WO2022202731A1 - 細胞培養システム - Google Patents

細胞培養システム Download PDF

Info

Publication number
WO2022202731A1
WO2022202731A1 PCT/JP2022/012947 JP2022012947W WO2022202731A1 WO 2022202731 A1 WO2022202731 A1 WO 2022202731A1 JP 2022012947 W JP2022012947 W JP 2022012947W WO 2022202731 A1 WO2022202731 A1 WO 2022202731A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
cell culture
culture system
reservoir
medium
Prior art date
Application number
PCT/JP2022/012947
Other languages
English (en)
French (fr)
Inventor
五十嵐政嗣
大橋広孝
Original Assignee
テルモ株式会社
テルモ ビーシーティー、インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社, テルモ ビーシーティー、インコーポレーテッド filed Critical テルモ株式会社
Priority to EP22775517.0A priority Critical patent/EP4303295A1/en
Priority to JP2023509160A priority patent/JPWO2022202731A1/ja
Publication of WO2022202731A1 publication Critical patent/WO2022202731A1/ja
Priority to US18/213,930 priority patent/US20230348832A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/40Manifolds; Distribution pieces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/04Stirrer or mobile mixing elements with introduction of gas through the stirrer or mixing element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/24Recirculation of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports

Definitions

  • the present invention relates to a cell culture system that cultures cells in a reactor by flowing medium into and out of the reactor.
  • the cells of the body are collected, cultured, and administered to the patient.
  • a cell culture system using a cell culture vessel (reactor) having hollow fibers in the case is used.
  • the cell culture system cultures the cells by seeding the cells inside the hollow fibers of the reactor and then feeding the culture medium into the reactor through the flow channel.
  • the culture medium flowing out of the reactor during culture is discharged to a waste liquid collection container (waste liquid section).
  • a waste liquid section made up of a medical bag or the like is hung on a stand, and the waste liquid section is arranged above the reactor in the direction of gravity.
  • the cell culture system can apply positive pressure to the reactor and the flow path through the medium that has flowed into the waste liquid section, and can suppress the inflow of excessive air (bubbles) into the reactor.
  • the present invention has been made in view of the above problems, and can appropriately apply a positive pressure to the reactor and the flow path, and can reduce the work load such as replacement and removal of the waste liquid unit.
  • An object of the present invention is to provide a cell culture system.
  • one aspect of the present invention provides a reactor for culturing cells based on the flow of medium, a flow path for flowing the medium into and out of the reactor, and a reactor connected to the flow path.
  • a cell culture system comprising: a waste fluid path for discharging the medium from the distribution path; and a waste fluid container connected to the waste fluid path and capable of storing the medium that has passed through the waste fluid path, wherein the waste fluid path is a temporary reservoir capable of temporarily storing the culture medium, wherein the waste liquid container is positioned below the temporary reservoir in the gravitational direction, and the temporary reservoir is above the distribution channel in the gravitational direction. temporarily stores the culture medium discharged from the distribution channel, and causes the culture medium to flow out toward a waste liquid container.
  • the above cell culture system can appropriately apply positive pressure to the reactor and the distribution channel, and can reduce the work load in replacing and removing the waste liquid part.
  • FIG. 4 is a circuit diagram showing a flow path between the culture medium reservoir and the reactor, and a flow path control mechanism;
  • FIG. 3 is an explanatory diagram schematically showing a waste liquid path and a waste liquid section;
  • FIG. 4A is a perspective view showing a temporary reservoir according to a first modified example;
  • FIG. 4B is a cross-sectional view of a temporary reservoir according to the first modified example.
  • FIG. 11 is an explanatory diagram schematically showing a waste liquid path and a waste liquid section according to a second modified example;
  • the cell culture system 10 is configured as a stationary device installed in a sterile room or the like, and performs culture processing for culturing living cells in regenerative medicine.
  • the cell culture system 10 includes a reactor 12 that is a cell culture vessel.
  • the cell culture system 10 supplies a culture medium and oxygen to the reactor 12, and discharges lactic acid, carbon dioxide, etc. (including unused culture medium and oxygen) generated during cell culture from the reactor 12. Perform cell culture.
  • Cells in a living body are not particularly limited, but include, for example, cells contained in blood (T cells, etc.), stem cells (ES cells, iPS cells, mesenchymal stem cells, etc.).
  • the medium may also be selected appropriately according to the cells of the living body.
  • a buffered salt solution (Balanced Salt Solution: BSS) is used as a basic solution, and various amino acids, vitamins, serum, etc. are added. I can give you something.
  • the cell culture system 10 includes a medium storage section 14 that stores a medium, a flow path 16 provided between the reactor 12 and the medium storage section 14, a waste liquid flow path 18 that discharges the medium from the flow path 16, and It has a waste liquid part 20 that stores the culture medium flowing through the waste liquid path 18 .
  • the cell culture system 10 according to the present embodiment is provided with a plurality of reactors 12 (five in FIG. 1) to improve the efficiency of the culture process. In other words, the cell culture system 10 circulates the culture medium for each of the plurality of reactors 12 and cultures the cells in each reactor 12, so that the culture period is not greatly changed, and the culture by one reactor 12 is several times longer. It is configured to obtain the number of cells.
  • the medium reservoir 14 is a hard (or soft) tank that can store a large amount of medium in order to supply the medium to each reactor 12 .
  • the tank preferably has a volume of about 5 L to 30 L, which reduces the work load of frequently exchanging the medium reservoir 14 during culture processing.
  • a flexible medical bag or the like may be applied to the culture medium reservoir 14 .
  • the distribution channel 16 is composed of a plurality of tubes 22 (only the tubes 22 connected to the medium reservoir 14 are shown in FIG. 1). Each tube 22 is connected to the medium reservoir 14 and several medical bags (not shown), and is also connected to each reactor 12 . Thereby, the cell culture system 10 supplies and discharges the medium in the medium reservoir 14 and liquids (cell liquid, cleaning liquid, stripping liquid, etc.) in the medical bags to and from the reactor 12 via the tubes 22 .
  • the cell fluid is a liquid containing cells (to be cultured) to be seeded in the reactor 12 .
  • a cleaning liquid is a liquid used when priming the reactor 12 and the flow path 16 .
  • the washing solution include buffers such as PBS (Phosphate Buffered Salts) and TBS (Tris-Buffered Saline), and physiological saline.
  • the detachment liquid is a liquid that detaches the cells cultured by the culture treatment.
  • the stripping solution for example, trypsin or EDTA solution can be applied.
  • the flow path control mechanism section 24 includes a first housing 26 that accommodates part of the distribution path 16 .
  • the flow path control mechanism 24 includes a plurality of clamps 28 that open and close predetermined tubes 22, a plurality of pumps 30 that circulate the liquid in the tubes 22, and a control unit that controls the operation of each clamp 28 and each pump 30. 32 are provided in the first housing 26 (see FIG. 2).
  • the flow path control mechanism 24 selectively switches the tubes 22 through which the liquid flows by opening and closing the clamps 28 , and circulates the liquid in the flow path 16 under the operation of the pump 30 .
  • the distribution path 16 may include a cassette (not shown) having a plurality of liquid flow paths and to which several tubes 22 are connected.
  • the cassette is placed in the clamp 28 of the channel control mechanism 24 as it is set in the first housing 26, and the clamp 28 opens, closes or switches the channels in the cassette.
  • each reactor 12 connected to the distribution channel 16, it is preferable to apply a structure having, for example, hollow fibers 34 in order to secure a large culture area.
  • each reactor 12 includes a plurality of (for example, 10,000 or more) hollow fibers 34 and a case 36 that accommodates the plurality of hollow fibers 34 along the axial direction.
  • Each hollow fiber 34 has a lumen (not shown) penetrating along the extending direction, and cells are seeded on the inner circumferential surface that constitutes the lumen.
  • Each hollow fiber 34 has a plurality of pores (not shown) that communicate between the outside and the lumen, and each pore does not permeate cells and proteins, but permeates solutions and low-molecular-weight substances. Therefore, the cells on the inner peripheral surface of the hollow fiber 34 are supplied with the culture medium, predetermined gas components, etc. through the pores.
  • IC intracapillary
  • EC extra capillary
  • Materials constituting the hollow fibers 34 are not particularly limited, and include polyolefin resins such as polypropylene and polyethylene, polysulfone, polyethersulfone, polyacrylonitrile, polyterorafluoroethylene, polystyrene, polymethyl methacrylate, cellulose acetate, cellulose triacetate, and regenerated cellulose. and other polymeric materials.
  • polyolefin resins such as polypropylene and polyethylene, polysulfone, polyethersulfone, polyacrylonitrile, polyterorafluoroethylene, polystyrene, polymethyl methacrylate, cellulose acetate, cellulose triacetate, and regenerated cellulose. and other polymeric materials.
  • the case 36 is cylindrical and has hardness.
  • the case 36 includes a first IC terminal 36a, a second IC terminal 36b, a first EC terminal 36c, and a second EC terminal 36d connected to each tube 22.
  • the first IC terminal 36 a is provided at one axial end of the case 36 and communicates with the inner cavity of the hollow fiber 34 .
  • the second IC terminal 36 b is provided at the other axial end of the case 36 and communicates with the inner cavity of the hollow fiber 34 .
  • the first EC terminal 36 c is provided near the other end of the side surface of the case 36 and communicates with the space outside the hollow fibers 34 inside the case 36 .
  • the second EC terminal 36 d is provided near one end of the side surface of the case 36 and communicates with the space outside the hollow fibers 34 inside the case 36 .
  • the distribution channel 16 has a culture medium delivery route 40 connected to the culture medium reservoir 14, and an IC route 42 (internal route) and an EC route 44 (external route) branched from the medium delivery route 40.
  • the IC route 42 is a path for supplying liquid to the lumen of the hollow fiber 34, and liquids such as washing liquid, cell liquid, culture medium, stripping liquid, etc. flow.
  • the EC route 44 is a route for supplying liquid to the outside of the hollow fibers 34 (inside the case 36), and liquids such as washing liquid, culture medium, and stripping liquid flow.
  • the medium delivery route 40 is provided with a first clamp 40a that opens or blocks the supply of medium from the medium reservoir 14.
  • the IC route 42 has an IC circulation circuit 42a capable of circulating liquid between the reactor 12 and an IC supply circuit 42b capable of circulating the liquid from the medium delivery route 40 to the IC circulation circuit 42a.
  • the IC circulation circuit 42a is provided with an IC circulation pump 30a for circulating the liquid.
  • the IC supply circuit 42b is provided with an IC supply pump 30b for circulating the liquid from the medium delivery route 40 to the IC circulation circuit 42a.
  • the IC supply circuit 42b is connected to the culture medium reservoir 14 as well as a tube 22 connected to each medical bag containing a washing solution, a cell solution, a stripping solution, and the like.
  • the IC circulation circuit 42 a is connected to the first IC terminal 36 a and the second IC terminal 36 b of the reactor 12 . Therefore, the liquid circulating in the IC circulation circuit 42a flows through the lumen of the hollow fiber 34 under the operation of the IC circulation pump 30a.
  • An IC waste liquid circuit 46 is connected downstream of the reactor 12 in the IC circulation circuit 42a.
  • the IC waste liquid circuit 46 constitutes a part of the waste liquid path 18 and is connected to the confluence route 50 of the waste liquid path 18 .
  • the IC waste liquid circuit 46 is provided with a second clamp 46a for opening or blocking discharge of the liquid from the IC circulation circuit 42a.
  • the EC route 44 has an EC circulation circuit 44a capable of circulating liquid between the reactor 12 and an EC supply circuit 44b capable of circulating the liquid from the culture medium delivery route 40 to the EC circulation circuit 44a.
  • the EC circulation circuit 44a is provided with an EC circulation pump 30c for circulating the liquid.
  • the EC supply circuit 44b is provided with an EC supply pump 30d that circulates the liquid from the culture medium delivery route 40 to the EC circulation circuit 44a.
  • the EC supply circuit 44b is connected to the culture medium reservoir 14 as well as a tube 22 connected to each medical bag storing a washing solution, a peeling solution, and the like.
  • the EC circulation circuit 44 a is connected to the first EC terminal 36 c and the second EC terminal 36 d of the reactor 12 . Therefore, the liquid circulating in the EC circulation circuit 44a flows through the case 36 under the operation of the EC circulation pump 30c.
  • a gas exchanger 52 is provided upstream of the reactor 12 in the EC circulation circuit 44a. The gas exchanger 52 discharges carbon dioxide mixed in the culture medium, while supplying predetermined gas components (nitrogen N 2 : 75%, oxygen O 2 : 20%, carbon dioxide CO 2 : 5%) to the culture medium. It has the function of mixing.
  • the structure of the gas exchanger 52 is not particularly limited, and similar to the reactor 12, one having a plurality of hollow fibers inside a case can be applied.
  • An EC waste liquid circuit 48 is connected downstream of the reactor 12 in the EC circulation circuit 44a.
  • the EC waste liquid circuit 48 constitutes a part of the waste liquid path 18 and is connected to the confluence route 50 of the waste liquid path 18 .
  • the EC waste liquid circuit 48 is provided with a third clamp 48a for opening or blocking discharge of liquid from the EC circulation circuit 44a.
  • the cell culture system 10 may be configured to have a plurality of IC circulation circuits 42a and EC circulation circuits 44a corresponding to each reactor 12. That is, the liquid is circulated to another reactor 12 at a branch point X between the IC supply pump 30b and the IC circulation circuit 42a and a branch point Y between the EC supply pump 30d and the EC circulation circuit 44a.
  • Another IC circulating circuit and an EC circulating circuit are connected in parallel.
  • the cell culture system 10 has a second housing 54 that accommodates each reactor 12 at a position adjacent to the first housing 26 that constitutes the flow path control mechanism section 24 .
  • the second housing 54 has a function of keeping the temperature of the storage chamber of each reactor 12 at 37°C. That is, in the cell culture system 10, by using the second housing 54 different from the first housing 26 of the flow path control mechanism section 24, an environment suitable for cell culture in each reactor 12 can be easily formed. can.
  • the cell culture system 10 is not limited to the configuration in which each reactor 12 and the distribution channel 16 are accommodated in a plurality of housings, and may be configured to be accommodated in one housing.
  • the second housing 54 may have a configuration in which part of the flow path control mechanism section 24 (clamp 28, pump 30, etc.) is included.
  • a second clamp 46 a on the IC waste circuit 46 and a third clamp 48 a on the EC waste circuit 48 are provided within the second housing 54 .
  • the second housing 54 be configured to rotatably fix each reactor 12 in the direction of gravity, in the horizontal direction, or around the axis of the case 36 . As a result, the air inside each reactor 12 is easily discharged from the case 36 .
  • the cell culture system 10 includes an installation table 56 on which the first housing 26 and the second housing 54 are installed.
  • the installation table 56 has a top plate 58 on which the first housing 26 and the second housing 54 are placed. supported by The culture medium storage part 14 is housed in a culture medium container 60 of an installation table 56 provided below the top plate 58 .
  • the waste liquid path 18 of the cell culture system 10 is connected to the above-described distribution path 16 and also to the waste liquid section 20, thereby discharging liquid such as culture medium and washing liquid from the distribution path 16 to the waste liquid section 20.
  • the waste liquid path 18 has an IC waste liquid circuit 46 of the IC route 42, an EC waste liquid circuit 48 of the EC route 44, and a confluence route 50 (see FIG. 2).
  • a confluence route 50 of the waste liquid path 18 is provided so as to extend from the inside of the second housing 54 (or the first housing 26) to the outside.
  • the waste liquid section 20 has a waste liquid container 62 connected to the most downstream side of the waste liquid path 18 and capable of storing the culture medium that has passed through the waste liquid path 18 . Further, the waste liquid path 18 has a temporary reservoir 64 in which the culture medium can be temporarily stored on the upstream side of the waste liquid container 62 .
  • a hard (or soft) tank with a large volume is applied to the waste liquid container 62 in order to store the culture medium used in each reactor 12 .
  • the tank preferably has a volume of about 5L to 30L. This reduces the work load of frequently replacing the waste liquid container 62 .
  • a flexible medical bag or the like may be applied to the waste liquid container 62 .
  • the waste liquid container 62 is housed in the waste liquid container 61 of the installation table 56 provided below the top plate 58 . That is, the waste liquid container 62 is provided below the temporary reservoir 64 in the direction of gravity. Further, the waste liquid container 62 according to the present embodiment is positioned below the first housing 26 and the second housing 54 housing the reactors 12 in the direction of gravity. Although FIG. 1 shows a state where the waste liquid container 62 is exposed from the waste liquid container 61, the waste liquid container 61 may have a structure in which the waste liquid container 62 is sealed.
  • the temporary reservoir 64 temporarily stores the liquid discharged from the distribution channel 16 and then flows out toward the waste liquid container 62 . Therefore, the volume of the temporary reservoir 64 is sufficiently smaller than the volume of the waste liquid container 62 .
  • the temporary storage section 64 is suspended, for example, from a stand 66 fixed to the installation table 56 and positioned above the first housing 26 and the second housing 54 housing the plurality of reactors 12 in the direction of gravity. In other words, the temporary reservoir 64 is arranged above the reactor 12 and the flow path 16 in the gravitational direction.
  • the height of the temporary reservoir 64 is not particularly limited, it may be set, for example, in the range of 150 cm to 180 cm. range).
  • the waste liquid path 18 (confluence route 50) includes an upstream line 70 provided between the distribution path 16 and the temporary reservoir 64 via the IC waste liquid circuit 46 and the EC waste liquid circuit 48, and the temporary reservoir 64 and the waste liquid container. and a downstream line 72 provided between 62 .
  • the upstream line 70 and the downstream line 72 are composed of tubes 73 having channels inside.
  • the upstream line 70 extends upward in the gravitational direction from the second housing 54 and is connected to the lower portion of the temporary reservoir 64 .
  • the downstream line 72 extends downward in the gravitational direction from the temporary reservoir 64 and is connected to the upper portion of the waste liquid container 62 .
  • a flexible medical bag is applied to the temporary storage section 64 .
  • the temporary storage part 64 has a seal part 74 that seals the outer peripheries of the two sheets that constitute the medical bag, and has a storage space 76 inside the seal part 74 and between the two sheets.
  • the upstream line 70 and the downstream line 72 are connected to a lower seal portion 74 (hereinafter referred to as a lower seal portion 74a) of the temporary reservoir 64.
  • the temporary storage section 64 may be configured by a rigid container.
  • a partition wall 82 that separates the lower side of the storage space 76 into a first storage section 78 and a second storage section 80 is provided inside the temporary storage section 64 .
  • the partition wall 82 is connected to the lower seal portion 74a and extends upward in the gravitational direction from the lower seal portion 74a.
  • the partition wall 82 is formed, for example, by sealing two sheets forming a medical bag.
  • the partition wall 82 can be formed by welding a plate member having a predetermined thickness in a direction perpendicular to the surface of the two sheets between the two sheets and welding the edges of the plate member and each sheet. may be formed with
  • a communication part 84 (part of the storage space 76) that communicates the first storage part 78 and the second storage part 80 is provided inside the temporary storage part 64 above the partition wall 82 in the gravitational direction. That is, the storage space 76 includes a communication portion 84 on the upper side in the direction of gravity, and a first storage portion 78 and a second storage portion 78 that are adjacent to each other in the horizontal direction (direction orthogonal to the direction of gravity) of the partition wall 82 on the lower side of the communication portion 84 in the direction of gravity.
  • Storing section 80 is provided.
  • the flow path of the upstream line 70 fixed to the lower seal portion 74 a communicates with the first storage portion 78 .
  • the flow path of the downstream line 72 fixed to the lower seal portion 74 a communicates with the second storage portion 80 .
  • the liquid that has flowed into the temporary storage section 64 from the upstream line 70 is stored in the first storage section 78 first, and when it fills the first storage section 78, it climbs over the partition wall 82 and flows into the second storage section 80. flow in.
  • the liquid that has flowed into the second reservoir 80 flows out to the downstream line 72 (outside the temporary reservoir 64).
  • the first storage part 78 is configured to apply an appropriate pressure (positive pressure) to the reactor 12 and the flow path 16 through the stored culture medium.
  • the volume of the first reservoir 78 is preferably set in the range of about 0.5 to 3 times the volume of the second reservoir 80 .
  • the actual volume of the first reservoir 78 may be set within a range of 50 cc to 300 cc, for example.
  • the temporary reservoir 64 has an atmosphere release portion 86 that applies atmospheric pressure to the liquid that has flowed into the first reservoir 78 .
  • the atmosphere opening portion 86 is configured by a vent mechanism 88 that allows gas to pass through but blocks liquid from passing through.
  • the vent mechanism 88 can apply atmospheric pressure to the liquid in the first reservoir 78 without leaking the liquid that has flowed into the reservoir space 76 to the outside.
  • the atmosphere release portion 86 is not limited to the vent mechanism 88, and may be configured by an opening that simply opens the upper side of the temporary storage portion 64 in the gravitational direction.
  • the waste liquid section 20 may be connected to multiple cell culture systems 10 .
  • the temporary storage section 64 includes the distribution path 16 of the first cell culture system 10A (see the solid line in FIG. 3) and the second cell culture system 10B ( 3) are connected. Therefore, the waste liquid unit 20 temporarily stores both the liquid flowing out from the distribution channel 16 of the first cell culture system 10A and the liquid flowing out from the distribution channel 16 of the second cell culture system 10B in one temporary storage unit 64. do.
  • the liquid stored in the temporary storage section 64 is discharged to one or more waste liquid containers 62 via the downstream line 72 .
  • the cell culture system 10 is basically configured as described above, and its operation will be described below.
  • a plurality of reactors 12 are set in the second housing 54 by an operator, and the flow path 16 is set in the flow path control mechanism section 24. is set to
  • the operator accommodated the culture medium reservoir 14 in the culture medium container 60 of the installation table 56, installed the waste liquid container 62 in the waste liquid container 61 of the installation table 56, and suspended the temporary reservoir 64 on the stand 66. state. 2 is constructed between the culture medium reservoir 14 and each reactor 12, and the temporary reservoir 64 is arranged above the distribution pathway 16 in the direction of gravity.
  • the cell culture system 10 sequentially performs the priming process, the medium replacement process, the seeding process, the culture process, the peeling process, and the collection process in the culture process.
  • a washing liquid stored in a medical bag (not shown) is supplied to each reactor 12 through the distribution channel 16 and air is removed from the reactor 12 and the distribution channel 16 .
  • the medium replacement step the medium is supplied from the medium reservoir 14 to each reactor 12 through the primed distribution channel 16 to fill the inside and outside of the hollow fibers 34 with the medium.
  • a cell solution stored in a medical bag (not shown) is supplied through the IC route 42 into the hollow fiber 34 of each reactor 12 to seed the inner peripheral surface of the hollow fiber 34 with cells.
  • the cell culture system 10 supplies medium from the medium reservoir 14 into the hollow fibers 34 through both the IC route 42 and the EC route 44 , and Culturing the cells in At this time, the gas exchanger 52 discharges carbon dioxide from the medium and supplies oxygen to the medium.
  • the culturing step is performed for a long period of time (for example, several days) compared to other steps, so that the cells gradually proliferate on the inner peripheral surface of the hollow fibers 34 .
  • the cell culture system 10 may be configured to supply the culture medium to the reactor 12 through the EC route 44 without going through the IC supply circuit 42b.
  • the medium flowing through the EC route 44 and flowing into the reactor 12 is supplied to the cells by seeping from the outside to the inside of the hollow fibers 34 .
  • the medium circulating in the IC circulation circuit 42a flows into the IC waste liquid circuit 46 while the second clamp 46a is open.
  • the culture medium circulating in the EC circulation circuit 44a flows into the EC waste liquid circuit 48 while the third clamp 48a is open.
  • the culture medium flows through the waste liquid path 18 .
  • the medium in the IC waste liquid circuit 46 and the EC waste liquid circuit 48 flows into the upstream line 70 of the confluence route 50 to move outside the second housing 54 .
  • This culture medium flows upward in the gravitational direction via the upstream line 70 and flows into the first reservoir 78 of the temporary reservoir 64 .
  • the temporary reservoir 64 keeps the medium in the first reservoir 78 until the medium exceeds the partition wall 82 .
  • the culture medium in the first reservoir 78 exceeds the partition wall 82
  • the culture medium flows over the partition wall 82 (through the communication part 84 ) into the second reservoir 80 .
  • the culture medium that has moved to the second reservoir 80 flows into the downstream line 72 fixed to the bottom of the second reservoir 80 . That is, the temporary reservoir 64 automatically discharges the culture medium to the lower downstream line 72 when the inflow amount of the culture medium exceeds a certain amount.
  • the culture medium discharged to the downstream line 72 flows downward in the direction of gravity and flows into the waste liquid container 62 installed below the installation table 56 .
  • the waste liquid container 62 has a volume that can sufficiently store the culture medium, and the number of exchanges of the waste liquid container 62 in the culture process can be greatly reduced.
  • the temporary reservoir 64 arranged above the distribution channel 16 and the reactor 12 in the gravitational direction can apply positive pressure to the distribution channel 16 via the first reservoir 78 and the culture medium in the upstream line 70. . Therefore, in the EC circulation circuit 44a, positive pressure is applied to the culture medium, thereby suppressing excessive inflow of air in the gas exchanger 52 and stably mixing the air and the culture medium. As a result, in the cell culture system 10, the inflow of air bubbles into the distribution channel 16 is greatly suppressed.
  • the atmosphere opening part 86 provided in the temporary storage part 64 applies atmospheric pressure to the culture medium in the first storage part 78 and the upstream line 70, thereby applying positive pressure to the distribution channel 16 even when the culture medium is small. can be done.
  • the vent mechanism 88 is employed in the atmosphere opening part 86, so that leakage of the culture medium from the temporary storage part 64 can be avoided.
  • the cell culture system 10 guides the peeling liquid stored in a medical bag (not shown) into the hollow fibers 34 of the reactor 12 via the IC route 42 and cultures (proliferates ) detach the cells.
  • the cell culture system 10 supplies the culture medium to the IC route 42 to cause the cells detached in the detachment process to flow out of the reactor 12 and move to a collection bag (not shown).
  • the cell culture system 10 can favorably store the cells cultured in the reactor 12 in the collection bag.
  • the cell culture system 10 can stably apply a positive pressure to the distribution channel 16, and even if a large amount of culture medium is used, the replacement and removal of the waste liquid container 62 can be reduced. Work load can be reduced.
  • the cell culture system 10 may be configured to perform culture processing using one reactor 12 without using multiple reactors 12 .
  • a large-sized reactor 12 may be used to increase the number of cultured cells in the culture process.
  • the temporary reservoir 90 is provided on the upper side of the second housing 54 (or the first housing 26: see FIG. 1) that houses the plurality of reactors 12. may be Even in this case, the temporary reservoir 90 is arranged above the reactor 12 and the distribution channel 16 in the direction of gravity.
  • the temporary storage part 90 is formed by a small and rigid container 92 and is configured so that the volume does not change (the flexible bag does not squeeze other mechanisms) within the second housing 54 .
  • a partition wall 82 (see FIG. 1) is not provided inside the container 92, and a storage space 92a surrounded by the inner surface of the container 92 is formed.
  • Each of the upstream line 70 and the downstream line 72 of the waste liquid path 18 is connected to the lower end of the container 92 of the temporary reservoir 90 .
  • the upstream line 70 extends upward in the gravitational direction from a connection point of the distribution channel 16 (see FIG. 2).
  • the downstream line 72 is exposed to the outside of the second housing 54 by once heading upward in the gravity direction from the bottom of the container 92 inside the second housing 54 . Outside the second housing 54, the downstream line 72 extends downward in the gravitational direction to a waste liquid container 62 (see FIG. 1) that is installed below the second housing 54 in the gravitational direction. Connected.
  • the upper end of the container 92 of the temporary storage section 90 is provided with an atmosphere release section 86 that applies atmospheric pressure to the culture medium that has flowed into the storage space 92a.
  • the atmosphere opening portion 86 is configured with a vent mechanism 88 that allows gas to pass through but blocks liquid from passing through. Note that the atmosphere opening portion 86 may be configured by simply opening the upper end portion of the container 92 .
  • the temporary storage section 90 configured as described above can also obtain the same effects as the temporary storage section 64 described above. That is, the culture medium that has flowed into the temporary reservoir 90 from the distribution channel 16 via the upstream line 70 is temporarily stored in the reservoir space 92 a of the container 92 . Then, the culture medium in the container 92 is subjected to atmospheric pressure from the atmosphere release portion 86 , so that positive pressure can be applied to the distribution channel 16 through the culture medium in the upstream line 70 .
  • the temporary storage section 90 provided in the second housing 54 can avoid inconveniences such as the worker accidentally dropping the temporary storage section 90 .
  • the culture medium in the storage space 92a is guided to the downstream line 72 by the siphon effect.
  • the culture medium is directed upward in the direction of gravity and then directed downward in the direction of gravity and is stored in the waste liquid container 62 .
  • the culture medium is temporarily stored in the temporary storage section 90 and then smoothly discharged to the waste liquid container 62 , so that a large amount of medium does not accumulate in the container 92 .
  • the cell culture system 10 applies a temporary reservoir 94 without the partition wall 82, and a sensor 96 that detects the weight or liquid level of the temporary reservoir 94 and a downstream A configuration including a valve 98 that opens and closes the side line 72 may be used.
  • the sensor 96 and the valve 98 are connected to the controller 32 of the cell culture system 10 for wired or wireless communication.
  • the control unit 32 closes the valve 98 in a normal state, monitors the amount of liquid that has flowed into the temporary storage unit 94 based on the detection information from the sensor 96, and detects when the amount of liquid exceeds a predetermined threshold value. Open valve 98 . Even in this case, the cell culture system 10 can stably apply positive pressure to the distribution channel 16 .
  • One aspect of the present invention includes a reactor 12 for culturing cells based on medium flow, a distribution channel 16 for inflow and outflow of the medium to and from the reactor 12, and a flow channel 16 connected to the flow channel 16 to supply the medium from the flow channel 16.
  • a cell culture system 10 comprising a waste fluid path 18 for discharging and a waste fluid container 62 connected to the waste fluid path 18 and capable of storing the culture medium that has passed through the waste fluid path 18, wherein the waste fluid path 18 temporarily stores the culture medium.
  • the waste liquid container 62 is positioned lower than the temporary reservoirs 64, 90, 94 in the direction of gravity. It is provided above the path 16 in the gravitational direction, temporarily stores the culture medium discharged from the distribution path 16 , and causes the culture medium to flow out toward the waste liquid container 62 .
  • the temporary reservoirs 64 , 90 , 94 are positioned above the flow path 16 in the gravitational direction, so that the culture medium in the temporary reservoirs 64 , 90 , 94 flows through the reactor. 12 and the flow path 16 can be appropriately applied with positive pressure.
  • the cell culture system 10 can suppress excessive inflow of air into the reactor 12 and the flow path 16 .
  • the waste liquid container 62 is positioned below the temporary reservoirs 64, 90, and 94 in the direction of gravity, the cell culture system 10 can reduce the work load of exchanging and removing the waste liquid container 62. .
  • waste liquid container 62 is provided below the location where the reactor 12 is installed in the direction of gravity. This makes it easier for the operator of the cell culture system 10 to replace or remove the waste liquid container 62 .
  • a first reservoir 78 inside the temporary reservoirs 64 and 94 are a first reservoir 78 , a second reservoir 80 , a partition wall 82 that partitions the first reservoir 78 and the second reservoir 80 from each other,
  • a communication portion 84 that communicates the first storage portion 78 and the second storage portion 80 is provided on the direction upper side, and the waste liquid path 18 is an upstream line that communicates between the distribution path 16 and the first storage portion 78.
  • 70 and a downstream line 72 that communicates between the second reservoir 80 and the waste liquid container 62.
  • the downstream line 72 extends downward in the gravitational direction from the second reservoir 80.
  • first reservoir 78 and the second reservoir 80 are adjacent to each other in the direction perpendicular to the direction of gravity, and the volume of the first reservoir 78 is larger than the volume of the second reservoir 80 .
  • the temporary reservoir 64 can apply a large positive pressure from the first reservoir 78 to the reactor 12 and the flow path 16 .
  • the temporary reservoir 90 has an air release portion 86 that applies atmospheric pressure to the culture medium that has flowed into the temporary reservoir 90, and the air release portion 86 is a vent mechanism that allows gas to permeate but does not allow liquid to permeate. 88.
  • the air release portion 86 is a vent mechanism that allows gas to permeate but does not allow liquid to permeate. 88.
  • the waste liquid path 18 includes an upstream line 70 that communicates between the distribution path 16 and the temporary reservoir 90, and a downstream line 72 that communicates between the temporary reservoir 90 and the waste liquid container 62,
  • the downstream line 72 once goes upward in the gravitational direction from the lower portion of the temporary reservoir 90 and then goes downward in the gravitational direction.
  • the cell culture system 10 can discharge the medium from the temporary reservoir 90 to the waste liquid container 62 while applying positive pressure to the reactor 12 and the flow path 16 by the medium stored in the temporary reservoir 90. can.
  • the temporary reservoirs 64 and 94 are arranged outside the housing (the second housing 54) that houses the reactor 12. This allows the operator to easily set the temporary reservoirs 64 and 94 when preparing the cell culture system 10 . Also, the operator can visually check the culture medium in the external temporary reservoirs 64 and 94 to recognize the waste liquid state of the culture medium.
  • the temporary reservoir 90 is arranged inside the housing (second housing 54) that houses the reactor 12.
  • the cell culture system 10 can avoid inconveniences such as an operator accidentally dropping the temporary reservoir 90 .
  • the circulation path 16 has a circulation circuit (EC circulation circuit 44a) that circulates the culture medium between the reactor 12 and a supply circuit (EC supply circuit 44b) that supplies the culture medium to the circulation circuit.
  • EC circulation circuit 44a circulation circuit
  • EC supply circuit 44b supply circuit
  • a waste liquid path 18 is connected to the downstream side of the culture medium circulation direction of the reactor 12 .
  • the cell culture system 10 can apply an appropriate positive pressure to the circulation circuit having the gas exchanger 52 via the medium in the temporary reservoirs 64, 90, 94 and the waste liquid path 18. Inflow of excessive gas in can be suppressed.
  • a plurality of reactors 12 are provided, and the medium that has flowed through the plurality of reactors 12 is collectively discharged to the waste liquid path 18 and the waste liquid container 62 .
  • the cell culture system 10 can efficiently culture cells with a plurality of reactors 12 .
  • the cell culture system 10 uses a plurality of reactors 12 to stably drain the medium by the waste liquid container 62 and the temporary reservoirs 64 , 90 , 94 even if a large amount of medium is flowed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞培養システム(10)は、リアクタ(12)と、リアクタ(12)に対して培地を流入及び流出する流通経路(16)と、流通経路(16)から培地を排出する廃液経路(18)と、廃液経路(18)を経由した培地を貯留可能な廃液容器(62)と、を備える。廃液経路(18)は、培地を一時的に貯留可能な一時貯留部(64)を有する。廃液容器(62)は、一時貯留部(64)よりも重力方向下側に位置し、一時貯留部(64)は、流通経路(16)よりも重力方向上側に設けられ、流通経路(16)から排出された培地を一時的に貯留すると共に、培地を廃液容器(62)に向けて流出させる。

Description

細胞培養システム
 本発明は、リアクタに対して培地を流入及び流出することで、リアクタ内の細胞を培養する細胞培養システムに関する。
 再生医療では、生体の細胞を採取して培養し、培養した細胞を患者に投与する処置がなされる。細胞の培養処理では、例えば、特開2017-143775号公報に開示されているように、ケース内に中空糸を有する細胞培養容器(リアクタ)を用いた細胞培養システムが使用される。細胞培養システムは、リアクタの中空糸内に細胞を播種した後、流通経路を介してリアクタ内に培地を送り込むことで細胞を培養する。培養時にリアクタから流出した培地は、廃液回収容器(廃液部)に排出される。
 ところで、この種の細胞培養システムは、医療用バック等で構成された廃液部をスタンドに吊るして、リアクタよりも重力方向上側に廃液部を配置している。これにより、細胞培養システムは、廃液部に流入した培地を通してリアクタ及び流通経路に対して陽圧をかけることが可能となり、リアクタ内への過剰な空気(気泡)の流入を抑制することができる。
 しかしながら、長期間にわたって廃液部に培地を多量に排出する場合に、容量が小さな医療用バッグを使用すると、廃液部の交換作業が頻繁に必要となり、作業者の作業負担が大きくなる。仮に、大型のタンク等により廃液部を構成したとしても、作業者は、リアクタよりも重力方向上側において培地を多量に貯留した廃液部を撤去する作業を行わなければならず、やはり負担が大きくなる。
 本発明は、上記の課題を鑑みてなされたものであり、リアクタ及び流通経路に陽圧を適切にかけることが可能であり、且つ廃液部の交換、撤去等の作業負担を軽減することができる細胞培養システムを提供することを目的とする。
 前記の目的を達成するために、本発明の一態様は、培地の流通に基づき細胞を培養するリアクタと、前記リアクタに対して前記培地を流入及び流出する流通経路と、前記流通経路に接続され、当該流通経路から前記培地を排出する廃液経路と、前記廃液経路に接続され、当該廃液経路を経由した前記培地を貯留可能な廃液容器と、を備える細胞培養システムであって、前記廃液経路は、前記培地を一時的に貯留可能な一時貯留部を有し、前記廃液容器は、前記一時貯留部よりも重力方向下側に位置し、前記一時貯留部は、前記流通経路よりも重力方向上側に設けられ、前記流通経路から排出された前記培地を一時的に貯留すると共に、前記培地を廃液容器に向けて流出させる。
 上記の細胞培養システムは、リアクタ及び流通経路に陽圧を適切にかけることが可能であり、且つ廃液部の交換、撤去等における作業負担を軽減することができる。
本発明の一実施形態に係る細胞培養システムの全体構成を概略的に示す斜視図である。 培地貯留部とリアクタ間の流通経路及び流路制御機構部を示す回路図である。 廃液経路及び廃液部を概略的に示す説明図である。 図4Aは、第1変形例に係る一時貯留部を示す斜視図である。図4Bは、第1変形例に係る一時貯留部の断面図である。 第2変形例に係る廃液経路及び廃液部を概略的に示す説明図である。
 以下、本発明について好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
 本発明の一実施形態に係る細胞培養システム10は、図1に示すように、無菌室等に設置される定置型の装置に構成され、再生医療において生体の細胞を培養する培養処理を行う。このため、細胞培養システム10は、細胞の培養容器であるリアクタ12を備える。細胞培養システム10は、培地や酸素をリアクタ12に供給しつつ、細胞培養中に生じた乳酸や二酸化炭素等(未使用の培地、酸素を含む)をリアクタ12から排出することで、長期間にわたって細胞培養を実施する。
 生体の細胞は、特に限定されるものではないが、例えば、血液に含まれる細胞(T細胞等)、幹細胞(ES細胞、iPS細胞、間葉系幹細胞等)があげられる。培地も、生体の細胞に応じて適切なものが選択されればよく、例えば、緩衝塩類溶液(Balanced Salt Solution:BSS)を基本溶液として、種々のアミノ酸、ビタミン類及び血清等を加えて調製されたものがあげられる。
 細胞培養システム10は、リアクタ12の他に、培地を貯留した培地貯留部14、リアクタ12と培地貯留部14の間に設けられる流通経路16、流通経路16から培地を排出する廃液経路18、及び廃液経路18を流通する培地を貯留する廃液部20を有する。そして、本実施形態に係る細胞培養システム10は、リアクタ12を複数(図1中では5つ)備えることで、培養処理の効率化を図っている。すなわち、細胞培養システム10は、複数のリアクタ12毎に培地を流通して各リアクタ12で細胞を培養することで、培養期間を大きく変えることなく、1つのリアクタ12による培養に対して数倍の細胞数を得る構成としている。
 培地貯留部14は、各リアクタ12に培地を供給するために、培地を多量に貯留することができる硬質(又は軟質)なタンクが適用される。例えば、タンクは、5L~30L程度の容積を有することが好ましく、これにより培養処理中に培地貯留部14を頻繁に交換する作業負担が軽減される。なお、培地貯留部14は、可撓性を有する医療用バッグ等を適用してもよい。
 流通経路16は、複数のチューブ22によって構成される(図1中では、培地貯留部14に接続されるチューブ22のみを図示している)。各チューブ22は、培地貯留部14や図示しない幾つかの医療用バッグに接続されると共に、各リアクタ12に接続される。これにより細胞培養システム10は、各チューブ22を介して、培地貯留部14の培地及び各医療用バッグの液体(細胞液、洗浄液、剥離液等)をリアクタ12に対し供給及び排出する。
 なお、細胞液とは、リアクタ12に播種する(培養予定の)細胞を含んだ液体である。洗浄液とは、リアクタ12及び流通経路16のプライミング時に使用する液体である。この洗浄液としては、例えば、PBS(Phosphate Buffered Salts)、TBS(Tris-Buffered Saline)等の緩衝液、又は生理食塩水があげられる。また剥離液は、培養処理により培養された細胞を剥離する液体である。剥離液としては、例えば、トリプシン、EDTA液を適用することができる。
 細胞培養システム10の構築時に、流通経路16は、流路制御機構部24を通るようにセットされる。流路制御機構部24は、流通経路16の一部を収容する第1筐体26を備える。また流路制御機構部24は、所定のチューブ22を開閉する複数のクランプ28と、チューブ22内の液体を流通させる複数のポンプ30と、各クランプ28及び各ポンプ30の動作を制御する制御部32と、を第1筐体26内に備える(図2参照)。すなわち、流路制御機構部24は、各クランプ28の開閉により液体が流通するチューブ22を選択的に切り替えつつ、ポンプ30の動作下に流通経路16の液体を流通させる。
 流通経路16は、複数のチューブ22の他に、液体の流路を複数有すると共に幾つかのチューブ22が接続されるカセット(不図示)を備えていてもよい。この場合、カセットは、第1筐体26内にセットされることに伴い流路制御機構部24のクランプ28に配置され、クランプ28によりカセット内の流路の開閉や切替等がなされる。
 流通経路16に接続される各リアクタ12は、培養面積を広くとるために、例えば、中空糸34を有する構造を適用することが好ましい。具体的には、各リアクタ12は、複数(例えば、1万本以上)の中空糸34と、複数の中空糸34を軸方向に沿って収容するケース36と、を備える。
 各中空糸34は、延在方向に沿って貫通する図示しない内腔を有し、内腔を構成する内周面に細胞が播種される。また各中空糸34は、外側と内腔との間を連通する図示しない細孔を複数有し、各細孔は、細胞やタンパク質を透過せず、溶液や低分子の物質を透過する。このため、中空糸34の内周面の細胞には、細孔を介して培地、所定のガス成分等が供給される。以下、主に中空糸34の内腔に液体を流通する構成をIC(intra capillary)ともいい、主に中空糸34の外側に液体を流通する構成をEC(extra capillary)ともいう。
 中空糸34を構成する材料は、特に限定されず、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリテロラフルオロエチレン、ポリスチレン、ポリメチルメタクリレート、セルロースアセテート、セルローストリアセテート、再生セルロース等の高分子材料があげられる。
 ケース36は、円筒状に形成され、また硬質性を有している。ケース36は、各チューブ22に接続される第1IC端子36a、第2IC端子36b、第1EC端子36c、第2EC端子36dを備える。第1IC端子36aは、ケース36の軸方向一端に設けられ、中空糸34の内腔に連通している。第2IC端子36bは、ケース36の軸方向他端に設けられ、中空糸34の内腔に連通している。第1EC端子36cは、ケース36の側面の他端寄りに設けられ、ケース36内において中空糸34の外側の空間に連通している。第2EC端子36dは、ケース36の側面の一端寄りに設けられ、ケース36内において中空糸34の外側の空間に連通している。
 以下、図2を参照して、1つのリアクタ12と培地貯留部14との間の流通経路16、及び流路制御機構部24の構成について具体的に説明していく。
 流通経路16は、培地貯留部14に接続される培地送出ルート40と、培地送出ルート40から分岐したIC用ルート42(内部用ルート)及びEC用ルート44(外部用ルート)とを有する。IC用ルート42は、中空糸34の内腔に液体を供給する経路であり、洗浄液、細胞液、培地、剥離液等の液体が流通する。EC用ルート44は、中空糸34の外側(ケース36内)に液体を供給する経路であり、洗浄液、培地、剥離液等の液体が流通する。
 培地送出ルート40には、培地貯留部14からの培地の供給を開放又は遮断する第1クランプ40aが設けられている。
 IC用ルート42は、リアクタ12との間で液体を循環可能なIC循環回路42aと、培地送出ルート40からIC循環回路42aまで液体を流通可能なIC供給回路42bと、を有する。IC循環回路42aには、液体を循環させるためのIC循環用ポンプ30aが設けられている。IC供給回路42bには、培地送出ルート40からIC循環回路42aに液体を流通させるIC供給用ポンプ30bが設けられている。また図示は省略するが、IC供給回路42bには、培地貯留部14の他に、洗浄液、細胞液、剥離液等を貯留した各医療用バッグにつながるチューブ22が接続されている。
 IC循環回路42aは、リアクタ12の第1IC端子36a及び第2IC端子36bに接続される。従って、IC循環回路42aを循環する液体が、IC循環用ポンプ30aの動作下に中空糸34の内腔を流通する。
 IC循環回路42aにおいてリアクタ12よりも下流側には、IC廃液回路46が接続されている。IC廃液回路46は、廃液経路18の一部を構成し、廃液経路18の合流ルート50に接続されている。IC廃液回路46には、IC循環回路42aからの液体の排出を開放又は遮断する第2クランプ46aが設けられている。
 一方、EC用ルート44は、リアクタ12との間で液体を循環可能なEC循環回路44aと、培地送出ルート40からEC循環回路44aまで液体を流通可能なEC供給回路44bとを有する。EC循環回路44aには、液体を循環させるためのEC循環用ポンプ30cが設けられている。EC供給回路44bには、培地送出ルート40からEC循環回路44aに液体を流通させるEC供給用ポンプ30dが設けられている。また図示は省略するが、EC供給回路44bには、培地貯留部14の他に、洗浄液、剥離液等を貯留した各医療用バッグにつながるチューブ22が接続されている。
 EC循環回路44aは、リアクタ12の第1EC端子36c及び第2EC端子36dに接続される。従って、EC循環回路44aを循環する液体が、EC循環用ポンプ30cの動作下にケース36内を流通する。EC循環回路44aにおいてリアクタ12よりも上流側には、ガス交換器52が設けられている。ガス交換器52は、培地に混入している二酸化炭素を排出する一方で、所定のガス成分(窒素N:75%、酸素O:20%、二酸化炭素CO:5%)を培地に混合する機能を有している。ガス交換器52の構造は、特に限定されず、リアクタ12と同様に、複数の中空糸をケース内に備えたものを適用することができる。
 EC循環回路44aにおいてリアクタ12よりも下流側には、EC廃液回路48が接続されている。EC廃液回路48は、廃液経路18の一部を構成し、廃液経路18の合流ルート50に接続されている。EC廃液回路48には、EC循環回路44aからの液体の排出を開放又は遮断する第3クランプ48aが設けられている。
 また上記したように、リアクタ12が複数(5つ)設けられる場合、細胞培養システム10は、各リアクタ12に対応してIC循環回路42a、EC循環回路44aを複数備えた構成とすればよい。つまり、IC供給用ポンプ30bとIC循環回路42aとの間の分岐点X、及びEC供給用ポンプ30dとEC循環回路44aとの間の分岐点Yに、別のリアクタ12に液体を循環させる図示しない別のIC循環回路、EC循環回路が並列接続される。
 図1に戻り、細胞培養システム10は、流路制御機構部24を構成する第1筐体26の隣接位置に、各リアクタ12を収容する第2筐体54を有する。第2筐体54は、各リアクタ12の収容室の温度を37℃に保つ機能を有する。すなわち、細胞培養システム10は、流路制御機構部24の第1筐体26とは異なる第2筐体54を用いることで、各リアクタ12の細胞培養に適した環境を容易に形成することができる。なお、細胞培養システム10は、各リアクタ12及び流通経路16を複数の筐体に収容する構成に限定されず、1つの筐体に収容する構成でもよい。
 第2筐体54は、流路制御機構部24の一部(クランプ28、ポンプ30等)を内部に有する構成でもよい。例えば、IC廃液回路46上の第2クランプ46a、EC廃液回路48上の第3クランプ48aは、第2筐体54内に設けられる。また、第2筐体54は、重力方向、水平方向又はケース36の軸回りに、各リアクタ12を回転可能に固定する構成であることが好ましい。これにより、各リアクタ12内の空気がケース36から容易に排出される。
 さらに、細胞培養システム10は、第1筐体26及び第2筐体54が設置される設置台56を備える。設置台56は、第1筐体26及び第2筐体54が載置される天板58を有し、この天板58は、設置台56の側壁等により所定高さ(50cm~150cm程度)に支持されている。培地貯留部14は、天板58よりも下部に設けられた設置台56の培地収容庫60に収容される。
 細胞培養システム10の廃液経路18は、上記した流通経路16に接続されると共に廃液部20に接続されることで、流通経路16から培地、洗浄液等の液体を廃液部20に排出する。この廃液経路18は、IC用ルート42のIC廃液回路46、EC用ルート44のEC廃液回路48、及び合流ルート50を有する(図2参照)。そして、廃液経路18の合流ルート50が、第2筐体54(又は第1筐体26)内から外部に延在するように設けられている。
 図1及び図3に示すように、廃液部20は、廃液経路18の最下流に接続され、廃液経路18を経由した培地を貯留可能な廃液容器62を有する。また廃液経路18は、廃液容器62よりも上流側において、培地を一時的に貯留可能な一時貯留部64を有する。
 廃液容器62は、各リアクタ12において使用された培地を貯留するために、大きな容積を持つ硬質(又は軟質)なタンクが適用される。例えば、タンクは、5L~30L程度の容積を有することが好ましい。これにより廃液容器62を頻繁に交換する作業負担が軽減される。或いは、廃液容器62は、可撓性を有する医療用バッグ等を適用してもよい。
 廃液容器62は、天板58よりも下部に設けられた設置台56の廃液収容庫61に収容される。つまり、廃液容器62は、一時貯留部64よりも重力方向下側に設けられる。また本実施形態に係る廃液容器62は、第1筐体26及び各リアクタ12を収容した第2筐体54よりも重力方向下側に位置する。なお、図1中では廃液収容庫61から廃液容器62が露出した状態を図示しているが、廃液収容庫61は廃液容器62を密閉した構成でもよい。
 一方、一時貯留部64は、流通経路16から排出された液体を、一時的に貯留した後に廃液容器62に向けて流出する。このため一時貯留部64の容積は、廃液容器62の容積よりも充分に小さい。一時貯留部64は、例えば、設置台56に固定されたスタンド66に吊るされており、第1筐体26及び複数のリアクタ12を収容した第2筐体54よりも重力方向上側に位置する。言い換えれば、一時貯留部64は、リアクタ12及び流通経路16よりも重力方向上側に配置される。一時貯留部64の高さは、特に限定されるものではないが、例えば、150cm~180cmの範囲に設定されるとよく、またリアクタ12及び流通経路16の高さに対し所定差(10cm~80cmの範囲)を有するように設定される。
 また、廃液経路18(合流ルート50)は、IC廃液回路46及びEC廃液回路48を介して流通経路16と一時貯留部64の間に設けられる上流側ライン70と、一時貯留部64と廃液容器62の間に設けられる下流側ライン72と、を有する。上流側ライン70及び下流側ライン72は、内側に流路を有するチューブ73により構成される。上流側ライン70は、第2筐体54から重力方向上側に向かって延在し、一時貯留部64の下部に接続される。下流側ライン72は、一時貯留部64から重力方向下側に向かって延在し、廃液容器62の上部に接続される。
 一時貯留部64には、可撓性を有する医療用バッグが適用されている。一時貯留部64は、医療用バッグを構成する2枚のシートの外周をシールしたシール部74を有し、このシール部74の内側且つ2枚のシートの間に貯留空間76を備える。上流側ライン70及び下流側ライン72は、一時貯留部64の下側のシール部74(以下、下部シール部74aという)に連結されている。なお、一時貯留部64は、硬質な容器により構成されてもよい。
 一時貯留部64の内部には、貯留空間76の下側を第1貯留部78及び第2貯留部80に分離する隔壁82が設けられる。隔壁82は、下部シール部74aに連設され、下部シール部74aから重力方向上側に向かって延在している。隔壁82は、例えば、医療用バッグを構成する2枚のシートをシールすることで形成される。或いは、隔壁82は、2枚のシート面に直交する方向に所定の厚みを持つ板部材を、当該2枚のシートの間に挟んだ状態で、板部材の縁部と各シートを溶着することで形成されてもよい。
 一時貯留部64の内部には、隔壁82よりも重力方向上側にて第1貯留部78と第2貯留部80とを連通する連通部84(貯留空間76の一部)が設けられている。つまり、貯留空間76は、重力方向上側の連通部84と、連通部84の重力方向下側で隔壁82の横方向(重力方向と直交する方向)に互いに隣接する第1貯留部78及び第2貯留部80とで構成される。第1貯留部78には、下部シール部74aに固着された上流側ライン70の流路が連通している。第2貯留部80には、下部シール部74aに固着された下流側ライン72の流路が連通している。
 従って、上流側ライン70から一時貯留部64に流入した液体は、先に第1貯留部78に貯留されていき、第1貯留部78を満たすと、隔壁82を乗り越えて第2貯留部80に流れ込む。第2貯留部80に流れ込んだ液体は、下流側ライン72(一時貯留部64の外部)に流出する。
 第1貯留部78は、貯留された培地を通して、リアクタ12及び流通経路16に適切な圧力(陽圧)をかけるように構成される。例えば、第1貯留部78の容積は、第2貯留部80の容積の0.5倍~3倍程度の範囲に設定されることが好ましい。第1貯留部78の実際の容積としては、例えば、50cc~300ccの範囲に設定されるとよい。
 また、一時貯留部64は、第1貯留部78に流入した液体に大気圧をかける大気開放部86を有する。本実施形態において大気開放部86は、気体を透過する一方で、液体の透過を遮断するベント機構88により構成される。これによりベント機構88は、貯留空間76に流入した液体を外部に漏らすことなく、第1貯留部78の液体に大気圧をかけることができる。なお、大気開放部86は、ベント機構88に限らず、一時貯留部64の重力方向上側を単に開放した開口により構成されてもよい。
 図3に示すように、廃液部20は、複数の細胞培養システム10に対して接続されてもよい。例えば、廃液経路18の上流側ライン70を分岐することで、一時貯留部64には、第1細胞培養システム10A(図3中の実線参照)の流通経路16と、第2細胞培養システム10B(図3中の2点鎖線参照)の流通経路16とが接続される。従って、廃液部20は、第1細胞培養システム10Aの流通経路16から流出する液体、及び第2細胞培養システム10Bの流通経路16から流出する液体の両方を、1つの一時貯留部64に一旦貯留する。そして、一時貯留部64に貯留された液体は、下流側ライン72を介して1以上の廃液容器62に排出される。
 本実施形態に係る細胞培養システム10は、基本的には以上のように構成されるものであり、以下その動作について説明する。
 細胞培養システム10は、図1に示すように、培養処理の実施前に、作業者により、複数のリアクタ12が第2筐体54にセットされると共に、流通経路16が流路制御機構部24にセットされる。また作業者は、設置台56の培地収容庫60に培地貯留部14を収容し、設置台56の廃液収容庫61に廃液容器62を設置する一方で、一時貯留部64をスタンド66に吊るした状態とする。これにより、培地貯留部14と個々のリアクタ12の間には図2に示す流通経路16が構築され、また流通経路16よりも重力方向上側に一時貯留部64が配置される。
 上記のセット後、細胞培養システム10は、培養処理においてプライミング工程、培地置き換え工程、播種工程、培養工程、剥離工程及び回収工程を順次実施する。プライミング工程では、図示しない医療用バッグに貯留された洗浄液を、流通経路16を通して各リアクタ12に供給し、リアクタ12及び流通経路16から空気を抜く。培地置き換え工程では、プライミングされた流通経路16を通して培地貯留部14から各リアクタ12に培地を供給し、中空糸34の内外を培地で満たす。播種工程では、図示しない医療用バッグに貯留された細胞液を、IC用ルート42を通して各リアクタ12の中空糸34内に供給し、中空糸34の内周面に細胞を播種する。
 そして図2に示すように、細胞培養システム10は、培養工程において、IC用ルート42及びEC用ルート44の両方を通して、培地貯留部14から中空糸34内に培地を供給し、中空糸34内で細胞を培養する。この際、ガス交換器52により、培地から二酸化炭素が排出されると共に、培地に酸素が供給される。培養工程は、他の工程に比べて長期間(例えば数日間)実施されることで、中空糸34の内周面上に細胞が徐々に増殖していく。なお、細胞培養システム10は、IC供給回路42bを経由せずに、EC用ルート44を介してリアクタ12に培地を供給する構成でもよい。EC用ルート44を流通してリアクタ12に流入した培地は、中空糸34の外側から内側に染み出ることで細胞に供給される。
 培養工程において、IC循環回路42aを循環している培地は、第2クランプ46aの開放下にIC廃液回路46に流入する。EC循環回路44aを循環している培地は、第3クランプ48aの開放下にEC廃液回路48に流入する。これにより培地が廃液経路18を流通する。IC廃液回路46及びEC廃液回路48の培地は、合流ルート50の上流側ライン70に流入することで、第2筐体54の外部を移動する。この培地は、上流側ライン70を介して重力方向上側に向かい、一時貯留部64の第1貯留部78に流入する。
 図3に示すように、一時貯留部64は、培地が隔壁82を超えるまで第1貯留部78に培地を貯留し続ける。第1貯留部78の培地が隔壁82を超えると、隔壁82を乗り越えて(連通部84を通って)第2貯留部80に培地が流入する。第2貯留部80に移動した培地は、第2貯留部80の下部に固着された下流側ライン72に流れる。つまり、一時貯留部64は、培地の流入量が一定量を超えると、下部の下流側ライン72に培地を自動的に排出する。
 下流側ライン72に排出された培地は、重力方向下側に向かって流通し、設置台56の下側に設置されている廃液容器62に流入する。廃液容器62は、培地を充分に貯留可能な容積を有しており、培養工程における廃液容器62の交換回数を大幅に低減することができる。
 そして、流通経路16及びリアクタ12よりも重力方向上側に配置されている一時貯留部64は、第1貯留部78や上流側ライン70の培地を介して流通経路16に陽圧をかけることができる。従って、EC循環回路44a内は、培地の陽圧がかかることで、ガス交換器52における過剰な空気の流入を抑えて、空気と培地を安定的に混合することができる。その結果、細胞培養システム10は、流通経路16への気泡の流入が大幅に抑制される。
 また、一時貯留部64に設けられた大気開放部86は、第1貯留部78や上流側ライン70の培地に大気圧をかけることで、培地が少ない場合でも流通経路16に陽圧をかけることができる。特に、大気開放部86は、ベント機構88を採用していることで、一時貯留部64からの培地の漏出を回避することが可能である。
 培養工程後の剥離工程において、細胞培養システム10は、図示しない医療用バッグに貯留された剥離液を、IC用ルート42を介してリアクタ12の中空糸34内に導き、培養された(増殖した)細胞を剥離する。剥離工程後の回収工程において、細胞培養システム10は、IC用ルート42に培地を供給することで、剥離工程において剥離した細胞をリアクタ12から流出させて図示しない回収バッグに移動させる。
 以上の工程により、細胞培養システム10は、リアクタ12において培養した細胞を、回収バッグに良好に貯留していくことができる。特に、細胞培養システム10は、流通経路16に対して安定的に陽圧をかけることができ、また大量の培地を使用しても廃液容器62の交換、撤去等を少なくすることで作業者の作業負担を軽減することができる。
 本発明は、上記の実施形態に限定されず、発明の要旨に沿って種々の改変が可能である。例えば、細胞培養システム10は、リアクタ12を複数使用せずに、1つのリアクタ12により培養処理を行う構成でもよい。培養処理において培養細胞数の増加を図る場合には、大型のリアクタ12を適用してもよい。
 図4A及び図4Bに示す第1変形例のように、一時貯留部90は、複数のリアクタ12を収容する第2筐体54(又は第1筐体26:図1参照)内の上側に設けられてもよい。この場合でも、一時貯留部90は、リアクタ12及び流通経路16よりも重力方向上側に配置される。例えば、一時貯留部90は、小型且つ硬質な容器92により形成され、第2筐体54内において容積が変化しない(可撓性バッグによって他の機構を圧迫しない)ように構成される。
 また、容器92の内部には、隔壁82(図1参照)が設けられておらず、容器92の内面により囲われた貯留空間92aが形成されている。廃液経路18の上流側ライン70及び下流側ライン72の各々は、一時貯留部90の容器92の下端部に接続される。上流側ライン70は、流通経路16(図2参照)の接続箇所から重力方向上側に向かって延在している。一方、下流側ライン72は、第2筐体54内において容器92の下部から重力方向上側に一旦向かうことで第2筐体54の外部に露出される。そして第2筐体54の外部において、下流側ライン72は、重力方向下側に向かって延在し第2筐体54よりも重力方向下側に設置された廃液容器62(図1参照)に接続される。
 さらに、一時貯留部90の容器92の上端部には、貯留空間92aに流入した培地に大気圧をかける大気開放部86が設けられている。大気開放部86は、気体を透過する一方で、液体の透過を遮断するベント機構88により構成されている。なお、大気開放部86は、容器92の上端部を単に開放した構成でもよい。
 以上のように構成された一時貯留部90でも、上記の一時貯留部64と同様の効果を得ることができる。すなわち、流通経路16から上流側ライン70を介して一時貯留部90に流入した培地は、容器92の貯留空間92aに一時的に貯留される。そして、容器92内の培地は、大気開放部86から大気圧がかかることで、上流側ライン70の培地を通して流通経路16に陽圧をかけることができる。特に、第2筐体54内に設けられた一時貯留部90は、作業者等が一時貯留部90を不用意に落下させてしまう等の不都合を回避することができる。
 また、貯留空間92aの培地は、サイフォン効果によって下流側ライン72に導かれる。培地は、下流側ライン72において、重力方向上側に一旦向かった後、重力方向下側に向かうように誘導されて廃液容器62に貯留される。これにより培地は、一時貯留部90に一時的に貯留された後、廃液容器62にスムーズに排出されることになり、容器92内に多量に溜まることがない。
 さらに、図5に示す第2変形例のように、細胞培養システム10は、隔壁82のない一時貯留部94を適用すると共に、一時貯留部94の重量又は液位を検出するセンサ96と、下流側ライン72を開閉するバルブ98とを備えた構成でもよい。センサ96及びバルブ98は細胞培養システム10の制御部32に有線通信又は無線通信可能に接続される。制御部32は、通常状態でバルブ98を閉塞しておき、センサ96の検出情報に基づき一時貯留部94に流入した液体の量を監視して、液体の量が所定の閾値を超えた場合にバルブ98を開放する。この場合でも、細胞培養システム10は、流通経路16に対して安定的に陽圧をかけることができる。
 上記の実施形態から把握し得る技術的思想及び効果について以下に記載する。
 本発明の一態様は、培地の流通に基づき細胞を培養するリアクタ12と、リアクタ12に対して培地を流入及び流出する流通経路16と、流通経路16に接続され、当該流通経路16から培地を排出する廃液経路18と、廃液経路18に接続され、当該廃液経路18を経由した培地を貯留可能な廃液容器62と、を備える細胞培養システム10であって、廃液経路18は、培地を一時的に貯留可能な一時貯留部64、90、94を有し、廃液容器62は、一時貯留部64、90、94よりも重力方向下側に位置し、一時貯留部64、90、94は、流通経路16よりも重力方向上側に設けられ、流通経路16から排出された培地を一時的に貯留すると共に、培地を廃液容器62に向けて流出させる。
 上記によれば、細胞培養システム10は、一時貯留部64、90、94が流通経路16よりも重力方向上側に位置していることで、一時貯留部64、90、94の培地を介してリアクタ12及び流通経路16に陽圧を適切にかけることが可能となる。これにより、細胞培養システム10は、リアクタ12及び流通経路16への過剰な空気の流入を抑制することができる。また廃液容器62が一時貯留部64、90、94よりも重力方向下側に位置していることで、細胞培養システム10は、廃液容器62の交換、撤去等における作業負担を軽減することができる。
 また、廃液容器62は、リアクタ12の設置箇所よりも重力方向下側に設けられる。これにより、細胞培養システム10の作業者による廃液容器62の交換、撤去等の作業が一層容易になる。
 また、一時貯留部64、94の内部には、第1貯留部78と、第2貯留部80と、第1貯留部78及び第2貯留部80を互いに仕切る隔壁82と、隔壁82よりも重力方向上側にて第1貯留部78及び第2貯留部80を連通する連通部84と、が設けられ、廃液経路18は、流通経路16と第1貯留部78との間を連通する上流側ライン70と、第2貯留部80と廃液容器62との間を連通する下流側ライン72と、を含み、下流側ライン72は、第2貯留部80から重力方向下側に向かって延在している。これにより第1貯留部78に貯留される培地は、リアクタ12及び流通経路16に対して適切な陽圧をかけることができる。
 また、第1貯留部78と第2貯留部80は、重力方向と直交する方向に互いに隣接した位置にあり、第1貯留部78の容積が第2貯留部80の容積よりも大きい。これにより、一時貯留部64は、第1貯留部78からリアクタ12及び流通経路16に対して大きな陽圧をかけることができる。
 また、一時貯留部90は、当該一時貯留部90内に流入した培地に大気圧をかける大気開放部86を有し、大気開放部86は、気体を透過する一方で、液体を透過しないベント機構88により構成される。これにより、細胞培養システム10は、大気開放部86を備える構成でも、一時貯留部90からの培地の漏出が抑制される。
 また、廃液経路18は、流通経路16と一時貯留部90との間を連通する上流側ライン70と、一時貯留部90と廃液容器62との間を連通する下流側ライン72と、を含み、下流側ライン72は、一時貯留部90の下部から重力方向上側に一旦向かった後、重力方向下側に向かっている。この場合でも、細胞培養システム10は、一時貯留部90に貯留された培地によりリアクタ12及び流通経路16に対して陽圧をかけつつ、一時貯留部90から廃液容器62に培地を排出することができる。
 また、一時貯留部64、94は、リアクタ12を収容する筐体(第2筐体54)の外部に配置される。これにより、作業者は、細胞培養システム10の準備時に一時貯留部64、94を簡単にセットすることができる。また作業者は、外部にある一時貯留部64、94の培地を目視で確認して、培地の廃液状態を認識することができる。
 また、一時貯留部90は、リアクタ12を収容する筐体(第2筐体54)の内部に配置される。これにより、細胞培養システム10は、作業者等が一時貯留部90を不用意に落下させてしまう等の不都合を回避することができる。
 また、流通経路16は、リアクタ12との間で培地を循環させる循環回路(EC循環回路44a)と、循環回路に培地を供給する供給回路(EC供給回路44b)と、を有し、循環回路は、リアクタ12よりも培地の流通方向上流側において培地にガスを混合するガス交換器52を有し、リアクタ12よりも培地の流通方向下流側に廃液経路18が接続されている。これにより、細胞培養システム10は、一時貯留部64、90、94及び廃液経路18の培地を介してガス交換器52を有する循環回路に適宜の陽圧をかけることが可能となり、ガス交換器52における過剰なガスの流入を抑制することができる。
 また、リアクタ12は、複数設けられ、廃液経路18及び廃液容器62には、複数のリアクタ12を流通した培地がまとめて排出される。細胞培養システム10は、複数のリアクタ12により細胞の培養を効率化することができる。そして、細胞培養システム10は、複数のリアクタ12を用いることで多量の培地を流しても、廃液容器62及び一時貯留部64、90、94により培地を安定的に廃液することができる。

Claims (10)

  1.  培地の流通に基づき細胞を培養するリアクタと、
     前記リアクタに対して前記培地を流入及び流出する流通経路と、
     前記流通経路に接続され、当該流通経路から前記培地を排出する廃液経路と、
     前記廃液経路に接続され、当該廃液経路を経由した前記培地を貯留可能な廃液容器と、を備える細胞培養システムであって、
     前記廃液経路は、前記培地を一時的に貯留可能な一時貯留部を有し、
     前記廃液容器は、前記一時貯留部よりも重力方向下側に位置し、
     前記一時貯留部は、前記流通経路よりも重力方向上側に設けられ、前記流通経路から排出された前記培地を一時的に貯留すると共に、前記培地を前記廃液容器に向けて流出させる
     細胞培養システム。
  2.  請求項1記載の細胞培養システムにおいて、
     前記廃液容器は、前記リアクタの設置箇所よりも重力方向下側に設けられる
     細胞培養システム。
  3.  請求項1又は2に記載の細胞培養システムにおいて、
     前記一時貯留部の内部には、第1貯留部と、第2貯留部と、前記第1貯留部及び前記第2貯留部を互いに仕切る隔壁と、前記隔壁よりも重力方向上側にて前記第1貯留部及び前記第2貯留部を連通する連通部と、が設けられ、
     前記廃液経路は、前記流通経路と前記第1貯留部との間を連通する上流側ラインと、前記第2貯留部と前記廃液容器との間を連通する下流側ラインと、を含み、
     前記下流側ラインは、前記第2貯留部から重力方向下側に向かって延在している
     細胞培養システム。
  4.  請求項3記載の細胞培養システムにおいて、
     前記第1貯留部と前記第2貯留部は、重力方向と直交する方向に互いに隣接した位置にあり、前記第1貯留部の容積が前記第2貯留部の容積よりも大きい
     細胞培養システム。
  5.  請求項1又は2記載の細胞培養システムにおいて、
     前記一時貯留部は、当該一時貯留部内に流入した前記培地に大気圧をかける大気開放部を有し、
     前記大気開放部は、気体を透過する一方で、液体を透過しないベント機構により構成される
     細胞培養システム。
  6.  請求項5記載の細胞培養システムにおいて、
     前記廃液経路は、前記流通経路と前記一時貯留部との間を連通する上流側ラインと、前記一時貯留部と前記廃液容器との間を連通する下流側ラインと、を含み、
     前記下流側ラインは、前記一時貯留部の下部から重力方向上側に一旦向かった後、重力方向下側に向かっている
     細胞培養システム。
  7.  請求項1~6のいずれか1項に記載の細胞培養システムにおいて、
     前記一時貯留部は、前記リアクタを収容する筐体の外部に配置される
     細胞培養システム。
  8.  請求項1~6のいずれか1項に記載の細胞培養システムにおいて、
     前記一時貯留部は、前記リアクタを収容する筐体の内部に配置される
     細胞培養システム。
  9.  請求項1~8のいずれか1項に記載の細胞培養システムにおいて、
     前記流通経路は、
     前記リアクタとの間で前記培地を循環させる循環回路と、
     前記循環回路に前記培地を供給する供給回路と、を有し、
     前記循環回路は、前記リアクタよりも前記培地の流通方向上流側において前記培地にガスを混合するガス交換器を有し、前記リアクタよりも前記培地の流通方向下流側に前記廃液経路が接続されている
     細胞培養システム。
  10.  請求項1~9のいずれか1項に記載の細胞培養システムにおいて、
     前記リアクタは、複数設けられ、
     前記廃液経路及び前記廃液容器には、複数の前記リアクタを流通した前記培地がまとめて排出される
     細胞培養システム。
PCT/JP2022/012947 2021-03-26 2022-03-22 細胞培養システム WO2022202731A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22775517.0A EP4303295A1 (en) 2021-03-26 2022-03-22 Cell culture system
JP2023509160A JPWO2022202731A1 (ja) 2021-03-26 2022-03-22
US18/213,930 US20230348832A1 (en) 2021-03-26 2023-06-26 Cell Culture System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021052675 2021-03-26
JP2021-052675 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/213,930 Continuation US20230348832A1 (en) 2021-03-26 2023-06-26 Cell Culture System

Publications (1)

Publication Number Publication Date
WO2022202731A1 true WO2022202731A1 (ja) 2022-09-29

Family

ID=83397422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012947 WO2022202731A1 (ja) 2021-03-26 2022-03-22 細胞培養システム

Country Status (4)

Country Link
US (1) US20230348832A1 (ja)
EP (1) EP4303295A1 (ja)
JP (1) JPWO2022202731A1 (ja)
WO (1) WO2022202731A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020458A1 (ja) * 2010-08-12 2012-02-16 株式会社日立製作所 自動培養装置
JP2017143775A (ja) 2016-02-17 2017-08-24 東洋紡株式会社 ガス不透過性管を用いた細胞培養装置および細胞培養方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020458A1 (ja) * 2010-08-12 2012-02-16 株式会社日立製作所 自動培養装置
JP2017143775A (ja) 2016-02-17 2017-08-24 東洋紡株式会社 ガス不透過性管を用いた細胞培養装置および細胞培養方法

Also Published As

Publication number Publication date
US20230348832A1 (en) 2023-11-02
EP4303295A1 (en) 2024-01-10
JPWO2022202731A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
US20200248126A1 (en) Expanding Cells in a Bioreactor
US8906688B2 (en) Cell expansion system and methods of use
US20170158996A1 (en) Cell culture bag, cell culture apparatus, and cell culture container
CA2678893C (en) Methods to control cell movement in hollow fiber bioreactors
JP2013176377A (ja) 細胞増殖システムおよび使用方法
KR102441836B1 (ko) 모듈형 세포배양장치
JP5586604B2 (ja) 細胞培養装置
KR102411446B1 (ko) 세포배양장치
WO2022202731A1 (ja) 細胞培養システム
JP2021185877A (ja) 細胞培養容器、細胞培養方法、及び細胞生育状態の評価方法
EP4403616A1 (en) Portable bioreactor
JP2022547798A (ja) プライミング方法及び生体成分処理システム
US20230313115A1 (en) Cell Culturing System
US20230323262A1 (en) Cell Culturing System
CN215593081U (zh) 一种生物反应器及培养箱
JP2020171235A (ja) 細胞培養装置及びバイオリアクタ
JP2022514203A (ja) フィルタを有するバイオリアクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509160

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022775517

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022775517

Country of ref document: EP

Effective date: 20231004

NENP Non-entry into the national phase

Ref country code: DE