WO2022202734A1 - 細胞培養システム - Google Patents

細胞培養システム Download PDF

Info

Publication number
WO2022202734A1
WO2022202734A1 PCT/JP2022/012950 JP2022012950W WO2022202734A1 WO 2022202734 A1 WO2022202734 A1 WO 2022202734A1 JP 2022012950 W JP2022012950 W JP 2022012950W WO 2022202734 A1 WO2022202734 A1 WO 2022202734A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
cell culture
culture system
control device
circuit control
Prior art date
Application number
PCT/JP2022/012950
Other languages
English (en)
French (fr)
Inventor
五十嵐政嗣
大橋広孝
ジェイ. フェルト、トーマス
ラヴィンカ、デニス、ジェイ.
Original Assignee
テルモ株式会社
テルモ ビーシーティー、インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社, テルモ ビーシーティー、インコーポレーテッド filed Critical テルモ株式会社
Priority to JP2023509161A priority Critical patent/JPWO2022202734A1/ja
Publication of WO2022202734A1 publication Critical patent/WO2022202734A1/ja
Priority to US18/215,947 priority patent/US20230357699A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to cell culture systems.
  • Japanese National Publication of International Patent Application No. 2019-517247 discloses a reactor installation unit capable of installing one bioreactor for culturing cells, and a circuit control unit capable of attaching and detaching a connection circuit connected to the bioreactor.
  • a culture device is disclosed.
  • the circuit control unit is for supplying cells and medium from the connecting circuit to the bioreactor and collecting cultured cells from the bioreactor to the connecting circuit.
  • a cell culture device is formed by integrally providing a reactor installation section and a circuit control section. Therefore, when it is desired to increase the amount of cell culture, it is necessary to prepare a plurality of cell culture apparatuses. In other words, as many circuit controllers as bioreactors are required. Therefore, there is a problem that the cost rises.
  • the present invention has been made in consideration of such problems, and aims to provide a cell culture system that can efficiently increase the amount of cell culture while suppressing rising costs.
  • a processing unit for culturing cells a reactor installation device capable of installing the processing unit, a connection circuit connected to the processing unit, a detachable connection circuit, the cells and A circuit control device for supplying a culture medium from the connection circuit to the processing unit and collecting cultured cells from the processing unit to the connection circuit, and a culture medium container for containing the culture medium. and a tank device having The cell culturing system is capable of accommodating the amount of the medium necessary for culturing the cells in the processing section.
  • the number of circuit control devices is smaller than the number of bioreactors. Therefore, it is possible to efficiently increase the amount of cell culture while suppressing an increase in cost.
  • the medium storage unit can accommodate the amount of medium required for culturing cells in the processing unit, even if a large amount of medium is required during cell culture using a plurality of bioreactors, , it becomes unnecessary to replace the medium container during cell culture. Therefore, cell culture can be performed smoothly and efficiently.
  • FIG. 1 is a schematic configuration diagram of a cell culture system according to a first embodiment of the present invention
  • FIG. FIG. 2 is a circuit configuration diagram of the cell culture system of FIG. 1
  • FIG. 3 is a circuit configuration diagram of a processing unit in FIG. 2 and its surroundings
  • 2 is a cross-sectional view of the tank device of FIG. 1
  • FIG. FIG. 5 is a cross-sectional view taken along line VV of FIG. 4
  • FIG. 2 is a perspective view of the circuit control device and the reactor installation device in FIG. 1
  • FIG. 7 is a perspective explanatory view of the circuit control device of FIG. 6
  • 2 is a flowchart of a cell culture method using the cell culture system of FIG. 1;
  • FIG. 10 is a schematic configuration diagram of a cell culture system provided with a cell culture device according to a modification
  • FIG. 2 is a schematic configuration diagram of a cell culture system according to a second embodiment of the present invention
  • FIG. 11 is a circuit configuration diagram of the cell culture system of FIG. 10
  • 11 is a partially omitted cross-sectional explanatory view of the tank device of FIG. 10;
  • a cell culture system 10 cultures (proliferates) cells separated from living tissue.
  • the cell culture system 10 includes two cell culture kits 12 capable of flowing liquid, a cell culture device 14 in which the two cell culture kits 12 are set, and a controller 16. .
  • the cell culture system 10 has two cell culture kits 12, a first cell culture kit 12a and a second cell culture kit 12b.
  • the first cell culture kit 12a and the second cell culture kit 12b are configured identically to each other.
  • the first cell culture kit 12a and the second cell culture kit 12b are simply referred to as the cell culture kit 12 unless otherwise distinguished.
  • Liquids that flow in the cell culture kit 12 include a solution containing cells (hereinafter referred to as cell liquid), a medium (culture medium) for growing cells, a washing liquid for washing the inside of the cell culture kit 12, and a liquid for exfoliating the cells.
  • cell liquid a solution containing cells
  • medium culture medium
  • washing liquid for washing the inside of the cell culture kit 12
  • liquid for exfoliating the cells.
  • stripping solution for example, a stripping solution for
  • cells for example, cells contained in blood (T cells, etc.), stem cells (ES cells, iPS cells, mesenchymal stem cells, etc.) are used.
  • the medium an appropriate medium may be selected according to the cells of the living body.
  • a buffered salt solution (Balanced Salt Solution: BSS) is used as a basic solution, and various amino acids, vitamins, serum, etc. are added. used.
  • BSS Buffers include PBS (Phosphate Buffered Salts) and TBS (Tris-Buffered Saline).
  • stripping solution for example, trypsin or EDTA solution is used.
  • the cell fluid, medium, washing solution and stripping solution are not limited to those mentioned above.
  • the cell culture kit 12 includes a cell fluid bag 18, a stripping solution bag 20, a collection bag 22, a processing section 24, a connection circuit 26 and a gas exchanger 28.
  • Each of the cell fluid bag 18, the stripping fluid bag 20, and the recovery bag 22 is configured in a bag shape from a flexible material made of soft resin such as polyvinyl chloride or polyolefin.
  • the cell fluid bag 18 contains the cell fluid.
  • the stripping solution bag 20 contains the stripping solution.
  • the collection bag 22 is for containing the cultured cells.
  • the collection bag 22 is an empty bag in which no liquid is contained inside before the cell culture kit 12 is used.
  • the processing section 24 includes five bioreactors 30 arranged in parallel.
  • the five bioreactors 30 have the same configuration as each other. However, the five bioreactors 30 may differ from each other in size, shape, and the like.
  • the bioreactor 30 is configured as a so-called hollow fiber bioreactor.
  • the bioreactor 30 includes a large number (plurality) of hollow fibers 32 and a cylindrical housing 34 that accommodates the hollow fibers 32 .
  • the hollow fibers 32 extend along the longitudinal direction of the housing 34.
  • the hollow fibers 32 are open at both ends.
  • One end of the hollow fiber 32 is fixed to one end of the housing 34 .
  • the other end of hollow fiber 32 is fixed to the other end of housing 34 .
  • the walls forming the hollow fibers 32 are formed with a plurality of pores (not shown).
  • the pores communicate between an IC (intracapillary) region, which is the lumen of the hollow fibers 32 , and an EC (extracapillary) region located outside the hollow fibers 32 within the housing 34 .
  • the diameter of the pores is sized to block passage of macromolecules (such as cells) while allowing passage of small molecules (eg, water, ions, oxygen, lactate, etc.).
  • the diameter of the pores is set to, for example, about 0.005 ⁇ m to 10 ⁇ m.
  • Materials constituting the hollow fibers 32 include polyolefin resins such as polypropylene and polyethylene, and polymeric materials such as polysulfone, polyethersulfone, polyacrylonitrile, polytetrafluoroethylene, polystyrene, polymethyl methacrylate, cellulose acetate, cellulose triacetate, and regenerated cellulose. is mentioned.
  • the constituent materials of the hollow fibers 32 are not limited to those described above.
  • the housing 34 is provided with an IC inlet port 36a, an IC outlet port 36b, an EC inlet port 38a, and an EC outlet port 38b.
  • An IC inlet port 36 a is provided at one end of housing 34 .
  • the IC inlet port 36 a introduces liquids (cell fluid, culture medium, washing solution and stripping solution) led from the connecting circuit 26 (IC circulation circuit 44 ) into the IC region of the bioreactor 30 .
  • An IC exit port 36b is provided at the other end of housing 34 .
  • the IC outlet port 36b allows liquid that has flowed through the IC region of the bioreactor 30 to exit to the connecting circuit 26 (IC circulation circuit 44).
  • the EC inlet port 38 a and the EC outlet port 38 b are provided on the outer peripheral surface of the housing 34 .
  • the EC inlet port 38 a introduces liquids (medium and wash solution) directed from the connection circuit 26 (EC circulation circuit 48 ) into the EC region of the bioreactor 30 .
  • the EC outlet port 38b leads the liquid that has flowed through the EC region of the bioreactor 30 to the connection circuit 26 (EC circulation circuit 48).
  • connection circuit 26 extends linearly.
  • the connection circuit 26 is formed in a tubular shape from a soft resin material.
  • the connection circuit 26 may be formed, for example, by stacking two sheets on each other in the thickness direction and joining (melting or sealing) the portions other than the flow path portion.
  • the wall portion (unsealed portion) forming the connection circuit 26 is formed so as to protrude outward from the sealed portion so that the connection circuit 26 forms an open flow path in a natural state. is preferred. Also, in this case, excess sheets on both sides of the flow path of the connection circuit 26 may be cut off.
  • the connection circuit 26 has an IC supply channel 40, a medium supply line 42, an IC circulation circuit 44, an EC supply channel 46, an EC circulation circuit 48, a connection line 50, a sampling line 52, a recovery line 54, and a waste liquid channel 56. .
  • the IC supply channel 40 includes a first IC supply line 40a, a second IC supply line 40b and a third IC supply line 40c.
  • One end of the first IC supply line 40 a is aseptically joined to the cell fluid bag 18 .
  • the other end of the first IC supply line 40 a is connected to an IC circulation circuit 44 .
  • One end of the second IC supply line 40b is aseptically joined to the stripping solution bag 20 .
  • the other end of the second IC supply line 40b is connected to an intermediate portion of the first IC supply line 40a.
  • One end of the third IC supply line 40 c is connected to the medium supply line 42 .
  • the other end of the third IC supply line 40c is connected to an intermediate portion of the second IC supply line 40b.
  • the culture medium supply line 42 is aseptically connected to a connection tube of the culture medium storage section 74 of the cell culture device 14, which will be described later, when the cell culture kit 12 is set in the cell culture device 14.
  • the other end of the medium supply line 42 is connected to the third IC supply line 40c.
  • the medium supply line 42 is provided with a medium intermediate flow path 58 for raising the temperature of the medium (cooled medium) introduced from the medium containing section 74 to a desired temperature.
  • the medium intermediate flow path 58 is provided between the medium containing section 74 and the processing section 24 .
  • the IC circulation circuit 44 circulates the liquid introduced into the IC circulation circuit 44 from the IC supply channel 40 to the IC region of each bioreactor 30 .
  • the IC circulation circuit 44 includes five IC lead-in lines 44a, five IC lead-out lines 44b, and an IC circulation line 44c.
  • the five IC introduction lines 44 a are connected to the IC inlet ports 36 a of the five bioreactors 30 .
  • Five IC outlet lines 44 b are connected to IC outlet ports 36 b of five bioreactors 30 .
  • One end of the IC circulation line 44c is connected to five IC introduction lines 44a.
  • the other end of the IC circulation line 44c is connected to five IC lead-out lines 44b.
  • the IC circulation line 44c is provided with an IC intermediate flow path 60 for raising the temperature of the liquid flowing through the IC circulation line 44c to a desired temperature.
  • the EC supply channel 46 includes a first EC supply line 46a and a second EC supply line 46b.
  • One end of the first EC supply line 46 a is connected to the medium supply line 42 .
  • the other end of the first EC supply line 46 a is connected to an EC circulation circuit 48 .
  • One end of the second EC supply line 46b is aseptically connected to a connecting tube of a later-described washing liquid container 76 of the cell culture device 14 when the cell culture kit 12 is set in the cell culture device 14 .
  • the other end of the second EC supply line 46b is connected to the middle portion of the first EC supply line 46a.
  • the EC circulation circuit 48 circulates the liquid introduced from the EC supply channel 46 to the EC circulation circuit 48 to the EC region of each bioreactor 30 .
  • the EC circulation circuit 48 includes five EC lead-in lines 48a, five EC lead-out lines 48b, and an EC circulation line 48c.
  • the five EC introduction lines 48 a are connected to the EC inlet ports 38 a of the five bioreactors 30 .
  • Five EC outlet lines 48 b are connected to EC outlet ports 38 b of five bioreactors 30 .
  • One end of the EC circulation line 48c is connected to five EC introduction lines 48a.
  • the other end of the EC circulation line 48c is connected to five EC lead-out lines 48b.
  • the EC circulation line 48c is provided with an EC intermediate flow path 62 for raising the temperature of the liquid flowing through the EC circulation line 48c to a desired temperature.
  • connection line 50 connects the IC supply channel 40 and the EC supply channel 46 to each other. Specifically, one end of the connecting line 50 is connected to the downstream side of the connecting portion of the second IC supply line 40b with the third IC supply line 40c. The other end of the connecting line 50 is connected downstream of the connecting portion of the first EC supply line 46a with the second EC supply line 46b.
  • the sampling line 52 is a channel for acquiring part of the medium that has flowed through the EC region of each bioreactor 30 .
  • One end of the sampling line 52 is connected downstream of the processing section 24 in the EC circulation line 48c.
  • the other end of the sampling line 52 is aseptically connected to a connecting tube of a sensor device 70 of the cell culture device 14 (described later) when the cell culture kit 12 is set in the cell culture device 14 .
  • one end of the sampling line 52 is provided in the circuit control device 66 in the set state (see FIG. 1).
  • one end of the sampling line 52 may be provided in the reactor installation device 68 in a set state.
  • the recovery line 54 is a channel for guiding the cultured cells from the IC circulation circuit 44 to the recovery bag 22.
  • One end of the recovery line 54 is connected downstream of the processing section 24 in the IC circulation line 44c.
  • the other end of collection line 54 is aseptically joined to collection bag 22 .
  • the waste liquid flow path 56 is a flow path for guiding used liquid (waste liquid) to a waste liquid storage section 78 of the cell culture device 14, which will be described later.
  • the waste fluid flow path 56 includes an IC waste fluid line 56a and an EC waste fluid line 56b.
  • One end of the IC waste liquid line 56a is connected to a section of the IC circulation line 44c between the processing section 24 and the connecting portion with the recovery line 54.
  • the other end of the IC waste liquid line 56 a is aseptically connected to the connecting tube of the waste liquid storage section 78 when the cell culture kit 12 is set in the cell culture system 10 .
  • One end of the EC waste liquid line 56b is connected to a section of the EC circulation line 48c between the connecting portion with the sampling line 52 and the connecting portion with the first EC supply line 46a.
  • the other end of the EC waste line 56b is connected to the IC waste line 56a.
  • the gas exchanger 28 is provided between the connecting portion of the EC circulation line 48 c to the first EC supply line 46 a and the EC intermediate flow path 62 .
  • the gas exchanger 28 mixes a predetermined gas component with the liquid (medium) flowing through the EC circulation line 48c.
  • Gas components to be mixed include, for example, components close to natural air (nitrogen N 2 : 75%, oxygen O 2 : 20%, carbon dioxide CO 2 : 5%).
  • the structure of the gas exchanger 28 is not particularly limited, and similar to the bioreactor 30, a plurality of hollow fibers 32 provided inside the housing 34 can be applied.
  • the cell culture device 14 includes one tank device 64, two circuit control devices 66, two reactor installation devices 68 and one sensor device 70.
  • the cell culture device 14 has two circuit controllers 66, a first circuit controller 66a and a second circuit controller 66b.
  • the cell culture apparatus 14 has two reactor installation devices 68, a first reactor installation device 68a and a second reactor installation device 68b.
  • the first circuit control device 66a and the second circuit control device 66b are simply referred to as the circuit control device 66 when they are not distinguished from each other.
  • the first reactor installation device 68a and the second reactor installation device 68b are simply referred to as the reactor installation device 68 when not distinguished from each other.
  • the tank device 64 includes a box-shaped base 72 installed on the floor or the like, a culture medium containing portion 74 containing a culture medium, and a washing liquid containing portion 76 containing a washing liquid. and a waste liquid container 78 capable of containing waste liquid.
  • the base 72 has a first case portion 77 and a second case portion 80 .
  • the first case portion 77 includes a first case main body 82 in which the culture medium containing portion 74 can be arranged, and a first door portion 84 (see FIGS. 1 and 5) provided on the front surface of the first case main body 82 so as to be opened and closed. including.
  • the first case part 77 is a cooling part that cools the culture medium to a desired temperature (for example, 4°C or higher and 8°C or lower).
  • the second case portion 80 includes a second case main body 86 in which the cleaning liquid storage portion 76 and the waste liquid storage portion 78 can be arranged, and a second door portion 88 (see FIG. 1) provided on the front surface of the second case main body 86 so as to be openable and closable. ) and The second case part 80 does not have a cooling function.
  • the culture medium storage section 74 has a box-shaped culture medium tank 90 made of hard resin and a culture medium installation member 92 capable of accommodating the culture medium tank 90 .
  • the culture medium tank 90 is preferably a disposable item. However, the culture medium tank 90 may be a reusable product.
  • the medium supply line 42 of each cell culture kit 12 is connected to the medium tank 90 in a state where the cell culture kit 12 is set in the cell culture device 14 (hereinafter referred to as "set state"). That is, the medium storage unit 74 (medium tank 90) is provided with two processing units 24 (two cell culture kits 12).
  • the medium tank 90 can accommodate the amount of medium necessary for culturing cells in the two processing units 24 (two cell culture kits 12).
  • the medium tank 90 contains the amount of medium required for culturing cells by two cell culture kits 12 (ten bioreactors 30 ) connected to the medium tank 90 .
  • the medium tank 90 accommodates 200 L of medium, for example, when 20 L of medium is required for one bioreactor 30 .
  • the culture medium is stored in the culture medium tank 90 on the clean bench.
  • the medium is stored at room temperature (eg, 22°C) or in a bright place for the cell culture period (eg, 7 days or more), there is a risk of denaturation of the medium components (proteins, glutamine, etc.).
  • room temperature eg, 22°C
  • a bright place for the cell culture period eg, 7 days or more
  • the medium components proteins, glutamine, etc.
  • the medium is stored in the first case part 77 which is a low-temperature and dark place, the denaturation of the components of the medium is effectively suppressed.
  • the culture medium installation member 92 is molded from hard resin.
  • the culture medium placement member 92 is a reusable product.
  • the medium placement member 92 is open at the top.
  • a plurality of rollers 94 (wheels) are provided on the bottom surface of the medium placement member 92 .
  • the relatively heavy culture medium container 74 can be smoothly moved by the plurality of rollers 94 in a state where the culture medium tank 90 is arranged inside the culture medium setting member 92 . Therefore, the culture medium accommodating portion 74 can be easily and efficiently moved in and out of the first case portion 77 .
  • the medium placement member 92 is not limited to the configuration described above, and may be a cart.
  • the cleaning liquid storage part 76 has a cleaning liquid tank 96 molded in a box shape from hard resin, and a cleaning liquid installation member 98 capable of accommodating the cleaning liquid tank 96 .
  • the cleaning liquid tank 96 is preferably a disposable item. However, the cleaning liquid tank 96 may be a reusable product.
  • the second EC supply line 46b of each cell culture kit 12 is connected to the washing liquid tank 96 in a set state. That is, the cleaning liquid storage unit 76 (cleaning liquid tank 96) is provided with two processing units 24 (two cell culture kits) in order to supply the cleaning liquid from the cleaning liquid storage unit 76 to the two processing units 24 via the two connection circuits 26. 12).
  • the washing liquid tank 96 can accommodate the amount of medium necessary for washing the two processing units 24 (two cell culture kits 12).
  • the washing liquid tank 96 contains an amount of washing liquid necessary for washing the two cell culture kits 12 connected to the washing liquid tank 96 . In this case, replacement of the washing liquid tank 96 during cell culture is unnecessary and efficient.
  • the cleaning liquid installation member 98 is molded from hard resin.
  • the cleaning liquid installation member 98 is a reusable product.
  • the cleaning liquid installation member 98 is open at the top.
  • a plurality of rollers 100 (wheels) are provided on the bottom surface of the cleaning liquid installation member 98 .
  • the cleaning liquid tank 96 is arranged inside the cleaning liquid installation member 98 , the relatively heavy cleaning liquid storage section 76 can be smoothly moved by the plurality of rollers 100 . Therefore, the cleaning liquid containing portion 76 can be easily and efficiently moved in and out of the second case portion 80 .
  • the cleaning liquid installation member 98 is not limited to the configuration described above, and may be a cart.
  • the waste liquid storage part 78 is molded in a box shape from hard resin.
  • the waste liquid container 78 is a reusable product. However, the waste liquid container 78 may be a disposable item.
  • the waste liquid flow path 56 (IC waste liquid line 56a) of each cell culture kit 12 is connected to the waste liquid container 78 in a set state. That is, in order to discharge the waste liquid from the two processing units 24 to the waste liquid containing unit 78 via the two connection circuits 26, the waste liquid storage unit 78 is provided for the two processing units 24 (two cell culture kits 12). shared.
  • the waste liquid storage unit 78 can store waste liquid discharged from the two processing units 24 (two cell culture kits 12).
  • the waste liquid storage part 78 is formed in a size that can store the waste liquid (liquid) used in the two cell culture kits 12 connected to the waste liquid storage part 78 . In this case, replacement of the waste liquid container 78 is unnecessary during cell culture, which is efficient.
  • a plurality of rollers 102 are provided on the bottom surface of the waste liquid container 78 . Thereby, the waste liquid storage section 78 can be smoothly moved by the plurality of rollers 102 . Therefore, the waste liquid storage portion 78 can be easily and efficiently taken in and out of the second case portion 80 .
  • the culture medium tank 90 and the washing liquid tank 96 are not limited to examples formed of hard resin, and may be, for example, large-capacity bags formed in the shape of a soft resin.
  • the first circuit control device 66a, the first reactor installation device 68a, the second circuit control device 66b, the second reactor installation device 68b, and the sensor device 70 are arranged on the upper surface 72a of the base 72.
  • the first circuit control device 66a and the first reactor installation device 68a are adjacent to each other.
  • the second circuit control device 66b and the second reactor installation device 68b are adjacent to each other.
  • connection circuit 26 of the first cell culture kit 12a can be attached to and detached from the first circuit control device 66a.
  • the first circuit control device 66 a is for supplying cells and medium from the connection circuit 26 to the processing section 24 and collecting cultured cells from the processing section 24 to the connection circuit 26 .
  • the first circuit control device 66a includes a box-shaped housing 104, a plurality of clamps 106, a plurality of pumps 108 and a first holding portion 110.
  • housing 104 has internal space 105 in which connection circuit 26 can be installed.
  • the housing 104 includes a housing main body 112 and a housing door portion 114 provided on the front surface of the housing main body 112 so as to be openable and closable.
  • the housing 104 has a temperature control function that maintains the internal space 105 of the housing 104 at a desired temperature (eg, 37°C). That is, the housing 104 functions as a temperature raising mechanism 107 for raising the temperature of the medium intermediate flow path 58 .
  • the upper surface of the housing 104 is provided with a bag supporting portion 116 for suspending a plurality of bags (cell fluid bag 18, detachment solution bag 20, collection bag 22).
  • a display section 118 for displaying the current process of cell culture and the like is provided on the outer surface of the housing door section 114 (see FIG. 1).
  • the plurality of clamps 106 are open/close valves that open and close the internal flow paths of the lines (tubes) of the connection circuit 26 by pressing from the outside walls of the lines (tubes).
  • the first circuit control device 66a includes a plurality of clamps 106, including a first clamp 106a, a second clamp 106b, a third clamp 106c, a fourth clamp 106d, a fifth clamp 106e, a sixth clamp 106f, a seventh clamp 106g, a It has eight clamps 106h and a ninth clamp 106i.
  • the first clamp 106a is arranged to face the first IC supply line 40a in the set state, and opens and closes the internal flow path of the first IC supply line 40a.
  • the second clamp 106b is arranged to face the second IC supply line 40b in the set state, and opens and closes the internal flow path of the second IC supply line 40b.
  • the third clamp 106c is arranged to face the third IC supply line 40c in the set state, and opens and closes the internal flow path of the third IC supply line 40c.
  • the fourth clamp 106d is arranged to face the first EC supply line 46a in the set state, and opens and closes the internal flow path of the first EC supply line 46a.
  • the fifth clamp 106e is arranged to face the second EC supply line 46b in the set state, and opens and closes the internal flow path of the second EC supply line 46b.
  • the sixth clamp 106f is arranged to face the connection line 50 in a set state, and opens and closes the internal channel of the connection line 50. As shown in FIG.
  • the seventh clamp 106g is arranged to face the recovery line 54 in the set state, and opens and closes the internal flow path of the recovery line 54.
  • the eighth clamp 106h is arranged to face the IC waste liquid line 56a in the set state, and opens and closes the internal flow path of the IC waste liquid line 56a.
  • the ninth clamp 106i is arranged to face the EC waste liquid line 56b in the set state, and opens and closes the internal flow path of the EC waste liquid line 56b.
  • the plurality of pumps 108 apply flow force to the liquid inside by rotating the walls that make up the lines (tube) of the connection circuit 26 as if squeezing them.
  • the circuit control device 66 has, as the plurality of pumps 108, an IC supply pump 108a and an EC supply pump 108b.
  • the IC supply pump 108a is arranged so as to be in contact with the first IC supply line 40a downstream of the connection with the second IC supply line 40b. Gives a flow force in the direction of
  • the EC supply pump 108b is arranged to contact the first EC supply line 46a downstream of the second EC supply line 46b in the set state, and pumps the liquid flowing through the second EC supply line 46b in the direction toward the EC circulation circuit 48. Give fluidity.
  • the first holding part 110 holds the medium intermediate flow path 58 of the medium supply line 42 in a predetermined shape (serpentine shape).
  • the first holding portion 110 is provided in the internal space 105 of the housing 104 .
  • the first holding portion 110 includes a rectangular first frame 120, a first inner frame 122 provided on the first frame 120, and a mounting portion 124. including.
  • the first inner frame 122 is formed in a cross shape.
  • the first inner frame 122 is connected to the central portion of each side of the first frame-shaped frame 120 .
  • the medium intermediate flow path 58 is in a meandering shape and is locked to the first frame-shaped frame 120 and the first inner frame 122 by locking members (not shown).
  • the mounting portion 124 is a columnar portion protruding from the central portion of the first inner frame 122 .
  • the attachment portion 124 is attached to a mounting portion 126 provided inside the housing 104 . The position, shape, size, and number of the mounting portions 124 can be changed as appropriate.
  • the length of the medium intermediate flow path 58 held in the first holding part 110 is set to a length that allows the medium to flow for the first heating time.
  • the first heating time refers to the time during which the temperature of the culture medium cooled in the culture medium container 74 (eg, 5° C.) is raised to a desired temperature (eg, 37° C.).
  • the first circuit control device 66a includes a pressure sensor, a liquid level sensor, and the like (not shown) in addition to the configuration described above.
  • the mounting portion 126 (see FIG. 7) is formed to rotatably support the bioreactor 30, and the first circuit control device 66a further includes an IC circulation pump 127a and an EC circulation pump 127b. is preferred (see FIG. 2).
  • a cell culture kit having only one bioreactor is provided as the first Cell culture can be performed by setting it to the one-circuit control device 66a. At this time, the bioreactor is set in the mounting section 126 .
  • the IC circulation pump 127a imparts flow force in the direction toward the bioreactor to the liquid flowing through the IC circulation line of the cell culture kit.
  • the EC circulation pump 127b imparts flow force to the liquid flowing through the EC circulation line of the cell culture kit in the direction toward the bioreactor.
  • the IC circulation pump 127a and the EC circulation pump 127b are not used.
  • connection circuit 26 of the second cell culture kit 12b is set in the second circuit control device 66b.
  • the configuration of the second circuit control device 66b is the same as that of the first circuit control device 66a. Therefore, description of the configuration of the second circuit control device 66b is omitted.
  • the processing section 24 of the first cell culture kit 12a is set in the first reactor installation device 68a.
  • the first reactor installation device 68 a includes a box-shaped reactor case portion 128 , five reactor support portions 130 , a plurality of pumps 132 and a second holding portion 134 .
  • the reactor case part 128 has an internal space 129 in which the treatment part 24 (five bioreactors 30) can be installed.
  • Reactor case portion 128 includes a reactor case main body 136 and a door portion 138 provided on the front surface of reactor case main body 136 so as to be able to be opened and closed.
  • the reactor case portion 128 has a temperature control function of maintaining an internal space 129 of the reactor case portion 128 at a desired temperature (for example, 37° C.). That is, the reactor case portion 128 functions as a temperature raising mechanism 131 for raising the temperature of the IC intermediate flow path 60 .
  • the reactor support portion 130 is provided in the internal space 129 of the reactor case portion 128. As shown in FIG. The reactor support part 130 is formed so that the bioreactor 30 can be attached and detached.
  • the reactor support section 130 supports the bioreactor 30 so as to be rotatable around the rotation axis Ax.
  • the rotation axis Ax is located at the center of the bioreactor 30 in the extending direction.
  • the rotation axis Ax extends in a direction orthogonal to the extending direction of the bioreactor 30 .
  • the first reactor installation device 68a has, as the plurality of pumps 132, five IC circulation pumps 132a and five EC circulation pumps 132b.
  • the IC circulating pump 132a is arranged to contact the IC introduction line 44a in the set state, and imparts flow force in the direction toward the bioreactor 30 to the liquid flowing through the IC introduction line 44a.
  • the EC circulation pump 132b is arranged so as to contact the EC introduction line 48a in the set state, and imparts flow force in the direction toward the bioreactor 30 to the liquid flowing through the EC introduction line 48a.
  • the second holding unit 134 holds the IC intermediate flow path 60 of the IC introduction line 44a and the EC intermediate flow path 62 of the EC circulation line 48c in a predetermined shape (meandering shape). do.
  • the second holding portion 134 is provided in the internal space 129 of the reactor case portion 128 .
  • the second holding portion 134 includes a rectangular second frame 140 and a second inner frame 142 provided inside the second frame 140 .
  • the second inner frame 142 is formed in a cross shape.
  • the second inner frame 142 is connected to the central portion of each side of the second frame-like frame 140 .
  • Each of the IC intermediate channel 60 and the EC intermediate channel 62 has a meandering shape and is locked to the second frame-shaped frame 140 and the second inner frame 142 by locking members (not shown).
  • the second holding portion 134 is fixed to the inner surface of the door portion 138 .
  • the first reactor installation device 68a is provided separately from the first circuit control device 66a. Therefore, in FIGS. 2 and 6, the first cell culture kit 12a, in the set state, has an IC outer flow path 45 and an EC outer flow path 49 positioned outside the first circuit control device 66a and the first reactor installation device 68a. and
  • the first cell culture kit 12a according to the present embodiment includes, as the IC outer channel 45, a first IC outer channel 45a and a second IC outer channel 45b.
  • the first IC outer channel 45a is located in a section between the connecting portion of the IC circulation line 44c with the first IC supply line 40a and the IC intermediate channel 60.
  • the second IC outer flow path 45b is located in a section of the IC circulation line 44c between the processing section 24 and the connection with the IC waste liquid line 56a.
  • the liquid flowing through the IC circulation line 44c is cooled at the positions of the first IC outer channel 45a and the second IC outer channel 45b.
  • the liquid flowing through the IC circulation line 44c may be cooled to room temperature (eg, 30° C.) at the positions of the first IC outer channel 45a and the second IC outer channel 45b.
  • the length of the IC intermediate flow path 60 held by the second holding portion 134 is set to a length that allows the liquid to circulate for the second heating time.
  • the second temperature raising time means that the temperature of the liquid cooled in the first IC outer flow path 45a or the second IC outer flow path 45b when flowing through the IC circulation line 44c (for example, 30° C.) reaches the desired temperature. It refers to the time for the temperature to rise to (the temperature of the internal space 129 of the reactor case portion 128).
  • the first cell culture kit 12a includes, as the EC outer channel 49, a first EC outer channel 49a and a second EC outer channel 49b.
  • the first EC outer channel 49a is located in a section between the gas exchanger 28 and the EC intermediate channel 62 in the EC circulation line 48c.
  • the second EC outer flow path 49b is located in a section of the EC circulation line 48c between the processing section 24 and the connection with the EC waste liquid line 56b.
  • the liquid flowing through the EC circulation line 48c is cooled at the positions of the first EC outer channel 49a and the second EC outer channel 49b.
  • the liquid (medium) flowing through the EC circulation line 48c may be cooled to room temperature (eg, 30° C.) at the positions of the first EC outer channel 49a and the second EC outer channel 49b.
  • the length of the EC intermediate flow path 62 held by the second holding portion 134 is set to a length that allows the liquid to flow only during the third heating time.
  • the third temperature raising time means that the liquid cooled in the first EC outer channel 49a or the second EC outer channel 49b when flowing through the EC circulation line 48c reaches a desired temperature (for example, 30°C). It refers to the time for the temperature to rise to (the temperature of the internal space 129 of the reactor case portion 128).
  • the processing unit 24 of the second cell culture kit 12b is installed (set) in the second reactor installation device 68b.
  • the configuration of the second reactor installation device 68b is the same as the configuration of the first reactor installation device 68a. Therefore, description of the configuration of the second reactor installation device 68b is omitted.
  • the sensor device 70 is connected to the first cell culture kit 12a and the second cell culture kit 12b in a set state.
  • the sensor device 70 has a box-shaped sensor case portion 144 (see FIGS. 1 and 6), two pumps 146 , a sensor portion 148 and a waste liquid bag 150 .
  • a bag support portion 152 for suspending the waste liquid bag 150 is provided on the upper surface of the sensor case portion 144 (see FIGS. 1 and 6).
  • the two pumps 146 and the sensor portion 148 are arranged within the sensor case portion 144 .
  • the pump 146 is configured similarly to the pump 108 described above.
  • the sensor device 70 has two pumps 146, a first sampling pump 146a and a second sampling pump 146b.
  • the first sampling pump 146a is placed in contact with the sampling line 52 of the first cell culture kit 12a in the set state, and applies a flow force in the direction toward the sensor section 148 to the liquid (medium) flowing through the sampling line 52.
  • the second sampling pump 146b is placed in contact with the sampling line 52 of the second cell culture kit 12b in the set state, and applies a flow force in the direction toward the sensor section 148 to the liquid (medium) flowing through the sampling line 52.
  • the second sampling pump 146b is placed in contact with the sampling line 52 of the second cell culture kit 12b in the set state, and applies a flow force in the direction toward the sensor section 148 to the liquid (medium) flowing through the sampling line 52.
  • the sensor unit 148 measures the components of the culture medium guided by the sampling line 52 (the concentrations of PH, O 2 , CO 2 , glucose, lactic acid, etc.). The culture medium after the measurement by the sensor section 148 is discharged to the waste liquid bag 150 .
  • the sensor device 70 (the sensor section 148 and the waste liquid bag 150) is shared by the first cell culture kit 12a and the second cell culture kit 12b. Also, the tank device 64 is shared by the first cell culture kit 12a and the second cell culture kit 12b.
  • the controller 16 is a computer having a processor, memory, and input/output interface (not shown).
  • the controller 16 comprehensively controls the entire system by having the processor execute programs stored in the memory.
  • the controller 16 communicates with the first circuit control device 66a, the first reactor installation device 68a, the second circuit control device 66b, the second reactor installation device 68b, and the sensor device 70 by means of communication, which may be wired, wireless, network, or a combination thereof. It is connected to the.
  • each of the first circuit control device 66a and the second circuit control device 66b controls operations of the plurality of clamps 106 and the plurality of pumps 108 based on control signals from the controller 16.
  • Each of the first reactor installation device 68a and the second reactor installation device 68b controls the operation of the plurality of IC circulation pumps 132a and the plurality of EC circulation pumps 132b based on control signals from the controller 16, and each bioreactor 30 controls the rotation of the
  • the sensor unit 148 acquires (samples) the medium flowing through the first cell culture kit 12a or the second cell culture kit 12b based on a control signal from the controller 16, and measures the components of the acquired medium. Also, the sensor unit 148 transmits the measurement result to the controller 16 .
  • the controller 16 may estimate the number of cells cultured in the first cell culture kit 12a and the second cell culture kit 12b based on the measurement results.
  • the controller 16 feedback-controls the operations of the first circuit control device 66a, the first reactor installation device 68a, the second circuit control device 66b, and the second reactor installation device 68b based on the measurement results from the sensor device 70.
  • the cell culture method includes a preparation process, a priming process, a medium replacement process, a seeding process, a culture process, an exfoliation process and a collection process.
  • the culture medium containing portion 74 is arranged in the first case portion 77, and the cleaning liquid containing portion 76 and the waste liquid containing portion 78 are arranged in the second case portion 80.
  • the processing unit 24 (five bioreactors 30) of the first cell culture kit 12a is installed in the first reactor installation device 68a, and the connection circuit 26 of the first cell culture kit 12a is set in the first circuit control device 66a.
  • the plurality of bags of the first cell culture kit 12a (the cell solution bag 18, the stripping solution bag 20 and the recovery bag 22) are hung from the bag support portion 116 of the first circuit control device 66a.
  • the connection circuit 26 of the first cell culture kit 12a is aseptically joined to each of the culture medium container 74, the washing liquid container 76, the waste liquid container 78 and the sensor part 148. As shown in FIG.
  • the processing unit 24 (five bioreactors 30) of the second cell culture kit 12b is installed in the second reactor installation device 68b, and the connection circuit 26 of the second cell culture kit 12b is set in the second circuit control device 66b. do.
  • the plurality of bags of the second cell culture kit 12b (the cell fluid bag 18, the stripping solution bag 20, and the collection bag 22) are hung from the bag support portion 116 of the second circuit control device 66b.
  • the connection circuit 26 of the second cell culture kit 12b is aseptically connected to each of the culture medium storage section 74, the washing liquid storage section 76, the waste liquid storage section 78, and the sensor section 148, respectively.
  • the circuit control device 66 and the reactor installation device 68 drive the predetermined clamps 106 and pumps 108 and 132 to connect the cleaning liquid in the cleaning liquid container 76 to the connecting circuit 26 and each bioreactor. lead to 30.
  • the interior of the connection circuit 26 and the interior of each bioreactor 30 (the IC area and the EC area) are filled with the cleaning liquid.
  • the air existing in the connection circuit 26 and the bioreactor 30 is discharged to the waste liquid container 78 together with the cleaning liquid.
  • the circuit control device 66 and the reactor installation device 68 drive the predetermined clamps 106 and pumps 108 and 132 to connect the culture medium in the culture medium storage section 74 to the circuit 26 and each biotechnology. to the reactor 30.
  • the washing liquid existing in the connection circuit 26 and in each bioreactor 30 (the IC area and the EC area) is replaced with the culture medium.
  • the circuit control device 66 and the reactor installation device 68 drive the predetermined clamps 106 and pumps 108, 132 to transfer the cell liquid from the cell liquid bag 18 to each bioreactor 30.
  • IC area Specifically, the cell fluid introduced from the cell fluid bag 18 to the IC circulation line 44c via the first IC supply line 40a is divided into five IC introduction lines 44a and guided to the IC area of each bioreactor 30 (Fig. 3). At this time, since the five IC circulation pumps 132a impart fluidity to the liquid (cell fluid) flowing through the five IC introduction lines 44a, the five bioreactors 30 are supplied with the cell fluid substantially equally.
  • the circuit control device 66 and the reactor installation device 68 drive the predetermined clamps 106 and pumps 108, 132 to move the culture medium in the culture medium storage section 74 to the IC area of each bioreactor 30. and the EC region to culture (proliferate) cells within the hollow fibers 32 of the bioreactor 30 .
  • the medium supply to the IC region of each bioreactor 30 and the medium supply to the EC region of each bioreactor 30 may be performed simultaneously or separately. Also, in the culture step, the culture medium may be supplied only to the EC region of each bioreactor 30 without supplying the culture medium to the IC region of each bioreactor 30 .
  • the medium at a low temperature (for example, 5° C.) in the medium storage unit 74 flows through the medium supply line 42 from the tank device 64 to the internal space 105 of the housing 104 of the circuit control device 66. It is guided to the provided medium intermediate channel 58 .
  • the medium flowing through the medium intermediate flow path 58 is heated to a desired temperature (eg, 37° C.).
  • the culture medium whose temperature has been raised in the medium intermediate channel 58 is supplied to the IC via the third IC supply line 40c, the second IC supply line 40b, and the first IC supply line 40a. It is introduced into the circulation line 44c.
  • the temperature of the culture medium introduced into the IC circulation line 44c is lowered (for example, lowered to 30° C.) while flowing through the first IC outer channel 45a.
  • the culture medium whose temperature has decreased is led to the IC intermediate flow path 60 provided in the internal space 129 of the reactor case part 128 .
  • the medium flowing through the IC intermediate channel 60 is heated to a desired temperature (eg, 37° C.).
  • the medium that has flowed through the IC intermediate channel 60 is branched into five IC introduction lines 44a and guided to the IC area of each bioreactor 30, whereby the medium in the IC area of each bioreactor 30 is replaced with a new one.
  • nutrients such as oxygen are efficiently supplied to the cells seeded on the inner surface of the hollow fibers 32 in each bioreactor 30 .
  • the medium circulates within the IC circulation circuit 44 .
  • the temperature of the culture medium decreases when flowing through the first IC outer channel 45a and the second IC outer channel 45b, but the temperature rises in the IC intermediate channel 60, so that the IC region of each bioreactor 30
  • the temperature of the supplied medium is maintained at the desired temperature.
  • the medium whose temperature has been raised in the medium intermediate flow path 58 is introduced into the EC circulation line 48c via the first EC supply line 46a.
  • the temperature of the culture medium introduced into the EC circulation line 48c is lowered (for example, lowered to 30° C.) while flowing through the first EC outer flow path 49a.
  • the culture medium whose temperature has decreased is guided to the EC intermediate flow path 62 provided in the internal space 129 of the reactor case part 128 .
  • the medium flowing through the EC intermediate channel 62 is heated to a desired temperature (eg, 37° C.).
  • the medium that has flowed through the EC intermediate flow path 62 is branched into five EC introduction lines 48 a and led to the EC region of each bioreactor 30 .
  • nutrients and the like are exchanged between the medium in the IC area and the medium in the EC area. Thereby, nutrients such as oxygen are efficiently supplied to the cells seeded on the inner surface of the hollow fibers 32 in each bioreactor 30 .
  • the medium circulates within the EC circulation circuit 48 .
  • the temperature of the medium decreases when flowing through the first EC outer channel 49a and the second EC outer channel 49b, but the temperature rises in the EC intermediate channel 62, so that the EC region of each bioreactor 30
  • the temperature of the supplied medium is maintained at the desired temperature.
  • the medium circulating in the EC circulation circuit 48 undergoes gas exchange when flowing through the gas exchanger 28 . Therefore, the EC region of each bioreactor 30 is supplied with a culture medium containing desired gas components.
  • the culture step includes a measurement step (step S5a).
  • the sensor device 70 drives the pump 146 to guide the culture medium flowing through the portion of the EC circulation line 48 c downstream of the processing section 24 to the sensor section 148 .
  • the sensor section 148 measures the components of the medium (the medium in the processing section 24).
  • a measurement result of the sensor unit 148 is transmitted to the controller 16 .
  • the controller 16 determines the time (timing), period, number of times, etc. of medium exchange based on the measurement results.
  • the culture medium is discharged to the waste liquid bag 150 .
  • the time (timing), number of times, and the like of the measurement process performed during the culture process can be set as appropriate.
  • the circuit control device 66 and the reactor installation device 68 drive the predetermined clamps 106 and pumps 108 and 132 to spread the stripping solution to the IC area of each bioreactor 30. lead to Thereby, cells cultured (proliferated) in the IC region of each bioreactor 30 can be separated from the inner surface of the hollow fiber 32 .
  • step S7 the circuit control device 66 and the reactor installation device 68 drive predetermined clamps 106 and pumps 108, 132 to supply the culture medium to the IC region of each bioreactor 30. Cells detached in the detachment step are guided from each bioreactor 30 to the collection bag 22 . After the recovery step is completed, the operation of the cell culture method ends.
  • the cell culture system 10 according to this embodiment has the following effects.
  • the cell culture system 10 includes a processing unit 24 for culturing cells, a reactor installation device 68 capable of installing the processing unit 24, a connection circuit 26 connected to the processing unit 24, and a connection circuit 26 that are detachable. and a plurality of circuit control devices 66 for supplying culture medium from the connection circuit 26 to the processing unit 24 and collecting cultured cells from the processing unit 24 to the connection circuit 26; and a tank device 64 having a medium containing portion 74 .
  • the processing section 24 has a plurality of bioreactors 30 .
  • the culture medium in the culture medium storage section 74 is supplied to the processing section 24 via the connection circuit 26 .
  • the medium containing section 74 can contain the amount of medium necessary for culturing the cells in the processing section 24 .
  • the number of circuit control devices 66 is less than the number of bioreactors 30 because it is sufficient to prepare a circuit control device 66 for each processing unit 24 (a plurality of bioreactors 30). Therefore, it is possible to efficiently increase the amount of cell culture while suppressing an increase in cost.
  • the medium containing section 74 can contain an amount of medium necessary for culturing cells in the processing section 24, a large amount of medium is required when culturing cells using a plurality of bioreactors 30. However, it becomes unnecessary to replace the medium containing portion 74 during cell culture. Therefore, cell culture can be performed smoothly and efficiently.
  • the tank device 64 cools the culture medium in the culture medium storage section 74 .
  • connection circuit 26 has a medium intermediate flow path 58 provided between the medium containing section 74 and the processing section 24 .
  • the cell culture system 10 has a temperature raising mechanism 107 for raising the temperature of the medium intermediate channel 58 .
  • the temperature of the low-temperature medium introduced from the medium containing section 74 can be raised when flowing through the intermediate medium flow path 58 . Therefore, it is possible to suppress the temperature drop of the culture medium inside each bioreactor 30 (the IC area and the EC area).
  • the circuit control device 66 has an internal space 105 maintained at a desired temperature and a housing 104 that functions as a temperature raising mechanism 107 .
  • the temperature of the medium intermediate flow path 58 is raised by being arranged in the internal space 105 of the housing 104 .
  • the channel length of the medium intermediate channel 58 is such that the temperature of the medium introduced from the medium containing portion 74 is raised to the temperature of the internal space 105 of the housing 104 when flowing through the medium intermediate channel 58. is set.
  • the temperature of the medium flowing through the intermediate medium channel 58 can be raised to the temperature of the internal space 105 of the housing 104 .
  • the medium intermediate flow path 58 extends linearly.
  • the cell culture system 10 has a first holding section 110 that holds the medium intermediate flow path 58 in a meandering state.
  • the medium intermediate flow path 58 can be arranged compactly in the internal space 105 of the housing 104 . In addition, it is possible to suppress clogging of the medium intermediate flow path 58 due to bending.
  • the culture medium storage part 74 has a culture medium tank 90 containing a culture medium and a culture medium installation member 92 in which the culture medium tank 90 is installed.
  • a roller 94 for moving the culture medium setting member 92 is provided on the bottom surface of the culture medium setting member 92 .
  • the cell culture system 10 includes a sensor device 70 for measuring the components of the culture medium guided to the processing section 24.
  • the components of the culture medium in the processing section 24 can be measured by the sensor device 70, so cell culture can be performed efficiently.
  • the cell culture system 10 includes a controller 16 that controls the operation of the circuit control device 66.
  • the controller 16 feedback-controls the operation of the circuit control device 66 based on the measurement result of the sensor device 70 .
  • Each of the multiple bioreactors 30 includes multiple hollow fibers 32 .
  • cell culture can be efficiently performed in each bioreactor 30.
  • the cell culture system 10 is not limited to the configuration described above.
  • the number of bioreactors 30 that can be installed by the reactor installation device 68 is not limited to five, and may be two, three, four, or six or more.
  • three or more circuit control devices 66 and three or more reactor installation devices 68 may be provided.
  • two or more tank devices 64 and two or more sensor devices 70 may be provided.
  • the IC intermediate channel 60 or the EC intermediate channel 62 may be omitted. Moreover, in the cell culture system 10, both the IC intermediate channel 60 and the EC intermediate channel 62 may be omitted, and the second holding part 134 may be omitted. Furthermore, in the cell culture system 10, the medium intermediate flow path 58 and the first holding section 110 may be omitted.
  • the cell culture apparatus 14 includes a tank device 64, a first circuit control device 66a (one circuit control device 66), a first reactor installation device 68a (one reactor installation device 68), and a sensor device 70. , and the second circuit control device 66b and the second reactor installation device 68b may be omitted.
  • the cell culture system 10A includes one cell culture kit 12A, a cell culture device 14A, and a controller 16.
  • the cell culture kit 12A is configured in the same manner as the cell culture kit 12 described above, except that the IC intermediate channel 60 and the EC intermediate channel 62 are not provided.
  • the cell culture device 14A has one tank device 64A, a culture device main body 200, and one sensor device 70.
  • the tank device 64 ⁇ /b>A includes a base 202 , a culture medium container 74 , a washing liquid container 76 , a waste liquid container 78 and a holder 204 .
  • the culture device main body 200 and the sensor device 70 are arranged adjacent to each other on the upper surface 202a of the base 202 .
  • the base 202 includes a first case portion 77 , a second case portion 80 and a third case portion 206 .
  • the third case portion 206 is provided above the first case portion 77, for example. However, the position of the third case portion 206 can be set as appropriate.
  • the third case portion 206 has a temperature control function that maintains the internal space 208 of the third case portion 206 at a desired temperature (eg, 37° C.).
  • the holding part 204 holds the medium intermediate flow path 58 in a predetermined shape (meandering shape).
  • the holding portion 204 is provided in the internal space 208 of the third case portion 206 . That is, the third case portion 206 functions as a temperature raising mechanism 210 for raising the temperature of the medium intermediate flow path 58 .
  • the holding portion 204 is, for example, configured similarly to the first holding portion 110 or the second holding portion 134 described above.
  • the culture apparatus main body 200 includes a box-shaped case member 212, a circuit control device 66A and a reactor installation device 68A arranged in an internal space 214 of the case member 212, and and a bag support 216 . That is, in this embodiment, the circuit control device 66A and the reactor installation device 68A are not provided separately, but are provided integrally in the internal space 214 of the case member 212. As shown in FIG. A display portion 218 is provided on the front surface of the case member 212 .
  • the circuit control device 66A includes a plurality of clamps 106 and a plurality of pumps 108, like the circuit control device 66 described above. Note that the circuit control device 66A does not have the housing 104 and the first holding section 110 described above.
  • the processing section 24 (five bioreactors 30) is formed to be installable in the reactor installation device 68A.
  • 68 A of reactor installation apparatuses are provided with five reactor support parts 130 and several pumps 132 like the reactor installation apparatus 68 mentioned above (refer FIG. 3). Note that the reactor installation device 68A does not have the reactor case portion 128 and the second holding portion 134 described above (see FIG. 2).
  • the bag support part 216 is formed so that a plurality of bags (cell fluid bag 18, detachment solution bag 20, collection bag 22) can be suspended.
  • the same configuration as the cell culture system 10 described above has the same effect.
  • the temperature raising mechanism 210 is provided in the tank device 64A.
  • the configuration of the circuit control device 66A can be made more compact than when the temperature raising mechanism 210 is provided in the circuit control device 66A.
  • the above embodiment includes a processing unit (24) for culturing cells, a reactor installation device (68, 68A) capable of installing the processing unit, a connection circuit (26) connected to the processing unit, and the connection circuit. is detachable, and a circuit control device (66, 66A), and a tank device (64, 64A) having a medium containing part (74) for containing the culture medium, the processing part having a plurality of bioreactors (30),
  • the medium in the unit is supplied to the processing unit via the connection circuit, and the medium storage unit can store an amount of the medium necessary for culturing cells in the processing unit. (10, 10A).
  • the tank device may cool the medium in the medium storage section.
  • connection circuit has an intermediate medium flow path (58) provided between the medium storage section and the processing section, and the cell culture system includes the intermediate medium flow path. It may have a temperature raising mechanism (107, 210) for raising the temperature.
  • the temperature raising mechanism may be provided in the tank device or the circuit control device.
  • the circuit control device has an internal space (105) maintained at a desired temperature and has a housing (104) functioning as the temperature raising mechanism, and the medium intermediate flow path is , the temperature may be raised by being placed in the internal space of the housing.
  • the channel length of the medium intermediate channel rises to the temperature of the internal space of the housing when the medium guided from the medium storage unit flows through the medium intermediate channel. It may be set to a length that is warmed.
  • the medium intermediate flow path extends linearly, and the cell culture system has a holding part (110, 204) that holds the medium medium flow path in a meandering state.
  • the medium storage unit includes a medium tank (90) containing the medium and a medium setting member (92) in which the medium tank is installed, and the medium setting member
  • the bottom surface may be provided with rollers (94) for moving the culture medium placement member.
  • the above cell culture system may include a sensor device (70) for measuring components of the culture medium guided to the processing section.
  • the above cell culture system may include a controller (16) that controls the operation of the circuit control device, and the controller may feedback-control the operation of the circuit control device based on the measurement result of the sensor device.
  • each of the plurality of bioreactors may include a plurality of hollow fibers (32).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞培養システム(10)は、細胞を培養する処理部(24)と、処理部(24)を設置可能なリアクタ設置装置(68)と、処理部(24)に接続された接続回路(26)と、接続回路(26)が着脱可能である回路制御装置(66)と、培地を収容するための培地収容部(74)を有するタンク装置(64)とを備える。処理部(24)は、複数のバイオリアクタ(30)を有する。培地収容部(74)の培地は、接続回路(26)を介して処理部(24)に供給される。培地収容部(74)は、処理部(24)において細胞を培養するのに必要な量の培地を収容可能である。

Description

細胞培養システム
 本発明は、細胞培養システムに関する。
 例えば、特表2019-517247号公報には、細胞を培養する1つのバイオリアクタを設置可能なリアクタ設置部と、当該バイオリアクタに接続された接続回路を着脱可能な回路制御部とを備えた細胞培養装置が開示されている。回路制御部は、細胞及び培地の接続回路からバイオリアクタへの供給と培養された細胞のバイオリアクタから接続回路への回収を行うためのものである。
 一般的に、細胞培養装置は、リアクタ設置部と回路制御部とが一体的に設けられて形成されている。そのため、細胞培養の量を増大したい場合には、複数の細胞培養装置を用意する必要がある。換言すれば、バイオリアクタの数と同じ数の回路制御部が必要となる。従って、コストが高騰化するという問題がある。
 本発明は、このような課題を考慮してなされたものであり、コストの高騰化を抑えつつ細胞培養の量を効率的に増大させることができる細胞培養システムを提供することを目的とする。
 本発明の一態様は、細胞を培養する処理部と、前記処理部を設置可能なリアクタ設置装置と、前記処理部に接続された接続回路と、前記接続回路を着脱可能であり、前記細胞及び培地の前記接続回路から前記処理部への供給と、培養された細胞の前記処理部から前記接続回路への回収と、を行うための回路制御装置と、前記培地を収容するための培地収容部を有するタンク装置と、を備え、前記処理部は、複数のバイオリアクタを有し、前記培地収容部の前記培地は、前記接続回路を介して前記処理部に供給され、前記培地収容部は、前記処理部において細胞を培養するのに必要な量の前記培地を収容可能である、細胞培養システムである。
 本発明によれば、処理部毎に回路制御装置を用意すればよいため、回路制御装置の数がバイオリアクタの数よりも少なくなる。よって、コストの高騰化を抑えつつ細胞培養の量を効率的に増大させることができる。また、培地収容部には、処理部において細胞を培養するのに必要な量の培地を収容可能であるため、複数のバイオリアクタを用いた細胞培養の際に多量の培地が必要になっても、細胞培養中に培地収容部を交換しなくてもよくなる。そのため、細胞培養を円滑且つ効率的に行うことができる。
本発明の第1実施形態に係る細胞培養システムの概略構成図である。 図1の細胞培養システムの回路構成図である。 図2の処理部とその周囲の回路構成図である。 図1のタンク装置の断面図である。 図4のV-V線に沿った断面図である。 図1の回路制御装置とリアクタ設置装置の斜視図である。 図6の回路制御装置の斜視説明図である。 図1の細胞培養システムを用いた細胞培養方法のフローチャートである。 変形例に係る細胞培養装置を備えた細胞培養システムの概略構成図である。 本発明の第2実施形態に係る細胞培養システムの概略構成図である。 図10の細胞培養システムの回路構成図である。 図10のタンク装置の一部省略断面説明図である。
 以下、本発明に係る細胞培養システムについて好適な実施形態を挙げ、添付の図面を参照しながら説明する。
 本発明の一実施形態に係る細胞培養システム10は、生体組織から分離した細胞を培養(増殖)するものである。
 図1及び図2に示すように、細胞培養システム10は、液体を流動可能な2つの細胞培養キット12と、2つの細胞培養キット12がセットされる細胞培養装置14と、コントローラ16とを備える。細胞培養システム10は、2つの細胞培養キット12として、第1細胞培養キット12aと第2細胞培養キット12bとを有する。なお、第1細胞培養キット12aと第2細胞培養キット12bとは、互いに同一に構成されている。以下の説明では、第1細胞培養キット12aと第2細胞培養キット12bとを特に区別しない場合には、単に細胞培養キット12という。
 細胞培養キット12内を流動する液体としては、細胞を含む溶液(以下、細胞液という)、細胞を増殖させるための培地(培養液)、細胞培養キット12内を洗浄する洗浄液及び細胞を剥離するための剥離液等が挙げられる。
 細胞としては、例えば、血液に含まれる細胞(T細胞等)、幹細胞(ES細胞、iPS細胞、間葉系幹細胞等)が用いられる。培地としては、生体の細胞に応じて適切なものが選択されればよく、例えば、緩衝塩類溶液(Balanced Salt Solution:BSS)を基本溶液として、種々のアミノ酸、ビタミン類及び血清等を加えて調製されたものが用いられる。洗浄液としては、緩衝液又は生理食塩水が用いられる。なお、緩衝液としては、PBS(Phosphate Buffered Salts)及びTBS(Tris-Buffered Saline)等が挙げられる。剥離液としては、例えば、トリプシン又はEDTA液等が用いられる。ただし、細胞液、培地、洗浄液及び剥離液は、上述したものに限定されない。
 図2に示すように、細胞培養キット12は、細胞液バッグ18、剥離液バッグ20、回収バッグ22、処理部24、接続回路26及びガス交換器28を備える。
 細胞液バッグ18、剥離液バッグ20及び回収バッグ22のそれぞれは、例えば、ポリ塩化ビニル、ポリオレフィンのような軟質樹脂製の可撓性を有する材料により袋状に構成されたものである。
 細胞液バッグ18には、細胞液が収容されている。剥離液バッグ20には、剥離液が収容されている。回収バッグ22は、培養した細胞を収容するためのものである。回収バッグ22は、細胞培養キット12の使用前の状態で、内部に液体が収容されていない空バッグである。
 図3に示すように、処理部24は、並列に配置された5つのバイオリアクタ30を含む。5つのバイオリアクタ30は、互いに同一の構成を有する。ただし、5つのバイオリアクタ30は、大きさ及び形状等が互いに異なっていてもよい。バイオリアクタ30は、いわゆる中空糸型バイオリアクタとして構成されている。バイオリアクタ30は、多数(複数)の中空糸32と、これら中空糸32を収容する円筒状のハウジング34とを備える。
 中空糸32は、ハウジング34の長手方向に沿って延在している。中空糸32は、その両端が開口している。中空糸32の一端部は、ハウジング34の一端部に固着されている。中空糸32の他端部は、ハウジング34の他端部に固着されている。中空糸32を構成する壁部には、図示しない複数の細孔が形成されている。細孔は、中空糸32の内腔であるIC(intra capillary)領域とハウジング34内における中空糸32の外側に位置するEC(extra capillary)領域とを連通する。細孔の直径は、高分子(細胞等)の通過を阻止する一方で低分子(例えば、水、イオン、酸素、乳酸塩等)を通過させることができるような大きさに設定されている。細孔の直径は、例えば0.005μm~10μm程度に設定される。
 中空糸32の構成材料としては、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリテトラフルオロエチレン、ポリスチレン、ポリメチルメタクリレート、セルロースアセテート、セルローストリアセテート、再生セルロース等の高分子材料が挙げられる。ただし、中空糸32の構成材料は、上述したものに限定されない。
 ハウジング34には、IC入口ポート36a、IC出口ポート36b、EC入口ポート38a、EC出口ポート38bが設けられている。IC入口ポート36aは、ハウジング34の一端に設けられている。IC入口ポート36aは、接続回路26(IC循環回路44)から導かれた液体(細胞液、培地、洗浄液及び剥離液)をバイオリアクタ30のIC領域に導入する。IC出口ポート36bは、ハウジング34の他端に設けられている。IC出口ポート36bは、バイオリアクタ30のIC領域を流通した液体を接続回路26(IC循環回路44)に導出させる。
 EC入口ポート38a及びEC出口ポート38bは、ハウジング34の外周面に設けられている。EC入口ポート38aは、接続回路26(EC循環回路48)から導かれた液体(培地及び洗浄液)をバイオリアクタ30のEC領域に導入する。EC出口ポート38bは、バイオリアクタ30のEC領域を流通した液体を接続回路26(EC循環回路48)に導出させる。
 図2において、接続回路26は、線状に延在している。接続回路26は、軟質な樹脂材料によってチューブ状に形成されている。ただし、接続回路26は、例えば、2枚のシートを互いに厚さ方向に重ねて流路となる部分以外の箇所を接合(融着、シール)することにより形成してもよい。この際、接続回路26を形成する壁部(非シール部)は、接続回路26が自然状態で開いた流路となるようにシールされている部分に対して外側に突出するように形成するのが好ましい。また、この場合、接続回路26の流路両側の余分なシートを切除してもよい。接続回路26は、IC供給流路40、培地供給ライン42、IC循環回路44、EC供給流路46、EC循環回路48、連結ライン50、サンプリングライン52、回収ライン54及び廃液流路56を有する。
 IC供給流路40は、第1IC供給ライン40a、第2IC供給ライン40b及び第3IC供給ライン40cを含む。第1IC供給ライン40aの一端は、細胞液バッグ18に対して無菌接合されている。第1IC供給ライン40aの他端は、IC循環回路44に連結されている。第2IC供給ライン40bの一端は、剥離液バッグ20に対して無菌接合されている。第2IC供給ライン40bの他端は、第1IC供給ライン40aの途中部位に連結されている。第3IC供給ライン40cの一端は、培地供給ライン42に連結されている。第3IC供給ライン40cの他端は、第2IC供給ライン40bの途中部位に連結されている。
 培地供給ライン42の一端は、細胞培養キット12を細胞培養装置14にセットする際に、細胞培養装置14の後述する培地収容部74の接続チューブに対して無菌接合される。培地供給ライン42の他端は、第3IC供給ライン40cに連結されている。培地供給ライン42には、培地収容部74から導かれた培地(冷却されている培地)を所望の温度に昇温するための培地中間流路58が設けられている。培地中間流路58は、培地収容部74から処理部24までの間に設けられている。
 図2及び図3に示すように、IC循環回路44は、IC供給流路40からIC循環回路44に導入された液体を各バイオリアクタ30のIC領域に循環させる。図3において、IC循環回路44は、5つのIC導入ライン44aと、5つのIC導出ライン44bと、IC循環ライン44cとを含む。
 5つのIC導入ライン44aは、5つのバイオリアクタ30のIC入口ポート36aに連結されている。5つのIC導出ライン44bは、5つのバイオリアクタ30のIC出口ポート36bに連結されている。IC循環ライン44cの一端部は、5つのIC導入ライン44aに連結されている。IC循環ライン44cの他端部は、5つのIC導出ライン44bに連結されている。IC循環ライン44cには、IC循環ライン44cを流通する液体を所望の温度に昇温するためのIC中間流路60が設けられている。
 図2に示すように、EC供給流路46は、第1EC供給ライン46a及び第2EC供給ライン46bを含む。第1EC供給ライン46aの一端は、培地供給ライン42に対して連結されている。第1EC供給ライン46aの他端は、EC循環回路48に連結されている。第2EC供給ライン46bの一端は、細胞培養キット12を細胞培養装置14にセットする際に、細胞培養装置14の後述する洗浄液収容部76の接続チューブに対して無菌接合される。第2EC供給ライン46bの他端は、第1EC供給ライン46aの途中部分に連結されている。
 図2及び図3に示すように、EC循環回路48は、EC供給流路46からEC循環回路48に導かれた液体を各バイオリアクタ30のEC領域に循環させる。図3において、EC循環回路48は、5つのEC導入ライン48aと、5つのEC導出ライン48bと、EC循環ライン48cとを含む。
 5つのEC導入ライン48aは、5つのバイオリアクタ30のEC入口ポート38aに連結されている。5つのEC導出ライン48bは、5つのバイオリアクタ30のEC出口ポート38bに連結されている。EC循環ライン48cの一端部は、5つのEC導入ライン48aに連結されている。EC循環ライン48cの他端部は、5つのEC導出ライン48bに連結されている。EC循環ライン48cには、EC循環ライン48cを流通する液体を所望の温度に昇温するためのEC中間流路62が設けられている。
 図2に示すように、連結ライン50は、IC供給流路40とEC供給流路46とを互いに連結する。具体的に、連結ライン50の一端は、第2IC供給ライン40bにおける第3IC供給ライン40cとの連結部分よりも下流側に連結している。連結ライン50の他端は、第1EC供給ライン46aにおける第2EC供給ライン46bとの連結部分よりも下流側に連結している。
 サンプリングライン52は、各バイオリアクタ30のEC領域を流通した培地の一部を取得するための流路である。サンプリングライン52の一端は、EC循環ライン48cにおける処理部24よりも下流側に連結されている。サンプリングライン52の他端は、細胞培養キット12を細胞培養装置14にセットする際に、細胞培養装置14の後述するセンサ装置70の接続チューブに対して無菌接合される。本実施形態において、サンプリングライン52の一端部は、セット状態で回路制御装置66に設けられている(図1参照)。ただし、サンプリングライン52の一端部は、セット状態でリアクタ設置装置68に設けられてもよい。
 回収ライン54は、培養された細胞をIC循環回路44から回収バッグ22に導くための流路である。回収ライン54の一端は、IC循環ライン44cにおける処理部24よりも下流側に連結している。回収ライン54の他端は、回収バッグ22に対して無菌接合されている。
 廃液流路56は、使用済みの液体(廃液)を細胞培養装置14の後述する廃液収容部78に導くための流路である。廃液流路56は、IC廃液ライン56aとEC廃液ライン56bとを含む。IC廃液ライン56aの一端は、IC循環ライン44cにおける処理部24から回収ライン54との連結部までの間の区間に連結されている。IC廃液ライン56aの他端は、細胞培養キット12を細胞培養システム10にセットする際に、廃液収容部78の接続チューブに対して無菌接合される。EC廃液ライン56bの一端は、EC循環ライン48cにおけるサンプリングライン52との連結部から第1EC供給ライン46aとの連結部までの間の区間に連結されている。EC廃液ライン56bの他端は、IC廃液ライン56aに連結されている。
 ガス交換器28は、EC循環ライン48cにおける第1EC供給ライン46aとの連結部とEC中間流路62との間に設けられている。ガス交換器28は、EC循環ライン48cを流通する液体(培地)に所定のガス成分を混合する。混合するガス成分としては、例えば、自然界の空気に近い成分(窒素N:75%、酸素O:20%、二酸化炭素CO:5%)が挙げられる。
 ガス交換器28の構造は、特に限定されず、バイオリアクタ30と同様に、複数の中空糸32をハウジング34内に設けたものを適用することができる。
 図1及び図2に示すように、細胞培養装置14は、1つのタンク装置64、2つの回路制御装置66、2つのリアクタ設置装置68及び1つのセンサ装置70を備える。細胞培養装置14は、2つの回路制御装置66として、第1回路制御装置66aと第2回路制御装置66bとを有する。細胞培養装置14は、2つのリアクタ設置装置68として、第1リアクタ設置装置68aと第2リアクタ設置装置68bとを有する。以下の説明では、第1回路制御装置66aと第2回路制御装置66bとを特に区別しない場合には、単に回路制御装置66という。また、第1リアクタ設置装置68aと第2リアクタ設置装置68bとを特に区別しない場合には、単にリアクタ設置装置68という。
 図1及び図4に示すように、タンク装置64は、床面等に設置される箱型の基台72と、培地が収容された培地収容部74と、洗浄液が収容された洗浄液収容部76と、廃液を収容可能な廃液収容部78とを備える。基台72は、第1ケース部77及び第2ケース部80を有する。第1ケース部77は、培地収容部74を配置可能な第1ケース本体82と、第1ケース本体82の前面に開閉可能に設けられた第1扉部84(図1及び図5参照)とを含む。
 第1ケース部77は、培地を所望の温度(例えば、4℃以上8℃以下)に冷却する冷却部である。第2ケース部80は、洗浄液収容部76及び廃液収容部78を配置可能な第2ケース本体86と、第2ケース本体86の前面に開閉可能に設けられた第2扉部88(図1参照)とを含む。第2ケース部80は、冷却機能を有していない。
 図4及び図5において、培地収容部74は、硬質樹脂により箱型に成形された培地タンク90と、培地タンク90を収容可能な培地設置部材92とを有する。培地タンク90は、使い捨て品(ディスポーザブル品)であることが好ましい。ただし、培地タンク90は、再利用可能なリユース品であってもよい。培地タンク90には、細胞培養キット12を細胞培養装置14にセットした状態(以下、「セット状態」という)で、各細胞培養キット12の培地供給ライン42が接続されている。すなわち、培地収容部74(培地タンク90)は、培地収容部74から2つの接続回路26を介して2つの処理部24に培地を供給するために、2つの処理部24(2つの細胞培養キット12)に対して共用される。
 培地タンク90は、2つの処理部24(2つの細胞培養キット12)において細胞を培養するのに必要な量の培地を収容可能である。培地タンク90には、培地タンク90に連結された2つの細胞培養キット12(10個のバイオリアクタ30)によって細胞を培養するのに必要な量の培地が収容されている。具体的に、培地タンク90には、例えば、1つのバイオリアクタ30に対して20Lの培地が必要である場合には、200Lの培地が収容される。このように、細胞培養の開始から終了までに必要な量の培地が予め培地タンク90に収容されていると、培地収容部74の交換が不要であり効率的である。なお、培地は、クリーンベンチにおいて培地タンク90に収容される。
 また、培地は、細胞の培養期間(例えば、7日以上)継続して室温(例えば、22℃)又は明所で保管すると、培地の成分(タンパク質及びグルタミン等)が変性するリスクがある。しかしながら、本実施形態では、低温且つ暗所である第1ケース部77に培地を保管するため、培地の成分の変性が効果的に抑えられる。
 培地設置部材92は、硬質樹脂により成形されている。培地設置部材92は、再利用可能なリユース品である。培地設置部材92は、上方が開口している。培地設置部材92の底面には、複数のローラ94(車輪)が設けられている。これにより、培地設置部材92の内側に培地タンク90を配置した状態で、比較的重い培地収容部74を複数のローラ94によって円滑に移動させることができる。よって、第1ケース部77に対する培地収容部74の出し入れを簡単且つ効率的に行うことができる。培地設置部材92は、上述した構成に限定されず、台車であってもよい。
 図4において、洗浄液収容部76は、硬質樹脂により箱型に成形された洗浄液タンク96と、洗浄液タンク96を収容可能な洗浄液設置部材98とを有する。洗浄液タンク96は、使い捨て品(ディスポーザブル品)であることが好ましい。ただし、洗浄液タンク96は、再利用可能なリユース品であってもよい。洗浄液タンク96には、セット状態で、各細胞培養キット12の第2EC供給ライン46bが接続されている。すなわち、洗浄液収容部76(洗浄液タンク96)は、洗浄液収容部76から2つの接続回路26を介して2つの処理部24に洗浄液を供給するために、2つの処理部24(2つの細胞培養キット12)に対して共用される。
 洗浄液タンク96は、2つの処理部24(2つの細胞培養キット12)を洗浄するのに必要な量の培地を収容可能である。洗浄液タンク96は、洗浄液タンク96に連結された2つの細胞培養キット12の洗浄に必要な量の洗浄液が収容されている。この場合、細胞培養中に洗浄液タンク96の交換が不要であり効率的である。
 洗浄液設置部材98は、硬質樹脂により成形されている。洗浄液設置部材98は、再利用可能なリユース品である。洗浄液設置部材98は、上方が開口している。洗浄液設置部材98の底面には、複数のローラ100(車輪)が設けられている。これにより、洗浄液設置部材98の内側に洗浄液タンク96を配置した状態で、比較的重い洗浄液収容部76を複数のローラ100によって円滑に移動させることができる。よって、第2ケース部80に対する洗浄液収容部76の出し入れを簡単且つ効率的に行うことができる。洗浄液設置部材98は、上述した構成に限定されず、台車であってもよい。
 廃液収容部78は、硬質樹脂により箱型に成形されている。廃液収容部78は、再利用可能なリユース品である。ただし、廃液収容部78は、使い捨て品(ディスポーザブル品)であってもよい。廃液収容部78には、セット状態で、各細胞培養キット12の廃液流路56(IC廃液ライン56a)が接続されている。すなわち、廃液収容部78は、2つの処理部24から2つの接続回路26を介して廃液収容部78に廃液を排出するために、2つの処理部24(2つの細胞培養キット12)に対して共用される。
 廃液収容部78は、2つの処理部24(2つの細胞培養キット12)から排出される廃液を収容可能である。つまり、廃液収容部78は、廃液収容部78に連結された2つの細胞培養キット12で使用された廃液(液体)を収容可能な大きさに形成されている。この場合、細胞培養中に廃液収容部78の交換が不要であり効率的である。
 廃液収容部78の底面には、複数のローラ102(車輪)が設けられている。これにより、廃液収容部78を複数のローラ102によって円滑に移動させることができる。よって、第2ケース部80に対する廃液収容部78の出し入れを簡単且つ効率的に行うことができる。
 培地タンク90及び洗浄液タンク96は、硬質樹脂により形成された例に限定されず、例えば、軟質樹脂によって袋状に形成された大容量のバッグであってもよい。
 図1に示すように、第1回路制御装置66a、第1リアクタ設置装置68a、第2回路制御装置66b、第2リアクタ設置装置68b及びセンサ装置70は、基台72の上面72aに配置されている。第1回路制御装置66a及び第1リアクタ設置装置68aは、互いに隣接している。第2回路制御装置66b及び第2リアクタ設置装置68bは、互いに隣接している。
 第1回路制御装置66aには、第1細胞培養キット12aの接続回路26が着脱可能である。第1回路制御装置66aは、細胞及び培地の接続回路26から処理部24への供給と培養された細胞の処理部24から接続回路26への回収とを行うためのものである。
 図2及び図6に示すように、第1回路制御装置66aは、箱型の筐体104、複数のクランプ106、複数のポンプ108及び第1保持部110を備える。図6において、筐体104は、接続回路26を設置可能な内部空間105を有する。筐体104は、筐体本体112と、筐体本体112の前面に開閉可能に設けられた筐体扉部114とを含む。
 筐体104は、筐体104の内部空間105を所望の温度(例えば、37℃)に保持する調温機能を有している。すなわち、筐体104は、培地中間流路58を昇温するための昇温機構107として機能する。図1において、筐体104の上面には、複数のバッグ(細胞液バッグ18、剥離液バッグ20、回収バッグ22)を吊り下げるためのバッグ支持部116が設けられている。筐体扉部114の外表面には、細胞培養の現在の工程等を表示する表示部118が設けられている(図1参照)。
 図2に示すように、複数のクランプ106は、接続回路26のライン(チューブ)を構成する壁部を外側から押圧することにより当該ラインの内部流路を開閉する開閉弁である。第1回路制御装置66aは、複数のクランプ106として、第1クランプ106a、第2クランプ106b、第3クランプ106c、第4クランプ106d、第5クランプ106e、第6クランプ106f、第7クランプ106g、第8クランプ106h及び第9クランプ106iを有する。
 第1クランプ106aは、セット状態で第1IC供給ライン40aに対向するように配置され、第1IC供給ライン40aの内部流路を開閉する。第2クランプ106bは、セット状態で第2IC供給ライン40bに対向するように配置され、第2IC供給ライン40bの内部流路を開閉する。第3クランプ106cは、セット状態で第3IC供給ライン40cに対向するように配置され、第3IC供給ライン40cの内部流路を開閉する。
 第4クランプ106dは、セット状態で第1EC供給ライン46aに対向するように配置され、第1EC供給ライン46aの内部流路を開閉する。第5クランプ106eは、セット状態で第2EC供給ライン46bに対向するように配置され、第2EC供給ライン46bの内部流路を開閉する。第6クランプ106fは、セット状態で連結ライン50に対向するように配置され、連結ライン50の内部流路を開閉する。
 第7クランプ106gは、セット状態で回収ライン54に対向するように配置され、回収ライン54の内部流路を開閉する。第8クランプ106hは、セット状態でIC廃液ライン56aに対向するように配置され、IC廃液ライン56aの内部流路を開閉する。第9クランプ106iは、セット状態でEC廃液ライン56bに対向するように配置され、EC廃液ライン56bの内部流路を開閉する。
 複数のポンプ108は、接続回路26のライン(チューブ)を構成する壁部をしごくように回転することにより、内部の液体に流動力を付与する。回路制御装置66は、複数のポンプ108として、IC供給ポンプ108a及びEC供給ポンプ108bを有する。
 IC供給ポンプ108aは、セット状態で第1IC供給ライン40aにおける第2IC供給ライン40bとの連結部よりも下流側に接触するように配置され、第1IC供給ライン40aを流通する液体にIC循環回路44に向かう方向の流動力を付与する。
 EC供給ポンプ108bは、セット状態で第1EC供給ライン46aにおける第2EC供給ライン46bよりも下流側に接触するように配置され、第2EC供給ライン46bを流通する液体にEC循環回路48に向かう方向の流動力を付与する。
 図2及び図6に示すように、第1保持部110は、培地供給ライン42の培地中間流路58を所定形状(蛇行形状)に保持する。第1保持部110は、筐体104の内部空間105に設けられている。具体的に、図6及び図7において、第1保持部110は、四角形状の第1枠状フレーム120と、第1枠状フレーム120に設けられた第1内側フレーム122と、取付部124とを含む。
 第1内側フレーム122は、十字状に形成されている。第1内側フレーム122は、第1枠状フレーム120の各辺の中央部に連結している。図6において、培地中間流路58は、蛇行した形状で第1枠状フレーム120及び第1内側フレーム122に対して図示しない係止部材によって係止される。図7に示すように、取付部124は、第1内側フレーム122の中央部から突出した円柱部である。取付部124は、筐体104内に設けられた装着部126に取り付けられる。取付部124の位置、形状、大きさ、数は、適宜変更可能である。
 図2において、第1保持部110に保持される培地中間流路58の長さは、第1昇温時間だけ培地を流通させることができるような長さに設定されている。ここで、第1昇温時間とは、培地収容部74で冷却されている培地の温度(例えば、5℃)が所望の温度(例えば、37℃)まで昇温される時間をいう。第1回路制御装置66aは、上述した構成の他、図示しない圧力センサや液位センサ等を備えている。
 本実施形態では、装着部126(図7参照)がバイオリアクタ30を回転可能に支持できるように形成されるとともに第1回路制御装置66aがIC循環ポンプ127aとEC循環ポンプ127bとをさらに有することが好ましい(図2参照)。
 このように構成すれば、例えば、1つのバイオリアクタを用いた細胞培養を実施すればよい場合(少量の細胞培養を実施すればよい場合)に、バイオリアクタを1つだけ有する細胞培養キットを第1回路制御装置66aにセットして細胞培養を行うことができる。この際、当該バイオリアクタは、装着部126にセットされる。
 また、IC循環ポンプ127aは、当該細胞培養キットのIC循環ラインを流通する液体をバイオリアクタに向かう方向の流動力を付与する。さらに、EC循環ポンプ127bは、当該細胞培養キットのEC循環ラインを流通する液体をバイオリアクタに向かう方向の流動力を付与する。なお、本実施形態のように複数(5つ)のバイオリアクタ30を有する細胞培養キット12を用いた細胞培養では、IC循環ポンプ127a及びEC循環ポンプ127bは、使用されない。
 図2に示すように、第2回路制御装置66bには、第2細胞培養キット12bの接続回路26がセットされる。第2回路制御装置66bの構成は、第1回路制御装置66aの構成と同一である。そのため、第2回路制御装置66bの構成の説明については省略する。
 図3及び図6に示すように、第1リアクタ設置装置68aには、第1細胞培養キット12aの処理部24がセットされる。第1リアクタ設置装置68aは、箱型のリアクタケース部128、5つのリアクタ支持部130、複数のポンプ132及び第2保持部134を備える。図6において、リアクタケース部128は、処理部24(5つのバイオリアクタ30)を設置可能な内部空間129を有する。リアクタケース部128は、リアクタケース本体136と、リアクタケース本体136の前面に開閉可能に設けられた扉部138とを含む。リアクタケース部128は、リアクタケース部128の内部空間129を所望の温度(例えば、37℃)に保持する調温機能を有している。すなわち、リアクタケース部128は、IC中間流路60を昇温するための昇温機構131として機能する。
 図3において、リアクタ支持部130は、リアクタケース部128の内部空間129に設けられている。リアクタ支持部130は、バイオリアクタ30を着脱可能に形成されている。リアクタ支持部130は、回転軸Axを中心にバイオリアクタ30を回転可能に支持する。回転軸Axは、バイオリアクタ30の延在方向の中心に位置する。回転軸Axは、バイオリアクタ30の延在方向と直交する方向に延在している。
 第1リアクタ設置装置68aは、複数のポンプ132として、5つのIC循環ポンプ132aと5つのEC循環ポンプ132bとを有する。IC循環ポンプ132aは、セット状態でIC導入ライン44aに接触するように配置され、IC導入ライン44aを流通する液体にバイオリアクタ30に向かう方向の流動力を付与する。EC循環ポンプ132bは、セット状態でEC導入ライン48aに接触するように配置され、EC導入ライン48aを流通する液体にバイオリアクタ30に向かう方向の流動力を付与する。
 図3及び図6に示すように、第2保持部134は、IC導入ライン44aのIC中間流路60とEC循環ライン48cのEC中間流路62とのそれぞれを所定形状(蛇行形状)に保持する。第2保持部134は、リアクタケース部128の内部空間129に設けられている。具体的に、図6において、第2保持部134は、四角形状の第2枠状フレーム140と、第2枠状フレーム140の内側に設けられた第2内側フレーム142とを含む。
 第2内側フレーム142は、十字状に形成されている。第2内側フレーム142は、第2枠状フレーム140の各辺の中央部に連結している。IC中間流路60及びEC中間流路62のそれぞれは、蛇行した形状で第2枠状フレーム140及び第2内側フレーム142に対して図示しない係止部材によって係止される。第2保持部134は、扉部138の内面に固定される。
 図1、図2及び図6に示すように、第1リアクタ設置装置68aは、第1回路制御装置66aに対して別体に設けられている。そのため、図2及び図6において、第1細胞培養キット12aは、セット状態で、第1回路制御装置66a及び第1リアクタ設置装置68aの外側に位置するIC外側流路45とEC外側流路49とを有する。本実施形態に係る第1細胞培養キット12aは、IC外側流路45として、第1IC外側流路45aと第2IC外側流路45bとを含む。図2に示すように、第1IC外側流路45aは、IC循環ライン44cにおける第1IC供給ライン40aとの連結部からIC中間流路60までの間の区間に位置する。第2IC外側流路45bは、IC循環ライン44cにおける処理部24からIC廃液ライン56aとの連結部までの間の区間に位置する。
 IC循環ライン44cを流通する液体は、第1IC外側流路45a及び第2IC外側流路45bの位置で冷却される。換言すれば、IC循環ライン44cを流通する液体は、第1IC外側流路45a及び第2IC外側流路45bの位置で室温(例えば、30℃)まで冷却されることがある。
 第2保持部134に保持されるIC中間流路60の長さは、第2昇温時間だけ液体を流通させることができるような長さに設定されている。ここで、第2昇温時間とは、IC循環ライン44cを流通する際に第1IC外側流路45a又は第2IC外側流路45bで冷却された液体の温度(例えば、30℃)が所望の温度(リアクタケース部128の内部空間129の温度)まで昇温される時間をいう。
 また、第1細胞培養キット12aは、EC外側流路49として、第1EC外側流路49aと第2EC外側流路49bとを含む。第1EC外側流路49aは、EC循環ライン48cにおけるガス交換器28からEC中間流路62までの間の区間に位置する。第2EC外側流路49bは、EC循環ライン48cにおける処理部24からEC廃液ライン56bとの連結部までの間の区間に位置する。
 EC循環ライン48cを流通する液体は、第1EC外側流路49a及び第2EC外側流路49bの位置で冷却される。換言すれば、EC循環ライン48cを流通する液体(培地)は、第1EC外側流路49a及び第2EC外側流路49bの位置で室温(例えば、30℃)まで冷却されることがある。
 第2保持部134に保持されるEC中間流路62の長さは、第3昇温時間だけ液体を流通させることができるような長さに設定されている。ここで、第3昇温時間とは、EC循環ライン48cを流通する際に第1EC外側流路49a又は第2EC外側流路49bで冷却された液体の温度(例えば、30℃)が所望の温度(リアクタケース部128の内部空間129の温度)まで昇温される時間をいう。
 第2リアクタ設置装置68bには、第2細胞培養キット12bの処理部24が設置(セット)される。第2リアクタ設置装置68bの構成は、第1リアクタ設置装置68aの構成と同一である。そのため、第2リアクタ設置装置68bの構成の説明については省略する。
 図2に示すように、センサ装置70は、セット状態で第1細胞培養キット12a及び第2細胞培養キット12bに接続されている。センサ装置70は、箱型のセンサケース部144(図1及び図6参照)と、2つのポンプ146と、センサ部148と、廃液バッグ150とを有する。センサケース部144の上面には、廃液バッグ150を吊り下げるためのバッグ支持部152が設けられている(図1及び図6参照)。2つのポンプ146とセンサ部148とは、センサケース部144内に配置されている。
 ポンプ146は、上述したポンプ108と同様に構成されている。センサ装置70は、2つのポンプ146として、第1サンプリングポンプ146aと第2サンプリングポンプ146bとを有する。第1サンプリングポンプ146aは、セット状態で第1細胞培養キット12aのサンプリングライン52に接触するように配置され、当該サンプリングライン52を流通する液体(培地)にセンサ部148に向かう方向の流動力を付与する。第2サンプリングポンプ146bは、セット状態で第2細胞培養キット12bのサンプリングライン52に接触するように配置され、当該サンプリングライン52を流通する液体(培地)にセンサ部148に向かう方向の流動力を付与する。
 センサ部148は、サンプリングライン52によって導かれた培地の成分(PH、O、CO、グルコース及び乳酸等の濃度)を測定する。廃液バッグ150には、センサ部148による測定が完了した後の培地が排出される。
 細胞培養装置14において、センサ装置70(センサ部148及び廃液バッグ150)は、第1細胞培養キット12aと第2細胞培養キット12bとによって共用される。また、タンク装置64は、第1細胞培養キット12aと第2細胞培養キット12bとによって共用される。
 図1に示すように、コントローラ16は、図示しないプロセッサ、メモリ、入出力インターフェースを有するコンピュータである。コントローラ16は、メモリに記憶されたプログラムをプロセッサが実行することで、システム全体の総合的な制御を行う。コントローラ16は、有線、無線、ネットワーク又はこれらの組み合わせからなる通信手段によって、第1回路制御装置66a、第1リアクタ設置装置68a、第2回路制御装置66b、第2リアクタ設置装置68b及びセンサ装置70に接続されている。
 すなわち、第1回路制御装置66a及び第2回路制御装置66bのそれぞれは、コントローラ16からの制御信号に基づいて、複数のクランプ106と複数のポンプ108との動作を制御する。第1リアクタ設置装置68a及び第2リアクタ設置装置68bのそれぞれは、コントローラ16からの制御信号に基づいて、複数のIC循環ポンプ132a及び複数のEC循環ポンプ132bの動作を制御するとともに各バイオリアクタ30の回転動作を制御する。
 センサ部148は、コントローラ16からの制御信号に基づき、第1細胞培養キット12a又は第2細胞培養キット12bを流通する培地を取得(サンプリング)し、取得された培地の成分を測定する。また、センサ部148は、測定結果をコントローラ16に送信する。コントローラ16は、測定結果に基づいて、第1細胞培養キット12a及び第2細胞培養キット12bで培養された細胞の数を推定してもよい。コントローラ16は、センサ装置70からの測定結果に基づいて第1回路制御装置66a、第1リアクタ設置装置68a、第2回路制御装置66b及び第2リアクタ設置装置68bのそれぞれの動作をフィードバック制御する。
 次に、細胞培養システム10を用いた細胞培養方法について説明する。
 図8に示すように、細胞培養方法は、準備工程、プライミング工程、培地置き換え工程、播種工程、培養工程、剥離工程及び回収工程を含む。
 まず、図2及び図8において、準備工程(ステップS1)において、培地収容部74を第1ケース部77に配置するとともに洗浄液収容部76及び廃液収容部78を第2ケース部80に配置する。そして、第1細胞培養キット12aの処理部24(5つのバイオリアクタ30)を第1リアクタ設置装置68aに設置するとともに第1細胞培養キット12aの接続回路26を第1回路制御装置66aにセットする。この際、第1細胞培養キット12aの複数のバッグ(細胞液バッグ18、剥離液バッグ20及び回収バッグ22)を第1回路制御装置66aのバッグ支持部116に吊り下げる。また、第1細胞培養キット12aの接続回路26を培地収容部74、洗浄液収容部76、廃液収容部78及びセンサ部148のそれぞれに無菌接合する。
 続いて、第2細胞培養キット12bの処理部24(5つのバイオリアクタ30)を第2リアクタ設置装置68bに設置するとともに第2細胞培養キット12bの接続回路26を第2回路制御装置66bにセットする。この際、第2細胞培養キット12bの複数のバッグ(細胞液バッグ18、剥離液バッグ20及び回収バッグ22)を第2回路制御装置66bのバッグ支持部116に吊り下げる。また、第2細胞培養キット12bの接続回路26を培地収容部74、洗浄液収容部76、廃液収容部78及びセンサ部148のそれぞれに無菌接合する。
 その後、プライミング工程(ステップS2)において、回路制御装置66及びリアクタ設置装置68は、所定のクランプ106及びポンプ108、132を駆動することにより、洗浄液収容部76の洗浄液を接続回路26と各バイオリアクタ30とに導く。これにより、接続回路26内と各バイオリアクタ30内(IC領域及びEC領域)とが洗浄液で満たされる。この際、接続回路26内及びバイオリアクタ30内に存在していた空気は、洗浄液とともに廃液収容部78に排出される。
 そして、培地置き換え工程(ステップS3)において、回路制御装置66及びリアクタ設置装置68は、所定のクランプ106及びポンプ108、132を駆動することにより、培地収容部74の培地を接続回路26と各バイオリアクタ30とに導く。これにより、接続回路26内と各バイオリアクタ30内(IC領域及びEC領域)とに存在していた洗浄液が培地に置き換えられる。
 次に、播種工程(ステップS4)において、回路制御装置66及びリアクタ設置装置68は、所定のクランプ106及びポンプ108、132を駆動することにより、細胞液バッグ18の細胞液を、各バイオリアクタ30のIC領域に供給する。具体的に、細胞液バッグ18から第1IC供給ライン40aを介してIC循環ライン44cに導かれた細胞液は、5つのIC導入ライン44aに分かれて各バイオリアクタ30のIC領域に導かれる(図3参照)。この際、5つのIC循環ポンプ132aが5つのIC導入ライン44aを流れる液体(細胞液)に流動力を付与するため、5つのバイオリアクタ30に略均等に細胞液が供給される。
 その後、培養工程(ステップS5)において、回路制御装置66及びリアクタ設置装置68は、所定のクランプ106及びポンプ108、132を駆動することにより、培地収容部74の培地を各バイオリアクタ30のIC領域及びEC領域に供給してバイオリアクタ30の中空糸32内で細胞を培養(増殖)する。各バイオリアクタ30のIC領域への培地の供給と各バイオリアクタ30のEC領域への培地の供給は、同時に行われてもよいし別々に行われてもよい。また、培養工程では、各バイオリアクタ30のIC領域に培地を供給せず、各バイオリアクタ30のEC領域にのみ培地を供給してもよい。
 具体的に、培養工程において、培地収容部74内の低温(例えば、5℃)の培地は、培地供給ライン42を流通してタンク装置64から回路制御装置66の筐体104の内部空間105に設けられた培地中間流路58に導かれる。培地中間流路58を流通する培地は、所望の温度(例えば、37℃)まで昇温される。
 そして、各バイオリアクタ30のIC領域に培地を供給する場合、培地中間流路58で昇温された培地は、第3IC供給ライン40c、第2IC供給ライン40b、第1IC供給ライン40aを介してIC循環ライン44cに導入される。IC循環ライン44cに導入された培地は、第1IC外側流路45aを流通する際に温度が低下する(例えば、30℃まで低下する)。
 その後、温度が低下した培地は、リアクタケース部128の内部空間129に設けられたIC中間流路60に導かれる。IC中間流路60を流通する培地は、所望の温度(例えば、37℃)まで昇温される。IC中間流路60を流通した培地は、5つのIC導入ライン44aに分岐して各バイオリアクタ30のIC領域に導かれることにより各バイオリアクタ30のIC領域の培地が新しいものに交換される。これにより、各バイオリアクタ30に中空糸32の内面に播種されている細胞に酸素等の栄養が効率的に供給される。
 また、培養工程において、培地は、IC循環回路44内を循環する。この際、培地は、第1IC外側流路45aと第2IC外側流路45bを流通する際に温度が低下するが、IC中間流路60で昇温されるため、各バイオリアクタ30のIC領域に供給される培地の温度は所望の温度に維持される。
 また、各バイオリアクタ30のEC領域に培地を供給する場合、培地中間流路58で昇温された培地は、第1EC供給ライン46aを介してEC循環ライン48cに導入される。EC循環ライン48cに導入された培地は、ガス交換器28を通過した後で、第1EC外側流路49aを流通する際に温度が低下する(例えば、30℃まで低下する)。
 その後、温度が低下した培地は、リアクタケース部128の内部空間129に設けられたEC中間流路62に導かれる。EC中間流路62を流通する培地は、所望の温度(例えば、37℃)まで昇温される。EC中間流路62を流通した培地は、5つのEC導入ライン48aに分岐して各バイオリアクタ30のEC領域に導かれる。各バイオリアクタ30では、IC領域の培地とEC領域の培地との間で栄養分等の交換が行われる。これにより、各バイオリアクタ30に中空糸32の内面に播種されている細胞に酸素等の栄養が効率的に供給される。
 また、培養工程において、培地は、EC循環回路48内を循環する。この際、培地は、第1EC外側流路49aと第2EC外側流路49bを流通する際に温度が低下するが、EC中間流路62で昇温されるため、各バイオリアクタ30のEC領域に供給される培地の温度は所望の温度に維持される。また、EC循環回路48を循環する培地は、ガス交換器28を流通する際にガス交換が行われる。そのため、各バイオリアクタ30のEC領域には、所望のガス成分を含む培地が供給されることになる。
 さらに、培養工程は、測定工程(ステップS5a)を含む。測定工程において、センサ装置70は、ポンプ146を駆動することにより、EC循環ライン48cのうち処理部24の下流側の部分を流通する培地をセンサ部148に導く。センサ部148は、培地(処理部24内の培地)の成分を測定する。センサ部148の測定結果は、コントローラ16に送信される。コントローラ16は、測定結果に基づいて培地交換の時期(タイミング)、期間、回数等を決定する。センサ部148による測定が完了した後の培地は、廃液バッグ150に排出される。培養工程中に実施される測定工程の時期(タイミング)及び回数等は、適宜設定可能である。
 培養工程が終了すると、剥離工程(ステップS6)において、回路制御装置66及びリアクタ設置装置68は、所定のクランプ106及びポンプ108、132を駆動することにより、剥離液を各バイオリアクタ30のIC領域に導く。これにより、各バイオリアクタ30のIC領域で培養された(増殖した)細胞を中空糸32の内面から剥離することができる。
 続いて、回収工程(ステップS7)において、回路制御装置66及びリアクタ設置装置68は、所定のクランプ106及びポンプ108、132を駆動することにより、各バイオリアクタ30のIC領域に培地を供給しながら剥離工程で剥離した細胞を各バイオリアクタ30から回収バッグ22に導く。回収工程の完了後、今回の細胞培養方法の動作が終了する。
 本実施形態に係る細胞培養システム10は、以下の効果を奏する。
 細胞培養システム10は、細胞を培養する処理部24と、処理部24を設置可能なリアクタ設置装置68と、処理部24に接続された接続回路26と、接続回路26を着脱可能であり、細胞及び培地の接続回路26から処理部24への供給と、培養された細胞の処理部24から接続回路26への回収と、を行うための複数の回路制御装置66と、培地を収容するための培地収容部74を有するタンク装置64とを備える。処理部24は、複数のバイオリアクタ30を有する。培地収容部74の培地は、接続回路26を介して処理部24に供給される。培地収容部74には、処理部24において細胞を培養するのに必要な量の培地を収容可能である。
 このような構成によれば、処理部24(複数のバイオリアクタ30)毎に回路制御装置66を用意すればよいため、回路制御装置66の数がバイオリアクタ30の数よりも少なくなる。よって、コストの高騰化を抑えつつ細胞培養の量を効率的に増大させることができる。また、培地収容部74は、処理部24において細胞を培養するのに必要な量の培地を収容可能であるため、複数のバイオリアクタ30を用いた細胞培養の際に多量の培地が必要になっても、細胞培養中に培地収容部74を交換しなくてもよくなる。そのため、細胞培養を円滑且つ効率的に行うことができる。
 タンク装置64は、培地収容部74の培地を冷却する。
 このような構成によれば、細胞培養の期間中に培地収容部74の培地の成分が変性することを抑えることができる。
 接続回路26は、培地収容部74から処理部24までの間に設けられた培地中間流路58を有する。細胞培養システム10は、培地中間流路58を昇温するための昇温機構107を有する。
 このような構成によれば、培地収容部74から導かれた低温の培地を、培地中間流路58を流通する際に昇温させることができる。よって、各バイオリアクタ30内(IC領域及びEC領域)の培地の温度低下を抑制することができる。
 回路制御装置66は、所望の温度に維持された内部空間105を有するとともに昇温機構107として機能する筐体104を有する。培地中間流路58は、筐体104の内部空間105に配置されることにより昇温される。
 このような構成によれば、筐体104とは別に培地中間流路58を昇温するための昇温装置を準備する必要がないため、回路制御装置66の構成が複雑化することを抑えつつコストの低廉化を図ることができる。
 培地中間流路58の流路長は、培地収容部74から導かれた培地が培地中間流路58を流通する際に筐体104の内部空間105の温度まで昇温されるような長さに設定されている。
 このような構成によれば、培地中間流路58を流通する培地を筐体104の内部空間105の温度まで昇温させることができる。
 培地中間流路58は、線状に延在している。細胞培養システム10は、培地中間流路58を蛇行させた状態で保持する第1保持部110を有する。
 このような構成によれば、培地中間流路58を筐体104の内部空間105にコンパクトに配置することができる。また、培地中間流路58が折れ曲がることによって流路が閉塞することを抑えることができる。
 培地収容部74は、培地が収容された培地タンク90と、培地タンク90が設置された培地設置部材92と、を有する。培地設置部材92の底面には、培地設置部材92を移動させるためのローラ94が設けられている。
 このような構成によれば、培地収容部74のタンク装置64への出し入れを容易に行うことができる。
 細胞培養システム10は、処理部24に導かれた培地の成分を測定するためのセンサ装置70を備える。
 このような構成によれば、センサ装置70により処理部24の培地の成分を測定することができるため、細胞培養を効率的に行うことができる。
 細胞培養システム10は、回路制御装置66の動作を制御するコントローラ16を備える。コントローラ16は、センサ装置70の測定結果に基づいて回路制御装置66の動作をフィードバック制御する。
 このような構成によれば、細胞培養を一層効率的に行うことができる。
 複数のバイオリアクタ30の各々は、複数の中空糸32を含む。
 このような構成によれば、各バイオリアクタ30において細胞培養を効率的に行うことができる。
 細胞培養システム10は、上述した構成に限定されない。リアクタ設置装置68が設置可能なバイオリアクタ30の数は、5個に限定されず、2個、3個又は4個であってもよいし、6個以上であってもよい。細胞培養システム10において、回路制御装置66及びリアクタ設置装置68のそれぞれは、3つ以上設けられてもよい。この場合、タンク装置64及びセンサ装置70のそれぞれは、2つ以上設けられてもよい。
 細胞培養システム10において、IC中間流路60又はEC中間流路62が省略されてもよい。また、細胞培養システム10において、IC中間流路60及びEC中間流路62の両方が省略されるとともに第2保持部134が省略されてもよい。さらに、細胞培養システム10において、培地中間流路58及び第1保持部110は、省略されてもよい。
 図9に示すように、細胞培養装置14は、タンク装置64、第1回路制御装置66a(1つの回路制御装置66)、第1リアクタ設置装置68a(1つのリアクタ設置装置68)及びセンサ装置70を備え、第2回路制御装置66b及び第2リアクタ設置装置68bが省略されてもよい。
(第2実施形態)
 次に、第2実施形態に係る細胞培養システム10Aについて説明する。本実施形態に係る細胞培養システム10Aにおいて、上述した細胞培養システム10と同一の構成については同一の参照符号を付し、詳細な説明については省略する。
 図10及び図11に示すように、細胞培養システム10Aは、1つの細胞培養キット12Aと、細胞培養装置14Aと、コントローラ16とを備える。細胞培養キット12Aは、IC中間流路60及びEC中間流路62を有しない点以外、上述した細胞培養キット12と同様に構成されている。
 細胞培養装置14Aは、1つのタンク装置64Aと、培養装置本体200と、1つのセンサ装置70とを有する。タンク装置64Aは、基台202、培地収容部74、洗浄液収容部76、廃液収容部78及び保持部204を備える。培養装置本体200及びセンサ装置70は、基台202の上面202aに互いに隣接するように配置されている。基台202は、第1ケース部77、第2ケース部80及び第3ケース部206を含む。
 図12に示すように、第3ケース部206は、例えば、第1ケース部77の上部に設けられている。ただし、第3ケース部206の位置は適宜設定可能である。第3ケース部206は、第3ケース部206の内部空間208を所望の温度(例えば、37℃)に保持する調温機能を有している。保持部204は、培地中間流路58を所定形状(蛇行形状)に保持する。保持部204は、第3ケース部206の内部空間208に設けられている。すなわち、第3ケース部206は、培地中間流路58を昇温するための昇温機構210として機能する。保持部204は、例えば、上述した第1保持部110又は第2保持部134と同様に構成される。
 図10及び図11において、培養装置本体200は、箱型のケース部材212と、ケース部材212の内部空間214に配設された回路制御装置66A及びリアクタ設置装置68Aと、ケース部材212に設けられたバッグ支持部216とを含む。すなわち、本実施形態では、回路制御装置66Aとリアクタ設置装置68Aとは、別体に設けられておらず、ケース部材212の内部空間214に一体的に設けられている。ケース部材212の前面には、表示部218が設けられている。
 図11に示すように、回路制御装置66Aは、上述した回路制御装置66と同じように、複数のクランプ106と複数のポンプ108とを備える。なお、回路制御装置66Aは、上述した筐体104及び第1保持部110を有しない。リアクタ設置装置68Aには、処理部24(5つのバイオリアクタ30)が設置可能に形成されている。リアクタ設置装置68Aは、上述したリアクタ設置装置68と同じように、5つのリアクタ支持部130と、複数のポンプ132とを備える(図3参照)。なお、リアクタ設置装置68Aは、上述したリアクタケース部128と第2保持部134とを有しない(図2参照)。バッグ支持部216は、複数のバッグ(細胞液バッグ18、剥離液バッグ20、回収バッグ22)を吊り下げ可能に形成されている。
 本実施形態に係る細胞培養システム10Aにおいて、上述した細胞培養システム10と同様の構成については同様の効果を奏する。
 細胞培養システム10Aにおいて、昇温機構210は、タンク装置64Aに設けられている。このような構成によれば、昇温機構210を回路制御装置66Aに設けた場合に比べて、回路制御装置66Aの構成をコンパクトにすることができる。
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能である。
 以上の実施形態をまとめると、以下のようになる。
 上記実施形態は、細胞を培養する処理部(24)と、前記処理部を設置可能なリアクタ設置装置(68、68A)と、前記処理部に接続された接続回路(26)と、前記接続回路を着脱可能であり、前記細胞及び培地の前記接続回路から前記処理部への供給と、培養された細胞の前記処理部から前記接続回路への回収と、を行うための回路制御装置(66、66A)と、前記培地を収容するための培地収容部(74)を有するタンク装置(64、64A)と、を備え、前記処理部は、複数のバイオリアクタ(30)を有し、前記培地収容部の前記培地は、前記接続回路を介して前記処理部に供給され、前記培地収容部は、前記処理部において細胞を培養するのに必要な量の前記培地を収容可能である、細胞培養システム(10、10A)を開示している。
 上記の細胞培養システムにおいて、前記タンク装置は、前記培地収容部の前記培地を冷却してもよい。
 上記の細胞培養システムにおいて、前記接続回路は、前記培地収容部から前記処理部までの間に設けられた培地中間流路(58)を有し、前記細胞培養システムは、前記培地中間流路を昇温するための昇温機構(107、210)を有してもよい。
 上記の細胞培養システムにおいて、前記昇温機構は、前記タンク装置又は前記回路制御装置に設けられてもよい。
 上記の細胞培養システムにおいて、前記回路制御装置は、所望の温度に維持された内部空間(105)を有するとともに前記昇温機構として機能する筐体(104)を有し、前記培地中間流路は、前記筐体の前記内部空間に配置されることにより昇温されてもよい。
 上記の細胞培養システムにおいて、前記培地中間流路の流路長は、前記培地収容部から導かれた前記培地が前記培地中間流路を流通する際に前記筐体の前記内部空間の温度まで昇温されるような長さに設定されてもよい。
 上記の細胞培養システムにおいて、前記培地中間流路は、線状に延在し、前記細胞培養システムは、前記培地中間流路を蛇行させた状態で保持する保持部(110、204)を有してもよい。
 上記の細胞培養システムにおいて、前記培地収容部は、前記培地が収容された培地タンク(90)と、前記培地タンクが設置された培地設置部材(92)と、を有し、前記培地設置部材の底面には、前記培地設置部材を移動させるためのローラ(94)が設けられてもよい。
 上記の細胞培養システムにおいて、前記処理部に導かれた前記培地の成分を測定するためのセンサ装置(70)を備えてもよい。
 上記の細胞培養システムにおいて、前記回路制御装置の動作を制御するコントローラ(16)を備え、前記コントローラは、前記センサ装置の測定結果に基づいて前記回路制御装置の動作をフィードバック制御してもよい。
 上記の細胞培養システムにおいて、前記複数のバイオリアクタの各々は、複数の中空糸(32)を含んでもよい。

Claims (11)

  1.  細胞を培養する処理部と、
     前記処理部を設置可能なリアクタ設置装置と、
     前記処理部に接続された接続回路と、
     前記接続回路を着脱可能であり、前記細胞及び培地の前記接続回路から前記処理部への供給と、培養された細胞の前記処理部から前記接続回路への回収と、を行うための回路制御装置と、
     前記培地を収容するための培地収容部を有するタンク装置と、を備え、
     前記処理部は、複数のバイオリアクタを有し、
     前記培地収容部の前記培地は、前記接続回路を介して前記処理部に供給され、
     前記培地収容部は、前記処理部において細胞を培養するのに必要な量の前記培地を収容可能である、細胞培養システム。
  2.  請求項1記載の細胞培養システムであって、
     前記タンク装置は、前記培地収容部の前記培地を冷却する、細胞培養システム。
  3.  請求項2記載の細胞培養システムであって、
     前記接続回路は、前記培地収容部から前記処理部までの間に設けられた培地中間流路を有し、
     前記細胞培養システムは、前記培地中間流路を昇温するための昇温機構を有する、細胞培養システム。
  4.  請求項3記載の細胞培養システムであって、
     前記昇温機構は、前記タンク装置又は前記回路制御装置に設けられている、細胞培養システム。
  5.  請求項4記載の細胞培養システムであって、
     前記回路制御装置は、所望の温度に維持された内部空間を有するとともに前記昇温機構として機能する筐体を有し、
     前記培地中間流路は、前記筐体の前記内部空間に配置されることにより昇温される、細胞培養システム。
  6.  請求項5記載の細胞培養システムであって、
     前記培地中間流路の流路長は、前記培地収容部から導かれた前記培地が前記培地中間流路を流通する際に前記筐体の前記内部空間の温度まで昇温されるような長さに設定されている、細胞培養システム。
  7.  請求項6記載の細胞培養システムであって、
     前記培地中間流路は、線状に延在し、
     前記細胞培養システムは、前記培地中間流路を蛇行させた状態で保持する保持部を有する、細胞培養システム。
  8.  請求項1~7のいずれか1項に記載の細胞培養システムであって、
     前記培地収容部は、
     前記培地が収容された培地タンクと、
     前記培地タンクが設置された培地設置部材と、を有し、
     前記培地設置部材の底面には、前記培地設置部材を移動させるためのローラが設けられている、細胞培養システム。
  9.  請求項1~8のいずれか1項に記載の細胞培養システムであって、
     前記処理部に導かれた前記培地の成分を測定するためのセンサ装置を備える、細胞培養システム。
  10.  請求項9記載の細胞培養システムであって、
     前記回路制御装置の動作を制御するコントローラを備え、
     前記コントローラは、前記センサ装置の測定結果に基づいて前記回路制御装置の動作をフィードバック制御する、細胞培養システム。
  11.  請求項1~10のいずれか1項に記載の細胞培養システムであって、
     前記複数のバイオリアクタの各々は、複数の中空糸を含む、細胞培養システム。
PCT/JP2022/012950 2021-03-26 2022-03-22 細胞培養システム WO2022202734A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509161A JPWO2022202734A1 (ja) 2021-03-26 2022-03-22
US18/215,947 US20230357699A1 (en) 2021-03-26 2023-06-29 Cell Culture System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053065 2021-03-26
JP2021-053065 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,947 Continuation US20230357699A1 (en) 2021-03-26 2023-06-29 Cell Culture System

Publications (1)

Publication Number Publication Date
WO2022202734A1 true WO2022202734A1 (ja) 2022-09-29

Family

ID=83397421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012950 WO2022202734A1 (ja) 2021-03-26 2022-03-22 細胞培養システム

Country Status (3)

Country Link
US (1) US20230357699A1 (ja)
JP (1) JPWO2022202734A1 (ja)
WO (1) WO2022202734A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198626A (ja) * 2004-01-19 2005-07-28 Sanyo Electric Co Ltd 自動継代培養装置及びこれを用いた継代培養方法
WO2007083465A1 (ja) * 2006-01-17 2007-07-26 Hitachi Medical Corporation 細胞培養方法及びその方法を用いた自動培養装置
JP2009125027A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 細胞培養装置
JP2010148389A (ja) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd 自動培養装置、封止容器、スライド弁及びディスポーザブル容器
JP2018504931A (ja) * 2015-02-09 2018-02-22 ユニバーセルズ エヌブイUnivercells Nv 細胞および/または細胞生成物の製造システム、製造装置および製造方法
US20190002815A1 (en) * 2016-08-27 2019-01-03 3D Biotek, Llc Large-scale Bioreactor
US20190352589A1 (en) * 2018-05-18 2019-11-21 Huacells Corporation Automated Cell Culturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198626A (ja) * 2004-01-19 2005-07-28 Sanyo Electric Co Ltd 自動継代培養装置及びこれを用いた継代培養方法
WO2007083465A1 (ja) * 2006-01-17 2007-07-26 Hitachi Medical Corporation 細胞培養方法及びその方法を用いた自動培養装置
JP2009125027A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 細胞培養装置
JP2010148389A (ja) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd 自動培養装置、封止容器、スライド弁及びディスポーザブル容器
JP2018504931A (ja) * 2015-02-09 2018-02-22 ユニバーセルズ エヌブイUnivercells Nv 細胞および/または細胞生成物の製造システム、製造装置および製造方法
US20190002815A1 (en) * 2016-08-27 2019-01-03 3D Biotek, Llc Large-scale Bioreactor
US20190352589A1 (en) * 2018-05-18 2019-11-21 Huacells Corporation Automated Cell Culturing

Also Published As

Publication number Publication date
JPWO2022202734A1 (ja) 2022-09-29
US20230357699A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP5734194B2 (ja) 細胞増殖システムのための事前搭載式流体輸送アセンブリ及びそれに関連する使用方法
US8785181B2 (en) Cell expansion system and methods of use
US7906323B2 (en) Automated bioculture and bioculture experiments system
JP6215852B2 (ja) 細胞培養の自動装置及び方法
JP6454314B2 (ja) 中空糸型バイオリアクターで成長させた間葉系幹細胞を収集するための収集培地及び細胞収集バッグ
CN107904170B (zh) 细胞培养模块及细胞培养系统
US20140186937A1 (en) Automated tissue engineering system
US20080032398A1 (en) Automated bioculture and bioculture experiments system
JP2023182712A (ja) 自動化された製造及び収集
JPS63151306A (ja) 生物的及び/又は薬物的な媒体を包含する物質移動のための装置及び方法
WO2002090490A1 (fr) Incubateur de cellules et de structures
WO2022202734A1 (ja) 細胞培養システム
WO2019120136A1 (zh) 细胞培养模块、培养液模块、细胞培养芯片及细胞培养机箱
JP7514912B2 (ja) 生体成分処理システム、生体成分処理装置及び細胞培養方法
JP2024511914A (ja) 細胞培養システム
JP2024511915A (ja) 細胞培養システム
KR20230119681A (ko) 세포 세정, 자기 단리 및 투여 준비용 일회용 키트
JP2022547798A (ja) プライミング方法及び生体成分処理システム
WO2022186238A1 (ja) サンプリング装置、及び細胞培養システム
WO2022168726A1 (ja) サンプリング方法
WO2024047357A2 (en) Apparatus, systems and methods for automated bioprocessing
KR20230119643A (ko) 바이오 처리 시스템을 위한 열 및 물질 전달 시스템 및 방법
JP2024086845A (ja) 細胞培養方法および細胞培養装置
KR20230119644A (ko) 바이오 처리 시스템 및 방법
KR20230119680A (ko) 바이오 처리 시스템용 배양 용기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775518

Country of ref document: EP

Kind code of ref document: A1