렌과 에틸렌만을 추가로 투입하는 기상 반응의 공중합 공정을 수행할 수 있다. 여기서, 미량의 수소를 투입한다고 하면, 제1 반응기에 사용한 수소 함량 대비 약 0.01 배 이하, 또는 약 0.005 배 이하, 또는 약 0.001 배 이하로 투입할 수 있다. 예컨대, 프로필렌 모노머 대비 수소 몰 함량 범위로 약 80 ppm 이하, 또는 약 50 ppm 이하, 또는 약 30 ppm 이하, 또는 약 15 ppm 이하, 또는 약 10 ppm 이하, 또는 약 5 ppm 이하로 투입할 수 있다.
본 발명에서는 상술한 바와 같은 프로필렌 단독중합체를 중합 반응으로 제조한 후에, 상기 프로필렌 단일중합체에 분산되는 에틸렌 프로필렌계 공중합체를 추가 가스 반응 공정으로 제조함으로써, 좁은 분자량 분포와 함께 자일렌 가용분, 에틸렌 함량, 인장강도 및 굴곡탄성율, 용융지수, 및 결정화 온도(Tc)를 동시에 최적화하여, 폴리프로필렌 부직포를 제조할 경우에 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 우수한 소프트니스(softness)를 부여할 수 있는 폴리프로필렌 수지 조성물을 제조할 수 있다.
구체적으로, 상기 제1 반응기로부터 얻어진 프로필렌 단독중합체는, 미국재료시험학회규격 ASTM D 1238에 따라 230 ℃에서 2.16 kg 하중으로 측정한 용융지수(MI2.16)가 약 10 g/10min 내지 약 100 g/10min일 수 있으며, 보다 구체적으로는 약 15 g/10min 내지 약 35 g/10min 또는 약 25.2 g/10min 내지 약 25.6 g/10min일 수 있다.
특히, 상기 제1 반응기로부터 얻어진 프로필렌 단독중합체의 용융지수(MI2.16)는, 최종 생성되는 폴리프로필렌 수지 조성물의 용융지수(MI2.16)가 서로 동일하거나 또는 유사한 범위로 얻어진다. 예컨대, 상기 프로필렌 단독중합체의 용융지수(MI2.16)와 최종 생성되는 폴리프로필렌 수지 조성물의 용융지수(MI2.16)는 서로 약 5 g/10min 이내 차이를 갖는 것일 수 있다. 구체적으로, 상기 프로필렌 단독중합체와 상기 에틸렌 프로필렌계 공중합체의 용융지수(MI2.16)는 약 0 내지 약 5 g/10min 이내 차이를 갖는 것일 수 있으며, 좀더 구체적으로는 약 3 g/10min 이내, 혹은 약 2 g/10min 이내, 혹은 약 1.5 g/10min 이내의 차이를 갖는 것일 수 있다.
상술한 바와 같이, 본 발명에 따르면 싱기 제1 반응기로부터 얻어진 프로필렌 단독중합체와 제2 반응기로부터 얻어진 에틸렌 프로필렌계 공중합체 역시도, 동일하거나 또는 유사한 범위의 용융지수(MI2.16), 점도, 분자량을 가질 수 있다. 본 발명에서는 상기 화학식 1의 메탈로센 화합물 존재 하에 연속반응기를 사용함으로써, 기존의 지글러나타 촉매 등을 적용한 경우와 달리 에틸렌 프로필렌계 공중합체의 분자량이 급격히 증가하는 것을 방지할 수 있다.
이렇게 상기 화학식 1의 메탈로센 화합물 존재 하에 연속반응기를 사용하여, 프로필렌 단독중합체와 에틸렌 프로필렌계 공중합체의 물성 차이를 최적화하여, 프로필렌 단독중합체에 분산되는 에틸렌 프로필렌계 공중합체가 상 분리를 최소화한 형태로 분산되도록 함으로써, 기존에 프로필렌 단독중합체와 에틸렌 프로필렌계 공중합체의 상 분리에 따라 강도 저하 및 연신성, 가공성이 저하되는 문제를 해결할 수 있다.
한편, 상기 제2 반응기에서, 프로필렌과 에틸렌은 7:3 내지 6:4의 중량비로 투입하거나, 또는 프로필렌은 에틸렌 투입량의 중량 기준으로 1.4배 내지 2.6배의 중량비로 투입할 수 있다. 일예로, 상기 프로필렌과 에틸렌은 7:3, 또는 6.5:4, 또는 6:4의 중량비로 투입할 수 있다. 또는, 다른 일예로, 상기 프로필렌은 에틸렌 투입량의 중량 기준으로 1.45배 이상, 또는 1.5배 이상, 또는1.52배 이상, 또는 1.55배 이상, 또는 1.58배 이상, 또는 1.6배 이상, 또는 1.62배 이상이면서, 2.5배 이하, 또는 2.48배 이하, 또는 2.45배 이하, 또는 2.4배 이하, 또는 2.38배 이하, 또는 2.35배 이하, 또는 2.34배 이하의 중량비로 투입할 수 있다.
예컨대, 본 발명의 폴리프로필렌 수지 조성물은 상기 프로필렌 단일중합체의 중량 기준으로 에틸렌 프로필렌계 공중합체의 함량이 3 중량% 내지 9 중량%, 또는 3.2 중량% 내지 8.8 중량%, 또는 3.3 중량% 내지 8.6 중량%, 또는 3.5 중량% 내지 8.4 중량%, 또는 4 중량% 내지 8 중량%일 수 있다.
또, 상기 폴리프로필렌 수지 조성물의 제조 방법은 상술한 촉매 조성물의 존재 하에 프로필렌 단일 중합체를 제조하는 공정과, 에틸렌 프로필렌계 공중합체를 제조하는 공정은, 통상적인 장치 및 접촉 기술을 적용하여 수행될 수 있다.
상기한 제조방법에 의해 제조된 발명의 일 구현예에 따른 폴리프로필렌 수지 조성물은, 좁은 분자량 분포와 함께 자일렌 가용분, 에틸렌 함량, 인장강도 및 굴곡탄성율을 최적화함으로써, 굵기가 가늘면서도 균일한 섬유의 제조가 가능하고, 또 기존 제품보다 부드러운 촉감을 부여할 뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 동시에 구현할 수 있다. 이에 따라 고강성과 함께 우수한 소프트니스가 요구되는 폴리프로필렌 부직포의 제조에 특히 유용할 수 있다.
이러한 본 발명의 폴리프로필렌 수지 조성물은 기존 지글러-나타 촉매 적용 폴리프로필렌 또는 종래의 메탈로센 촉매 적용 호모 폴리프로필렌이나 공중합체보다 우수한 공정 안정성 및 가공성과 함께 높은 강성을 유지하며 부직포 제조시 더욱 향상된 소프트니스 특성을 확보할 수 있다.
폴리프로필렌 부직포
이에 따라 본 발명의 또 다른 일 구현예에 따르면 상기한 폴리프로필렌 수지 조성물을 포함하는 부직포 제조용 수지 조성물 및 이를 이용하여 제조된 폴리프로필렌 부직포가 제공된다.
상기 부직포 제조용 수지 조성물 및 이를 이용하여 제조된 부직포는 상기한 폴리프로필렌 수지 조성물을 사용하는 것을 제외하고는 통상의 방법에 따라 제조될 수 있다.
일예로, 본 발명에 따른 폴리프로필렌 부직포는 상술한 폴리프로필렌 수지 조성물로부터 제조된 섬유로 이루어진 것일 수 있다.
이와 같이 본 발명에 따른 상술한 폴리프로필렌 단일중합체를 제조하는 제1 반응기와 에틸렌 프로필렌계 공중합체를 제조하는 제2 반응기를 포함하는 일련의 반응기를 이용하여 제조될 수 있다. 그 결과, 상기 폴리프로필렌 수지 조성물은, 좁은 분자량 분포와 함께 자일렌 가용분, 에틸렌 함량, 인장강도 및 굴곡탄성율, 용융지수, 및 결정화 온도를 모두 최적화함으로써, 폴리프로필렌 부직포를 제조할 경우에 우수한 가공성과 함께 높은 강도를 유지하며 기존 제품보다 우수한 소프트니스(softness)를 부여할 수 있는 장점이 있다.
구체적으로, 상기 폴리프로필렌 부직포는 높은 강도와 함께 우수한 유연성 확보 측면에서, NWSP 090.3.R0 기준에 따른 핸들-오-미터(Handle-O-meter) 측정값이 24 g 이하 또는 약 1.0 g 내지 약 24 g일 수 있다. 이러한 핸들-오-미터(Handle-O-meter) 측정값은 상술한 범위로 유지될 때, 상기 폴리프로필렌 부직포가 거친 특성을 줄이고 소프트(Soft)한 물성을 구현할 수 있도록 우수한 유연성을 확보할 수 있다. 상기 핸들-오-미터는 부직포의 평량이 72 g/m2 내지 76 g/m2인 조건 하에서 측정한 값이다.
특히, 본 발명에 따른 폴리프로필렌 부직포는 상술한 바와 같은 핸들-오-미터 측정값 범위를 만족시키는 것을 특징으로 하며, 이로써 고강도를 유지하며 기존 제품보다 소프트한 특성을 구현할 수 있다.
본 발명에 따른 폴리프로필렌 수지 조성물은, 특정 구조의 메탈로센 화합물 존재 하에 연속 반응기를 이용하여 제조한 에틸렌 프로필렌계 공중합체를 포함하며, 좁은 분자량 분포와 함께 자일렌 가용분, 에틸렌 함량, 인장강도와 굴곡탄성율, 용융지수, 및 결정화 온도를 동시에 최적화하여, 우수한 가공성 및 소프트니스 특성과 함께 높은 강도를 나타내며 폴리프로필렌 부직포를 제조하는 데 유리하다.
도 1은 실시예 1-1에 따른 폴리프로필렌 수지 조성물의 단면을 관찰한 주사 전자현미경(SEM) 사진이다.
도 2는 실시예 2-1에 따라 제조한 폴리프로필렌 부직포에 대한 주사 전자현미경 (SEM)으로 측정한 사진이다.
도 3은 실시예 2-2에 따라 제조한 폴리프로필렌 부직포에 대한 주사 전자현미경 (SEM)으로 측정한 사진이다.
도 4는 비교예 2-4에 따라 제조한 폴리프로필렌 부직포에 대한 주사 전자현미경 (SEM)으로 측정한 사진이다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
[실시예]
<메탈로센 촉매의 제조>
제조예 1
Figure PCTKR2022004251-appb-img-000005
단계 1) (디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)실란의 제조
2-메틸-4-터트-부틸-페닐인덴(20.0 g)을 톨루엔과 테트라하이드라퓨란의 혼합 용매(톨루엔/THF 부피비 10/1, 220 mL)에 용해시킨 후, n-부틸리튬 용액(2.5 M, 헥산 용매, 22.2 g)을 0 ℃에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 그 후, -78 ℃에서 상기 혼합 용액에 디에틸디클로로실란(6.2 g)을 천천히 적가하였고, 약 10분 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 물을 가하여 유기층을 분리한 다음, 용매를 감압 증류하여 (디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)실란을 얻었다.
단계 2) [(디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)]지르코늄 디클로라이드의 제조
상기 단계 1에서 제조한 (디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)실란을 톨루엔/THF의 부피비 5/1 혼합 용매(120 mL)에 용해시킨 후, n-부틸리튬 용액(2.5 M, 헥산 용매, 22.2 g)을 -78 ℃에서 천천히 적가한 후, 상온에서 하루 동안 교반하였다. 반응액에 지르코늄 클로라이드(8.9 g)를 톨루엔(20 mL)에 희석시킨 후, -78 ℃에서 천천히 적가하고 상온에서 하루 동안 교반하였다. 반응액의 용매를 감압 제거한 다음, 디클로로메탄을 넣고 여과한 다음, 여액을 감압 증류하여 제거하였다. 톨루엔과 헥산을 사용하여 재결정을 하여 고순도의 rac-[(디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)]지르코늄 디클로라이드 (10.1 g, 수율: 34%, rac:meso 몰비 20:1)를 얻었다.
단계 3) 담지된 촉매의 제조
3 L 반응기에 실리카 100 g과 10 wt%의 메틸알루미녹산(670 g)을 넣어 90 ℃에서 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 톨루엔으로 2회에 걸쳐 세척하였다. 상기 2단계에서 제조한 안사-메탈로센 화합물 rac-[(디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)]지르코늄 디클로라이드(5.8 g)을 톨루엔에 희석시켜 반응기에 첨가한 후, 70 ℃에서 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 세척한 후 헥산으로 다시 세척하고 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 150 g을 얻었다.
<폴리프로필렌 수지 조성물의 제조>
실시예 1-1 및 1-2
상기 제조예 1의 실리카 담지 메탈로센 촉매를 사용하여, 하기 표 1에 나타낸 바와 같은 조건으로, 제1 반응기(Bulk-slurry Process, Spheripol Process, 제1-1 및 제1-2의 2개의 루프 반응기 포함)에서 프로필렌 단일중합체를 제조한 후에, 이렇게 제조한 프로필렌 단일 중합체를 제2 반응기 (Gas Phase Reactor)로 이송하고 제2 반응기 (Gas Phase Reactor)에서 표 1에 나타낸 바와 같은 조건으로 에틸렌 프로필렌 공중합체를 제조하여, 폴리프로필렌 수지 조성물을 얻었다.
이때, 상술한 바와 같이 제1 반응기로부터 생성된 프로필렌 단일 중합체를 제2 반응기 (Gas Phase Reactor)로 이송시에는, 별도의 대전방지제를 처리하지 않고, 제1 반응기에서 1차 회수 공정을 거친 후 미반응 프로필렌 모노머 및 수소 기체와 함께 생성된 프로필렌 단일 중합체를 제2 반응기로 이송하였다. 또한, 이렇게 프로필렌 단일 중합체와 함께 이송된 수소 기체의 존재 하에서 및 촉매 조성물 중 제조예 1의 실리카 담지 메탈로센 촉매 하에서, 수소 기체를 추가로 투입하지 않거나 미량의 수소를 투입하여(약 10 ppm 이하) 제2 반응기에서 가스 반응 공정을 통해 프로필렌 단일 중합체에 분산된 에틸렌 프로필렌 공중합체를 생성시켰다.
또한, 실시예 1 내지 4의 폴리프로필렌 수지 조성물은 상술한 바와 같이 얻어진 프로필렌 단일중합체와 에틸렌 프로필렌 공중합체만을 포함하는 것으로, 이외에 핵제 등의 첨가제는 포함하지 않는다. 구체적으로, 상기 폴리프로필렌 수지 조성물은 상술한 프로필렌 단일 중합체의 중량 기준으로 에틸렌 프로필렌 공중합체 의 함량이 4 중량% 내지 8 중량% (프로필렌 단일 중합체 : 에틸렌 프로필렌 공중합체 = 4-8 : 1)이다.
참고로, 각 실시예에서 사용된 담지 촉매의 종류와, 각 반응기의 중합 압력, 온도, 각 반응기에 공급된 수소 기체의 농도, 또는 조촉매(TEAL)의 농도, 에틸렌 기체 및 프로필렌 기체의 투입량은 하기 표 1에 정리된 바와 같다.
비교예 1-1
제조예 1에서 메탈로센 화합물인 [(디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)]지르코늄 디클로라이드 대신에, 하기 화학식 A로 표시되는 화합물, rac-[(6-t-부톡시헥실메틸실란디일)-비스(2-메틸-4-(4-t-부틸페닐)인데닐)]하프늄 디클로라이드를 사용한 담지 촉매로 중합 공정을 수행한 것으로 제외하고, 실시예 1-1과 동일한 방법으로 비교예 1-1의 폴리프로필렌 수지 조성물을 제조하였다.
[화학식 A]
Figure PCTKR2022004251-appb-img-000006
.
비교예 1-2
제조예 1에서 메탈로센 화합물인 [(디에틸실란-디일)-비스((2-메틸-4-터트-부틸-페닐인데닐)]지르코늄 디클로라이드 대신에, 하기 화학식 A로 표시되는 화합물, rac-[(디메틸실란디일)-(2-메틸-4-페닐인데닐)(2-메틸-4-페닐-5-메톡시-6-t-부틸)]지르코늄 디클로라이드를 사용한 담지 촉매로 중합 공정을 수행한 것으로 제외하고, 실시예 1-1과 동일한 방법으로 비교예 1-2의 폴리프로필렌 수지 조성물을 제조하였다.
[화학식 B]
Figure PCTKR2022004251-appb-img-000007
.
참고로, 각 실시예에서 사용된 담지 촉매의 종류와, 각 반응기의 중합 압력, 온도, 각 반응기에 공급된 수소 기체의 농도, 또는 조촉매(TEAL)의 농도, 에틸렌 기체 및 프로필렌 기체의 투입량은 하기 표 1에 정리된 바와 같다.
촉매 촉매
투입량
(g/hr)
제1 반응기의 호모 중합 공정 제2 반응기의 공중합 공정
중합
압력
(kg/cm2)
중합
온도
(℃)
C3
투입량
(kg/hr)
TEAL
투입량
(ppm)
H2
투입량
(ppm)
중합
압력
(kg/cm2)
중합
온도
(℃)
C3
투입량
(kg/hr)
C2
투입량
(kg/hr)
실시예
1-1
제조예
1
1.3 35 67 80 50 430 18 72 7.0 3.0
실시예
1-2
제조예
1
1.3 35 67 80 50 430 18 72 6.5 4.0
비교예
1-1
화학식
A
1.8 35 70 80 50 350 18 72 6.5 4.0
비교예
1-2
화학식
B
2.4 35 70 80 50 430 18 72 6.5 4.0
상기 표 1에서, TEAL 및 H2의 투입량은 프로필렌 투입량을 기준으로 한 몰 함량 값(ppm)이다.
비교예 1-3
프로필렌 단독중합체(Homo PP, 엘지화학 제품 H7700, MI2.16 34 g/10min)와 에틸렌 프로필렌 엘라스토머(C3계 POE, Exxon Vistamaxx 6202, MI2.16 20 g/10min)를, 전체 조성물 총 중량 기준으로 엘라스토머 함량이 15 중량%가 되도록 혼합하여, 비교예 1-3의 폴리프로필렌 수지 조성물 [Homo PP + C3계 POE(15%)]을 제조하였다.
비교예 1-4
프로필렌 단독중합체(Homo PP, 엘지화학 제품 H7700, MI2.16 34 g/10min)와 에틸렌 프로필렌 엘라스토머(C3계 POE, Exxon Vistamaxx 6202, MI2.16 20 g/10min)를, 전체 조성물 총 중량 기준으로 엘라스토머 함량이 20 중량%가 되도록 혼합하여, 비교예 1-4의 폴리프로필렌 수지 조성물 [Homo + C3계 POE(20%)]을 제조하였다.
비교예 1-5
앞서 비교예 2에 기재한 바와 같이 제조한 폴리프로필렌 수지 조성물에, 추가로 인산 금속 염류계 핵제를 수지 조성물의 총중량 기준 200 ppm으로 처방하여, 비교예 1-5의 폴리프로필렌 수지 조성물로 준비하였다.
<시험예 1>
실시예 1-1 내지 1-2 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물에 대하여 하기의 방법으로 물성을 평가하였다.
(1) 용융지수(melt index, MI)
미국재료시험학회규격 ASTM D 1238에 따라 230 ℃에서 2.16 kg 하중으로 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.
(2) 에틸렌 함량(C2, wt%)
미국재료시험학회규격 ASTM D 5576 기준에 따른 적외선분광법으로 실시예 1-1 내지 1-2 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물 내 에틸렌 함량을 측정하였다.
구체적으로, 실시예 1-1 내지 1-2 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물의 필름 혹은 필름 형태 시편을 FT-IR 장비의 Magnetic holder에 고정시킨 후 IR 흡수 스펙트럼에서 시편 두께를 반영하는 4800-3500 cm-1 피크의 높이와 에틸렌(C2) 성분이 나타나는 750-710 cm-1 피크의 면적을 측정하여 계산했다. 미국재료시험학회규격 ASTM D 5576의 방법에 따라, 측정한 표준 시편(Standard sample)의 750-710 cm-1 피크 면적을 4800-3500 cm-1 피크 높이로 나눈 값을 플롯(Plot)하여 구한 캘리브레이션(Calibration) 식에 대입하여 에틸렌 함량을 계산하였다.
(3) 자일렌 가용분(X.S: Xylene Soluble, wt%)
실시예 1-1 내지 1-4 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물 2 g 샘플에 자일렌 200 mL를 넣고, 130 ℃에서 1시간 이상 가열하여 조성물을 완전히 용해시킨 후 20 ℃에서 1 시간 이상 냉각한 후 필터하여 고체상과 액체상을 분리하였다. 이후 액체상을 130 ℃로 가열하여 자일렌 성분을 제거한 후 잔류하는 성분의 무게를 측정하였다.
(4) 융점(Tm)
미국재료시험학회규격 ASTM D 3418 기준에 따라, 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 실시예 1-1 내지 1-2 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물의 녹는점, 용융점(Tm)을 측정하였다.
구체적으로, 온도를 상승시켜 폴리프로필렌 수지 조성물을 200 ℃까지 가열한 후 5 분 동안 그 온도에서 유지하고(1st RUN 열이력 제거), 그 다음 -30 ℃까지 내리고, 다시 온도를 증가시켜 나타나는 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기에 해당하는 온도를 용융점(Tm)으로 측정하였다. 이 때, 온도의 상승과 내림의 속도는 10 ℃/min이고, 융점(Tm)은 두 번째 온도가 상승, 내림하는 구간(2nd RUN)에서 측정한 결과로 나타낸 것이다.
(5) 결정화 온도(Tc)
미국재료시험학회규격 ASTM D 3418 기준에 따라, DSC를 이용하여 상기 용융점과 같은 조건에서 온도를 감소시키면서 나타나는 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기에 해당하는 온도를 결정화 온도(Tc)로 측정하였다.
(6) 분자량 분포(MWD, polydispersity index)
겔 투과 크로마토그래피(GPC, gel permeation chromatography, Water사 제조)를 이용하여 중합체의 중량평균 분자량(Mw)과 수평균 분자량(Mn)을 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량 분포(MWD)를 계산하였다.
구체적으로, 겔투과 크로마토그래피(GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 사용하였다. 이때 측정 온도는 160 ℃이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용하였으며, 유속은 1 mL/min로 하였다. 실시예 1-1 내지 1-2 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물의 샘플은 각각 GPC 분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠(1,2,4-Trichlorobenzene)에서 160 ℃, 10 시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도하였다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol의 9종을 사용하였다.
(7) 인장강도
미국재료시험학회규격 ASTM D 638에 의거하여, Instron사 UTM 장비(Univeral Testing Machine, 만능재료 시험기)를 이용하여 폴리프로필렌 수지 조성물의 인장강도(kg/cm2)을 측정하였다.
(8) 굴곡강도 및 굴곡탄성율
미국재료시험학회규격 ASTM D 790에 의거하여, 폴리프로필렌 수지 조성물의 굴곡강도(Flexural Strength, kg/cm2) 및 굴곡탄성율(Flexural Modulus, kg/cm2)을 측정하였다.
구체적으로, ASTM D 790 규격에 따른 시편을 서포트(support)에 올려 고정한 후에 로딩 노즈(Loading Nose)로 28 mm/min으로 하중을 가할 때 걸리는 강도(kg/㎠)를 측정하였다. 또한, 상기 로딩 노즈가 더 이상 증가하지 않는 최대값인 굴곡강도(Flexural Strength)와 굴곡력에 따른 초기 기울기 값으로 스티프니스(Stiffness, 강성)를 나타내는 굴곡탄성율(Flexural Modulus)을 측정하였다.
상술한 바와 같은 방법으로 측정한 실시예 1-1 내지 1-2 및 비교예 1-1 내지 1-5의 폴리프로필렌 수지 조성물의 물성 평가 결과를 하기 표 2에 나타내었다.
실시예
1-1
실시예
1-2
비교예
1-1
비교예
1-2
비교예
1-3
비교예
1-4
비교예
1-5
MI (2.16kg, g/10min) 25.2 25.6 26.2 32.6 34/20 34/20 32.6
C2 함량 (wt%) 2.2 2.7 2.5 5.6 2.5 3.0 5.6
X.S (%) 4.5 7.0 7.0 12.2 미측정 미측정 12.2
Tm (oC) 152 152 149 153 159 159 154
Tc (oC) 111 110 105 108 109 109 121
Mw/Mn 2.8 2.8 3.4 3.0 3.0 3.0 3.0
인장강도(kg/cm2) 280 280 260 260 250 250 275
굴곡강도(kg/cm2) 380 380 350 350 350 340 370
굴곡탄성율(kg/cm2) 12000 12000 11000 10500 11000 10500 12500
또한, 실시예 1-1 및 1-2의 폴리프로필렌 수지 조성물에서, 호모 폴리프로필렌 메트릭스와 에틸렌 프로필렌 공중합체간 분산성 정도를 확인하기 위하여, 폴리프로필렌 수지 조성물의 단면을 주사 전자현미경(SEM, Scanning Electron Microscope)으로 관찰하였다. 구체적으로, 실시예 1-1에 따른 폴리프로필렌 수지 조성물의 단면을 관찰한 주사 전자현미경(SEM) 사진을 도 1로 나타내었다(배율 3000배). 여기서, 실시예 1-1의 폴리프로필렌 수지 조성물은 호모 폴리프로필렌 메트릭스와 에틸렌 프로필렌 공중합체간 상 분리를 최소화하여 높은 분산성을 가지며, 우수한 연신성 및 가공성과 함께 소프트니스를 현저히 개선할 수 있음을 알 수 있다.
특히, 상기 표 2에 나타낸 바와 같이, 본 발명에 따라 특정 구조의 메탈로센 화합물 존재 하에 연속 반응기를 이용하여 제조한 에틸렌 프로필렌 공중합체를 함유한 실시예 1-1 및 1-2의 폴리프로필렌 수지 조성물은, 비교예 1-1 내지 1-4의 폴리프로필렌 수지 조성물에 비해 높은 인장강도와 굴곡탄성율과 함께 좁은 분자량과 최적화된 자일렌 가용분(X.S)을 나타내며, 우수한 연신성 및 가공성과 함께 소프트니스를 개선할 수 있음을 알 수 있다.
<부직포 제조>
실시예 2-1
아래와 같은 방사 장비와 조건으로 실시예 1-1로부터 얻은 폴리프로필렌 수지 조성물을 사용하여 폴리프로필렌 부직포를 제조하였다.
<방사 장비 및 조건>
- 방사장비: 제품명 Fiberio CycloneTM L-1000
- 방사 조건: Temp. 310 ℃ / Nozzle Size 600 μm / 13000 RPM
실시예 2-2
실시예 1-2로부터 얻은 폴리프로필렌 수지 조성물을 사용하는 것을 제외하고는, 상기 실시예 2-1에서와 동일한 방법으로 폴리프로필렌 부직포를 제조하였다.
비교예 2-1 내지 2-4
비교예 1-1 내지 1-5의 폴리프로필렌 C3-Elastomer 15% 및 20% Blend 제품을 사용하는 것을 제외하고는, 상기 실시예 2-1에서와 동일한 방법으로 폴리프로필렌 부직포를 제조하였다.
비교예 2-1 내지 2-4
비교예 1-1 내지 1-4의 폴리프로필렌 C3-Elastomer 15% 및 20% Blend 제품을 사용하는 것을 제외하고는, 상기 실시예 2-1에서와 동일한 방법으로 폴리프로필렌 부직포를 제조하였다.
비교예 2-5
비교예 1-5 폴리프로필렌 수지 조성물을 사용하는 것을 제외하고는, 상기 실시예 2-1에서와 동일한 방법으로 폴리프로필렌 부직포를 제조 공정을 수행하였으나, 단사 문제가 발생하여 방사가 불가하였다.
<시험예 2>
실시예 2-1 내지 2-2 및 비교예 2-1 내지 2-4의 폴리프로필렌 부직포에 대하여, 아래와 같은 방법으로 물성 평가를 수행하고, 그의 결과를 하기 표 3에 나타내었다.
(1) 부직포의 중량
제조한 부직포 중량을 측정하고, 단위 면적당 부직포 중량(g/m2)을 산측하였다.
(2) 부직포의 개별 섬유 평균 직경
부직포를 주사 전자현미경 (SEM, Scanning Electron Microscope)으로 표본 400개를 측정함으로써 부직포를 구성하는 섬유의 평균 직경(Fiber Diameter, ㎛)을 구하였다.
(3) 부직포의 소프트니스
Thwing-Albert Instrument사의 핸들-오-미터(Handle-O-meter) 기기를 사용하여 부직포에 대한 유연성(Softness, HOM; Total Hand, g)을 측정하였다. 여기서, 사용된 핸들-오-미터 값은, 제조사로부터 공지된 편차인 +25% 내지 -25%의 오차를 갖는다.
실시예
2-1
실시예
2-2
비교예
2-1
비교예
2-2
비교예
2-3
비교예
2-4
비교예
2-5
부직포 중량 (g/m2) 72 75 측정불가
(방사불량)
76 76 74 측정불가
(방사불량)
개별 Fiber 강도 (g/d) 5.5 5.1 측정불가(방사불량) 3.5 4.5 4 측정불가
(방사불량)
개별 Fiber 평균직경(㎛) 8.5 8.6 측정불가
(방사불량)
9.2 11.6 10.6 측정불가
(방사불량)
Handle-O-
Meter (g)
24 21 측정불가
(방사불량)
18 32 28 측정불가
(방사불량)
상기 표 3에 나타난 바와 같이, 본 발명에 따른 실시예들은 비교예들에 비해 세섬화(얇은 섬유)에 따라 낮은 핸들오미터로 소프트니스(Softness)가 우수함을 알 수 있다.
또한, 실시예 2-1, 2-2 및 비교예 2-4의 부직포에 대하여 측정한 주사 전자현미경(SEM) 사진을 각각 도 2, 도 3, 및 도 4로 나타내었다. 도 2, 도 3와 도 4를 비교하였을 때, 실시예 2-1, 2-2의 부직포가 비교예 2-4의 부직포에 비해 섬유 직경이 현저히 가늘게 나타나며, 부직포의 소프트니스를 현저히 향상시킬 수 있음을 알 수 있다.
더욱이, 상술한 바와 같이 비교예 2-1의 경우, 폴리프로필렌 조성물의 분자량 분포가 증가하여 방사성이 좋지 않아, 부직포 물성 측정 자체가 어려운 문제가 발생하였다. 또한, 비교예 2-2의 경우, 폴리프로필렌 조성물의 자일렌 가용분(X.S)이 증가하며, 부직포 섬유 평균 직경이 증가하였음에도 불구하고 섬유 강도가 크게 저하되었음을 알 수 있다. 한편, 비교예 2-5의 경우, 폴리프로필렌 조성물의 결정성이 증가하며 높은 결정화 온도(Tc)로 인해 급격한 고화로 인해 방사중 필라멘트(filament)에 높은 스트레스 발생으로 단사로 인해 방사가 불가하여 부직포 물성 측정 자체가 어려운 문제가 발생하였다.

Claims (13)

  1. 분자량 분포(Mw/Mn)가 2.6 내지 3.2이고,
    자일렌 가용분(X.S.)이 4.5 중량% 내지 8.0 중량%이고,
    에틸렌의 함량이 1.0 중량% 내지 5.0 중량%이고,
    ASTM D 638 방법으로 측정한 인장강도가 275 kg/cm2 내지 285 kg/cm2이고,
    ASTM D 790 방법으로 측정한 굴곡 탄성율이 11500 kg/cm2 내지 12500 kg/cm2 인이고,
    용융지수(MI2.16, ASTM D 1238, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 10 g/10min 내지 100 g/10min이고,
    결정화 온도는 95 ℃ 내지 115 ℃인,
    폴리프로필렌 수지 조성물.
  2. 제1항에 있어서,
    분자량 분포(Mw/Mn)가 2.6 내지 2.8인,
    폴리프로필렌 수지 조성물.
  3. 제1항에 있어서,
    자일렌 가용분(X.S.)이 4.5 중량% 내지 7.0 중량%인,
    폴리프로필렌 수지 조성물.
  4. 제1항에 있어서,
    에틸렌의 함량이 2.0 중량% 내지 3.2 중량%인,
    폴리프로필렌 수지 조성물.
  5. 제1항에 있어서,
    ASTM D 638 방법으로 측정한 인장강도가 278 kg/cm2 내지 283 kg/cm2인,
    폴리프로필렌 수지 조성물.
  6. 제1항에 있어서,
    ASTM D 790 방법으로 측정한 굴곡 탄성율이 11800 kg/cm2 내지 12300 kg/cm2인,
    폴리프로필렌 수지 조성물.
  7. 제1항에 있어서,
    용융지수(MI2.16, ASTM D 1238, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 20 g/10min 내지 45 g/10min인,
    폴리프로필렌 수지 조성물.
  8. 제1항에 있어서,
    결정화 온도는 108 ℃ 내지 112 ℃인,
    폴리프로필렌 수지 조성물.
  9. 제1항에 있어서,
    융점이 150 ℃ 내지 158 ℃인,
    폴리프로필렌 수지 조성물.
  10. 제1항에 있어서,
    상기 폴리프로필렌 수지 조성물은, 프로필렌 단일중합체 및 에틸렌 프로필렌계 공중합체를 포함하고, 상기 에틸렌 프로필렌계 공중합체는 프로필렌 단일중합체에 분산되어 있는,
    폴리프로필렌 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 폴리프로필렌 수지 조성물로부터 제조된 섬유로 이루어진, 폴리프로필렌 부직포.
  12. 제11항에 있어서,
    상기 섬유의 평균 직경이 5.7 내지 8.5 마이크로미터인,
    폴리프로필렌 부직포.
  13. 제11항에 있어서,
    부직포의 평량이 72 g/m2 내지 76 g/m2인 조건 하에서,
    NWSP 090.3.R0 기준에 따른 핸들-오-미터(Handle-O-meter) 측정값이 24 g 이하인,
    폴리프로필렌 부직포.
PCT/KR2022/004251 2021-03-26 2022-03-25 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포 WO2022203463A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22776163.2A EP4253472A1 (en) 2021-03-26 2022-03-25 Polypropylene resin composition and non-woven fabric prepared using same
CN202280008313.4A CN116648535A (zh) 2021-03-26 2022-03-25 聚丙烯树脂组合物和使用其制备的无纺布
US18/267,926 US20240052074A1 (en) 2021-03-26 2022-03-25 Polypropylene Resin Composition and Non-Woven Fabric Prepared Using the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0039665 2021-03-26
KR20210039665 2021-03-26
KR1020220037393A KR20220134483A (ko) 2021-03-26 2022-03-25 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포
KR10-2022-0037393 2022-03-25

Publications (1)

Publication Number Publication Date
WO2022203463A1 true WO2022203463A1 (ko) 2022-09-29

Family

ID=83397661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004251 WO2022203463A1 (ko) 2021-03-26 2022-03-25 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포

Country Status (2)

Country Link
US (1) US20240052074A1 (ko)
WO (1) WO2022203463A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770753A (en) * 1992-06-27 1998-06-23 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
KR20020074509A (ko) * 2000-02-08 2002-09-30 엑손모빌 케미칼 패턴츠 인코포레이티드 프로필렌 충격 공중합체
JP2005068261A (ja) * 2003-08-22 2005-03-17 Mitsui Chemicals Inc プロピレン系共重合体
WO2014198677A1 (en) * 2013-06-10 2014-12-18 Borealis Ag Process for the preparation of a propylene polymer
WO2015011135A1 (en) * 2013-07-24 2015-01-29 Borealis Ag Process
KR20190062163A (ko) * 2017-11-27 2019-06-05 주식회사 엘지화학 폴리프로필렌 및 그 제조방법
KR20190066896A (ko) * 2017-12-06 2019-06-14 주식회사 엘지화학 메탈로센 담지 촉매의 제조방법, 상기 제조방법으로 제조된 메탈로센 담지 촉매, 및 이를 제조하여 제조한 폴리프로필렌

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770753A (en) * 1992-06-27 1998-06-23 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
KR20020074509A (ko) * 2000-02-08 2002-09-30 엑손모빌 케미칼 패턴츠 인코포레이티드 프로필렌 충격 공중합체
JP2005068261A (ja) * 2003-08-22 2005-03-17 Mitsui Chemicals Inc プロピレン系共重合体
WO2014198677A1 (en) * 2013-06-10 2014-12-18 Borealis Ag Process for the preparation of a propylene polymer
WO2015011135A1 (en) * 2013-07-24 2015-01-29 Borealis Ag Process
KR20190062163A (ko) * 2017-11-27 2019-06-05 주식회사 엘지화학 폴리프로필렌 및 그 제조방법
KR20190066896A (ko) * 2017-12-06 2019-06-14 주식회사 엘지화학 메탈로센 담지 촉매의 제조방법, 상기 제조방법으로 제조된 메탈로센 담지 촉매, 및 이를 제조하여 제조한 폴리프로필렌

Also Published As

Publication number Publication date
US20240052074A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2020184887A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020251264A1 (ko) 프로필렌-에틸렌 랜덤 공중합체
WO2020184888A1 (ko) 전이 금속 화합물, 촉매 조성물 및 이를 이용한 폴리프로필렌의 제조 방법
WO2019132471A1 (ko) 올레핀계 중합체
WO2022203463A1 (ko) 폴리프로필렌 수지 조성물 및 이로부터 제조된 부직포
WO2020251265A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
WO2022025696A1 (ko) 열가소성 수지 조성물
WO2022071735A1 (ko) 폴리에틸렌 조성물 및 그의 제조 방법
WO2022203461A1 (ko) 폴리프로필렌 수지 조성물 및 그의 제조방법
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2020218874A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2021034170A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
WO2022015094A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2021251766A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2021101292A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
WO2020096250A1 (ko) 프로필렌 공중합체 수지 조성물 및 그 제조방법
WO2020122562A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2024063415A1 (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
WO2022114710A1 (ko) 유무기 하이브리드 폴리올레핀 복합체 및 그의 제조 방법
WO2022114902A1 (ko) 폴리에틸렌 및 그의 제조 방법
WO2019132477A1 (ko) 올레핀계 중합체
WO2021066579A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
WO2022030769A1 (ko) 전이 금속 화합물, 이의 제조방법, 및 이를 포함하는 촉매 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22776163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267926

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280008313.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 22776163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022776163

Country of ref document: EP

Effective date: 20230626

NENP Non-entry into the national phase

Ref country code: DE